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Abstract: Atrial Fibrillation (AFib) is a heart condition that occurs when electrophysiological mal-
formations within heart tissues cause the atria to lose coordination with the ventricles, resulting in
“irregularly irregular” heartbeats. Because symptoms are subtle and unpredictable, AFib diagnosis is
often difficult or delayed. One possible solution is to build a system which predicts AFib based on the
variability of R-R intervals (the distances between two R-peaks). This research aims to incorporate the
transition matrix as a novel measure of R-R variability, while combining three segmentation schemes
and two feature importance measures to systematically analyze the significance of individual features.
The MIT-BIH dataset was first divided into three segmentation schemes, consisting of 5-s, 10-s, and
25-s subsets. In total, 21 various features, including the transition matrix features, were extracted
from these subsets and used for the training of 11 machine learning classifiers. Next, permutation
importance and tree-based feature importance calculations determined the most predictive features
for each model. In summary, with Leave-One-Person-Out Cross Validation, classifiers under the
25-s segmentation scheme produced the best accuracies; specifically, Gradient Boosting (96.08%),
Light Gradient Boosting (96.11%), and Extreme Gradient Boosting (96.30%). Among eleven classifiers,
the three gradient boosting models and Random Forest exhibited the highest overall performance
across all segmentation schemes. Moreover, the permutation and tree-based importance results
demonstrated that the transition matrix features were most significant with longer subset lengths.

Keywords: atrial fibrillation (AFib); R-R intervals; transition matrix; machine learning

1. Introduction
1.1. Background

Atrial fibrillation (AFib) is a heart affliction characterized by “irregularly irregular”
heartbeats [1]. During AFib, electrophysiological and/or structural malformations within
heart tissues cause the atria to lose coordination with the ventricles [2,3]. AFib currently
affects around 2.5 million Americans and 8.8 million Europeans, and while it is rare in
children, it is extremely common in the elderly population, with a 1–3% presence in
individuals greater than 20 years of age and a near-20% presence in individuals greater
than 85 years of age [2,4,5]. AFib is also attributed to a higher morbidity and mortality
rate due to concomitant diseases, such as neoplasm, chronic renal failure, and chronic
obstructive pulmonary disease [6–8]. Other health consequences can include an increased
risk of stroke, cognitive/memory impairment, and Alzheimer’s disease [7,8]. AFib is also
linked to a lower quality of life, with patients’ quality of life being impaired at around 8 h
of daily burden [9]. Furthermore, diagnosis and treatment of AFib is often delayed until it
has progressed significantly in severity, at which point symptoms become noticeable [10].
As AFib is a progressive disease, any delay in diagnosis allows for further cumulative
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damage to the atria [11]. Because of the association between AFib and higher mortality
and a lower quality of life, as well as the prolonged gap between patient affliction and
diagnosis/treatment, it is critical to quickly, accurately, and reliably detect AFib in order to
best mitigate health consequences [12].

Due to its random and spontaneous nature, AFib is difficult to identify and diagnose
through routine medical examinations. Suspected AFib can be investigated with manual
pulse rate and EKG analysis, but this is ineffective in diagnosing paroxysmal AFib, which
typically requires a Holter monitor (24-h) or event monitor (7–30 day) recording, a physical
examination, a complete blood count, transthoracic echocardiography, and/or chest radio-
graphy, varying from patient to patient [3]. Thus, a machine learning-based application
that constantly tracks a user’s heartbeats and analyzes them for AFib would greatly facili-
tate the process of atrial fibrillation detection. This application could be implemented in
wearable devices such as Apple Watches, allowing for convenient and accessible heartbeat
monitoring [13,14].

R-R intervals, defined as the distance between the R-peaks of two consecutive heart-
beats (shown in Figure 1), are frequently implemented in various methods of AFib de-
tection [15–17]. This is because R-R interval variability is a strong indicator and effective
diagnostic method for AFib [18]. The current medical standard involves identifying AFib
through the lack of P-waves from EKGs [16,19–21]. Chaotic atrial activity has also been
utilized to identify AFib [19,22–24]. Nevertheless, R-R interval variability features have
been shown to be an effective discriminator of atrial fibrillation with low computational
intensity [22,23].

Figure 1. R-R interval diagram in the classical EKG curve.

1.2. Related Work

Research in atrial fibrillation detection using machine learning techniques has been
performed for many decades. A 1999 study utilized a Hidden Markov Model (HMM) algo-
rithm, along with other measures, for AFib detection, finding that the HMM outperformed
the other features in terms of sensitivity and positive predictivity [25]. In 2001, Tateno and
Glass created a method for detecting atrial fibrillation using the coefficients of variation
and a Kolomogorov–Smirnov Test on density histograms of RR and ∆RR intervals [15].
Their best results were obtained using the Kolomogorov–Smirnov Test on ∆RR intervals,
with a sensitivity of 94.4% and specificity of 97.2%. Additionally, Ghodrati and Marinello
used two different probability density functions to model the histogram of R-R intervals
and determined which density function led to more accurate AFib detection [26]. The best
function resulted in a sensitivity of 89% and a positive predicative value (PPV) of 87% on
the MIT-BIH AFib database.

More recent research in AFib detection has increasingly incorporated advanced ma-
chine learning techniques [27]. A 2020 study performed wavelet transformations on Lorenz
plots and fed these transformed plots into support vector machines (SVM), yielding a
sensitivity of 99.2% and a specificity of 99.5% [14]. Kennedy et al. utilized four different
R-R irregularity measurements to train the Random Forest (RF) and K-Nearest Neighbors
(KNN) classifiers [28] to predict AFib. The best sensitivity (97.6%) was obtained by the
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coefficient of Sample Entropy feature alone, while the highest median accuracy (99.1%),
specificity (98.3%), and PPV (92.8%) were found when the RF Classifier was combined
with the coefficient of Sample Entropy. Another study conducted by Hirsch et al. in-
corporated three machine learning models: Boosted Trees, Random Forest, and Linear
Discriminant Analysis [23]. The RF Classifier outperformed the other models, with an
accuracy, sensitivity, and specificity of 97.6%, 98.0%, and 97.4%, respectively. Furthermore,
a step-by-step machine learning pipeline was created to feed over 300 features into the
XGBoost Classifier [29], resulting in a cross-validation F1-Score of 82.45% on the 2017
PhysioNet Challenge dataset.

With the surge of interest in deep learning, researchers have explored the application
of deep learning techniques for AFib detection [16,27,30–33]. Liaqat et al. employed
machine learning classifiers, including SVM, Logistic Regression, and XGBoost, as well as
deep learning models, such as convolutional neural networks (CNN) and long short-term
memory (LSTM) for AFib detection [30]. Out of all models, LSTM obtained the highest
accuracy on the MIT-BIH dataset, at 82.9%, while CNN yielded the best precision (82.0%),
sensitivity (81.0%), and F1-score (82.6%). Krol-Jozaga used three methods to create 2D
representations of EKG signals as inputs to CNNs: scalograms, spectrograms, and attractor
reconstruction [33]. Sensitivities of 94%, 95%, and 90% were obtained using scalograms,
spectrograms, and attractor reconstruction, respectively. Chen et al. utilized a feedforward
neural network that achieved an accuracy, sensitivity, and specificity of 84.00%, 84.26%,
and 93.23%, respectively, on a mixed dataset composed of the 2017 Challenge Dataset and
MIT-BIH AFib Dataset [34]. Additionally, Nankani et al. investigated a transformer neural
network, obtaining an F1-Score of 0.87 on the 2017 Challenge Dataset [35].

