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ABSTRACT 

Paul Nicholas Zivich: Risk of Influenza Under Realistic Influenza Vaccination  
Interventions Among University Students 
(Under the direction of Allison E Aiello) 

Seasonal influenza causes substantial morbidity and mortality each year. One important 

group to consider is university students since their vaccination uptake is low, they experience 

high attack rates, they suffer substantial negative impacts on their well-being, and they may be 

important for further transmission. Rather than assess direct vaccine effectiveness, this work 

aimed to estimate the risk of influenza under large-scale changes in the distribution of influenza 

vaccination. 

Using self-reported contact data from the eX-FLU cluster randomized trial on three-day 

self-isolation, we applied a recent extension of the targeted maximum likelihood estimation 

(TMLE) framework for dependent data. Hypothetical policies to increase vaccination focused on 

educational information regarding influenza, reducing non-financial barriers, and reducing 

financial barriers were compared. Each policy was further compared across a range of plausible 

shifts in the log-odds of influenza vaccination receipt. To guide the application of TMLE and 

approaches to account for measurement error of self-reported edges within eX-FLU, two 

simulation studies were conducted. To assess imputation and Bayesian procedures for 

measurement error, we conducted a simulation study of three network generative models with 

non-informative and informative measurement error. To assess TMLE for dependent data, we 

simulated four data-generating mechanisms in three different networks. 

Both imputation and Bayesian approaches reduced bias and improved confidence limit 

coverage for all parameters in most scenarios. The TMLE for dependent data performed well 
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across scenarios with interference, but issues manifested when policies were not well-supported 

by the observed data. In the application of TMLE to the eX-FLU data, a reduction in the risk of 

laboratory-confirmed influenza was observed across policies. However, the estimates were 

consistent with little-to-no reduction. When accounting for measurement error of self-reported 

contacts via the Bayesian approach, a greater reduction in risk was observed but differences 

between policies were minor. 

Our results are a robust analysis for a parameter of public health importance. The results 

of our simulations and analyses will serve as an example for future applications. 
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CHAPTER 1: INTRODUCTION 

 Viral influenza is a worldwide infection that peaks in colder months in temperate climates 

and causes substantial morbidity and mortality. In the following section, influenza biology and 

epidemiology are reviewed. First, basic features of the influenza virus are reviewed; including 

virology, pathogenesis, and epidemiology. Next, influenza vaccination as a means to prevent 

influenza infection, morbidity, and mortality is discussed. Subsequently, the burden of influenza 

and influenza vaccination among university students is assessed. Lastly, limitations to current 

approaches to estimating the effects of influenza vaccination are reviewed. 

1.1 Influenza 

1.1.1 Virology 

 Influenza is a member of the orthomyxovirus family with a genome consisting of eight 

segments of negative-sense single-strand RNA and is a respiratory tract pathogen in humans.1, 

2 The RNA segments code for hemagglutinin (HA), neuraminidase (NA), RNA polymerase, 

matrix protein, membrane protein, non-structural proteins, and nuclear export protein.2, 3 

Influenza is further classified into four distinct types: A, B, C, and D; with symptomatic human 

influenza infections predominantly occurring as a result of types A and B. Although some severe 

cases of influenza C have been reported in children.4 Due to antigenic diversity within influenza 

A, types are further distinguished by subtypes of HA and NA.1, 3 Influenza A is unique in that it 

circulates in humans, wild aquatic birds, and domesticated animals.5 In total, 16 different HA 

and 9 different NA serotypes are recognized. In contrast, influenza B and C appear restricted to 

circulation in humans and lack the same genetic and species diversity.1 
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Genetic diversity in influenza more broadly arises from antigenic drift and antigenic shift. 

Antigenic shift is a drastic change in the viral antigens, often resulting in reassortment 

(replacement of entire segments) or recombination (insertion of fragments within a segment).1 

The occurrence of antigenic shift can result in pandemic influenza since most or all humans 

have no prior immunity to a newly emerged or re-emerging serotype. Due to the ability of 

influenza A to circulate between multiple species, concerns regarding pandemic influenza are 

limited to type A. Influenza pandemics are separated by years or decades. Conversely, 

antigenic drift is the process of gradual mutations in the genome that occur due to errors during 

replication.1 The gradual changes in the surface antigens of the virus allow for the evasion of 

host adaptive immunity2 and necessitate the updating of the influenza antigens within the 

influenza vaccine. Changes in HA are monitored through global influenza virus surveillance 

programs. Hereafter, the focus is on seasonal influenza, since yearly influenza vaccination is 

the key preventive measure for seasonal influenza. While influenza vaccine development for 

potential emerging strains6 or a universal influenza vaccine that is efficacious against all 

influenza type A viruses7 are being pursued, these have yet to be realized. Currently, potential 

measures to prevent or mitigate a newly emergent pandemic influenza serotype consist of non-

pharmaceutical measures (e.g., physical distancing, masks, hand hygiene, and surface 

disinfection8-12) and may include the use of antivirals for pre- or post-exposure prophylaxis.13  

In humans, the influenza virus targets the respiratory tract for infection and productive 

replication. Infection begins with the influenza virus binding to the host cell, which is mediated 

by the HA protein binding to sialic acids on the surface of the host. After binding, the virus 

enters the cell via an endosome. The virus then changes the endosomal pH, fusing the viral 

membrane with the endosome membrane, releasing the viral genome. After release, viral RNA 

is taken to the nucleus of the infected cell, where replication of the viral RNA takes place. The 

viral genome is translated from negative-sense to positive-sense RNA then disseminated to the 

cytoplasm where translation into viral proteins takes place. The need for an intermediary 
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positive-sense RNA in genome replication and RNA polymerase’s lack of a proofreading ability 

facilitate the rapid antigenic drift of influenza relative to other pathogens. Synthesized HA, NA, 

and M2 proteins are transported to and integrated into the cellular membrane. New negative-

sense RNA segments are transported to the plasma membrane and bundled together. New 

virions then bud off the cell surface. NA then functions to prevent HA attachment with the sialic 

acid present on the surface of other virions or infected cells. Viral replication ends with cell 

death, releasing both pro-inflammatory cytokines and viral products. 

To avoid detection by the host’s innate immunity, the influenza virus inhibits several cell 

processes. The non-structural protein NS1 interrupts several signal cascades that result in the 

activation of host antiviral genes.14-16 The non-structural proteins PB1 and PB2 further inhibit 

interferon production.17, 18 Cell death eventually leads to the release of cytokines driving the 

migration of innate immune cells, such as natural killer cells and macrophages, responsible for 

viral clearance.  

For the adaptive immune response, B cells produce antibodies that primarily target HA 

and NA proteins, with HA being preferentially targeted. While natural infection leads to a robust 

IgG antibody response with long-lasting B cell lines,19, 20 the antigenic drift of the HA allows 

evasion of the adaptive immune response in subsequent years.21 Another important element of 

clearing influenza infection is cell lysis of infected cells induced by CD8+ T cells. Unlike B cells, 

CD8+ T cells target non-structural proteins which are less subject to changes via antigenic drift. 

Finally, CD4+ T cells support both the humoral and cellular immune responses, but it remains 

unknown if CD4+ cells directly contribute to viral clearance.22 

1.1.2 Pathogenesis 

 Influenza infection pathology ranges from asymptomatic infection of the upper 

respiratory tract to lethal viral or secondary bacterial pneumonia. Outside of the respiratory tract, 

influenza can also cause a variety of non-respiratory complications, including complications in 

the cardiovascular and nervous systems.23, 24 On a cellular level, cell death results in the release 
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of inflammatory cytokines. While the release of cytokines and subsequent migration of immune 

cells to the lungs are necessary for host immune response, excessive release of these 

cytokines can result in severe disease and lung damage. If inflammation becomes systemic, 

severe respiratory distress and multiple organ failure can occur.25 While influenza is often a self-

limited disease, a variety of severe outcomes do occur. Even in absence of the more severe 

outcomes, the impact of influenza on individuals can manifest for multiple weeks. 

A substantial portion of influenza cases may be asymptomatic.26, 27 When symptomatic 

influenza infections occur, they are characterized by respiratory symptoms (e.g., runny nose, 

cough, and sore throat), muscle aches, fever, and chills,1, 3 with cough being the most 

commonly reported symptom.1 This constellation of respiratory symptoms is often referred to as 

“influenza-like illness” (ILI). Disease is generally self-limited, with symptoms lasting 3 to 5 days 

but can last up to a week.3, 28  

Complications; which are more common in infants, older adults, and those with chronic 

illnesses; can prolong symptomatic illness. In more severe cases, influenza can lead to viral 

pneumonia. More commonly, influenza leads to secondary bacterial infections,3 with synergistic 

interactions occurring with Streptococcus pneumoniae.29, 30 Outside of the respiratory tract, 

influenza has been observed to lead to encephalitis, kidney damage, liver damage, and cardiac 

events, such as stroke and ischemic heart disease.24 

 Post-infection, a variety of sequelae have been observed. Coughing and lethargy can 

last up to two weeks post-infection.28 More worryingly, an increased risk of myocardial disease 

has been observed in the following weeks post-infection.23, 31 Neurological complications can 

also occur post-infection,24 with Guillain-Barré syndrome as a prominent example.32, 33  

1.1.3 Epidemiology 

 In the United States (US), seasonal influenza predominantly occurs between October to 

May each year.1, 2 Currently, the primary circulating serotypes are influenza A H1N1, influenza A 

H3N2, and influenza B, with the dominant type of influenza A differing between seasons. A 
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substantial burden of morbidity and mortality results from seasonal influenza in the US. Each 

year, between 3% to 20% of the population are infected,34, 35 more than 220,000 hospitalizations 

occur,36 3,000 to 49,000 deaths,37 and $16.3 billion in lost productivity and loss of life.38 

Human-to-human transmission predominantly occurs through respiratory secretions of 

infected individuals.3 Aerosols are generated via talking, sneezing, and coughing, with each of 

those activities capable of airborne or droplet transmission.39 Droplets can additionally 

contaminate the physical environment, including objects such as doorknobs, keyboards, and 

tables.40, 41 Persistent contamination of objects has been reported.42, 43 Touching contaminated 

fomites and then the mucous membranes of the face (i.e., nose, mouths, or eyes),44 or re-

aerosolization of virus present on fomites45 are thought to also contribute to transmission.  

After exposure, the incubation period to symptomatic disease is between 1 to 4 days. 

Importantly, evidence suggests that transmission occurs shortly before (about one day) the 

symptomatic phase begins.3, 46 Pre-symptomatic shedding consists of fewer virions, indicating 

pre-symptomatic transmission may be limited to close and sustained contacts.46 However, the 

importance and extent of pre-symptomatic transmission have been disputed.47 Often the 

respiratory symptoms of ILI are used to identify influenza cases. However, symptoms used to 

define ILI can also result from other respiratory viruses (e.g., coronaviruses, respiratory 

syncytial virus, rhinovirus48), leading to potential misattribution of the causative pathogen.1  

1.2 Influenza Vaccine 

The primary preventative measure for seasonal influenza is through pharmaceutical 

means, namely the influenza vaccine.3, 49 Because of the short incubation period of influenza, 

vaccination cannot be used for post-exposure prophylaxis. In the US, influenza vaccines are 

generally quadrivalent; with the trivalent vaccine consisting of two influenza A subtypes and one 

influenza B subtype, while the quadrivalent vaccine consists of an additional B subtype. 

Vaccines currently induce protective humoral immunity to the head of HA proteins. Because of 

the rapid changes in the HA head from antigenic drift, the protective effects of the influenza 
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vaccine are highly dependent on the similarity between the vaccine influenza antigens and the 

circulating types.50 As a result, the protective effects of the influenza vaccine vary between 

seasons,1, 51 with reported direct (e.g., unit-treatment) vaccine effectiveness as high as 80% and 

as low as 0%.50 Additionally, this requires that individuals be vaccinated each year. As a result 

of antigenic drift, continuous monitoring of influenza vaccines is also necessary. To forecast 

which influenza serotypes will be circulating during the upcoming influenza season, international 

influenza surveillance systems monitor and project circulating influenza virus serotypes for the 

upcoming year.52 These projections are used to determine which influenza types should be 

included in the vaccine. Importantly, the types of influenza circulating during the Fall and Winter 

months in the Southern Hemisphere can be used to predict influenza strains that will be 

circulating in the subsequent Fall and Winter months in the Northern Hemisphere. Currently 

available vaccines consist of inactivated (with multiple different manufacturing technologies) and 

live-attenuated vaccines.52 

1.2.1 Inactivated Vaccines 

Inactivated vaccines work by exposing individuals to HA and NA antigens to induce an 

adaptive immune response to those antigens. The immune response consists of antibody 

production targeting both HA and NA antigens. To induce a more robust immune response, 

inactivated vaccines generally include an adjuvant. In the US, the antigens included in 

inactivated vaccines are most commonly produced by growing influenza virus in chicken 

embryonated eggs. The use of chicken eggs to produce virions has come into question. In 

particular, it is thought that viral adaptions for growth in eggs via antigenic drift can result in 

vaccine strain mismatch.53 Inactivated vaccines have also been manufactured by infecting cell 

lines with either the influenza virus directly or with modified baculoviruses that express HA 

proteins.54 After amplification, the influenza virus is harvested and chemically inactivated. The 

inactivated influenza virus is then further broken into HA and NA subunits and partially purified. 
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1.2.2 Live-Attenuated Vaccines 

Live-attenuated vaccines are similarly propagated in eggs, but instead mimic natural 

infection by activating the innate and adaptive immune system through exposure to an actively 

replicating virus. To prevent major adverse reactions from exposure to an active influenza virus, 

the virus included in the vaccine is attenuated via cold-adaptation, which consists of growing the 

virus at 25⁰C.55, 56 Due to the virus adaptions for replication in a cold environment, replication in 

environmental temperatures of the lower respiratory tract is impeded and prevents severe 

infection. Because live-attenuated vaccines mimic natural infection, activation of B cell and 

CD8+ T cell responses are both possible. However, a long-lasting CD8+ T cell response has not 

been observed to result from these vaccines.57 

 While a trivalent live-attenuated influenza vaccine was approved in 2003 in the US,58 the 

poor performance of the live-attenuated vaccine against the continually circulating 2009 

pandemic H1N1 was observed.59-61 This led to the US Advisory Committee on Immunization 

Practices (ACIP) and the US Centers for Disease Control and Prevention (CDC) to recommend 

against the use of the attenuated nasal spray vaccine from 2016 to 2018.62 Following 2018, the 

live-attenuated vaccine was again recommended,63 but its use has been limited in the US.  

1.2.3 Vaccine Effectiveness 

In previous research, the influenza vaccine has been found to have protective effects for 

preventing influenza infection,50, 64 reduction in severe outcomes,65-67 and protection for close 

contacts and their surrounding community.68-75 However, antigenic drift and the development of 

new vaccines necessitate continual monitoring of vaccine effectiveness. Vaccines are monitored 

by a variety of systems and methods. 

 As a proxy, inhibition titers via haemaggultination inhibition assays have been used a 

surrogate of vaccine effectiveness.76 The advantage of this method of assessment is that the 

adaptive immune response can be quantified via a relatively inexpensive method.77 Additionally, 

this method allows the assessment of vaccines to induce an immune response to potential 
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pandemic influenza serotypes that are not yet circulating in humans.77 Evidence of antibodies 

that target HA can be used to support the licensure of influenza vaccines. However, the 

production of antibodies is of lesser interest relative to clinical end-points, such as infection, 

severe disease, death, and transmission.  

 A common clinical end-point for influenza vaccine effectiveness is the direct prevention 

of influenza infection for those who receive the vaccine compared to those who have not. Direct, 

or unit-treatment, vaccine effectiveness against infection has been quantified through several 

measures of influenza infection and study designs. While unit-treatment vaccine effectiveness 

against asymptomatic infection is of interest, studies to assess this are difficult to implement due 

to the need to test all participants at regular intervals.78 However, most studies fail to capture 

asymptomatic cases due to symptom-based determinations of who is tested for influenza. 

Instead, symptomatic infections are often considered as the main end-point. Definitions of 

symptomatic influenza infection vary from the occurrence of ILI to laboratory-confirmed 

influenza. One noted issue in the use of ILI in place of laboratory-confirmation is that it is a non-

specific condition. As a result, ILI may underestimate the true unit-treatment vaccine 

effectiveness against influenza infection.79, 80 Laboratory-confirmed influenza avoids this issue, 

but accuracy is dependent on the type of test used.81 Prevention of later end-points, such as 

hospitalization and death, is also of interest. These events are often captured via hospital-based 

studies or through the use of influenza surveillance systems.82, 83  

 To estimate the unit-treatment vaccine effectiveness for the preceding end-points, a 

variety of study designs have been used. Cohort studies, which follow a defined study 

population over an influenza season, can include active testing of any acute respiratory 

infections that occur or passive collection of influenza infections of those who sought care.78 

Other cohort studies have been nested in households, which allow the assessment of within-

household transmission.68, 84, 85 Case-control studies have also been used to estimate vaccine 

effectiveness.78 Traditional case-control unit-treatment vaccine effectiveness studies sample 
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controls from the same source population of cases. A newer design is the test-negative case-

control study. To account for bias in the selection of controls in terms of health-seeking 

behaviors or access to healthcare, test-negative studies identify controls from influenza-

negative tests.86, 87 Despite a rise in popularity of this design, key limitations for its application 

have been noted.87-89 Lastly, influenza surveillance systems, which systematically collect all 

influenza cases within a defined catchment area, have been used to assess vaccine 

effectiveness on end-points like death. For example, the CDC’s Influenza Hospitalization 

Surveillance Network has been used to estimate vaccine effectiveness against severe disease 

and death.67, 82, 83 

1.2.4 Vaccination Recommendations 

Preceding 2010, the seasonal influenza vaccine was only recommended for school-aged 

or younger children (6 months – 18 years), healthcare providers, pregnant women, older adults 

(≥50 years), and persons at higher risk for influenza-related complications (such as those with 

chronic disorders, immunosuppression, and conditions limiting respiratory function).90 Since 

then, the seasonal influenza vaccine has been recommended by ACIP for all persons 6 months 

or older without medical contraindications.91 Despite the updated recommendation, influenza 

vaccination uptake has remained at low levels among young adults.92 One particularly important 

group of young adults included in the expanded recommendation is university students. 

1.3 Influenza and University Students 

University students are a vital population to consider for increasing influenza vaccination 

receipt. First, while vaccination uptake in university students has increased since the 2010 

revised recommendations,93 substantially less than half of college students receive a yearly 

influenza vaccine.93-100 Second, attack rates in university students are comparable to high-risk 

groups, such as those 65 years or older.101-103 A possible explanation for this observation is the 

extent of social contacts between large groups of students, the density of university housing, 

and close contacts with students in classes.95, 102, 104-109 From a historical viewpoint, the mortality 



 

10 

among young adults during the 1918 influenza pandemic was substantially high110 and had 

wide-ranging economic impacts. The emergence of a new pandemic influenza strains may 

place young adults at a similarly high mortality risk. While a universal vaccine is not yet 

available, the high mortality in this age group would suggest high priority when a universal 

influenza vaccine is widely available. Third, university student populations may disseminate 

influenza rapidly, as observed with the introduction of pandemic 2009 H1N1 to the US via 

university students returning from spring break in Mexico,104 and other instances of pandemic 

influenza.103 Fourth, influenza can have substantial negative impacts on work, school, and 

mental well-being of students.96, 111 While other respiratory viruses manifest in similar ILI and 

missed days of school and work,48, 111 prior research has found between 20 to 70% of ILI cases 

among university students have been attributed to influenza.48, 111 Therefore, targeting the 

reduction of influenza has the potential to substantially reduce the impacts of ILI on university 

students. Also, students may serve as a source of infection for their university faculty or staff, 

who may be at high risk for influenza-related morbidity and mortality by virtue of older age or co-

morbidities (e.g., immunosuppression or pregnancy). Lastly, university students often begin 

making independent health decisions at this stage in their lives. Since past vaccination is highly 

predictive of future vaccination behavior,93, 112 encouraging influenza vaccination among this 

group may alter their future decision trajectory. To successfully increase influenza vaccination 

uptake among university students, hesitancy and barriers need to be addressed.  

Previous research has indicated that low uptake of influenza vaccination more broadly 

may result from misinformation on risks and benefits associated with the vaccine,100, 107, 113-118 

convenience on when and where the vaccine can be received,98, 113 and financial barriers.94, 95 

The decision to get vaccinated is linked to the perception that influenza is a serious illness, the 

influenza vaccine is effective, and the side-effects of the vaccine are minor.113, 119 Lack of 

knowledge regarding influenza and the vaccine has been linked to not receiving the vaccine.107, 

113, 114 Educational campaigns should focus on vaccine safety,100, 113, 114, 117, 118 effectiveness,100, 
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114, 117, 120 the threat of influenza,114, 118, 120 and protecting others from influenza.98, 114, 117 The 

usage of mass media, such as social media, public flyers, and television, has been shown to 

increase influenza knowledge and vaccine acceptance broadly.97, 119, 121 

 University students have been previously found to have fewer positive views on 

influenza vaccines,113, 115 potentially due to fewer chronic conditions and having a lower 

perceived risk of serious influenza outcomes.98, 115, 116, 119 A lack of convenience has also been 

reported as a barrier for influenza vaccination,98 but not consistently.113 Providing free influenza 

vaccination has had success in increasing vaccination uptake,95 but costs have not always been 

perceived by students as a substantial barrier.98, 113  

Previous campaigns to increase influenza vaccination among university students have 

targeted education regarding influenza and the vaccine, convenience, and costs. Among 

university students, mass media campaigns have raised influenza vaccination coverage.94, 95 

Media approaches have been reported as more successful when highlighting the benefits of the 

influenza vaccine.93 For poster design, highlighting the benefits of the vaccine and the harms of 

influenza through text have been seen to be observed with increased intention to receive the 

influenza vaccine.122 However, mass media campaigns have not always had success,98, 107 

potentially due to students already having some awareness of vaccination program services 

available to them.98 Rather than a broad approach, some authors have suggested targeted 

educational campaigns, like collaborating with student organizations (e.g., fraternities or 

sororities).107 Outside of media campaigns, using class time as an opportunity to provide 

educational materials on the influenza vaccine for medical and biology students has had 

success.123 Convenience and cost barriers have also been addressed in tandem with 

educational campaigns. Costs have predominantly been targeted by providing the influenza 

vaccine at reduced or no cost to students. Another option is for universities to mandate 

influenza vaccination for students. After high-profile Mumps outbreaks at universities,124, 125  
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mandatory Measles-Mumps-Rubella vaccination for university students has been recommended 

as a means to increase vaccination and prevent outbreaks.126 Something similar could be done 

in regards to influenza vaccination. 

Previous research on policies that target one or more of these barriers have focused on 

influenza vaccination uptake as the outcome measure.94, 95, 123 However, an outcome of greater 

public health importance is the overall reduction in risk of influenza resulting from increased 

uptake. By focusing on influenza risk, selecting between campaigns for more efficient use of 

resources may be possible. As an example, a hypothetical educational intervention may result 

in a similar reduction in influenza risk compared to vaccination clinics, but vaccination clinics 

may be substantially less costly.  

1.4 Difficulties in Measuring Vaccine Effectiveness 

 In practice, there are several issues with the measurement of influenza vaccine 

effectiveness. First, it should be noted that vaccine effectiveness is often used to refer to a 

variety of different outcomes. Besides differing end-points, vaccine effectiveness can also be 

constructed with a variety of effect measures. For example, vaccine effectiveness is often 

defined as one minus the risk ratio, but odds ratios and incidence rate ratios are also used.79, 127 

Next, unit-treatment vaccine effectiveness is often focused on,50, 128 including in university 

students.129 Unit-treatment vaccine effectiveness corresponds to the average of changing each 

individual’s vaccination status while holding the vaccination status of the remainder constant. 

However, this measure may be less relevant in the assessment of vaccination from a public 

health perspective. Instead, the risk of influenza under differing vaccination campaigns or 

policies is likely of greater interest. To further facilitate understanding why unit-treatment 

vaccine effectiveness may be of lesser public health interest, we rely on potential outcomes. 

The potential outcomes framework was proposed by Jerzy Neyman in 1923 in the 

context of randomized trials.130 Donald Rubin later extended the potential outcomes framework 

to include observational studies for point-exposures,131 and James Robins further generalized 
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this framework for time-varying exposures.132 Potential outcomes stipulate possible outcomes 

for a person under different exposures, treatments, interventions, or policies. Without a loss of 

generality, we refer explicitly to influenza vaccination. Let 𝑌𝑖(𝒗) indicate the potential outcome 𝑌 

for individual 𝑖, where 𝒗 designates the vaccination status for every person within the defined 

population (i.e., 𝒗 = {𝑣1, 𝑣2, … , 𝑣𝑖 , … , 𝑣𝑛}). In other words, 𝑖’s potential outcome is defined by the 

entirety of the population’s vaccination. As will become useful later on, the potential outcomes 

can be rewritten as 𝑌𝑖(𝒗) = 𝑌𝑖(𝑣𝑖, 𝑣−𝑖), where 𝑣𝑖 is the vaccination of individual 𝑖 and 𝑣−𝑖 is the 

vaccination of all other units. Under the assumption of no interference, such that the potential 

outcome for 𝑖 is independent of the vaccination of any other unit in the population,133-135 

individual 𝑖’s potential outcome reduces to 𝑌𝑖(𝑣𝑖). As has been long recognized in infectious 

disease research,136 the assumption that the vaccination status of one person does not affect 

another person is often unreasonable. Therefore, the 𝑣−𝑖 component of the potential outcome 

cannot be readily ignored.  

The presence of the 𝑣−𝑖 component also expands the possible estimands that one can 

consider studing.137 As mentioned before, unit-treatment vaccine effectiveness is often 

estimated. Using the potential outcome notation, the unit-treatment effect can be expressed as 

Pr(𝑌(1, 𝑣−𝑖)) − Pr(𝑌(0, 𝑣−𝑖)). In words, the unit-treatment effect is the expected population 

difference in the probability of 𝑌 contrasting vaccination to no vaccination, holding everyone 

else’s vaccination as fixed. While the unit-treatment effect is commonly reported in vaccine and 

infectious disease epidemiology more broadly, utility of this estimand is limited from a public 

health standpoint.138 Rather than considering some substantial change in the distribution of 

vaccination in the population, the unit-treatment effect focuses on a single unit. In settings 

where resources are not extremely constrained so that vaccination could only be increased by a 

single or few individuals, this measure likely has limited public health use.  
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 In place of the unit-treatment effect, VanderWeele and Tchetgen have argued that the 

differences under changes in the distribution of vaccination (e.g., policies) are of greater public 

health importance.138 Rather than holding 𝑣−𝑖 as fixed, the risk under a different policy 𝒗∗, 

indicated by Pr(𝑌(𝒗∗)), could be examined. As opposed to the unit-treatment effect, this value 

can correspond to large-scale changes in the distribution of vaccination in the population.  

 For estimation of Pr(𝑌(𝒗∗)) and other estimands that include 𝑣−𝑖, there have been two 

distinct approaches: partial interference and general interference. The partial interference 

assumption stipulates that the interference pattern consists of distinct groups where interference 

occurs within groups but not between groups.133, 139 The partial interference assumption may be 

reasonable in settings where groups are geographically isolated (e.g., rural villages with few 

roads between them, etc.) or when interactions are highly dependent on environmental features 

(e.g., classrooms, places of employment, etc.). The independent and identically distributed 

group-level data then allows for the application of standard statistical theory.133, 139-141 

Approaches to estimation under partial interference have included two-stage randomized 

trials,133, 140, 142 extensions to inverse probability weighting,141, 143, 144 extensions to augmented 

inverse probability weighting,145 and sensitivity analyses.146 

While partial interference is reasonable in some scenarios, interference patterns do not 

always allow the separation of individuals into independent groups. General interference allows, 

in principle, for any two units in a population to affect each other. Consideration of all 𝑣−𝑖 equally 

for 𝑌(𝑣𝑖, 𝑣−𝑖) is extraordinarily difficult (if not impossible). Therefore, general interference 

approaches instead restrict interference to a specific pattern with a known structure. This 

interference structure can be represented by a network where edges in the network indicate 

connections between units where effects can ‘flow’ through. Therefore, we only need to 

consider the components of 𝑣−𝑖 for individuals directly or indirectly connected to 𝑖.  
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Methods for general interference may further be delineated by whether or not the 

vaccination is randomized by the investigator. In randomized experiments, methods can 

leverage the random assignment as the basis of inference.147, 148 In settings of observational 

data, there have been two recently proposed approaches to allow for general interference: auto-

g-computation, and network targeted maximum likelihood estimation (TMLE). Auto-g-

computation is an extension to Robins’ parametric g-formula to settings of general interference, 

with estimation proceeding by Gibbs sampling from a conditional auto-model.149 This approach 

relies on the specification of a parametric auto-model for the outcome. Network-TMLE is an 

extension to TMLE framework for dependent data in the context of a network.150-152 To make 

progress, network-TMLE restricts general interference to only exist for immediate contacts, 

referred to as weak dependence. Both of these approaches assume that the interference 

pattern, as expressed via a network, has been correctly measured. 

1.5 Measurement Error 

To measure contacts capable of infection transmission, like influenza, self-reported 

measures for contacts have often been used.153, 154 Other work measuring face-to-face contacts 

via self-report and electronic sensor-collected data have found discrepancies between the 

two.155-159 In particular, contacts of shorter duration were less likely to be self-reported.158 

Therefore, it is likely that measurement error of contacts poses a significant threat to the validity 

of approaches, like network-TMLE, when self-reported contact data is used. 

More broadly, measurement error of edges has been recognized as an important 

limitation in network analyses. Previous simulation studies have focused on the performance of 

centrality measures (e.g., degree, betweenness, closeness, eigenvector centrality) with non-

informative measurement error.160-162 To analytically address measurement error, imputation162, 

163 and Bayesian approaches164, 165 have been proposed. However, these approaches have not 

been explicitly compared in simulation studies. 
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1.5.1 Imputation Approach 

Measurement error fits within the paradigm of missing data by stipulating that a perfect 

measure, referred to as the gold-standard, exists. This perfect measure is then missing for 

some (possibly all) of the study sample. The problem of measurement error is then to fill in the 

missing gold-standard measurements for the entire sample. This has been done using multiple 

imputation for measurement error (MIME); given that the correctly measured values are 

captured for a subsample.166 This approach to thinking has been used to motivate imputation for 

measurement error for individual-specific covariates,166-168 as well as edges in a network.162  

For missing network data, multiple imputation approaches using exponential random 

graph models (ERGM) have been previously proposed.163, 169 ERGM are a statistical model for 

network data for the prediction of ties between nodes in a network, which shares a similar 

interpretation to logistic regression models.170 ERGM considers networks as a function of three 

broad categories of measures; density (number of edges), individual attributes, and geometric 

terms (higher-order interrelations between nodes). These models have been traditionally used 

to understand tie formation within networks. However, ERGM have also been used for multiple 

imputation of missing data.169, 171-173 Use of ERGM as a way to correct for measurement error of 

edges has also been previously suggested.169 

1.5.2 Bayesian Approach 

 Rather than explicitly framing measurement error as a missing data problem, Bayesian 

approaches attempt to reconstruct the true network from prior specifications.165 Therefore, the 

collection or even existence of a gold-standard measure is not required. To estimate the true 

network, two models and corresponding prior distributions are specified.165 The first model is the 

measurement model, which is the probability distribution for the measured edges given the true 

edges. The second model is the network model, which corresponds to the probability 

distribution of edge formation in the true network. Applying Bayes’ rule, the true network can be 

consistently estimated with mismeasured edges, the specified models, and corresponding 
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priors. Draws from the joint posterior distribution are then used to estimate parameters of the 

true network. Bayesian approaches like this are expected to operate best when multiple 

measures of the same network are available to a researcher.164 However, multiple 

measurements are uncommon in practice or may not possible. Therefore, performance of 

Bayesian approaches in the context of a single measurement are necessary. 

1.6 Synopsis 

In summation, influenza causes a substantial burden of morbidity and mortality each 

year. One important population to consider for the prevention of influenza is university students. 

Strategies that increase influenza vaccination to effectively reduce influenza risk are of interest. 

In order to assess possible policies to mitigate influenza cases among university students, 

methods are needed to allow for interference.
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CHAPTER 2: STATEMENT OF SPECIFIC AIMS 

 This dissertation aims to estimate the risk of influenza under competing policies to 

increase influenza vaccination uptake among university students. In 2010, ACIP expanded 

influenza vaccination recommendations to include young adults.91 Despite the updated 

recommendation, influenza vaccine receipt has remained at low levels among young adults,174, 

175 including university students.93-95, 98 University students are an important population to 

consider for the prevention of influenza due to the high attack rate among university students101-

103; university students may rapidly disseminate influenza to the surrounding community103, 104; 

influenza infection and symptoms have substantial negative impacts on work, school, and 

mental well-being of university students96, 111; and university students often begin making 

independent health decision at this stage in their lives.93, 112  

 To reliably estimate the risk of influenza under different policies, the approach must 

incorporate interference. Interference is the dependency of an individual’s potential outcome on 

at least one other individual’s exposure or treatment.133 While long-recognized in infectious 

disease research,136 interference has more recently been formalized through the potential 

outcomes framework.133, 139 Despite this formalization, studies on influenza vaccination 

commonly ignore dependencies between observations.176 Network-TMLE is a recently proposed 

extension to allow for network-dependent data in the TMLE framework. While network-TMLE 

has been previously demonstrated in selected simulations; simulations in more complex and 

real-world networks and an applied example of its usage are substantial gaps in the current 

literature. The lack of application of these methods to networks that more closely resemble 
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empirical network and real-world applications make it difficult to assess the importance and 

inhibit wider adoption of these approaches by epidemiologists. 

 Network-TMLE and other methods that rely on information within a network rely on the 

assumption that edges in the network are measured without error.147, 151, 177 However, self-

reported contacts have been found to differ from sensor-collected contacts,155-159 likely indicating 

measurement error. To quantitatively address measurement error, imputation and Bayesian 

approaches have been suggested as options. However, these approaches have not been 

directly compared. 

To reliably estimate the risk of influenza under competing influenza vaccination policies, 

this work pursues the following aims: 

Aim 1: Compare approaches to address measurement error of edges in networks.  

To address measurement error of edges, imputation and Bayesian approaches have 

been independently proposed. While proposed, the performance of these methods overall and 

in comparison to each other have not been systematically evaluated. Through a Monte Carlo 

simulation study, comparisons between these approaches were made for multiple measures 

and multiple network formation models. 

Aim 2: Assess the finite-sample performance of network-TMLE.  

While simulations have been conducted to evaluate the finite sample performance of 

network-TMLE; previous empirical studies have been limited to relatively simple random graphs, 

explored only a narrow set of data-generating mechanisms, and made no direct comparisons 

between network-TMLE and IID-TMLE. Through a Monte Carlo simulation study, the sample 

risk was estimated under varied data-generating mechanisms with a wide variety of networks, 

including a real-world network. Comparisons are further made between network-TMLE and IID-

TMLE. 

  



 

20 

Aim 3: Estimate the risk of influenza under competing influenza vaccination policies.  

 Studies on vaccination often focus on the unit-treatment effect, which fails to address 

questions regarding large-scale changes in the distribution of vaccination. How vaccination 

uptake can best be increased to minimize influenza risk is of public health interest. Competing 

approaches can focus on providing information on the harm of influenza and the benefits of 

vaccination, reducing non-financial barriers to vaccine receipt, and reducing financial barriers to 

receipt. Influenza risk under policies that shift the log-odds of vaccination were assessed using 

network-TMLE and data collected in the eX-FLU cluster randomized trial.  
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CHAPTER 3: METHODS 

3.1 Overview 

 To estimate the risk of influenza under competing policies to increase influenza 

vaccination uptake; data on demographics, behaviors, vaccination, respiratory illness, and 

contact data from the eX-FLU cluster randomized trial are used. Policies consist of approaches 

that shift the probability of vaccination uptake among different domains of self-reported reasons 

for not receiving the influenza vaccine. To allow for general interference, network-TMLE is used 

to estimate the risk under these different policies. As network-TMLE is a recently proposed 

estimator, we explore the finite sample properties under varied data-generating mechanisms 

and networks exhibiting different structural properties. Finally, network-TMLE assumes all edges 

in the network are measured without error. However, self-reported contacts have been 

previously shown to be subject to measurement error. To determine ways to address 

measurement error of edges, an additional simulation study on recently proposed imputation 

and Bayesian approaches was conducted.  

3.2 Data Source 

Data to estimate the risk of influenza under the competing policies comes from the eX-

FLU study, a cluster-randomized trial on the feasibility and efficacy of three-day self-isolation on 

the spread of respiratory pathogens among university students.154 At a midwestern university, 

students were recruited from six selected dormitories. The six dormitories were chosen based 

on their representativeness to the overall student population and their close physical proximity 

with each other. Students were recruited through chain referral sampling, which is highly 

efficient when attempting to enumerate networks. “Seed” students were recruited through 
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informational flyers, emails, and in-person informational tables. Recruited students were asked 

to nominate other students to participate in the study. Nominated students were then contacted 

via email. In total, there were 262 seed students and 328 nominated students. Enrolled students 

provided informed consent via an online form. To be eligible to participate, students had to be at 

least 18 years old. 

Before recruitment, clusters were determined from features believed to influence how 

social interactions occurred (e.g., physical barriers within buildings, resident house assignment, 

geographic proximity of rooms). Each cluster was randomized to either self-imposed three-day 

self-isolation after the onset of symptomatic respiratory disease or to continue with their normal 

behavior when sick (control). Enrolled students were followed prospectively for ten-weeks 

(January – April 2013) for the development of respiratory infections.  

At enrollment, students completed a survey and nominated social contacts. The 

enrollment survey collected information on health behaviors, psychosocial characteristics, 

knowledge regarding the transmission of influenza, and pandemic preparedness knowledge. 

Over the follow-up period, students were sent a survey via email on the Friday of each week. 

Study participants were also asked to complete a face-to-face contact diary. Information on 

location and relationship with contacts was also collected. While ILI symptoms were assessed in 

each weekly survey, students were asked to report the onset of coughing, sneezing, runny 

nose, fever or feverishness, chills, or body aches on the day of onset. These symptoms could 

be reported through phone, email, or a web-based reporting system. Students were considered 

ILI cases if they reported coughing plus at least one of the following symptoms: fever or 

feverishness, chills, or body aches. Once identified, ILI cases had nasal and throat swabs 

collected for testing. Additionally, healthy contacts of ILI cases in the previous week were also 

contacted for specimen collection. Therefore, asymptomatic infections could potentially be 

captured as well as symptomatic infections. 
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The intervention in the original study consisted of cluster randomization to either three-

day self-isolation or control. The three-day isolation arm participants were provided an illness kit 

(consisting of study protocol instructions, thermometer, facemasks, information for preventing 

influenza transmission) at baseline. Upon meeting the definition of ILI case, those in the three-

day isolation arm were asked to immediately begin the isolation protocol and remain in their 

dormitory room for three days. To facilitate adherence to isolation, students who developed ILI 

had provisions (e.g., snacks, beverages, etc.) and could be requested to provide a doctor’s note 

verifying illness for professors or employers. For students in the control arm that became an ILI 

case, they were not asked to change their normal behavior while ill. However, they were 

provided basic information about ways to mitigate influenza transmission (i.e., hand hygiene, 

covering cough or sneezes).  

A subsample of enrolled students (n=103) was also given smartphones with the iEpi 

application installed during the second week of follow-up. To identify participants in the iEpi 

subsample, groups of interconnected students were identified via the edge-betweenness 

community detection algorithm.178 Participants were then randomly selected to participate, 

starting from the largest community, until 103 students were enrolled.154 The iEpi application 

allowed for the collection of contacts, geographic information, and context-dependent surveys. 

Students were instructed to carry the phone with them at all times, charge the phone each night, 

and keep their phone in “discoverable” mode. Contact data was collected via Bluetooth signals. 

Briefly, each smartphone broadcasts a unique identifier to nearby devices. Broadcast signals 

travel a distance between 5-10 meters in normal operation and can travel through solid objects 

(e.g., walls, floors, etc.). Aside from broadcasting their unique identifier, the smartphone 

application also collected all incoming Bluetooth signals at a resolution of five minutes. From the 

unique identifier of captured signals, other participants’ smartphones with the iEpi application 

could be identified and linked. Captured signals included a timestamp and the received signal 
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strength indicator (RSSI). RSSI is a unit-less measure of the strength of a Bluetooth signal. 

Therefore, highly-detailed contact information was captured for this subsample. 

3.3 Outcome Assessment 

 At the onset of ILI, students were asked to report all symptoms to study staff. Self-

reported ILI was defined as the presence of coughing with at least one of the following 

symptoms; fever or feverishness, body ache, or chills.154 Students were able to report this 

information by phone, email, web-based reporting system, or in weekly surveys. The broad 

definition of ILI allowed for the capture of ILI cases both with and without fevers, and has been 

used in previous applications.9, 10, 179 

A known problem with the use of ILI, a non-specific condition, to evaluate the influenza 

vaccine is that it can underestimate the true unit-treatment effect of the vaccine.79, 80 Therefore, 

laboratory-confirmed influenza was also assessed. Upon becoming an ILI case, students had 

nasal and throat specimens collected. Nasal and throat swabs were combined and tested for 

both influenza A and influenza B via quantitative polymerase chain reaction. Polymerase chain 

reaction testing was done with primers and probes developed by the CDC Influenza Branch for 

universal detection of influenza A and influenza B viruses.180 Additionally, health contacts of ILI 

cases had nasal and throat specimens collected, and tested. While not ILI cases, these 

students were included as laboratory-confirmed influenza if positive. 

3.4 Exposure Assessment 

The exposure of interest is receipt of the 2012-2013 influenza vaccine. In the original 

study, influenza vaccination was assessed via the enrollment survey (“Have you received a flu 

vaccination for the current 2012-2013 flu season?”). Among those unvaccinated, students were 

asked why they did not receive the influenza vaccine. Options included “because the flu shot 

causes the flu”, “because I don’t get the flu”, “because the flu shot does not work”, “because I 

didn’t know if I could get the flu shot”, “because I never got around to getting the flu shot”, 

“because I did not have transportation to go get the flu shot”, “because the hours when the flu 
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shot was available did not fit my schedule”, “because the flu shot is too expensive”, “because 

my health plan does not cover the flu shot”, “because I do not have health insurance”, and 

“because I am allergic to the flu shot”. Reasons were further grouped into four categories: 

misinformation or myths regarding the vaccine (the flu shot causes the flu, I don’t get the flu, the 

flu shot does not work, I didn’t know if I could get the flu shot), non-financial barriers (I never got 

around to getting the flu shot, I did not have transportation to go get the flu shot, the hours when 

the flu shot was available did not fit my schedule), financial barriers (the flu shot is too 

expensive, my health plan does not cover the flu shot, I do not have health insurance), and 

allergies to the vaccine.  

Previous studies found a protective unit-treatment effect for the vaccine during the 2012-

2013 influenza season.84, 181-184 Therefore, the vaccine is expected to directly protect against 

influenza for the season under study. 

3.5 Covariate Assessment 

Covariates included in the analysis were grouped as demographic, influenza risk factors, 

and health behaviors. Demographic factors collected include gender (male; female), race 

(Asian; Black or African American; Native American; Native Hawaiian / Pacific Islander; White; 

multi-racial), ethnicity (Hispanic; non-Hispanic), and dormitory. All demographic information was 

collected through self-report. Due to few participants identifying as Black or African American, 

Native American, Native Hawaiian / Pacific Islander, or multi-racial, these groups were 

combined.  

Risk factors and health behaviors included stress, optimal hand hygiene, high-risk 

conditions, sleep quality, and alcohol use. Stress was measured via the Perceived Stress Scale-

10.185 Optimal hand hygiene was defined as self-reporting hand washing at least 5 times a day 

and at least 20 seconds for each hand hygiene event. High-risk conditions consisted of one of 

the following: asthma, reactive airway disease, Type 1 or 2 diabetes, and currently receiving 

HIV/AIDS or cancer treatment. Self-reported sleep quality was reported as very good, fairly 
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good, fairly bad, or very bad. Sleep quality categories were further reduced to good versus bad. 

Alcohol use was defined as self-reporting drinking alcohol at least once a week. In addition to 

risk factors and behaviors, information on the trial arm was also included. 

Each week during follow-up, students were asked to self-report all face-to-face contacts 

with other study participants from the previous week. While a directed network of reported 

contacts was captured, the network was collapsed to an undirected network. Contact between 

students was assumed to have occurred as long as one student reported the contact. For the 

iEpi subsample, contacts were filtered by the recorded number of contacts between two 

participants within a week and the recorded RSSI values. 

3.6 Statistical Analyses 

All simulations and analyses were completed using Python 3.5.1, Python 3.6.6, and R 

4.0.3. For Python, the following open-source libraries were used: NumPy,186 SciPy,187 

statsmodels,188 patsy,189 NetworkX,190 Sci-Kit Learn,191 and pyGAM 192. For R, the following 

open-source libraries were used: sna,193 ergm,194 rstan,195 assortnet,196 and 

DirectedClustering.197 

Aim 1: Compare approaches to address measurement error of edges in networks.  

For the following subsection, let 𝔾 indicate the 𝑁 × 𝑁 adjacency matrix of the true 

network (i.e., no measurement error), where 𝔾𝑖𝑗 denotes the (𝑖, 𝑗) entry and 𝔾𝑖𝑗 = 1 indicates an 

edge and 𝔾𝑖𝑗 = 0 otherwise. By definition, there are no self-loops (𝔾𝑖𝑖 = 0). The goal of the 

analysis is the estimation of a specific parameter (𝜇) and variance for that parameter (𝑉𝑎𝑟(𝜇)). 

