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Abstract: We aimed first to assess associations between maternal health characteristics and newborn
metabolite concentrations and second to assess associations between metabolites associated with
maternal health characteristics and child body mass index (BMI). This study included 3492 infants
enrolled in three birth cohorts with linked newborn screening metabolic data. Maternal health
characteristics were ascertained from questionnaires, birth certificates, and medical records. Child
BMI was ascertained from medical records and study visits. We used multivariate analysis of vari-
ance, followed by multivariable linear/proportional odds regression, to determine maternal health
characteristic-newborn metabolite associations. Significant associations were found in discovery
and replication cohorts of higher pre-pregnancy BMI with increased C0 and higher maternal age at
delivery with increased C2 (C0: discovery: aβ 0.05 [95% CI 0.03, 0.07]; replication: aβ 0.04 [95% CI
0.006, 0.06]; C2: discovery: aβ 0.04 [95% CI 0.003, 0.08]; replication: aβ 0.04 [95% CI 0.02, 0.07]). Social
Vulnerability Index, insurance, and residence were also associated with metabolite concentrations in
a discovery cohort. Associations between metabolites associated with maternal health characteristics
and child BMI were modified from 1–3 years (interaction: p < 0.05). These findings may provide
insights on potential biologic pathways through which maternal health characteristics may impact
fetal metabolic programming and child growth patterns.

Keywords: prenatal and perinatal exposures; maternal stressors; fetal metabolic programming;
newborn metabolites; child growth patterns
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1. Introduction

The developing fetus is vulnerable to maternal exposures, including psychosocial
factors, lifestyle factors, external environmental exposures, and biological factors (e.g.,
inflammation, gut microflora, etc.), and can adapt in response to these exposures [1]. This
process of adaptation, sometimes described as fetal programming, is important in normal
development and can increase the chance of survival in early life [2,3]. However, some
maternal exposures can detrimentally alter fetal programming, predisposing the infant to
later life disease development [2]. Changes in fetal and neonatal cellular response is one
plausible mechanism through which maternal exposures can impact fetal programming
and lead to subsequent disease development in the offspring [2]. While research has
primarily focused on fetal epigenetic modifications [4], downstream neonatal metabolic
alterations may constitute a biomarker reflective of the biologic effect of risk factors and
may play a mediating role in the observed associations between in utero stressors and later
life disease development.

Metabolites are end products of cellular regulatory processes and measures of geneti-
cally influenced responses to exposure [5,6]. Metabolism provides the body with energy
used for growth, development, movement, and reproduction [7]. While many types of
metabolites exist [8], levels of certain metabolites directly involved in vital processes—such
as free carnitine, acylcarnitines, and amino acids—are tightly regulated [9,10]. Thus, pertur-
bations in concentrations of these metabolites may be indicative of metabolic pathways
involved in disease pathogenesis [9]. Assessing the influence of maternal health character-
istics on newborn concentrations of free carnitine, acylcarnitines, and amino acids could
provide important insights on fetal metabolic programming and pathways underlying later
life metabolic dysfunction and disease.

We hypothesized that: (1) maternal health characteristics are associated with newborn
free carnitine, acylcarnitines, and amino acid concentrations and (2) metabolites associ-
ated with maternal health characteristics are also associated with subsequent childhood
growth patterns. The study objectives were first to evaluate the impact of maternal health
characteristics on newborn free carnitine, acylcarnitine, and amino acid concentrations
in a multi-cohort study using targeted blood metabolic data from newborn screening
(NBS) programs. Next, we assessed associations between newborn metabolites associ-
ated with maternal health characteristics and child body mass index (BMI) from ages
1–3 years (Figure 1). This study is a first step towards assessing biologic pathways through
which maternal health characteristics may impact fetal metabolic programming and child
growth patterns.
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2. Materials and Methods
2.1. Study Design and Populations

This multi-site study included three birth cohorts from the National Institutes of
Health (NIH) Environmental Influences on Child Health Outcomes (ECHO) Program (https:
//echochildren.org/ (accessed on 4 January 2023)). The cohorts included in the present
study (INSPIRE, MARCH, and Healthy Start) have been described previously [11,12]. We
linked NBS blood metabolic data with each of these cohorts and included enrolled infants
with linked NBS blood metabolic data. The protocol and informed consent documents were
approved by the Vanderbilt University Medical Center, Michigan State University, Univer-
sity of Colorado, Tennessee Department of Health, Michigan Department of Health and
Human Services, and Colorado Department of Public Health and Environment Institutional
Review Boards.