Concerns have been raised about the intransparency of deep neural networks, which
makes it challenging for medical professionals to obtain useful information regarding
the AFib classification. [27]. Many methods to improve the transparency of neural net-
works have been proposed, allowing the classification results to be more informative for
individuals and medical professionals [36,37]

Rather than evaluating the most effective overall classifiers, including deep learning
models, the primary focus of our study is to identify the most significant features when
combined with lightweight and accessible machine learning (ML) classifiers. The purpose
of using lightweight ML classifiers over deep learning methods is to lower computational
intensity while still maintaining relatively high classification performance. This is especially
important for applications in wearable devices.

Furthermore, it has been a regular practice in AFib detection to divide EKG recordings
into fixed-length subsets [24,30,38]. Pham et al. used EKG segments of both 2 s and 5 s
and compared the performance of the two segmenting methods [38]. Liaqat et al. solely
incorporated 10-s subset lengths [30] for AFib detection. The 2020 study on Lorenz plots
for AFib detection utilized a subset length of 60 R-R intervals [14]. Additionally, a study
on entropy-based AFib detection divided the recordings into segments of 30 beats [39].
However, based on our knowledge, there have been no previous studies investigating the
impact of different segmentation lengths on classification performance measures, which is
one of the goals of this study.

1.3. Contribution

The Markov transition model (transition matrix), which classifies R-R intervals based
on a running mean and records the proportion of R-R interval transitions [17], is a robust
measure of R-R interval variability that has not yet been utilized in conjunction with
machine learning for AFib detection. To evaluate the effectiveness of the transition matrix
features, we will consider both tree-based and permutation feature importance measures.
The permutation importance measure, which uses the decrease in model accuracy to
calculate the importance of individual features, has not been previously used for AFib
detection [40]. For a given segmentation scheme, the most significant features for each
classifier could be incorporated into an algorithm that runs on a wearable device.
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The three primary contributions of this study are outlined below:

1. Feeding a total of 21 features, including 8 innovative transition matrix features, into
11 machine learning classifiers, and systematically comparing the classifier outputs to
determine the most effective models for AFib detection.

2. Using two feature importance methods, including the permutation feature importance
and tree-based feature importance, to obtain the most significant and predictive
features in AFib detection.

3. Incorporating three segmentation schemes of 5 s, 10 s, and 25 s to examine the effect of
different segment lengths on classifier performance and feature importance results.

Figure 2 provides a flowchart for the overall proposed AFib detection framework.

Figure 2. AFib detection framework using R-R interval transition matrix features.

The remainder of this paper is organized as follows. Section 2 explains the exploratory
data analysis and preprocessing performed on the MIT-BIH dataset. In Section 3, the
21 features considered in this research are introduced. Section 4 describes all 11 machine
learning classifiers used. In Section 5, the feature importance methods are explained.
Section 6 provides the experiment results, including the model performance and feature
importance results. Section 7 discusses the principle findings and outlines areas of future
work. In Section 8, the main conclusions are summarized.

2. Exploratory Data Analysis and Preprocessing on MIT-BIH
2.1. MIT-BIH Atrial Fibrillation Database

The MIT-BIH Atrial Fibrillation database [41] contains two-signal electrocardiogram
(EKG) recordings of 25 human subjects, 23 of which were complete and usable. The
EKG recordings were sampled using a professional ambulatory EKG device, resulting in
minimal signal noise. Each 10-h recording includes professional annotations indicating the
chronological location and rhythm type of individual heartbeats. The rhythms were marked
as either Atrial Fibrillation (AF), Atrial Flutter (AFL), Junctional Rhythm (J), or Normal
(N). Two EKG nodes recorded at a rate of 250 Hz and registered upwards of 9 million
individual signals each, totaling over 18 million signals per subject. The location of the R
peaks for each beat and the labels for each rhythm were obtained. Once the R peaks were
determined, the R-R intervals were calculated as the difference between two consecutive
R peaks. Since the goal of this research involves detecting AFib from other rhythms, the
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AFL, J, and N rhythms were all grouped together as “Non-AFib”, and each heartbeat was
marked as “AFib” or “Non-AFib” based on the label of its corresponding rhythm.

2.2. Single-Subject Analysis

Single-subject analysis, the removal of extreme outliers, and rhythm differentiation
were all part of data analysis and processing on the MIT-BIH dataset. Exploratory data
analysis (EDA) was first performed on all subjects to visualize the distribution of their R-R
intervals. A line plot and histogram of the R-R interval distribution for Subject 04015 is
depicted in Figure 3. The line plot shows that the R-R intervals for Subject 04015 had a
baseline around or slightly greater than 0.8 s, with regular fluctuations from this baseline.
The histogram of the R-R intervals further illustrates that the most frequent R-R interval
size was around 0.8 s. The continuous line provides the kernel density estimate for the
distribution of the R-R intervals. In our preliminary studies, similar graphs were created
for all the other subjects to gain a strong understanding of the R-R interval distribution for
each subject. Results indicated that almost all of the subject’s R-R intervals were located in
the range of 0.2 s to 1.6 s.
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Figure 3. Sample of the line plot and histogram of R-R intervals for Subject 04015.

After performing single-subject analysis, the R-R intervals of all 23 subjects were
collectively graphed and compared, as shown in Figure 4. The horizontal black bars depict
the mean R-R interval length for each subject.

Figure 4. Strip plots of the R-R intervals for all 23 subjects.
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2.3. Outlier Removal

Based on Figure 4, it was apparent that the R-R intervals of many subjects contained
extreme outliers. These outliers were most likely caused by noise, and were, thus, filtered
from the data. The filter cutoff point was set at an R-R interval length of 2 s. Since the
instantaneous heart rate can be calculated by dividing 60 by the R-R interval length, an
R-R interval of 2 s results in a heart rate of 30 beats per minute (BPM). R-R intervals longer
than 2 s correspond to a heart rate below 30 BPM, a lethally low level. Therefore, any R-R
intervals longer that 2 s were filtered from the data.

2.4. Rhythm Differentiation

Upon filtering for outliers, we differentiated and located the different types of rhythms
within each EKG to better understand which sections of R-R intervals corresponded to
certain types of heartbeat rhythms. The pie charts in Figure 5 depict the proportion of
Normal, AFib, and Other rhythms for Subjects 04936 and 07910, respectively. Subject 04936
has a significantly higher proportion of AFib rhythms (73.9%) than normal rhythms (18.8%).
Additionally, 7.3% of this subject’s heart beats are labeled as “Other”. On the other hand,
Subject 07910 has the highest proportion of normal heart beats (84.5%) and a very small
proportion of rhythms labeled as “Other” (1.4%).

Normal
18.8%

AFIB
73.9% Other7.3%

Rhythm Types for Subject 04936

Normal
84.5%

AFIB
14.1%

Other1.4%

Rhythm Types for Subject 07910

Figure 5. Sample of rhythm frequencies for Subject 04936 and Subject 07910.

