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ABSTRACT

Weibin Mo: Efficiency and Robustness in Individualized Decision Making
(Under the direction of Yufeng Liu)

Recent development in data-driven decision science has seen great advances in individualized
decision making. Given data with covariates, treatment assignments and outcomes, one common
goal is to find individualized decision rules that map the individual characteristics or contextual
information to the treatment assignment, such that the overall expected outcome can be optimized.
In this dissertation, we propose several new approaches to learn efficient and robust individualized
decision rules. In the first project, we consider the robust learning problem when training and
testing distributions can be different. A novel framework of the Distributionally Robust Individ-
ualized Treatment Rule (DR-ITR) is proposed to maximize the worst-case value function under
distributional changes. The testing performance among a set of distributions close to training can
be guaranteed reasonably well. For the second project, we consider the problem of treatment-
free effect misspecification and heteroscedasticity. We propose an Efficient Learning (E-Learning)
framework for finding an optimal ITR with improved efficiency in the multiple treatment setting.
The proposed E-Learning is optimal among a regular class of semiparametric estimates that can
allow treatment-free effect misspecification and heteroscedasticity. We demonstrate its effective-
ness when one of or both misspecified treatment-free effect and heteroscedasticity exist. For the
third project, we study the multi-stage multi-treatment decision problem. A new Backward Change
Point Structural Nested Mean Model (BCP-SNMM) is developed to allow an unknown backward
change point of the SNMM. We further propose the Dynamic Efficient Learning (DE-Learning)
framework that is optimal under the BCP-SNMM and enjoys more robustness. Compared with the
existing G-Estimation, DE-Learning is a tractable procedure for rigorous semiparametric efficient
estimation, with much fewer nuisance functions to estimate and can be implemented in a backward

stagewise manner.
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CHAPTER 1

Introduction

Data-driven individualized decision making problems are commonly seen in practice and have
been studied intensively in the literature. In disease management, the physician may decide whether
to introduce or switch a therapy for a patient based on his/her characteristics in order to achieve
better clinical outcome (Bertsimas et al., 2017). In public policy making, a policy that allocates
the resource based on the characteristics of the targets can improve the overall resource allocation
efficiency (Kube et al., 2019). In a context-based recommender system, the use of the contextual
information such as time, location and social connection can improve the effectiveness of the rec-
ommendation process (Aggarwal, 2016). One common goal of the individualized decision making
problem is to find decision rules that map the individual characteristics or contextual information
to the treatment assignment, such that the overall expected outcome can be optimized. In this
dissertation, we mainly focus on the efficiency and robustness of the individualized decision making
problem and investigate several new approaches.

In this chapter, we provide the general background and review some existing techniques in the
literature. In Section 1.1, we discuss the single-stage decision problem, on which many existing
methods have been developed. In Section 1.2, we consider the multi-stage decision problem that
can be more challenging due to the existence of time-varying treatment effects. In Section 1.3, we
introduce three main problems that this dissertation focuses on, and outline the organization of

the subsequent chapters.

1.1 Single-Stage Decision Problems

For a single-stage decision problem, each data point consists of a covariate vector X € X < R?
incorporating the individual characteristics or contextual information, a treatment assignment A €

A and an outcome Y € Y < R. Assume without loss of generality that a larger outcome Y is



better. One important goal is to find the optimal Individualized Treatment Rule (ITR) d: X — A
that maximizes the expected outcome (Manski, 2004):

single-stage value function
A

d* € argmax { V(d) = E[Y|A = d(X)] }
d:X—A

One approach for estimating an optimal I'TR, known as the regression-based approach, is to
estimate some conditional mean functions associated with the optimal I'TR. Specifically, consider
the Q-function Q(x,a) := E(Y|X = x,A = a) as a function of the covariates * € X and the
treatment assignment a € A. Then the optimal ITR is induced by d*(x) = argmin,. 4 Q(x,a). The
approach based on the Q-function estimate is known as the @-Learning (Watkins, 1989; Qian and
Murphy, 2011). In the binary treatment case A = {0, 1}, such an approach at the population level
is equivalent to estimating the treatment-covariate interaction effect C(x) := Q(x,1) — Q(=,0).
This is also known as the Conditional Average Treatment Effect (CATE) in the causal inference
literature, and a x C(x) = Q(=x, a) —Q(x, 0) is the blip-to-zero function in Robins (1994)’s Structural
Mean Model (SMM). In particular, the optimal ITR at the population level can be represented by
the sign of the CATE d*(x) = 1[C(x) = 0].

In the binary treatment case, the regression-based optimal ITR can be further obtained via two
main different strategies. The first strategy, known as the A-Learning (Murphy, 2003), estimates

the CATE from the semiparameteric model:

Y=m(X)+AxC(X;8)+e E(X,A) =0. (1.1)

Here, the CATE C(X; 8) is modeled by a p-dimensional parameter vector 3 € RP of interest, and
m(X) is a nuisance function of covariates. When p is large, a sparse linear model C(X; 8) = XI8s
is assumed to select a relevant variable subset S < {1,2,--- ,p} (Imai and Ratkovic, 2013; Lu et al.,
2013; Shi et al., 2016; Zhao et al., 2017; Jeng et al., 2018; Nie and Wager, 2020). When targeting the
CATE parameter 3, the treatment-free effect function m(-) is nuisance and assumed nonparametric.

To achieve the semiparametric efficiency when estimating 8, Lu et al. (2013); Zhao et al. (2017);



Nie and Wager (2020) considered Robinson (1988)’s transformation:
Y —EY|X)=[A-EAX)|C(X;B) +e.