2.2. Newborn Screening Metabolic Data Collection

NBS metabolic data include targeted measurement of free carnitine, acylcarnitines, and
amino acids. Collection of blood spot cards for NBS is standardized, requiring collection
by a health care professional within 24–48 h after birth and sent to the respective state
laboratory for routine testing [13]. Tandem mass spectrometry (MS/MS) was then used to
quantitatively measure metabolite concentrations using the calculated ratio of the signal
from each metabolite to the signal from the known amount of internal standard [14].
Quantified results were stored on state public health department servers.

Existing NBS metabolic data were provided for infants enrolled in the cohorts by the
NBS programs at the Tennessee Department of Health, Michigan Department of Health and
Human Services, and Colorado Department of Public Health and Environment. Metabolites
measured in each cohort are listed in Table S1. Data were provided for infants who did not
screen positive for any inherited disorder (i.e., metabolite concentrations were within the
normal range, representing >99% of infants in the US [15]) to reduce the risk of potential
participant identification and remove skewed metabolic profiles due to inborn errors of
metabolism. We then linked the metabolic data with demographic and clinical data from
each of the cohorts.

2.3. Maternal Health Characteristics, Child BMI, and Covariate Ascertainment

We assessed several maternal health characteristics based on cohort availability. Ma-
ternal health characteristics (e.g., prenatal smoking, pre-pregnancy BMI, education, occu-
pational status, marital status, age at delivery, asthma, gestational diabetes, and mode of
delivery) were ascertained from questionnaires administered at enrollment for INSPIRE par-
ticipants, birth certificates and questionnaires administered during pregnancy for MARCH
participants, and medical records at delivery and questionnaires administered during
pregnancy for Healthy Start participants (Table S2).

We ascertained child BMI at ages 1, 2, and 3 years in subsets of the INSPIRE and
Healthy Start cohorts with available weight and height measurements. Child BMI was
ascertained through medical record abstraction for participants in the Healthy Start cohort
and from medical records and/or study visits for participants in the INSPIRE cohort.
Weight and height measurements were collected on the same date, within each year,
for Healthy Start children. We calculated estimated recumbent length/standing height
at weight measurement date for INSPIRE children with lengths/heights and weights
measured on different days within each year (year 1: n = 60, year 2: n = 186, year 3: n = 17)
using World Health Organization (WHO) growth charts [16] for children age < 2 years
(recumbent length) and Centers for Disease Control (CDC) growth charts [17] for children
age 2–3 years (standing height) [18].

Covariates (e.g., birth weight [grams], gestational age [weeks], infant race, infant
ethnicity, and sex) were collected from enrollment questionnaires for INSPIRE participants.
Birth weight, gestational age, and sex were ascertained from birth certificates for MARCH
participants, while infant race and ethnicity were collected from questionnaires admin-

https://echochildren.org/
https://echochildren.org/
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istered at infant age 3 months. For Healthy Start participants, sex was ascertained from
delivery questionnaires. Infant race and ethnicity were ascertained from questionnaires ad-
ministered at infant age 6 months. Birth weight was derived from several sources using the
following hierarchy: (1) newborn medical record abstraction, (2) newborn physical exam
performed within a week after birth, (3) self-reported at delivery interview, (4) self-reported
at infant 6-month visit, and (5) self-reported at infant 18-month visit. Gestational age was
ascertained from medical records for 96% of participants and delivery questionnaires for
3% of participants (1% of participants were missing information on gestational age).