Figure 6 illustrates the location of Normal, AFib, and Other rhythms for Subject 04015
and Subject 04043. Subject 04015 has very few AFib episodes and is primarily experiencing
Normal rhythms. The few AFib rhythms of this subject correspond to R-R interval sizes that
deviate from the baseline. In contrast, Subject 04043 is undergoing a significantly greater
proportion of AFib episodes. As expected, the rhythms labeled “AFib” are clustered in
areas with higher R-R interval variability, while the rhythms around the baseline of 0.55 to
0.65 ss are primarily labeled as “Normal”.
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Figure 6. Labeled rhythms for Subject 04015 and Subject 04043.

Finally, all EKG recordings were divided using three segmentation schemes: 5 s, 10 s,
and 25 s. The 5-s [38] and 10-s [30] segmentation schemes were used based on previous
studies. The 25-s segments were also included to test the effect of a larger subset length.
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Feature extraction and classification were performed independently for each subset length.
A subset was classified as “AFib” or “Non-AFib” based on whether or not the majority of
the rhythms in that subset were labeled as “AFib”.

3. Features

We considered a total of 21 R-R interval derived features in this study, described below.

3.1. Transition Matrix Features

The transition matrix features, established by Moody and Mark [17], involve classify-
ing each R-R interval as short, medium, or long, based on how it compares to the running
mean. The formula for the running mean is provided below, where RRi is the length of
the ith R-R interval, rmeani is the current running mean, and rmeani−1 is the previous
running mean.

rmeani = 0.75× rmeani−1 + 0.25× RRi. (1)

An R-R interval was classified as “short” if it was less than 85% of the running mean
and “long” if it was greater than 115% of the running mean. All other R-R intervals were
classified as “medium”. The transitions between R-R intervals were labeled based on the
classifications of the two R-R intervals comprising that transition. For example, a transition
from a short R-R interval to a regular R-R interval would be labeled as a short-to-regular
(StoR) transition. Table 1 shows the nine possible transition types, each of which was
considered to be an individual transition matrix feature.

Table 1. Illustration of the R-R interval transition matrix.

To:

From:

Short Regular Long

Short StoS StoR StoL

Regular RtoS RtoR RtoL

Long LtoS LtoR LtoL

The proportional presence of the nine transitions between R-R intervals for Subject
04936 is illustrated in Figure 7. As expected, the regular-to-regular (RtoR) transitions type is
most prevalent. However, since this subject is experiencing a majority of AFib rhythms, as
seen in Figure 5, the other eight transition types are also present and collectively comprise
almost 50% of the transitions.

Figure 7. Transition proportions for Subject 04936.
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Figure 8 illustrates the nine transition frequencies for AFib and non-AFib subsets. For
the majority of Non-AFib subsets, the RtoR transitions type is the most common, comprising
over 90% of the transitions. The other eight transition types occur very infrequently, often
around 0%. The distribution of transition proportions is more balanced for AFib subsets.
The RtoR transitions frequency is significantly less dominant than in the Non-AFib subsets,
comprising less than 60% of the transitions for the majority of AFib subsets. The remaining
eight transitions were more prevalent than in the Non-AFib subsets.
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Figure 8. Transition frequencies across AFib and Non-AFib 25-s subsets for all subjects.

Since the summation of all nine transition percentages is one, using all features would
introduce collinearity into the model. Thus, when feeding the transition matrix features
into the models, only eight of the nine transition types were utilized. Because the RtoR
transitions type is present in higher percentages than the other transition matrix features,
to maintain the diversity of the features, the RtoR feature was dropped when training and
testing the machine learning models.

3.2. RR Variance

The RR Variance (RRvar) feature, developed by Ghodrati et al., involves finding the
absolute difference between two consecutive R-R intervals and dividing it by the running
mean [26]. Ghodrati et al. calculated the running mean by multiplying the previous
running mean by 0.9 and adding it to the product of 0.1 and the length of the current R-R
interval [26]. For the purposes of consistency, the running mean, as shown in Equation (1),
was utilized as for the transition matrix features.

RRvari =
|RRi − RRi−1|

rmeani
.

Since RRvar is a measure of R-R interval variability, subsets with higher RRvar values
are more likely to be associated with AFib episodes.

3.3. RR200

The RR200 feature is a variation of the RR(100) algorithm, which was proposed by
Young et al. [25]. The RR100 algorithm involves creating a count variable, increasing the
count by 1 if the difference between two consecutive RR intervals is greater than 100 ms and
decreasing the count by 1 if the difference between two R-R intervals is less than 100 ms. If
the value of count is greater than 6, the subset is classified as AFib [25].

Instead of using a cutoff of 100 ms, our preliminary studies in [42] suggested that a
cutoff of 200 ms was more optimal for AFib detection. Thus, our feature utilized a cutoff
of 200 ms to determine whether to increase or decrease the count by 1, as shown by the
equations below. The count was divided by the sum of the length of the R-R intervals in
the subset to yield the RR200 feature.

RRi − RRi−1 > 200 ms −→ count = count + 1,
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RRi − RRi−1 < 200 ms −→ count = count − 1,

RR200 =
count
∑ RRi

.

A higher value for RR200 would indicate that the differences between consecutive R-R
intervals are more extreme, and thus, correspond to a higher probability of AFib.

3.4. Root Mean Square of the Successive Differences

The root mean square of the successive differences (RMS) measures the average
difference, or variability, between two consecutive R-R intervals. It is calculated using the
following formula, where n is the number of R-R intervals in the subset [28]:

RMS =

√√√√ 1
n− 1

n−1

∑
i=1

(RRi+1 − RRi)2.

3.5. Standard Deviation

The standard deviation (σRR) is defined as follows:

σRR =

√
1

n− 1

n

∑
i=1

(RRi − µRR)2,

where µRR is the mean R-R interval length in a subset.

3.6. Median Absolute Deviation (MAD)

The Median Absolute Deviation (MAD), as proposed by Kennedy [28], measures the
median distance of each data point from the median. The MAD is a more robust feature
than the standard deviation because it does not succumb easily to outliers and works well
with non-normal distributions.

MAD = median
(
|RRi − R̃R|

)
,

where R̃R is the median R-R interval length in a subset.

3.7. Coefficient of Variance (CoefVar)

The Coefficient of Variance (CoefVar) is the standard deviation of the R-R Intervals
divided by the mean of the R-R intervals [28]. It is a simplified measure of variance
compared to standard deviation since it outputs lower numbers:

Coe f Var =
σRR
µRR

.

3.8. Interquartile Range and Range

The interquartile range and range are used as measures of variability and were adopted
in this study:

IQR = Q3−Q1,

Range = Max−Min.

3.9. Gini Index

The Gini Index is the area between the Lorenz Curve and the line of perfect equality.
It is used as a quantitative measure of inequality among values in a population [43]. In the
case of AFib detection, the Gini Index measures the inequality, or variation, between R-R
intervals. The Gini Index for each subset was calculated using the following formula:
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G =
2
n

∑n
i=1 i× RRi

∑n
i=1 RRi

− n + 1
n

.

3.10. Poincare Plot Distance

The Poincare Plot graphs each R-R interval against its following R-R interval in the
rhythm. The Poincare plot of an AFib positive subset should show no pattern or correlation.
The following feature, proposed in [44], was used to assess the variability of the R-R
intervals in a Poincare plot:

PP =
1

n− 2

n−2

∑
i=1

√
(RRi − RRi+1)2 + (RRi+1 − RRi+2)2.

This feature calculates average distance between two consecutive points in the Poincare plot.