Denote the nuisance functions p(x) := E(Y|X = x) and 7(x) := E(A|X = x). Let (i, 7) be some

estimates of (u, 7). Then the CATE parameter 3 can be estimated from the least-squares problem:

L1 ~ N 2
min 5B {Y — H(X) ~[4 - #(X)]O(X:8)]

The corresponding estimating function is equivalent to the G-FEstimation for the single-stage doubly

robust SMM (Bickel and Kwon, 2001):

0

Gen(8:1.7) = {¥ = A(X) ~ [A = F(X)]O(X:0) {[A = F(X)] 550(X; B).

In particular, the G-estimator ,@n as the solution to the empirical estimating equation
E,[@ett (B; fin, Tn)] = 0 is consistent and asymptotic normal if at least one of i = p and T = 7.
This is known as the double robustness property. If we assume that (i, 7) = (u, 7) and Var(e| X, A)
is a constant, then Bn is semiparametric efficient. In order to ensure the estimation effects from
(fin, Tp) are 4/n-negligible in ,@n = Bn(ﬁn,%n), it requires that (fin,7n) = (1, 7) 4+ op(n~12). For
a less restrictive rate requirement on (fin,7,), Zheng and van der Laan (2010); Chernozhukov
et al. (2018a,b) considered the nuisance function estimates ([Z?(fi) (X5), 2070 (X;)) at the i-th sam-
ple point, where (ﬂ%_i) , %Sf“) are obtained from a sub-sample excluding the i-th sample point. The
corresponding cross-fitting estimate of B3 solving (1/n) " | Gefi,i (B;ﬁ%_i)(Xi), 2070 (Xz)> =0is
i = L2(P) ‘%’(‘%) e or(n™%).
Such a property is known as the locally double robustness (Chernozhukov et al., 2018¢) or the rate

semiparametric efficient under the looser condition ‘

double robustness (Rotnitzky et al., 2021).

Estimating a parametric CATE in A-Learning relies on the parametric model assumption, and
hence may suffer from potential model misspecification. It can be desirable to approximate it
using flexible nonparametric regression or machine learning approaches. This problem has been
intensively studied in the causal inference literature (Dorie et al., 2019; Guo et al., 2020), and

many flexible modeling methods have been proposed. Some main examples include nonparametric



regression of the doubly robust transformed outcome (Kennedy et al., 2017; Semenova and Cher-
nozhukov, 2017; Kennedy, 2020; Curth et al., 2020), the index models (Song et al., 2017; Liang
and Yu, 2020; Guo et al., 2021), the Generalized Additive Model (GAM) (Moodie et al., 2014), the
local methods (Abrevaya et al., 2015; Bertsimas and Kallus, 2020), the ClassificAtion-Regression
Tree (CART) (Su et al., 2009; Athey and Imbens, 2016; Bertsimas et al., 2019), the Multivariate
Adaptive Regression Spline (MARS) and the boosting estimates (Powers et al., 2018), the random
regression forest models (Foster et al., 2011; Wager and Athey, 2018; Friedberg et al., 2020), the
Bayesian Additive Regression Tree (BART) (Hill, 2011; Hahn et al., 2020), the Gaussian process
(Alaa and van der Schaar, 2017, 2018), the Reproducing Kernel Hilbert Space (RKHS) (Bertsimas
and Koduri, 2021), the neural network (Johansson et al., 2016; Shalit et al., 2017; Louizos et al.,
2017; Yoon et al., 2018; Yao et al., 2018; Johansson et al., 2020; Curth and van der Schaar, 2021),
and the meta learners (Kiinzel et al., 2019).

Instead of estimating the CATE function & — C(x) from Model (1.1), another strategy is to
directly estimate the optimal ITR @ — sign[C(x)] from a weighted loss minimization problem:

f:XIEi[ELuE {w(X,A)E(Y’ (A—-1/2) x f(X)>} ) (1.2)

where w(X, A) > 0 is a weight function, and ¢(y,y) = 0 is a general loss function. In particular,
it requires the weight function w(X, A) to satisfy the following balancing condition (Wallace and
Moodie, 2015):

w(z,)r(x) = w(x,0)[1 —7(x)]; VxelX. (1.3)

As a concrete example, the Inverse Probability Weights (IPWs) w(x,1) = 7(x)~! and w(x,0) =
[1 —7(x)] ! satisfies (1.3). Furthermore, the overlap weights (Crump et al., 2006, 2009) w(x,1) =
1 — 7n(x) and w(x,0) = w(x) can be another example. Here, if we define P,, « P such that
dP,/dP := w(X, A), then P, (A = 1|X) = P,(A = 0|X) = 1/2, and for any h : X — R, we have
Eu[h(X)|A = 1] = Ey[h(X)|A = 0] = E[h(X)]. That is, the weight w(X, A) is a specific form
of Rosenbaum and Rubin (1983)’s balancing score in the sense that X 1 A under P,. Therefore,

the balancing condition (1.2) can correspond to the more general inverse Covariate Balancing



Propensity Score (CBPS) weight (Imai and Ratkovic, 2014, 2015; Li et al., 2018; Wong and Chan,
2018; Fong et al., 2018; Zhao, 2019; Li and Li, 2019; Wang and Zubizarreta, 2020; Ning et al., 2020;
Bennett et al., 2020; Josey et al., 2020; Fan et al., 2020).

It further requires the loss function ¢(y, ) in (1.2) to satisfy the following two conditions under

the general Subgroup Identification framework (Chen et al., 2017).
e The score function S(y,y) := (0/0y)L(y,y) is strictly increasing in y for every y € ).
e The utility function U(y) := —(0/0y)¢(y,0) is strictly monotone in y.