2.4. Statistical Analysis

We compared maternal characteristics, infant characteristics, and metabolite concen-
trations between the cohorts using Kruskal–Wallis or Pearson χ2 test, as appropriate. We
used multiple imputation (n = 5 iterations) using Fully Conditional Specification (FCS)
implemented by the Multivariate Imputation by Chained Equations (MICE) algorithm
for each cohort separately to estimate possible values for missing data [19]. All analyses
were performed using multiply imputed datasets. For the primary analysis, we pooled the
cohorts with the largest and smallest number of infants with linked NBS metabolic data
in a discovery phase (INSPIRE and MARCH), and we utilized the Healthy Start cohort
in a replication phase to have similar regression power. Metabolites measured in both
the INSPIRE and MARCH cohorts were included in the analysis (n = 31, Table S1). NBS
metabolite concentrations for the study populations are shown in Table S3.

Our a priori statistical plan consisted of a two-stage process (Figure 2). In stage one, we
assessed the associations between maternal health characteristics and established metabo-
lite groups [20] (short-, medium-, and long-chain acylcarnitines and amino acids [Table S4])
in the discovery cohorts using multivariate analysis of variance (MANOVA), adjusting
for cohort, birth weight, gestational age, infant race, infant ethnicity, and sex. Assessing
global associations between maternal health characteristics and metabolite groups through
MANOVA, compared to each metabolite separately, helped reduce the multiple testing
burden. As MANOVA assumes interval measurement of dependent variables, only metabo-
lites with continuous distributions (n = 26) were included in these pre-specified groups
(Figure S1). We then repeated this analysis in the replication cohort, adjusting for the same
covariates (excluding cohort).
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In stage two, for maternal health characteristic-metabolite group associations that were
statistically significant in both the discovery and replication cohorts, we assessed the relation-
ships between maternal health characteristics and each metabolite, including free carnitine
(C0) which did not fit into one of the pre-specified metabolite groups, using multivariable
linear regression. We also assessed the relationships between maternal health characteristics
and n = 5 metabolites with ordinal distributions (tiglylcarnitine [C5:1], decadienoylcarnitine
[C10:2], 3-hydroxytetradecanoylcarnitine [C14-OH], 3-hydroxypalmitoylcarnitine [C16-OH],
and 3-hydroxyoleoylcarnitine [C18:1-OH] [Figure S1]), which did not meet MANOVA as-
sumptions, using proportional odds regression. For maternal health characteristic-metabolite
associations that remained statistically significant in the discovery cohorts, we repeated this
analysis in the replication cohort.

All maternal health characteristics were included in MANOVA analyses and subse-
quent multivariable linear/proportional odds regression models to reduce multiple testing
and account for potential confounding. We evaluated the extent of correlation between
maternal health characteristics in the discovery cohorts using Spearman’s rank correlation
coefficient, and we did not find a high degree of correlation (>0.7 or <−0.7) (Figure S2).

In secondary analysis, we considered additional maternal health characteristics which
may be important in shaping offspring health (e.g., prenatal stress, Social Vulnerability
Index (SVI), residence, and type of insurance coverage). As these characteristics were only
available for INSPIRE; we restricted this analysis to participants enrolled in this cohort. We
evaluated associations between the above-mentioned parameters and newborn metabolite
concentrations. For this secondary analysis, we utilized the same statistical plan carried out
in the primary analysis. None of the maternal health characteristics were highly correlated
(Figure S3).

To test the hypothesis that maternal health characteristics may increase the risk of later
life metabolic dysfunction in offspring, we additionally explored relationships between
metabolites significantly associated with maternal health characteristics in the primary
and secondary analyses with child BMI from ages 1–3 years. This analysis was performed
among subsets of the INSPIRE and Healthy Start cohorts with available weight and height
measurements. For this analysis, we pooled INSPIRE and Healthy Start participants to
increase power. We performed longitudinal linear mixed-effects regression modeling to
assess associations between metabolite concentrations at birth and repeated child BMI mea-
sures from ages 1–3 years. In this analysis, we included participant ID as a random effect
and adjusted for cohort, whether the recumbent length/standing height was estimated, age
in days at BMI measurement, birth weight, gestational age, infant race, infant ethnicity, and
sex. p-values for interactions between time (years) and metabolites were calculated using
likelihood ratio tests. Data analyses were performed using R software, version 4.2.2 (R
Foundation for Statistical Computing, Vienna, Austria). Additional details on methodology
can be found in the Supplementary Material.