Let 𝒢 indicate a single measurement of 𝔾. When measurement error occurs, the two adjacency 

matrices will no longer match for every node pair (i.e., 𝔾𝑖𝑗 ≠ 𝒢𝑖𝑗  ∃ 𝑖, 𝑗 ∈ 𝑁). Therefore, estimates 

of 𝜇 from 𝒢 may be biased. Finally, let 𝐺 indicate a perfectly measured network for 𝑛 nodes (i.e., 

𝔾𝑖𝑗 = 𝐺𝑖𝑗  ∀ 𝑖, 𝑗 ∈ 𝑛), where 𝑛 < 𝑁. Unlike 𝒢, the gold-standard network 𝐺 is only available for a 

portion of the population (e.g., 𝐺 is a subgraph of 𝔾).  
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To compare the performance of approaches to account for the measurement error of 

edges, a Monte Carlo simulation study was used. Comparisons were made for three different 

network generation models, consisting of 200 nodes. Network-1 was a stochastic block model 

based on whether nodes had matching values for a binary variable 𝐵 and a categorical variable 

𝑋. 𝐵 was assigned to 62 (31%) of nodes, and 𝑋 consisted of 4 categories with 50 nodes (25%) 

in each. The stochastic block model used to generate edges between nodes was: 

logit(Pr(𝔾𝑖𝑗 = 1)) = −4.25 − 0.25 𝐼(𝐵𝑖 = 𝐵𝑗) + 1.25 𝐼(𝑋𝑖 = 𝑋𝑗) 

where 𝐼(𝑍 = 𝑧) is the indicator function such that it is equal to 1 if the statement is true and 0 

otherwise. Network-2 was generated using an ERGM with terms for matching values of 𝐵, 

matching values of 𝑋, and the squared difference of a continuous variable 𝐶 

logit(Pr(𝔾𝑖𝑗 = 1|𝑛, 𝔾𝑖𝑗
𝑐 )) = −4.5 + 0.1 × 𝐼(𝐵𝑖 = 𝐵𝑗) + 1.25 × 𝐼(𝑋𝑖 = 𝑋𝑗) − 0.5(𝐶𝑖 − 𝐶𝑗)

2
 

where 𝑛 is the number of individuals (nodes) in the network, and 𝔾𝑖𝑗
𝑐  denotes all dyad-pairs in 

the network aside from 𝑖𝑗. Network-3 instead included terms for 𝐵 and 𝑋, as well as Δ which 

models the number of closed triangles in the network. The ERGM used to generate network-3 

was 

logit(Pr(𝔾𝑖𝑗 = 1|𝑛, 𝔾𝑖𝑗
𝑐 )) = −4.75 − 0.5 × 𝐼(𝐵𝑖 = 𝐵𝑗) + 2.5 × 𝐼(𝑋𝑖 = 𝑋𝑗) + 2.5Δ 

Network-3 has the addition of higher-order dependencies Δ (triangles) unlike the previous 

generation models. 

Two types of measurement error were considered for each of the preceding networks: 

non-informative and informative measurement error. For non-informative measurement error, 

observed edges had a sensitivity of 0.85 and specificity of 0.99. For informative measurement 

error, errors were based on the node characteristic 𝐵, with pairs of nodes both having the same 

value of 𝐵 (i.e., 𝐵𝑖 = 𝐵𝑗) having a sensitivity of 0.90 and specificity of 0.995, whereas discordant 

pairs (i.e., 𝐵𝑖 ≠ 𝐵𝑗) had a sensitivity of 0.80 and specificity of 0.985. In total, six different 

scenarios were assessed through simulations, with each being simulated 1000 times. 
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3.6.1 Approaches 

As a baseline comparator for all other approaches, parameters were estimated using the 

true network in each simulation (i.e., the network without any measurement error of edges). This 

approach was considered the best-case scenario in terms of performance.  

As the stand-in for current practice, the parameters were estimated based on the 

observed edges, referred to as the Naïve approach. The Naïve approach does not attempt to 

account for measurement error. In addition to the Naïve approach, gold-standard subsamples 

were selected and used to estimate 𝜇. The size of the gold-standard subsample available was 

varied changed between 80 (40%) and 120 (60%) nodes. Two different approaches to selecting 

the gold-standard nodes were compared: simple random sample (SRS) and respondent-driven 

sampling (RDS). The RDS procedure began with 10% of the subsample size selected as seeds. 

Each seed node nominated three nodes based on a random selection of nodes that it shared a 

true edge with. The procedure was repeated for nominated nodes until the gold-standard 

subsample size was met. 

For the imputation approach, MIME was implemented with an ERGM (referred to as 

MIME-ERGM hereafter). ERGM are a parametric model for network data where the dependent 

variable is an edge.170 These models have been traditionally used to understand tie formation 

within networks, but ERGM have also been used for multiple imputation of missing data.169, 171-

173 MIME-ERGM was implemented as follows. First, an ERGM was specified and estimated 

using only the nodes and edges from the gold-standard subsample, 𝐺.  For specification of the 

model, the true data-generating model for the network was specified for network-1 and network-

2. For network-3, MIME-ERGM included the geometrically weighted edgewise shared partners 

term rather than the triangle term due to model convergence issues. Next, 𝐺 is extended to 

include all 𝑁 nodes, with all edges not measured by the gold-standard measure considered as 

missing. The missing edges are then imputed using the estimated ERGM. MIME-ERGM differs 

from MIME in the context of independent data, which tends to include the information from the 
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measurements within this model.166 Instead, the mismeasured network serves as the starting 

basis for the imputed networks from the ERGM. To allow for uncertainty in the predictions, 

MIME uses 𝑚 imputations. Each imputed graph is indicated by �̃�𝑘 for 𝑘 = 1, … , 𝑚 imputations. 

For each of the 𝑚 imputations, the parameter of interest 𝜇�̂� and 𝑉𝑎�̂�(𝜇�̂�) are estimated. To 

provide a single summary of all the imputations, the imputations are combined and summarized 

using Rubin’s rule.198 The overall point estimate for the parameter was the mean across all 𝑚 

imputations 

�̅� = 𝑚−1 ∑ 𝜇�̂�

𝑚

𝑘=1

 

The variance for this parameter is the within-imputation variance plus the between-imputation 

variance. 

𝑉𝑎𝑟̅̅ ̅̅ ̅(�̅�) = 𝑚−1 ∑ 𝑉𝑎�̂�(𝜇�̂�)

𝑚

𝑘=1

+ (1 + 𝑚−1)(1 − 𝑚)−1 ∑(𝜇�̂� − �̅�)2

𝑚

𝑘=1

 

MIME-ERGM was implemented using both methods of gold-standard subsample selection, and 

both subsample sizes. 

The recently proposed Bayesian approach from Young et al. works by specifying two 

models and corresponding prior distributions.165 Unlike MIME, no gold-standard subsample is 

required. The first model is the measurement model, which is the probability distribution for the 

observed edges in the observed network 𝒢 as a function of the true network 𝔾. With the prior 𝜃, 

the measurement model can be written as Pr(𝒢𝑖𝑗|𝔾𝑖𝑗 , 𝜃). The second model is the network 

model, which corresponds to the probability distribution of edges in 𝔾. The network model is 

written as Pr(𝔾𝑖𝑗|𝜆), with prior 𝜆. Applying Bayes’ rule, 𝔾 can be consistently estimated with 𝒢, 

the specified models, and the priors via: 

Pr(𝔾, 𝜃, 𝜆|𝒢) =
Pr(𝒢|𝔾, 𝜃) Pr(𝔾|𝜆) Pr(𝜃, 𝜆)

Pr(𝒢)
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Draws from the joint posterior distribution, Pr(𝔾, 𝛼, 𝜙|𝒢), are then used to estimate 𝔾. Similar to 

MIME, multiple networks are generated. The parameters estimated from the 𝑚 generated 

graphs were similarly summarized using Rubin’s rule.198 

3.6.2 Performance Metrics 

Performance of approaches was compared for estimation of the following parameters: 

number of edges, density, assortativity coefficient, degree, and clustering coefficient. The 

number of edges was the number of unique edges in the network. Density is the number of 

edges occurring in the network divided by the total number of possible edges. The assortativity 

coefficient measures the tendency of individuals sharing an edge to also share similar traits or 

behaviors.199 The assortativity coefficient is bounded between -1 and 1, indicating perfectly 

disassortative and assortative networks, respectively. The assortativity coefficient was 

calculated for the variable 𝐵. The mean degree was the mean of unique contacts for each node. 

The mean local clustering coefficient is the mean of the number of closed triangles that occur 

among a node’s contacts divided by the total number of possible triangles.200 A closed triangle is 

when a triad of nodes all share edges. 

For all approaches, the variance for each parameter was estimated using a jackknife 

approach.201-204 The jackknife operates by a leave-one-out procedure, where a single 

observation is removed then the parameter is re-estimated. After the leave-one-out procedure is 

completed for each observation, the estimated parameter for the full data set is subtracted from 

each leave-one-out iteration and then is squared. Finally, the squared differences are summed 

together and multiplied by a scaling factor. Instead of the usual scaling factor of 
𝑛−1

𝑛
 used in IID 

data, the scaling factor of 
𝑛−2

2𝑛
 was used instead.204 The variances for the number of edges, 

density, degree, and clustering coefficient were estimated by removing a single node from the 

network.204, 205 For the assortativity coefficient, a single edge was removed instead.199  
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The performance of each approach was evaluated for each parameter via the following 

metrics: bias, empirical standard error (ESE), and 95% confidence interval (CI) coverage. Bias 

was defined as the mean of the estimated parameter minus the true value for that parameter. 

The true value was determined from the average value from 10,000 true networks. ESE was 

defined as the standard error of the estimated parameter. 95% CI coverage was calculated as 

the proportion of CI that contained the true value for each measure. 

Aim 2: Assess the finite-sample performance of network-TMLE. 

 Network-TMLE was implemented in Python with the following dependencies: NumPy,186 

SciPy,187 statsmodels,188 patsy,189 and NetworkX.190 To motivate the implementation, consider 

drawing inference about the effect of a binary exposure 𝑉 on an outcome 𝑌 in an observational 

study. For individual 𝑖 = 1, … , 𝑛, let 𝑊𝑖 indicate observed baseline covariate(s), 𝑉𝑖 the observed 

exposure, and 𝑌𝑖 the observed outcome. Consider the setting where individuals are connected 

via a network of edges (e.g., an edge may indicate two individuals are friends within a social 

network, live within a certain distance of each other, or had a face-to-face conversation). 

Suppose the network structure is static (i.e., fixed over time) and can be summarized by an 

𝑛 × 𝑛 adjacency matrix 𝒢. Let 𝒢𝑖𝑗 denote the (𝑖, 𝑗) entry of 𝒢, where 𝒢𝑖𝑗 = 1 if an edge exists 

between 𝑖 and 𝑗. Assume no interference between individuals 𝑖 and 𝑗 if 𝒢𝑖𝑗 = 0. Since 

interference is a relation between individuals, 𝒢𝑖𝑖 = 0 ∀ 𝑖 ∈ 𝑛. Throughout, individual 𝑖’s 

"immediate contacts” refers to individuals that have an edge with 𝑖. The potential outcomes may 

be denoted by 𝑌𝑖(𝑣𝑖 , 𝑣𝑖
𝑠), with 𝑣 ∈ 𝒱 = {0,1} and 𝑣𝑠 ∈ 𝒱𝑠. Denote the conditional distribution of 𝑉 

given 𝑊 under policy 𝜔 by Pr∗(𝑉 = 𝑣|𝑊). For the aforementioned deterministic policy, 

Pr∗(𝑉 = 1|𝑊) = 1. Stochastic policies may also be of interest where 0 < Pr∗(𝑉 = 1|𝑊) < 1. The 

target estimand is the conditional sample mean under policy 𝜔, which can be expressed as 

𝜓𝑐 =
1

𝑛
∑ 𝐸[∑ 𝑌𝑖(𝑎, 𝑎𝑠) Pr∗(𝐴𝑖 = 𝑎, 𝐴𝑖

𝑠 = 𝑎𝑠|𝑊𝑖 , 𝑊𝑖
𝑠)𝑎∈𝒜,𝑎𝑠∈𝒜𝑠 |𝑾]𝑛

𝑖=1  where 𝑾 = (𝑊1, 𝑊2, . . . , 𝑊𝑛).150 



 

32 

Network-TMLE was implemented via the following procedure consisting of five steps. 

First an outcome model for 𝐸[𝑌𝑖|𝑉𝑖, 𝑉𝑖
𝑠, 𝑊𝑖, 𝑊𝑖

𝑠] is estimated by treating observations as if they 

were IID. From the estimated outcome model, predicted outcomes under the observed 𝑉𝑖 and 

𝑉𝑖
𝑠 for each unit are calculated, indicated by �̂�𝑖.  

Second, the weights can be expressed as 

Pr∗(𝑉𝑖|𝑊𝑖, 𝑊𝑖
𝑠; 𝛾∗) Pr∗(𝑉𝑖

𝑠|𝑉𝑖, 𝑊𝑖, 𝑊𝑖
𝑠, 𝛿∗)

Pr(𝑉𝑖|𝑊𝑖 , 𝑊𝑖
𝑠; 𝛾) Pr(𝑉𝑖

𝑠|𝑉𝑖, 𝑊𝑖, 𝑊𝑖
𝑠; 𝛿)

 

where 𝛾, 𝛿, 𝛾∗, and 𝛿∗ denote the parameters for the model for Pr(𝑉𝑖|𝑊𝑖, 𝑊𝑖
𝑠),  Pr(𝑉𝑖

𝑠|𝑉𝑖, 𝑊𝑖, 𝑊𝑖
𝑠), 

Pr∗(𝑉𝑖|𝑊𝑖 , 𝑊𝑖
𝑠), and Pr∗(𝑉𝑖

𝑠|𝑉𝑖, 𝑊𝑖, 𝑊𝑖
𝑠), respectively. The model for Pr(𝑉𝑖|𝑊𝑖, 𝑊𝑖

𝑠) can be 

estimated with a logistic regression model treating observations as IID. Different models may be 

assumed for estimating Pr(𝑉𝑖
𝑠|𝑉𝑖, 𝑊𝑖, 𝑊𝑖

𝑠). For example, if 𝑉𝑖
𝑠 is a binary variable indicating 

whether at least one of individual 𝑖’s immediate contacts is exposed, then logistic regression 

might be used. If 𝑉𝑖
𝑠 is instead a count variable (e.g., indicating the number of immediate 

contacts exposed), then Poisson or negative binomial regression models might be assumed. 

Alternatively, restrictions on the functional form of 𝑉𝑖
𝑠 may be avoided by letting 𝑉𝑖

𝑠 equal the 

vector of exposures for individual 𝑖’s immediate contacts. If the maximum number of contacts is 

𝑏, then Pr(𝑉𝑖
𝑠|𝐴𝑖 , 𝑊𝑖, 𝑊𝑖

𝑠) can be factored into 𝑏 different binary conditional probabilities (i.e. 

Pr (𝑉𝑖
𝑠(1)

|𝑉𝑖, 𝑊𝑖, 𝑊𝑖
𝑠) × Pr (𝑉𝑖

𝑠(2)
|𝑉𝑖, 𝑉𝑖

𝑠(1)
, 𝑊𝑖, 𝑊𝑖

𝑠) × ⋯ × Pr (𝑉𝑖
𝑠(𝑏)

|𝑉𝑖, 𝑉𝑖
𝑠(1)

, … , 𝑉𝑖
𝑠(𝑏−1)

, 𝑊𝑖, 𝑊𝑖
𝑠)), 

where 𝑉𝑖
𝑠(𝑏)

 indicates the exposure of contact 𝑏.151 These conditional probabilities can then be 

estimated via logistic regression. To estimate the numerator, the following simulation procedure 

is used. A large number of copies of the data set indexed by 𝑘 are generated. Next, the policy is 

applied to each 𝑘 to generate 𝑉𝑖𝑘
∗  and 𝑉𝑖𝑘

𝑠∗. Then the parameters 𝛾∗ and 𝛿∗ are estimated by 

using the approach as the denominator, but using all copies of the data simultaneously. Then 

Pr∗(𝑉𝑖|𝑊𝑖 , 𝑊𝑖
𝑠; 𝛾∗) and Pr∗(𝑉𝑖

𝑠|𝑉𝑖, 𝑊𝑖, 𝑊𝑖
𝑠, 𝛿∗) are estimated using 𝛾∗̂, 𝛿 ∗̂, and the observed values 

of 𝑉𝑖 and 𝑉𝑖
𝑠. 
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For the third step, the following logistic regression model is estimated via weighted 

maximum likelihood 

logit(𝑌𝑖) = 𝜂0 + logit(�̂�𝑖) 

 Fourth, the following procedure is used to estimate 𝜓 for stochastic policies. The 

exposure under the policy, 𝑉𝑖
∗, and the previously estimated outcome model are used to 

estimate the outcomes under the policy, �̂�𝑖
∗. The predicted �̂�𝑖

∗ is then updated via 

�̃�𝑖
∗ = expit (𝜂0̂ + logit(�̂�𝑖

∗)) 

Finally, �̂� can be estimated as the mean of �̃�∗. However, the estimated 𝜓 only corresponds to a 

single draw of 𝑉∗ from the policy. To account for the uncertainty in 𝑉𝑖
∗ for stochastic policies, the 

following Monte Carlo procedure is used. Generate 𝑘 = 1, … , 𝑚 different draws of 𝑉𝑖𝑘
∗ , where 𝑉𝑖𝑘

∗  

denotes a single draw from Bernoulli(Pr∗(𝑉𝑖 = 1|𝑊𝑖, 𝑊𝑖
𝑠)). Calculate the new summary measure 

𝑉𝑖𝑘
𝑠∗ using 𝑉𝑖𝑘

∗  and 𝒢. Estimate �̂�𝑖𝑘
∗  and �̃�𝑖𝑘

∗  with 𝑉𝑖𝑘
∗  and 𝑉𝑖𝑘

𝑠∗. The mean of the targeted predictions, 

�̂�𝑘 = ∑ �̃�𝑖𝑘
∗ /𝑛𝑛

𝑖=1  is calculated for each 𝑘. The estimator for 𝜓 is the mean of the 𝑚 estimates, 

i.e., �̂� = ∑ �̂�𝑘/𝑚𝑚
𝑘=1 . To reduce computational burden, 𝑉𝑖𝑘

∗  and 𝑉𝑖𝑘
𝑠∗ generated during the 

estimation of the weights’ numerator are reused. 

Lastly, (1 − 𝛼) CI can be constructed by �̂� ± 𝑍1−𝛼√�̂�2 𝑛⁄ , where 𝑍1−𝛼/2 denotes the 𝑍 

score for 1 − 𝛼/2 entry. For the conditional sample mean, the variance is estimated by 

�̂�2 =
1

𝑛
∑ (

Pr∗(𝑉𝑖|𝑊𝑖)

Pr(𝑉𝑖|𝑊𝑖)
(𝑌𝑖 − �̂�𝑖))

2𝑛

𝑖=1

 

3.6.3 Implementation Validation 

 We conducted validation simulation studies for the implementation of network-TMLE. 

The validation simulations demonstrate our implementation producing expected results where 

TMLE for dependent data has been previously shown or in simple extensions. 

The network for these simulations was a static network of 𝑛 nodes with a uniform degree 

distribution with a maximum degree of two. Our simulations focus on the conditional sample 
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mean, so both the network and distribution of 𝑾 were held constant. Simulations were 

conducted for sample sizes of 500 and 1000. Distributions of 𝑉 and 𝑌 were generated 2000 

times and network-TMLE was estimated within each simulated data set. We compared the four 

different possibilities of model specification: 𝑚 and 𝜋 correctly specified, only 𝑚 correctly 

specified, only 𝜋 correctly specified, and both 𝑚 and 𝜋 incorrect. Policies consisted of setting all 

individuals in the population to a single probability of 𝑉 (i.e., Pr(𝑉𝑖 = 1|𝑊𝑖, 𝑊𝑖
𝑠) = Pr(𝑉 = 1) = 𝑝). 

As a starting point, we re-created the simulations results reported in Sofrygin and van 

der Laan.151 The data generating mechanism from Sofrygin and van der Laan was 

Pr(𝑊𝑖 = 1) = 0.35 

Pr(𝑉𝑖 = 1|𝑊𝑖, 𝑊𝑖
𝑠) = expit (−1.2 + 1.5𝑊𝑖 + 0.6 ∑ 𝑊𝑗𝒢𝑖𝑗

𝑛

𝑗=1

) 

Pr(𝑌𝑖 = 1|𝑉𝑖, 𝑉𝑖
𝑠, 𝑊𝑖 , 𝑊𝑖

𝑠) = expit (−2.5 + 1.5𝑊𝑖 + 0.5𝑉𝑖 + 1.5 ∑ 𝑊𝑗𝒢𝑖𝑗

𝑛

𝑗=1

+ 1.5 ∑ 𝑉𝑗𝒢𝑖𝑗

𝑛

𝑗=1

) 

We then modified the data generating mechanism to only consist of a unit-treatment effect 

Pr(𝑊𝑖 = 1) = 0.35 

Pr(𝑉𝑖 = 1|𝑊𝑖, 𝑊𝑖
𝑠) = expit (−0.6 − 0.9𝑊𝑖 + 0.8 ∑ 𝑊𝑗𝒢𝑖𝑗

𝑛

𝑗=1

) 

Pr(𝑌𝑖 = 1|𝑉𝑖, 𝑊𝑖 , 𝑊𝑖
𝑠) = expit (−1.75 + 1.5𝑊𝑖 + 1.75𝑉𝑖 + 1.5 ∑ 𝑊𝑗𝒢𝑖𝑗

𝑛

𝑗=1

) 

Next, we designed a scenario with only a spillover effect. 

Pr(𝑊𝑖 = 1) = 0.35 

Pr(𝑉𝑖 = 1|𝑊𝑖, 𝑊𝑖
𝑠) = expit (−0.6 − 0.9𝑊𝑖 + 0.8 ∑ 𝑊𝑗𝒢𝑖𝑗

𝑛

𝑗=1

) 
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Pr(𝑌𝑖 = 1|𝑉𝑖
𝑠, 𝑊𝑖 , 𝑊𝑖

𝑠) = expit (−1.75 + 1.5𝑊𝑖 + 1.5 ∑ 𝑊𝑗𝒢𝑖𝑗

𝑛

𝑗=1

− 1.5 ∑ 𝑉𝑗𝒢𝑖𝑗

𝑛

𝑗=1

) 

Lastly, we created a modification that included a continuous 𝑌 

Pr(𝑊𝑖 = 1) = 0.35 

Pr(𝐴𝑖 = 1|𝑊𝑖, 𝑊𝑖
𝑠) = expit (−1.2 + 1.5𝑊𝑖 + 0.4 ∑ 𝑊𝑗𝒢𝑖𝑗

𝑛

𝑗=1

) 

𝑌𝑖 = 20 − 5𝑊𝑖 + 5𝐴𝑖 + 1.5 ∑ 𝑊𝑗𝒢𝑖𝑗

𝑛

𝑗=1

+ 1.5 ∑ 𝐴𝑗𝒢𝑖𝑗

𝑛

𝑗=1

+ 𝜖𝑖 

where 𝜖𝑖~Normal(0,1). 

3.6.4 Data-Generating Mechanisms 

 To assess the finite sample performance of network-TMLE outside of the implementation 

validation and contrast with IID-TMLE, a Monte Carlo simulation study was conducted. 

Comparisons were made using three networks with four different data-generating mechanisms, 

for a total of 12 scenarios.  

Three different networks were used: a uniform random graph, a modified clustered 

power-law random graph, and the eX-FLU network154 of self-reported contacts among 

undergraduate students. The uniform random graph followed a uniform degree distribution with 

a minimum degree of 1 and a maximum of 6. The modified clustered power-law random graph 

consisted of eight separately generated clustered power-law random subgraphs, with edges 

randomly generated between the random subgraphs. Each of the eight clustered power-law 

subgraphs was separately generated from a Barabasi-Albert random graph model with a set 

probability for closing triads between nodes.206 For each node, three connections were 

generated and the probability of triad closure was set to 0.75. Lastly, the eX-FLU network was 

based on data from the eX-FLU cluster-randomized trial, a study to assess the efficacy of three-

day self-isolation among university students.154 Over the ten-week study period, enrolled 
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students reported face-to-face contacts each week. From the ten weeks of self-reported 

contacts, we generated a single static network and selected the largest connected component.  

3.6.4.1 Statin and Cardiovascular Disease 

First, statins on the risk of atherosclerotic cardiovascular disease (ASCVD) stood in for a 

setting with no interference, since the mechanism of action may reasonably allow researchers to 

believe that whether an individual’s friends take a statin does not influence person 𝑖’s risk of 

ASCVD. Let 𝑊1,𝑖 indicate age, 𝑊2,𝑖 indicate log-transformed low-density lipoprotein, 𝑈1,𝑖 indicate 

diabetes, 𝑈2,𝑖 indicate frailty, and 𝑊5,𝑖 indicate the calculated risk score for cardiovascular 

disease. These variables were generated from the following distributions. 

𝑊1,𝑖 = Uniform(40, 60) 

𝑊2,𝑖 = 0.005𝑊1,𝑖 + Normal(log(100) , 0.18) 

logit(Pr(𝑈1,𝑖| 𝑊1,𝑖𝑊2,𝑖)) = −4.23 +  0.03𝑊2,𝑖 − 0.02𝑊1,𝑖 + 0.0009𝑊1,𝑖𝑊1,𝑖 

logit(𝑈2,𝑖) = −5.5 + 0.05(𝑋𝑖 − 20) + 0.001𝑋𝑖𝑋𝑖 + Normal(0,1) 

logit(𝑅𝑖) = 4.299 + 3.501𝑈1,𝑖 − 2.07 log(𝑊1,𝑖) + 0.051 log(𝑊1,𝑖)
2

+ 4.090𝑊2,𝑖 − 1.04 log(𝑊1,𝑖) 𝑊2,𝑖

+ 0.01𝑈2,𝑖 

These variables were generated once for each individual in each network and held constant 

across simulations. Statin prescription (indicated by 𝑉𝑖) was generated following 

logit(Pr(𝑉𝑖 = 1|𝑊1,𝑖, 𝑊2,𝑖, 𝑊5,𝑖))

= −5.3 + 0.2 𝑊2,𝑖 + 0.15(𝑊1,𝑖 − 30) + 0.4 𝐼(0.05 ≤ 𝑊5,𝑖 < 0.075)

+ 0.9 𝐼(0.075 ≤ 𝑊5,𝑖 < 0.2) + 1.5 𝐼(𝑊5,𝑖 ≥ 0.2) 

Cardiovascular disease (indicated by 𝑌𝑖) was generated following 

Pr(𝑌𝑖 = 1|𝑉𝑖, 𝑊1,𝑖, 𝑊2,𝑖, 𝑊5,𝑖) = expit(−5.05 − 0.8𝑉𝑖 + 0.37 √𝑊1,𝑖 − 39.9 + 0.75 𝑊2,𝑖 + 0.75 𝑊5,𝑖) 
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3.6.4.2 Naloxone and Opioid Overdose Deaths 

For spillover effect only, a data generating mechanism based on the effect of the nasal 

spray formulation of naloxone on subsequent opioid overdose deaths was created, since nasal 

spray formulations rely on another person for administration, with self-administration having 

occurred only in rare cases.207 Let 𝑊6,𝑖 indicate gender, 𝑊7,𝑖 indicate recent release from prison, 

and 𝑊8,𝑖 recent overdose before study baseline. These variables were generated via the 

following 

Pr(𝑊6,𝑖 = 1) = 0.35 

logit(Pr(𝑊7,𝑖 = 1|𝑊6,𝑖
𝑠 )) = −1.1 + 0.5𝑊6,𝑖 + 0.1

∑ 𝑊6,𝑗𝒢𝑖𝑗
𝑛
𝑗=1

∑ 𝒢𝑖𝑗
𝑛
𝑗=1

 

logit(Pr(𝑊8,𝑖 = 1|𝑊6,𝑖, 𝑊7,𝑖, 𝑊6,𝑖
𝑠 )) = −1.7 + 0.1𝑊6,𝑖 + 0.1

∑ 𝑊6,𝑗𝒢𝑖𝑗
𝑛
𝑗=1

∑ 𝒢𝑖𝑗
𝑛
𝑗=1

+ 0.6𝑊7,𝑖 

These variables were generated once for each individual in each network and held constant 

across simulations. Naloxone training and access (indicated by 𝑉𝑖) was generated following 

logit(Pr(𝑉𝑖 = 1|𝑊6,𝑖, 𝑊7,𝑖, 𝑊6,𝑖
𝑠 , 𝑊8,𝑖

𝑠 ))

= −1.3 − 1.5 𝑊7,𝑖 + 1.5 𝑊7,𝑖𝑊6,𝑖 + 0.95 
∑ 𝐼(𝑊6,𝑗 = 1)𝒢𝑖𝑗

𝑛
𝑗=1

∑ 𝒢𝑖𝑗
𝑛
𝑗=1

+ 0.95
∑ 𝐼(𝑊8,𝑗 = 1)𝒢𝑖𝑗

𝑛
𝑗=1

∑ 𝒢𝑖𝑗
𝑛
𝑗=1

 

Probability of opioid overdose was generated following 

logit(Pr(𝑌𝑖 = 1|𝑉𝑖
𝑠, 𝑊6,𝑖, 𝑊7,𝑖, 𝑊6,𝑖

𝑠 , 𝑊8,𝑖
𝑠 ))

= −1.1 − 0.2 ∑ 𝐼(𝑉𝑗 = 1)𝒢𝑖𝑗

𝑛

𝑗=1

+ 1.7 𝑊7,𝑖 − 0.9 𝑊6,𝑖 + 0.75 
∑ 𝐼(𝑊8,𝑗 = 1)𝒢𝑖𝑗

𝑛
𝑗=1

∑ 𝒢𝑖𝑗
𝑛
𝑗=1

− 0.75
∑ 𝐼(𝑊6,𝑗 = 1)𝒢𝑖𝑗

𝑛
𝑗=1

∑ 𝒢𝑖𝑗
𝑛
𝑗=1
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3.6.4.3 Comprehensive Dietary Intervention and Body Mass Index 

For simultaneous unit-treatment and spillover effects, a data generating mechanism 

based on a comprehensive dietary intervention on body mass index (BMI) was created, since 

previous work has also found that BMI to be socially clustered,208, 209 with the transmission of 

obesity theorized to result from social pressures or the shared environments of social 

contacts.209 Let 𝑊6,𝑖 indicate gender, 𝑊9,𝑖 indicate body mass index (BMI) at baseline, and 𝑊10,𝑖 

indicate recent exercise at baseline. These variables were generated from the following 

distributions. 

Pr(𝑊6,𝑖 = 1) = 0.5 

𝑊9,𝑖 = LogNormal(3.4, 0.2) 

logit(Pr(𝑊10,𝑖 = 1)) = −0.25 

These variables were generated once for each individual in each network and held 

constant across simulations. Comprehensive dietary reform including caloric restriction and 

increased food quality (indicated by 𝑉𝑖) was generated following 

logit(Pr(𝑉𝑖 = 1|𝑊6,𝑖 , 𝑊9,𝑖, 𝑊10,𝑖, 𝑊10,𝑖
𝑠 ))

= −0.5 + 0.05(𝑊9,𝑖 − 30) + 0.25𝑊6,𝑖𝑊10,𝑖 + 0.05
∑ 𝐼(𝑊10,𝑗 = 1)𝒢𝑖𝑗

𝑛
𝑗=1

∑ 𝒢𝑖𝑗
𝑛
𝑗=1

 

BMI at end of the follow-up period depended on the following model 

𝑌𝑖 = 3 + 𝑊9,𝑖 − 5𝑉𝑖 − 5 𝐼 (3 < ∑ 𝐼(𝑉𝑗 = 1)𝒢𝑖𝑗

𝑛

𝑗=1

) + 3𝑊6,𝑖 − 3𝑊10,𝑖 − 0.5 ∑ 𝐼(𝑊10,𝑗 = 1)𝒢𝑖𝑗

𝑛

𝑗=1

+
∑ 𝒢𝑖𝑗(𝑊9,𝑗 − 𝑊9,𝑖)𝑛

𝑗=1

∑ 𝒢𝑖𝑗
𝑛
𝑗=1

+ 𝜖𝑖 

where 𝜖𝑖~Normal(0,1). 
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3.6.4.4 Vaccination and Infection 

Lastly, a vaccine and infection mechanism was implemented via a Susceptible-Infected-

Recovered (SIR) model, with this simulation mechanism corresponds to a simple model of 

human-to-human transmission. Let 𝑊11,𝑖 indicate asthma at baseline, and 𝑊12,𝑖 indicate hand 

hygiene. These variables were generated from the following distributions. 

Pr(𝑊11,𝑖) = 0.15 

logit(Pr(𝑊12,𝑖 = 1|𝑊11,𝑖)) = −0.15 + 0.1𝑊11,𝑖 

These variables were generated once for each individual in each network and held 

constant across simulations. Vaccination status (indicated by 𝑉𝑖) was generated following 

logit(Pr(𝑉𝑖 = 1|𝑊11,𝑖, 𝑊12,𝑖, 𝑊12,𝑖
𝑠 )) = −1.9 + 1.75𝑊11,𝑖 + 0.95𝑊12,𝑖 + 1.2

∑ 𝐼(𝑊12,𝑗 = 1)𝒢𝑖𝑗
𝑛
𝑗=1

∑ 𝒢𝑖𝑗
𝑛
𝑗=1

 

Individuals transitioned between three states: susceptible, infected, and recovered. Seven 

individuals were randomly chosen to be the initial infections. Individuals in the infected state 

were actively infectious for a period of five discrete time-steps after moving from the susceptible 

state. After the period of five discrete time-steps, individuals transitioned to the recovered state 

and were no longer infectious nor capable of being infected by contacts. All transmission events 

occurred over a period of ten time-steps. The probability of individual 𝑖 becoming infected (𝐼𝑖,𝑡) 

at each discrete time-point by individual 𝑗 was based on the following model 

logit(Pr(𝐼𝑖,𝑡 = 1|𝑍𝑗,𝑡 = 1, 𝒢𝑖𝑗 = 1, 𝑉𝑖, 𝑉𝑗, 𝑊11,𝑖, 𝑊12,𝑖)) = −2.4 − 1.5𝑉𝑖 − 0.4𝑉𝑗 + 1.5𝑊11,𝑖 − 0.4𝑊12,𝑖 

where 𝑍𝑗,𝑡 = 1 indicates whether 𝑗 was in the infectious category at time 𝑡. Probabilities of 

becoming infected were assessed separately for each infected contact. Infected individuals 

were actively infectious for five discrete time-steps and the transmission process continued for a 

total of 20 discrete time-steps. 
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Aim 3: Estimate the risk of influenza under competing influenza vaccination policies.  

 In the following subsection, let 𝑉 indicate influenza vaccination status, 𝑌 indicate 

influenza infection, 𝑇 indicate trial arm for the cluster-randomized study, 𝐺 indicate gender, 𝐶 

indicate class year, 𝑅 indicate race, 𝐷 indicate high risk, 𝑆 indicate stress, 𝐻 indicate optimal 

hand hygiene, 𝐴 indicate alcohol use, 𝑄 indicate sleep quality, 𝑃 indicate parental education, 

and 𝐵 indicate the dorm. Additionally, let 𝐹 indicate degree, where degree is the number of 

unique contacts, and 𝒢 indicate the self-reported contact network at week one. 

3.6.5 Policies 

Previous work on influenza vaccination receipt among university students has focused 

on common misconceptions regarding the vaccine,94, 95, 98, 100, 116, 120 the convenience of 

receipt,94, 95, 98 and financial barriers.94, 95 Therefore, we consider potential policies to address 

these reasons. Policy 1 consisted of a theoretical educational intervention to emphasize the 

benefits of the vaccine and dispelling common myths. Targeted students included those who 

reported at least one of the following: the influenza vaccine can cause the flu, that they do not 

get the flu, or that they did not know if they could receive the influenza vaccine. Policy 2 

addressed non-financial barriers by targeting students who reported at least one of the following 

reasons for not receiving the influenza vaccine: did not get around to receiving the influenza 

vaccine, did not have transportation to go receive the vaccine, or the hours when the vaccine 

was available did not fit their schedule. Policy 3 addressed financial barriers and targeted 

students who reported that their health plan did not cover the vaccine or they did not have 

health insurance. Students who reported being allergic to the influenza vaccine were never 

vaccinated under any of the policies. 

 Since the effectiveness of the preceding policies in increasing vaccination is unknown 

and depends on how it is implemented, stochastic policies are considered instead. Individuals 

targeted by the policy had their log-odds of receiving the influenza vaccine increased. The 

following model was used to estimate the log-odds of vaccination 
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Pr(𝑉𝑖; 𝜌) = expit (𝜌0 + 𝜌1𝐺𝑖 + 𝜌2𝐼(𝑅𝑖 = 1) + 𝜌3𝐼(𝑅𝑖 = 2) + 𝜌4𝐷𝑖 + 𝜌5𝑆𝑖 + 𝜌6𝐻𝑖 + 𝜌7𝐴𝑖 + 𝜌8𝑄𝑖

+ 𝜌9 ∑ 𝑇𝑗𝒢𝑖𝑗

𝑗

+ 𝜌10 ∑ 𝐺𝑗𝒢𝑖𝑗

𝑗

+ 𝜌11 ∑ 𝐷𝑗𝒢𝑖𝑗

𝑗

+ 𝜌12 ∑ 𝐻𝑗𝒢𝑖𝑗

𝑗

+ 𝜌13 ∑ 𝐴𝑗𝒢𝑖𝑗

𝑗

+ 𝜌14

∑ (𝑆𝑖 − 𝑆𝑗)
2

𝒢𝑖𝑗𝑗

𝐹𝑖 − 1
+ 𝜌15 ∑ 𝐼(𝑅𝑗 = 1)𝒢𝑖𝑗

𝑗

+ 𝜌16 ∑ 𝐼(𝑅𝑗 = 2)𝒢𝑖𝑗

𝑗

+ 𝜌17𝐹𝑖 + 𝜌18𝐺𝑖𝐷𝑖

+ 𝜌19𝐴𝑖𝑄𝑖 + 𝜌20𝐼(𝐶𝑖 = 1) + 𝜌21𝐼(𝐶𝑖 = 2) + 𝜌22𝐼(𝐶𝑖 = 3) + 𝜌23𝐼(𝐶𝑖 = 4) + 𝜌24𝑃𝑖) 

To allow for further flexibility in the model, each individual’s log-odds of vaccination to be shifted 

under each policy was determined using 20-fold cross-validated super learner.210 Super learner 

is a generalized stacking algorithm that allows for the combination of multiple predictive 

algorithms into a single prediction function, with asymptotic performance equivalent to the best 

performing algorithm included.211 The super-learner implementation consisted of logistic 

regression, logistic generalized additive model (GAM),192, 212 a single-layer eight-node neural-

network,191, 213 and a random forest classifier.191, 214 The logistic GAM was further varied by 

smoothing parameters of 0.5, 0.75, 1.0, 1.5, and 2.0. Shifts in the log-odds for students targeted 

by the policy were varied from 𝜛 = {0, 0.25, 0.5, … ,2.75, 3}. Students not targeted by the policy 

also had an increased log-odds of receiving the vaccine to reflect their potential benefit from the 

policy. However, their log-odds were only increased by a third of targeted students (i.e., 𝜛/3).  

3.6.6 Network-TMLE 

To estimate the risk of influenza for each shift in the log-odds of vaccination under each 

of the policy variations, network-TMLE was used.150-152 Network-TMLE was implemented via the 

following five steps. 
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Step 1: Outcome nuisance model: A logistic model for Pr(𝑌𝑖|𝑉𝑖, 𝑉𝑖
𝑠, 𝑊𝑖, 𝑊𝑖

𝑠) was estimated 

handling each observation as if it were IID. The following model was estimated for the 

probability of influenza 

Pr(𝑌𝑖; 𝛽) = expit (𝛽0 + 𝛽1𝑉𝑖 + 𝛽2 ∑ 𝑉𝑗𝒢𝑖𝑗

𝑗

+ 𝛽3𝑉𝑖 ∑ 𝑉𝑗𝒢𝑖𝑗

𝑗

+ 𝛽4𝐺𝑖 + 𝛽5𝐷𝑖 + 𝛽6𝐻𝑖 + 𝛽7𝑆𝑖 + 𝛽8𝑄𝑖

+ 𝛽9𝐴𝑖 + 𝛽10𝐼(𝑅𝑖 = 1) + 𝛽11𝐼(𝑅𝑖 = 2) + 𝛽12 ∑ 𝑇𝑗𝒢𝑖𝑗

𝑗

+ 𝛽13 ∑ 𝐺𝑗𝒢𝑖𝑗

𝑗

+ 𝛽14 ∑ 𝐷𝑗𝒢𝑖𝑗

𝑗

+ 𝛽15 ∑ 𝐻𝑗𝒢𝑖𝑗

𝑗

+ 𝛽16 ∑ 𝐴𝑗𝒢𝑖𝑗

𝑗

+ 𝛽17 ∑ 𝐼(𝑅𝑗 = 1)𝒢𝑖𝑗

𝑗

+ 𝛽18 ∑ 𝐼(𝑅𝑖 = 2)𝒢𝑖𝑗

𝑗

+ 𝛽19𝐹𝑖

+ 𝛽20𝐺𝑖𝐴𝑖 + 𝛽21𝑉𝑖𝐴𝑖) 

To allow for further flexibility, super learner was used.210, 211 To estimate the probability of 

influenza, a 20-fold super learner consisted of logistic regression, elastic-net regularized logistic 

regression,215 and logistic GAM.212 Two variations of elastic-net were included, with L1-L2 ratios 

of 0.25 and 0.75. Variations on the included logistic GAM with smoothing parameters of 0.5, 

0.75, 1.0, 1.5, and 2.0. 

Step 2: Exposure nuisance model: The weights can be written as 

Pr∗(𝑉𝑖|𝑊𝑖 , 𝑊𝑖
𝑠; 𝛾∗) Pr∗(𝑉𝑖

𝑠|𝐴𝑖, 𝑊𝑖 , 𝑊𝑖
𝑠, 𝛿∗)

Pr(𝑉𝑖|𝑊𝑖, 𝑊𝑖
𝑠; 𝛾) Pr(𝑉𝑖

𝑠|𝐴𝑖 , 𝑊𝑖, 𝑊𝑖
𝑠; 𝛿)

 

where 𝛾, 𝛿, 𝛾∗, and 𝛿∗ denote the parameters for the model for Pr(𝐴𝑖|𝑊𝑖, 𝑊𝑖
𝑠),  Pr(𝐴𝑖

𝑠|𝐴𝑖, 𝑊𝑖 , 𝑊𝑖
𝑠), 

Pr∗(𝐴𝑖|𝑊𝑖, 𝑊𝑖
𝑠), and Pr∗(𝐴𝑖

𝑠|𝐴𝑖, 𝑊𝑖, 𝑊𝑖
𝑠), respectively. A logistic model for Pr(𝑉𝑖|𝑊𝑖 , 𝑊𝑖

𝑠) was 

estimated treating observations as IID. Since the summary measure 𝑉𝑖
𝑠 = ∑ 𝐼(𝒢𝑖𝑗 = 1)𝑉𝑗𝑗  was 

chosen for immediate contacts’ vaccination, a Poisson for Pr(𝑉𝑖
𝑠|𝑉𝑖, 𝑊𝑖, 𝑊𝑖

𝑠) was estimated. The 

models were 
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Pr(𝑉𝑖; 𝛾) = expit (𝛾0 + 𝛾1𝐺𝑖 + 𝛾2𝐼(𝑅𝑖 = 1) + 𝛾3𝐼(𝑅𝑖 = 2) + 𝛾4𝐷𝑖 + 𝛾5𝑆𝑖 + 𝛾6𝐻𝑖 + 𝛾7𝐴𝑖 + 𝛾8𝑄𝑖

+ 𝛾9 ∑ 𝑇𝑗𝒢𝑖𝑗

𝑗

+ 𝛾10 ∑ 𝐺𝑗𝒢𝑖𝑗

𝑗

+ 𝛾11 ∑ 𝐷𝑗𝒢𝑖𝑗

𝑗

+ 𝛾12 ∑ 𝐻𝑗𝒢𝑖𝑗

𝑗

+ 𝛾13 ∑ 𝐴𝑗𝒢𝑖𝑗

𝑗

+ 𝛾14

∑ (𝑆𝑖 − 𝑆𝑗)
2

𝒢𝑖𝑗𝑗

𝐹𝑖 − 1
+ 𝛾15 ∑ 𝐼(𝑅𝑗 = 1)𝒢𝑖𝑗

𝑗

+ 𝛾16 ∑ 𝐼(𝑅𝑗 = 2)𝒢𝑖𝑗

𝑗

+ 𝛾17𝐺𝑖𝐴𝑖

+ 𝛾18𝑉𝑖𝐴𝑖) 

and  

log(𝐸[𝑉𝑖
𝑠|𝛿]) = 𝛿0 + 𝛿1𝑉𝑖 + 𝛿2𝐺𝑖 + 𝛿3𝐼(𝑅𝑖 = 1) + 𝛿4𝐼(𝑅𝑖 = 2) + 𝛿5𝐷𝑖 + 𝛿6𝑆𝑖 + 𝛿7𝐻𝑖 + 𝛿8𝐴𝑖 + 𝛿9𝑄𝑖

+ 𝛿10 ∑ 𝑇𝑗𝒢𝑖𝑗

𝑗

+ 𝛿11 ∑ 𝐺𝑗𝒢𝑖𝑗

𝑗

+ 𝛿12 ∑ 𝐷𝑗𝒢𝑖𝑗

𝑗

+ 𝛿13 ∑ 𝐻𝑗𝒢𝑖𝑗

𝑗

+ 𝛿14 ∑ 𝐴𝑗𝒢𝑖𝑗

𝑗

+ 𝛿15

∑ (𝑆𝑖 − 𝑆𝑗)
2

𝒢𝑖𝑗𝑗

𝐹𝑖 − 1
+ 𝛿16 ∑ 𝐼(𝑅𝑗 = 1)𝒢𝑖𝑗

𝑗

+ 𝛿17 ∑ 𝐼(𝑅𝑗 = 2)𝒢𝑖𝑗

𝑗

+ 𝛿18𝐺𝑖𝐴𝑖

+ 𝛿19𝑉𝑖𝐴𝑖 

To allow for flexibility in these models, super learner was similarly used. For Pr(𝑉𝑖; 𝛾), a 20-fold 

super learner consisted of logistic regression, elastic-net regularized logistic regression,215 and 

logistic GAM.212 Two variations of elastic-net were included, with L1-L2 ratios of 0.25 and 0.75. 

Variations on the included logistic GAM with smoothing parameters of 0.5, 0.75, 1.0, 1.5, and 

2.0. For log(𝐸[𝑉𝑖
𝑠|𝛿]), 20-fold super learner included Poisson regression and Poisson GAM with 

the following smoothing parameters: 0.5, 0.75, 1.0, 1.5, and 2.0.  