Without loss of generality, assume that U(y) is strictly increasing in y. Given the conditions
on w(X,A) and £(y,y), the solution f* to (1.2) satisfies that for any € X, f*(x) = 0 if and
only if E[U(Y)|X = x, A = 1] = E[UY)|X = x, A = 0]. As a special case, suppose the
distribution of Y belongs to the exponential family with the canonically parametrized negative
log-likelihood function £(y,n) := —yn + ¥(n) — log h(y), where n is the canonical parameter and
P(n) = log {h(y)e"™dy is the log-partition function. Then the corresponding utility function is
UY) =Y —'(0), so that sign[f*(x)] = sign[C(x)] for all © € X. Therefore, the solution f* to
(1.2) is Fisher consistent with the optimal ITR. In this case, (1.2) with the negative log-likelihood
loss function £(y,y) corresponds to the Maximal Likelihood Estimate (MLE) under the working
model (/) HE(Y|X, A)] = (A—1/2) x f(X) with zero treatment-free effect. In particular, we have
Y'[(1/2) f* ()] =Y [-(1/2) f*(x)] = C(x) for all x € X, where the function n — '(n/2) —¢'(—n/2)
is strictly increasing. In this way, the estimation of the treatment-free effect can be avoided. Based
on this framework, Tian et al. (2014); Xu et al. (2015); Chen et al. (2017); Qi and Liu (2018); Qi
et al. (2020) can consider the ITR problem for continuous, binary and survival outcomes with a
flexible decision function class f € F.

Problem (1.2) with the squared loss £(y,9) = (1/2)(y — §)? corresponds to the solution f*(x) =
C(zx) for any € X. In this case, the general use of the weight function w(X, A) satisfying (1.3)
was studied in Huang et al. (2014); Wallace and Moodie (2015); Simoneau et al. (2020); Schulz and

Moodie (2021). Specifically, they considered the estimating function:

X
(B, ) 1= DX, A){Y — XTn — (4~ 1/2) X8} . (1.4)
(A—1/2)X



Here, XTn and XT3 are the parametric models for the treatment-free effect and the CATE re-
spectively. The parameters (3,n) are simultaneously estimated by solving the empirical estimat-
ing equations based on (1.4). The estimating function (1.4) is doubly robust if either the esti-
mated weight function w(X, A) satisfies (1.3), or the working linear model X Tn is correct for the
treatment-free effect.

Other than the regression-based approach, another approach for estimating the optimal ITR,
known as the direct-search approach, is to directly estimate the value function V(d) for every ITR

d using the IPW Estimate (IPWE)

]’}IPWEm(d) =E, {]W):A]Y} ;

P (A[X)

where py(alxz) = P(A = a|X = ). The corresponding optimal ITR is JIPWEW €
argmax jep ﬁIPWE(d), where D € {d : X — A} is a pre-specified function class of ITRs. Beygelz-
imer and Langford (2009); Laber and Zhao (2015); Zhu et al. (2017); Kallus (2017) considered D
as the class of decision trees, and introduced the splitting criteria that maximize the IPWE in
the corresponding CART algorithm. Kitagawa and Tetenov (2018) considered D as a general VC
class of ITRs, and established the y/n-regret bound and the minimax rate optimality of c?lpWE’n.
For implementation, they used the Mixed Integer Programming (MIP) to maximize the IPWE
over the linear I'TR class D. In order to overcome the challenge of nonconvex optimization, Zhao
et al. (2012) reformulated the IPWE maximization problem into the minimization of an outcome-
weighted misclassification error. The corresponding Outcome Weighted Learning (OWL) problem
is

wip (B, (2 alea- 15007 < w13}

feF

where ¢ is a margin-based convex surrogate loss function, and F is a pre-specified function class of
{f : X > R}, and \,| - ||+ is the functional penalty associated with F. The OWL framework can
allow general types of outcomes, such as the binary (Huang and Fong, 2014) and survival (Zhao
et al., 2015b; Cui et al., 2017) outcomes, and the applications of any supervised learning methods,
such as the bagging and neural network (Mi et al., 2019). To reduce the finite sample variance,

Zhou et al. (2017); Liu et al. (2018) further proposed the Residual Weighted Learning (RWL) with



Y replaced by Y — g(X) for some function g : X — R. To handle the possibly negative weights and
gain more robustness in presence of covariate outliers, Huang and Fong (2014); Zhou et al. (2017);
Qiu et al. (2018) considered the nonconvex ramp loss function for ¢. In particular, the weighted
loss functions mqb[(QA —1)f(X)] and %gf)[ﬂfl —1)sign(Y) f(X)] are equivalent in this
case. Moreover, the ramp loss with a well tuned bandwidth parameter can converge to the 0-1 loss.
When the number of variables p is large, sparse penalties can be further incorporated in the OWL
framework (Song et al., 2015a; Xu et al., 2015). For multiple and continuous treatment problems,
the extensions were studied in Chen et al. (2016, 2018); Lou et al. (2018); Zhou et al. (2018a);
Liang et al. (2018); Huang et al. (2019); Fu et al. (2019); Zhang et al. (2020); Meng et al. (2020).