3. Results

Our final study populations included 1920 (INSPIRE, discovery cohort), 365 (MARCH,
discovery cohort), and 1207 (Healthy Start, replication cohort) infants after linking NBS
metabolic data to 99%, 39%, and 94% of infants in each cohort, respectively (Figure 3). As
obtaining participant consent for NBS metabolic data linkage is currently ongoing for the
MARCH cohort, we were only able to utilize data linked to 39% of the study population for
the present study. We did not observe statistically significant differences between MARCH
participants with NBS data and all MARCH participants (Table S5).
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Figure 3. Flow diagram of study populations. Blue and green boxes are used to indicate number
of participants in discovery and replication cohorts, respectively. * Newborn screening data may
have been missing due to parental refusal of newborn screening, metabolite concentrations outside
the normal range, or incomplete linkage. ** Obtaining participant consent for newborn screening
metabolic data linkage is currently ongoing. This figure was created with BioRender.com.

The prevalence of maternal health characteristics differed between the cohorts, with
prenatal smoking, higher pre-pregnancy BMI, lower education, not being married, ges-
tational diabetes, and delivery via c-section being more prevalent among INSPIRE and
MARCH participants than among Healthy Start participants (Table 1). Maternal unemploy-
ment and higher maternal age at delivery were more prevalent among MARCH participants
than INSPIRE and Healthy Start participants. Healthy Start participants had the lowest
birth weights, and MARCH participants had the lowest gestational ages at birth (Table 2).
Healthy Start was more ethnically diverse than INSPIRE and MARCH, with 29% of infants
of Hispanic descent compared to 8% and 9%, respectively in the other two cohorts. The
majority of INSPIRE and Healthy Start participants were White (76% and 70%), while
MARCH was more racially diverse (53% White, 26% Black, 13% other, 8% missing). IN-
SPIRE participants were enrolled after birth (mean age 2 months, standard deviation [SD]
2 months), while MARCH and Healthy Start participants were enrolled at birth.

Several maternal health characteristics were associated with the a priori grouping of
NBS metabolites as short-, medium-, and long-chain acylcarnitine concentrations at birth
in the discovery cohorts (Figure 4). The associations of the following maternal health
characteristics with NBS metabolite were also significant in the replication cohort: higher
age at delivery and short-chain acylcarnitines; lower education and medium- and long-
chain acylcarnitines. In analyses of the associations of maternal health characteristics and
specific metabolites, we observed the following statistically significant associations in the
discovery and replication cohorts: higher pre-pregnancy BMI and increased free carnitine
(C0) concentration (discovery cohorts: aβ 0.05, 95% CI 0.03, 0.07; replication cohort: aβ 0.04,
95% CI 0.006, 0.06); higher age at delivery and increased acetylcarnitine (C2) concentration
(discovery cohorts: aβ 0.04, 95% CI 0.003, 0.08; replication cohort: aβ 0.04, 95% CI 0.02,
0.07) (Figure 5 and Table S6). The results were unchanged after excluding women with
potentially implausible pre-pregnancy BMIs > 50 (INSPIRE: n = 15 [1%], MARCH: n = 6
[2%], Healthy Start: n = 6 [0%]) (Figure S4).
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Table 1. Maternal health characteristics of the study populations with linked newborn screening
metabolic data prior to multiple imputation.

Cohort

Maternal Health Characteristic INSPIRE MARCH Healthy Start p-Value a

Sample size 1920 365 1207
Prenatal smoking, n (%) 345 (18) 41 (11) 90 (7) <0.001 *

Missing, n (%) 2 (0) 47 (13) 0 (0)
Pre-pregnancy BMI b, mean (SD) 27 (7) 29 (8) 26 (6) <0.001 *

Missing, n (%) 72 (4) 43 (12) 0 (0)
Education, n (%) <0.001 *

<High school 153 (8) 31 (8) 166 (14)
High school degree 524 (27) 68 (19) 215 (18)
Some college b 572 (30) 121 (33) 271 (22)
≥College degree b 670 (35) 100 (27) 555 (46)
Missing, n (%) 1 (0) 45 (12) 0 (0)

Occupational status, n (%) 0.001 *
Not employed 669 (35) 81 (22) 388 (32)
Employed 1251 (65) 239 (65) 682 (57)
Missing, n (%) 0 (0) 45 (12) 137 (11)