 Estimation of the numerator relies on a simulation approach due to the difficulty in 

specifying Pr∗(𝑉𝑖|𝑊𝑖 , 𝑊𝑖
𝑠; 𝛾∗)  and Pr∗(𝑉𝑖

𝑠|𝑉𝑖, 𝑊𝑖, 𝑊𝑖
𝑠, 𝛿∗) directly. First, 100 copies of the data set 

indexed by 𝑘 are generated. Next, the policy 𝜔 is applied to each 𝑘 to generate 𝑉𝑖𝑘
∗  and 𝑉𝑖𝑘

𝑠∗. 

Then 𝛾∗ and 𝛿∗ are estimated by using the same models as above, but are instead fit to all 
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copies of the data with 𝜔 applied simultaneously. Then Pr∗(𝑉𝑖|𝑊𝑖, 𝑊𝑖
𝑠; 𝛾∗) and 

Pr∗(𝑉𝑖
𝑠|𝑉𝑖, 𝑊𝑖 , 𝑊𝑖

𝑠, 𝛿∗) are estimated using 𝛾∗̂, 𝛿 ∗̂, and the observed values of 𝑉𝑖 and 𝑉𝑖
𝑠. 

Step 3: Targeting: The outcome model and weights are then used to estimate the 

following model 

logit(𝑌𝑖) = 𝜂0 + logit(�̂�𝑖) 

via weighted maximum likelihood.  

Step 4: Estimation: To estimate 𝜓 for stochastic policies, network-TMLE is evaluated 

using a Monte Carlo procedure. Vaccination status under the policy (𝑉𝑖
∗) is determined for each 

individual by drawing from Bernoulli(Pr∗(𝑉𝑖 = 1|𝑊𝑖, 𝑊𝑖
𝑠)) as determined by the policy for 100 

different draws (indexed by 𝑘). From those draws, values of 𝑉𝑖𝑘
∗  and 𝑉𝑖𝑘

∗𝑠 were determined. Then 

𝑉𝑖𝑘
∗ , 𝑉𝑖𝑘

∗𝑠, and the estimated outcome model were used to estimate �̂�𝑖𝑘
∗ . The targeted predictions, 

�̃�𝑖𝑘
∗ , are estimated via 

�̃�𝑖𝑘
∗ = expit (𝜂0̂ + logit(�̂�𝑖𝑘

∗ )) 

Then 𝜓𝑘 is estimated by the mean of �̃�𝑖𝑘
∗ . Finally, the overall estimate for 𝜓 is the mean of all 𝑚 

estimates 

�̂� =
1

100
∑ �̂�𝑘

100

𝑘=1

 

To reduce computational burden, 𝑉𝑖𝑘
∗  and 𝑉𝑖𝑘

𝑠∗ generated during the estimation of the weights’ 

numerator are reused. 

Step 5: Inference: The variance for the sample risk under the policy was estimated by  

�̂�2 =
1

𝑛
∑ (

Pr∗(𝑉𝑖|𝑊𝑖 , 𝑊𝑖
𝑠; 𝛾∗̂) Pr∗(𝑉𝑖

𝑠|𝐴𝑖 , 𝑊𝑖, 𝑊𝑖
𝑠, 𝛿 ∗̂)

Pr(𝑉𝑖|𝑊𝑖, 𝑊𝑖
𝑠; 𝛾) Pr(𝑉𝑖

𝑠|𝐴𝑖 , 𝑊𝑖, 𝑊𝑖
𝑠; 𝛿)

(𝑌𝑖 − �̂�𝑖))

2
𝑛

𝑖=1

 

3.6.7 Missing Data 

To account for missing data, multiple imputation by chained equations (MICE) was used. 

Let 𝑋1, 𝑋2, … , 𝑋𝑟 indicate the 𝑟 covariates with missing data, and 𝑋1
𝑠 indicate the corresponding 
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summary measure for 𝑋1. For IID data, MICE works by first filling in the missing values via 

simple imputation.216 Then the values are updated by setting one variable back to the original 

missingness pattern, fitting a regression model with the observed data, and filling in missing 

values for that variable with predictions from the fitted model. This process is repeated for each 

variable with missing data. The procedure is repeated for many cycles. Multiple imputed data 

sets are generated by repeating this same procedure. To address missing data while 

incorporating information from the network, the following extension to MICE was used 

1. Fill-in all 𝑋 with missing data via simple imputation and calculate 𝑋𝑠. For normally-

distributed 𝑋, missing values were filled-in with the mean value of the observed values 

for that variable. For Poisson and multinomial, missing values were filled in with the 

mode. For binary variables, a weighted coin was flipped based on the overall probability 

of 𝑋.  

2. Set 𝑋1 where values were missing as missing 

3. Regress the observed values of 𝑋1 by a chosen model and set of variables 

4. Replace the missing values of 𝑋1 with predictions from the model fit in step 3. Update 𝑋1
𝑠 

based on the predictions 

5. Repeat steps 2-4 for each variable 2,3 … , 𝑟. This marks the completion of a cycle 

6. Repeat steps 2-5 for the designated number of cycles.  

The extension to MICE adds the updating of 𝑋𝑠 during steps 1 and 4. Therefore, information 

within 𝑋𝑠 can be used to better predict the missing values of 𝑋. Explicitly, the procedure allows 

the leveraging of information, like assortativity, to improve predictive models. Because 𝑋1
𝑠 can 

be included as a predictor of 𝑋1, the number of cycles was increased from the recommendation 

of 10 cycles to 50 cycles. The above procedure was used to generate 100 data sets by 

independently repeating the above process for each data set.  
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In application to the eX-FLU data, MICE was used to address missingness in gender, 

class year, race, perceived stress, optimal hand hygiene, alcohol use, sleep quality, parental 

education, and influenza vaccination. Variables were imputed in the order presented. To impute 

gender, the following model was used 

Pr(𝐺𝑖 = 1) = expit (𝛽0 + 𝛽1 ∑ 𝐺𝑗𝒢𝑖𝑗

𝑗

+ 𝛽2𝑉𝑖 + 𝛽3 ∑ 𝑉𝑗𝒢𝑖𝑗

𝑗

+ 𝛽4𝑆𝑖 + 𝛽5𝐻𝑖 + 𝛽6𝐴𝑖 + 𝛽7𝑄𝑖 + 𝛽8𝑌𝑖

+ 𝛽9𝐷𝑖 + 𝛽10𝐹𝑖) 

For class year 

logit (
Pr (𝐶𝑖 = 2)

Pr(𝐶𝑖 = 1)
) = (𝛽0,2 + 𝛽1,2𝑆𝑖 + 𝛽2,2𝐴𝑖 + 𝛽3,2𝐹𝑖) 

logit (
Pr (𝐶𝑖 = 3)

Pr(𝐶𝑖 = 1)
) = (𝛽0,3 + 𝛽1,3𝑆𝑖 + 𝛽2,3𝐴𝑖 + 𝛽3,3𝐹𝑖) 

logit (
Pr (𝐶𝑖 = 4)

Pr(𝐶𝑖 = 1)
) = (𝛽0,4 + 𝛽1,4𝑆𝑖 + 𝛽2,4𝐴𝑖 + 𝛽3,4𝐹𝑖) 

logit (
Pr (𝐶𝑖 ≥ 5)

Pr(𝐶𝑖 = 1)
) = (𝛽0,5 + 𝛽1,5𝑆𝑖 + 𝛽2,5𝐴𝑖 + 𝛽3,5𝐹𝑖) 

For race 
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logit (
Pr (𝑅𝑖 = 1)

Pr(𝑅𝑖 = 0)
)

= (𝛽0,1 + 𝛽1,1 ∑ 𝐼(𝑅𝑗 = 0)𝒢𝑖𝑗

𝑗

+ 𝛽2,1 ∑ 𝐼(𝑅𝑗 = 1)𝒢𝑖𝑗

𝑗

+ 𝛽3,1 ∑ 𝐼(𝑅𝑗 = 2)𝒢𝑖𝑗

𝑗

+ 𝛽4,1 ∑ 𝐼(𝑅𝑗 = 0)𝒢𝑖𝑗

𝑗

∑ 𝐼(𝑅𝑗 = 1)𝒢𝑖𝑗

𝑗

+ 𝛽5,1 ∑ 𝐼(𝑅𝑗 = 0)𝒢𝑖𝑗

𝑗

∑ 𝐼(𝑅𝑗 = 2)𝒢𝑖𝑗

𝑗

+ 𝛽6,1 ∑ 𝐼(𝑅𝑗 = 1)𝒢𝑖𝑗

𝑗

∑ 𝐼(𝑅𝑗 = 2)𝒢𝑖𝑗

𝑗

+ 𝛽7,1𝑉𝑖 + 𝛽8,1𝑆𝑖 + 𝛽9,1𝐻𝑖 + 𝛽10,1𝐴𝑖 + 𝛽11,1𝑄𝑖

+ 𝛽12,1𝑌𝑖) 

logit (
Pr (𝑅𝑖 = 2)

Pr(𝑅𝑖 = 0)
)

= (𝛽0,2 + 𝛽1,2 ∑ 𝐼(𝑅𝑗 = 0)𝒢𝑖𝑗

𝑗

+ 𝛽2,2 ∑ 𝐼(𝑅𝑗 = 1)𝒢𝑖𝑗

𝑗

+ 𝛽3,2 ∑ 𝐼(𝑅𝑗 = 2)𝒢𝑖𝑗

𝑗

+ 𝛽4,2 ∑ 𝐼(𝑅𝑗 = 0)𝒢𝑖𝑗

𝑗

∑ 𝐼(𝑅𝑗 = 1)𝒢𝑖𝑗

𝑗

+ 𝛽5,2 ∑ 𝐼(𝑅𝑗 = 0)𝒢𝑖𝑗

𝑗

∑ 𝐼(𝑅𝑗 = 2)𝒢𝑖𝑗

𝑗

+ 𝛽6,2 ∑ 𝐼(𝑅𝑗 = 1)𝒢𝑖𝑗

𝑗

∑ 𝐼(𝑅𝑗 = 2)𝒢𝑖𝑗

𝑗

+ 𝛽7,2𝑉𝑖 + 𝛽8,2𝑆𝑖 + 𝛽9,2𝐻𝑖 + 𝛽10,2𝐴𝑖 + 𝛽11,2𝑄𝑖

+ 𝛽12,2𝑌𝑖) 

For stress 

𝐸[𝑆𝑖] = 𝛽0 + 𝛽1𝐺𝑖 + 𝛽2 ∑ 𝐺𝑗𝒢𝑖𝑗

𝑗

+ 𝛽3 ∑
(𝑆𝑖 − 𝑆𝑗)𝒢𝑖𝑗

𝐹𝑖
𝑗

+ 𝛽4𝑌𝑖 + 𝛽5𝐶𝑖 + 𝛽6𝐼(𝑅𝑖 = 1) + 𝛽7𝐼(𝑅𝑖 = 2)

+ 𝛽8𝐷𝑖 + 𝛽9𝐹𝑖 + 𝛽10𝑃𝑖 
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For hand hygiene 

Pr(𝐻𝑖 = 1) = expit (𝛽0 + 𝛽1 ∑ 𝐻𝑗𝒢𝑖𝑗

𝑗

+ 𝛽2𝐺𝑖 + 𝛽3 ∑ 𝐺𝑗𝒢𝑖𝑗

𝑗

+ 𝛽4𝐴𝑖 + 𝛽5𝑉𝑖 + 𝛽6 ∑ 𝑉𝑗𝒢𝑖𝑗

𝑗

+ 𝛽7𝐷𝑖

+ 𝛽8 ∑ 𝐷𝑗𝒢𝑖𝑗

𝑗

+ 𝛽9𝑌𝑖) 

For alcohol use 

Pr(𝐴𝑖 = 1) = expit (𝛽0 + 𝛽1 ∑ 𝐴𝑗𝒢𝑖𝑗

𝑗

+ 𝛽2𝐻𝑖 + 𝛽3 ∑ 𝐻𝑗𝒢𝑖𝑗

𝑗

+ 𝛽4𝑉𝑖 + 𝛽5 ∑ 𝑉𝑗𝒢𝑖𝑗

𝑗

+ 𝛽6𝐶𝑖

+ 𝛽7𝐼(𝑅𝑖 = 1) + 𝛽8𝐼(𝑅1 = 2) + 𝛽9𝑌𝑖 + 𝛽9𝑃𝑖 + 𝛽10𝐹𝑖) 

For sleep quality 

Pr(𝑄𝑖 = 1) = expit (𝛽0 + 𝛽1 ∑ 𝑄𝑗𝒢𝑖𝑗

𝑗

+ 𝛽2𝑆𝑖 + 𝛽3𝐶𝑖 + 𝛽4𝐴𝑖 + 𝛽5𝑉𝑖 + 𝛽6 ∑ 𝐴𝑗𝒢𝑖𝑗

𝑗

+ 𝛽7 ∑ 𝑉𝑗𝒢𝑖𝑗

𝑗

+ 𝛽8𝐼(𝑅𝑖 = 1) + 𝛽9𝐼(𝑅𝑖 = 2)) 

For parental education 

Pr (𝑃𝑖 = 1) = expit (𝛽0 + 𝛽1𝐶𝑖 + 𝛽2𝐼(𝑅𝑖 = 1) + 𝛽3𝐼(𝑅𝑖 = 2) + 𝛽4 ∑ 𝐼(𝑅𝑖 = 0)𝒢𝑖𝑗

𝑗

+ 𝛽5 ∑ 𝐼(𝑅𝑖 = 1)𝒢𝑖𝑗

𝑗

+ 𝛽6 ∑ 𝐼(𝑅𝑖 = 2)𝒢𝑖𝑗

𝑗

+ 𝛽7𝑄𝑖 + 𝛽8𝐴𝑖 + 𝛽9 ∑ 𝐴𝑗𝒢𝑖𝑗

𝑗

) 
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For influenza vaccination 

Pr(𝑉) = expit (𝛽0 + 𝛽1 ∑ 𝑉𝑗𝒢𝑖𝑗

𝑗

+ 𝛽2𝐼(𝑅𝑖 = 1) + 𝛽3𝐼(𝑅𝑖 = 2) + 𝛽4𝐷𝑖 + 𝛽6 ∑ 𝐷𝑗𝒢𝑖𝑗

𝑗

+ 𝛽5𝐴𝑖

+ 𝛽6 ∑ 𝐴𝑗𝒢𝑖𝑗

𝑗

+ 𝛽7𝐻𝑖 + 𝛽8 ∑ 𝐻𝑗𝒢𝑖𝑗

𝑗

+ 𝛽9𝐺𝑖 + 𝛽10𝑌𝑖 + 𝛽11𝑃𝑖 + 𝛽12𝐹𝑖) 

3.6.8 Measurement Error 

Network-TMLE assumes that the observed network is the true network (i.e., there is no 

measurement error). However, previous studies have found substantial measurement error 

when comparing self-reported contacts to electronic sensors.155-159 To address measurement 

error of the self-reported contacts, a Bayesian approach to reconstruct the true network.165  

To reconstruct the true network, two models are used: the measurement model and the 

network model. Priors need to be chosen for each of these models. The measurement model 

describes how the self-reported contacts in the network, 𝒢𝑖𝑗, depend on the true contacts, 𝔾𝑖𝑗. 

The data model can be written as 

Pr(𝒢𝑖𝑗|𝔾𝑖𝑗 , 𝜃) 

where 𝜃 is the prior. Another way of describing these probabilities is sensitivity (when 𝔾𝑖𝑗 = 1) 

and one minus specificity (when 𝔾𝑖𝑗 = 0). For both sensitivity and one minus specificity, beta 

distributions were specified. The network model describes the probabilities of contacts within the 

network as a function of the covariates. The network model can be written as  

Pr(𝔾𝑖𝑗|𝑊𝑖, 𝑊𝑗, 𝜆) 

where 𝜆 is the prior for the network model. 

 From the measurement and network models, application of Bayes rule results in 

Pr(𝔾𝑖𝑗 , 𝜃, 𝜆|𝒢𝑖𝑗) =
Pr(𝒢𝑖𝑗|𝔾𝑖𝑗 , 𝑊, 𝜃) Pr(𝔾𝑖𝑗|𝑊, 𝜆) Pr(𝜃, 𝜆)

Pr(𝒢𝑖𝑗)
 

The probability for each edge within the network can then be calculated by 
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Pr(𝔾𝑖𝑗|𝒢𝑖𝑗) = ∫ Pr(𝔾𝑖𝑗, 𝜃, 𝜆|𝒢𝑖𝑗) dθd𝜆 

The resulting matrix then contains the probability of an each for each pair of nodes in the 

network. Edges then can be drawn from Bernoulli distributions for each pair of nodes to 

generate an estimate of the true network. In the case of an undirected network, draws are for 

the upper triangle of the matrix. To allow for uncertainty in the reconstructed network, multiple 

networks are generated. 

In application to the eX-FLU contact network, the goal is to address measurement error 

of self-reported contacts at week one. While at first glance the contact network being 

reconstructed may be viewed a scenario of multiple noisy measures of the same structure, this 

is not the case. While the eX-FLU network is measured over multiple weeks, there is no reason 

to believe that there is a constant contact network across all weeks. In fact, the contact network 

is expected to vary between weeks as a result of the self-isolation in the study. Therefore, the 

assumption of multiple measurements of a single underlying network is unreasonable. Instead, 

only a single measurement of the contact network is available. However, reconstructing the 

network from a single measurement for each edge is a difficult task.164 To make the problem 

more feasible, informed priors on sensitivity and specificity are used. 

To inform the selection of priors for the measurement model, data from the iEpi sub-

sample of the eX-FLU study was used. For weeks four to ten of follow-up, sensitivity and 

specificity were calculated for self-reported edges in comparison to iEpi collected edges. Since 

Bluetooth signals can pass through solid objects (e.g., walls), what was deemed to be a real 

contact as measured by Bluetooth was restricted by RSSI. To be considered a valid contact, the 

RSSI for the Bluetooth RSSI had to be greater than or equal to -70. Furthermore, two individuals 

were considered as having had contact that week if more than ten captured signals were 

recorded that week to further reduce incorrectly recorded contacts via iEpi. From these iEpi 

restricted contacts, the number of contacts captured by both self-report and Bluetooth for each 
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week divided by the number of Bluetooth contacts for each week was used to estimate 

sensitivity. Specificity was similarly estimated by dividing the number of no-contact captured by 

self-report and Bluetooth by the number of no-contact captured by Bluetooth. The prior 

distribution for sensitivity was Beta(7243, 2757) and for one minus specificity was 

Beta(103, 9897). 

For the network model, the stochastic block model was specified as 

Pr(𝔾𝑖𝑗|𝜆) = expit (𝜆0 + 𝜆1𝐼(𝐵𝑖 = 𝐵𝑗) + 𝜆2𝐼(𝐶𝑖 = 𝐶𝑗) + 𝜆3𝐼(𝐺𝑖 = 𝐺𝑗) + 𝜆4𝐼(𝑅𝑖 = 𝑅𝑗) + 𝜆5𝐼(𝑉𝑖 = 𝑉𝑗)

+ 𝜆6𝐼(𝐴𝑖 + 𝐴𝑗 > 0)) 

For 𝜆0 a Cauchy(−4.5, 10) prior was used. For the remainder of 𝜆 terms, the priors were 

Cauchy(0, 2.5). The choice of priors for this model was based on recommendations for weakly 

informative priors in the context of a logistic regression model.217 However, 𝜆0 was centered at -

4.5 rather than 0 since networks are often sparse.  

To combine the measurement error sensitivity analyses and allow for the uncertainty 

resulting from the MICE procedure, each of the 100 MICE imputations was used to estimate the 

preceding Bayesian network reconstruction approach, for a total of 10,000 data sets. A single 

point and variance estimate were obtained via the nested multiple imputation rule.218, 219 For the 

𝑝 graphs from each of the 𝑞 MICE data sets, the point estimate was calculated as  
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The variance for the point estimate was estimated as  
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which consists of the complete variance, between-MICE block variance, and within-MICE block 

variance, respectively.
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CHAPTER 4: APPROACHES TO ACCOUNT FOR MEASUREMENT ERROR OF EDGES 
AND THEIR PERFORMANCE 

4.1 Introduction 

Measurement error, a difference between the true value and a measured value, poses a 

threat to the validity of network analyses on two levels: measurement error for attributes of 

individuals (or nodes) and measurement error of the relations between individuals (or edges).162 

As the problem of measurement error of edges is unique to network analysis, our focus is on 

this type of measurement error hereafter. Measurement error of edges occurs in a variety of 

contexts. Examples include self-reported face-to-face contacts,155-159 design of questionnaires to 

collect friendships,220 reciprocity of friendships,221 electronic communications to measure tie 

strength,222 and protein-protein interactions in cells.223 

 When measurement error occurs, parameters estimated using the observed network 

may no longer be valid for the true network. Previous simulation studies on measurement error 

have focused on the bias of centrality measures, with performance depending on the underlying 

structure of the network and whether edges are false positives or false negatives.160-162 

However, these results are predicated on measurement error being non-informative or random. 

In applications with systematic or informative measurement error, these results may no longer 

apply. Altogether, these prior results indicate measurement error poses a threat to the validity of 

routinely reported network measures. 

 While no measurement error of edges has often been taken for granted by researchers, 

there have been recent proposals to account for measurement error. Outside of study design 

aspects to reduce the occurrence of measurement error (e.g., questionnaire design, measuring 

more central nodes for greater accuracy, etc.220); two broad categories of approaches to 
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analytically account for measurement error are imputation and Bayesian approaches. MIME 

works by framing measurement error as a missing data problem. MIME has been demonstrated 

and used to correct for measurement error with an internal or external validation subsample 

outside of network settings,166, 168, 224-226 and has been suggested as an approach for 

measurement error of edges in networks.162 In contrast, Bayesian approaches work by 

leveraging prior knowledge regarding both the network formation process and the uncertainty of 

measurements.164, 227, 228 While the previous approaches have been described in contrast to 

each other, no explicit comparisons in terms of performance have been conducted.  

In this simulation study, we compare both MIME and Bayesian approaches to account 

for measurement error of edges in the context of a single measured network. Both non-

informative and informative measurement error were assessed. Performance was compared for 

global, relational, and individual-level parameters. 

4.2 Methods 

Let 𝔾 indicate the true network (i.e., no measurement error) with the 𝑁 × 𝑁 adjacency 

matrix, where 𝔾𝑖𝑗 denotes the (𝑖, 𝑗) entry and 𝔾𝑖𝑗 = 1 indicates an edge and 𝔾𝑖𝑗 = 0 otherwise 

(Figure 4.1). By definition, there are no self-loops (𝔾𝑖𝑖 = 0). The goal of the analysis is the 

estimation of a parameter (𝜇) and variance for that parameter (𝑉𝑎𝑟(𝜇)). Let 𝒢 indicate a single 

measurement of 𝔾. When measurement error occurs, the two adjacency matrices will no longer 

match for every node pair (i.e., 𝔾𝑖𝑗 ≠ 𝒢𝑖𝑗 ∃ 𝑖, 𝑗 ∈ 𝑁). Therefore, estimates of 𝜇 based on 𝒢 may 

be biased. Finally, let 𝐺 indicate a perfectly measured network with the 𝑛 × 𝑛 adjacency matrix 

(i.e., 𝔾𝑖𝑗 = 𝐺𝑖𝑗  ∀ 𝑖, 𝑗 ∈ 𝑛), where 𝑛 < 𝑁. Unlike 𝒢, the gold-standard network 𝐺 is only available 

for a portion of the population. Scenarios like this may occur when a gold-standard measure is 

expensive to collect or is invasive. The motivating question is how 𝒢 or 𝐺 can be used to learn 𝜇. 



 

55 

4.2.1 Imputation Approach 

Assuming that an error-free measure of edges exists and that measure is only available 

for some portion of the study sample, measurement error can be framed as a missing data 

problem. The gold-standard graph 𝐺 can be expanded to include all nodes in 𝑁 and filling in 

edges involving the added nodes as missing. Therefore, measurement error becomes a 

problem of filling in those missing edges. 

4.2.1.1 General Procedure 

To account for measurement error of edges, we propose the following procedure. First, a 

statistical model is specified (e.g., ERGM,229 additive and multiplicative effect models,230 etc.) 

and estimated using the observed parts of 𝐺. Next, 𝐺 is extended to include all 𝑁 nodes. 

Afterwards, missing edges are imputed based on the statistical model. To allow for uncertainty 

in the predictions, MIME uses 𝑚 imputations. Each imputed graph is indicated by �̃�𝑘 for 𝑘 =

1, … , 𝑚 imputations. For each of the 𝑚 imputations, the parameter of interest 𝜇�̂� and 𝑉𝑎�̂�(𝜇�̂�) are 

calculated. To provide a single summary of the multiple imputations, the imputations are 

combined using Rubin’s rule.198 The point estimate for the parameter of interest is the mean 

across all 𝑚 imputations 

�̅� = 𝑚−1 ∑ 𝜇�̂�

𝑚

𝑘=1

 

The variance for this parameter is the within-imputation variance plus the between-imputation 

variance 

𝑉𝑎𝑟̅̅ ̅̅ ̅(�̅�) = 𝑚−1 ∑ 𝑉𝑎�̂�(𝜇�̂�)

𝑚

𝑘=1

+ (1 + 𝑚−1)(1 − 𝑚)−1 ∑(𝜇�̂� − �̅�)2

𝑚

𝑘=1

 

 While the preceding procedure is general in terms of the chosen statistical model, we 

implemented MIME with an ERGM. ERGM are a parametric model for network data where the 

dependent variable is the edges.170 These models have been traditionally used to understand tie 

formation within networks; however, ERGM have also been used for multiple imputation of 
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missing data.169, 171-173 ERGM-based imputation for measurement error has been previously 

suggested,169 but no published implementation strategy exists to our knowledge.  

 For the implementation of MIME-ERGM, the estimated ERGM only includes information 

captured in 𝐺 (i.e., edges from 𝒢 do not contribute to the model). This differs from other MIME 

approaches, which tend to include the information from the measurements within this model.166 

Instead, information from 𝒢 is used during the generation of �̃�𝑘, with the mismeasured edges in 

𝒢 used as the basis for the imputed graphs. 

4.2.2 Bayesian Approach 

 In contrast to MIME procedure, the Bayesian procedure proposed by Young et al. does 

not require a gold-standard measure, and instead works by specifying two models and 

corresponding prior distributions.227 The first model is the measurement model, which is the 

prior probability distribution for the observed edges in 𝒢 as a function of 𝔾. With the prior 𝜆, the 

measurement model can be written as Pr(𝒢𝑖𝑗|𝔾𝑖𝑗 , 𝜆). The second model is the network model, 

which corresponds to the probability distribution of edges in 𝔾. The network model is written as 

Pr(𝔾𝑖𝑗|𝜃), with prior 𝜙. Applying Bayes’ rule, 𝔾 can be consistently estimated with 𝒢, the 

specified models, and the priors via: 

Pr(𝔾, 𝜆, 𝜃|𝒢) =
Pr(𝒢|𝔾, 𝜆) Pr(𝔾|𝜃) Pr(𝜆, 𝜃)

Pr(𝒢)
 

Draws from the joint posterior distribution, Pr(𝔾, 𝜆, 𝜃|𝒢), are then used to estimate 𝔾. Similar to 

MIME, multiple networks are generated. In the simulations, the multiple generated graphs were 

summarized using Rubin’s rule as before.  

 As discussed in other work,164, 228 Bayesian approaches like the one above are expected 

to operate best when multiple measures of the same network are available. However, multiple 

measurements are uncommon in practice or may not possible in some scenarios. In the context 

of a single measurement of a network, estimation of these models to account for measurement 
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error is difficult. Increased reliance on priors and specification of the network model becomes 

necessary.164  

4.2.3 Simulation Study 

 To assess the performance of the different approaches to handling measurement error, 

we conducted a simulation study for three networks consisting of 200 nodes. Estimates of 

network measures were compared to the true values, where true values for the measures of 

interest were based on the mean value from 10,000 graphs generated from the true network 

generating model. 

4.2.3.1 Network Measures 

Focus was on three distinct levels of network measures: global (number of edges, 

density), relational (assortativity coefficient), and individual measures (degree, clustering 

coefficient). The number of edges was the number of unique edges that existed in the network. 

Density is the number of edges occurring in the network divided by the total number of possible 

edges. The assortativity coefficient is a measure of the tendency of individuals connected in a 

network to share similar traits or behaviors bounded between -1 and 1.199 The assortativity 

coefficient was calculated for the variable 𝐵. The mean degree was the mean of unique contacts 

for each node. The mean local clustering coefficient is the mean of the number of closed 

triangles that occur among a node’s contacts divided by the total number of possible 

triangles.200 A closed triangle is when a triad of nodes all share edges. 

 Variances for each of the parameters were estimated using a jackknife approach.201-204 

The jackknife works through a leave-one-out approach, where a single observation is removed 

then the parameter of interest is re-calculated. After the leave-one-out procedure is repeated for 

all observations, the overall estimate is subtracted from each leave-one-out iteration and then is 

squared. Finally, these squared changes are summed together and multiplied by a scaling 

factor. Instead of the usual scaling factor of 
𝑛−1

𝑛
 used in IID data, a scaling factor of 

𝑛−2

2𝑛
 was 
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used instead.204 The variances for edges, density, degree, and clustering coefficient were 

estimated by removing a single node.204, 205 For the assortativity coefficient, a single edge was 

removed instead.199 

4.2.3.2 Networks 

Three different network models were assessed in the simulation study. Network-1 is a 

stochastic block model based on whether nodes had matching values for a binary variable 𝐵 

and a categorical variable 𝑋. 𝐵 was assigned to 62 (31%) of nodes, and 𝑋 consisted of 4 

categories with 50 nodes in each. The stochastic block model used to generate edges between 

nodes was: 

logit(Pr(𝔾𝑖𝑗 = 1)) = −4.25 − 0.25 𝐼(𝐵𝑖 = 𝐵𝑗) + 1.25 𝐼(𝑋𝑖 = 𝑋𝑗) 

Network-2 was generated using a ERGM with terms for matching values of 𝐵, matching values 

of 𝑋, and the squared difference of a continuous variable 𝐶 

logit(Pr(𝔾𝑖𝑗 = 1|𝑛, 𝔾𝑖𝑗
𝑐 )) = −4.5 + 0.1 × 𝐼(𝐵𝑖 = 𝐵𝑗) + 1.25 × 𝐼(𝑋𝑖 = 𝑋𝑗) − 0.5(𝐶𝑖 − 𝐶𝑗)

2
 

where 𝑛 is the number of individuals in the network, and 𝔊𝑖𝑗
𝑐  denotes all dyad-pairs in the 

network aside from 𝑖𝑗. Network-3 instead included terms for 𝐵 and 𝑋, as well as Δ which models 

the number of closed triangles in the network. The ERGM used to generate network-3 was 

logit(Pr(𝔾𝑖𝑗 = 1|𝑛, 𝔾𝑖𝑗
𝑐 )) = −4.75 − 0.5 × 𝐼(𝐵𝑖 = 𝐵𝑗) + 2.5 × 𝐼(𝑋𝑖 = 𝑋𝑗) + 2.5Δ 

Network-3 has the addition of higher-order dependencies (triangles) unlike the previous 

generation models. 

4.2.3.3 Measurement Error 

For measurement error of the true networks, two types of errors were considered: non-

informative and informative measurement error. For non-informative measurement error, 

observed edges had a sensitivity of 0.85 and specificity of 0.99. For informative measurement 

error, errors were based on the node characteristic 𝐵, with pairs of nodes both having the same 
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value of 𝐵 (i.e., 𝐵𝑖 = 𝐵𝑗) having a sensitivity of 0.90 and specificity of 0.995, whereas discordant 

pairs (i.e., 𝐵𝑖 ≠ 𝐵𝑗) had a sensitivity of 0.80 and specificity of 0.985. 

4.2.3.4 Gold-Standard Selection 

The gold-standard subsample available was varied between 80 (40%) and 120 (60%) 

nodes. Two different approaches to selecting the gold-standard nodes were compared: simple 

random sample (SRS) and respondent-driven sampling (RDS). The RDS procedure began with 

10% of the subsample size selected as seeds. Each seed node nominated three nodes based 

on random selection of nodes that it shared a true edge with. The procedure was repeated for 

nominated nodes until the gold-standard subsample size was met.  

4.2.3.5 Approaches 

Within the scenarios, we compared the following approaches measurement from the true 

network, measurements from the observed network (Naïve), MIME-ERGM, and Bayesian 

models. As a baseline comparator for performance, approaches were compared with the true 

network, which is the best-case scenario. As the current standard for measurement error, the 

network parameters were estimated based on the observed edges.  

MIME-ERGM was implemented by including terms for the two indicator variables in 

network-1. For network-2, MIME-ERGM used the correct specification of the network generating 

model. Finally, MIME-ERGM for network-3 included the geometrically weighted edgewise 

shared partners (GWESP) rather than Δ due to model convergence issues. MIME-ERGM was 

implemented with both SRS (MIME-ERGM-SRS) and RDS (MIME-ERGM-RDS) approaches to 

selecting the gold-standard subsample. In our implementation, 100 imputed graphs were 

generated and then summarized. 

 For the Bayesian procedure, Beta distribution priors for the measurement model were 

centered on the true sensitivity and specificity. Additionally, the priors were restricted such that 

the sensitivity was always less than the specificity. For non-informative measurement error, 
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sensitivity and specificity were generated from Beta(8500,1500) and Beta(100,9900), 

respectively. For informative error, sensitivity was generated from Beta(9000,1000) and 

Beta(8000,2000), and specificity from Beta(50,9950) and Beta(150,9850). For the network 

model, the following distribution was used 

Pr(𝔾|𝑾; 𝜙) = logit(𝜙0 + 𝝓𝒘𝑾𝒊𝒋) 

where 𝑾 indicates the vector of all pairwise covariates for the corresponding model. For 

network-3, the Bayesian procedure did not include a term to capture Δ. The priors were 𝜙0 =

Cauchy(−4.5, 5) and 𝜙𝑤 = Cauchy(0, 2.5). Cauchy distributions were chosen for their heavier 

tails than the normal distribution and based on recommendations in the context of logistic 

regression.217 The prior for 𝜙0 was centered at −4.5 rather than zero since networks were 

sparse. Similarly, 100 networks were generated and summarized within each iteration. 

4.2.3.6 Performance Metrics 

To compare the performance between methods, we used the following metrics: bias, 

ESE, and 95% CI coverage. Bias was defined as the mean of the estimated parameter minus 

the true parameter. ESE was estimated by the standard deviation of the simulation estimates for 

each parameter. CI coverage was calculated as the proportion of 95% CIs containing the true 

value of the parameter.  

4.3 Results 

4.3.1 Network-1 

As expected, little bias for all parameters (Figure 4.2) and adequate CI coverage for 

most parameters (Table 4.1) occurred when the true network was used to estimate the 

parameters. However, CI coverage for the assortativity coefficient was only 83%. For all 

parameters, the Naïve approach was biased for both non-informative and informative 

measurement error (Figure 4.2). Similarly, CI coverage was below expected levels for all 

parameters besides the clustering coefficient. 
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MIME-ERGM-SRS had little bias for all the assessed parameters, with ESE decreasing 

as a greater portion of the population was included in the gold-standard subsample (Figure 4.2). 

Despite adequate performance in terms of bias, CI coverage was below expected levels (Table 

4.1). Increasing the percent of the gold-standard available from 40% to 60% improved 

coverage, but CI coverage was still below the expected level for density. Performance for 

MIME-ERGM-SRS was similar with informative measurement error. Results for gold-standard 

subsample measures and MIME-ERGM-RDS are available in Appendix 1. 

 For non-informative measurement error, the Bayesian procedure had bias, ESE, and CI 

coverage slightly better than MIME-ERGM-SRS with 60% of the gold-standard available. 

Performance was similar for informative measurement error.  

4.3.2 Network-2 

Similar to network-1, the Naïve approach was biased for all measures (Figure 4.3) and 

had poor CI coverage for both types of measurement error (Table 4.2). MIME-ERGM-SRS had 

minimal bias for all parameters but below expected levels of CI coverage. Increasing the 

subsample size to 60% improved performance but CI coverage was still below expected levels 

for density. For the Bayesian procedure, there was little bias and CI coverage was greatly 

improved over the naïve estimator but still below the true network. 

4.3.3 Network-3 

The Naïve approach had some bias for all parameters (Figure 4.4). For both non-

informative and informative measurement error, the clustering coefficient was substantially 

under-estimated. CI coverage was improved for density, assortativity, and degree in contrast to 

previous scenarios (Table 4.3). 

 For MIME-ERGM-SRS, the estimated number of edges, density, and degree were over-

estimated, with poor CI coverage. The estimated clustering coefficient was closer to the truth 

compared to other methods but still underestimated the true value. These results were 

consistent for both types of measurement error explored. 
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 For the Bayesian approach, bias was minimal for all parameters besides the clustering 

coefficient (Figure 4.3). The clustering coefficient was further under-estimated relative to the 

Naïve approach. CI coverage was below levels observed in the previous networks, but was 

above MIME-ERGM-SRS (Table 4.3). Performance was similar for informative measurement 

error. 

4.4 Discussion 

The best solution for measurement error is to prevent its occurrence. However, direct 

observation of the true network is not always possible due to costs, logistics, privacy concerns, 

or other reasons. After the data has been collected, an analyst has two choices regarding 

measurement error: do nothing or do something. While the former has been common in network 

analysis, ignoring the existence of measurement error can lead to biased estimates, as 

demonstrated in our simulations. In lieu of perfect measurement of the entire network, two 

approaches to account for measurement error in the context of a single faulty measurement of a 

network were compared. These approaches out-performed the Naïve approach in most 

contexts. Therefore, these approaches or further adaptations of them may be considered as 

ways to address measurement error analytically.  

Similar to preceding studies, our simulations demonstrate that bias can result from 

measurement error of edges within a network. Borgatti et al. explored the robustness of 

centrality measures (degree, betweenness, closeness, and eigenvector centrality); with all 

centrality measures having similar performance and monotonic decline in performance with 

increasing measurement error.160 Furthermore, the authors found dense networks were more 

robust to lower specificity, and sparse networks robust to lower sensitivity. However, their 

results are predicated on non-informative measurement error, the Erdős-Rényi graph model, 

and only a single type of error (edge addition or edge deletion) occurring. Wang et al. 

considered two real-world networks instead and found inconsistent performance of centrality 

measures related to the degree distributions.162 These results are similar to the simulation 
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experiments of Frantz et al., which also found the performance of centrality measures linked to 

the structure of the true network.161 Our simulations further these results with both imperfect 

sensitivity-specificity and informative measurement error. We found bias was dependent on the 

chosen parameter; the true, underlying structure of the network; and whether measurement 

error was informative. 

 To motivate the use of procedures like MIME, measurement error of edges was framed 

as a missing data problem. While measurement error can be framed as a missing data problem, 

there are important distinctions to note. First is the distinction in the context of each. For 

example, not reporting a friendship due to limits on the number of nominations possible 

constitutes measurement error. Whereas an individual not reporting any friends because they 

decline to complete the survey is missing data. Second, how bias occurs from measurement 

error is distinct. For missing edges, those values are unknown and a complete-case analysis is 

possible. For measurement error of edges, a measure is available for all edges. Unless a gold-

standard measure is proposed (which may not be available for anyone), measurement error 

does not immediately appear as missing data. Therefore, when contrasting with previous 

simulation studies on missing edge data.231-236 those results are comparable to the results from 

the gold-standard subsample (as opposed to the Naïve approach). 

The proposed MIME-ERGM procedure was able to address the bias of measures but 

had limited performance in terms of CI coverage in our simulations. There are several limitations 

to the MIME-ERGM procedure with implications for practice. First, MIME-ERGM had difficulty 

concerning CI coverage when only 40% of the network had the gold-standard measure 

available. This difficulty arises due to the available data to estimate the ERGM. Specifically, 

40% of the nodes being part of the gold-standard measure consists of less than 16% of the 

possible edges for a network of 200 nodes. This issue is further exacerbated in sparse networks 

since relatively few edges are available. Therefore, MIME needs to consider the proportion of 

edges available rather than the proportion of nodes. Next, MIME-ERGM did not perform well 
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when the subsample was selected via RDS. Additionally, the RDS procedure used relied on the 

underlying network to complete the referral process, which may not be possible to implement in 

practice. The requirement of a SRS for a substantial portion of the network may be difficult to 

achieve in practice. Lastly, MIME-ERGM performed poorly when the network had higher-order 

dependencies. Other statistical models may perform better in this context. Future work may 

consider comparing the performance of MIME with other statistical models that do not require 

explicit specification of higher-order terms (e.g., additive and multiplicative effect models230). 

 The Bayesian procedure performed adequately even in the context of a single measured 

network. In contrast to MIME, the Bayesian procedure has the advantage of not requiring a 

subsample of the network to be measured perfectly. Therefore, the use or even existence of a 

gold-standard measure is not required. This advantage comes at the cost of the Bayesian 

procedure being reliant on the specification of the priors for both measurement and network 

models. In the context of a single measured network, we found the Bayesian procedure 

proposed by Young et al.165 to be reliant on the measurement model priors and the specification 

of the network model. Without accurate and strong informative priors on the measurement 

model, biased results can occur. Due to the heavy reliance on priors, we recommend a 

combination of values for the sensitivity and specificity priors are contrasted.  

4.4.1 Conclusions 

 Measurement error of edges is a difficult problem when only a single measurement of 

the network is available. Despite the difficulty, the pursuit of corrective approaches for 

measurement error is worthwhile. The MIME and Bayesian approaches compared here are two 

promising avenues to address measurement error analytically that rely on different sets of 

assumptions. 
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4.5 Tables and Figures 

Table 4.1: Confidence interval coverage of parameters for network-1 

  Edges Density Assortativity Degree Cluster 

True 100% 94% 83% 99% 95% 

Random Error      

 Naïve* 6% 0% 67% 0% 99% 

 MIME-s40%† 92% 71% 73% 80% 100% 

 MIME-s60%† 100% 90% 88% 96% 100% 

 Bayes 100% 90% 87% 95% 100% 

Conditional Error      

 Naïve* 19% 0% 23% 0% 99% 

 MIME-s40%† 93% 73% 74% 83% 100% 

 MIME-s60%† 99% 91% 90% 96% 100% 

  Bayes 99% 89% 87% 96% 100% 

MIME: multiple imputation for measurement error. CI coverage was calculated as the percent of 95% 
CI that contained the true value. Random error consisted of measurement error occurring completely 
at random. Conditional error consisted of measurement error occurring conditional on the node 
attributes of pairs 

* Naïve consisted of the parameters estimated using the observed (mismeasured) network 
† The gold-standard for the MIME procedure consisted of a simple random subsample for the 
designated percentage of nodes in the network. 
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Table 4.2: Confidence interval coverage of parameters for network-2 

  Edges Density Assortativity Degree Cluster 

True 100% 96% 83% 100% 93% 

Random Error      

 Naïve* 1% 0% 79% 0% 99% 

 MIME-s40%† 92% 71% 74% 80% 100% 

 MIME-s60%† 99% 92% 91% 96% 100% 

 Bayes 97% 87% 88% 93% 100% 

Conditional Error      

 Naïve* 3% 0% 1% 0% 99% 

 MIME-s40%† 93% 75% 73% 82% 100% 

 MIME-s60%† 99% 91% 91% 96% 100% 

  Bayes 99% 89% 84% 95% 100% 

MIME: multiple imputation for measurement error. CI coverage was calculated as the percent of 95% 
CI that contained the true value. Random error consisted of measurement error occurring completely 
at random. Conditional error consisted of measurement error occurring conditional on the node 
attributes of pairs 

* Naïve consisted of the parameters estimated using the observed (mismeasured) network 
† The gold-standard for the MIME procedure consisted of a simple random subsample for the 
designated percentage of nodes in the network. 
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Table 4.3: Confidence interval coverage of parameters for network-3 

  Edges Density Assortativity Degree Cluster 

True 100% 95% 86% 100% 99% 

Random Error      

 Naïve* 100% 70% 78% 92% 0% 

 MIME-s40%† 35% 15% 64% 22% 24% 

 MIME-s60%† 31% 10% 84% 15% 60% 

 Bayes 99% 67% 90% 87% 0% 

Conditional Error      

 Naïve* 100% 76% 77% 95% 0% 

 MIME-s40%† 33% 14% 65% 18% 25% 

 MIME-s60%† 29% 8% 82% 13% 60% 

  Bayes 98% 67% 89% 88% 0% 

MIME: multiple imputation for measurement error. CI coverage was calculated as the percent of 95% 
CI that contained the true value. Random error consisted of measurement error occurring completely 
at random. Conditional error consisted of measurement error occurring conditional on the node 
attributes of pairs 

* Naïve consisted of the parameters estimated using the observed (mismeasured) network 
† The gold-standard for the MIME procedure consisted of a simple random subsample for the 
designated percentage of nodes in the network. 
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Figure 4.1: Examples of true, observed, and gold-standard networks 

 
𝔾 is the true network, 𝒢 is the mismeasured network, and 𝐺 is the gold-standard subsample. Edges 

that are mismeasured are indicated in red for 𝒢. 