In observational studies, the propensity score function p.(A|X) needs to be estimated from
data. In order to protect the risk of misspecifying the propensity score model, the Augmented

IPWE (AIPWE) of V(d) was introduced in the literature:

1d(X) = 4],
P (Al X) P (AlX)

=K, {@(X,d) +

ﬁAIPWE,n(d; Q,pos) :=En {

where for a general function h(x,a) and an ITR d : X — A, we denote h(x,d) :=
Daea h(x,a)l[d(x) = a]. The first definition can be obtained from the efficient influence func-
tion under the missing data framework (Robins et al., 1994) or Targeted Minimum Loss-based
Estimation (TMLE) (van der Laan and Rubin, 2006; van der Laan and Rose, 2018). The second
equivalent definition is represented with the additive augmented term %X&’;‘][Y — @(X ,A)]
to the predicted Q-function @(X ,d). The AIPWE is doubly robust in the sense that either
@ = @ or Py = py implies that the 9AIPWE,n(d;@,?[') is a consistent estimate of V(d) (Dudik
et al., 2011; Zhang et al., 2012b). Notice that maxgzy_ 4 ]A/AIPWE,n(d;@,@y) is equivalent to
maxq.x A {9A1PWE,n(d; Q. Per) — Varewin(—d; Q, py) := Ep[Carpwr(X)][2d(X) — 1]}, where

2A—-1 N

Carpwi(X) = Carpwe(X; Q, Dy ) := Q(X,1) — Q(X,0) + m[y - Q(X,A4)].

This is also known as the doubly robust score in Zhou et al. (2018b); Athey and Wager (2021) and

the Doubly Robust (DR) pseudo outcome of Kennedy (2020); Curth et al. (2020).



Based on the AIPWE, Zhang et al. (2012b) considered the direct maximization of
f}AIpWE,n(dn; @, Do) over a parametric ITR class D,, = {d, : 7 € Z} using the genetic algorithm,
while Zhang et al. (2015) considered the class of decision lists for D and proposed an approxi-
mation algorithm. Zhang et al. (2012a) proposed C-Learning that minimizes the CATE-weighted
misclassification error E {’CA‘AIPWE(X)‘ x 1 [d(X) #1 (éAIPWE(X) > O)]} In a slightly differ-
ent way, Dudik et al. (2011) also considered cost-sensitive classification algorithms but based on
9AIPWE,n(X ; @, Do) directly. Similar to the regression-based doubly robust estimates, the cross-
fitting AIPWE can also be considered, where the estimates (@ﬁf“ (X5, a),ﬁ(_i) (a|X;):a€ .A) are
used for the ATPWE of the i-th sample point. In this way, Zhou et al. (2018b); Athey and Wager
(2021) maximized the cross-fitting AIPWE over the ITR class of decision trees. The performance
guarantee of AIPWE maximization over a Donsker ITR class D was justified in Luedtke and Cham-
baz (2020); Athey and Wager (2021). Alternatively, Zhao et al. (2019a); Liang et al. (2020) proposed
the Efficient Augmentation and Relazation Learning (EARL) with convex surrogate loss relaxation
analogous to OWL. Similarly, based on the surrogate loss relaxation, Bennett and Kallus (2020a)
proposed the Efficient Surrogate Policy Risk Minimization (ESPRM) that solves the variational
method-of-moment problem (Bennett and Kallus, 2020b) and established a 4/n-regret bound with
the optimal constant dependency.

The IPW in an (A)IPWE can have unbounded variance if there exists some covariate domain on
which the propensity score p.(a|x) is close to zero. Swaminathan and Joachims (2015a,b) proposed
to trim the IPW from above, and introduced the variance penalty to trade off the trimming bias

and the reduced variance:

w2 (5 )] o (5]}

The same strategy was also taken in Kallus and Zhou (2018) when considering the continuous

1[d(X)=A]

d._
treatment problem. Let W% := or (ATX)

and consider the following decompositions:

Viewea(d) = E,[W9Q(X,A)] + E,(W);
)7AIPWE,n(d) = En{@(X,d)+Wd[Q(X,A)_@(X7A)]} Bl (W)



Denote 02 := E(e?|X;,A;) for 1 < i < n. Then for V,(d) = 17IPWE7n(d) (resp. Vp(d) =

2

f/AIPWE,n(d)), the Conditional Mean Square Error (CMSE) is given by

CMSE {m(d)]{xi,m}?:l} = { [%(d) - EnQ(X,d)]Q‘{Xi,Ai}?zl}

B, {[Wa(X, 4) — (X, P} + - Ealo*(WY?]

where ¢ := Q (resp. ¢ = Q — @) In particular, the decomposition of the CMSE entails the
bias-variance trade-off due to the sample weights {Wid}?zl. This also explains why the variance of
f)n(d) can be large if p/(A;| X;) ~ 0 < W;(d) » 0. In order to minimize the CMSE, Hirshberg and
Wager (2017); Kallus (2018, 2020); Kallus et al. (2021) considered the criteria

n 2 n
¢*(W,,,d; Q,02) := sup {1 > Wia(Xi, Ai) — q(Xa, d(XZ-))]} - iz AL
€Q ("o N

where Q is a pre-specified function class. Then Kallus (2018) proposed the balanced policy learning

to obtain the optimal ITR:

min {—%(d;@, W) + AE(W,d; Q,02) : W € argmin ¢*(W,, d; Q,ag)} .
deD W,eAn—1

1.2 Multi-Stage Decision Problems

For a T-stage decision problem, each data point consists of a longitudinal trajectory (X, A¢, Y; : 1 <
t < T), with the time-varying covariates X; € X; < RP*, treatment A; € A; and outcome Y; € J; € R
for 1 <t <T. A Dynamic Treatment Regime (DTR) is defined as a sequence of stagewise decision
rules dy.7 = (d1,da, -+ ,dr) € D1 x Dy x -+ x Dy = Dy.p, where Dy = {d; : Hy — A;} consists of
all mappings from the stage-t pre-treatment history H; := ((Xs7 A, Ys: 1 <s<t—1), Xt) € Hy
to the stage-t treatment assignment A; € A;. The goal is to find the optimal DTR that maximizes

the expected cumulative outcome

T-stage value function
A

~

T
di. € argmax { V(dir) i= > E[Yi| A = dy(Hy)] }
di1.7€D1.7 =1



One key challenge of the DTR, problem is that the stage-t treatment A; can have time-varying
effects on the post-treatment variables (Yt, (Xu, Ay, Yy :t+1<u<T )) However, a standard
regression analysis conditioning on the observed trajectory may cut off all indirect effects such as
Ay = at}

is the not same as the stage-t optimal decision rule d; (H;). Therefore, the observed data should