Marital status, n (%) <0.001 *
Not married 816 (43) 177 (48) 447 (37)
Married 1104 (58) 142 (39) 755 (63)
Missing, n (%) 0 (0) 46 (13) 5 (0)

Age at delivery (years) b, mean (SD) 27 (5) 29 (6) 28 (6) <0.001 *
Missing, n (%) 0 (0) 71 (19) 10 (1)

Asthma, n (%) 372 (19) 67 (18) 197 (16) 0.05
Missing, n (%) 1 (0) 46 (13) 1 (0)

Gestational diabetes, n (%) 126 (7) 23 (6) 47 (4) 0.01 *
Missing, n (%) 0 (0) 71 (19) 96 (8)

C-section, n (%) 600 (31) 105 (29) 250 (21) <0.001 *
Missing, n (%) 0 (0) 71 (19) 27 (2)

BMI—body mass index; SD—standard deviation. * p < 0.05, a p-value for comparisons between cohorts calculated
using Kruskal–Wallis or Pearson χ2 test, as appropriate. b Some college was defined as no degree, Associate’s
degree, or trade/technical/vocational training; ≥college degree was defined as Bachelor’s, Master’s, Professional,
or Doctorate degree.

Table 2. Infant characteristics of the study populations with linked newborn screening metabolic
data prior to multiple imputation.

Cohort

Infant Characteristic INSPIRE MARCH Healthy
Start p-Value a

Sample Size 1920 365 1207
Birth weight (grams) b, mean (SD) 3432 (461) 3225 (577) 3218 (526) <0.001 *

Missing, n (%) 0 (0) 71 (19) 14 (1)
Gestational age (weeks) b, mean (SD) 39 (1) 38 (2) 39 (2) <0.001 *

Missing, n (%) 0 (0) 71 (19) 9 (1)
Race, n (%) <0.001 *

White 1451 (76) 195 (53) 850 (70)
Black 353 (18) 94 (26) 156 (13)
Other 116 (6) 46 (13) 201 (17)
Missing, n (%) 0 (0) 30 (8) 0 (0)

Hispanic ethnicity, n (%) 161 (8) 34 (9) 356 (29) <0.001 *
Missing, n (%) 4 (0) 30 (8) 0 (0)

Male sex, n (%) 1009 (53) 137 (38) 606 (50) 0.16
Missing, n (%) 0 (0) 71 (19) 24 (2)

Age at enrollment (months) b, mean
(SD)

2 (2) 0 (0) b 0 (0) b <0.001 *

Missing, n (%) 0 (0) 0 (0) 0 (0)
SD—standard deviation. * p < 0.05, a p-values for comparisons between cohorts calculated using Kruskal–Wallis
or Pearson χ2 test, as appropriate. b Infants were enrolled at birth.
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Figure 4. Higher age at delivery is associated with short-chain acylcarnitine concentrations at birth
and lower education is associated with medium- and long-chain acylcarnitine concentrations at birth
in the discovery (n = 2285) and replication (n = 1207) cohorts. Multivariate analysis of variance was
used to assess the association between maternal health characteristics and established metabolite
groups. This analysis was adjusted for birth weight, gestational age, infant race, infant ethnicity,
sex, cohort (discovery phase only), and all other maternal health characteristics. The horizontal line
indicates p = 0.05.