 

Figure 4.2: Bias of network parameters for network-1 

 
True: parameters were estimated using the true network. Naïve: parameters were estimated using the 
full mismeasured network. MIME: parameters were estimated using multiple imputation for 
measurement error with an ERGM. The gold-standard subsample was selected as a simple random 
sample. The percentage indicates the proportion of nodes included in the subsample. Bayes: 
stochastic block model Bayesian estimation. Coef: coefficient 
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Figure 4.3: Bias of network parameters for network-2 

 
True: parameters were estimated using the true network. Naïve: parameters were estimated using the 
full mismeasured network. MIME: parameters were estimated using multiple imputation for 
measurement error with an ERGM. The gold-standard subsample was selected as a simple random 
sample. The percentage indicates the proportion of nodes included in the subsample. Bayes: 
stochastic block model Bayesian estimation. Coef: coefficient  

 

Figure 4.4: Bias for network parameters for network-3 

 
True: parameters were estimated using the true network. Naïve: parameters were estimated using the 
full mismeasured network. MIME: parameters were estimated using multiple imputation for 
measurement error with an ERGM. The gold-standard subsample was selected as a simple random 
sample. The percentage indicates the proportion of nodes included in the subsample. Bayes: 
stochastic block model Bayesian estimation. Coef: coefficient 
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CHAPTER 5: TARGETED MAXIMUM LIKELIHOOD ESTIMATION OF CAUSAL EFFECTS 
WITH INTERFERENCE 

5.1 Introduction 

Causal effect estimation often relies on the assumption of no interference, such that an 

individual’s potential outcomes are independent of all other individuals’ exposure.133-135 

However, interference exists across many areas of medicine and public health, most notably in 

infectious disease and medical social sciences. Examples include interference between people 

who inject drugs at risk of HIV,237, 238 students within the same school,239 and between 

individuals connected within social networks.240 The ongoing global SARS-CoV-2 pandemic has 

brought further attention to interference; evaluation of physical distancing and shelter-in-place 

policies have highlighted how such policies or lack thereof can impact other nearby geographic 

regions.241, 242 In addition to infectious disease, interference occurs across substantive areas, 

with examples including household opioid use in pharmacoepidemiology,243 passive tobacco 

smoke exposure in cancer epidemiology,244, 245 and behaviors among children within classrooms 

in developmental psychology.246 

When interference is present, multiple estimands may be considered.133, 137 One 

estimand of public health importance is the mean of an outcome under a specific policy. For 

example, what would the three-month risk of influenza have been if 60% of the population had 

received the influenza vaccine? To estimate this quantity or other related estimands, methods 

allowing for interference have been developed for two broad settings: partial interference and 

general interference. The partial interference assumption stipulates interference occurs within 

but not between groups,133, 247 which allows for the application of standard statistical theory.139-

141, 145 While the partial interference assumption is sometimes reasonable, interference patterns 
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do not always allow the separation of individuals into independent groups. General interference 

allows, in principle, for any two units in a population to affect each other. Methods for general 

interference may further be delineated by whether or not the exposure is randomized. In 

randomized experiments, methods can leverage the random assignment as the basis of 

inference.147, 148 In the observational setting, extensions of IID-TMLE have recently been 

developed to allow for general interference.150-152  

In this chapter, we present empirical studies of network-TMLE. While simulations have 

been conducted to evaluate the finite sample performance of network-TMLE,150, 151 previous 

empirical studies have been limited to relatively simple random networks. In practice, networks 

often exhibit more complex properties,231, 248, 249 limiting the utility of previous simulation studies 

to guide application. Additionally, previous simulations have explored only a narrow set of data 

generating mechanisms and made no direct comparisons between network-TMLE and IID-

TMLE. To address these gaps, we conducted simulations for the estimation of the sample mean 

under varied data generating mechanisms with a wider variety of networks, including an 

observed network of face-to-face contacts among university students. Two variations on policies 

were assessed: setting all individuals to some constant probability of exposure, and shifting the 

propensity score distribution. For each scenario, both network-TMLE and IID-TMLE were 

evaluated.   

5.2 Targeted Maximum Likelihood Estimation 

TMLE is a doubly-robust substitution estimator that incorporates an outcome model and 

a propensity score (or exposure) model through a targeting step.250, 251 These models are often 

referred to as nuisance models since they are not of direct interest. The double-robustness 

property means that as long as one nuisance model is correctly specified, then the estimator will 

be statistically consistent. TMLE has the advantage of retaining root-n convergence rates even 

when data-adaptive machine learning estimators are used for fitting the nuisance models.250, 252, 

253 In the absence of interference, TMLE methods have been developed for average causal 
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effects,250 causal effects under different longitudinal treatment plans,254 and stochastic 

policies.255 The following is a brief review of IID-TMLE for stochastic policies. 

5.2.1 Estimands and Assumptions 

 Consider drawing inference about the effect of a binary exposure 𝑉 on an outcome 𝑌 in 

an observational study. For individual 𝑖 = 1, … , 𝑛, let 𝑊𝑖 indicate observed baseline covariate(s), 

𝑉𝑖 the observed exposure, and 𝑌𝑖 the observed outcome. Assume (𝑊𝑖, 𝑉𝑖, 𝑌𝑖) for 𝑖 = 1, … , 𝑛 are 

independent and identically distributed and there is no interference. Let 𝑌𝑖(𝑣) indicate the 

potential outcome for individual 𝑖 had, possibly counter to fact, their exposure been 𝑣 ∈ 𝒱 =

{0,1}. The goal is to draw inference about the mean outcome under a policy, denoted in general 

by 𝜔, which alters or shifts the distribution of 𝑉. For example, the target estimand might be a 

deterministic policy where everyone is exposed. Denote the conditional distribution of 𝑉 given 𝑊 

under policy 𝜔 by Pr∗(𝑉 = 𝑣|𝑊). For the aforementioned deterministic policy, Pr∗(𝑉 = 1|𝑊) = 1. 

Stochastic policies may also be of interest where 0 < Pr∗(𝑉 = 1|𝑊) < 1. The target estimand is 

the average outcome under policy 𝜔, which may be defined by the population mean 𝜓𝑝 =

𝐸[∑ 𝑌(𝑣) Pr∗(𝑉 = 𝑣|𝑊)𝑣∈𝒱 ], the sample mean 𝜓𝑠 =
1

𝑛
∑ (∑ 𝑌𝑖(𝑣) Pr∗(𝑉𝑖 = 𝑣|𝑊𝑖)𝑣∈𝒱 )𝑛

𝑖=1 , or the 

conditional sample mean 𝜓𝑐 =
1

𝑛
∑ 𝐸[∑ 𝑌𝑖(𝑣) Pr∗(𝑉𝑖 = 𝑣|𝑊𝑖)𝑣∈𝒱 |𝑊𝑖]𝑛

𝑖=1 . In general, the target 

estimand is denoted by 𝜓. To draw inference about 𝜓, assume:  

1. If 𝑉𝑖 = 𝑣 then 𝑌𝑖 = 𝑌𝑖(𝑣) 

2. 𝑌(𝑣) ⊥ 𝑉|𝑊 for all 𝑣 ∈ 𝒱 

3. If Pr∗(𝑉 = 𝑣|𝑊) > 0 then Pr(𝑉 = 𝑣|𝑊) > 0, for all 𝑣 ∈ 𝒱 

where assumption 1 is causal consistency,256 2 is conditional exchangeability,257 and 3 is the 

positivity assumption for stochastic policies.150, 255 

5.2.2 Estimation 

IID-TMLE can be divided into five steps: outcome model estimation, weight estimation, 

targeting, estimation of 𝜓, and inference. The steps for point estimation of the mean are the 



 

73 

same for 𝜓𝑝, 𝜓𝑠, and 𝜓𝑐; with differences occurring in variance estimation.258 Therefore, we 

only distinguish between the estimands during estimation of the variance. In the case of a 

continuous 𝑌, the observed values of 𝑌 are first rescaled to lie in (0,1), which is necessary for 

the targeting step.  

IID-TMLE begins with the estimation of an outcome model for 𝐸[𝑌𝑖|𝑉𝑖, 𝑊𝑖], using either a 

parametric model or machine learning. Predicted values from the outcome model (�̂�𝑖) are then 

generated using the estimated model. Next an exposure model for Pr(𝑉𝑖|𝑊𝑖) is estimated with 

either a parametric model or machine learning. For each individual, the following weight is 

computed 

Pr∗(𝑉𝑖|𝑊𝑖)

Pr̂(𝑉𝑖|𝑊𝑖)
 

where the denominator is computed based on the estimated exposure model and the numerator 

(the policy of interest) is assumed to be known. Next the logistic regression model  

logit(𝑌𝑖) = 𝜂0 + logit(�̂�𝑖) 

is fit using weighted maximum likelihood. The estimated intercept 𝜂0̂ can be thought of as a 

correction term for the outcome predictions. When �̂�𝑖 is close to the observed outcomes, then 𝜂0̂ 

will be near zero. When the outcome model is incorrectly specified and the exposure model is 

correct, 𝜂0̂ shifts the values of logit(�̂�𝑖).  

 To estimate 𝜓 for a deterministic policy, the following procedure is used. The exposure 

under 𝜔, denoted by 𝑉𝑖
∗, and the estimated outcome model are used to impute the outcomes 

under 𝜔, denoted by �̂�𝑖
∗. Next, the targeted predictions are computed via 

�̃�𝑖
∗ = expit (𝜂0̂ + logit(�̂�𝑖

∗)) 

and 𝜓 is estimated as the mean of the targeted predictions,  

�̂� =
1

𝑛
∑ �̃�𝑖

∗

𝑛

𝑖=1
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 For stochastic policies, the estimation procedure above requires modification. Because 

the distribution of 𝑉∗ is no longer degenerate under a stochastic policy, the following Monte 

Carlo approach is used. For 𝑘 = 1, … , 𝑚 sample 𝑉𝑖𝑘
∗  from Bernoulli(Pr∗(𝑉𝑖 = 1|𝑊𝑖)). For each 

𝑉𝑖𝑘
∗ , compute the imputed outcome and targeted prediction for individual 𝑖, say �̂�𝑖𝑘

∗  and �̃�𝑖𝑘
∗ , as in 

the deterministic policy estimation procedure above. Then �̃�𝑖
∗ is calculated by �̃�𝑖

∗ = ∑ �̃�𝑖𝑘
∗ /𝑚𝑚

𝑘=1  

and the estimator for 𝜓 is the mean of the targeted predictions as before.  

Lastly, (1 − 𝛼) CI can be constructed by �̂� ± 𝑧1−𝛼/2 √�̂�2 𝑛⁄ , where 𝑧1−𝛼/2 denotes the 

1 − 𝛼/2 quantile of a standard normal distribution and �̂�2 is an estimand-specific variance 

estimator. For the population mean 𝜓𝑝 the variance is estimated by255 

�̂�𝑝
2 =

1

𝑛
∑ (

Pr∗(𝑉𝑖|𝑊𝑖)

Pr̂(𝑉𝑖|𝑊𝑖)
(𝑌𝑖 − �̂�𝑖) + �̃�𝑖

∗ − �̂�)

2𝑛

𝑖=1

 

and for the conditional sample mean 𝜓𝑐 the variance is estimated by258 

�̂�𝑐
2 =

1

𝑛
∑ (

Pr∗(𝑉𝑖|𝑊𝑖)

Pr̂(𝑉𝑖|𝑊𝑖)
(𝑌𝑖 − �̂�𝑖))

2𝑛

𝑖=1

 

Since the sample mean variance is non-identifiable and the asymptotic variance of the 

conditional mean is always greater than or equal to the sample mean asymptotic variance, the 

sample mean variance may be conservatively estimated by the conditional sample mean 

variance estimator.258 

5.3 Targeted Maximum Likelihood Estimation with Dependent Data 

In the presence of interference, the potential outcomes depend on both an individual’s 

exposure and the exposure of others. Consider the setting where individuals are connected via 

a network of edges (e.g., an edge may indicate two individuals are friends within a social 

network, live within a certain distance of each other, or had a face-to-face conversation). 

Suppose the network structure is static (i.e., fixed over time) and can be summarized by an 

𝑛 × 𝑛 adjacency matrix 𝒢. Let 𝒢𝑖𝑗 denote the (𝑖, 𝑗) entry of 𝒢, where 𝒢𝑖𝑗 = 1 if an edge exists 
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between 𝑖 and 𝑗. Assume no interference between individuals 𝑖 and 𝑗 if 𝒢𝑖𝑗 = 0. Since 

interference is a relation between individuals, 𝒢𝑖𝑖 = 0 ∀ 𝑖 ∈ 𝑛. Throughout, individual 𝑖’s 

"immediate contacts” refers to individuals that have an edge with 𝑖. 

From 𝒢 and the covariates, various summary measures can be calculated. The total 

number of immediate contacts for individual 𝑖 (also referred to as degree) is defined as 𝐹𝑖 =

∑ 𝒢𝑖𝑗
𝑛
𝑗=1 . The exposure status for 𝑖’s immediate contacts can be expressed by different summary 

measures, which are functions of (𝑉1, 𝑉2, … , 𝑉𝑛) and 𝒢, and in general will be denoted by 𝑉𝑖
𝑠 with 

possible realization 𝑣𝑖
𝑠 ∈ 𝒱𝑠.  For example, 𝑉𝑖

𝑠 = ∑ 𝑉𝑗 𝒢𝑖𝑗
𝑛
𝑗=1  is the number of individual 𝑖’s 

immediate contacts with 𝑉 = 1. Similarly, let 𝑊𝑖
𝑠 denote a general summary measure of 

baseline covariates 𝑊 for 𝑖’s immediate contacts.  

5.3.1 Estimands and Assumptions  

In the presence of interference, the potential outcomes for individual 𝑖 can be denoted by 

𝑌𝑖(𝑣𝑖, 𝑣−𝑖), where 𝑣−𝑖 indicates the exposure for all individuals excluding 𝑖. Assume an exposure 

mapping147 such that only the summary measure of an individual’s immediate contacts is 

necessary to define all of an individual’s potential outcomes (referred to as weak dependence 

hereafter), in which case the potential outcomes may be denoted by 𝑌𝑖(𝑣𝑖, 𝑣𝑖
𝑠), with 𝑣 ∈ 𝒱 =

{0,1} and 𝑣𝑠 ∈ 𝒱𝑠. The target estimand is the average outcome under policy 𝜔 for the sample, 

which may be defined as the sample mean 𝜓𝑠 =

1

𝑛
∑ 𝐸[∑ 𝑌𝑖(𝑣, 𝑣𝑠) Pr∗(𝑉𝑖 = 𝑣, 𝑉𝑖

𝑠 = 𝑣𝑠|𝑊𝑖, 𝑊𝑖
𝑠)𝑣∈𝒱,𝑣𝑠∈𝒱𝑠 ]𝑛

𝑖=1  or the conditional sample mean 𝜓𝑐 =

1

𝑛
∑ 𝐸[∑ 𝑌𝑖(𝑣, 𝑣𝑠) Pr∗(𝑉𝑖 = 𝑣, 𝑉𝑖

𝑠 = 𝑣𝑠|𝑊𝑖, 𝑊𝑖
𝑠)𝑣∈𝒱,𝑣𝑠∈𝒱𝑠 |𝑾]𝑛

𝑖=1  where 𝑾 = (𝑊1, 𝑊2, . . . , 𝑊𝑛).150 In 

general, the target estimand is denoted by 𝜓 as before. To draw inference about 𝜓, we assume 

1. If 𝑉𝑖 = 𝑣, 𝑉𝑖
𝑠 = 𝑣𝑠 then 𝑌𝑖 = 𝑌𝑖(𝑣, 𝑣𝑠) 

2. 𝑌(𝑣, 𝑣𝑠) ⊥ 𝑉, 𝑉𝑠|𝑊, 𝑊𝑠 

3. If Pr∗(𝑉 = 𝑣, 𝑉𝑠 = 𝑣𝑠|𝑊, 𝑊𝑠) > 0 then Pr(𝑉 = 𝑣, 𝑣𝑠 = 𝑣𝑠|𝑊, 𝑊𝑠) > 0, for all 𝑣 ∈ 𝒱, 𝑣𝑠 ∈

𝒱𝑠 
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where assumption 1 is causal consistency, 2 is conditional exchangeability, and 3 is the 

positivity assumption for stochastic policies. 

5.3.2 Network-TMLE 

Network-TMLE extends the TMLE framework to dependent data by allowing 𝑉𝑖 to 

depend on 𝑊𝑖 and 𝑊𝑖
𝑠; and 𝑌𝑖 to depend on 𝑉𝑖, 𝑉𝑖

𝑠, 𝑊𝑖, and 𝑊𝑖
𝑠. Similar to IID-TMLE, network-

TMLE is doubly robust and is divided into five steps: estimate the outcome model, estimate the 

weights, targeting, estimation of 𝜓, and inference. As before, point estimation for 𝜓𝑠 and 𝜓𝑐 

remains the same for both, with differences occurring for estimation of the variance. 

Step 1) Estimate the outcome model. A model for 𝐸[𝑌𝑖|𝐴𝑖 , 𝐴𝑖
𝑠, 𝑊𝑖, 𝑊𝑖

𝑠] can be estimated 

handling each observation as if it were IID (see Section 4 of van der Laan152). For example, 

ordinary least squares could be used to estimate the parameters of the model 

𝐸[𝑌𝑖|𝑉𝑖, 𝑉𝑖
𝑠, 𝑊𝑖, 𝑊𝑖

𝑠; 𝛽] = 𝛽0 + 𝛽1𝑉𝑖 + 𝛽2𝑉𝑖
𝑠 + 𝛽3𝑊𝑖 + 𝛽4𝑊𝑖

𝑠 + 𝛽5𝐹𝑖 

After estimating the model parameters, predicted outcomes under the observed 𝑉𝑖 and 𝑉𝑖
𝑠 for 

each unit are calculated, indicated by �̂�𝑖. 

 Step 2) Estimate the weights. The weights can be expressed as 

𝜋∗(𝑊𝑖, 𝑊𝑖
𝑠;  𝛾∗, 𝛿∗)

𝜋(𝑊𝑖, 𝑊𝑖
𝑠; 𝛾, 𝛿)

=
Pr∗(𝑉𝑖|𝑊𝑖 , 𝑊𝑖

𝑠; 𝛾∗) Pr∗(𝑉𝑖
𝑠|𝑉𝑖, 𝑊𝑖, 𝑊𝑖

𝑠, 𝛿∗)

Pr(𝑉𝑖|𝑊𝑖, 𝑊𝑖
𝑠; 𝛾) Pr(𝑉𝑖

𝑠|𝑉𝑖, 𝑊𝑖, 𝑊𝑖
𝑠; 𝛿)

 

where 𝛾, 𝛿, 𝛾∗, and 𝛿∗ denote the parameters for the model for Pr(𝑉𝑖|𝑊𝑖, 𝑊𝑖
𝑠),  Pr(𝑉𝑖

𝑠|𝑉𝑖, 𝑊𝑖, 𝑊𝑖
𝑠), 

Pr∗(𝑉𝑖|𝑊𝑖 , 𝑊𝑖
𝑠), and Pr∗(𝑉𝑖

𝑠|𝑉𝑖, 𝑊𝑖, 𝑊𝑖
𝑠), respectively. The model for Pr(𝑉𝑖|𝑊𝑖, 𝑊𝑖

𝑠) can be 

estimated with a logistic regression model treating observations as IID. Different models may be 

assumed for estimating Pr(𝑉𝑖
𝑠|𝑉𝑖, 𝑊𝑖, 𝑊𝑖

𝑠). For example, if 𝑉𝑖
𝑠 is a binary variable indicating 

whether at least one of individual 𝑖’s immediate contacts is exposed, then logistic regression 

might be used. If 𝑉𝑖
𝑠 is instead a count variable (e.g., indicating the number of immediate 

contacts exposed), then Poisson or negative binomial regression models might be assumed. 

Alternatively, restrictions on the functional form of 𝑉𝑖
𝑠 may be avoided by letting 𝑉𝑖

𝑠 equal the 

vector of exposures for individual 𝑖’s immediate contacts. If the maximum number of contacts is 
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𝑏, then Pr(𝑉𝑖
𝑠|𝑉𝑖, 𝑊𝑖, 𝑊𝑖

𝑠) can be factored into 𝑏 different binary conditional probabilities (i.e. 

Pr (𝑉𝑖
𝑠(1)

|𝑉𝑖, 𝑊𝑖, 𝑊𝑖
𝑠) × Pr (𝑉𝑖

𝑠(2)
|𝑉𝑖, 𝑉𝑖

𝑠(1)
, 𝑊𝑖, 𝑊𝑖

𝑠) × ⋯ × Pr (𝑉𝑖
𝑠(𝑏)

|𝑉𝑖, 𝑉𝑖
𝑠(1)

, … , 𝑉𝑖
𝑠(𝑏−1)

, 𝑊𝑖, 𝑊𝑖
𝑠)), 

where 𝑉𝑖
𝑠(𝑏)

 indicates the exposure of contact 𝑏151. These conditional probabilities can then be 

estimated via logistic regression. 

 Estimation of the numerator of the weights relies on a simulation approach since policies 

are often specified as Pr∗(𝑉 = 𝑣|𝑊, 𝑊𝑠) as opposed to Pr∗(𝑉 = 𝑣, 𝑉𝑠 = 𝑣𝑠|𝑊, 𝑊𝑠), and depend 

on the distribution of 𝑾 in the network. To estimate 𝜋∗(𝑊𝑖, 𝑊𝑖
𝑠; 𝛾∗, 𝛿∗) via simulation, a large 

number of copies of the data set indexed by 𝑘 are generated as follows. First, 𝑉𝑖𝑘
∗  is sampled 

from Bernoulli(Pr∗(𝑉𝑖 = 1|𝑊𝑖, 𝑊𝑖
𝑠)) for each 𝑘 and the summary measure 𝑉𝑖𝑘

∗𝑠 is calculated. Then 

𝛾∗ and 𝛿∗ are estimated by using the approach as before, but using all copies of the data 

simultaneously. Then 𝜋∗(𝑊𝑖, 𝑊𝑖
𝑠; 𝛾∗, 𝛿∗) is estimated with 𝛾 ∗̂, 𝛿 ∗̂, and the observed values of 𝑉𝑖 

and 𝑉𝑖
𝑠.  

 Step 3) Targeting. To target, the following logistic regression model is fit using weighted 

maximum likelihood,  

logit(𝑌𝑖) = 𝜂0 + logit(�̂�𝑖) 

 Step 4) Estimation of 𝜓. As before, stochastic policies are evaluated using a Monte 

Carlo approach. For 𝑘 = 1, … , 𝑚 sample 𝑉𝑖𝑘
∗  from Bernoulli(Pr∗(𝑉𝑖 = 1|𝑊𝑖, 𝑊𝑖

𝑠)), and calculate 

the summary measures for 𝑉𝑖𝑘
∗𝑠. For each 𝑉𝑖𝑘

∗  and 𝑉𝑖𝑘
∗𝑠, compute the imputed outcome, �̂�𝑖𝑘

∗ , using 

the previously estimated outcome model. The targeted prediction, �̃�𝑖𝑘
∗ , is then computed by 

�̃�𝑖𝑘
∗ = expit (𝜂0̂ + logit(�̂�𝑖𝑘

∗ )) 

The mean of the targeted predictions, �̂�𝑘 = ∑ �̃�𝑖𝑘
∗ /𝑛𝑛

𝑖=1  is calculated for each 𝑘. The estimator for 

𝜓 is the mean of the 𝑚 estimates, i.e., �̂� = ∑ �̂�𝑘/𝑚𝑚
𝑘=1 . To reduce computational burden, 𝑉𝑖𝑘

∗  

and 𝑉𝑖𝑘
𝑠∗ generated during the estimation of the weights’ numerator are reused. 
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 Step 5) Inference for 𝜓. For the sample mean, the estimates of the variance rely on 

strong assumptions which may be unrealistic in many settings150 or approximate an upper 

bound which may be uninformative in practice.151 Therefore, the conditional sample mean may 

be the preferred target of inference. For the conditional sample mean, the variance is estimated 

by151 

�̂�𝑠
2 =

1

𝑛
∑ (

𝜋∗(𝑊𝑖, 𝑊𝑖
𝑠; 𝛾∗̂, 𝛿 ∗̂)

𝜋(𝑊𝑖 , 𝑊𝑖
𝑠; 𝛾, 𝛿)

(𝑌𝑖 − �̂�𝑖))

2
𝑛

𝑖=1

 

with (1 − 𝛼) CI constructed by �̂� ± 𝑧1−𝛼/2 √�̂�𝑐
2 𝑛⁄ . 

5.4 Simulation Study Design 

For estimation of 𝜓𝑐, network-TMLE and IID-TMLE were compared across networks and 

data generating mechanisms for a total of 12 scenarios. All simulations were repeated 4000 

times. We considered two different policy types. For the first policy, all individuals in the network 

were assigned the same probability of exposure, Pr∗(𝑉𝑖 = 1|𝑊𝑖, 𝑊𝑖
𝑠) = Pr∗(𝑉𝑖 = 1) = 𝑝. For the 

second policy, each individual’s log-odds of exposure was shifted by a constant value, 

Pr∗(𝑉𝑖 = 1|𝑊𝑖, 𝑊𝑖
𝑠) = expit(logit(Pr(𝑉𝑖 = 1|𝑊𝑖, 𝑊𝑖

𝑠)) + 𝑞). Shifts in the log-odds of exposure 

were used to ensure all probabilities under the policy remained between (0, 1). The true values 

of the conditional sample mean for each policy were obtained empirically. Exposure was 

randomly distributed within the network according to the policy, with the network and 𝑾 held 

fixed. The outcomes were evaluated from the true outcome model and the mean of 𝜓𝑐 across 

10,000 different data sets for each policy was used as the true value. 

5.4.1 Networks 

 Three different networks were used: a uniform random graph, a modified clustered 

power-law random graph, and the eX-FLU network154 of self-reported contacts among 

undergraduate students (Figure 5.1). The uniform random graph followed a uniform degree 

distribution with a minimum degree of 1 and a maximum of 6. The modified clustered power-law 
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random graph consisted of eight separately generated clustered power-law random subgraphs, 

with edges randomly generated between the random subgraphs. Each of the eight clustered 

power-law subgraphs was separately generated from a Barabasi-Albert random graph model 

with a set probability for closing triads between nodes.206 For each node, three connections 

were generated and the probability of triad closure was set to 0.75. The advantage of this 

approach is that the random graph takes on common characteristics of empirical networks, 

including a power-law degree distribution, a high clustering coefficient, and an underlying 

community structure. Lastly, the eX-FLU network was based on data from the eX-FLU cluster-

randomized trial, a study to assess the efficacy of three-day self-isolation among university 

students.154 Over the ten-week study period, enrolled students reported face-to-face contacts 

each week. From the ten weeks of self-reported contacts, we generated a single static network 

and selected the largest connected component. 

 For the uniform random graph, two versions of network-TMLE were evaluated. The two 

versions entailed different approaches to estimating Pr(𝑉𝑖
𝑠|𝑉𝑖, 𝑊𝑖 , 𝑊𝑖

𝑠). In one version of 

network-TMLE, the distribution of 𝑉𝑖
𝑠 was factored into 𝑏 = 6 different binary conditional 

distributions and estimated by a series of six logistic models. For the other version of TMLE, a 

single model was used with the regression model based on the summary measure of 𝑉𝑖
𝑠 in the 

outcome model. Due to the skewed degree distributions of the clustered power-law random 

graph and eX-FLU network, only the single model for Pr(𝑉𝑖
𝑠|𝑉𝑖, 𝑊𝑖 , 𝑊𝑖

𝑠) was used. Instead, 

restrictions based on the maximum degree were compared. Nodes with degrees above the 

maximum had their value for 𝑉 held as fixed and considered as background features (i.e., no 

inference is made for these nodes). For the clustered power-law random graph, nodes with a 

degree above 18 were considered as features of the background (1%). Similarly, nodes with a 

degree greater than 23 were considered as background features for the eX-FLU network (5%). 
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5.4.2 Data Generating Mechanisms 

 Four data generating mechanisms inspired by real-world scenarios were considered. 

Each data generating mechanism was selected to feature different possible exposure effects, 

including individual-specific (i.e., unit-treatment) effects and spillover effects from contacts. 

Below is a brief narrative description of each.  

5.4.2.1 Statin and Cardiovascular Disease 

To simulate a no interference setting, a data generating mechanism based on a 

hypothetical study on statin initiation and subsequent ASCVD was created. Statins are a 

cholesterol-lowering drug that have been shown to reduce cardiovascular disease risk259 by 

reducing cholesterol synthesis.260 The mechanism of action may reasonably allow researchers 

to believe that whether 𝑖’s friends take a statin has no influence on 𝑖’s risk of ASCVD. Therefore, 

ASCVD risk was independent of immediate contacts in our simulation. Confounders were based 

on the 2018 primary prevention guidelines for the management of blood cholesterol261 and 

included age, low-density lipoprotein levels, and ASCVD risk score.  

Let 𝑊1,𝑖 indicate age, 𝑊2,𝑖 indicate log-transformed low-density lipoprotein, and 𝑊5,𝑖 

indicate risk score. The conditional probability of taking a statin was specified by: 

logit(Pr(𝑉𝑖 = 1|𝐿𝑖, 𝑋𝑖, 𝑅𝑖)) = −5.3 + 0.15(𝑊1,𝑖 − 30) + 0.2 𝑊2,𝑖 + 0.4 𝐼(0.05 ≤ 𝑊5,𝑖 < 0.075) 

+ 0.9 𝐼(0.075 ≤ 𝑊5,𝑖 < 0.2) + 1.5 𝐼(𝑊5,𝑖 ≥ 0.2) 

The conditional probability of ASCVD was specified by: 

logit(Pr(𝑌𝑖 = 1|𝑉𝑖, 𝑊1,𝑖, 𝑊2,𝑖, 𝑊5,𝑖)) = −5.05 − 0.8𝑉𝑖 + 0.37√𝑊1,𝑖 − 39.9 + 0.75𝑊2,𝑖 + 0.75𝑊5,𝑖 

5.4.2.2 Naloxone and Opioid Overdose 

For spillover effect only, a data generating mechanism based on the effect of naloxone 

on subsequent opioid overdose deaths was created. Opioid overdose deaths have dramatically 

increased in recent years.262, 263 Naloxone has been used as an emergency intervention to 

rapidly reverse opioid overdoses by blocking opioids receptors264 and has been made 
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increasingly available to the general population to prevent overdose deaths.265, 266 Nasal spray 

formulations rely on another person for administration, with self-administration having occurred 

only in rare cases.207 Therefore, the prevention of opioid overdose deaths with naloxone is an 

example where the protective effect may operate solely via spillover effects. Confounders 

included gender, recent overdose, and recent release from prison, which have been observed 

as predictors of opioid overdose in previous studies.267, 268 In the context of this mechanism, the 

interference pattern could be thought of as a co-injection network. 

 Let 𝑊6,𝑖 indicate gender, 𝑊7,𝑖 indicate recent release from prison, and 𝑊8,𝑖 indicate 

recent overdose. The conditional probability of naloxone was generated according to: 

logit(Pr(𝑉𝑖 = 1|𝑊6,𝑖, 𝑊7,𝑖, 𝑊6,𝑖
𝑠 , 𝑊8,𝑖

𝑠 )) = −1.3 − 1.5 𝑊7,𝑖 + 1.5 𝑊6,𝑖𝑊7,𝑖 + 0.95 
∑ 𝐼(𝑊6,𝑗 = 1)𝒢𝑖𝑗

𝑛
𝑗=1

∑ 𝒢𝑖𝑗
𝑛
𝑗=1

 

+0.95
∑ 𝐼(𝑊8,𝑗 = 1)𝒢𝑖𝑗

𝑛
𝑗=1

∑ 𝒢𝑖𝑗
𝑛
𝑗=1

 

The conditional probability of death from opioid overdose was specified by: 

logit(Pr(𝑌𝑖 = 1|𝑉𝑖
𝑠, 𝑊6,𝑖, 𝑊7,𝑖, 𝑊6,𝑖

𝑠 , 𝑊8,𝑖
𝑠 ))

= −1.1 − 0.2 ∑ 𝐼(𝑉𝑗 = 1)𝒢𝑖𝑗

𝑛

𝑗=1

+ 1.7 𝑊7,𝑖 − 0.9 𝑊6,𝑖 + 0.75 
∑ 𝐼(𝑊8,𝑗 = 1)𝒢𝑖𝑗

𝑛
𝑗=1

∑ 𝒢𝑖𝑗
𝑛
𝑗=1

− 0.75
∑ 𝐼(𝑊6,𝑗 = 1)𝒢𝑖𝑗

𝑛
𝑗=1

∑ 𝒢𝑖𝑗
𝑛
𝑗=1

 

5.4.2.3 Comprehensive Dietary Intervention and Body Mass Index 

For simultaneous unit-treatment and spillover effects, a data generating mechanism 

based on a comprehensive dietary intervention on body mass index (BMI) was created. 

Research has found BMI to be socially clustered,208, 209 with the transmission of obesity 

theorized to result from social pressures or the shared environments of social contacts.209 

Comprehensive dietary interventions that limit caloric intake and increase the quality of food 

may reduce BMI.269 Our simulation focuses on a theoretical dietary intervention that impacts an 
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individual’s BMI as well as their immediate friends’ BMI. Confounders included baseline BMI, 

gender, and baseline exercise. In this context, the interference pattern can be viewed as a 

network of friendships. 

 Let 𝑊6,𝑖 indicate gender, 𝑊9,𝑖 indicate baseline BMI, and 𝑊10,𝑖 indicate exercise at 

baseline. The conditional probability of starting the proposed diet at baseline was specified by: 

logit(Pr(𝑉𝑖 = 1|𝑊6,𝑖 , 𝑊9,𝑖, 𝑊10,𝑖, 𝑊10,𝑖
𝑠 ))

= −0.5 + 0.05(𝑊9,𝑖 − 30) + 0.25𝑊6,𝑖𝑊10,𝑖 + 0.05
∑ 𝐼(𝑊10,𝑗 = 1)𝒢𝑖𝑗

𝑛
𝑗=1

∑ 𝒢𝑖𝑗
𝑛
𝑗=1

 

BMI at follow-up was generated by: 

𝑌𝑖 = 3 + 𝑊9,𝑖 − 5𝑉𝑖 − 5 𝐼 (3 < ∑ 𝐼(𝑉𝑗 = 1)𝒢𝑖𝑗

𝑛

𝑗=1

) + 3𝑊6,𝑖 − 3𝑊10,𝑖 − 0.5 ∑ 𝐼(𝑊10,𝑗 = 1)𝒢𝑖𝑗

𝑛

𝑗=1

+
∑ 𝒢𝑖𝑗(𝑊9,𝑗 − 𝑊9,𝑖)𝑛

𝑗=1

∑ 𝒢𝑖𝑗
𝑛
𝑗=1

+ 𝜖𝑖 

where 𝜖𝑖 ~ Normal(0, 1). 

5.4.2.4 Infectious Disease Transmission 

The fourth simulation mechanism entailed a Susceptible-Infected-Recovered (SIR) 

model of human-to-human transmission of an infectious agent. The hypothetical vaccine 

followed a ‘leaky’ model, such that the vaccine reduced the probability of infection given a single 

exposure to an infectious agent.270 The spillover effect of the vaccine was composed of 

contagion (vaccinated individuals were less likely to become infected and thus less likely to 

transmit) and infectiousness effects (vaccinated-but-infected individuals had reduced probability 

of transmitting the disease).271 

The stochastic SIR model was implemented as follows. Seven individuals were 

randomly selected as initial infections. Actively infectious individuals infected their immediate 

contacts based on a probability of transmission conditional on characteristics of the infected and 

uninfected individuals. Infected individuals were actively infectious for a period of five discrete 
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time-steps after becoming infected, and recovered after the infectiousness period (no longer 

infectious nor capable of being infected by contacts). All transmission events occurred over a 

period of ten time-steps. Unlike the previous data generating mechanisms, the infection 

transmission mechanism does not necessarily adhere to the weak dependence assumption. By 

chance, infections can spread beyond immediate contacts.  

Let 𝑊11,𝑖 indicate asthma, and 𝑊12,𝑖 indicate hand hygiene. The probability of being 

vaccinated was specified by: 

logit(Pr(𝑉𝑖 = 1|𝑊11,𝑖, 𝑊12,𝑖, 𝑊12,𝑖
𝑠 )) = −1.9 + 1.75𝑊11,𝑖 + 0.95𝑊12,𝑖 + 1.2

∑ 𝐼(𝑊12,𝑗 = 1)𝒢𝑖𝑗
𝑛
𝑗=1

∑ 𝒢𝑖𝑗
𝑛
𝑗=1

 

and the probability of individual 𝑖 becoming infected at discrete time-point 𝑡 (𝐼𝑖,𝑡) by individual 𝑗 

was generated by: 

logit(Pr(𝐼𝑖,𝑡 = 1|𝑍𝑗,𝑡 = 1, 𝒢𝑖𝑗 = 1, 𝑉𝑖, 𝑉𝑗, 𝑊11,𝑖, 𝑊12,𝑖)) = −2.4 − 1.5𝑉𝑖 − 0.4𝑉𝑗 + 1.5𝑊11,𝑖 − 0.4𝑊12,𝑖 

where 𝑍𝑗,𝑡 = 1 indicates whether 𝑗 was in the infectious category at time 𝑡. For individuals with 

multiple infectious contacts, probabilities were independently resolved for each contact. Note 

this is not the outcome model used in network-TMLE. Instead, network-TMLE used the following 

outcome model: 

logit(Pr(𝑌𝑖 = 1|𝑉𝑖, 𝑉𝑖
𝑠, 𝑊11,𝑖, 𝑊12,𝑖, 𝑊11,𝑖

𝑠 , 𝑊12,𝑖
𝑠 , 𝐹𝑖))

= 𝛽0 + 𝛽1𝑉𝑖 + 𝛽2

∑ 𝐼(𝑉𝑗 = 1)𝒢𝑖𝑗
𝑛
𝑗=1

∑ 𝒢𝑖𝑗
𝑛
𝑗=1

+ 𝛽3𝑊11,𝑖 + 𝛽4

∑ 𝐼(𝑊11,𝑗 = 1)𝒢𝑖𝑗
𝑛
𝑗=1

∑ 𝒢𝑖𝑗
𝑛
𝑗=1

+ 𝛽5𝑊12,𝑖

+ 𝛽6

∑ 𝐼(𝑊12,𝑗 = 1)𝒢𝑖𝑗
𝑛
𝑗=1

∑ 𝒢𝑖𝑗
𝑛
𝑗=1

+ 𝛽7𝐹𝑖 

where 𝑌𝑖 is the indicator variable of ever infected by the end of follow-up.  

5.4.3 Performance Metrics 

To compare network-TMLE and IID-TMLE, the following metrics were used: bias, ESE, 

and 95% CI coverage. Bias was defined as the mean of �̂�𝑐 minus 𝜓𝑐 for each 𝜔. ESE was 

estimated by the standard deviation of the simulation estimates for each policy scenario. CI 
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coverage was calculated as the proportion of 95% CIs containing the true mean of the outcome. 

Tables containing these and other selected metrics are available in Appendix 2.4. 

5.4.4 Software 

 All simulations were conducted using Python 3.5.1 with the following libraries: NumPy,186 

SciPy,187 statsmodels,188 patsy,189 and NetworkX.190 Since no current implementation of 

network-TMLE was available in Python, we designed one. Our implementation was validated by 

replicating the simulations from Sofrygin and van der Laan151 (Appendix 2.1). 

5.5 Simulation Study Results 

5.5.1 Statin and ASCVD 

For the hypothetical study of statins, the assumption regarding no interference for IID-

TMLE is valid. The estimated risk of ASCVD for IID-TMLE exhibited little bias and the 

corresponding 95% CIs had approximately nominal coverage levels across all networks and 

policies (Figure 5.2A, Figure 5.3A). Results for the clustered power-law random graph are in 

Appendices 2.3 and 2.4. 

Network-TMLE also exhibited little bias, but had greater ESE relative to IID-TMLE. The 

network-TMLE CI coverage approximated the nominal level for policies where the probability of 

exposure was similar to the proportion exposed in the observed data. However, CI coverage 

was less than the nominal level for policies where substantially more individuals would be 

exposed relative to the observed data for the uniform random graph (Figure 5.2). On the other 

hand, CI coverage exceeded the nominal level for policies where the probability of exposure 

was not similar to the observed data for the eX-FLU graph (Figure 5.3). Results for the power-

law random graph were similar to the eX-FLU graph results (Figure A2.3.1). Additional 

simulations were conducted restricting the degree in the eX-FLU network and power-law 

graphs. Restricting inference to individuals with a degree of 18 or less for the power-law graph 

resulted in improved performance for network-TMLE (Table A2.4.6). However, inflated coverage 

levels where the probability of exposure was not similar to the observed data persisted when 
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restricting inference to individuals with a degree of 23 or less for the eX-FLU graph (Table 

A2.4.9). 

5.5.2 Naloxone and Opioid Overdose 

For simulations of naloxone and opioid overdose (where there was a spillover effect 

only), IID-TMLE exhibited biased point estimates and CI coverage well below the nominal level 

(Figure 5.4A, Figure 5.5A, Figure A2.3.2A). IID-TMLE only performed well for policies where the 

probability of exposure was close to the observed proportion exposed. 

 For the uniform random graph, network-TMLE exhibited negligible bias and CI coverage 

approximating the nominal level for policies where the likelihood of exposure was not 

substantially different from the observed proportion exposure (Figure 5.4). For the eX-FLU 

network, network-TMLE had minimal bias, and the corresponding CIs had approximately 

nominal coverage for most policies (Figure 5.5). Results were similar when the degree of the 

eX-FLU network was restricted (Table A2.4.18). Performance of network-TMLE for the power-

law random graph (Figure A2.3.2, Table A2.3.14-15) was comparable to results from the eX-

FLU graph simulations. 

5.5.3 Comprehensive Dietary Intervention and BMI 

For simulations of a comprehensive dietary intervention on BMI with both unit-treatment 

and spillover effects, IID-TMLE performed poorly across all networks (Figure 5.6A, Figure 5.7A, 

Figure A2.3.3A), with biased point estimates and CI coverage levels far from the nominal level. 

Conversely, network-TMLE point estimates exhibited minimal bias and the corresponding CIs 

had approximately 95% nominal coverage, with some slight undercoverage for the uniform 

random graph and high exposure policies (Figure 5.6B-C, Figure 5.7B-C, Figure A2.3.3B-C). 

Results for the restricted degree power-law random graph and eX-FLU network graph were 

similar (Tables A2.4.26-27, A2.4.23-24). 



 

86 

5.5.4 Vaccine and Infectious Disease Transmission 

Results for the infectious disease transmission simulations are presented in Figure 5.8, 

5.9, and Appendix 2.4. As expected, IID-TMLE again exhibited bias and the corresponding CI 

coverage was less than the nominal level except for policies where the likelihood of exposure 

was similar to the observed proportion exposed. On the other hand, network-TMLE had little 

bias across networks, although 95% CIs also had lower coverage for policies with exposure 

distributed dissimilar to the observed data. 

5.6 Discussion 

The recent extension of TMLE for inference about the sample mean under stochastic 

policies with dependent data performed well in simulation studies for a variety of data 

generating mechanisms based on real-world examples. The simulation scenarios included 

different network structures as well as unit-treatment and spillover effects. These results 

demonstrate the potential utility of network-TMLE over a wide range of realistic settings. 

Software implementing network-TMLE in Python is freely available, which may help facilitate 

greater use of these methods.  

 While network-TMLE performed better than IID-TMLE in settings where interference was 

present, the network-TMLE CIs often failed to provide nominal coverage levels for policies 

where the probability of exposure was substantially different from the observed proportion 

exposed. Thus, care should be exercised when employing network-TMLE for inference about 

policies “far” from the observed data. A simple diagnostic plot may be helpful by comparing 

histograms of the summary measure 𝑉𝑠 stratified by 𝑉 for the observed data versus the 

corresponding distributions expected under the policy of interest. Examples of the proposed 

diagnostic plot are provided in Appendix 2.5. Similarly, restricting inference to individuals below 

a specified degree may improve confidence interval coverage for networks with skewed degree 

distributions. While individuals above the maximum degree are then considered to be fixed 
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features of the network and the target parameter has a modified interpretation, the 

improvements in CI coverage may nonetheless be preferred. 

Limiting inference to policies “close” to the observed data is recommended when using 

network-TMLE to ensure valid inferences. Focusing on policies which modestly perturb the 

exposure distribution may also be more relevant from a policy perspective. In contrast, in the 

absence of interference, commonly targeted estimands like the average causal effect contrast 

two extreme exposure distributions: everyone exposed versus no one exposed.255, 272-274 Such 

extreme counterfactual exposure settings may be unrealistic or irrelevant in practice. For 

instance, when assessing the effect of smoking during pregnancy on some health outcome, the 

counterfactual scenario where all individuals smoke is likely unrealistic. Rather, there may be 

more interest in the effect of policies or interventions which modestly decrease the likelihood of 

smoking during pregnancy. As another example, consider policies encouraging influenza 

vaccination. Previous interventions to increase vaccination rates have resulted in only minor to 

moderate increases in the vaccine receipt.94, 95, 275, 276 Therefore, the counterfactual scenario of 

everyone in the population being vaccinated may be of less relevance, in addition to being 

difficult to draw valid inferences about. 