Ay — X1 — Yiy1 (Almirall et al., 2010). As a consequence, argmax,, ¢ 4, E {Zfzt Y,

be adjusted to unveil the time-varying treatment effects.
The first approach to adjust for the cross-stage treatment effects is to perform stagewise model-
based outcome transformations. Specifically, consider the Bellman equations (Bellman, 1966) that

recursively define the stagewise state-value functions {Vi(H;)}l_, and Q-functions {Qy(Hy, Ay)}1_y:

VT(HT) = max E(YT|HT,AT = aT)
CLTE.AT\
= Hrp.,a
or ( T,a1) (1.5)
Vt(Ht) = maXE{}/t—FVt_i_l Ht+1 ‘Ht,At —CLt} tZT—l,T—2, ,]_.
ateA:
~*Qt(Ht70«t)

Then the stage-t optimal decision rule can be induced by di (H;) = argmax,,4, Qi(H;, az).
In particular, the stage-T' problem with data (Hp, Ar,Yr) can be handled by any single-stage
methods in Section 1.1. For the stage-t(< T) problem, we can consider the qg-outcome as
YV = YV, + Qi (Hys, iy (Fiy1)) = Vi + maxa,, ,ea,,y Qo1 (Hisr,aip1). By (1.5), we have
E(Yt(Q)|Ht,At) = Qi(H, Ay). That is, the stage-t problem can be solved as a single-stage
problem with data (Hy, Ay, Y, ?). Notice that both the optimal DTR (d},d5, - ,d}) and the
stagewise q-outcomes {Y }t , require the complete knowledge of {Q;(Hy, A¢)}l_,. We can
consider statistical models for the stagewise Q-functions and perform estimation in a back-
ward stagewise manner. Specifically, at stage t(< T'), we first obtain the estimated g-outcome

~

Yt(q) =Y, + maxg,, e, @Hl(HHl,atH) based on the stage-(t + 1) Q-function estimate @tﬂ-

) as the response and (Hy, A;)

Then we can consider a single-stage regression problem using }A/;(q
as the covariates to estimate Qt. Such an approach gives the T-stage Q-Learning (Watkins, 1989;
Murphy, 2005; Zhao et al., 2009; Goldberg and Kosorok, 2012; Murray et al., 2018; Zhang et al.,
2018; Zhu et al., 2019; Ertefaie et al., 2021).

If we further assume that the Q-functions are stationary E(Yt(Q)|Ht,At) = 9Q(Xy, Ay) with

stationary covariate space X; € X < RP and stationary treatment space A; € A across stages

10



1 <t < T, then Q-Learning can be extended to the infinite-horizon setting (' = +o0) as a
reinforcement learning problem (Sutton and Barto, 2018; Ertefaie and Strawderman, 2018; Shi
et al., 2020b; Liao et al., 2020, 2021). As a method closely connected to the infinite-horizon Q-
Learning, Luckett et al. (2020) proposed the V-Learning framework that estimates the stationary

state-value function instead.

In the binary treatment case A; = {0, 1}, we define the stagewise CATE functions C;(Hy) :

Q:(Hy,1) — Qi(H;,0) for 1 < ¢t < T. Then the optimal DTR becomes d; (Hy) = 1{C:(H})

A\

0] 1 < t < T). We further introduce the stagewise g-outcome as Yt(g) = Zgzt Y, —
ST, {A,—1[Cu(H,) = 0]}Cy(H,). Tt can be shown that E(Y\®|H,, A;) = Q;(Hy, A) =
Q. (Hy,0) + AiCi(Hy). Then the stage-t problem can be solved based on the single-stage semi-

parametric model:
V¥ = my(Hy) + A x Ci(Hy By) + s B(ef®) | Hy, A) = 0. (1.6)

This modeling approach is an instance of the optimal Structural Nested Mean Model (SNMM)
(Robins, 2004).

There are three different estimation strategies for the optimal DTR based on the SNMM.
The first strategy, known as the stagewise A-Learning (Blatt et al., 2004; Shi et al., 2018a), is
implemented analogously to the Q-Learning. Specifically, at stage t(< T'), we obtain the esti-
mated g-outcome }Z(g) = Zg;t Y., _sz;:tJrl {A — 1[Cu(Hy; ,@un) > 0]} Cyu(Hy; Bun) based on the
estimated CATE parameters {Bun}:lf:t 41 from the subsequent stages. Then we consider the single-

)

stage semiparametric regression problem (1.6) with }A/t(g as the response. Following this strategy,

Shi et al. (2018a) considered the linear working model Cy(Hy; 3;) := HJB; and the single-stage

efficient estimating function
ettt (85 M, 61) = [V — me(Hyi i) — AH] B[Ar — mo( Hy; &) Hy,

where my(Hy;n:) and 7 (Hy; o) are the parametric models for E[Yt(g)|Ht,At = 0] and P(A4; =
1|H;) respectively, and (7, &) are the corresponding estimates. On the other hand, Huang et al.