In secondary analysis restricted to INSPIRE participants (n = 1920), we assessed as-
sociations between additional maternal health characteristics and newborn metabolite
concentrations. Most participants reported no prenatal stress exposure (61%), resided
in an urban environment (76%), and were on government insurance (54%) (Table S7).
The mean SVI was 0.51 (SD 0.29). SVI was associated with long-chain acylcarnitine and
amino acid concentrations; type of insurance coverage was associated with medium- and
long-chain acylcarnitine concentrations; and residence was associated with medium-chain
acylcarnitine concentrations (Figure S5). Prenatal stress exposure was not associated with
any of the newborn metabolite groups. In analyses of the associations of prenatal stress
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exposure, SVI, type of insurance coverage, and residence and specific metabolites, we
observed the following statistically significant associations: SVI and tetradecenoylcarnitine
(C14:1), 3-hydroxypalmitoylcarnitine (C16-OH), and linoleoylcarnitine (C18:2); government
insurance (vs. private insurance) and decanoylcarnitine (C10) and tetradecanoylcarnitine
(C14); other insurance (vs. private insurance) and C0; and urban residence and C0, hex-
anoylcarnitine (C6), 3-hydroxytetradecanoylcarnitine (C14-OH), and C16-OH (Figure S6
and Table S8). Additionally, significant associations of pre-pregnancy BMI and C0 and
maternal age at delivery and C2 remained after additional adjustment for prenatal stress
exposure, SVI, type of insurance coverage, and residence.
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Figure 5. Higher pre-pregnancy BMI and higher age at delivery are associated with increased free
carnitine (C0) and acetylcarnitine (C2) at birth, respectively, in both the (A) discovery (n = 2285)
and (B) replication (n = 1207) cohorts. Multivariable linear regression was used to assess associations
between higher BMI and C0 and higher age at delivery and C2. These analyses were adjusted for
birth weight, gestational age, infant race, infant ethnicity, sex, cohort (discovery phase only), and
all other maternal health characteristics. C0 and C2 were log-transformed. Point estimates were
estimated for an 8.7 unit (interquartile range) increase in pre-pregnancy BMI and an 8-year increase
in maternal age at delivery.

We then assessed the association between newborn metabolites that were significantly
associated with maternal health characteristics in the primary and secondary analyses (C0,
C2, C6, C10, C14, C14-OH, C14:1, C16-OH, and C18:2) and child BMI from ages 1–3 years
in a pooled subset of INSPIRE and Healthy Start children with available weight and height
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measurements. Of the 2835 children in the pooled subset, 2122 (75%; n = 1130 INSPIRE,
n = 992 Healthy Start), 2176 (77%; n = 1161 INSPIRE, n = 1015 Healthy Start), and 1272 (45%;
n = 398 INSPIRE, n = 874 Healthy Start) children had weight and height measurements
at ages 1, 2, and 3 years, respectively. The mean BMI was 17 (SD 2) at 1 year, 17 (SD 2)
at 2 years, and 16 (2) at 3 years (Figure S7). The associations between C0, C6, C10, and
C14-OH and child BMI were modified over time (interaction: p < 0.05) (Figure 6). The
strongest effects were present at year 1, and the associations waned over time.
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Figure 6. Associations between newborn metabolites that were associated with maternal health
characteristics and child BMI were modified over time in a pooled subset of INSPIRE and Healthy
Start children with available weight and height measurements (n = 2835). Longitudinal linear mixed-
effects regression modeling was used to assess associations between metabolite concentrations at
birth and repeated child BMI measures from ages 1–3 years, including participant ID as random effect
and adjusting for cohort, whether the recumbent length/standing height was estimated, age in days
at BMI measurement, birth weight, gestational age, infant race, infant ethnicity, and sex. p-values for
interactions between time (years) and metabolites were calculated using likelihood ratio tests.

4. Discussion

In this multi-cohort study, we identified maternal health characteristics associated
with newborn metabolites. We identified and replicated relationships between higher
pre-pregnancy BMI and increased C0 concentration at birth and higher age at delivery
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and increased C2 concentration at birth in discovery and replication cohorts. We also
observed relationships between SVI, type of insurance coverage, and residence and C0
and medium- and long-chain acylcarnitine (C6, C10, C14, C14-OH, C14:1, C16-OH, and
C18:2) concentrations at birth within a discovery cohort. Additionally, we showed that
associations between metabolites associated with maternal health characteristics (C0, C6,
C10, and C14-OH) and child BMI were modified from ages 1–3 years. These findings
suggest that maternal health characteristics may impact fetal metabolic programming,
as measured by NBS metabolites, potentially influencing later life child growth patterns.
Future studies should perform formal mediation analyses to further explore the potential
biologic pathways through which maternal health characteristics may impact child BMI.