3.11. Entropy Features

Three different measures of entropy were also used as features: Approximate Entropy,
Sample Entropy, and Shannon Entropy.

3.11.1. Approximate Entropy

Approximate entropy is an excellent measure of unpredictability in time-series data [45,46].
Approximate entropy is calculated with the following formula:

ApEn = φm(r)− φm+1(r),

φm(r) =
1

n−m + 1

n−m+1

∑
i=1

log(Cm
i (r)),

where n represents the number of R-R intervals in the subset, m is the length of the pattern,
and r is the tolerance. In our study, for every subset, m was set to 2, while r was 0.2 times
the standard deviation of the subset. The tolerance determines the extent to which two
datasets can be different. The expression Cm

i (r) is determined by counting the number of
patterns of length m that have a distance less than r and dividing this count by n−m + 1.

3.11.2. Sample Entropy

Sample Entropy is a modification of the approximate entropy and is calculated by the
following formula [45,46]:

SampEn = − log(
A
B
),

A =
n−m

∑
i=1

(Cm+1
i (r)− 1),

B =
n−m+1

∑
i=1

(Cm
i (r)− 1).

where Cm
i (r) is the same as for approximate entropy. The values of m and r are also the

same as those used for approximate entropy. The expression A
B is the probability that if

two datasets of length m have a distance less than r then two datasets of length m + 1
will also have a distance less than r. The Sample Entropy is the negative logarithm of
this probability.

3.11.3. Shannon Entropy

We propose the combination of the Shannon Entropy feature with the transition
matrix proportions. The Shannon Entropy measures the uncertainty of a probability
distribution [46]. In the context of AFib detection, the Shannon Entropy measures the
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uncertainty in the R-R intervals. The Shannon entropy (H) for each subset was computed
using the following formula:

H = −
n

∑
i=1

pi log2 pi.

where pi represented the proportion of a particular type of transition between two R-R
intervals (StoS, StoR, etc.). Since there are nine possible transitions, each subset had at most
nine different pi values. For each proportion, the expression pi log2 pi was evaluated and
the values for this expression were summed together to receive the Shannon Entropy. The
greater the Shannon Entropy, the higher the variability of the R-R intervals, indicating a
higher chance of AFib.

3.12. Features across AFib and Non-AFib Classes

Figure 9 provides a comparison of the MAD, Sample Entropy, R-R variance, and
Coefficient of Variance (CoefVar) in AFib and non-AFib classes. The MAD, R-R variance,
and Coefficient of Variance are significantly higher for AFib compared to non-AFib. The
Sample Entropy is generally higher for AFib as well. Therefore, greater values for these
features can be used as indicators of atrial fibrillation. In our preliminary studies, similar
boxplots were created for all features, and it was observed that every feature was greater
for AFib than non-AFib.

AFIB Non-AFIB
0

20

40

60

80

100

120

M
ed

ia
n 

Ab
so

lu
te

 D
ev

ia
tio

n

MAD for AFIB and Non-AFIB 25-Second Subsets

AFIB Non-AFIB
0

1

2

3

Sa
m

pl
e 

En
tr

op
y

Sample Entropy for AFIB and Non-AFIB 25-Second Subsets

AFIB Non-AFIB
0.0

0.2

0.4

0.6

0.8

1.0

R
-R

 V
ar

ia
nc

e

R-R Variance for AFIB and Non-AFIB 25-Second Subsets

AFIB Non-AFIB
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Co
ef

fic
ie

nt
 o

f V
ar

ia
nc

e

CV for AFIB and Non-AFIB 25-Second Subsets

Figure 9. Sample features of MAD, Sample Entropy, R-R Variance, and Coefficient of Variance
(CoefVar) Across AFib and Non-AFib Subsets.

4. Classifiers

The following classification models were used on the MIT-BIH dataset: Non-tree based
classifiers, including Logistic Regression [47], K-Nearest Neighbors (KNN) [48], Linear
Discriminant Analysis (LDA) [49], and Quadratic Discriminant Analysis (QDA) [50], as well
as tree-based classifiers, including Decision Trees [51], Bagging [52], Random Forest [53],
Adaptive Boosting [54], Gradient Boosting [55], Light Gradient Boosting [56], and Extreme
Gradient Boosting [57].
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4.1. Non-Tree Based Classifiers

Logistic Regression, Linear Discriminant Analysis (LDA), Quadratic Discriminant
Analysis (QDA), and K-Nearest Neighbors (KNN) were the four non-tree based models
used for AFib classification. Logistic Regression is a reliable model for binary dependent
variable classification and binds the dependent variable so that the value returned is always
between 0 and 1 [47]. LDA determines a line of best fit which divides a given set of features
into two categories [49]. QDA, similar to LDA, produces an idealized function that classifies
groups, but divides a set of data based on non-linear functions. For this reason, it is helpful
for more convoluted features. On the other hand, KNN classifies a given point by taking a
simple or weighted vote of the k nearest points [48]. We utilized KNN-CV for classification,
a version of the KNN algorithm that determines the ideal value of k using cross validation.
Our model used a simple majority vote with no distance-based weighting. The ideal value
of k differed based on the features used. This classification is highly sensitive to the local
topography of a dataset.

4.2. Tree-Based Classifiers

Seven tree-based classifiers were considered in this study. The Decision Tree (DT)
classifier divides the predictor space into regions to perform classification. These regions
are based on the minimization of the Gini Index, a measure that calculates the probability
that a data point is incorrectly classified [51]. Decision Trees form the basis for all other
tree methods, including Bagging, Random Forest, Adaptive Boosting, and the variants of
Gradient Boosting.

Bagging uses a combination of bootstrapping and aggregating. Bootstrapping re-
samples a dataset of size n to create many different samples of size n by taking random
samples from the original dataset with replacement [52]. A decision tree is then fitted to each
of these individual samples. Each tree outputs a different result, and the final prediction is
based on a majority vote of each of these different results, a technique known as aggregating.
A drawback to bagging is that the presence of strong predictors in the data can create trees
that are highly correlated with each other. Thus, Random Forest decorrelates different
decision trees by limiting the dominance of strong predictors through randomly selecting
predictors to create trees. Random Forest, similar to Bagging, incorporates bootstrapping
and aggregating. However, instead of being fed with all predictors, each tree is fed only a
limited number, typically the square root of the total number of predictors [53]. AdaBoost
“learns” from its mistakes by placing a higher weight on incorrect classifications and a lower
weight on correct classifications [54]. It creates many decision trees, changes the weighting
of these trees based on its mistakes, and then takes the weighted average of the results of
these trees to create a final prediction.

Three variants of gradient boosting methods were adopted in this study: Gradient
Boosting (GBM), Light Gradient Boosting (LGBoost), and Extreme Gradient Boosting
(XGBoost). Gradient Boosting, similar to AdaBoost, “learns” from its mistakes by training
on its error: the residuals between the true value and the predicted value. It creates many
decision trees, forming each tree based on the error of the previous tree, with the goal of
minimizing the loss function [55]. XGBoost builds on the gradient boosting framework
and utilizes level-wise tree growth in which the trees grow an entire level at a time [57].
It is designed to be more accurate and computationally efficient than Gradient Boosting,
making it a strong algorithm when dealing with large datasets. LGBoost, which also uses a
gradient boosting framework, uses leaf-wise tree growth, in which the decision trees grow
one node at a time [56]. This leaf-wise tree growth further reduces loss, allowing for high
accuracy and efficiency.