 Future work could consider the following. First, additional empirical studies of network-

TMLE are needed incorporating model selection, particularly for summary measures of 

exposure since the correct functional form for 𝑉𝑠 is typically unknown. To reduce model 

misspecification errors, machine learning can be paired with network-TMLE. For instance, 

flexible estimation of Pr(𝑉𝑖
𝑠|𝑉𝑖, 𝑊𝑖, 𝑊𝑖

𝑠) could be accomplished with a conditional density super 

learner.277, 278 Further simulations studies could be considered for extensions of network-TMLE 

which relax the weak dependence assumption by incorporating longitudinal data.150 Additional 

empirical evaluation could be conducted of network-TMLE for other estimands such as marginal 

unit-treatment effects (i.e. direct effects).151 Generalization of network-TMLE to other related   
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estimands (i.e., spillover effects, total effects) is also of interest. Finally, direct comparisons 

between network-TMLE and auto-g-computation, a recent extension of the parametric g-formula 

for general interference,149 could be undertaken. 
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5.7 Tables and Figures 

Figure 5.1: Visualizations of networks used in simulations 

 
A: uniform random network, B: clustered power-law random network, C: eX-FLU observed 
network 
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Figure 5.2: Target maximum likelihood estimation for statins and atherosclerotic heart 
disease, and the uniform random graph 

 
Left y-axes and violin plots correspond to bias, defined as the estimated conditional sample mean 
minus the true conditional sample mean. The right y-axes and red diamonds correspond to 95% 
confidence interval (CI) coverage. The first column corresponds to all individuals in the population 
having the same set probability of statins. The second column corresponds to the shift in log-odds of 
the predicted probability of statins for each individual. The proportion of statins in the observed data 
was 25%. 
A: Targeted maximum likelihood estimation under the assumption of independent observations. B: 
Network-TMLE with a series of logistic models for statin use of immediate contacts. C: Network-TMLE 
with a Poisson model for statin use of immediate contacts. 
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Figure 5.3: Target maximum likelihood estimation for statins and atherosclerotic heart 
disease, and the eX-FLU network 

 
Left y-axes and violin plots correspond to bias, defined as the estimated conditional sample mean 
minus the true conditional sample mean. The right y-axes and red diamonds correspond to 95% 
confidence interval (CI) coverage. The first column corresponds to all individuals in the population 
having the same set probability of statins. The second column corresponds to the shift in log-odds of 
the predicted probability of statins for each individual. The proportion of statins in the observed data 
was 24%. 
A: Targeted maximum likelihood estimation under the assumption of independent observations. B: 
Network-TMLE with a Poisson model for statin use of immediate contacts. No restrictions on maximum 
degree were placed. C: Network-TMLE with a Poisson model for statin use of immediate contacts. The 
maximum degree for participants was restricted to be 22 or less. 
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Figure 5.4: Target maximum likelihood estimation for naloxone and opioid overdose, 
and the uniform random graph 

 
Left y-axes and violin plots correspond to bias, defined as the estimated conditional sample mean 
minus the true conditional sample mean. The right y-axes and red diamonds correspond to 95% 
confidence interval (CI) coverage. The first column corresponds to all individuals in the population 
having the same set probability of naloxone. The second column corresponds to the shift in log-odds of 
the predicted probability of naloxone for each individual. The proportion of naloxone in the observed 
data was 26%. 
A: Targeted maximum likelihood estimation under the assumption of independent observations. B: 
Network-TMLE with a series of logistic models for naloxone use of immediate contacts. C: Network-
TMLE with a Poisson model for naloxone use of immediate contacts. 
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Figure 5.5: Target maximum likelihood estimation for naloxone and opioid overdose, 
and the eX-FLU network 

 
Left y-axes and violin plots correspond to bias, defined as the estimated conditional sample mean 
minus the true conditional sample mean. The right y-axes and red diamonds correspond to 95% 
confidence interval (CI) coverage. The first column corresponds to all individuals in the population 
having the same set probability of naloxone. The second column corresponds to the shift in log-odds of 
the predicted probability of naloxone for each individual. The proportion of naloxone in the observed 
data was 28%. 
A: Targeted maximum likelihood estimation under the assumption of independent observations. B: 
Network-TMLE with a Poisson model for naloxone use of immediate contacts. No restrictions on 
maximum degree were placed. C: Network-TMLE with a Poisson model for naloxone use of immediate 
contacts. The maximum degree for participants was restricted to be 22 or less. 
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Figure 5.6: Target maximum likelihood estimation for diet and body mass index, and 
the uniform random graph 

 
Left y-axes and violin plots correspond to bias, defined as the estimated conditional sample mean 
minus the true conditional sample mean. The right y-axes and red diamonds correspond to 95% 
confidence interval (CI) coverage. The first column corresponds to all individuals in the population 
having the same set probability of diet. The second column corresponds to the shift in log-odds of the 
predicted probability of diet for each individual. The proportion on a diet in the observed data was 40%. 
A: Targeted maximum likelihood estimation under the assumption of independent observations. B: 
Network-TMLE with a series of logistic models for diet of immediate contacts. C: Network-TMLE with a 
logistic model for diet of immediate contacts. 
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Figure 5.7: Target maximum likelihood estimation for diet and body mass index and the 
eX-FLU network 

 
Left y-axes and violin plots correspond to bias, defined as the estimated conditional sample mean 
minus the true conditional sample mean. The right y-axes and red diamonds correspond to 95% 
confidence interval (CI) coverage. The first column corresponds to all individuals in the population 
having the same set probability of diet. The second column corresponds to the shift in log-odds of the 
predicted probability of diet for each individual. The proportion on a diet in the observed data was 40%. 
A: Targeted maximum likelihood estimation under the assumption of independent observations. B: 
Network-TMLE with a logistic model for diet of immediate contacts. No restrictions on maximum degree 
were placed. C: Network-TMLE with a logistic model for diet of immediate contacts. The maximum 
degree for participants was restricted to be 22 or less. 
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Figure 5.8: Target maximum likelihood estimation for vaccination and infection and the 
uniform random graph 

 
Left y-axes and violin plots correspond to bias, defined as the estimated conditional sample mean 
minus the true conditional sample mean. The right y-axes and red diamonds correspond to 95% 
confidence interval (CI) coverage. The first column corresponds to all individuals in the population 
having the same set probability of vaccination. The second column corresponds to the shift in log-odds 
of the predicted probability of vaccination for each individual. The proportion vaccinated in the 
observed data was 35%. 
A: Targeted maximum likelihood estimation under the assumption of independent observations. B: 
Network-TMLE with a series of logistic models for vaccination of immediate contacts. C: Network-
TMLE with a Poisson model for vaccination of immediate contacts. 
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Figure 5.9: Target maximum likelihood estimation for vaccination and infection, and 
the eX-FLU network 

 
Left y-axes and violin plots correspond to bias, defined as the estimated conditional sample mean 
minus the true conditional sample mean. The right y-axes and red diamonds correspond to 95% 
confidence interval (CI) coverage. The first column corresponds to all individuals in the population 
having the same set probability of vaccination. The second column corresponds to the shift in log-odds 
of the predicted probability of vaccination for each individual. The proportion vaccinated in the 
observed data was 36%. 
A: Targeted maximum likelihood estimation under the assumption of independent observations. B: 
Network-TMLE with a Poisson model for vaccination of immediate contacts. No restrictions on 
maximum degree were placed. C: Network-TMLE with a Poisson model for vaccination of immediate 
contacts. The maximum degree for participants was restricted to be 22 or less. 
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CHAPTER 6: REALISTIC INTERVENTIONS ON THE DISTRIBUTION OF INFLUENZA 
VACCINATION AND RISK OF INFLUENZA AMONG UNIVERSITY STUDENTS 

6.1 Introduction 

Vaccine and infectious disease epidemiology often focus on the direct or unit-treatment 

effect. The unit-treatment effect contrasts vaccine to no vaccine, holding all else constant.137 

Since interference (an individual’s potential outcome depends on at least one other individual133, 

279) likely exists for infectious diseases, the unit-treatment effect no longer collapses to the 

average treatment effect.280 Whereas the average treatment effect would contrast everyone 

being vaccinated versus no one being vaccinated, the unit-treatment is instead the expected 

value of vaccination contrasted with no vaccination for each individual holding the vaccination 

status of the remainder of the population as fixed. However, large-scale distributional changes 

in the vaccine uptake are often of greater public health interest. Despite this elevated 

importance, few studies focus on these large-scale changes. Here we demonstrate an applied 

example of evaluating large-scale changes in the context of influenza vaccination among 

university students. 

In 2010, the Advisory Committee on Immunization Practices expanded the 

recommendations for the influenza vaccine to include all persons older than 6 months and 

without contraindications.91 University students are an important population to consider since 

they have elevated influenza risk101-103; less than half receive the yearly vaccine93-100; suffer 

negative impacts on their well-being from symptomatic influenza96, 111; and university students 

may rapidly disseminate influenza to the surrounding community103, 104. Previous research on 

influenza vaccination hesitancy and reported reasons for not receiving the vaccine has found 

that university students often report common misconceptions regarding the vaccine,94, 95, 98, 100, 
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116, 120 convenience of receipt,94, 95, 98 or financial barriers.94, 95 Research on addressing these 

barriers to vaccination have focused on vaccination receipt as the outcome as opposed to 

influenza infection.94, 95 However, these results may be misleading in terms of the expected 

reduction in influenza. The distribution of vaccination within the set of contacts between 

students likely influences the overall risk.137, 281 Therefore, strategies to increase influenza 

vaccination uptake may vary in their effectiveness of reducing the risk of influenza. For example, 

a strategy to reduce non-financial barriers to influenza vaccination may increase the overall 

vaccination uptake to a greater extent than an educational strategy, but the education strategy 

may nonetheless be more effective at reducing the risk of influenza due to the structure of the 

network. Focus solely on vaccination receipt as the end-point fails to capture this information. 

 In this chapter, we estimate the risk of influenza under different, realistic large-scale 

changes in the distribution of influenza vaccination uptake among students at a midwestern 

university. The large-scale changes shifted the probability distribution of vaccination informed by 

students’ self-reported reasons for not receiving the vaccine, while also respecting 

contraindications. For estimation, we applied network-TMLE. Additionally, we assessed the 

sensitivity of our results due to missing data on vaccination, and measurement error of both 

influenza and self-reported contacts. 

6.2 Methods 

6.2.1 Data Source 

Data for the analysis comes from the eX-FLU study, a cluster-randomized trial on three-

day self-isolation to prevent the spread of respiratory pathogens among university students.154 

Briefly, students were recruited from one of six dormitories, with dormitories selected based on 

their physical proximity to each other and their representativeness of the undergraduate student 

population. Students were recruited through a chain referral sampling procedure; with seed 

students recruited through informational flyers, emails, and in-person informational tables at the 

dormitories. After enrollment, students were asked to nominate other students to participate. In 
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total there were 262 seeds and 328 nominees. Clusters were defined by environmental features 

believed to shape social interactions (e.g., physical barriers, resident house appointments, 

geographic proximity). Each cluster was randomized to either self-imposed three-day self-

isolation after the onset of symptomatic respiratory illness or to continue their normal behavior 

while ill. To facilitate adherence in the self-isolation arm, students who developed ILI had 

provisions (e.g., snacks, beverages, etc.) and could be requested to provide a doctor’s note 

verifying illness for professors or employers. Enrolled students were followed for ten-weeks of 

the Spring semester (January to April 2013, excluding Spring Break) for the development of 

respiratory illness.  

6.2.1.1 Measures 

Demographic factors collected include gender (male; female), race (white; black; Asian; 

other), ethnicity (Hispanic; non-Hispanic). Common risk factors and health behaviors related to 

respiratory infection were also collected. These factors included: stress (continuous), optimal 

hand hygiene (yes; no), high-risk conditions (yes; no), sleep quality (good; bad), and alcohol use 

(continuous). Stress was measured via the Perceived Stress Scale-10.185 Optimal hand hygiene 

was defined as self-reporting hand washing at least 5 times a day and at least 20 seconds. 

High-risk conditions consisted of one of the following: asthma, reactive airway disorder, Type 

1/2 diabetes, currently receiving HIV/AIDS or cancer treatment. Self-reported sleep quality was 

dichotomized as good or bad. Alcohol use was defined as self-reporting drinking alcohol at least 

once a week. 

Influenza vaccination (yes; no) was defined as self-reported receipt of the 2012-2013 

influenza vaccine before baseline. ILI was defined as the presence of coughing plus at least one 

of the following symptoms: fever, body aches, or chills. ILI is a non-specific condition and 

underestimates the true vaccine effect for actual influenza-caused illness.80 Therefore, we also 

considered laboratory-confirmed influenza. Influenza was considered laboratory-confirmed if 
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any nasal or throat specimens collected with six days of the onset of illness were positive via 

quantitative polymerase chain reaction.154 

6.2.1.2 Contact Data 

Each week during follow-up, students were asked to self-report all face-to-face contacts 

with other study participants from the previous week. To enhance participant recall, previously 

reported contacts were listed. Additionally, a subsample (n=103) had contacts recorded via the 

smartphone’s Bluetooth capabilities with the iEpi system.154 To impose a clear time ordering 

between contacts and the outcomes, we considered only reported contacts during the first week 

of follow-up.  

To describe the patterns of contacts, the number of isolates, assortativity by vaccination, 

and degree are reported. Isolates are students who had not reported contacts. Assortativity, the 

tendency for individuals connected in a network to share similar traits and behaviors, was 

assessed for vaccination status via the assortativity coefficient.199 The assortativity coefficient is 

bounded between -1 and 1, where -1 and 1 indicate perfectly disassortative and assortative 

networks, respectively. An assortativity coefficient of 0 indicates there is no overall observed 

contact pattern by vaccination.  

6.2.2 Policies 

 Previous work on influenza vaccination receipt among university students has focused 

on common misconceptions regarding the vaccine,94, 95, 98, 100, 116, 120 the convenience of 

receipt,94, 95, 98 and financial barriers.94, 95 Therefore, we consider potential policies to address 

these reasons. The policies consist of both deterministic and stochastic components. 

Deterministic components set the vaccination status of an individual; whereas stochastic 

components assign individuals a probability of receiving the vaccine. For the deterministic 

component, all students that reported being allergic to the influenza vaccine were never 

vaccinated. For the stochastic component of the policy, individuals targeted by the policy had 

their log-odds of receiving the influenza vaccine increased. Each individual’s predicted log-odds 
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of vaccination to be shifted was determined using super learner.210 The 20-fold super learner 

consisted of logistic regression, logistic GAM,212 a neural-network with a single layer with eight 

nodes, and a random forest classifier.214 We considered increases in the log-odds between 𝜛 =

{0, 0.25, 0.5, … ,2.75, 3}. Students not targeted by the policy also had an increased log-odds of 

receiving the vaccine to reflect their potential benefit from the policy. However, their log-odds 

were only increased by a third (i.e., 𝜛/3).  

6.2.2.1 Policy 1 

Prior research has indicated that misinformation on harms posed by the vaccine, and 

perceived lack of risk for influenza are common.100, 116, 120 Other research indicates information 

on limiting transmission to contacts could potentially increase vaccine receipt.98 Therefore, 

policy 1 consisted of a theoretical educational intervention to emphasize the benefits of the 

vaccine and dispel common myths. Targeted students included those who reported at least one 

of the following: the influenza vaccine can cause the flu, that they do not get the flu, or that they 

did not know if they could receive the influenza vaccine. 

6.2.2.2 Policy 2  

Other studies have reported barriers like the convenience of when or where to get the 

vaccine may reduce vaccine receipt.94, 95, 98 Policy 2 addressed non-financial barriers by 

targeting students who reported at least one of the following reasons for not receiving the 

influenza vaccine: did not get around to receiving the influenza vaccine, did not have 

transportation to go receive the vaccine, or the hours when the vaccine was available did not fit 

their schedule. 

6.2.2.3 Policy 3 

While costs have been less often reported as a barrier in previous research,94, 98 we also 

assessed a policy to address financial barriers. Financial barriers reported by students 

consisted of their health plan did not cover the vaccine or they did not have health insurance.  
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6.2.3 Targeted Maximum Likelihood Estimation 

6.2.3.1 Potential Outcomes 

Let 𝑊 indicate baseline covariates, 𝑉 indicate influenza vaccination, and 𝑌 indicate 

observed influenza. Let 𝒢 be a 𝑛 × 𝑛 adjacency matrix, so that 𝒢𝑖𝑗 = 1 indicates contact between 

individuals 𝑖 and 𝑗, 𝒢𝑖𝑗 = 0 otherwise. The potential outcomes are 𝑌𝑖(𝑣𝑖 , 𝑣−𝑖); where 𝑣𝑖 is the 

vaccination status of individual 𝑖 and 𝑣−𝑖 is the vaccination status of the remainder of the 

population. In the context of no interference, 𝑌𝑖(𝑣𝑖, 𝑣−𝑖) simplifies to 𝑌𝑖(𝑣𝑖). However, the 

assumption of no interference is unreasonable since the influenza infection of person 𝑖 may 

depend on the vaccination status of person 𝑗.  

 Rather than no interference, weak dependence (only person 𝑖’s immediate contacts may 

affect 𝑖) was assumed instead. Under weak dependence, the potential outcomes are no longer 

defined by the entirely of 𝑣−𝑖; but instead are 𝑌𝑖(𝑣𝑖, 𝑣𝑖
𝑠), where 𝑣𝑖

𝑠 is a summary measure of the 

vaccination status of all persons 𝑗 where 𝒢𝑖𝑗 = 1. Since interest is in stochastic policies, 𝑣 and 

𝑣𝑠 are replaced by Pr∗(𝑉, 𝑉𝑠|𝑊, 𝑊𝑠), which indicates the conditional distribution of vaccination 

under the policy of interest. The estimand is  

𝜓 =
1

𝑛
∑ 𝐸 [ ∑ 𝑌𝑖(𝑣, 𝑣𝑠) Pr∗

(𝑉𝑖 = 𝑣, 𝑉𝑖
𝑠 = 𝑣𝑠|𝑊𝑖, 𝑊𝑖

𝑠
)

𝑣∈𝒱,𝑣𝑠∈𝒱𝑠

|𝑾]

𝑛

𝑖=1

 

where 𝑾 = (𝑊1, 𝑊2, . . . , 𝑊𝑛). To draw inference for 𝜓, extensions of causal consistency, 

conditional exchangeability, and positivity to weak dependence were assumed. 

We take this opportunity to demonstrate why the unit-treatment effect is insufficient to 

address our question. Under weak dependence, the sample unit-treatment effect is  

1

𝑛
∑ 𝑌𝑖(𝑣𝑖 = 1, 𝑣𝑖

𝑠) − 𝑌𝑖(𝑣𝑖 = 0, 𝑣𝑖
𝑠)

𝑛

𝑖=1

 

The unit-treatment effect holds the vaccination status of immediate contacts as fixed, only 

contrasting that individual’s vaccination. 
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6.2.3.2 Estimation 

To estimate 𝜓, a recent extension of TMLE to weak dependence was used.150, 151, 282 

Briefly, network-TMLE can be divided into four steps: outcome model estimation, weight 

estimation, targeting, and estimation of 𝜓. Network-TMLE begins with estimation of an outcome 

model for Pr(𝑌𝑖|𝑉𝑖, 𝑉𝑖
𝑠, 𝑊𝑖, 𝑊𝑖

𝑠); where 𝑉𝑖
𝑠 and 𝑊𝑖

𝑠 are summary measures of 𝑖’s immediate 

contacts’ 𝑉 and 𝑊, respectively. The model can be estimated by treating observations as if they 

were IID. After estimation of an outcome model, predicted values of the outcome (�̂�𝑖) are then 

generated.  

Next, weights are calculated as 

Pr∗(𝑉𝑖, 𝑉𝑖
𝑠|𝑊𝑖 , 𝑊𝑖

𝑠)

Pr(𝑉𝑖, 𝑉𝑖
𝑠|𝑊𝑖 , 𝑊𝑖

𝑠)
 

where the numerator is the distribution of vaccination under the policy and the denominator is 

based on the observed distribution of vaccination. The denominator probability is factored into 

Pr(𝑉𝑖|𝑊𝑖, 𝑊𝑖
𝑠) and Pr(𝑉𝑖

𝑠|𝑉𝑖 , 𝑊𝑖, 𝑊𝑖
𝑠). Each part can be estimated from the observed data treating 

the observations as IID. Since the summary measure for immediate contacts’ vaccination was a 

sum of those who were vaccinated, Pr(𝑉𝑖
𝑠|𝑉𝑖, 𝑊𝑖, 𝑊𝑖

𝑠) was estimated using a Poisson 

distribution. To estimate the numerator, a simulation procedure was used. A large number of 

copies of the data are generated, and the policy of interest was applied to each copy. Then the 

factored numerator is evaluated by fitting models as before, but to all copies of the data at once. 

The fitted models and observed 𝑉𝑖 and 𝑉𝑖
𝑠 are then used to predict the numerator probability.  

Next, the targeting step is accomplished by estimating the following logistic regression 

model via weighted maximum likelihood 

logit(𝑌𝑖) = 𝜂0 + logit(�̂�𝑖) 

The estimated intercept 𝜂0̂ can be thought of as a correction term for the outcome predictions, 

with 𝜂0̂ shifting the values of �̂�𝑖 when the outcome model is misspecified.  
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 Because interest is in a policy with a stochastic component, the updated values of 

vaccination, 𝑉𝑖
∗, are no longer degenerate. Therefore, a Monte Carlo simulation procedure is 

used to estimate 𝜓. First, generate 𝑘 = 1,2, … , 𝑚 different draws of 𝑉𝑖𝑘
∗  from 

Bernoulli(Pr∗(𝑉𝑖 = 1|𝑊𝑖, 𝑊𝑖
𝑠)) and calculate 𝑉𝑖𝑘

∗𝑠 using 𝑉𝑖𝑘
∗ . Next, the estimated probability of 

influenza under the policy, �̂�𝑖𝑘
∗ , is predicted from the previously estimated outcome model, 𝑉𝑖𝑘

∗ , 

and 𝑉𝑖𝑘
𝑠∗. �̂�𝑖𝑘

∗  is then updated via 𝜂0̂  

�̃�𝑖𝑘
∗ = expit (𝜂0̂ + logit(�̂�𝑖𝑘

∗ )) 

Then 𝜓𝑘 is estimated by the mean of �̃�𝑖𝑘
∗ . Finally, the overall estimate for 𝜓 is the mean of all 𝑚 

estimates 

�̂� =
1

𝑚
∑ �̂�𝑘

𝑚

𝑘=1

 

To reduce computational burden, 𝑉𝑖𝑘
∗  and 𝑉𝑖𝑘

𝑠∗ generated during the estimation of the weights’ 

numerator were reused. 

 While estimators of both population and sample variance estimators are available,150 we 

opted for inference on the sample risk. Assumptions necessary for the population variance 

estimator to be validly estimated (e.g., 𝑾 is IID, and latent variable dependence in the network 

only occurs up to second-order contacts) are unlikely in this setting. The sample variance 

estimator does not restrict the distribution of 𝑾 in the network nor requires such limited latent 

variable dependence.150 

To allow for flexibility in the estimated nuisance models, we used super learner.210, 211 

Briefly, the 20-fold super learners for Pr(𝑌𝑖|𝑉𝑖, 𝑉𝑖
𝑠, 𝑊𝑖 , 𝑊𝑖

𝑠) and Pr(𝑉𝑖|𝑊𝑖, 𝑊𝑖
𝑠) consisted of logistic 

regression, elastic-net regularized logistic regression,215 and logistic GAM.212 Two variations of 

elastic-net were included, with L1-L2 ratios of 0.25 and 0.75. Variations on the included logistic 

GAM with smoothing parameters of 0.5, 0.75, 1.0, 1.5, and 2.0. For Pr(𝑉𝑖
𝑠|𝑉𝑖, 𝑊𝑖, 𝑊𝑖

𝑠), the 20-
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fold super learner consisted of Poisson regression and Poisson GAM with the same smoothing 

parameters as before.  

6.2.4 Missing Data 

 Problems of missing data in networks are magnified since complete-case analyses that 

drop individuals with missing data change the topology of the network. To address missing data, 

a modified version of MICE was used. Imputations were summarized using Rubin’s Rule.198  

6.2.5 Sensitivity Analyses 

In sensitivity analyses, the focus was on missing data on vaccination and measurement 

error of the network. Vaccination had the largest extent of missing data of variables in the 

analysis. While imputed vaccination was used in the primary analyses, we explored estimation 

under the two extremes of all those with missing vaccination being vaccinated or being 

unvaccinated.  

Network-TMLE requires that the underlying network is correctly measured. Past 

research has shown that self-reported contacts are often underestimated when compared to 

other sources of data.155, 158, 159 To address measurement error of self-reported contacts, we 

used a recently proposed Bayesian approach.227 From each of the previous MICE imputations, 

a probability for each contact was estimated. These probabilities were estimated by combining a 

measurement model and network model. Priors for the measurement model were estimated 

using the Bluetooth and self-reported contacts from the iEpi subsample over the follow-up 

period. For the measurement model, a sensitivity of 0.7243 and specificity of 0.9897 for self-

reported contacts were used. For the network model, a stochastic block model with terms for 

dormitory, class year, gender, race, and vaccination were used. Additionally, a term was added 

whether either of the students drank alcohol, based on previous observations that students who 

drink alcohol have more social contacts.283 From these estimated probabilities, 100 different 

networks were generated. Summarization across the generated networks and missing data 

imputations were done using the nested variation of Rubin’s Rule.218 
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6.3 Results  

Of the 454 students who completed the baseline survey, 402 (89%) reported either 

receiving or not receiving the influenza vaccine. Of those, 161 (40%) reported receiving the 

vaccine (Table 6.1). There was a total of 190 (42%) ILI and 17 (4%) laboratory-confirmed 

influenza cases. Two (11%) of the laboratory-confirmed influenza cases were not ILI cases (i.e., 

asymptomatic cases). Of those who reported not receiving the vaccine, the most commonly 

cited reasons were tied to the convenience of accessing the vaccine (Table 6.2). Only two 

students reported being allergic to the vaccine. 

In the self-reported contact network, there were 828 edges with 71 isolates (Figure 6.1). 

The largest component of the network consisted of 311 students. Contacts were not assortative 

by vaccination for either the observed vaccination (-0.01; 95% CI: -0.06, 0.05) or imputed 

vaccination (-0.02; 95% CI: -0.10, 0.05). The degree distribution for the network was highly 

skewed, with many students reporting only a few contacts and a few students reporting a large 

number. Students with more than 13 contacts (3%) had their vaccination status held constant 

under all policies assessed. 

6.3.1 Vaccination Policies 

The policies considered shifted vaccination uptake from 40% up to 67% for the greatest 

increase in log-odds. As shown in Figure 6.2A, no difference in the risk of ILI occurred across 

the various shifts in log-odds or the variations between policies. For laboratory-confirmed 

influenza, a minor downward trend in risk occurred for all policies (Figure 6.2B). However, the 

estimated reduction was also consistent with no reduction in the risk of influenza.  

6.3.2 Sensitivity Analyses 

When comparing the extremes of all students with missing vaccination status as 

vaccinated or unvaccinated, the results were substantively similar (Figure A3.2, Figure A3.3). 

For the analyses of accounting for measurement error of self-reported contacts, a greater 

reduction in risk of influenza, as defined both by ILI and laboratory-confirmation, was observed 
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(Figure 6.3). At a shift of three in the log-odds, the risk of laboratory-confirmed influenza was 

0.02 (95% CI: 1%, 4%) for both policy 1 and policy 2. 

6.4 Discussion 

In this chapter, we demonstrated a recent extension to the TMLE framework to networks 

with the estimated risk of influenza under realistic policies among university students, including 

issues of missing data and measurement error, which are common in practice. Our primary 

results indicate a small reduction in the risk of laboratory-confirmed influenza. The reduction in 

the risk of influenza was greater when accounting for measurement error of self-reported 

contacts. However, results from both analyses are imprecise and are consistent with little-to-no 

reduction in overall risk. Furthermore, we did not observe any functional difference in the risk of 

influenza between the different policies to increase influenza vaccination uptake across the 

increases in log-odds of vaccination. 

Prior research has indicated a protective unit-treatment effect of the influenza vaccine 

during the 2012-2013 influenza season,64 and protective spillover effects in households68 and 

communities.70 Therefore, a reduction in the risk of influenza when increasing vaccination 

uptake would be expected. The relatively few influenza cases limit our ability to detect overall 

reductions in the risk of influenza. The lack of a reduction in ILI also results from most ILI cases 

being caused by another respiratory pathogen (e.g., respiratory syncytial virus, seasonal 

coronavirus, adenovirus), highlighting the limitation of ILI as a proxy for influenza among 

university students. There are also several sources of systematic biases that could explain only 

a small reduction in influenza risk being observed. 

First, weak dependence stipulates that only immediate contacts’ vaccination matters. 

While a weaker restriction than no interference, weak dependence may not be valid since the 

risk-period (10 weeks) is longer than the combined incubation and infectious periods for 

influenza.284 Relatedly, Spring Break may have impacted the results since the network may be 

heavily disrupted by travel and outside contacts. However, only one influenza case occurred in 
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the week immediately following Spring Break. Second, measurement error of the network 

remains. All contacts regardless of distance and time spent in contact are assumed to be 

equivalent in the model. However, both of these factors may play a role in transmission of 

respiratory pathogens. Third, model misspecification is possible. While a flexible super-learner 

was used, data-adaptive algorithms were limited, since methods like cross-fitting285 have yet to 

be extended for network-TMLE. Furthermore, misspecification of the summary measures is a 

concern. We specified 𝑉𝑖
𝑠 as a sum of immediate contacts’ vaccination and used a Poisson 

model to estimate Pr(𝑉𝑖
𝑠|𝑉𝑖 , 𝑊𝑖, 𝑊𝑖

𝑠). Use of a conditional density super-learner would allow for 

weaker assumptions for that model.278 Fourth, information on influenza vaccination was only 

available via self-report. Self-reported influenza vaccine has been shown to adequately 

correspond to actual receipt; but sensitivity and specificity has varied across studies when 

compared to medical records.286, 287 While medical records have been viewed as a true indicator 

of receipt, medical records miss other avenues outside of doctor offices and hospitals (e.g., 

pharmacies, vaccination clinics). Among the students in this study, 53 reported vaccine receipt 

at locations that would have been missed using medical records. 

While our analysis does not provide a clear answer to the question of which policies of 

increasing influenza vaccination among university students to best minimize the risk of influenza 

among those students, our work contributes to application of better approaches for the 

assessment causal effects for vaccination and other settings with interference. The assumption 

of no interference is unwarranted in infectious disease epidemiology and with recent 

methodological extensions for partial or general interference, its continued issuance is rapidly 

becoming less acceptable. Despite these developments, the assumption of no interference is 

still common in application. By allowing for interference, we were able to focus on the risk of 

influenza under a variety of policies. Through approaches like ours, selection among competing 

policies can be done more effectively. Lastly, our analysis compliments previous theoretical and 
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simulation work on network-TMLE by demonstrating its application with approaches to address 

systematic biases common in practice to address a question of public health importance.  

6.4.1 Conclusions 

Studies on contagious outcomes often leave the parameter of interest implicit as the 

unit-treatment effect; which is the marginal expectation of the outcome when changing a single 

unit’s exposure status holding the exposure of the remainder of the population constant. While 

this value can be important in assessment during development of vaccines or treatments, or 

under extreme constraints on possible policies; the unit-treatment effect may be of less interest 

to public health practitioners or policy makers when compared to the risk under policies that shift 

exposure, treatment, or vaccination distributions. Here we focused on large-scale changes in 

influenza vaccination uptake and subsequent risk of influenza among university students. Our 

results indicate a reduction in the risk of laboratory-confirmed influenza, but these results are 

consistent with no reduction. While our analysis does not inform strict selection between policies 

to increase influenza vaccination may be most beneficial to pursue among university students, it 

does exemplify what could be gained by focusing on other parameters available with 

interference. 
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6.5 Tables and Figures 

Table 6.1: Descriptive statistics for the eX-FLU analytic sample 

  Overall (n=454)  Vaccinated (n=161) 

  N %  N % 

Three-Day Isolation 225 50%  81 50% 

ILI case* 190 42%  65 40% 

Lab-confirmed Flu† 17 4%  2 1% 

Female 269 60%  104 65% 

 Missing 6   1  

Race      

 Asian 78 18%  34 22% 

 Black or African American 40 9%  10 6% 

 Native American 1 0%  0 0% 

 Native Hawaiian / Pacific Islander 1 0%  0 0% 

 White 294 67%  106 68% 

 Multi-racial 23 5%  7 4% 

 Missing 17   4  

Hispanic 20 5%  5 3% 

 Missing 25   6  

Age 19 [18, 19]  18 [18, 19] 

Class Year      

 Freshman 256 57%  97 61% 

 Sophomore 111 25%  35 22% 

 Junior 32 7%  12 8% 

 Senior 40 9%  14 9% 

 5+ years 10 2%  2 1% 

 Missing 5   1  

High Risk‡ 100 22%  55 34% 

Perceived Stress Scale-10 16.5 [12.0, 20.0]  16 [13.0, 20.0] 

 Missing 24   4  

Optimal Hand Hygiene# 107 27%  40 28% 

 Missing 59   19  

Alcohol Use 155 37%  51 33% 

 Missing 31   7  

Good Sleep Quality 340 77%  125 79% 

 Missing 15   2  

Unique Contacts†† 2 [1, 5]  2 [1, 4] 

Unique Vaccinated Contacts†† 1 [0, 2]  1 [0, 2] 

The sample consists of the 454 of 590 (77%) enrolled participants who completed the baseline survey. 

* ILI consisted of self-reported coughing and one of the following: fever, body aches, or chills 
† Influenza was laboratory-confirmed via quantitative PCR 
‡ High risk was defined as the presence of one of the following: asthma, reactive airway disorder, Type 
1/2 diabetes, currently receiving HIV/AIDS or cancer treatment 
# Optimal hand hygiene was defined as self-reporting hand washing at least 5 times a day and spending 
at least 20 seconds for each hand hygiene event 

** Good sleep quality was defined as self-reported fair or good sleep quality. 

†† Unique contacts were defined at week two of follow-up. 
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Table 6.2: Students self-reported barriers to influenza vaccine receipt 

 N % 

Education Policy* 50 20.7% 

Convenience Policy† 93 38.6% 

Reduced Cost Policy‡ 18 7.5% 

Allergic to Vaccine# 2 0.8% 

Policies were based on self-reported reasons why the student did not receive the influenza 
vaccine for 2012-2013. 241 students reported not receiving the vaccine 

* The intervention targets students who reported one of the following: the influenza vaccine 
causes influenza, they don’t get influenza, or they didn’t know they could get the influenza 
vaccine 
† The intervention targets students who reported one of the following: never got around to getting 
the vaccine, did not have transportation to get the influenza vaccine, or the hours the vaccine 
was available were inconvenient 
‡ The intervention targets students who reported one of the following: their health plan did not 
cover the influenza vaccine, or they did not have health insurance 

# Those who reported being allergic to the influenza vaccine were not vaccinated under any 
intervention strategy 
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Figure 6.1: Self-reported contacts between participants measured at the end of week 
one  

 

Blue indicates individuals who reported influenza vaccination, red indicates individuals who reported 
not receiving the influenza vaccine, and gray indicates individuals with missing influenza vaccination 
status. 71 students had no reported contacts. 
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Figure 6.2: Ten-week risk of influenza-like illness (A) and laboratory-confirmed 
influenza (B) under policies to increase log-odds of influenza vaccination 

 

Shaded regions indicated 95% CI. ILI was defined as the presence of coughing plus at least one of 
the following symptoms: fever, body aches, or chills. Laboratory-confirmation of influenza was 
determined via quantitative polymerase chain reaction 
Policy 1: theoretical policy to emphasize benefits of the vaccine and dispelling common myths. 
Policy 2: theoretical policy to address non-financial barriers to vaccination 
Policy 3: theoretical policy to address financial barriers to vaccination 
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Figure 6.3: Measurement error sensitivity analysis of the ten-week risk of influenza-
like illness (A) and laboratory-confirmed influenza (B) under policies to increase 
log-odds of influenza vaccination 

 

Shaded regions indicated 95% CI. ILI was defined as the presence of coughing plus at least one of 
the following symptoms: fever, body aches, or chills. Laboratory-confirmation of influenza was 
determined via quantitative polymerase chain reaction. 
Policy 1: theoretical policy to emphasize benefits of the vaccine and dispelling common myths. 
Policy 2: theoretical policy to address non-financial barriers to vaccination 
Policy 3: theoretical policy to address financial barriers to vaccination 
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CHAPTER 7: CONCLUSIONS 

University students have sub-optimal influenza vaccination rates, a high influenza attack 

rate, and may be an important demographic population for transmission of influenza.93-95, 98, 99, 

101-104 This dissertation aimed to compare different strategies or policies of increasing influenza 

vaccination among university students and the subsequent risk of influenza. To estimate 

influenza risk, we used a recent extension of TMLE for dependent data and implemented a 

Bayesian procedure to reduce measurement error associated with self-reported contacts. To 

guide the application of those methods, two simulation studies were conducted. In summary, the 

work presented here exemplifies a practical analysis focused on estimands important for public 

health decisions with applications for vaccination and infectious disease risk. 

 This work addressed the estimation of the risk of influenza through three aims. First, a 

simulation study was conducted to compare imputation and Bayesian approaches to address 

measurement of edges in a network. While both MIME and Bayesian procedures could be used 

to address measurement error of edges, we found the Bayesian approach to have more stable 

performance and avoid the need for the extensive collection of a gold-standard measure from a 

random sample of the population. However, informative priors for sensitivity and specificity were 

necessary for the context of a single observation of a network. Second, another simulation study 

was conducted to evaluate the finite-sample performance of network-TMLE. Previous studies 

had only explored few data-generating mechanisms or simple random graphs. Network-TMLE 

outperformed an IID-TMLE across multiple settings with spillover effects. However, we found 

the performance of Network-TMLE to diminish for policies where individuals had probabilities 

close to one for exposure (e.g., CI coverage dropped below expected levels for policies where 
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nearly all individuals were exposed). The reduced performance is likely due to a lack of 

statistical support in the data, where no individuals had a majority of their contacts exposed but 

had nearly all of their contacts exposed under the policy. Performance differed by the exposure 

summary measure and the structure of the network, which had differing support requirements. 

Furthermore, restriction by degree generally improved performance for skewed degree 

distributions. Finally, we applied what was learned in the simulation studies to estimate changes 

in the risk of influenza under various policies to improve influenza vaccination uptake across a 

range of plausible values. In the primary analysis, results were consistent with little-to-no 

difference in risk of both ILI and laboratory-confirmed influenza for all policy variations. When 

accounting for measurement error, a greater reduction in the risk was observed. Previous 

evidence has found discrepancies between self-reported and sensor-collected contacts.155-159 

Additionally, differences were observed with the eX-FLU data when comparing self-reported 

contacts versus those recorded by Bluetooth. The difference between the primary and 

measurement error results indicates sensitivity of the findings to assumptions regarding the 

measurement of the network, and that measurement error was likely an issue. Approaches to 

assess the sensitivity of findings to measurement error should be regularly used with network-

TMLE in practice. 

7.1 Study Findings 

In Chapter 4, estimation of common descriptive parameters of a network was shown to 

potentially be biased when either non-informative or informative measurement error of edges 

was present. The extent of bias varied by both the parameter, the true structure of the network, 

and whether measurement error was informative. Previous studies on the robustness of 

centrality measures (degree, betweenness, closeness, and eigenvector centrality) have found 

the impact of measurement error depends on the structure of the true network and the exact 

measure being used.160-162 However, these studies focused on non-informative measurement 

error and centrality measures. Our simulation results extend these previous studies by 
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considering the impact of imperfect sensitivity and specificity jointly, informative measurement 

error, and other common network parameters beyond centrality. Consistent with the previous 

work, bias due to measurement error of edges was observed to be dependent on the chosen 

measure; the true, underlying structure of the network; and whether measurement error was 

informative. 

To analytically address measurement error of edges, two proposed approaches were 

directly compared. MIME-ERGM was able to address measurement error, but its performance 

was limited by several caveats. First, MIME-ERGM had sub-par CI coverage when the gold-

standard subsample consisted of only 40% of the network. Next, performance was poor in terms 

of both bias and CI coverage when the gold-standard subsample was selected by RDS. Lastly, 

MIME-ERGM had difficulties when the true network contained higher-order dependencies 

between nodes (i.e., triangles). Despite the inclusion of the geometrically weighted edgewise 

shared partners term, performance was inadequate.  

Even in the context of a single measured network, the Bayesian procedure was found to 

perform adequately in almost all scenarios. A key advantage of the Bayesian approach over 

MIME, is that a gold-standard measure need not be available (nor even exist). However, this 

advantage comes at the price of heavy reliance on priors when only a single observation of the 

network is available. Without informative priors, difficulty in reconstructing the network may 

occur. Additionally, the Bayesian procedure failed to capture triangles, since a triangle term was 

not included in the network model. 

In Chapter 5, we conducted an extensive simulation study regarding the performance of 

network-TMLE. Preceding simulation studies on the finite sample performance of network-TMLE 

had only considered relatively simple random graphs, few data-generating mechanisms, and 

made no direct comparisons to other estimators.150, 151 Our simulation study expanded this 

previous work by using three networks that exhibited different structural properties (including a 

real-world contact network among university students), assessing various combinations of unit-
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treatment and spillover effect combinations, using a Susceptible-Infected-Recovered model as a 

data generating mechanism, directly comparing network-TMLE with IID-TMLE, comparing 

different stochastic policy specifications, and providing an implementation of network-TMLE in 

Python. These simulations can help to further guide the application of network-TMLE. 

When data was IID, IID-TMLE performed as expected, with little bias and near 95% CI 

coverage. When spillover effects were included in the data generating mechanism, IID-TMLE 

was biased, either under-estimating or over-estimating the mean depending on the specified 

policy. The poor performance was most stark for the scenario of a continuous outcome. These 

simulations demonstrate the danger of ignoring spillover effects when assessing mean 

outcomes under differing policies.  

Network-TMLE was demonstrated under various unit-treatment and spillover effects, and 

outperformed IID-TMLE in terms of bias and CI coverage when spillover effects were present. 

This illustrates the importance of considering interference. For both the naloxone-opioid 

overdose and diet-BMI mechanisms, bias was minimal and CI coverage was near expected 

levels. For the uniform random graph, the non-parametric modeling approach for the exposure 

summary measure had worse CI coverage compared to the parametric model for policies where 

a large proportion of the population was exposed. For the clustered power-law random graph 

and the eX-FLU network, restricting by degree improved CI coverage for the naloxone-opioid 

overdose mechanism. For diet-BMI (where the summary measure for diet was a threshold), the 

performance was similar when restricting by degree or not. For the vaccine and infection 

transmission mechanism, 95% CI coverage was reduced, particularly at the extremes of the 

stochastic policies. However, the non-parametric model for the uniform graph and transmission 

mechanism led to improved coverage, indicative of potential misspecification of the summary 

measure for the exposure. For the statin-ASCVD mechanism, we found network-TMLE 

performance to have little bias, but increased ESE relative to IID-TMLE and decreased CI 

coverage for policies where all individuals had a high probability of receiving statins. These 
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results are likely due to issues of data sparsity that result from immediate contacts’ exposure 

increasing the dimensionality of the model relative to the IID-TMLE approach. 

 These simulations suggest the following guidelines for application. First, restrictions by 

degree should be used when the exposure summary measure consists of multiple categories 

and the degree distribution of the network is skewed. When only a few individuals have many 

contacts and the summary measure consists of a count of exposed contacts, those few 

individuals may not have a ‘stand-in’ within the network. Instead, those individuals can be 

considered as a background feature and inference is performed for the remainder of nodes. 

When individuals with outlying values for degree are included, network-TMLE performed less 

well. Second, practical violations of positivity may be more common since policies change both 

individual and immediate contacts’ exposures. For example, a policy that increases the 

probability of vaccination applies to both an individual’s vaccination and their contacts’ 

vaccination, both which define an individual’s potential outcome. While stochastic policies rely 

on less support than deterministic ones, when exposure or treatment is less common, 

estimating the mean for a policy where most of the population is exposed may not be 

adequately supported by the data. For example, if influenza vaccination is uncommon in a 

population, then few individuals will have all of their immediate contacts vaccinated.  

For assessment of a policy where nearly all individuals received the influenza vaccine, nearly all 

individuals will have their immediate contacts vaccinated. Therefore, the observed data may not 

contain information for those types of policies. To help assess support for policies, the following 

diagnostic plot procedure can be used. The values for the chosen summary measure are plotted 

stratified by the exposure for the observed data. Similarly, the stratified exposure summary 

measure under the policy is plotted. If little overlap occurs between the distributions of summary 

measures, this can be indicative of issues. Lastly, focusing on shifts in the log-odds of exposure 

may be more reasonable to assess compared to setting all individuals in the population to a 

constant probability. 
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In Chapter 6, the lessons learned from the previous simulation studies were used to 

estimate the risk of influenza under different distributions of influenza vaccination among 

university students. In the primary analysis, no difference in the risk of ILI across the various 

policies was observed. For laboratory-confirmed influenza, a minor decrease in risk occurred for 

all policies. However, the estimates in risk for both definitions of influenza were imprecise and 

the confidence intervals were consistent with no reduction in the risk of influenza. 

 To address measurement error of self-reported contacts, the Bayesian procedure for 

measurement assessed in Chapter 4 was used. Data collected from the iEpi subsample was 

further used to inform priors on the sensitivity and specificity of self-reported contacts for the 

measurement model. For the estimated network model, contacts were largely driven by 

dormitory assignment but were also related to gender, race, class year, and alcohol use. When 

accounting for measurement error, the reduction in risk of influenza (defined in terms of both ILI 

and laboratory-confirmation) was further reduced for policies with greater shifts in the log-odds. 

The greater reduction in influenza risk, in-line with theoretical expectations on the influenza 

vaccine, indicates that measurement error due to the self-reporting of contacts biased the 

primary results. Policies targeting the different categories of students had little difference 

between them. Therefore, our results do not provide a clear strategy to reduce influenza risk. It 

should also be noted that the conclusions from both the primary and measurement error 

analyses were consistent with a small or no reduction in the risk of influenza in the population. 

7.2 Strengths and Limitations 

 This work provides a notable contribution to studying influenza vaccination and 

methodological approaches for infectious disease epidemiology studies more generally. The 

statistical analyses presented here focus on an estimand of import for public health decision 

making – what the risk of influenza would have been under changes in the distribution of 

influenza vaccination accounting for contacts between students. Previous work on influenza 

vaccination more broadly has tended to focus on the unit-treatment effect of the influenza 
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vaccine,50, 128, 129 which may be of lesser interest for public health decision making. While the 

policies assessed are somewhat non-specific in their exact application (e.g., what the 

educational materials would contain, how a vaccination clinic would be publicized, etc.), there 

are several advantages to our approach. First, the policies focused on reported reasons for not 

receiving the influenza vaccine and adhered to the contraindications for the vaccine.288 Second, 

shifts in log-odds for each policy were further varied across a range of plausible values. The 

focus on stochastic policies stands in contrast to the usual focus on all-exposed or none-

exposed estimands, which are optimistic in the sense of possible changes in the distribution of 

exposures.255, 272-274 Previous approaches to increase influenza vaccination uptake have 

resulted in only minor to moderate increases in vaccine receipt.94, 95, 275, 276 Therefore, scenarios 

of everyone receiving the influenza vaccine are of little interest. By exploring variations in 

shifting the log-odds of vaccination, how effective the policy would have to be at increasing 

vaccine uptake was also compared and suggested that continuing to increase the probabilities 

of vaccination uptake continued to reduce the risk of influenza. 

There are also several advantages of the eX-FLU study design that contributed 

important elements to our analyses. Firstly, the nasal and throat specimen collection strategy of 

the original eX-FLU study allowed for the capture of asymptomatic influenza infections. Second, 

electronic sensor collected contacts were captured. While these measurements were not 

available for the full population, they did allow for informed priors for the sensitivity and 

specificity of self-reported contacts in this population. Third, the eX-FLU study consisted of 

rigorous follow-up of a large and geographically fixed study population. 