(2014); Wallace and Moodie (2015); Simoneau et al. (2020) considered the balancing weight func-

11



tion (1.3) and proposed the dynamic Weighted Ordinary Least Squares (dWOLS) that solves the
)

weighted least-squares problem using }A/t(g as the response and (H}, A;H}) as the covariates. Both
the stagewise A-Learning and dWOLS are doubly robust.

The second strategy to estimate the optimal SNMM, known as the regret regression, (Murphy,
2003; Almirall et al., 2010; Henderson et al., 2010; Almirall et al., 2014), exploits the following

cross-stage representation that is equivalent to (1.6):

T T T+1
DV =Vo+ > {A— 1[Cy(H; By) = 01} Co(Hy; By) + Y AM(Hy),
= t=1 t=1

subject to E[AMt+1(Ht+1)|Ht, At] = 0, 0<t<T.

Here, we denote (Hy, Ay) := & and Hpyy := (Hp, Ap,Yr) for convenience. Then the following

fully parametric least-squares problem is considered:

T T T 2
min E, {2 Y —vo — Z {At — 1[Cy(Hy; Bt) = 0]} Ce(Hy; Br) — 2 Amt(Ht;m)} )
((ﬁt,m:KtsT),vo) =1 t=1 t=1

where  {Am(Hy;my)}_, are the parametric models for {AM(H;)}l_, subject to
E[Amy(Hy;m)|Hy—1,Ai—1] = 0 for 1 < t < T. Although the regret regression can enjoy
better efficiency than the stagewise A-Learning if the nuisance models {Am;(Hy;n)}l, are
correct, it can be vulnerable to nuisance model misspecifications.

The third strategy is the G-FEstimation (Robins, 2004) for the optimal SNMM.
Under Model (1.6), the stage-t working g-outcomes is Yt(g) Betnr) = Zzzt Y,
ST 41 1Ay — 1[Cy(Hy; By) = 0]} Cu(Hy; By), and the characterizing moment condition of (1.6)

is

=9t (Be.7)
E{ [Y}(g) (B+1):T) — AtCt(HﬁBt)] —E [Y}(g) (B+1):r) — ACe(Hy; /Bt)’Ht] H;, At} =0
Let G; : H: x Ay — RP be some user-defined instrument function, where p := Z;‘F:lpt is the

dimension of the parameter B1.7. Then the G-estimating function is

o (B1.1) i {f)t Bi.T) [ﬁt(ﬁt:T”Ht]}{Gt(Htv Ay) — E[G(Hy, At)|Ht]}-

t=1
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At stage t, it requires the nuisance functions of the treatment-free effect E[$);(B:.r)|H;] and the
propensity score pg (a¢lhy) := P(Ay = a¢|H; = hy) in evaluating E[Gy(H;y, Ay)|H;]. If either of
the models of E[$¢(Be.7)|H:] and po +(A¢|Hy) is correct for 1 <t < T, then we have E[¢(B1.7)] =
0 at the true parameter B1.7. This gives the stagewise double robustness of G-Estimation. If
the models of {E[$¢(Be7)|H|}, and {pu (A Hy)}l, are correct, then there exists optimal
instrument functions {Geg +(Hj, Ay)}L_; such that the corresponding estimating function ¢eg(B1.7)
is semiparametric efficient (Robins, 1994, 2004). However, the closed forms of {Geg¢(Hy, At)}
are intractable unless we assume the condition Var[$(8y.1)|Hy, Ar] = Var[9:(Be.r)|H] for 1 <t <
T. Even in this case, the efficient instrument functions {Geg ((Hy, At)}thl can involve too many
vector-valued nuisance functions and be hard to estimate (Vansteelandt and Joffe, 2014).

The G-estimating equations are solved simultaneously across stages. If we assume that the ¢t-th

block of the estimating function ¢;(3;1.7) corresponding to 3; satisfies

Mﬂ

¢)t(ﬁ1:T) ¢t ﬂtT {y}u IBuT [ﬁu(lguT”Hu]}{Gtu(HuaAu) - E[Gtu(Hu)AuNHu]}a

then G-Estimation is equivalent to a backward stagewise procedure in Robins (2004, Seciton
7.2) and Moodie et al. (2007, Section 3.3.2). Specifically, at stage t(< T), we obtain the esti-
mated g-outcomes {Y (5(u+1 )}E_, for the current and subsequent stages based on the esti-
mated parameters {:@u}u:tﬂ- Then {,ﬁﬁu(,@u;T)}u:tJrl can be computed, and ﬁt(ﬁt,ﬁ(t_i_l):j‘) =
Yt(g) (B(Hl):T) — A;Cy(Hy; B¢) is expressed as a function of B; only. The stage-t estimate ,@t is
obtained by solving the estimating equations E, [¢:(3;, ,6 t41): )] = 0. If we further assume that
G (Hy, Ay) = Ap x (0/0B)Ce(Hy; Br)1(u = t) for 1 < t,u < T, then G-Estimation is equivalent
to the stagewise A-Learning in this case (Schulte et al., 2014).