4.3. Hyperparameter Tuning

The grid search algorithm via cross-validation was applied to tune the hyperparam-
eters, with the goal of improving the classification accuracy. For the 5-s, 10-s, and 25-s
segmentation schemes, various hyperparameter tuning schemes were individually con-
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sidered for eight different classifiers, listed below: (1) For KNN-CV, k-values of 1 to 35
were studied; (2) For Decision Tree, a max depth of 1 to 25 was considered; (3) For Random
Forest, a number of trees of 10, 50, 100, and 500 was tested, along with a max depth of 3 to
20 and a max number of features of 4 and 5; (4) For AdaBoost, learning rates from 0.1 to
1 with increments of 0.1 were considered; (5) For GBM, learning rates from 0.1 to 1 with
increments of 0.1, a number of trees of 50, 100, and 500, and a max depth of 3 to 12 were
studied; (6) For LGBoost, a learning rate of 0.1 to 1 with increments of 0.1, a number of
trees of 10, 50, 100, and 500, a max depth of 3 to 15, and a number of leaves of 6 to 32
were studied; (7) The considered parameters for XGBoost were similar to those of LGBoost
except that a max depth of 1 to 15 was examined with the default number of leaves. The
random state was fixed for all models to avoid unexpected experimental variability.

4.4. Leave-One-Person-Out Cross Validation

Leave-One-Person Out Cross Validation (LOOCV) [58] was employed for the training
and testing of all classifiers. LOOCV was used to avoid information leaking from an indi-
vidual subject, since regular k-fold Cross Validation may contain data from the same subject
in both the training and testing sets. For LOOCV, the data were first split into 23 folds,
where each fold contained the subsets for one of the 23 subjects. In total, 23 iterations
were carried out in which the model trained on data from 22 subjects and tested on the
1 remaining subject. In each iteration, the model was tested on a different subject. This
iterative process of training and testing allowed each model to be tested on all of the data.

4.5. Metrics

To quantify the performance of the models, six metrics were used: accuracy, sensitivity,
specificity, precision, F1-score, and AUC. The Area Under Curve (AUC) is the area under
the Receiving Operating Characteristics (ROC) Curve, which graphs the false positive
rate against the true positive rate. The AUC-Score is the ability of a model to distinguish
between different categories. In the case of AFib detection, AUC determines the ability of a
classifier to differentiate between “AFib” and “Non-AFib” classes.

5. Feature Importance

Each of the tree-based classifiers, including three gradient boosting models, contain
a default feature importance measure as part of the Python Scikit-learn library. These
tree-based feature importances were used to identify strongly predictive features in the
output of the classifiers. It is noted that tree-based feature importances were not available
for the non-tree classifiers such as Logistic Regression, LDA, QDA, and KNN.

Table 2 provides the tree-based feature importance methods used for each tree clas-
sifier. Decision Tree, Bagging, Random Forest, and GBM all used the Gini Importance
measure, while LGBoost and XGBoost employed the count-based and gain-based impor-
tance measures, respectively.

Table 2. Feature importance measures for tree-based models.

Tree Classifier Feature Importance Measure

Decision Tree Gini Importance

Bagging Gini Importance

RandomForest Gini Importance

AdaBoosting Gini Importance

Gradient Boosting Gini Importance

LGBoost Count-Based Importance

XGBoost Gain-Based Importance
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Additionally, the permutation feature importance measure [40], which can be applied
to any classifier, was also used to determine the most significant and predictive features
to have a consistent measure across all models. The permutation importance calculation
involves changing the order of one feature while keeping the remaining 20 features constant
and calculating the effect of this permutation on the accuracy of the model. A larger decrease
in model accuracy indicates a higher feature importance. This process was carried out
for all 21 features independently, with the order of each feature being permuted 10 times,
and the decrease in the model accuracy was used to determine the relative importance of
each feature.

6. Experiment Results

In this section, 21 features, including the proposed transition matrix features, extracted
from 5-s, 10-s, and 25-s subsets on the MIT-BIH dataset were compared systematically on
11 machine learning classifiers using LOOCV. Then, permutation and tree-based feature
importances were used to determine the most predictive features for each model.

6.1. Overall Model Performance for Three Segmentation Schemes

Table 3 provides the performance metrics of all classifiers when fed with 5-s subsets.
When the models were trained with 5-s subsets, XGBoost, LGBoost, and Random Forest
had the three highest accuracies, at 92.52%, 92.46%, and 92.43%, respectively. Gradient
Boosting trailed Random Forest with an accuracy of 92.33%. The three highest sensitivities
were exhibited by Logistic Regression (92.84%), LDA (92.55%), and XGBoost (92.00%). Even
though Logistic Regression and LDA yielded the two highest sensitivities, they performed
relatively poorly in terms of the other five metrics and were, therefore, not considered to be
high-performing classifiers.

Table 3. Results for all models with 5-s segmentation scheme using LOOCV. Top three results are
highlighted for each measurement.

Model Accuracy Sensitivity Specificity Precision F1-Score AUC Score

LogReg 0.8977 0.9284 0.8502 0.9018 0.9149 0.9621

LDA 0.9010 0.9255 0.8628 0.9090 0.9172 0.9636

QDA 0.8728 0.8852 0.8526 0.8989 0.8920 0.9389

KNN-CV 0.9076 0.8904 0.9317 0.9507 0.9196 0.9620

Decision Tree 0.9047 0.8926 0.9208 0.9435 0.9174 0.9569

Bagging 0.9192 0.9125 0.9277 0.9492 0.9305 0.9733

Random Forest 0.9243 0.9145 0.9375 0.9559 0.9347 0.9744

AdaBoost 0.9153 0.9091 0.9230 0.9459 0.9271 0.9743

GBM 0.9233 0.9179 0.9299 0.9509 0.9341 0.9751

LGBoost 0.9246 0.9193 0.9311 0.9519 0.9353 0.9742

XGBoost 0.9252 0.9200 0.9315 0.9521 0.9358 0.9743

Table 4 demonstrates that, for the 10-s segmentation scheme, the three gradient boost-
ing models and Random Forest exhibited high accuracies as well. GBM had the highest
accuracy at 94.81%, followed by LGBoost (94.77%) and Random Forest (94.76%). XGBoost
had the fourth highest accuracy, at 94.70%. The three highest AUC scores were exhibited by
LGBoost, XGBoost, and Random Forest, with scores of 98.49%, 98.46%, and 98.45%, respec-
tively. LGBoost (94.93%) and Random Forest (94.81%) had the two greatest sensitivities.
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Table 4. Results for all models with 10-s segmentation scheme using LOOCV. Top three results are
highlighted for each measurement.