Few studies have assessed associations between maternal complications of pregnancy
and environmental stressors and newborn metabolite concentrations. McCarthy et al.
showed significant associations between socioeconomic status—comprised of Medicaid
coverage; Women, Infants, and Children (WIC) supplemental nutrition receipt; and having
a high school education or less—and 41 of 42 targeted NBS (blood spot) metabolites in a Cal-
ifornia birth cohort [21]. Lowe et al. found associations between increased second-trimester
BMI and insulin resistance and increased cord blood concentrations of branched-chain
amino acids and their metabolic byproducts [22]. In a cohort of preterm infants, Ryck-
man et al. found associations between preeclampsia and increased concentrations of certain
metabolites quantified from NBS panels (alanine, C0, C2, octenotylcarnitine [C8:1], and
C18:2) [23]. We have extended these findings by comprehensively demonstrating and
replicating associations between maternal health characteristics and newborn metabolite
concentrations and the association of these metabolites with childhood growth patterns.
While previous studies have shown associations between newborn metabolites and child-
hood growth [24], overweight [24], and obesity [25], this study provides additional insights
on the maternal factors and potential in utero pathways underlying the relationship ob-
served between newborn metabolism and subsequent child metabolic dysfunction.

We identified associations between several maternal health characteristics (pre-pregnancy
BMI, age at delivery, SVI, type of insurance coverage, and residence) and concentrations of
free carnitine (C0) and acylcarnitines (C2, C6, C10, C14, C14-OH, C14:1, C16-OH, and C18:2)
at birth. C0 and its acylated derivatives (i.e., acylcarnitines), known as the carnitine pool,
play a vital role in mitochondrial function and energy production [9]. Humans oxidize
extensive amounts of fats to guarantee continuous energy supply [26]. C0 is essential for
fatty acid oxidation as it is the primary shuttle for long-chain acylcarnitines from the cytosol
into the mitochondrion [26]. Acylcarnitines are formed from carnitine and acyl-CoAs in the
mitochondria and are the transport form of fatty acids in the plasma [27,28]. External stressors
have been shown to impact the carnitine pool. Decreased C0 levels are found in individuals
with obesity and insulin resistance due to compromised mitochondrial function and fatty acid
oxidation [29]. The association that we observed in the present study between higher pre-
pregnancy BMI and increased C0 concentration at birth may be due to a rebound effect, with
increased C0 in the newborn due to diminished supply in utero. Increases in C2 are associated
with stress/trauma [30]. Increased maternal age at delivery is also associated with increased
prenatal stress [31,32], anxiety [31], and complications of delivery [33], suggesting one possible
explanation for the observed increased C2 in offspring of older women. Socioeconomic
status and stress can impact food access [34] and eating behaviors [35,36], which may lead to
metabolite fluctuations [37]. We observed relationships between SVI and type of insurance
and concentrations of several metabolites at birth, which may additionally reflect food access,
eating behaviors, and metabolism. Air pollutants contribute to mitochondrial dysfunction [38],
which may account for the relationships observed between urban residence and free carnitine
and several acylcarnitines.

As the carnitine pool is tightly regulated, changes in plasma carnitine and acylcar-
nitine concentrations may contribute to metabolic dysfunction and disease [9]. This is
supported by our findings of associations between metabolite concentrations at birth and
subsequent child growth patterns. We observed that some acylcarnitine concentrations at
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birth (C0, C6, C10, and C14-OH) were associated with maternal health characteristics and
child BMI at ages 1–3 years. However, other acylcarnitines associated with maternal health
characteristics (C2, C14, C14:1, C16-OH, and C18:2) were not associated with child BMI
at ages 1–3 years. C2, C14, C14:1, C16-OH, and C18:2 may be associated with other im-
portant metabolic parameters in childhood, such as central adiposity, waist circumference,
and triglyceride and fasting insulin levels, and these relationships should be assessed in
future studies.

Our study has many important strengths, including our large sample sizes from
diverse, longitudinal birth cohorts with rich phenotypic data and our replication of findings
in an independent birth cohort. In addition, harmonization of NBS data across cohorts was
possible because processing of NBS samples is regulated by the CDC’s Newborn Screening
Quality Assurance Program and consensus guidelines on the use of MS/MS analysis in
NBS developed by the Clinical and Laboratory Standards Institute ensure standardization
across states [14,39]. Lastly, we employed a rigorous a priori two-stage analytic plan to
reduce multiple testing of a large NBS metabolite panel.