The g-outcome and g-outcome are both nonsmooth functions of the parameters of interest.
Specifically, in the binary treatment case where we consider the semiparametric model (1.6), we

have for 1 <t <T -1,
Yt(q) = Y(q)(ﬂtH) Y + myp1(Hypr) + 1[Cry1 (Hyy1; Bey1) = 0]Cy(Hy; By);

T
Y;(g) _ Y%( t+l Z Z {A — ]l Hu,ﬁu) = ]}Cu(HuuBu)

u=t u=t+1
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In particular, the indicator function 1[C,(Hy;B3,) = 0] is nonsmooth in B, no matter how
Cu(Hy;3,) depends on B,. This can result in an exceptional law if P[Cy,(Hy;B3,) = 0] > 0
that leads to a biased parameter estimate of G-Estimation (Robins, 2004; Moodie and Richardson,
2010). The same nonregularity was also studied for Q-Learning (Chakraborty et al., 2010; Laber
et al., 2014b) and dWOLS (Simoneau et al., 2018).

There are several strategies in the literature to overcome the challenge of nonregularity. If the
main goal is to perform hypothesis testings on the treatment effect parameters 31.7 or to construct
their confidence intervals, then an adaptive m-out-of-n Bootstrap procedure was proposed to obtain
valid confidence intervals, where the Bootstrap sample size m is chosen adaptively to the data for
proper coverage (Chakraborty et al., 2013; Simoneau et al., 2018). If the estimation properties
are of the main concern, then several shrinkage estimates were proposed to modify the estimated
g-and g-outcomes. Specifically, the estimated optimal CATE C,(Hj; ,@tm)]l[Ct(Ht; ,@m) > 0] can
be replaced by the Zeroing Instead of Plugging In (ZIPI) estimate Cy(Hy; ,[’i\tyn)]l[Ct(Ht; Btn) >\
(Moodie and Richardson, 2010; Chakraborty et al., 2010; Zhu et al., 2019). Alternatively, Song et al.
(2015b); Goldberg et al. (2013) introduced a subject-specific shrinkage penalty A, J[Cy(Hy; Bt)] to
the stage-t estimation problem. Other than the shrinkage estimates, Laber et al. (2014a); Linn et al.
(2017) proposed to estimate the treatment-free effects {m;(H;)}!_, and the conditional distributions
of {C¢(H})|(H—1, A¢—1)}1_;. Then the q-outcomes can be obtained by 2(01) =Y+ myy1(Hegr) +
IECtH\Ht,At (C/q|Hy, Ay) for 1 <t < T — 1, which are smooth functions of data.

Besides the model-based approach, another framework, known as the Marginal Structural Mean
Model (MSMM) (Robins, 1998), allows the direct estimation of the stagewise state-value functions.
Fix a DTR di.7 € Dyi.7. Define the DTR-specific state-value functions {V{i(Ht)}thl, Q-functions

{Q4(H,, A)}]_,, and Bellman-error functions {AME(H,)}] 5! from the Bellman equations

Q4 (Hr, Ar) = E(Yr|Hr, A7)

§ AMG (Hpy) = Yp— Q}(Hrp,Ar)

| Vi(Hr) = Qf(Hr,dr(Hr)) (1.7)
QN H,, A) = E{Yt + VﬁH(HtH)’Ht, At}

) AMngl(HH-l) = Y+ th+1(Ht+1) - Q}(Hy, Ay) [t=T—1,--,1

| VA(H) = QF(Hy, di(Hy))
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Then the stage-1 marginal value V¢ := E[V{(H])] gives the T-stage value function V(d;.7). Denote
Vet := ZZ:g Y, and W4, := HZ:s % for 1 < s <t <T. Murphy et al. (2001) studied the
estimation of the MSMM V&(Z; B) := ZT3 using the IPW estimating function ¢¢(8) = W, (Vi.r—
Z8)Z, where Z is the subject-specific covariate vector, and 3 is the parameter of interest. As a
special case, if Z = 1, then the estimating function of the MSMM V(‘)i(ﬁ) := /3 simplifies as ¢p¢(B) =
Wf:lT(Vl:T—B). The corresponding estimate is 9IPWE,n(d1:T) = [En(Wld:T)]*l[En(WﬂTVl:T)], which
gives the T-stage Héjek IPWE of V(di.7). To obtain the optimal DTR, Orellana et al. (2010a,b)
proposed to first estimate the MSMM Vg" (Z; B) with the parametric DTR d,, € D,, = {d,, : n € =},
and then solve 7)(Z) € argmax, = Véi "(Z,; ,@) for the optimal DTR parameter. Despite the simplicity
of the MSMM compared to the SNMM, the parametric DTR class D,, is typically restrictive and
cannot handle too complicated functional forms.

To learn the optimal DTR of flexible functional forms, Zhao et al. (2015a) proposed the T-stage
extension of OWL that directly maximizes IA}IPWE’n(dl;T) = En(WﬁTVl;T). They considered two
strategies to relax the T-stage nonsmooth nonconvex function di.7 — Wf}T. The first approach,

known as the Backward OWL (BOWL), solves T single-stage OWL problems in a backward stage-

wise manner:

fin€argmin{ E Wéil):T%T(b [(24; — 1) fi(H)] |+ Ml fel% p; t=T 1

t - ,n ) =4, 51

€ aTer "\ oo (AJHY) t t t(Ht tnlJtlF,

where W({j-l):T = 15, i 1[(2’2;;?(];;‘;@({7;)20] based on { fu,n}fzt 41 from the subsequent stages.

Jiang et al. (2019) specifically considered the entropy loss functions and established the asymptotic
properties of the DTR parameter estimate. The second approach, known as the Simultaneous OWL
(SOWL), utilizes a multivariate surrogate loss ¢ : RT — R, that approximates the multivariate 0-1
loss function wi.p — 1 — ]—[thl 1(us = 0). Then SOWL solves the multi-dimensional large-margin

classification problem:

(241 — 1) f1(Hy)
¢ : + Ml firl%,,

(2Ar — 1) fr(Hr)

fl Tn € argmin < E Vi
Tn n
frreFir H?zl pd,t(At‘Ht)
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In particular, when considering the multivariate hinge loss ¢(ui.7) = 1 + /\tT:I(ut —1)*, the dual
problem of SOWL is a Quadratic Programming (QP) problem.