Model Accuracy Sensitivity Specificity Precision F1-Score AUC Score

LogReg 0.9277 0.9514 0.8910 0.9284 0.9398 0.9741

LDA 0.9301 0.9483 0.9015 0.9347 0.9415 0.9780

QDA 0.8995 0.8906 0.9114 0.9373 0.9133 0.9508

KNN-CV 0.9250 0.9200 0.9312 0.9521 0.9358 0.9707

Decision Tree 0.9362 0.9391 0.9306 0.9527 0.9458 0.9668

Bagging 0.9459 0.9476 0.9423 0.9607 0.9541 0.9835

Random Forest 0.9476 0.9481 0.9459 0.9631 0.9555 0.9845

AdaBoost 0.9405 0.9435 0.9349 0.9557 0.9496 0.9828

GBM 0.9481 0.9476 0.9479 0.9644 0.9559 0.9820

LGBoost 0.9477 0.9493 0.9445 0.9621 0.9557 0.9849

XGBoost 0.9470 0.9479 0.9446 0.9622 0.9550 0.9846

Table 5 provides the results of all classifiers with the 25-s segmentation scheme. The
highest performing model was XGBoost with an accuracy of 96.29%, while LGBoost and
Gradient Boosting had the second and third highest accuracies, respectively, at 96.11%
and 96.08%. Following these accuracies were AdaBoost (96.03%) and Random Forest
(95.55%). AdaBoost and Random Forest tied for the highest AUC score, at 99.16%. Therefore,
AdaBoost and Random Forest were the most adept at distinguishing between AFib and non-
AFib subsets. Additionally, XGBoost (96.98%), Gradient Boosting (96.88%), and LGBoost
(96.86%) had the three highest sensitivities.

Table 5. Results for all models with the 25-s segmentation scheme using LOOCV. Top three results
are highlighted for each measurement.

Model Accuracy Sensitivity Specificity Precision F1-Score AUC Score

LogReg 0.9479 0.9664 0.9195 0.9471 0.9567 0.9866

LDA 0.9526 0.9604 0.9402 0.9599 0.9602 0.9895

QDA 0.9296 0.9180 0.9460 0.9620 0.9395 0.9744

KNN-CV 0.9349 0.9423 0.9229 0.9480 0.9452 0.9720

Decision Tree 0.9438 0.9559 0.9249 0.9500 0.9529 0.9794

Bagging 0.9526 0.9666 0.9310 0.9543 0.9604 0.9887

Random Forest 0.9555 0.9664 0.9384 0.9590 0.9627 0.9916

AdaBoost 0.9603 0.9641 0.9540 0.9690 0.9666 0.9916

GBM 0.9608 0.9688 0.9485 0.9656 0.9672 0.9871

LGBoost 0.9611 0.9686 0.9495 0.9662 0.9674 0.9901

XGBoost 0.9629 0.9698 0.9522 0.9680 0.9689 0.9897

Across all three subset lengths, the four non-tree based models (Logistic Regression,
LDA, QDA, and KNN-CV) yielded the least satisfactory results in terms of accuracy.
Decision Tree, Bagging, and Adaptive Boosting generally outperformed the non-tree based
models, while Random Forest and the three gradient boosting models demonstrated the
highest accuracies.
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6.2. Comparison of Model Performance across Three Segmentation Schemes

We will systematically compare the performance of the models across 5-, 10-, and 25-s
segmentation schemes.

Figure 10 depicts the accuracies of all eleven classifiers for each of the three segmen-
tation schemes (5, 10, and 25 s). When fed with 5-s subsets, XGBoost, LGBoost, Random
Forest, and GBM had the four highest accuracies. On the other hand, the four non-tree
based classifiers exhibited the four lowest accuracies. Similar results were obtained for
the 10-s and 25-s subsets. With the 10-s subsets, the three gradient boosting models and
Random Forest had the four highest accuracies. When fed with 25-s subsets, XGBoost,
LGBoost, and GBM yielded the three greatest accuracies, with AdaBoost following in
fourth. For every classifier, the highest accuracy occurred with the 25-s subsets while the
5-s subsets resulted in the lowest accuracy, demonstrating that subset length and accuracy
have a positive concordance across all models.

Figure 11 illustrates the sensitivites of all classifiers across all three subset lengths. Sim-
ilar to the accuracy, the sensitivity of every classifier increased as subset length increased.

Finally, Figure 12 depicts the trend in AUC score across different subset lengths for all
classifiers. The AUC score and subset length have a clear positive concordance. The higher
AUC scores were exhibited by the three gradient boosting models, as well as Random
Forest, Bagging, and Adaptive Boosting.
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Figure 10. Accuracies across all subset lengths (5, 10, and 25 s) using LOOCV.
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Figure 11. Sensitivities across all subset lengths (5, 10, and 25 s) using LOOCV.
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Figure 12. AUC across all subset lengths (5, 10, and 25 s) using LOOCV.

6.3. Comparison of Actual Rhythms and XGBoost Classification Performance

Figure 13 depicts the actual and predicted subset classifications for Subject 04043 using
XGBoost and a 25-s segmentation scheme. The MAD values for each subset are shown
on the vertical axis. As expected, the majority of the subsets with higher MADs were
classified as “AFib”, while the subsets with lower MADs were classified as “non-AFib”.
The predicted values are primarily in agreement with the true classifications, since the
XGBoost model had a 96.4% accuracy with Subject 04043. Similar graphs using XGBoost
with a 25-s segmentation scheme were created for the other subjects and features.
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Figure 13. Actual (left) and XGBoost based (right) rhythms on 25-s subsets for Subject 04043.

6.4. Feature Importance Results for Three Segmentation Schemes

Tables 6–8 provide the top five most predictive features for every classifier with the
5, 10, and 25-s segmentation schemes, respectively. Across all segmentation schemes, the
most predictive features differed in various levels between the tree-based importance
and permutation importance [59] for almost every subset-classifier combination. It is an
interesting finding that the transition matrix features were generally more predictive with
the tree-based importance measures than with the permutation importance measure.
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Table 6. Top five features for all models with the 5-s segmentation scheme.

Model Tree-Based Importance
Top 5 Features

Permutation Importance
Top 5 Features

LogReg N/A Range, CoefVar, IQR, STD, Poincare

LDA N/A Range, ShanEn, IQR, STD, RR200

QDA N/A STD, RMS, CoefVar, Range, RRVar

Decision Tree IQR, CoefVar, RR200, SampEn, ApEn CoefVar, IQR, STD, RR200, ApEn

Bagging IQR, CoefVar, RR200, SampEn, ApEn CoefVar, IQR, RR200, ApEn, MAD

Random Forest IQR, MAD, CoefVar, RRVar, Range IQR, MAD, RR200, ApEn, CoefVar

AdaBoost CoefVar, RR200, IQR, Range, RRVar CoefVar, RR200, RRVar, IQR, MAD

GBM IQR, MAD, RR200, CoefVar, SampEn RRVar, IQR, Poincare, RMS, CoefVar

LGBoost RR200, Gini, IQR, CoefVar, RRVar IQR, RRVar, Poincare, CoefVar, RMS

XGBoost IQR, SampEn, StoL, CoefVar, RRVar IQR, CoefVar, RRVar, Poincare, RR200

Table 7. Top five features for all models with the 10-s segmentation scheme.

Model Tree-Based Importance
Top 5 Features

Permutation Importance
Top 5 Features

LogReg N/A Range, ShanEn, Poincare, CoefVar, STD

LDA N/A ShanEn, Poincare, Range, RMS, STD

QDA N/A STD, RMS, RRVar, CoefVar, ShanEn

Decision Tree IQR, MAD, RR200, SampEn, RtoL IQR, CoefVar, RR200, MAD, RtoL

Bagging IQR, MAD, RR200, SampEn, RtoL IQR, RR200, SampEn, RtoL, MAD

Random Forest MAD, IQR, RRVar, CoefVar, RtoL MAD, IQR, RR200, SampEn, ApEn

AdaBoost CoefVar, RR200, RMS, RRVar, STD CoefVar, RRVar, RR200, SampEn, Range

GBM IQR, MAD, RR200, SampEn, RtoL RR200, SampEn, IQR, MAD, Range

LGBoost RR200, SampEn, MAD, ApEn, Range RRVar, MAD, RR200, IQR, SampEn

XGBoost RtoL, MAD, IQR, StoR, SampEn SampEn, MAD, RR200, RRVar, Range

Table 8. Top five features for all models with the 25-s segmentation scheme.