 Regarding the analytical approach of this work, several quantitative approaches were 

used to address potential biases. Furthermore, the finite-sample performance of the methods 

used was assessed through extensive simulation studies. First, the performance of network-

TMLE and two competing approaches to quantitatively accounting for measurement error of 

edges were assessed in a variety of contexts. These simulation studies contributed to the 
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application of those methods in a practical setting. The simulation study of network-TMLE was 

an extensive assessment, included a real-world network, and explicitly compared performance 

with a TMLE that assumed data was IID. The measurement error of edges simulation study 

compared multiple approaches for various parameters in multiple network generation models. 

Second, measurement error for influenza and the contacts was explored. As previous work has 

indicated, defining influenza by the presence of ILI misattributes respiratory symptoms to 

influenza48 and can result in underestimates of the effectiveness of influenza vaccination.80 For 

this reason, laboratory-confirmed influenza was assessed in addition to ILI. Finally, self-reported 

contacts have been observed as underestimates compared to electronic sensors in other 

works.155-159 To account for measurement error of self-reported contacts, a Bayesian approach 

was used,165 which was further informed by the iEpi subsample. 

 Our analyses regarding influenza risk have several limitations. During the 2012-2013 

influenza season, both the inactivated and live attenuated influenza vaccines were available.288 

Unfortunately, information on the type of influenza vaccine students received was not collected. 

Previous studies on the unit-treatment effect of the influenza vaccine have found  

differences in effectiveness for children and adolescents.60, 289, 290 If these differences extend to 

young adults, then the inability to distinguish between the two vaccines in our analysis can be 

viewed as a violation of the treatment-variation irrelevance assumption.256, 291 A potential way to 

side-step this issue is to re-interpret the results for the risk of influenza as a weighted average of 

the different types of vaccines, where the unobserved weights correspond to the probability of 

receiving each vaccine that naturally occurred in the population.292, 293 This interpretation may 

questionable for approaches like vaccination clinics since only a singular type of influenza 

vaccine may be offered at those sites.  

 Conditional exchangeability necessitates that potential outcomes are independent of 

vaccination. Under weak dependence, this independence is extended to the vaccination of 

immediate contacts. While we included a variety of previously identified risk factors and health 
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behaviors, the concern of unobserved confounders remains. One issue is that follow-up for 

influenza infection did not start until January, but the influenza season starts in the Autumn. 

Therefore, preceding influenza cases (and subsequent immunity to circulating influenza during 

the follow-up period) could have been more common in the unvaccinated individuals and led to 

an over-estimate of the risk. Additionally, all contacts were considered equivalent, but 

differences in their context (e.g., indoor versus outdoor, dormitory room versus classroom) likely 

have differential probabilities of influenza transmission. Lastly, the collapsing of several 

categorical variables into fewer categories (e.g., race, high-risk conditions) assumes that those 

collapsed categories are homogenous. However, that may not be the case.  

 Relatedly, models were used for both the exposure and outcome. While several flexible 

algorithms were included in a super learner, the algorithms that could be included in the super 

learner were restricted to be Donsker. Restrictions on the complexity of algorithms in necessary 

without extension of procedures like cross-fitting.252, 285 Related to the issue of the model 

specification, is the specification of the summary measure of immediate contacts’ vaccination. 

While a non-parametric approach for estimation of the exposure summary measure exists, its 

application is precluded from use with highly skewed degree distributions. Finally, the 

assumption of weak dependence limits interference to the vaccination of immediate contacts. 

This assumption is unlikely since the follow-up period is longer than the combined incubation 

and infectiousness period of influenza.284 Under the assumption that influenza vaccination is 

protective for contacts, the transmission of influenza would be reduced among further out 

contacts. Therefore, the violation of the weak dependence may mean the risk of influenza under 

the policies is lower than estimated.  

 With regards to missing data, an extension of MICE was used to account for multiple 

variables with missing data. For MICE to address missing data, the imputation models must 

include all variables that are common causes of both the values being missing and the missing 

values themselves. Additionally, the use of parametric models requires that the models are 
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flexible enough to capture the true distribution. Unfortunately, the complexity of some models 

was restricted due to model convergence issues. Another missing data issue is the students 

who were not enrolled in the study. While students were recruited from six dormitories, not 

everyone in each dormitory was enrolled. Therefore, unobserved links capable of influenza 

transmission likely exist.  

 Furthermore, our estimate is for the sample risk. In other words, the targeted quantity 

was the risk of influenza for the students in the study. Therefore, our results cannot be extended 

outside of the sample. Whether and under what assumptions our results could be generalized or 

transported to other populations is an open question. Even if our inferential model was for a 

larger population than the sample, there remains the issue of inconsistent matching between the 

vaccine strain and the circulating influenza strain each year. During poor strain matching years, 

the reduction in risk of influenza may be substantially lessened compared to seasons with ideal 

strain matching. Additionally, the severity of the preceding influenza season may further 

enhance or reduce vaccination uptake either directly or through effective communication 

regarding harms. 

Finally, the ability to differentiate between policies in terms of reducing the risk of 

influenza was hampered by the relatively few laboratory-confirmed influenza cases. Since only 

about 4% of students had laboratory-confirmed influenza, the maximum reduction that could 

have been observed was 4%. While ILI was more common, it is subject to measurement error 

when used as a proxy for influenza.80 

7.3 Public Health Implications 

 Focus solely on the unit-treatment effect may undervalue the benefits of the influenza 

vaccine. By ignoring protective spillover effects, the benefits to increasing overall vaccination 

uptake may be underestimated. Realistic increases in the log-odds of vaccination among 

university students resulted in a reduced risk of influenza. This difference was more pronounced 

when accounting for measurement error of self-reported contacts. However, stark differences 
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between policies in terms of the subsequent influenza risk were not observed. Therefore, a clear 

preference in policy approach was not indicated. 

More broadly, the methodological approaches detailed here can be applied to a variety 

of settings. Despite the long-recognized existence of interference in infectious disease 

epidemiology,136 the implications of interference and dependence between individuals are often 

ignored. As an illustrative example of this issue, consider the early research on concurrent 

sexual partners as a risk factor for HIV infection. Early research studies concluded that 

concurrent sexual partnerships were not significantly associated with increased acquisition of 

HIV infection.294-296 However, these conclusions were in contrast to mathematical modeling 

studies from around the same time.297, 298 While several explanations for the discrepant results 

exist, one reason is that empirical studies did not account for the structure of sexual 

networks.299, 300 A more recent observational study that incorporated information on the structure 

of the underlying sexual network did find concurrency to be associated with increased HIV 

transmission.301 This example highlights the need to think beyond the individual when studying 

infectious diseases. 

 The ongoing SARS-CoV-2 pandemic has only further stressed the importance of 

considering dependencies between individuals for infectious disease research. As another 

illustrative example, consider the effectiveness of face masks. When evaluating the 

effectiveness of masks, the distinction between protection for the wearer (unit-treatment effects) 

and protection for the wearer’s contacts (spillover effects) is vital.302, 303 For laboratory-confirmed 

influenza, the current evidence is consistent with a minor protective effect of individuals but 

pooled estimates across randomized control trials are still imprecise (risk ratio 0.78; 95% CI: 

0.51-1.20).304 But even barring protection for the wearer, the widespread use of masks could be 

beneficial due to reduced SARS-CoV-2 or influenza transmission from infectious individuals. By 

reducing the virus particles exhaled, transmission from asymptomatic or symptomatic 

individuals can be reduced or prevented.305, 306 Because of these competing mechanisms for 



 

127 

what constitutes protectiveness of masks or other interventions, studies to address unit-

treatment, spillover effects, and their combination are needed. 

 Interference also extends beyond infectious diseases, with examples including 

household opioid use in pharmacoepidemiology,243 passive tobacco smoke exposure in cancer 

epidemiology,244, 245 and behavior among children within classrooms in developmental 

psychology.246 Even in the absence of interference, dependencies between observations can be 

of concern. Network dependence, when social connections give rise to statistical dependencies, 

can lead to both spurious associations and invalid variance estimates even without the 

occurrence of interference.307 The occurrence of network dependence has been illustrated with 

the Framingham Heart Study,307 which has been extensive used under the assumption that 

enrolled individuals were IID. The assumption of no interference and no network dependence 

may be unlikely in many substantive topic areas in epidemiology. 

 From the vantage point of these analytical difficulties, the simulation studies and 

application of network-TMLE to address a question regarding influenza vaccination can be 

viewed as a step towards more rigorously applied research in infectious diseases and 

epidemiology more broadly.  

7.4 Future Research  

 Influenza vaccine research would benefit from a focus on other estimands in addition to 

the unit-treatment effect. We demonstrated a method for general interference; however, other 

approaches for general interference and partial interference are available.139-141, 145, 149, 308, 309 

Partial interference study designs have been used to quantify the spillover effect of increasing 

influenza vaccination among children.71-75 Vaccine and infectious disease research more 

generally, would benefit from greater adoption of these analytical approaches. Examining 

vaccine effects through the lens of interference also has implications regarding studies of unit-

treatment vaccine effectiveness as well. While comparisons in systematic reviews and meta-

analyses directly compare unit-treatment vaccine effectiveness across studies,50 those 
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estimates may not be comparable due to differences in uptake the vaccination status of the 

population or how vaccination is distributed. Specifically, the 𝑣−𝑖 part of the potential outcomes, 

𝑌𝑖(𝑣𝑖, 𝑣−𝑖), may be dissimilar across individual studies. Ultimately, a deeper focus on 

interference and its implications can serve to improve influenza vaccine research and infectious 

disease research more broadly.  

 Regarding the application of network-TMLE, there are several areas where further 

simulation studies would be beneficial. First, best practices regarding model selection for the 

exposure and outcomes models need further development. The selection of summary 

measures, particularly for the summary measure for the exposure, requires further exploration. 

Network-TMLE requires that summary measures are correctly specified. However, knowing the 

correct summary measure may be difficult if not impossible, particularly in settings of infection 

transmission. Sensitivity to misspecification of the summary measure with flexible models and 

alternative approaches for estimation of exposure summary measure model (e.g., conditional 

density super learner277, 278) are remaining gaps. Second, whether and how the population 

variance can be estimated under weaker conditions would be beneficial. The current 

requirements of the confounders being IID limit its potential use. Third, other estimands should 

also be explored. A procedure has been described for estimating marginal unit-treatment 

effects,151 but how network-TMLE can be generalized to other related estimands (i.e., spillover 

effects, total effects) is also of interest. Fourth, the performance of network-TMLE should be 

explored when the network is only partially observed. Lastly, a longitudinal extension of 

network-TMLE is needed. By defining the risk period into smaller intervals and applying a 

longitudinal network-TMLE, the weak dependence assumption could be made more plausible. 

 For addressing measurement error of edges, implementations of MIME that use different 

statistical models should be assessed. For example, additive and multiplicative effect models 

have been proposed as an alternative to ERGM more generally. These models have the 

advantage of avoiding the need to explicitly specify features of the network like triangles. 
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Therefore, the performance of MIME may be improved in clustered networks if additive and 

multiplicative effect models are used instead. In regards to the Bayesian approach to 

addressing measurement error, allowing for more flexible models to capture features like 

triangles in the network model is needed. Furthermore, the expansion of a Bayesian model to 

incorporate other systematic errors, such as missing data or measurement error of node 

attributes, would be beneficial for practice. 

7.5 Conclusions 

 Our work is the first, to our knowledge, to assess the risk of influenza under policies 

shifting in the probability of students receiving the influenza vaccine. Preceding work has either 

focused on vaccination receipt as the outcome94, 95 or has focused exclusively on the unit-

treatment (i.e., direct) effectiveness of the influenza vaccine.129 Informed by the preceding work, 

several distinct strategies were conceptualized and explored over a range of plausible shifts in 

the log-odds of vaccination. To accomplish this, we used several recently developed methods, 

including Bayesian approaches to account for measurement error and an extension of TMLE for 

dependent data. To inform our application of these methods, we conducted extensive simulation 

studies regarding performance. While our analyses are perhaps less informative regarding the 

selection of a singular strategy to increase influenza vaccination to reduce influenza risk among 

university students, the simultaneous application of network-TMLE and approaches to 

measurement error of edges is notable. The results of our simulations and analyses can serve 

as an example for future applications in vaccine and infectious disease research more broadly.  
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APPENDIX 1: CHAPTER 4 SUPPLEMENTARY MATERIALS 

For network-3, MIME-ERGM-SRS failed to converge 119 times for non-informative 

measurement error with 40% of the gold-standard, 39 times for non-informative measurement 

error with 60% of the gold-standard, 108 times for informative measurement error with 40% of 

the gold-standard, and 35 times for informative measurement error with 60% of the gold-

standard. MIME-ERGM-RDS failed to converge 7 times for non-informative measurement error 

with 40% of the gold-standard, and 8 times for informative measurement error with 40% of the 

gold-standard. None of the other approaches failed to converge.  
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Table A1.1: Bias for parameters for network-1 

  Edges Density Assortativity Degree Cluster 

True 0.2 0.004 0.000 0.00 0.000 

Non-informative      

 Naïve* 138.6 0.007 0.040 2.77 0.006 

 Gold-standard SRS 40% -326.8 0.000 -0.016 -4.68 -0.010 

 Gold-standard SRS 60% -248.6 0.000 -0.006 -3.10 -0.005 

 Gold-standard RDS 40%† -269.2 0.018 -0.005 -1.80 0.012 

 Gold-standard RDS 60%† -178.3 0.010 -0.007 -0.76 0.007 

 MIME-SRS-40% -1.71 0.000 0.005 -0.03 0.000 

 MIME-SRS-60% 1.54 0.000 -0.002 0.03 0.000 

 MIME-RDS-40%† 356.1 0.018 0.012 7.12 0.023 

 MIME-RDS-60%† 193.1 0.010 0.009 3.86 0.013 

 Bayes -5.0 0.000 -0.002 -0.10 0.000 

Informative      

 Naïve* 124.5 0.006 -0.088 2.49 0.006 

 Gold-standard SRS 40% -326.8 0.000 -0.016 -4.68 -0.010 

 Gold-standard SRS 60% -248.6 0.000 -0.006 -3.10 -0.005 

 Gold-standard RDS 40%† -269.2 0.018 -0.005 -1.80 0.012 

 Gold-standard RDS 60%† -178.2 0.010 -0.007 -0.76 0.007 

 MIME-SRS-40% 0.7 0.000 0.004 0.02 0.000 

 MIME-SRS-60% -1.8 0.000 0.007 -0.35 0.000 

 MIME-RDS-40%† 353.3 0.018 0.011 7.07 0.023 

 MIME-RDS-60%† 194.4 0.010 0.009 3.89 0.013 

  Bayes -4.5 0.000 0.003 -0.09 0.000 
SRS: simple random sample, RDS: respondent-driven sampling, MIME: multiple imputation for 
measurement error. Non-informative consisted of measurement error occurring randomly. Informative 
consisted of measurement error occurring conditional on node pairs having the same values of 𝐵. 
Bias was defined as the estimate parameter from the corresponding method minus the true 
parameter. The true parameter was calculated as the mean parameter from 10,000 generated 
networks. 

* Naïve consisted of the parameters estimated using the observed (mismeasured) network 
† Respondent-driven sampling consisted of 10% of the subsample size being selected as seeds. Each 
seed node then nominated three nodes based on random selection of nodes that it shared a true edge 
with. The procedure was repeated for nominated nodes until the gold-standard subsample size was 
met. 
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Table A1.2: Empirical standard error for parameters for network-1 

  Edges Density Assortativity Degree Cluster 

True 20.1 0.001 0.049 0.40 0.008 

Non-informative      

 Naïve* 21.6 0.001 0.042 0.43 0.007 

 Gold-standard SRS 40% 7.6 0.002 0.120 0.38 0.013 

 Gold-standard SRS 60% 11.9 0.002 0.079 0.40 0.011 

 Gold-standard RDS 40%† 7.0 0.002 0.085 0.35 0.020 

 Gold-standard RDS 60%† 10.6 0.001 0.066 0.35 0.013 

 MIME-SRS-40% 50.4 0.003 0.107 1.01 0.004 

 MIME-SRS-60% 32.9 0.002 0.072 0.66 0.003 

 MIME-RDS-40%† 45.2 0.002 0.074 0.90 0.004 

 MIME-RDS-60%† 29.6 0.001 0.058 0.59 0.003 

 Bayes 27.2 0.001 0.061 0.55 0.004 

Informative      

 Naïve* 21.0 0.001 0.039 0.42 0.006 

 Gold-standard SRS 40% 7.6 0.002 0.120 0.38 0.013 

 Gold-standard SRS 60% 11.9 0.002 0.079 0.40 0.011 

 Gold-standard RDS 40%† 7.0 0.002 0.085 0.35 0.020 

 Gold-standard RDS 60%† 10.6 0.001 0.066 0.35 0.013 

 MIME-SRS-40% 49.5 0.002 0.106 0.99 0.004 

 MIME-SRS-60% 31.8 0.002 0.070 0.64 0.003 

 MIME-RDS-40%† 44.9 0.002 0.076 0.90 0.004 

 MIME-RDS-60%† 30.2 0.002 0.057 0.60 0.003 

  Bayes 27.5 0.001 0.060 0.55 0.004 
SRS: simple random sample, RDS: respondent-driven sampling, MIME: multiple imputation for 
measurement error. Non-informative consisted of measurement error occurring randomly. Informative 
consisted of measurement error occurring conditional on node pairs having the same values of 𝐵. 
Bias was defined as the estimate parameter from the corresponding method minus the true 
parameter. The true parameter was calculated as the mean parameter from 10,000 generated 
networks. 

* Naïve consisted of the parameters estimated using the observed (mismeasured) network 
† Respondent-driven sampling consisted of 10% of the subsample size being selected as seeds. Each 
seed node then nominated three nodes based on random selection of nodes that it shared a true edge 
with. The procedure was repeated for nominated nodes until the gold-standard subsample size was 
met. 
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Table A1.3: Confidence interval coverage for parameters for network-1 

  Edges Density Assortativity Degree Cluster 

True 100% 94% 83% 99% 95% 

Non-informative      

 Naïve* 6% 0% 67% 0% 99% 

 Gold-standard SRS 40% 0% 94% 82% 0% 49% 

 Gold-standard SRS 60% 0% 96% 83% 0% 78% 

 Gold-standard RDS 40%† 0% 0% 84% 12% 94% 

 Gold-standard RDS 60%† 0% 0% 83% 88% 96% 

 MIME-SRS-40% 92% 71% 73% 80% 100% 

 MIME-SRS-60% 100% 90% 88% 96% 100% 

 MIME-RDS-40%† 0% 0% 74% 0% 22% 

 MIME-RDS-60%† 0% 0% 89% 0% 100% 

 Bayes 100% 90% 87% 95% 100% 

Informative      

 Naïve* 19% 0% 23% 0% 99% 

 Gold-standard SRS 40% 0% 94% 82% 0% 49% 

 Gold-standard SRS 60% 0% 96% 83% 0% 76% 

 Gold-standard RDS 40%† 0% 0% 84% 12% 94% 

 Gold-standard RDS 60%† 0% 0% 83% 88% 96% 

 MIME-SRS-40% 93% 73% 74% 83% 100% 

 MIME-SRS-60% 99% 91% 90% 96% 100% 

 MIME-RDS-40%† 0% 0% 71% 0% 21% 

 MIME-RDS-60%† 0% 0% 89% 0% 100% 

  Bayes 99% 89% 87% 96% 100% 
SRS: simple random sample, RDS: respondent-driven sampling, MIME: multiple imputation for 
measurement error. Non-informative consisted of measurement error occurring randomly. Informative 
consisted of measurement error occurring conditional on node pairs having the same values of 𝐵. 
CI coverage was calculated as the percent of 95% CI that contained the true value. 

* Naïve consisted of the parameters estimated using the observed (mismeasured) network 
† Respondent-driven sampling consisted of 10% of the subsample size being selected as seeds. Each 
seed node then nominated three nodes based on random selection of nodes that it shared a true edge 
with. The procedure was repeated for nominated nodes until the gold-standard subsample size was 
met. 
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Table A1.4: Bias for parameters for network-2 

  Edges Density Assortativity Degree Cluster 

True 1.1 0.000 -0.001 0.00 0.000 

Non-informative      

 Naïve* 144.5 0.007 -0.019 2.89 0.007 

 Gold-standard SRS 40% -283.0 0.000 -0.008 -4.06 -0.009 

 Gold-standard SRS 60% -215.3 0.000 -0.007 -2.69 -0.005 

 Gold-standard RDS 40%† -225.3 0.018 -0.008 -1.18 0.009 

 Gold-standard RDS 60%† -144.5 0.010 -0.007 -0.33 0.007 

 MIME-SRS-40% 0.6 0.000 0.003 0.01 0.000 

 MIME-SRS-60% -0.3 0.000 0.000 -0.01 0.000 

 MIME-RDS-40%† 354.7 0.018 -0.003 7.09 0.023 

 MIME-RDS-60%† 192.8 0.010 -0.004 3.86 0.013 

 Bayes -10.4 -0.001 0.003 -0.21 -0.001 

Informative      

 Naïve* 133.9 0.007 -0.163 2.68 0.007 

 Gold-standard SRS 40% -283.0 0.000 -0.008 -4.06 -0.009 

 Gold-standard SRS 60% -215.3 0.000 -0.007 -2.69 -0.005 

 Gold-standard RDS 40%† -225.3 0.018 -0.008 -1.18 0.009 

 Gold-standard RDS 60%† -144.5 0.010 -0.007 -0.33 0.007 

 MIME-SRS-40% -0.5 0.000 0.013 -0.01 0.001 

 MIME-SRS-60% 1.8 0.000 0.002 0.04 0.000 

 MIME-RDS-40%† 354.5 0.018 -0.004 7.09 0.023 

 MIME-RDS-60%† 191.1 0.010 0.000 3.82 0.013 

  Bayes -5.2 0.000 0.007 -0.11 -0.001 
SRS: simple random sample, RDS: respondent-driven sampling, MIME: multiple imputation for 
measurement error. Non-informative consisted of measurement error occurring randomly. Informative 
consisted of measurement error occurring conditional on node pairs having the same values of 𝐵. 
Bias was defined as the estimate parameter from the corresponding method minus the true 
parameter. The true parameter was calculated as the mean parameter from 10,000 generated 
networks. 

* Naïve consisted of the parameters estimated using the observed (mismeasured) network 
† Respondent-driven sampling consisted of 10% of the subsample size being selected as seeds. Each 
seed node then nominated three nodes based on random selection of nodes that it shared a true edge 
with. The procedure was repeated for nominated nodes until the gold-standard subsample size was 
met. 
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Table A1.5: Empirical standard error for parameters for network-2 

  Edges Density Assortativity Degree Cluster 

True 18.1 0.001 0.055 0.36 0.008 

Non-informative      

 Naïve* 21.9 0.001 0.046 0.44 0.007 

 Gold-standard SRS 40% 7.5 0.002 0.137 0.38 0.012 

 Gold-standard SRS 60% 11.0 0.002 0.087 0.37 0.011 

 Gold-standard RDS 40%† 6.3 0.002 0.096 0.32 0.019 

 Gold-standard RDS 60%† 9.5 0.001 0.069 0.32 0.013 

 MIME-SRS-40% 46.8 0.002 0.119 0.94 0.004 

 MIME-SRS-60% 29.2 0.001 0.079 0.58 0.002 

 MIME-RDS-40%† 41.7 0.002 0.081 0.83 0.004 

 MIME-RDS-60%† 27.7 0.001 0.061 0.55 0.002 

 Bayes 26.6 0.001 0.070 0.53 0.003 

Informative      

 Naïve* 21.7 0.001 0.042 0.43 0.007 

 Gold-standard SRS 40% 7.5 0.002 0.137 0.38 0.012 

 Gold-standard SRS 60% 11.0 0.002 0.087 0.37 0.011 

 Gold-standard RDS 40%† 6.3 0.002 0.096 0.32 0.019 

 Gold-standard RDS 60%† 9.5 0.001 0.069 0.32 0.013 

 MIME-SRS-40% 45.2 0.002 0.118 0.90 0.004 

 MIME-SRS-60% 30.0 0.002 0.078 0.60 0.003 

 MIME-RDS-40%† 42.1 0.002 0.078 0.84 0.004 

 MIME-RDS-60%† 27.2 0.001 0.062 0.55 0.002 

  Bayes 25.1 0.001 0.076 0.50 0.004 
SRS: simple random sample, RDS: respondent-driven sampling, MIME: multiple imputation for 
measurement error. Non-informative consisted of measurement error occurring randomly. Informative 
consisted of measurement error occurring conditional on node pairs having the same values of 𝐵. 
Bias was defined as the estimate parameter from the corresponding method minus the true 
parameter. The true parameter was calculated as the mean parameter from 10,000 generated 
networks. 

* Naïve consisted of the parameters estimated using the observed (mismeasured) network 
† Respondent-driven sampling consisted of 10% of the subsample size being selected as seeds. Each 
seed node then nominated three nodes based on random selection of nodes that it shared a true edge 
with. The procedure was repeated for nominated nodes until the gold-standard subsample size was 
met. 
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Table A1.6: Confidence interval coverage for parameters for network-2 

  Edges Density Assortativity Degree Cluster 

True 100% 96% 83% 100% 93% 

Non-informative      

 Naïve* 1% 0% 79% 0% 99% 

 Gold-standard SRS 40% 0% 93% 82% 0% 35% 

 Gold-standard SRS 60% 0% 94% 84% 0% 73% 

 Gold-standard RDS 40%† 0% 0% 82% 55% 89% 

 Gold-standard RDS 60%† 0% 0% 85% 99% 96% 

 MIME-SRS-40% 92% 71% 74% 80% 100% 

 MIME-SRS-60% 99% 92% 91% 96% 100% 

 MIME-RDS-40%† 0% 0% 74% 0% 23% 

 MIME-RDS-60%† 0% 0% 90% 0% 100% 

 Bayes 97% 87% 88% 93% 100% 

Informative      

 Naïve* 3% 0% 1% 0% 99% 

 Gold-standard SRS 40% 0% 93% 82% 0% 35% 

 Gold-standard SRS 60% 0% 94% 84% 0% 73% 

 Gold-standard RDS 40%† 0% 0% 82% 55% 89% 

 Gold-standard RDS 60%† 0% 0% 85% 99% 96% 

 MIME-SRS-40% 93% 75% 73% 82% 100% 

 MIME-SRS-60% 99% 91% 91% 96% 100% 

 MIME-RDS-40%† 0% 0% 75% 0% 22% 

 MIME-RDS-60%† 0% 0% 91% 0% 100% 

  Bayes 99% 89% 84% 95% 100% 
SRS: simple random sample, RDS: respondent-driven sampling, MIME: multiple imputation for 
measurement error. Non-informative consisted of measurement error occurring randomly. Informative 
consisted of measurement error occurring conditional on node pairs having the same values of 𝐵. 
CI coverage was calculated as the percent of 95% CI that contained the true value. 

* Naïve consisted of the parameters estimated using the observed (mismeasured) network 
† Respondent-driven sampling consisted of 10% of the subsample size being selected as seeds. Each 
seed node then nominated three nodes based on random selection of nodes that it shared a true edge 
with. The procedure was repeated for nominated nodes until the gold-standard subsample size was 
met. 
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Table A1.7: Bias for parameters for network-3 

  Edges Density Assortativity Degree Cluster 

True -1.1 0.000 0.000 -0.01 0.000 

Non-informative      

 Naïve* 45.9 0.002 0.020 0.92 -0.059 

 Gold-standard SRS 40% -800.0 0.000 -0.010 -11.49 -0.032 

 Gold-standard SRS 60% -608.3 0.000 -0.002 -7.61 -0.010 

 Gold-standard RDS 40%† -705.5 0.030 -0.001 -6.78 0.043 

 Gold-standard RDS 60%† -481.9 0.018 0.001 -3.40 0.025 

 MIME-SRS-40% 550.3 0.028 0.005 11.01 -0.024 

 MIME-SRS-60% 435.4 0.022 0.006 8.71 -0.014 

 MIME-RDS-40%† 954.8 0.048 0.017 19.09 -0.025 

 MIME-RDS-60%† 708.1 0.036 0.016 14.16 -0.017 

 Bayes -3.3 0.000 0.000 -0.07 -0.071 

Informative      

 Naïve* 32.0 0.002 -0.019 0.64 -0.057 

 Gold-standard SRS 40% -800.0 0.000 -0.010 -11.49 -0.032 

 Gold-standard SRS 60% -608.3 0.000 -0.002 -7.61 -0.010 

 Gold-standard RDS 40%† -705.5 0.030 -0.001 -6.78 0.043 

 Gold-standard RDS 60%† -481.9 0.018 0.001 -3.40 0.025 

 MIME-SRS-40% 568.0 0.029 0.004 11.36 -0.022 

 MIME-SRS-60% 441.2 0.022 0.008 8.82 -0.014 

 MIME-RDS-40%† 947.4 0.048 0.016 18.95 -0.026 

 MIME-RDS-60%† 707.9 0.036 0.015 14.16 -0.017 

  Bayes -6.6 0.000 0.004 -0.13 -0.068 
SRS: simple random sample, RDS: respondent-driven sampling, MIME: multiple imputation for 
measurement error. Non-informative consisted of measurement error occurring randomly. Informative 
consisted of measurement error occurring conditional on node pairs having the same values of 𝐵. 
Bias was defined as the estimate parameter from the corresponding method minus the true 
parameter. The true parameter was calculated as the mean parameter from 10,000 generated 
networks. 

* Naïve consisted of the parameters estimated using the observed (mismeasured) network 
† Respondent-driven sampling consisted of 10% of the subsample size being selected as seeds. Each 
seed node then nominated three nodes based on random selection of nodes that it shared a true edge 
with. The procedure was repeated for nominated nodes until the gold-standard subsample size was 
met. 
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Table A1.8: Empirical standard error for parameters for network-3 

  Edges Density Assortativity Degree Cluster 

True 43.2 0.000 0.023 0.35 0.004 

Non-informative      

 Naïve* 62.8 0.003 0.029 1.26 0.008 

 Gold-standard SRS 40% 18.2 0.006 0.075 0.91 0.033 

 Gold-standard SRS 60% 32.5 0.005 0.049 7.69 0.022 

 Gold-standard RDS 40%† 23.6 0.007 0.057 1.18 0.026 

 Gold-standard RDS 60%† 37.7 0.005 0.042 1.26 0.016 

 MIME-SRS-40% 617.4 0.031 0.060 12.35 0.039 

 MIME-SRS-60% 338.5 0.017 0.040 6.77 0.020 

 MIME-RDS-40%† 298.7 0.015 0.048 5.97 0.015 

 MIME-RDS-60%† 223.9 0.011 0.033 4.48 0.009 

 Bayes 78.3 0.004 0.033 1.57 0.007 

Informative      

 Naïve* 63.0 0.003 0.031 1.26 0.008 

 Gold-standard SRS 40% 18.2 0.006 0.075 0.91 0.033 

 Gold-standard SRS 60% 32.5 0.005 0.049 7.69 0.022 

 Gold-standard RDS 40%† 23.6 0.007 0.057 1.18 0.026 

 Gold-standard RDS 60%† 37.7 0.005 0.042 1.26 0.016 

 MIME-SRS-40% 663.4 0.033 0.059 13.27 0.043 

 MIME-SRS-60% 341.9 0.017 0.040 6.83 0.018 

 MIME-RDS-40%† 320.8 0.016 0.049 6.42 0.015 

 MIME-RDS-60%† 202.3 0.010 0.034 4.05 0.008 

  Bayes 78.0 0.004 0.034 1.56 0.007 
SRS: simple random sample, RDS: respondent-driven sampling, MIME: multiple imputation for 
measurement error. Non-informative consisted of measurement error occurring randomly. Informative 
consisted of measurement error occurring conditional on node pairs having the same values of 𝐵. 
Bias was defined as the estimate parameter from the corresponding method minus the true 
parameter. The true parameter was calculated as the mean parameter from 10,000 generated 
networks. 

* Naïve consisted of the parameters estimated using the observed (mismeasured) network 
† Respondent-driven sampling consisted of 10% of the subsample size being selected as seeds. Each 
seed node then nominated three nodes based on random selection of nodes that it shared a true edge 
with. The procedure was repeated for nominated nodes until the gold-standard subsample size was 
met. 
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Table A1.9: Confidence interval coverage for parameters for network-3 

  Edges Density Assortativity Degree Cluster 

True 100% 95% 86% 100% 99% 

Non-informative      

 Naïve* 100% 70% 78% 92% 0% 

 Gold-standard SRS 40% 0% 86% 84% 0% 89% 

 Gold-standard SRS 60% 0% 84% 87% 0% 97% 

 Gold-standard RDS 40%† 0% 0% 88% 1% 89% 

 Gold-standard RDS 60%† 0% 1% 87% 28% 91% 

 MIME-SRS-40% 35% 15% 64% 22% 24% 

 MIME-SRS-60% 31% 10% 84% 15% 60% 

 MIME-RDS-40%† 0% 0% 66% 0% 13% 

 MIME-RDS-60%† 1% 0% 85% 0% 40% 

 Bayes 99% 67% 90% 87% 0% 

Informative      

 Naïve* 100% 76% 77% 95% 0% 

 Gold-standard SRS 40% 0% 86% 84% 0% 89% 

 Gold-standard SRS 60% 0% 84% 87% 0% 97% 

 Gold-standard RDS 40%† 0% 0% 88% 1% 89% 

 Gold-standard RDS 60%† 0% 1% 87% 28% 91% 

 MIME-SRS-40% 33% 14% 65% 18% 25% 

 MIME-SRS-60% 29% 8% 82% 13% 60% 

 MIME-RDS-40%† 0% 0% 66% 0% 14% 

 MIME-RDS-60%† 0% 0% 84% 0% 36% 

  Bayes 99% 67% 90% 88% 0% 
SRS: simple random sample, RDS: respondent-driven sampling, MIME: multiple imputation for 
measurement error. Non-informative consisted of measurement error occurring randomly. Informative 
consisted of measurement error occurring conditional on node pairs having the same values of 𝐵. 
CI coverage was calculated as the percent of 95% CI that contained the true value. 

* Naïve consisted of the parameters estimated using the observed (mismeasured) network 
† Respondent-driven sampling consisted of 10% of the subsample size being selected as seeds. Each 
seed node then nominated three nodes based on random selection of nodes that it shared a true edge 
with. The procedure was repeated for nominated nodes until the gold-standard subsample size was 
met. 

 
  



 

140 

Figure A1.1: Bias of estimated network parameters for network-1 

 
True: parameters were estimated using the true network. Naïve: parameters were estimated using the 
full mismeasured network. MIME: parameters were estimated using multiple imputation for 
measurement error with an ERGM. The gold-standard subsample was selected as a simple random 
sample. The percentage indicates the proportion of nodes included in the subsample. Bayes: 
stochastic block model Bayesian estimation. 
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Figure A1.2: Bias of estimated network parameters for network-2 

 
True: parameters were estimated using the true network. Naïve: parameters were estimated using the 
full mismeasured network. MIME: parameters were estimated using multiple imputation for 
measurement error with an ERGM. The gold-standard subsample was selected as a simple random 
sample. The percentage indicates the proportion of nodes included in the subsample. Bayes: 
stochastic block model Bayesian estimation. 
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Figure A1.3: Bias of estimated network parameters for network-3 

 
True: parameters were estimated using the true network. Naïve: parameters were estimated using the 
full mismeasured network. MIME: parameters were estimated using multiple imputation for 
measurement error with an ERGM. The gold-standard subsample was selected as a simple random 
sample. The percentage indicates the proportion of nodes included in the subsample. Bayes: 
stochastic block model Bayesian estimation. 
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APPENDIX 2: CHAPTER 5 SUPPLEMENTARY MATERIALS 

Appendix 2.1: Validation Simulations and Demonstration of Double Robustness 

Figure A2.1.1: Simulation results for Sofrygin and van der Laan 2017 mechanism 

 
Left y-axes and violin plots correspond to bias, defined as the estimated conditional sample mean 
minus the true conditional sample mean. The right y-axes and red diamonds correspond to 95% CI 
coverage. Columns refer to which of the nuisance models (𝜋 is the treatment and 𝑚 is the outcome) 
are correctly specified. 

 

Figure A2.1.2: Simulation results for a unit-treatment effect only 

 
Left y-axes and violin plots correspond to bias, defined as the estimated conditional sample mean 
minus the true conditional sample mean. The right y-axes and red diamonds correspond to 95% CI 
coverage. 
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Figure A2.1.3: Simulation results for spillover effect only data generating mechanism 

 
Left y-axes and violin plots correspond to bias, defined as the estimated conditional sample mean 
minus the true conditional sample mean. The right y-axes and red diamonds correspond to 95% CI 
coverage. 

 

Figure A2.1.4: Simulation results for continuous outcome data generating mechanism 

 
Left y-axes and violin plots correspond to bias, defined as the estimated conditional sample mean 
minus the true conditional sample mean. The right y-axes and red diamonds correspond to 95% CI 
coverage. 
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Appendix 2.2: Data Generating Mechanisms 

Table A2.2.1: Baseline confounder distributions by data-generating mechanisms 

  Uniform (n=500)  

Clustered Power-
Law (n=500)  eX-FLU (n=467) 

  

% / median 
(IQR)  % / median (IQR)  

% / median 
(IQR) 

Statin DGM      

 Age 50 (45, 55)  49 (44, 55)  50 (44, 55) 

 log(LDL) 4.9 (4.7, 5.0)  4.8 (4.7, 5.0)  4.9 (4.7, 5.0) 

 Risk score 0.05 (0.03, 0.11)  0.06 (0.03, 0.13)  0.06 (0.03, 0.13) 

Naloxone DGM      

 Gender 29%  37%  30% 

 
Recently released from 
prison 

31%  31%  28% 

 Prior overdose 20%  22%  20% 

Diet DGM      

 Gender 50%  49%  47% 

 Baseline BMI 30 (26, 34)  30 (26, 34)  29 (25, 33) 

 Exercise 47%  42%  47% 

Transmission DGM      

 Asthma 15%  14%  18% 

  Hand hygiene 43%  47%  44% 

DGM: data generating mechanism, CVD: cardiovascular disease, IQR: interquartile range, 
log(LDL): log-transformed low-density lipoprotein, BMI: body mass index  
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Appendix 2.3: Simulation Results for the Modified Clustered Power-Law Random Graph 

Figure A2.3.1: Target maximum likelihood estimation for statins and atherosclerotic 
heart disease, and the clustered power-law random graph 

 
Left y-axes and violin plots correspond to bias, defined as the estimated conditional sample mean 
minus the true conditional sample mean. The right y-axes and red diamonds correspond to 95% CI 
coverage. The first column corresponds to all individuals in the population having the same set 
probability of statins. The second column corresponds to the shift in log-odds of the predicted 
probability of statins for each individual. The proportion of statins in the observed data was 24%. 
A: Targeted maximum likelihood estimation under the assumption of independent observations. B: 
Network-TMLE with a Poisson model for statin use of immediate contacts. C: Network-TMLE with a 
Poisson model for statin use of immediate contacts. The maximum degree for participants was 
restricted to be 18 or less. 
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Figure A2.3.2: Target maximum likelihood estimation for naloxone and opioid 
overdose, and the clustered power-law random graph 

 
Left y-axes and violin plots correspond to bias, defined as the estimated conditional sample mean 
minus the true conditional sample mean. The right y-axes and red diamonds correspond to 95% CI 
coverage. The first column corresponds to all individuals in the population having the same set 
probability of naloxone. The second column corresponds to the shift in log-odds of the predicted 
probability of naloxone for each individual. The proportion of naloxone in the observed data was 29%. 
A: Targeted maximum likelihood estimation under the assumption of independent observations. B: 
Network-TMLE with a Poisson model for naloxone use of immediate contacts. C: Network-TMLE with a 
Poisson model for naloxone use of immediate contacts. The maximum degree for participants was 
restricted to be 18 or less. 
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Figure A2.3.3: Target maximum likelihood estimation for diet and body mass index, 
and the clustered power-law random graph 

 
Left y-axes and violin plots correspond to bias, defined as the estimated conditional sample mean 
minus the true conditional sample mean. The right y-axes and red diamonds correspond to 95% CI 
coverage. The first column corresponds to all individuals in the population having the same set 
probability of diet. The second column corresponds to the shift in log-odds of the predicted probability 
of diet for each individual. The proportion on a diet in the observed data was 40%. 
A: Targeted maximum likelihood estimation under the assumption of independent observations. B: 
Network-TMLE with a logistic model for diet of immediate contacts. No restrictions on maximum degree 
were placed. C: Network-TMLE with a logistic model for diet of immediate contacts. The maximum 
degree for participants was restricted to be 18 or less. 