There are also some limitations of our study. We could only assess maternal health
characteristics that were ascertained and harmonizable across cohorts. We assessed the
association between additional maternal health characteristics (prenatal stress, SVI, resi-
dence, and type of insurance coverage) and newborn metabolite concentrations within the
INSPIRE cohort but were unable to replicate these results due to lack of currently available
information on these characteristics within MARCH and Healthy Start cohorts. While we
were able to harmonize maternal health characteristics across the cohorts in this study,
measurement error is possible due to the use of different means and timing of ascertain-
ment of the maternal health characteristics across cohorts. We utilized maternal race and
ethnicity as surrogate measures for infant race and ethnicity for participants in whom
these data were unavailable. Although this is an imperfect measure, the concordances
between maternal race and ethnicity and infant race and ethnicity were high, and use of
this surrogate measure is unlikely to have impacted the results. Although NBS data were
only available for 39% of MARCH participants enrolled in this birth cohort as obtaining
participant consent for NBS metabolic data linkage is currently ongoing, we did not observe
differences between MARCH participants with NBS data and all MARCH participants.
This suggests that selection bias would not have impacted our results. We chose to only
include child BMI measures from ages 1–3 years in the present study. Future studies should
assess the association between newborn metabolites associated with maternal health char-
acteristics and child BMI beyond age 3 years to further explore relationships with child
growth patterns.

5. Conclusions

In this multi-cohort study, we identified and replicated associations between maternal
health characteristics and newborn metabolite concentrations. We further demonstrated
that metabolites associated with maternal health characteristics were also associated with
child growth patterns. These findings may provide important insights on potential bio-
logic pathways through which maternal health characteristics may impact fetal metabolic
programming and later childhood metabolic dysfunction and growth patterns.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo13040510/s1, Supplementary Material (includes additional
methodological details and supplementary figure legends); Table S1: Newborn screening (NBS)
metabolites measured in each cohort; Table S2: Availability of maternal health characteristics by
cohort; Table S3: Newborn screening metabolite concentrations (n = 31) by cohort; Table S4: Pre-
specified metabolite groups included in stage one of the statistical plan; Table S5: Comparison
of characteristics for MARCH participants with newborn screening (NBS) metabolic data and all
MARCH participants; Table S6: Associations between maternal health characteristics and metabolite
concentrations at birth in the discovery (n = 2285) and replication (n = 1207) cohorts; Table S7:
Additional maternal health characteristics of INSPIRE participants with linked newborn screening
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metabolic data (n = 1920); Table S8: Associations between prenatal stress exposure, Social Vulnerability
Index (SVI), type of insurance coverage, and residence and metabolite concentrations at birth in
INSPIRE (n = 1920); Figure S1: Newborn screening metabolite distributions in the discovery cohorts
(INSPIRE: n = 1920, MARCH: n = 365); Figure S2: Correlation between maternal health characteristics
in the discovery cohorts (n = 2285); Figure S3: Correlation between prenatal stress exposure, Social
Vulnerability Index, residence, and type of insurance and all other maternal health characteristics in
INSPIRE (n = 1920); Figure S4: Higher pre-pregnancy BMI and higher age at delivery are associated
with increased free carnitine (C0) and acetylcarnitine (C2) at birth, respectively, in both the discovery
(n = 2264) and replication (n = 1201) cohorts after excluding women with potentially implausible
pre-pregnancy BMIs (>50); Figure S5: Social Vulnerability Index (SVI) is associated with long-chain
acylcarnitine and amino acid concentrations at birth, type of insurance coverage is associated with
medium- and long-chain acylcarnitine concentrations at birth, and residence is associated with
medium-chain acylcarnitine concentrations at birth in INSPIRE (n = 1920); Figure S6: Statistically
significant associations between Social Vulnerability Index, type of insurance coverage, and residence
and newborn metabolite concentrations in INSPIRE (n = 1920); Figure S7: Distribution of BMI
measurements at ages 1, 2, and 3 years in INSPIRE (n = 1692) and Healthy Start (n = 1143).
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