Model Tree-Based Importance
Top 5 Features

Permutation Importance
Top 5 Features

Logistic Regression N/A ShanEn, Range, Poincare, STD, RMS

LDA N/A ShanEn, Poincare, CoefVar, STD, RMS

QDA N/A RtoS, RRVar, ShanEn, StoR, LtoR

KNN-CV N/A IQR, Range, Poincare, RMS, MAD

Decision Tree RtoL, MAD, SampEn, RR200, StoR MAD, RtoL, IQR, SampEn, RR200

Bagging RtoL, MAD, SampEn, RR200, StoR RRVar, MAD, CoefVar, RtoL, SampEn

Random Forest RtoL, MAD, IQR, RRVar, StoR MAD, SampEn, RtoL, RR200, IQR

AdaBoost SampEn, RR200, CoefVar, ApEn, RRVar RRVar, SampEn, RtoL, CoefVar, MAD

GBM RtoL, MAD, SampEn, RR200, StoR MAD, CoefVar, RR200, SampEn, RtoL

LGBoost RR200, SampEn, ApEn, Range, IQR MAD, SampEn, RR200, ApEn, Range

XGBoost RtoL, MAD, IQR, StoR, SampEn SampEn, MAD, RR200, RRVar, Range
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LogReg, LDA, QDA, and KNN-CV did not contain tree-based feature importances and
could, therefore, only be analyzed with the permutation importance measure. Additionally,
the tree-based importance measures varied between the classifiers, making the permutation
feature importance more consistent. Since KNN-CV with the permutation importance
measure had high computational intensity for the 5- and 10-s segmentation schemes, we
only considered ten classifiers for these two subset lengths, while all eleven classifiers were
considered for the 25-s segmentation scheme.

Furthermore, Figure 14 depicts the tree-based importance results for GBM, LGBoost,
and XGBoost with 25-s subsets. On the other hand, Figure 15 provides the permutation
feature importance results for GBM, LGBoost, and XGBoost using the 25-s segmentation
scheme. Each bar represents the median of ten permutations.
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Figure 14. Tree-based importance for Gradient Boosting Models with the 25-s segmentation scheme.

When the models were fed with 25-s subsets, MAD was the most significant predictor
for GBM by a considerable margin, causing a decrease in accuracy of 0.3, the most significant
predictor for LGBoost, and the second most predictive feature for XGBoost. Sample Entropy
was found to be the strongest predictor with XGBoost. Sample Entropy, MAD, and RR200
were consistently in the top four most predictive features across all three gradient boosting
models. These three features were considered equally significant as the decrease in accuracy
caused by the removal of one of these features was almost equivalent, at around 0.14.

6.5. Feature Prevalence Results in the Top Five Important Features for Three Segmentation Schemes

Figure 16 demonstrates the prevalence of each feature in the top five features for the 5-s,
10-s, and 25-s segmentation schemes using both tree-based and permutation importance
measures. RR200 (35), IQR (32), MAD (30), Sample Entropy (28), and Coefficient of Variance
(27) were among the most important features for both feature importance measures, with the
total frequency of each feature in the top-5 most important features provided in parenthesis.
R-R Variance (21), Range (16), and RtoL (16) was the next cohort of the most important
features. It is noted that RtoL is the best feature among all eight transition matrix features.
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6.6. Feature Importance Results for the Proposed Transition Matrix Features

The feature importances for our proposed transition matrix features were studied
systematically as below. Table 9 provides the rank of the most significant transitions
feature for every model-subset combination using the tree-based importance measures. A
lower rank number corresponds to a greater feature importance. Across all models, the
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significance of the most predictive transitions feature increased as the subset length became
greater. With the 25-s segmentation scheme, the RtoL transition matrix feature was the
most significant predictor for five of the seven tree-based models. The RtoL feature was
the most predictive transition matrix feature for all tree-based models when using the 10-s
and 25-s segmentation schemes, with the exception of AdaBoost. However, when using the
5-s segmentation scheme, the StoL transitions type was more prominent across the models
than the RtoL transitions feature.

For both GBM and XGBoost, the RtoL transition matrix feature was the most predictive
feature using the tree-based feature importance. Therefore, based on the tree-based feature
importances, the transition matrix was the most significant predictor of AFib for two
gradient boosting models. Additionally, for both models, MAD was the second most
predictive feature by a considerable margin. However, for LGBoost, the RtoL transitions
feature was only the sixth most predictive covariate, while RR200 was determined to be
the most significant. This difference in the significance of the transitions matrix between
LGBoost and the two other gradient boosting variations can be attributed to the variation in
the tree-based feature importance measures. In general, the transition matrix features were
more predictive when using the tree-based feature importance than with the permutation
feature importances. However, the consistency of the permutation feature importance
across all models made it a more reliable and robust measure of comparison.

Table 9. Best transition matrix feature rank using tree-based importance.

Model 5-s 10-s 25-s

Decision Tree 6 (StoL) 5 (RtoL) 1 (RtoL)

Bagging 6 (StoL) 5 (RtoL) 1 (RtoL)

Random Forest 12 (RtoL) 5 (RtoL) 1 (RtoL)

AdaBoost 12 (RtoS) 13 (RtoS) 9 (LtoR)

GBM 7 (StoL) 5 (RtoL) 1 (RtoL)

LGBoost 13 (RtoL) 9 (RtoL) 7 (RtoL)

XGBoost 3 (StoL) 3 (RtoL) 1 (RtoL)

Moreover, Table 10 provides the best transition matrix feature and its rank for every
segmentation-classifier combination using the permutation feature importance. The permu-
tation feature importance results varied across different subset lengths. When the models
were trained with 5-s subsets, the regular-to-long transition matrix feature was the 13th
most predictive covariate for all three gradient boosting variations. Thus, even the best
transition matrix feature played a relatively small role in classification. When the models
were fed with 10-s subsets, the regular-to-long transition matrix feature was the 11th, 9th,
and 8th most predictive covariate for Gradient Boosting, LGBoost, and XGBoost, respec-
tively. Lastly, when the models were fed with 25-s subsets, the regular-to-long transition
matrix feature was the 5th most significant covariate for Gradient Boosting and the 7th
most predictive for LGBoost and XGBoost. Therefore, across all three gradient boosting
classifiers, the transition matrix features were less predictive with 5-s and 10-s subsets than
with 25-s subsets.

For every tree and gradient-boosting model, the rank of the most predictive transition
matrix feature increased as the subset-length increased; the transition matrix features
carried the greatest significance with the 25-s subsets and the least significance with the
5-s subsets. However, this trend did not occur in non-tree based models such as Logistic
Regression and LDA, where the best transition matrix feature was approximately equally
predictive across all subset lengths.
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Table 10. Best transition matrix feature rank using permutation feature importances.