 
  



 

149 

Figure A2.3.4: Target maximum likelihood estimation for vaccination and infection, and 
the clustered power-law random graph 

 
Left y-axes and violin plots correspond to bias, defined as the estimated conditional sample mean 
minus the true conditional sample mean. The right y-axes and red diamonds correspond to 95% CI 
coverage. The first column corresponds to all individuals in the population having the same set 
probability of vaccination. The second column corresponds to the shift in log-odds of the predicted 
probability of vaccination for each individual. The proportion vaccinated in the observed data was 36%. 
A: Targeted maximum likelihood estimation under the assumption of independent observations. B: 
Network-TMLE with a Poisson model for vaccination of immediate contacts. C: Network-TMLE with a 
Poisson model for vaccination of immediate contacts. The maximum degree for participants was 
restricted to be 18 or less. 
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Appendix 2.4: Simulation Results in Tabular Form 

Table A2.4.1: IID-TMLE for statin data generating mechanism with a uniform random graph 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion        

 0.05 0.001 0.025 0.025 0.096 94.8% 0 0 

 0.10 0.001 0.024 0.024 0.093 95.2% 0 0 

 0.15 0.000 0.023 0.023 0.090 95.2% 0 0 

 0.20 0.000 0.023 0.023 0.089 95.2% 0 0 

 0.25 0.001 0.023 0.023 0.088 94.9% 0 0 

 0.30 0.001 0.023 0.023 0.089 95.1% 0 0 

 0.35 0.000 0.023 0.023 0.091 94.8% 0 0 

 0.40 0.000 0.024 0.024 0.095 94.9% 0 0 

 0.45 0.000 0.025 0.025 0.099 94.5% 0 0 

 0.50 0.000 0.027 0.026 0.104 94.1% 0 0 

 0.55 0.000 0.028 0.028 0.109 94.2% 0 0 

 0.60 0.000 0.030 0.030 0.116 93.9% 0 0 

 0.65 0.000 0.032 0.031 0.123 93.6% 0 0 

 0.70 -0.001 0.034 0.033 0.130 93.5% 0 0 

 0.75 -0.001 0.036 0.035 0.138 93.2% 0 0 

 0.80 -0.001 0.038 0.037 0.146 93.1% 0 0 

 0.85 0.000 0.040 0.039 0.154 92.9% 0 0 

 0.90 -0.001 0.043 0.042 0.163 92.8% 0 0 

 0.95 -0.001 0.045 0.044 0.172 92.7% 0 0 

Shift in log-odds        

 -2.5 0.000 0.025 0.025 0.097 95.2% 0 0 

 -2 0.000 0.024 0.024 0.095 95.3% 0 0 

 -1.5 0.000 0.023 0.024 0.093 95.1% 0 0 

 -1 0.000 0.023 0.023 0.089 95.1% 0 0 

 -0.5 0.000 0.022 0.022 0.086 95.2% 0 0 

 0.5 0.000 0.022 0.022 0.084 94.7% 0 0 

 1 0.000 0.023 0.023 0.090 94.3% 0 0 

 1.5 0.000 0.026 0.025 0.099 94.2% 0 0 

 2 0.000 0.029 0.028 0.112 94.1% 0 0 

  2.5 0.000 0.032 0.032 0.125 93.8% 0 0 
IID-TMLE: independent and identically distributed targeted maximum likelihood estimation, ESE: empirical 
standard error, ASE: average standard error, CLD: confidence limit difference, Coverage: 95% confidence 
interval coverage of the true parameter, Non-informative: the lower confidence limit was less than 0 and the 
upper confidence limit was greater than 1, Fail: estimator failed to produce an estimate. 
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Table A2.4.2: Network-TMLE with a series of logistic models for statin data generating 
mechanism with a uniform random graph 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion         

 0.05 0.001 0.033 0.033 0.131 95.5% 0 0 

 0.10 0.001 0.028 0.028 0.112 95.3% 0 0 

 0.15 0.001 0.025 0.026 0.100 95.2% 0 0 

 0.20 0.000 0.024 0.024 0.095 95.2% 0 0 

 0.25 0.000 0.024 0.024 0.095 94.6% 0 0 

 0.30 0.000 0.026 0.026 0.101 94.6% 0 0 

 0.35 0.000 0.029 0.028 0.111 94.0% 0 0 

 0.40 0.000 0.034 0.032 0.125 93.4% 0 0 

 0.45 -0.001 0.040 0.037 0.144 92.4% 0 0 

 0.50 -0.001 0.047 0.042 0.166 91.2% 0 0 

 0.55 0.000 0.056 0.048 0.190 89.8% 0 0 

 0.60 -0.001 0.064 0.054 0.213 88.1% 0 0 

 0.65 0.000 0.073 0.060 0.236 86.5% 0 0 

 0.70 0.000 0.083 0.066 0.257 84.5% 0 0 

 0.75 0.000 0.093 0.070 0.274 82.2% 0 0 

 0.80 0.000 0.103 0.073 0.286 79.2% 0 0 

 0.85 0.001 0.114 0.075 0.294 75.2% 0 0 

 0.90 0.001 0.126 0.075 0.295 69.7% 0 0 

 0.95 0.002 0.141 0.074 0.291 62.3% 0 0 

Shift in log-odds        

 -2.5 0.000 0.036 0.036 0.140 94.7% 0 0 

 -2 0.000 0.033 0.033 0.130 94.6% 0 0 

 -1.5 0.000 0.030 0.030 0.118 94.6% 0 0 

 -1 0.000 0.026 0.027 0.104 95.2% 0 0 

 -0.5 0.000 0.024 0.024 0.093 95.4% 0 0 

 0.5 0.000 0.027 0.026 0.102 94.0% 0 0 

 1 0.000 0.037 0.035 0.135 92.8% 0 0 

 1.5 0.000 0.053 0.048 0.187 90.7% 0 0 

 2 0.001 0.072 0.061 0.240 87.5% 0 0 

  2.5 0.001 0.090 0.071 0.279 84.8% 0 0 

Network-TMLE: targeted maximum likelihood estimation for dependent data, ESE: empirical 
standard error, ASE: average standard error, CLD: confidence limit difference, Coverage: 95% 
confidence interval coverage of the true parameter, Non-informative: the lower confidence limit 
was less than 0 and the upper confidence limit was greater than 1, Fail: estimator failed to 
produce an estimate.  
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Table A2.4.3: Network-TMLE with a single Poisson model for statin data generating 
mechanism with a uniform random graph 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion         

 0.05 0.001 0.033 0.032 0.125 94.2% 0 0 

 0.10 0.001 0.028 0.027 0.107 94.5% 0 0 

 0.15 0.001 0.025 0.024 0.096 94.8% 0 0 

 0.20 0.000 0.023 0.023 0.090 95.2% 0 0 

 0.25 0.001 0.023 0.023 0.089 95.0% 0 0 

 0.30 0.001 0.024 0.023 0.091 95.0% 0 0 

 0.35 0.000 0.026 0.025 0.098 94.0% 0 0 

 0.40 0.000 0.029 0.027 0.107 93.0% 0 0 

 0.45 -0.001 0.033 0.030 0.119 92.2% 0 0 

 0.50 -0.001 0.039 0.034 0.133 90.3% 0 0 

 0.55 -0.001 0.045 0.038 0.149 88.5% 0 0 

 0.60 -0.001 0.051 0.042 0.165 86.9% 0 0 

 0.65 -0.001 0.059 0.046 0.182 85.3% 0 0 

 0.70 -0.001 0.066 0.051 0.198 83.0% 0 0 

 0.75 -0.002 0.074 0.054 0.213 81.2% 0 0 

 0.80 -0.001 0.082 0.058 0.226 78.8% 0 0 

 0.85 -0.001 0.090 0.061 0.238 76.4% 0 0 

 0.90 -0.001 0.099 0.063 0.247 73.6% 0 0 

 0.95 -0.001 0.108 0.065 0.256 70.4% 0 0 

Shift in log-odds        

 -2.5 0.000 0.036 0.034 0.134 93.5% 0 0 

 -2 0.000 0.033 0.032 0.124 93.8% 0 0 

 -1.5 0.000 0.030 0.029 0.113 93.8% 0 0 

 -1 0.000 0.026 0.026 0.100 94.7% 0 0 

 -0.5 0.000 0.023 0.023 0.089 95.3% 0 0 

 0.5 0.000 0.023 0.023 0.089 93.8% 0 0 

 1 0.000 0.030 0.028 0.108 92.2% 0 0 

 1.5 0.001 0.042 0.036 0.141 89.7% 0 0 

 2 0.001 0.057 0.045 0.178 86.2% 0 0 

  2.5 0.002 0.073 0.054 0.210 82.9% 0 0 

Network-TMLE: targeted maximum likelihood estimation for dependent data, ESE: empirical 
standard error, ASE: average standard error, CLD: confidence limit difference, Coverage: 95% 
confidence interval coverage of the true parameter, Non-informative: the lower confidence limit 
was less than 0 and the upper confidence limit was greater than 1, Fail: estimator failed to 
produce an estimate.   
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Table A2.4.4: IID-TMLE for statin data generating mechanism with a clustered power-law 
random graph 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion         

 0.05 0.000 0.025 0.024 0.096 94.6% 0 0 

 0.10 0.000 0.024 0.024 0.092 94.7% 0 0 

 0.15 0.000 0.023 0.023 0.090 94.8% 0 0 

 0.20 0.000 0.023 0.023 0.089 94.7% 0 0 

 0.25 0.000 0.023 0.023 0.089 94.9% 0 0 

 0.30 0.000 0.023 0.023 0.090 94.6% 0 0 

 0.35 0.000 0.024 0.024 0.092 94.3% 0 0 

 0.40 0.000 0.025 0.024 0.096 94.4% 0 0 

 0.45 0.000 0.026 0.026 0.100 94.1% 0 0 

 0.50 0.000 0.027 0.027 0.106 93.8% 0 0 

 0.55 0.000 0.029 0.028 0.112 93.6% 0 0 

 0.60 0.000 0.031 0.030 0.118 93.4% 0 0 

 0.65 0.000 0.033 0.032 0.125 93.1% 0 0 

 0.70 0.000 0.035 0.034 0.133 92.9% 0 0 

 0.75 0.000 0.037 0.036 0.141 92.7% 0 0 

 0.80 0.000 0.039 0.038 0.149 92.7% 0 0 

 0.85 0.000 0.041 0.040 0.158 92.8% 0 0 

 0.90 0.000 0.044 0.043 0.167 92.7% 0 0 

 0.95 0.000 0.046 0.045 0.176 92.5% 0 0 

Shift in log-odds        

 -2.5 0.001 0.025 0.025 0.097 94.6% 0 0 

 -2 0.000 0.025 0.024 0.095 94.7% 0 0 

 -1.5 0.000 0.024 0.024 0.092 94.5% 0 0 

 -1 0.000 0.023 0.023 0.089 94.5% 0 0 

 -0.5 0.000 0.022 0.022 0.086 94.7% 0 0 

 0.5 0.000 0.022 0.022 0.084 94.5% 0 0 

 1 0.001 0.023 0.023 0.089 94.6% 0 0 

 1.5 0.000 0.026 0.025 0.099 94.3% 0 0 

 2 0.000 0.029 0.028 0.111 94.1% 0 0 

  2.5 0.000 0.033 0.032 0.126 93.9% 0 0 

IID-TMLE: independent and identically distributed targeted maximum likelihood estimation, ESE: 
empirical standard error, ASE: average standard error, CLD: confidence limit difference, 
Coverage: 95% confidence interval coverage of the true parameter, Non-informative: the lower 
confidence limit was less than 0 and the upper confidence limit was greater than 1, Fail: 
estimator failed to produce an estimate.  
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Table A2.4.5: Network-TMLE for statin data generating mechanism with a clustered power-
law random graph 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion         

 0.05 -0.001 0.038 0.041 0.161 96.1% 0 0 

 0.10 0.000 0.030 0.032 0.125 95.9% 0 0 

 0.15 0.000 0.026 0.026 0.104 95.5% 0 0 

 0.20 0.000 0.023 0.024 0.093 95.2% 0 0 

 0.25 0.000 0.024 0.024 0.094 94.9% 0 0 

 0.30 0.000 0.031 0.034 0.131 96.7% 0 0 

 0.35 0.000 0.048 0.062 0.242 98.2% 0 0 

 0.40 0.000 0.064 0.104 0.407 99.0% 1 0 

 0.45 0.000 0.074 0.143 0.560 99.2% 8 0 

 0.50 0.000 0.079 0.173 0.679 99.5% 27 0 

 0.55 0.000 0.083 0.196 0.768 99.6% 72 0 

 0.60 0.000 0.086 0.212 0.830 99.7% 124 0 

 0.65 0.000 0.089 0.222 0.872 99.7% 173 0 

 0.70 0.001 0.093 0.229 0.898 99.7% 213 0 

 0.75 0.001 0.097 0.233 0.912 99.6% 232 0 

 0.80 0.002 0.101 0.233 0.913 99.5% 226 0 

 0.85 0.003 0.106 0.230 0.903 99.1% 210 0 

 0.90 0.004 0.112 0.224 0.879 98.7% 181 0 

 0.95 0.005 0.120 0.212 0.832 97.6% 127 0 

Shift in log-odds        

 -2.5 0.001 0.041 0.046 0.181 96.8% 0 0 

 -2 0.001 0.037 0.041 0.162 96.7% 0 0 

 -1.5 0.000 0.032 0.036 0.139 96.2% 0 0 

 -1 0.000 0.028 0.029 0.115 96.0% 0 0 

 -0.5 0.000 0.024 0.024 0.095 95.3% 0 0 

 0.5 0.001 0.036 0.041 0.163 98.0% 0 0 

 1 0.000 0.068 0.123 0.483 99.5% 0 0 

 1.5 0.001 0.082 0.189 0.739 99.6% 42 0 

 2 0.002 0.089 0.220 0.864 99.6% 162 0 

  2.5 0.003 0.097 0.232 0.910 99.5% 218 0 

Network-TMLE: targeted maximum likelihood estimation for dependent data, ESE: empirical 
standard error, ASE: average standard error, CLD: confidence limit difference, Coverage: 95% 
confidence interval coverage of the true parameter, Non-informative: the lower confidence limit 
was less than 0 and the upper confidence limit was greater than 1, Fail: estimator failed to 
produce an estimate.    
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Table A2.4.6: Network-TMLE for statin data generating mechanism with a clustered 
power-law random graph restricted by degree 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion         

 0.05 0.000 0.035 0.034 0.135 94.5% 0 0 

 0.10 0.000 0.029 0.029 0.113 94.6% 0 0 

 0.15 0.000 0.025 0.025 0.099 94.7% 0 0 

 0.20 0.000 0.024 0.023 0.092 95.0% 0 0 

 0.25 0.000 0.023 0.023 0.091 94.8% 0 0 

 0.30 0.000 0.025 0.025 0.099 95.2% 0 0 

 0.35 0.001 0.029 0.030 0.119 95.5% 0 0 

 0.40 0.000 0.037 0.039 0.154 96.0% 0 0 

 0.45 0.000 0.046 0.051 0.201 96.4% 0 0 

 0.50 0.000 0.056 0.065 0.255 96.5% 0 0 

 0.55 0.000 0.065 0.079 0.310 96.6% 0 0 

 0.60 0.001 0.074 0.092 0.362 96.6% 1 0 

 0.65 0.001 0.081 0.104 0.407 96.3% 3 0 

 0.70 0.001 0.089 0.113 0.443 95.9% 3 0 

 0.75 0.001 0.096 0.120 0.469 95.3% 3 0 

 0.80 0.001 0.103 0.124 0.486 94.1% 6 0 

 0.85 0.002 0.111 0.126 0.493 92.5% 5 0 

 0.90 0.003 0.119 0.125 0.491 89.9% 5 0 

 0.95 0.003 0.130 0.122 0.480 85.8% 4 0 

Shift in log-odds        

 -2.5 0.001 0.036 0.037 0.146 95.6% 0 0 

 -2 0.001 0.034 0.034 0.135 95.4% 0 0 

 -1.5 0.001 0.030 0.031 0.121 95.3% 0 0 

 -1 0.000 0.027 0.027 0.105 94.9% 0 0 

 -0.5 0.000 0.024 0.023 0.092 94.6% 0 0 

 0.5 0.001 0.025 0.025 0.099 95.2% 0 0 

 1 0.002 0.039 0.042 0.167 96.0% 0 0 

 1.5 0.003 0.061 0.074 0.292 96.0% 0 0 

 2 0.004 0.081 0.104 0.407 95.8% 3 0 

  2.5 0.005 0.095 0.121 0.475 94.6% 8 0 

Network-TMLE: targeted maximum likelihood estimation for dependent data, ESE: empirical 
standard error, ASE: average standard error, CLD: confidence limit difference, Coverage: 95% 
confidence interval coverage of the true parameter, Non-informative: the lower confidence limit 
was less than 0 and the upper confidence limit was greater than 1, Fail: estimator failed to 
produce an estimate.    
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Table A2.4.7: IID-TMLE for statin data generating mechanism with the eX-FLU network 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion         

 0.05 0.000 0.025 0.025 0.099 94.9% 0 0 

 0.10 0.000 0.024 0.024 0.095 95.1% 0 0 

 0.15 0.000 0.023 0.024 0.093 95.1% 0 0 

 0.20 0.000 0.023 0.023 0.092 95.1% 0 0 

 0.25 0.000 0.023 0.023 0.092 94.9% 0 0 

 0.30 0.000 0.024 0.024 0.093 94.8% 0 0 

 0.35 0.000 0.024 0.024 0.096 94.5% 0 0 

 0.40 0.001 0.025 0.025 0.099 94.6% 0 0 

 0.45 0.000 0.027 0.026 0.104 94.0% 0 0 

 0.50 0.000 0.028 0.028 0.109 94.1% 0 0 

 0.55 0.001 0.030 0.029 0.115 94.1% 0 0 

 0.60 0.000 0.032 0.031 0.122 93.9% 0 0 

 0.65 0.000 0.034 0.033 0.130 93.6% 0 0 

 0.70 0.000 0.036 0.035 0.138 93.3% 0 0 

 0.75 0.001 0.038 0.037 0.146 93.2% 0 0 

 0.80 0.000 0.040 0.039 0.155 92.8% 0 0 

 0.85 0.000 0.043 0.042 0.163 92.8% 0 0 

 0.90 0.000 0.045 0.044 0.173 92.5% 0 0 

 0.95 0.001 0.048 0.046 0.182 92.4% 0 0 

Shift in log-odds        

 -2.5 -0.001 0.025 0.026 0.100 94.9% 0 0 

 -2 0.000 0.025 0.025 0.098 94.9% 0 0 

 -1.5 0.000 0.024 0.024 0.095 94.9% 0 0 

 -1 0.000 0.023 0.023 0.092 94.7% 0 0 

 -0.5 0.000 0.023 0.023 0.089 94.7% 0 0 

 0.5 0.000 0.022 0.022 0.087 94.9% 0 0 

 1 0.000 0.024 0.024 0.092 94.7% 0 0 

 1.5 0.000 0.026 0.026 0.102 94.4% 0 0 

 2 0.000 0.030 0.029 0.115 94.0% 0 0 

  2.5 0.000 0.034 0.033 0.130 93.9% 0 0 

IID-TMLE: independent and identically distributed targeted maximum likelihood estimation, ESE: 
empirical standard error, ASE: average standard error, CLD: confidence limit difference, 
Coverage: 95% confidence interval coverage of the true parameter, Non-informative: the lower 
confidence limit was less than 0 and the upper confidence limit was greater than 1, Fail: 
estimator failed to produce an estimate.  
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Table A2.4.8: Network-TMLE for statin data generating mechanism with the eX-FLU 
network 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion         

 0.05 0.005 0.039 0.060 0.233 99.3% 0 0 

 0.10 0.002 0.030 0.042 0.163 99.3% 0 0 

 0.15 0.000 0.024 0.031 0.122 98.5% 0 0 

 0.20 -0.001 0.021 0.026 0.100 97.0% 0 0 

 0.25 -0.002 0.021 0.026 0.102 96.3% 0 0 

 0.30 -0.003 0.028 0.038 0.147 97.8% 0 0 

 0.35 -0.001 0.042 0.068 0.268 98.5% 0 0 

 0.40 0.000 0.056 0.119 0.467 100.0% 1 0 

 0.45 0.002 0.065 0.174 0.681 100.0% 8 0 

 0.50 0.001 0.071 0.217 0.852 100.0% 16 0 

 0.55 0.003 0.074 0.254 0.996 100.0% 30 0 

 0.60 0.003 0.076 0.279 1.094 100.0% 42 0 

 0.65 0.003 0.080 0.296 1.159 100.0% 51 0 

 0.70 0.002 0.083 0.304 1.192 100.0% 53 0 

 0.75 0.003 0.087 0.306 1.201 100.0% 50 0 

 0.80 0.003 0.092 0.304 1.192 100.0% 47 0 

 0.85 0.004 0.097 0.298 1.166 100.0% 42 0 

 0.90 0.006 0.105 0.286 1.122 99.3% 35 0 

 0.95 0.009 0.117 0.267 1.048 97.8% 27 0 

Shift in log-odds        

 -2.5 0.000 0.042 0.070 0.275 99.8% 0 0 

 -2 0.001 0.038 0.061 0.239 99.6% 0 0 

 -1.5 0.000 0.034 0.050 0.195 99.2% 0 0 

 -1 0.001 0.029 0.038 0.149 98.6% 0 0 

 -0.5 0.000 0.024 0.028 0.109 97.1% 0 0 

 0.5 0.000 0.032 0.045 0.175 98.8% 0 0 

 1 0.001 0.057 0.135 0.530 99.8% 56 0 

 1.5 0.001 0.070 0.232 0.910 99.9% 594 0 

 2 0.001 0.077 0.281 1.102 99.8% 1129 0 

  2.5 0.001 0.084 0.296 1.160 99.6% 1266 0 

Network-TMLE: targeted maximum likelihood estimation for dependent data, ESE: empirical 
standard error, ASE: average standard error, CLD: confidence limit difference, Coverage: 95% 
confidence interval coverage of the true parameter, Non-informative: the lower confidence limit 
was less than 0 and the upper confidence limit was greater than 1, Fail: estimator failed to 
produce an estimate.    
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Table A2.4.9: Network-TMLE for statin data generating mechanism with the eX-FLU 
network restricted by degree 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion         

 0.05 0.000 0.033 0.044 0.172 98.9% 0 0 

 0.10 0.000 0.028 0.035 0.136 98.2% 0 0 

 0.15 0.000 0.026 0.029 0.113 96.9% 0 0 

 0.20 -0.001 0.025 0.026 0.100 95.7% 0 0 

 0.25 -0.001 0.025 0.026 0.101 95.4% 0 0 

 0.30 0.001 0.030 0.033 0.130 97.2% 0 0 

 0.35 0.001 0.039 0.052 0.205 98.9% 0 0 

 0.40 0.001 0.050 0.085 0.335 99.6% 9 0 

 0.45 0.001 0.060 0.129 0.506 99.7% 47 0 

 0.50 0.001 0.066 0.175 0.688 100.0% 163 0 

 0.55 0.001 0.070 0.219 0.857 100.0% 377 0 

 0.60 0.002 0.072 0.254 0.996 100.0% 698 0 

 0.65 0.002 0.074 0.281 1.102 100.0% 976 0 

 0.70 0.003 0.075 0.300 1.175 100.0% 1206 0 

 0.75 0.003 0.078 0.311 1.221 100.0% 1335 0 

 0.80 0.003 0.080 0.317 1.241 100.0% 1368 0 

 0.85 0.004 0.084 0.315 1.236 100.0% 1300 0 

 0.90 0.005 0.090 0.307 1.202 99.9% 1136 0 

 0.95 0.006 0.098 0.286 1.121 99.7% 881 0 

Shift in log-odds        

 -2.5 0.000 0.035 0.049 0.191 99.1% 0 0 

 -2 0.000 0.032 0.044 0.173 99.0% 0 0 

 -1.5 0.000 0.030 0.039 0.151 98.6% 0 0 

 -1 0.000 0.027 0.032 0.126 97.9% 0 0 

 -0.5 0.000 0.024 0.026 0.103 96.6% 0 0 

 0.5 0.000 0.031 0.038 0.151 98.4% 0 0 

 1 0.000 0.054 0.105 0.410 99.7% 15 0 

 1.5 0.000 0.069 0.205 0.802 99.9% 305 0 

 2 0.000 0.075 0.276 1.082 100.0% 981 0 

  2.5 0.001 0.079 0.310 1.214 100.0% 1398 0 

Network-TMLE: targeted maximum likelihood estimation for dependent data, ESE: empirical 
standard error, ASE: average standard error, CLD: confidence limit difference, Coverage: 95% 
confidence interval coverage of the true parameter, Non-informative: the lower confidence limit 
was less than 0 and the upper confidence limit was greater than 1, Fail: estimator failed to 
produce an estimate.    
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Table 2.4.10: IID-TMLE for naloxone data generating mechanism with a uniform random 
graph 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion         

 0.05 -0.025 0.021 0.021 0.082 77.1% 0 0 

 0.10 -0.019 0.020 0.020 0.079 84.5% 0 0 

 0.15 -0.013 0.020 0.020 0.077 89.7% 0 0 

 0.20 -0.007 0.019 0.020 0.077 93.4% 0 0 

 0.25 -0.001 0.020 0.020 0.077 94.7% 0 0 

 0.30 0.005 0.020 0.020 0.079 94.4% 0 0 

 0.35 0.011 0.021 0.021 0.082 92.1% 0 0 

 0.40 0.017 0.022 0.022 0.086 88.6% 0 0 

 0.45 0.022 0.023 0.023 0.091 84.5% 0 0 

 0.50 0.027 0.025 0.025 0.097 79.9% 0 0 

 0.55 0.033 0.026 0.026 0.103 75.2% 0 0 

 0.60 0.038 0.028 0.028 0.109 72.0% 0 0 

 0.65 0.043 0.030 0.030 0.116 69.1% 0 0 

 0.70 0.049 0.032 0.032 0.124 66.3% 0 0 

 0.75 0.054 0.034 0.034 0.132 63.9% 0 0 

 0.80 0.059 0.036 0.036 0.139 62.0% 0 0 

 0.85 0.064 0.038 0.038 0.148 60.1% 0 0 

 0.90 0.069 0.040 0.040 0.156 58.7% 0 0 

 0.95 0.074 0.042 0.042 0.164 57.5% 0 0 

Shift in log-odds        

 -2.5 -0.028 0.021 0.021 0.083 73.0% 0 0 

 -2 -0.025 0.021 0.021 0.082 75.9% 0 0 

 -1.5 -0.022 0.020 0.020 0.080 80.4% 0 0 

 -1 -0.017 0.020 0.020 0.078 86.5% 0 0 

 -0.5 -0.009 0.019 0.020 0.077 92.0% 0 0 

 0.5 0.012 0.020 0.021 0.081 92.2% 0 0 

 1 0.025 0.022 0.022 0.088 82.7% 0 0 

 1.5 0.037 0.025 0.025 0.099 70.0% 0 0 

 2 0.048 0.028 0.029 0.112 62.7% 0 0 

  2.5 0.057 0.032 0.032 0.125 58.1% 0 0 

IID-TMLE: independent and identically distributed targeted maximum likelihood estimation, ESE: 
empirical standard error, ASE: average standard error, CLD: confidence limit difference, 
Coverage: 95% confidence interval coverage of the true parameter, Non-informative: the lower 
confidence limit was less than 0 and the upper confidence limit was greater than 1, Fail: 
estimator failed to produce an estimate.  
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Table A2.4.11: Network-TMLE with a series of logistic models for naloxone data 
generating mechanism with a uniform random graph 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion         

 0.05 0.001 0.030 0.031 0.122 94.8% 0 0 

 0.10 0.001 0.026 0.026 0.103 95.1% 0 0 

 0.15 0.001 0.023 0.023 0.091 94.9% 0 0 

 0.20 0.001 0.021 0.022 0.085 94.9% 0 0 

 0.25 0.000 0.021 0.021 0.084 94.7% 0 0 

 0.30 0.000 0.023 0.023 0.088 94.4% 0 0 

 0.35 0.000 0.025 0.025 0.097 94.4% 0 0 

 0.40 0.000 0.029 0.028 0.109 94.1% 0 0 

 0.45 0.000 0.034 0.032 0.124 93.2% 0 0 

 0.50 -0.001 0.039 0.036 0.141 92.4% 0 0 

 0.55 0.000 0.046 0.041 0.160 91.6% 0 0 

 0.60 -0.001 0.052 0.045 0.178 90.2% 0 0 

 0.65 -0.001 0.059 0.050 0.196 88.8% 0 0 

 0.70 -0.001 0.066 0.054 0.212 86.7% 0 0 

 0.75 -0.001 0.073 0.057 0.225 84.7% 0 0 

 0.80 -0.001 0.081 0.060 0.236 81.5% 0 0 

 0.85 -0.001 0.090 0.062 0.243 77.5% 0 0 

 0.90 -0.001 0.099 0.063 0.246 73.5% 0 0 

 0.95 -0.001 0.111 0.063 0.245 67.5% 0 0 

Shift in log-odds        

 -2.5 0.000 0.032 0.033 0.130 95.1% 0 0 

 -2 0.000 0.030 0.031 0.120 95.0% 0 0 

 -1.5 0.000 0.027 0.027 0.107 95.1% 0 0 

 -1 0.000 0.024 0.024 0.093 95.3% 0 0 

 -0.5 0.000 0.021 0.021 0.082 95.0% 0 0 

 0.5 0.000 0.023 0.022 0.086 94.2% 0 0 

 1 0.000 0.032 0.029 0.114 92.7% 0 0 

 1.5 0.001 0.046 0.040 0.156 90.1% 0 0 

 2 0.001 0.062 0.051 0.199 87.2% 0 0 

  2.5 0.002 0.077 0.059 0.229 83.1% 0 0 

Network-TMLE: targeted maximum likelihood estimation for dependent data, ESE: empirical 
standard error, ASE: average standard error, CLD: confidence limit difference, Coverage: 95% 
confidence interval coverage of the true parameter, Non-informative: the lower confidence limit 
was less than 0 and the upper confidence limit was greater than 1, Fail: estimator failed to 
produce an estimate.    
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Table A2.4.12: Network-TMLE with a single Poisson model for naloxone data generating 
mechanism with a uniform random graph 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion         

 0.05 0.001 0.030 0.029 0.115 93.9% 0 0 

 0.10 0.001 0.025 0.025 0.098 94.4% 0 0 

 0.15 0.001 0.022 0.022 0.087 94.7% 0 0 

 0.20 0.001 0.021 0.021 0.081 94.8% 0 0 

 0.25 0.000 0.020 0.020 0.080 94.7% 0 0 

 0.30 0.000 0.021 0.021 0.082 94.7% 0 0 

 0.35 0.000 0.023 0.022 0.087 94.5% 0 0 

 0.40 0.001 0.026 0.024 0.096 93.7% 0 0 

 0.45 0.000 0.029 0.027 0.106 93.2% 0 0 

 0.50 0.000 0.034 0.030 0.119 91.9% 0 0 

 0.55 0.000 0.038 0.034 0.133 91.0% 0 0 

 0.60 0.000 0.044 0.037 0.147 89.9% 0 0 

 0.65 0.000 0.049 0.041 0.161 88.4% 0 0 

 0.70 0.000 0.055 0.044 0.174 86.9% 0 0 

 0.75 0.000 0.061 0.047 0.186 85.0% 0 0 

 0.80 0.000 0.066 0.050 0.196 83.2% 0 0 

 0.85 0.001 0.072 0.052 0.205 81.7% 0 0 

 0.90 0.001 0.078 0.054 0.213 79.7% 0 0 

 0.95 0.001 0.084 0.056 0.219 77.5% 0 0 

Shift in log-odds        

 -2.5 0.000 0.032 0.031 0.122 94.0% 0 0 

 -2 0.000 0.029 0.029 0.113 94.5% 0 0 

 -1.5 0.000 0.026 0.026 0.102 94.6% 0 0 

 -1 0.000 0.023 0.023 0.089 94.9% 0 0 

 -0.5 0.000 0.020 0.020 0.079 95.0% 0 0 

 0.5 0.000 0.020 0.020 0.078 94.2% 0 0 

 1 0.000 0.026 0.024 0.095 92.4% 0 0 

 1.5 0.001 0.036 0.031 0.122 89.5% 0 0 

 2 0.001 0.049 0.039 0.152 86.4% 0 0 

  2.5 0.001 0.060 0.045 0.177 83.2% 0 0 

Network-TMLE: targeted maximum likelihood estimation for dependent data, ESE: empirical 
standard error, ASE: average standard error, CLD: confidence limit difference, Coverage: 95% 
confidence interval coverage of the true parameter, Non-informative: the lower confidence limit 
was less than 0 and the upper confidence limit was greater than 1, Fail: estimator failed to 
produce an estimate.    
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Table A2.4.13: IID-TMLE for naloxone data generating mechanism with a clustered power-
law random graph 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion         

 0.05 -0.042 0.020 0.020 0.079 44.0% 0 0 

 0.10 -0.033 0.020 0.019 0.076 58.8% 0 0 

 0.15 -0.023 0.019 0.019 0.074 75.1% 0 0 

 0.20 -0.014 0.019 0.019 0.073 86.5% 0 0 

 0.25 -0.005 0.019 0.019 0.074 93.1% 0 0 

 0.30 0.003 0.019 0.019 0.075 94.3% 0 0 

 0.35 0.012 0.020 0.020 0.078 91.6% 0 0 

 0.40 0.020 0.021 0.021 0.081 84.5% 0 0 

 0.45 0.027 0.022 0.022 0.085 75.6% 0 0 

 0.50 0.035 0.023 0.023 0.090 65.8% 0 0 

 0.55 0.042 0.025 0.024 0.096 59.1% 0 0 

 0.60 0.049 0.026 0.026 0.102 52.1% 0 0 

 0.65 0.056 0.028 0.028 0.108 47.4% 0 0 

 0.70 0.062 0.030 0.029 0.115 42.6% 0 0 

 0.75 0.069 0.032 0.031 0.122 39.4% 0 0 

 0.80 0.075 0.033 0.033 0.129 36.6% 0 0 

 0.85 0.081 0.035 0.035 0.137 35.6% 0 0 

 0.90 0.087 0.037 0.037 0.145 34.0% 0 0 

 0.95 0.092 0.039 0.039 0.152 33.5% 0 0 

Shift in log-odds        

 -2.5 -0.045 0.020 0.020 0.080 40.3% 0 0 

 -2 -0.042 0.020 0.020 0.078 45.1% 0 0 

 -1.5 -0.036 0.019 0.020 0.077 55.0% 0 0 

 -1 -0.027 0.019 0.019 0.074 69.9% 0 0 

 -0.5 -0.015 0.018 0.018 0.072 86.8% 0 0 

 0.5 0.017 0.019 0.019 0.075 87.2% 0 0 

 1 0.034 0.021 0.021 0.081 63.7% 0 0 

 1.5 0.050 0.023 0.023 0.091 41.9% 0 0 

 2 0.064 0.027 0.026 0.103 31.8% 0 0 

  2.5 0.074 0.030 0.030 0.116 29.0% 0 0 

IID-TMLE: independent and identically distributed targeted maximum likelihood estimation, ESE: 
empirical standard error, ASE: average standard error, CLD: confidence limit difference, 
Coverage: 95% confidence interval coverage of the true parameter, Non-informative: the lower 
confidence limit was less than 0 and the upper confidence limit was greater than 1, Fail: 
estimator failed to produce an estimate.  
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Table A2.4.14: Network-TMLE for naloxone data generating mechanism with a clustered 
power-law random graph 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion         

 0.05 -0.001 0.036 0.042 0.166 97.2% 0 0 

 0.10 -0.001 0.029 0.032 0.126 97.2% 0 0 

 0.15 -0.001 0.024 0.026 0.102 96.7% 0 0 

 0.20 -0.001 0.021 0.022 0.087 96.0% 0 0 

 0.25 0.000 0.020 0.020 0.079 95.4% 0 0 

 0.30 0.000 0.020 0.020 0.078 95.0% 0 0 

 0.35 0.000 0.022 0.023 0.088 95.4% 0 0 

 0.40 -0.001 0.029 0.029 0.114 95.4% 0 0 

 0.45 -0.002 0.038 0.040 0.155 95.1% 0 0 

 0.50 -0.003 0.047 0.052 0.205 93.9% 0 0 

 0.55 -0.004 0.054 0.065 0.256 92.2% 1 0 

 0.60 -0.005 0.060 0.077 0.303 91.2% 1 0 

 0.65 -0.005 0.065 0.087 0.343 90.0% 4 0 

 0.70 -0.006 0.069 0.095 0.373 88.8% 6 0 

 0.75 -0.006 0.073 0.101 0.395 87.7% 5 0 

 0.80 -0.006 0.076 0.104 0.408 86.6% 6 0 

 0.85 -0.006 0.080 0.105 0.413 84.9% 5 0 

 0.90 -0.006 0.084 0.104 0.409 83.1% 6 0 

 0.95 -0.007 0.089 0.101 0.397 80.5% 5 0 

Shift in log-odds        

 -2.5 0.000 0.040 0.046 0.182 97.1% 0 0 

 -2 0.000 0.035 0.041 0.160 97.0% 0 0 

 -1.5 0.000 0.030 0.034 0.133 97.0% 0 0 

 -1 0.000 0.024 0.027 0.106 96.5% 0 0 

 -0.5 0.000 0.020 0.021 0.083 95.6% 0 0 

 0.5 -0.001 0.024 0.024 0.094 95.3% 0 0 

 1 -0.003 0.045 0.051 0.198 92.8% 1 0 

 1.5 -0.004 0.060 0.079 0.311 90.8% 3 0 

 2 -0.004 0.068 0.097 0.379 89.4% 8 0 

  2.5 -0.005 0.074 0.104 0.407 87.7% 8 0 

Network-TMLE: targeted maximum likelihood estimation for dependent data, ESE: empirical 
standard error, ASE: average standard error, CLD: confidence limit difference, Coverage: 95% 
confidence interval coverage of the true parameter, Non-informative: the lower confidence limit 
was less than 0 and the upper confidence limit was greater than 1, Fail: estimator failed to 
produce an estimate.    
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Table A2.4.15: Network-TMLE for naloxone data generating mechanism with a clustered 
power-law random graph restricted by degree 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion         

 0.05 -0.001 0.032 0.034 0.134 96.1% 0 0 

 0.10 -0.001 0.026 0.028 0.109 96.1% 0 0 

 0.15 -0.001 0.023 0.024 0.093 96.1% 0 0 

 0.20 0.000 0.020 0.021 0.083 95.7% 0 0 

 0.25 0.000 0.019 0.020 0.078 95.5% 0 0 

 0.30 0.000 0.020 0.020 0.078 95.2% 0 0 

 0.35 0.000 0.021 0.021 0.084 95.2% 0 0 

 0.40 0.000 0.024 0.024 0.096 95.4% 0 0 

 0.45 0.000 0.029 0.030 0.116 95.6% 0 0 

 0.50 0.001 0.035 0.036 0.142 95.4% 0 0 

 0.55 0.000 0.042 0.044 0.173 94.5% 0 0 

 0.60 0.000 0.049 0.053 0.206 93.9% 0 0 

 0.65 0.000 0.056 0.061 0.239 92.9% 0 0 

 0.70 -0.001 0.062 0.068 0.268 91.7% 0 0 

 0.75 -0.001 0.068 0.075 0.292 90.4% 1 0 

 0.80 -0.002 0.073 0.079 0.311 88.9% 2 0 

 0.85 -0.002 0.078 0.083 0.324 87.3% 2 0 

 0.90 -0.002 0.083 0.085 0.331 85.4% 1 0 

 0.95 -0.002 0.089 0.085 0.333 82.7% 2 0 

Shift in log-odds        

 -2.5 0.000 0.035 0.037 0.144 95.7% 0 0 

 -2 0.001 0.032 0.033 0.130 95.9% 0 0 

 -1.5 0.000 0.028 0.029 0.113 95.8% 0 0 

 -1 0.000 0.023 0.024 0.095 95.6% 0 0 

 -0.5 0.000 0.020 0.020 0.079 95.4% 0 0 

 0.5 0.000 0.020 0.020 0.079 94.9% 0 0 

 1 -0.001 0.030 0.032 0.124 94.3% 0 0 

 1.5 -0.002 0.046 0.051 0.200 92.6% 1 0 

 2 -0.003 0.059 0.068 0.266 90.6% 1 0 

  2.5 -0.003 0.068 0.078 0.304 89.0% 2 0 

Network-TMLE: targeted maximum likelihood estimation for dependent data, ESE: empirical 
standard error, ASE: average standard error, CLD: confidence limit difference, Coverage: 95% 
confidence interval coverage of the true parameter, Non-informative: the lower confidence limit 
was less than 0 and the upper confidence limit was greater than 1, Fail: estimator failed to 
produce an estimate.    
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Table A2.4.16: IID-TMLE for naloxone data generating mechanism with the eX-FLU 
network 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion         

 0.05 -0.051 0.021 0.020 0.080 30.8% 0 0 

 0.10 -0.039 0.020 0.020 0.077 48.4% 0 0 

 0.15 -0.028 0.020 0.019 0.076 68.5% 0 0 

 0.20 -0.017 0.019 0.019 0.075 84.3% 0 0 

 0.25 -0.007 0.020 0.019 0.076 92.4% 0 0 

 0.30 0.003 0.020 0.020 0.078 93.8% 0 0 

 0.35 0.012 0.021 0.021 0.080 91.0% 0 0 

 0.40 0.020 0.022 0.021 0.084 84.4% 0 0 

 0.45 0.028 0.023 0.023 0.089 76.6% 0 0 

 0.50 0.036 0.025 0.024 0.094 68.8% 0 0 

 0.55 0.042 0.026 0.026 0.100 62.0% 0 0 

 0.60 0.049 0.028 0.027 0.107 56.3% 0 0 

 0.65 0.056 0.030 0.029 0.113 52.2% 0 0 

 0.70 0.062 0.032 0.031 0.121 48.9% 0 0 

 0.75 0.067 0.034 0.033 0.128 47.0% 0 0 

 0.80 0.072 0.036 0.035 0.136 46.3% 0 0 

 0.85 0.077 0.038 0.037 0.144 44.7% 0 0 

 0.90 0.082 0.040 0.039 0.152 44.3% 0 0 

 0.95 0.087 0.042 0.041 0.160 44.3% 0 0 

Shift in log-odds        

 -2.5 -0.055 0.021 0.021 0.082 26.3% 0 0 

 -2 -0.050 0.021 0.020 0.080 32.3% 0 0 

 -1.5 -0.042 0.020 0.020 0.079 44.4% 0 0 

 -1 -0.031 0.019 0.020 0.077 64.0% 0 0 

 -0.5 -0.016 0.019 0.019 0.075 86.0% 0 0 

 0.5 0.020 0.019 0.020 0.077 84.9% 0 0 

 1 0.037 0.021 0.022 0.084 60.6% 0 0 

 1.5 0.052 0.024 0.024 0.095 42.3% 0 0 

 2 0.065 0.027 0.028 0.108 34.4% 0 0 

  2.5 0.074 0.031 0.031 0.121 33.8% 0 0 

IID-TMLE: independent and identically distributed targeted maximum likelihood estimation, ESE: 
empirical standard error, ASE: average standard error, CLD: confidence limit difference, 
Coverage: 95% confidence interval coverage of the true parameter, Non-informative: the lower 
confidence limit was less than 0 and the upper confidence limit was greater than 1, Fail: 
estimator failed to produce an estimate.  
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Table A2.4.17: Network-TMLE for naloxone data generating mechanism with the eX-FLU 
network 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion         

 0.05 -0.001 0.047 0.104 0.407 99.9% 0 0 

 0.10 -0.001 0.037 0.069 0.272 99.7% 0 0 

 0.15 -0.001 0.030 0.047 0.183 99.2% 0 0 

 0.20 -0.001 0.025 0.032 0.127 98.3% 0 0 

 0.25 -0.001 0.022 0.024 0.095 96.4% 0 0 

 0.30 0.000 0.021 0.022 0.085 94.9% 0 0 

 0.35 -0.001 0.024 0.025 0.097 95.5% 0 0 

 0.40 -0.001 0.032 0.036 0.142 95.8% 0 0 

 0.45 -0.002 0.043 0.057 0.223 95.7% 1 0 

 0.50 -0.002 0.053 0.084 0.328 95.6% 1 0 

 0.55 -0.004 0.058 0.110 0.430 95.6% 5 0 

 0.60 -0.005 0.061 0.131 0.513 95.9% 7 0 

 0.65 -0.005 0.063 0.147 0.576 95.6% 10 0 

 0.70 -0.005 0.065 0.158 0.618 95.5% 17 0 

 0.75 -0.005 0.066 0.164 0.643 94.8% 20 0 

 0.80 -0.006 0.068 0.166 0.651 94.3% 23 0 

 0.85 -0.006 0.071 0.165 0.647 93.3% 22 0 

 0.90 -0.006 0.074 0.160 0.626 91.2% 19 0 

 0.95 -0.007 0.079 0.149 0.585 88.6% 17 0 

Shift in log-odds        

 -2.5 -0.001 0.049 0.117 0.458 99.9% 3 0 

 -2 -0.001 0.044 0.097 0.382 99.9% 0 0 

 -1.5 -0.001 0.037 0.073 0.285 99.9% 0 0 

 -1 0.000 0.028 0.047 0.185 99.7% 0 0 

 -0.5 0.000 0.021 0.028 0.111 98.4% 0 0 

 0.5 -0.001 0.027 0.033 0.128 96.4% 0 0 

 1 -0.004 0.052 0.094 0.367 96.0% 1 0 

 1.5 -0.005 0.061 0.149 0.583 96.4% 19 0 

 2 -0.005 0.064 0.172 0.674 96.6% 30 0 

  2.5 -0.006 0.066 0.177 0.694 96.0% 37 0 

Network-TMLE: targeted maximum likelihood estimation for dependent data, ESE: empirical 
standard error, ASE: average standard error, CLD: confidence limit difference, Coverage: 95% 
confidence interval coverage of the true parameter, Non-informative: the lower confidence limit 
was less than 0 and the upper confidence limit was greater than 1, Fail: estimator failed to 
produce an estimate.    