Model 5-s 10-s 25-s

LogReg 8 (StoL) 10 (StoL) 8 (StoL)

LDA 6 (StoL) 6 (StoL) 6 (StoL)

QDA 8 (RtoS) 8 (RtoS) 1 (RtoS)

Decision Tree 6 (StoL) 5 (RtoL) 2 (RtoL)

Bagging 7 (StoL) 4 (RtoL) 5 (RtoL)

Random Forest 8 (StoL) 6 (RtoL) 3 (RtoL)

AdaBoost 10 (RtoL) 10 (RtoL) 3 (RtoL)

GBM 13 (RtoL) 11 (RtoL) 5 (RtoL)

LGBoost 13 (RtoL) 9 (RtoL) 7 (RtoL)

XGBoost 13 (RtoL) 8 (RtoL) 7 (RtoL)

In summary, the regular-to-long (RtoL) transition matrix feature was the most predic-
tive transitions feature for the majority of the segmentation-classifier combinations and was
primarily prominent among the tree and gradient boosting models. Due to the consistently
high performance of the three gradient boosting models across all subset lengths, the feature
importances of the gradient boosting models were given the highest consideration. Since
the regular-to-long (RtoL) transition matrix feature was consistently the most predictive
transitions feature for the gradient boosting models, the RtoL permutation and tree-based
feature importance was used to assess the importance of the overall transition matrix.

7. Discussion

Accuracy, as a baseline measure, was the primary metric used to evaluate the models.
Sensitivity and AUC score were also prioritized when determining classifier performance.
During AFib detection, minimizing the number of false negatives should be prioritized over
minimizing the number of false positives to prevent AFib episodes from going undetected.
Leaving AFib episodes undetected would have life-threatening consequences, and a model
that is used in wearable devices must minimize the chance that such an error would occur.
As such, sensitivity was valued over specificity. The AUC score of a classifier was also given
high consideration when evaluating model performance. The AUC score quantitatively
measures the ability of each model to distinguish between AFib and non-AFib episodes,
which is the primary purpose of the classifiers.

7.1. Principal Finding

Across all segmentation schemes, the three gradient boosting models and Random
Forest exhibited the highest performance in terms of accuracy, sensitivity, and AUC score.
For the 5-s segmentation scheme, XGBoost performed best in terms of accuracy and sensi-
tivity, while Gradient Boosting had the highest AUC score. When the classifiers were fed
with 10-s subsets, the highest accuracy, sensitivity, and AUC score were demonstrated by
Gradient Boosting, Random Forest, and XGBoost, respectively. With the 25-s segmentation
scheme, XGBoost exhibited the highest accuracy and sensitivity, while Random Forest and
Adaptive Boosting tied for the greatest AUC score. In general, AdaBoost, Bagging, and
Decision Tree performed marginally worse than Random Forest and the three gradient
boosting variations, while the four non-tree based models (Logistic Regression, LDA, QDA,
and KNN-CV) exhibited the poorest performance.

For all classifiers, as the subset length increased, the six performance metrics (accuracy,
sensitivity, specificity, precision, F1-Score, and AUC score) improved. All eleven classifiers
had the lowest accuracies with 5-s subsets, improved when trained with 10-s subsets, and
exhibited their highest performance with 25-s subsets. This result is shown in more detail
in Figure 10. A positive concordance between subset length and classifier performance
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occurs because larger subsets provide more data to train the models and consequently lead
to better AFib detection performance. An advantage of shorter subset lengths is more rapid
AFib detection. The 5-s subsets will have at most a 5-s delay in AFib detection, while the
25-s subsets will have a maximum 25-s delay. Therefore, there is a trade-off between AFib
detection speed and detection accuracy. The ideal subset length depends on the relative
importance of timeliness and accuracy when detecting AFib. In terms of performance,
a 25-s segmentation scheme would be preferable to a 5-s or 10-s segmentation scheme,
because it would allow for more accurate detection. However, this decision depends on an
individual basis and should be made with the consultation of a medical professional.

Based on the tree-based and permutation feature importance results, across all classi-
fiers, the eight transition matrix features were more predictive with longer subset lengths.
When using the permutation feature importance and a 5-s segmentation scheme, the transi-
tion matrix features were not in the top five most significant predictors for any classifiers.
Even with the tree-based importance, a transition matrix feature appeared in the top five
features for only one classifier. The lower importance of the transition matrix features
with the 5-s subsets could be attributed to the fact that many 5-s subsets do not contain an
adequate number of R-R intervals for robust classification. The transition matrix features
require a sufficient number of R-R intervals to have an accurate distribution of the nine
transition types in the subset. As a result, they did not have relatively high significance
when the models were fed with 5-s subsets.

The 25-s subsets contained a greater number of R-R intervals, allowing for the tran-
sition matrix features to be more predictive with these subsets. Using the permutation
feature importance and a 25-s segmentation scheme, the RtoL transitions feature was in
the top three most predictive features for three of the seven tree-based models and in the
top five most predictive features for five tree-based models. When using the tree-based
importance measures, the RtoL transitions type was the single most predictive feature for
five of the seven tree-based models.

Additionally, the division of the transition matrix into nine distinct features, eight
of which were used for training and testing, could have lowered the overall importance
of the transition matrix. Individually, each of the eight transition types do not carry a
considerable importance. Therefore, when the eight transition types are individually fed
into models, they are outperformed by other covariates. However, if all eight transitions
were to be conglomerated and considered as one feature, the importance of this single
predictor would most likely rise considerably.

7.2. Future Work

Future work could be carried out with the testing of our models on datasets more rep-
resentative of real-world raw EKG data, such as the 2017 PhysioNet Challenge Dataset [60].
Since the models were only trained on the MIT-BIH database, which was obtained by
ambulatory EKG recordings and contains minimal noise, real-world data with more noise
may present additional challenges. As aforementioned, the eight transition matrix fea-
tures could be combined together and considered as one feature, using grouped feature
importances [61]. This would allow for the cumulative importance of the transition matrix
to be evaluated, potentially resulting in a higher importance than those of the individual
transitions. Moreover, ensemble models, which aggregate the outputs of multiple classifiers
to create a final prediction, could be tested. This may allow for higher accuracies of AFib
detection.

8. Conclusions

This research aims to incorporate the transition matrix as a novel measure of R-
R interval variability with other popular features, while combining three segmentation
schemes and two feature importance measures to systematically analyze the significance
of individual features. As the subset length increased, the performance of the classifiers
improved, since the classifiers exhibited the highest performance across all six metrics



Sensors 2023, 23, 3700 24 of 27

with the 25-s segmentation scheme and the lowest performance with the 5-s segmentation
scheme. Across all three subset lengths, Random Forest, GBM, LGBoost, and XGBoost
were the four highest performing models in terms of accuracy, sensitivity, and AUC-score.
The three highest accuracies were demonstrated by XGBoost, LGBoost, and GBM, at
96.29%, 96.11%, and 96.08%, respectively, when fed with 25-s subsets. Additionally, the
importance of the transition matrix features substantially increased as the subset length
became greater. For both permutation and tree-based feature importance measures, the
RtoL transition matrix feature was consistently among the most predictive features with the
25-s segmentation scheme. Overall, the highest performance was exhibited by the gradient
boosting models with the 25-s segmentation scheme, while the transition matrix features
became increasingly important as the subset length increased.
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