  



 

167 

Table A2.4.18: Network-TMLE for naloxone data generating mechanism with the eX-FLU 
network restricted by degree 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion         

 0.05 -0.001 0.037 0.053 0.207 99.0% 0 0 

 0.10 -0.001 0.030 0.040 0.155 98.5% 0 0 

 0.15 -0.001 0.025 0.031 0.121 98.0% 0 0 

 0.20 -0.001 0.022 0.025 0.099 96.6% 0 0 

 0.25 0.000 0.021 0.022 0.087 95.3% 0 0 

 0.30 -0.001 0.021 0.021 0.083 94.5% 0 0 

 0.35 0.000 0.023 0.023 0.090 95.0% 0 0 

 0.40 0.000 0.026 0.028 0.109 95.8% 0 0 

 0.45 0.000 0.032 0.036 0.140 96.3% 0 0 

 0.50 -0.001 0.039 0.047 0.184 96.6% 0 0 

 0.55 -0.001 0.047 0.060 0.234 96.4% 0 0 

 0.60 -0.002 0.054 0.073 0.286 96.3% 4 0 

 0.65 -0.002 0.059 0.085 0.335 95.8% 5 0 

 0.70 -0.002 0.064 0.096 0.377 95.4% 4 0 

 0.75 -0.003 0.068 0.105 0.410 94.9% 5 0 

 0.80 -0.003 0.072 0.111 0.434 94.4% 7 0 

 0.85 -0.003 0.076 0.114 0.448 93.1% 11 0 

 0.90 -0.003 0.081 0.116 0.453 91.7% 15 0 

 0.95 -0.004 0.087 0.114 0.449 89.4% 18 0 

Shift in log-odds        

 -2.5 -0.001 0.038 0.056 0.220 99.2% 0 0 

 -2 0.000 0.035 0.049 0.193 99.0% 0 0 

 -1.5 0.000 0.030 0.040 0.159 98.8% 0 0 

 -1 0.000 0.025 0.031 0.123 98.3% 0 0 

 -0.5 0.000 0.021 0.024 0.092 96.9% 0 0 

 0.5 0.000 0.022 0.024 0.093 96.4% 0 0 

 1 0.000 0.036 0.045 0.178 96.9% 0 0 

 1.5 -0.001 0.052 0.079 0.309 96.2% 0 0 

 2 -0.002 0.062 0.104 0.408 95.5% 5 0 

  2.5 -0.003 0.068 0.116 0.456 94.9% 10 0 

Network-TMLE: targeted maximum likelihood estimation for dependent data, ESE: empirical 
standard error, ASE: average standard error, CLD: confidence limit difference, Coverage: 95% 
confidence interval coverage of the true parameter, Non-informative: the lower confidence limit 
was less than 0 and the upper confidence limit was greater than 1, Fail: estimator failed to 
produce an estimate.    
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Table A2.4.19: IID-TMLE for diet data generating mechanism with a 
uniform random graph 

  Bias ESE ASE CLD Coverage Fail 

Proportion        

 0.05 -0.242 0.151 0.222 0.870 89.3% 0 

 0.10 -0.241 0.136 0.212 0.830 89.4% 0 

 0.15 -0.234 0.121 0.203 0.795 90.5% 0 

 0.20 -0.220 0.108 0.195 0.766 93.1% 0 

 0.25 -0.194 0.097 0.189 0.742 96.2% 0 

 0.30 -0.152 0.089 0.185 0.725 98.9% 0 

 0.35 -0.091 0.083 0.183 0.716 99.9% 0 

 0.40 -0.009 0.083 0.182 0.713 100.0% 0 

 0.45 0.098 0.086 0.183 0.718 99.9% 0 

 0.50 0.234 0.093 0.186 0.730 92.4% 0 

 0.55 0.389 0.103 0.191 0.749 43.8% 0 

 0.60 0.561 0.116 0.198 0.774 6.1% 0 

 0.65 0.763 0.130 0.206 0.806 0.2% 0 

 0.70 0.957 0.145 0.215 0.842 0.0% 0 

 0.75 1.177 0.161 0.225 0.883 0.0% 0 

 0.80 1.390 0.177 0.237 0.928 0.0% 0 

 0.85 1.601 0.194 0.249 0.976 0.0% 0 

 0.90 1.804 0.211 0.262 1.027 0.0% 0 

 0.95 1.990 0.229 0.276 1.081 0.0% 0 

Shift in log-odds       

 -2.5 -0.244 0.150 0.221 0.866 89.2% 0 

 -2 -0.244 0.140 0.214 0.840 89.3% 0 

 -1.5 -0.239 0.126 0.205 0.805 90.3% 0 

 -1 -0.223 0.107 0.194 0.762 92.9% 0 

 -0.5 -0.163 0.088 0.184 0.723 98.4% 0 

 0.5 0.307 0.091 0.185 0.727 73.1% 0 

 1 0.727 0.120 0.201 0.787 0.2% 0 

 1.5 1.160 0.152 0.221 0.866 0.0% 0 

 2 1.508 0.179 0.241 0.943 0.0% 0 

  2.5 1.755 0.201 0.257 1.006 0.0% 0 

IID-TMLE: independent and identically distributed targeted maximum 
likelihood estimation, ESE: empirical standard error, ASE: average standard 
error, CLD: confidence limit difference, Coverage: 95% confidence interval 
coverage of the true parameter, Fail: estimator failed to produce an estimate.  
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Table A2.4.20: Network-TMLE with a series of logistic models for diet 
data generating mechanism with a uniform random graph 

  Bias ESE ASE CLD Coverage Fail 

Proportion        

 0.05 -0.004 0.099 0.102 0.400 95.7% 0 

 0.10 -0.004 0.082 0.084 0.330 95.7% 0 

 0.15 -0.002 0.070 0.071 0.278 95.7% 0 

 0.20 -0.001 0.061 0.061 0.241 95.0% 0 

 0.25 0.000 0.056 0.055 0.215 95.0% 0 

 0.30 0.000 0.052 0.050 0.198 94.4% 0 

 0.35 0.001 0.050 0.048 0.189 94.4% 0 

 0.40 0.000 0.050 0.048 0.187 93.5% 0 

 0.45 0.001 0.052 0.049 0.192 93.0% 0 

 0.50 0.006 0.056 0.052 0.203 92.6% 0 

 0.55 0.007 0.062 0.056 0.221 91.8% 0 

 0.60 0.004 0.071 0.063 0.247 92.5% 0 

 0.65 0.016 0.083 0.072 0.282 90.6% 0 

 0.70 0.007 0.097 0.083 0.325 90.6% 0 

 0.75 0.017 0.115 0.096 0.378 89.4% 0 

 0.80 0.020 0.135 0.112 0.439 88.5% 0 

 0.85 0.025 0.159 0.130 0.509 88.0% 0 

 0.90 0.033 0.186 0.149 0.586 86.8% 0 

 0.95 0.037 0.217 0.171 0.669 85.2% 0 

Shift in log-odds       

 -2.5 -0.001 0.100 0.100 0.392 94.8% 0 

 -2 -0.001 0.089 0.088 0.345 94.6% 0 

 -1.5 -0.001 0.075 0.074 0.290 94.8% 0 

 -1 -0.003 0.062 0.060 0.237 94.5% 0 

 -0.5 -0.003 0.053 0.050 0.197 93.7% 0 

 0.5 0.002 0.059 0.053 0.208 91.9% 0 

 1 0.006 0.079 0.070 0.273 91.5% 0 

 1.5 0.015 0.112 0.095 0.372 90.0% 0 

 2 0.022 0.148 0.123 0.481 88.5% 0 

  2.5 0.031 0.179 0.147 0.575 87.6% 0 

Network-TMLE: targeted maximum likelihood estimation for dependent data, 
ESE: empirical standard error, ASE: average standard error, CLD: 
confidence limit difference, Coverage: 95% confidence interval coverage of 
the true parameter, Fail: estimator failed to produce an estimate.    
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Table A2.4.21: Network-TMLE with a single logistic model for diet data 
generating mechanism with a uniform random graph 

  Bias ESE ASE CLD Coverage Fail 

Proportion        

 0.05 -0.004 0.058 0.057 0.222 94.8% 1568 

 0.10 -0.004 0.055 0.054 0.212 95.1% 0 

 0.15 -0.002 0.052 0.052 0.203 95.3% 0 

 0.20 -0.001 0.051 0.050 0.195 94.9% 0 

 0.25 -0.001 0.049 0.048 0.188 94.5% 0 

 0.30 0.000 0.049 0.047 0.182 94.2% 0 

 0.35 0.001 0.047 0.046 0.179 94.1% 0 

 0.40 0.000 0.048 0.045 0.178 93.6% 0 

 0.45 0.001 0.050 0.046 0.181 92.8% 0 

 0.50 0.006 0.053 0.048 0.188 92.0% 0 

 0.55 0.007 0.057 0.052 0.202 91.5% 0 

 0.60 0.004 0.064 0.057 0.224 91.8% 0 

 0.65 0.016 0.073 0.065 0.253 90.9% 0 

 0.70 0.007 0.085 0.074 0.291 91.4% 0 

 0.75 0.017 0.098 0.086 0.336 90.8% 0 

 0.80 0.020 0.113 0.099 0.388 90.6% 0 

 0.85 0.026 0.130 0.113 0.445 90.1% 0 

 0.90 0.034 0.147 0.129 0.506 90.1% 0 

 0.95 0.038 0.166 0.145 0.570 89.6% 0 

Shift in log-odds       

 -2.5 -0.003 0.058 0.056 0.221 94.5% 963 

 -2 -0.003 0.056 0.055 0.214 94.4% 0 

 -1.5 -0.002 0.054 0.052 0.204 94.6% 0 

 -1 -0.004 0.051 0.049 0.193 94.2% 0 

 -0.5 -0.003 0.049 0.046 0.181 93.2% 0 

 0.5 0.003 0.054 0.049 0.191 92.0% 0 

 1 0.005 0.070 0.062 0.244 92.3% 0 

 1.5 0.013 0.096 0.083 0.327 91.3% 0 

 2 0.019 0.122 0.105 0.413 91.0% 0 

  2.5 0.028 0.143 0.124 0.485 90.6% 0 

Network-TMLE: targeted maximum likelihood estimation for dependent data, 
ESE: empirical standard error, ASE: average standard error, CLD: 
confidence limit difference, Coverage: 95% confidence interval coverage of 
the true parameter, Fail: estimator failed to produce an estimate.    
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Table A2.4.22: IID-TMLE for diet data generating mechanism with a 
clustered power-law random graph 

  Bias ESE ASE CLD Coverage Fail 

Proportion        

 0.05 -0.948 0.156 0.213 0.835 0.0% 0 

 0.10 -0.899 0.145 0.203 0.797 0.0% 0 

 0.15 -0.805 0.135 0.195 0.763 0.1% 0 

 0.20 -0.681 0.128 0.188 0.735 0.6% 0 

 0.25 -0.528 0.123 0.182 0.712 6.7% 0 

 0.30 -0.363 0.121 0.178 0.696 46.7% 0 

 0.35 -0.179 0.122 0.175 0.687 91.3% 0 

 0.40 0.009 0.125 0.175 0.684 99.4% 0 

 0.45 0.212 0.131 0.176 0.689 83.8% 0 

 0.50 0.411 0.140 0.179 0.701 33.4% 0 

 0.55 0.624 0.149 0.183 0.719 4.3% 0 

 0.60 0.833 0.161 0.190 0.743 0.2% 0 

 0.65 1.050 0.174 0.197 0.773 0.0% 0 

 0.70 1.273 0.188 0.206 0.808 0.0% 0 

 0.75 1.500 0.202 0.216 0.847 0.0% 0 

 0.80 1.728 0.217 0.227 0.890 0.0% 0 

 0.85 1.962 0.233 0.239 0.937 0.0% 0 

 0.90 2.200 0.249 0.252 0.986 0.0% 0 

 0.95 2.441 0.266 0.265 1.037 0.0% 0 

Shift in log-odds       

 -2.5 -0.955 0.157 0.213 0.833 0.0% 0 

 -2 -0.927 0.150 0.206 0.808 0.0% 0 

 -1.5 -0.851 0.141 0.198 0.774 0.0% 0 

 -1 -0.684 0.130 0.187 0.733 0.4% 0 

 -0.5 -0.400 0.123 0.177 0.695 33.7% 0 

 0.5 0.478 0.141 0.178 0.698 19.0% 0 

 1 0.979 0.167 0.193 0.756 0.0% 0 

 1.5 1.449 0.196 0.212 0.832 0.0% 0 

 2 1.831 0.221 0.231 0.906 0.0% 0 

  2.5 2.119 0.240 0.246 0.966 0.0% 0 

IID-TMLE: independent and identically distributed targeted maximum 
likelihood estimation, ESE: empirical standard error, ASE: average standard 
error, CLD: confidence limit difference, Coverage: 95% confidence interval 
coverage of the true parameter, Fail: estimator failed to produce an estimate.  
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Table A2.4.23: Network-TMLE for diet data generating mechanism with 
a clustered power-law random graph 

  Bias ESE ASE CLD Coverage Fail 

Proportion        

 0.05 0.000 0.065 0.061 0.241 93.8% 0 

 0.10 -0.001 0.061 0.058 0.228 93.6% 0 

 0.15 0.001 0.058 0.055 0.214 93.3% 0 

 0.20 -0.001 0.055 0.052 0.202 93.5% 0 

 0.25 0.002 0.052 0.049 0.192 93.1% 0 

 0.30 -0.001 0.051 0.047 0.184 92.9% 0 

 0.35 0.002 0.050 0.046 0.179 92.9% 0 

 0.40 -0.001 0.050 0.045 0.177 92.6% 0 

 0.45 0.006 0.051 0.046 0.180 91.5% 0 

 0.50 0.002 0.054 0.047 0.186 91.2% 0 

 0.55 0.006 0.057 0.050 0.195 91.2% 0 

 0.60 0.002 0.060 0.053 0.209 91.2% 0 

 0.65 0.002 0.066 0.058 0.227 90.5% 0 

 0.70 0.003 0.073 0.064 0.249 90.0% 0 

 0.75 0.004 0.080 0.070 0.276 90.7% 0 

 0.80 0.003 0.089 0.078 0.306 90.8% 0 

 0.85 0.005 0.098 0.087 0.341 91.0% 0 

 0.90 0.006 0.110 0.097 0.381 90.9% 0 

 0.95 0.005 0.122 0.109 0.426 90.9% 0 

Shift in log-odds       

 -2.5 -0.002 0.065 0.061 0.239 92.8% 0 

 -2 -0.002 0.063 0.059 0.231 93.1% 0 

 -1.5 -0.002 0.060 0.056 0.218 92.4% 0 

 -1 0.001 0.055 0.051 0.200 92.9% 0 

 -0.5 0.002 0.051 0.047 0.183 92.7% 0 

 0.5 0.001 0.055 0.048 0.186 90.6% 0 

 1 -0.001 0.064 0.056 0.220 91.2% 0 

 1.5 0.007 0.079 0.069 0.269 90.6% 0 

 2 0.007 0.094 0.082 0.321 91.4% 0 

  2.5 0.008 0.107 0.094 0.367 91.3% 0 

Network-TMLE: targeted maximum likelihood estimation for dependent data, 
ESE: empirical standard error, ASE: average standard error, CLD: 
confidence limit difference, Coverage: 95% confidence interval coverage of 
the true parameter, Fail: estimator failed to produce an estimate.    
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Table A2.4.24: Network-TMLE for diet data generating mechanism with 
a clustered power-law random graph restricted by degree 

  Bias ESE ASE CLD Coverage Fail 

Proportion        

 0.05 -0.001 0.063 0.061 0.239 93.6% 0 

 0.10 -0.003 0.060 0.058 0.227 93.8% 0 

 0.15 -0.001 0.057 0.055 0.215 93.9% 0 

 0.20 0.002 0.055 0.052 0.203 93.9% 0 

 0.25 0.002 0.052 0.049 0.193 93.5% 0 

 0.30 0.002 0.051 0.047 0.186 93.2% 0 

 0.35 0.001 0.050 0.046 0.181 93.4% 0 

 0.40 0.000 0.049 0.046 0.179 93.1% 0 

 0.45 0.001 0.051 0.046 0.181 92.5% 0 

 0.50 0.004 0.053 0.048 0.187 91.8% 0 

 0.55 0.006 0.055 0.050 0.196 92.1% 0 

 0.60 0.002 0.059 0.054 0.210 92.2% 0 

 0.65 0.012 0.064 0.058 0.227 91.7% 0 

 0.70 -0.001 0.070 0.063 0.248 91.7% 0 

 0.75 0.007 0.077 0.070 0.273 92.0% 0 

 0.80 0.006 0.085 0.077 0.302 91.9% 0 

 0.85 0.008 0.094 0.086 0.335 92.0% 0 

 0.90 0.014 0.104 0.095 0.372 92.0% 0 

 0.95 0.013 0.115 0.105 0.413 92.2% 0 

Shift in log-odds       

 -2.5 -0.002 0.064 0.061 0.238 93.3% 0 

 -2 -0.003 0.062 0.059 0.230 93.4% 0 

 -1.5 -0.001 0.059 0.055 0.218 93.0% 0 

 -1 0.002 0.055 0.051 0.201 92.9% 0 

 -0.5 0.002 0.051 0.047 0.185 92.6% 0 

 0.5 -0.003 0.055 0.048 0.188 91.0% 0 

 1 0.004 0.063 0.056 0.220 91.7% 0 

 1.5 0.006 0.076 0.068 0.267 91.3% 0 

 2 0.007 0.091 0.081 0.316 91.7% 0 

  2.5 0.012 0.102 0.092 0.359 91.7% 0 

Network-TMLE: targeted maximum likelihood estimation for dependent data, 
ESE: empirical standard error, ASE: average standard error, CLD: 
confidence limit difference, Coverage: 95% confidence interval coverage of 
the true parameter, Fail: estimator failed to produce an estimate.    
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Table A2.4.25: IID-TMLE for diet data generating mechanism with the 
eX-FLU network 

  Bias ESE ASE CLD Coverage Fail 

Proportion        

 0.05 -1.571 0.205 0.310 1.217 0.0% 0 

 0.10 -1.435 0.187 0.296 1.161 0.0% 0 

 0.15 -1.208 0.171 0.284 1.113 0.0% 0 

 0.20 -0.930 0.159 0.273 1.071 0.6% 0 

 0.25 -0.662 0.150 0.265 1.038 16.5% 0 

 0.30 -0.414 0.146 0.259 1.015 74.6% 0 

 0.35 -0.183 0.147 0.255 1.001 98.9% 0 

 0.40 0.028 0.153 0.254 0.997 99.6% 0 

 0.45 0.226 0.163 0.256 1.003 94.5% 0 

 0.50 0.407 0.177 0.260 1.020 72.5% 0 

 0.55 0.571 0.194 0.267 1.046 41.5% 0 

 0.60 0.730 0.212 0.276 1.081 18.4% 0 

 0.65 0.871 0.233 0.287 1.124 8.5% 0 

 0.70 1.013 0.255 0.300 1.175 3.6% 0 

 0.75 1.137 0.277 0.314 1.232 2.0% 0 

 0.80 1.259 0.300 0.330 1.294 1.3% 0 

 0.85 1.380 0.325 0.347 1.361 0.9% 0 

 0.90 1.497 0.349 0.365 1.432 0.8% 0 

 0.95 1.612 0.374 0.384 1.507 0.6% 0 

Shift in log-odds       

 -2.5 -1.567 0.200 0.308 1.207 0.0% 0 

 -2 -1.486 0.188 0.298 1.170 0.0% 0 

 -1.5 -1.288 0.171 0.286 1.120 0.0% 0 

 -1 -0.936 0.152 0.271 1.061 0.3% 0 

 -0.5 -0.486 0.139 0.257 1.006 55.5% 0 

 0.5 0.461 0.173 0.259 1.014 61.3% 0 

 1 0.840 0.217 0.280 1.099 8.0% 0 

 1.5 1.122 0.263 0.309 1.210 1.8% 0 

 2 1.334 0.302 0.336 1.318 0.7% 0 

  2.5 1.482 0.332 0.359 1.406 0.5% 0 

IID-TMLE: independent and identically distributed targeted maximum 
likelihood estimation, ESE: empirical standard error, ASE: average standard 
error, CLD: confidence limit difference, Coverage: 95% confidence interval 
coverage of the true parameter, Fail: estimator failed to produce an estimate.  
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Table A2.4.26: Network-TMLE for diet data generating mechanism with 
the eX-FLU network 

  Bias ESE ASE CLD Coverage Fail 

Proportion        

 0.05 -0.004 0.077 0.069 0.271 92.0% 0 

 0.10 -0.001 0.073 0.064 0.252 91.2% 0 

 0.15 -0.007 0.068 0.059 0.231 90.7% 0 

 0.20 0.003 0.062 0.054 0.213 91.0% 0 

 0.25 0.003 0.058 0.051 0.199 91.3% 0 

 0.30 0.001 0.055 0.049 0.190 91.5% 0 

 0.35 0.000 0.053 0.047 0.185 92.0% 0 

 0.40 -0.002 0.053 0.047 0.184 91.7% 0 

 0.45 0.000 0.054 0.047 0.186 91.6% 0 

 0.50 0.000 0.056 0.049 0.191 91.4% 0 

 0.55 -0.003 0.057 0.051 0.199 91.2% 0 

 0.60 0.001 0.061 0.053 0.210 91.6% 0 

 0.65 -0.001 0.064 0.057 0.222 91.5% 0 

 0.70 0.006 0.069 0.060 0.237 91.4% 0 

 0.75 0.001 0.073 0.065 0.254 91.4% 0 

 0.80 0.000 0.079 0.069 0.272 91.4% 0 

 0.85 0.001 0.085 0.075 0.293 91.4% 0 

 0.90 0.002 0.091 0.080 0.315 91.5% 0 

 0.95 0.004 0.098 0.086 0.339 91.6% 0 

Shift in log-odds       

 -2.5 -0.006 0.076 0.068 0.268 92.5% 0 

 -2 -0.006 0.073 0.065 0.256 92.0% 0 

 -1.5 -0.008 0.068 0.060 0.236 91.4% 0 

 -1 -0.006 0.062 0.054 0.211 91.0% 0 

 -0.5 -0.006 0.054 0.048 0.190 92.0% 0 

 0.5 0.001 0.055 0.049 0.190 91.9% 0 

 1 0.002 0.062 0.055 0.215 91.9% 0 

 1.5 -0.002 0.072 0.063 0.247 91.6% 0 

 2 0.001 0.080 0.071 0.279 91.8% 0 

  2.5 0.005 0.087 0.078 0.306 91.3% 0 

Network-TMLE: targeted maximum likelihood estimation for dependent data, 
ESE: empirical standard error, ASE: average standard error, CLD: 
confidence limit difference, Coverage: 95% confidence interval coverage of 
the true parameter, Fail: estimator failed to produce an estimate.    
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Table A2.4.27: Network-TMLE for diet data generating mechanism with 
the eX-FLU network restricted by degree 

  Bias ESE ASE CLD Coverage Fail 

Proportion        

 0.05 -0.005 0.073 0.067 0.264 92.4% 0 

 0.10 -0.002 0.069 0.063 0.246 92.5% 0 

 0.15 -0.006 0.065 0.059 0.230 92.3% 0 

 0.20 0.000 0.061 0.055 0.216 92.4% 0 

 0.25 0.002 0.058 0.052 0.204 92.4% 0 

 0.30 0.000 0.056 0.050 0.195 91.9% 0 

 0.35 -0.002 0.054 0.049 0.190 92.4% 0 

 0.40 -0.003 0.055 0.048 0.189 91.7% 0 

 0.45 -0.001 0.055 0.049 0.191 91.4% 0 

 0.50 -0.001 0.057 0.050 0.197 91.5% 0 

 0.55 -0.004 0.059 0.052 0.206 91.1% 0 

 0.60 0.001 0.063 0.055 0.217 90.9% 0 

 0.65 -0.003 0.067 0.059 0.231 91.3% 0 

 0.70 0.004 0.071 0.063 0.246 91.6% 0 

 0.75 0.000 0.076 0.067 0.264 91.4% 0 

 0.80 0.000 0.082 0.072 0.284 91.7% 0 

 0.85 0.002 0.088 0.078 0.305 91.6% 0 

 0.90 0.002 0.095 0.084 0.329 91.6% 0 

 0.95 0.004 0.102 0.090 0.354 91.9% 0 

Shift in log-odds       

 -2.5 -0.007 0.073 0.067 0.261 92.8% 0 

 -2 -0.005 0.069 0.064 0.250 93.2% 0 

 -1.5 -0.007 0.065 0.060 0.234 92.6% 0 

 -1 -0.003 0.060 0.055 0.214 92.9% 0 

 -0.5 -0.001 0.055 0.050 0.194 92.2% 0 

 0.5 0.000 0.056 0.050 0.196 91.7% 0 

 1 0.000 0.064 0.057 0.223 91.9% 0 

 1.5 -0.001 0.073 0.066 0.257 91.8% 0 

 2 0.001 0.082 0.074 0.291 92.0% 0 

  2.5 0.003 0.090 0.081 0.319 92.0% 0 

Network-TMLE: targeted maximum likelihood estimation for dependent data, 
ESE: empirical standard error, ASE: average standard error, CLD: 

confidence limit difference, Coverage: 95% confidence interval coverage of 
the true parameter, Fail: estimator failed to produce an estimate.    
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Table A2.4.28: IID-TMLE for vaccine data generating mechanism with a uniform random graph 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion        

 0.05 -0.030 0.025 0.025 0.099 78.6% 0 0 

 0.10 -0.024 0.024 0.024 0.094 82.7% 0 0 

 0.15 -0.018 0.023 0.023 0.090 87.6% 0 0 

 0.20 -0.013 0.022 0.022 0.087 91.1% 0 0 

 0.25 -0.008 0.021 0.021 0.084 93.8% 0 0 

 0.30 -0.003 0.020 0.021 0.081 95.4% 0 0 

 0.35 0.001 0.020 0.020 0.079 95.6% 0 0 

 0.40 0.005 0.020 0.020 0.078 94.9% 0 0 

 0.45 0.010 0.020 0.020 0.078 93.1% 0 0 

 0.50 0.013 0.020 0.020 0.079 91.1% 0 0 

 0.55 0.016 0.020 0.020 0.080 89.1% 0 0 

 0.60 0.020 0.021 0.021 0.082 86.9% 0 0 

 0.65 0.023 0.021 0.022 0.085 85.2% 0 0 

 0.70 0.026 0.022 0.023 0.088 83.6% 0 0 

 0.75 0.028 0.023 0.024 0.092 82.3% 0 0 

 0.80 0.030 0.024 0.025 0.097 82.0% 0 0 

 0.85 0.032 0.026 0.026 0.101 81.2% 0 0 

 0.90 0.033 0.027 0.027 0.107 82.0% 0 0 

 0.95 0.034 0.028 0.029 0.112 82.6% 0 0 
Shift in log-
odds        

 -2.5 -0.0295 0.0252 0.0251 0.0983 78.2% 0 0 

 -2 -0.0265 0.0245 0.0244 0.0958 81.1% 0 0 

 -1.5 -0.0220 0.0236 0.0236 0.0925 84.9% 0 0 

 -1 -0.0156 0.0226 0.0226 0.0888 89.3% 0 0 

 -0.5 -0.0082 0.0214 0.0216 0.0849 93.7% 0 0 

 0.5 0.0094 0.0200 0.0205 0.0803 94.2% 0 0 

 1 0.0177 0.0203 0.0209 0.0818 88.5% 0 0 

 1.5 0.0245 0.0215 0.0220 0.0862 82.9% 0 0 

 2 0.0292 0.0233 0.0236 0.0925 80.0% 0 0 

  2.5 0.0324 0.0251 0.0253 0.0990 79.5% 0 0 

IID-TMLE: independent and identically distributed targeted maximum likelihood estimation, ESE: 
empirical standard error, ASE: average standard error, CLD: confidence limit difference, Coverage: 
95% confidence interval coverage of the true parameter, Non-informative: the lower confidence limit 
was less than 0 and the upper confidence limit was greater than 1, Fail: estimator failed to produce an 
estimate.  
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Table A2.4.29: Network-TMLE with a series of logistic models for vaccine data generating 
mechanism with a uniform random graph 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion        

 0.05 -0.005 0.065 0.064 0.250 94.5% 0 0 

 0.10 -0.004 0.050 0.049 0.191 94.5% 0 0 

 0.15 -0.003 0.040 0.038 0.150 94.2% 0 0 

 0.20 -0.002 0.032 0.031 0.122 94.4% 0 0 

 0.25 -0.001 0.027 0.026 0.104 94.5% 0 0 

 0.30 -0.001 0.024 0.024 0.094 94.7% 0 0 

 0.35 0.000 0.023 0.023 0.090 94.9% 0 0 

 0.40 0.000 0.024 0.023 0.091 94.7% 0 0 

 0.45 0.001 0.026 0.025 0.098 94.2% 0 0 

 0.50 0.001 0.030 0.028 0.109 93.8% 0 0 

 0.55 0.001 0.035 0.032 0.125 93.3% 0 0 

 0.60 0.001 0.041 0.037 0.145 93.0% 0 0 

 0.65 0.001 0.047 0.043 0.168 92.1% 0 0 

 0.70 0.001 0.054 0.049 0.193 91.6% 0 0 

 0.75 0.001 0.062 0.056 0.220 90.4% 0 0 

 0.80 0.001 0.070 0.063 0.247 89.3% 0 0 

 0.85 0.002 0.077 0.069 0.272 88.1% 1 1 

 0.90 0.002 0.086 0.075 0.295 86.0% 1 1 

 0.95 0.003 0.097 0.080 0.315 82.8% 0 0 
Shift in log-
odds        

 -2.5 -0.004 0.060 0.061 0.239 95.3% 0 0 

 -2 -0.003 0.050 0.051 0.201 95.2% 0 0 

 -1.5 -0.003 0.040 0.041 0.159 95.1% 0 0 

 -1 -0.002 0.031 0.031 0.121 95.1% 0 0 

 -0.5 -0.001 0.024 0.024 0.095 94.8% 0 0 

 0.5 0.001 0.023 0.023 0.090 94.8% 0 0 

 1 0.001 0.031 0.031 0.120 94.1% 0 0 

 1.5 0.002 0.046 0.044 0.173 93.1% 0 0 

 2 0.002 0.061 0.059 0.232 92.3% 0 0 

  2.5 0.003 0.073 0.071 0.277 91.0% 0 0 

Network-TMLE: targeted maximum likelihood estimation for dependent data, ESE: empirical standard 
error, ASE: average standard error, CLD: confidence limit difference, Coverage: 95% confidence 
interval coverage of the true parameter, Non-informative: the lower confidence limit was less than 0 
and the upper confidence limit was greater than 1, Fail: estimator failed to produce an estimate.    
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Table A2.4.30: Network-TMLE with a single Poisson model for vaccine data generating 
mechanism with a uniform random graph 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion        

 0.05 -0.003 0.046 0.035 0.136 85.7% 0 0 

 0.10 -0.002 0.037 0.029 0.114 87.7% 0 0 

 0.15 -0.002 0.031 0.026 0.101 89.8% 0 0 

 0.20 -0.001 0.026 0.023 0.092 91.5% 0 0 

 0.25 -0.001 0.024 0.022 0.087 92.6% 0 0 

 0.30 0.000 0.022 0.021 0.083 94.5% 0 0 

 0.35 0.000 0.021 0.021 0.082 94.9% 0 0 

 0.40 0.000 0.021 0.021 0.081 94.5% 0 0 

 0.45 0.000 0.022 0.021 0.082 93.1% 0 0 

 0.50 0.000 0.023 0.021 0.083 91.8% 0 0 

 0.55 0.000 0.025 0.022 0.084 89.9% 0 0 

 0.60 0.000 0.028 0.022 0.086 87.5% 0 0 

 0.65 0.000 0.030 0.023 0.089 85.0% 0 0 

 0.70 0.001 0.033 0.023 0.091 82.6% 0 0 

 0.75 0.001 0.036 0.024 0.094 79.9% 0 0 

 0.80 0.001 0.039 0.024 0.096 77.1% 0 0 

 0.85 0.001 0.042 0.025 0.098 74.6% 0 0 

 0.90 0.001 0.045 0.026 0.100 72.6% 0 0 

 0.95 0.001 0.048 0.026 0.102 70.6% 0 0 
Shift in log-
odds        

 -2.5 -0.001 0.044 0.033 0.131 86.0% 0 0 

 -2 -0.001 0.038 0.030 0.118 87.4% 0 0 

 -1.5 -0.001 0.032 0.027 0.105 89.2% 0 0 

 -1 -0.001 0.027 0.024 0.093 91.5% 0 0 

 -0.5 -0.001 0.023 0.021 0.084 93.5% 0 0 

 0.5 0.000 0.021 0.020 0.078 93.2% 0 0 

 1 0.001 0.025 0.020 0.080 88.5% 0 0 

 1.5 0.002 0.030 0.022 0.085 83.4% 0 0 

 2 0.002 0.036 0.023 0.090 78.6% 0 0 

  2.5 0.002 0.040 0.024 0.094 74.8% 0 0 

Network-TMLE: targeted maximum likelihood estimation for dependent data, ESE: empirical standard 
error, ASE: average standard error, CLD: confidence limit difference, Coverage: 95% confidence 
interval coverage of the true parameter, Non-informative: the lower confidence limit was less than 0 
and the upper confidence limit was greater than 1, Fail: estimator failed to produce an estimate.    

  



 

180 

Table A2.4.31: IID-TMLE for vaccine data generating mechanism with a clustered power-law 
random graph 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion        

 0.05 -0.032 0.026 0.026 0.101 76.9% 0 0 

 0.10 -0.026 0.025 0.025 0.096 81.7% 0 0 

 0.15 -0.020 0.024 0.023 0.092 86.4% 0 0 

 0.20 -0.015 0.023 0.022 0.088 89.4% 0 0 

 0.25 -0.010 0.022 0.022 0.085 91.7% 0 0 

 0.30 -0.005 0.021 0.021 0.082 93.8% 0 0 

 0.35 0.000 0.021 0.021 0.080 94.5% 0 0 

 0.40 0.004 0.021 0.020 0.079 94.1% 0 0 

 0.45 0.009 0.020 0.020 0.079 92.4% 0 0 

 0.50 0.013 0.020 0.020 0.079 90.8% 0 0 

 0.55 0.016 0.021 0.021 0.080 88.9% 0 0 

 0.60 0.020 0.021 0.021 0.082 86.6% 0 0 

 0.65 0.023 0.022 0.022 0.085 84.3% 0 0 

 0.70 0.026 0.023 0.022 0.088 82.3% 0 0 

 0.75 0.028 0.024 0.023 0.092 80.2% 0 0 

 0.80 0.030 0.025 0.025 0.096 80.0% 0 0 

 0.85 0.032 0.026 0.026 0.101 79.4% 0 0 

 0.90 0.034 0.027 0.027 0.106 79.2% 0 0 

 0.95 0.035 0.029 0.028 0.112 79.7% 0 0 
Shift in log-
odds        

 -2.5 -0.031 0.026 0.025 0.099 76.5% 0 0 

 -2 -0.028 0.025 0.025 0.097 79.3% 0 0 

 -1.5 -0.023 0.024 0.024 0.093 83.1% 0 0 

 -1 -0.017 0.023 0.023 0.089 88.4% 0 0 

 -0.5 -0.009 0.021 0.022 0.084 93.0% 0 0 

 0.5 0.010 0.020 0.020 0.079 93.6% 0 0 

 1 0.019 0.020 0.021 0.081 87.9% 0 0 

 1.5 0.025 0.021 0.022 0.085 82.4% 0 0 

 2 0.030 0.022 0.023 0.092 79.1% 0 0 

  2.5 0.033 0.024 0.025 0.098 78.4% 0 0 

IID-TMLE: independent and identically distributed targeted maximum likelihood estimation, ESE: 
empirical standard error, ASE: average standard error, CLD: confidence limit difference, Coverage: 
95% confidence interval coverage of the true parameter, Non-informative: the lower confidence limit 
was less than 0 and the upper confidence limit was greater than 1, Fail: estimator failed to produce an 
estimate.  
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Table A2.4.32: Network-TMLE for vaccine data generating mechanism with a clustered power-
law random graph 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion        

 0.05 -0.001 0.059 0.038 0.148 78.1% 0 0 

 0.10 -0.001 0.046 0.032 0.124 82.5% 0 0 

 0.15 0.000 0.037 0.027 0.106 85.2% 0 0 

 0.20 -0.001 0.030 0.024 0.095 88.5% 0 0 

 0.25 -0.001 0.026 0.022 0.087 90.8% 0 0 

 0.30 -0.001 0.023 0.021 0.083 93.4% 0 0 

 0.35 0.000 0.022 0.021 0.081 94.0% 0 0 

 0.40 0.000 0.022 0.021 0.081 93.9% 0 0 

 0.45 0.000 0.023 0.021 0.081 92.6% 0 0 

 0.50 0.001 0.025 0.021 0.082 90.1% 0 0 

 0.55 0.000 0.028 0.021 0.084 86.8% 0 0 

 0.60 0.001 0.031 0.022 0.085 83.1% 0 0 

 0.65 0.001 0.035 0.022 0.087 79.0% 0 0 

 0.70 0.001 0.039 0.023 0.088 75.0% 0 0 

 0.75 0.002 0.042 0.023 0.089 70.8% 0 0 

 0.80 0.002 0.046 0.023 0.090 66.2% 0 0 

 0.85 0.002 0.050 0.023 0.090 62.5% 0 0 

 0.90 0.003 0.054 0.023 0.090 59.2% 0 0 

 0.95 0.003 0.058 0.023 0.089 55.3% 0 0 
Shift in log-
odds        

 -2.5 -0.001 0.057 0.037 0.143 78.8% 0 0 

 -2 -0.001 0.048 0.033 0.129 81.7% 0 0 

 -1.5 -0.001 0.039 0.029 0.112 84.1% 0 0 

 -1 -0.001 0.031 0.025 0.097 87.9% 0 0 

 -0.5 -0.001 0.024 0.022 0.085 92.2% 0 0 

 0.5 0.000 0.022 0.020 0.078 92.2% 0 0 

 1 0.001 0.028 0.021 0.081 84.4% 0 0 

 1.5 0.002 0.036 0.022 0.084 76.1% 0 0 

 2 0.002 0.043 0.022 0.087 68.6% 0 0 

  2.5 0.003 0.049 0.023 0.089 63.5% 0 0 

Network-TMLE: targeted maximum likelihood estimation for dependent data, ESE: empirical standard 
error, ASE: average standard error, CLD: confidence limit difference, Coverage: 95% confidence 
interval coverage of the true parameter, Non-informative: the lower confidence limit was less than 0 
and the upper confidence limit was greater than 1, Fail: estimator failed to produce an estimate.    
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Table A2.4.33: Network-TMLE for vaccine data generating mechanism with a clustered power-
law random graph restricted by degree 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion        

 0.05 0.004 0.051 0.034 0.134 81.2% 0 0 

 0.10 0.003 0.041 0.029 0.115 83.6% 0 0 

 0.15 0.003 0.034 0.026 0.102 85.9% 0 0 

 0.20 0.003 0.029 0.024 0.093 88.8% 0 0 

 0.25 0.002 0.025 0.022 0.088 91.1% 0 0 

 0.30 0.002 0.023 0.021 0.084 93.0% 0 0 

 0.35 0.002 0.021 0.021 0.082 94.4% 0 0 

 0.40 0.001 0.021 0.021 0.081 94.3% 0 0 

 0.45 0.001 0.022 0.021 0.081 93.5% 0 0 

 0.50 0.001 0.024 0.021 0.082 91.7% 0 0 

 0.55 0.001 0.026 0.021 0.083 89.2% 0 0 

 0.60 0.000 0.028 0.022 0.084 86.1% 0 0 

 0.65 0.001 0.031 0.022 0.086 82.2% 0 0 

 0.70 0.001 0.034 0.022 0.088 78.9% 0 0 

 0.75 0.000 0.037 0.023 0.089 76.0% 0 0 

 0.80 0.001 0.040 0.023 0.091 72.5% 0 0 

 0.85 0.000 0.043 0.023 0.092 69.6% 0 0 

 0.90 0.000 0.047 0.024 0.093 67.0% 0 0 

 0.95 0.000 0.050 0.024 0.094 64.0% 0 0 
Shift in log-
odds        

 -2.5 0.003 0.048 0.033 0.130 81.6% 0 0 

 -2 0.003 0.042 0.030 0.118 83.6% 0 0 

 -1.5 0.002 0.035 0.027 0.105 86.3% 0 0 

 -1 0.002 0.029 0.024 0.093 88.9% 0 0 

 -0.5 0.002 0.024 0.022 0.085 92.6% 0 0 

 0.5 0.002 0.021 0.020 0.078 92.9% 0 0 

 1 0.001 0.026 0.020 0.080 87.4% 0 0 

 1.5 0.001 0.032 0.021 0.083 80.9% 0 0 

 2 0.001 0.037 0.022 0.086 74.3% 0 0 

  2.5 0.001 0.042 0.023 0.089 69.5% 0 0 

Network-TMLE: targeted maximum likelihood estimation for dependent data, ESE: empirical standard 
error, ASE: average standard error, CLD: confidence limit difference, Coverage: 95% confidence 
interval coverage of the true parameter, Non-informative: the lower confidence limit was less than 0 
and the upper confidence limit was greater than 1, Fail: estimator failed to produce an estimate.    

  



 

183 

Table A2.4.34: IID-TMLE for vaccine data generating mechanism with the eX-FLU network 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion        

 0.05 -0.031 0.026 0.026 0.102 78.5% 0 0 

 0.10 -0.025 0.025 0.025 0.097 83.2% 0 0 

 0.15 -0.020 0.024 0.024 0.093 87.4% 0 0 

 0.20 -0.014 0.023 0.023 0.089 91.0% 0 0 

 0.25 -0.009 0.022 0.022 0.086 93.1% 0 0 

 0.30 -0.004 0.021 0.021 0.084 95.0% 0 0 

 0.35 0.000 0.021 0.021 0.082 95.2% 0 0 

 0.40 0.005 0.020 0.021 0.081 95.1% 0 0 

 0.45 0.009 0.020 0.021 0.081 94.0% 0 0 

 0.50 0.013 0.021 0.021 0.082 92.2% 0 0 

 0.55 0.016 0.021 0.021 0.083 90.6% 0 0 

 0.60 0.019 0.021 0.022 0.085 89.1% 0 0 

 0.65 0.023 0.022 0.023 0.088 86.5% 0 0 

 0.70 0.026 0.023 0.023 0.092 84.9% 0 0 

 0.75 0.028 0.024 0.024 0.096 83.5% 0 0 

 0.80 0.031 0.025 0.026 0.101 82.0% 0 0 

 0.85 0.033 0.026 0.027 0.106 81.5% 0 0 

 0.90 0.035 0.028 0.028 0.111 81.5% 0 0 

 0.95 0.036 0.029 0.030 0.117 81.6% 0 0 
Shift in log-
odds        

 -2.5 -0.030 0.026 0.026 0.101 78.9% 0 0 

 -2 -0.027 0.025 0.025 0.098 81.1% 0 0 

 -1.5 -0.023 0.024 0.024 0.095 84.5% 0 0 

 -1 -0.016 0.023 0.023 0.091 89.4% 0 0 

 -0.5 -0.008 0.022 0.022 0.087 93.6% 0 0 

 0.5 0.010 0.020 0.021 0.083 94.1% 0 0 

 1 0.018 0.021 0.022 0.085 89.2% 0 0 

 1.5 0.025 0.022 0.023 0.089 83.7% 0 0 

 2 0.030 0.024 0.025 0.096 81.1% 0 0 

  2.5 0.033 0.025 0.026 0.103 81.1% 0 0 

IID-TMLE: independent and identically distributed targeted maximum likelihood estimation, ESE: 
empirical standard error, ASE: average standard error, CLD: confidence limit difference, Coverage: 
95% confidence interval coverage of the true parameter, Non-informative: the lower confidence limit 
was less than 0 and the upper confidence limit was greater than 1, Fail: estimator failed to produce an 
estimate.  
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Table A2.4.35: Network-TMLE for vaccine data generating mechanism with the eX-FLU network 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion        

 0.05 -0.004 0.058 0.037 0.146 77.1% 0 0 

 0.10 -0.003 0.045 0.032 0.127 82.5% 0 0 

 0.15 -0.003 0.036 0.028 0.111 86.4% 0 0 

 0.20 -0.002 0.030 0.025 0.099 89.7% 0 0 

 0.25 -0.002 0.025 0.023 0.091 92.4% 0 0 

 0.30 -0.001 0.023 0.022 0.087 94.0% 0 0 

 0.35 0.000 0.022 0.022 0.085 94.5% 0 0 

 0.40 0.000 0.023 0.022 0.086 94.0% 0 0 

 0.45 0.001 0.026 0.022 0.088 92.3% 0 0 

 0.50 0.002 0.028 0.023 0.090 89.6% 0 0 

 0.55 0.001 0.031 0.024 0.092 86.6% 0 0 

 0.60 0.002 0.034 0.024 0.094 83.0% 0 0 

 0.65 0.002 0.038 0.024 0.096 78.9% 0 0 

 0.70 0.002 0.041 0.025 0.097 75.4% 0 0 

 0.75 0.003 0.045 0.025 0.098 71.8% 0 0 

 0.80 0.003 0.048 0.025 0.098 67.8% 0 0 

 0.85 0.003 0.052 0.025 0.099 64.1% 0 0 

 0.90 0.004 0.056 0.025 0.099 60.4% 0 0 

 0.95 0.004 0.059 0.025 0.099 57.4% 0 0 
Shift in log-
odds        

 -2.5 -0.005 0.057 0.036 0.143 77.9% 0 0 

 -2 -0.004 0.049 0.033 0.130 80.3% 0 0 

 -1.5 -0.003 0.040 0.029 0.115 83.7% 0 0 

 -1 -0.001 0.031 0.025 0.099 87.8% 0 0 

 -0.5 -0.001 0.025 0.022 0.088 92.3% 0 0 

 0.5 0.001 0.024 0.022 0.085 92.6% 0 0 

 1 0.001 0.031 0.023 0.090 85.8% 0 0 

 1.5 0.002 0.038 0.024 0.094 78.1% 0 0 

 2 0.002 0.045 0.025 0.097 71.0% 0 0 

  2.5 0.002 0.051 0.025 0.098 65.4% 0 0 

Network-TMLE: targeted maximum likelihood estimation for dependent data, ESE: empirical standard 
error, ASE: average standard error, CLD: confidence limit difference, Coverage: 95% confidence 
interval coverage of the true parameter, Non-informative: the lower confidence limit was less than 0 
and the upper confidence limit was greater than 1, Fail: estimator failed to produce an estimate.    
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Table A2.4.36: Network-TMLE for vaccine data generating mechanism with the eX-FLU network 
restricted by degree 

  Bias ESE ASE CLD Coverage Non-informative Fail 

Proportion        

 0.05 0.002 0.054 0.039 0.154 82.6% 0 0 

 0.10 0.001 0.042 0.033 0.128 86.2% 0 0 

 0.15 0.001 0.034 0.028 0.111 89.4% 0 0 

 0.20 0.000 0.029 0.025 0.099 91.6% 0 0 

 0.25 -0.001 0.025 0.023 0.092 93.1% 0 0 

 0.30 -0.001 0.023 0.022 0.088 94.2% 0 0 

 0.35 -0.002 0.022 0.022 0.085 94.5% 0 0 

 0.40 -0.003 0.022 0.022 0.085 94.3% 0 0 

 0.45 -0.003 0.023 0.022 0.085 92.6% 0 0 

 0.50 -0.004 0.025 0.022 0.087 90.6% 0 0 

 0.55 -0.005 0.027 0.023 0.088 87.5% 0 0 

 0.60 -0.005 0.030 0.023 0.091 83.9% 0 0 

 0.65 -0.006 0.033 0.024 0.093 80.3% 0 0 

 0.70 -0.007 0.037 0.024 0.095 76.7% 0 0 

 0.75 -0.007 0.040 0.025 0.097 73.6% 0 0 

 0.80 -0.008 0.044 0.025 0.099 69.5% 0 0 

 0.85 -0.009 0.047 0.026 0.101 65.9% 0 0 

 0.90 -0.009 0.051 0.026 0.102 62.9% 0 0 

 0.95 -0.010 0.055 0.026 0.103 59.5% 0 0 
Shift in log-
odds        

 -2.5 0.001 0.052 0.038 0.150 83.6% 0 0 

 -2 0.001 0.044 0.034 0.134 85.8% 0 0 

 -1.5 0.000 0.036 0.030 0.116 88.0% 0 0 

 -1 0.000 0.029 0.026 0.101 91.2% 0 0 

 -0.5 -0.001 0.024 0.023 0.090 93.9% 0 0 

 0.5 -0.003 0.023 0.021 0.084 92.9% 0 0 

 1 -0.004 0.028 0.022 0.088 87.3% 0 0 

 1.5 -0.005 0.034 0.024 0.093 80.5% 0 0 

 2 -0.005 0.041 0.025 0.098 73.8% 0 0 

  2.5 -0.006 0.047 0.026 0.102 69.0% 0 0 

Network-TMLE: targeted maximum likelihood estimation for dependent data, ESE: empirical standard 
error, ASE: average standard error, CLD: confidence limit difference, Coverage: 95% confidence 
interval coverage of the true parameter, Non-informative: the lower confidence limit was less than 0 
and the upper confidence limit was greater than 1, Fail: estimator failed to produce an estimate.    
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Appendix 2.5: Proposed Diagnostic Plot for Positivity 

 The following is an example of the proposed diagnostic plot for detecting potential issues 

regarding positivity for a policy 𝜔. Examples were constructed using the uniform random graph 

(minimum degree was one and maximum was six) and the statin data generating mechanism. 

Figure A2.5.1A shows the observed distribution for 𝐴𝑠 (where the summary measure is a 

summation of immediate contacts with 𝐴 = 1) stratified by the individual’s value for 𝐴.  

Figure A2.5.1: Example of diagnostic plots for positivity issues for specific policies 
using the uniform random graph with statins 

 
A: observed distribution of 𝐴𝑠 by individual’s 𝐴. Consists of 500 individuals. 

B: distribution of 𝐴𝑠 under policy 𝛼 = 0.1. Consists of 50,000 individuals (100 copies of the 500 
individuals). 
C: distribution of 𝐴𝑠 under policy 𝛼 = 0.9. Consists of 50,000 individuals (100 copies of the 500 
individuals). 

 
These plots indicate that the 𝜔 in B has support in the data but the 𝜔 in C has little-to-no 

support. Therefore, the latter policy should not be estimated or it should be recognized that 

results are highly dependent on extrapolations from the parametric models. As shown in the 

simulations, this can lead to variable estimates (as indicated by the ESE) and poor CI coverage.  
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APPENDIX 3: CHAPTER 6 SUPPLEMENTARY MATERIALS 

Figure A3.1: Diagnostic plots for MICE 

 
SD: standard deviation, PSS: perceived stress scale 
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Figure A3.2: Missing Vaccination Status Considered as Vaccinated 

 

Shaded regions indicated 95% CI. All students with missing influenza vaccination status were 
considered as vaccinated. Influenza-like illness was defined as the presence of coughing plus at 
least one of the following symptoms: fever, body aches, or chills. Laboratory-confirmation of 
influenza was determined via quantitative polymerase chain reaction. 
Policy 1: theoretical policy to emphasize benefits of the vaccine and dispelling common myths. 
Policy 2: theoretical policy to address non-financial barriers to vaccination 
Policy 3: theoretical policy to address financial barriers to vaccination 
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Figure A3.3: Missing Vaccination Status Considered as Unvaccinated 

 

Shaded regions indicated 95% CI. All students with missing influenza vaccination status were 
considered as unvaccinated. Influenza-like illness was defined as the presence of coughing plus 
at least one of the following symptoms: fever, body aches, or chills. Laboratory-confirmation of 
influenza was determined via quantitative polymerase chain reaction. 
Policy 1: theoretical policy to emphasize benefits of the vaccine and dispelling common myths. 
Policy 2: theoretical policy to address non-financial barriers to vaccination 
Policy 3: theoretical policy to address financial barriers to vaccination 
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