Analogous to the single-stage problem, the T-stage IPWE can correspond to an efficient esti-
mating function, which gives the T-stage AIPWE as in the following Theorem 1.1. The same result
was also used for Optimal Policy Evaluation (OPE) in the reinforcement learning literature (Jiang

and Li, 2016; Thomas and Brunskill, 2016; Kallus and Uehara, 2020).

Theorem 1.1 (T-Stage AIPWE). Consider a semiparametric model identified from the IPW esti-

mating function ¢%(3) = Wld:T(VlzT — ). Then the efficient estimating function is

T
¢%:(8) = VI(Hy) + > WL AME, | (Hypq) — B.

t=1

The corresponding semiparametric efficient estimate is

T
Varrwgn(d) = E, {V{l(Hﬂ + Z Wl"ftAMfH(HtH)} )
=1

Proof of Theorem 1.1.

¢ () i {Elo(8)| s, Ai] — E[67(8) | HL) | (18)
= Wit (Vi — B)
fj (Wi + Q(HL, AY) = B] = Wiy Vi) + VE(H?) — B (1.9)
Wit Yy — Q(Hp, Ap)] 2 — QU(Hy, A) + Ve (Hin)] + VE(H) - 8
.

= Y WEAME (Hia) + ViH(HY) — B,
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where (1.8) follows from Robins (2000, Theorem 4.2), and (1.9) follows from

E(W{ T|Ht7At) = Wi

E(W{Vir|Hy, Ay) = Wi, X [Vig—1y + QH(Hy, Ayl
E(W{r| Hy) = Wld:(t—l);

E(WY. TVl r|H;) = Wltf(tfl) x  [Vi-1) + VE(H,)].

O]

Based on the AIPWE, Zhang et al. (2013) proposed to directly maximize 9A1PWE7n(dn) over
a parametric DTR class D, = {d, : n € Z}. However, the nuisance functions {Q%(H;, A¢)}l_,
also depend on d, which can result in a challenging computational problem. Nie et al. (2021)
considered a special class of the when-to-treat DTRs Dyhen-to-treat- Lhe AIPWE maximization
problem can be further simplified by alternatively estimating the value differences {V(d) — V(d') :
d,d’ € Dyhen-to-treat }, Which have special structures.

Jiang and Li (2016); Zhang and Zhang (2018) pointed out that VAIPWE n(d) = E,(V3), where
Vld can be computed from VT w1 = 0 and VT o ,V1 in the following backward stagewise manner

according to (1.7):
Vi = VA Hy) + W [Yt + Vi, - Qf(Ht,At)] pot=T,-- 1.

At stage t, if d = (d1.4, d41).7) is replaced by d = (di4, dZtH):T)’ then we further have

d )
v, 6y = Qu(H, dy) + Wtdt [Y; +V t+1 Qt(Htht)]
dt, t= Ta T 1.
d; € argmax[E {V ' “H)T};
thDt

This can lead to a method of stagewise AIPWE maximization: 171@1 =0,

din € argmaxE, { Qu(Hidy) + Wi |Yi+ V) - Qi(Hi A1) |}

th'Dt t:T7 71. (110)

U = QuHu ) + W (Y4 D) - QL A))

In particular, the nuisance functions {Q;(Hy, A)}/_; can be estimated from Q-Learning.
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Based on the stagewise computation of the AIPWE, Liu et al. (2018) proposed the Augmented
OwL (AOL) framework that can be equivalent to (1.10). Specifically, the stage-t AOL problem is

~ Y4V, g+ (Hy)

e g (e (P o {0 i [+ 090 - B0 A ) + M,
t€J¢

GO (07 ) + 0 (0 01, 4).

Here, g, : H; — R can be an arbitrary function for efficiency augmentation, and g¢(H;) =
Doyt (Hy, 0)Qu(Hy, 1) 4+po o (He, 1) Qi (Hy, 0) corresponds to the case that ft’n maximizes the AIPWE
(Zhou and Kosorok, 2017). Instead of maximizing the stagewise value function estimates, Zhang

and Zhang (2018) proposed the T-stage C-Learning: IA/t(fi =0,

0 = QuHL) - Qu(H,0) + 2 | Vi U - Qu(HL, 49|
&\t,n € argminkE, {‘ét(a) 1 [dt(Ht) #1 (ét( ) > > 0)]}; t="1T,--- 1.
th'Dt

V= i U A - 1| (H) = 0]} Qi 1) - Qu(H,,0));

Here, analogous to the single-stage C-Learning, cftn is equivalent to maximizing a single-stage
AIPWE. Instead of the a-outcomes {Vt(a) }_, in (1.10), the g-outcomes {XA/t(g) I | from the SNMM
are used instead. For implementation, C-Learning minimizes the CATE-weighted misclassification
rate over the class of decision trees at each stage. Extending from the binary treatment case, the
general T-stage K (> 2)-treatment setting was further studied by Tao and Wang (2017); Tao et al.
(2018).

When considering the statistical inference of the estimated value at the optimal DTR
9AIPWE,n(C/i\1:T,n)7 the nonregularity problem can occur. The construction of valid confidence inter-
vals was studied in van der Laan and Luedtke (2014, 2015); Luedtke and van der Laan (2016); Shi

et al. (2020a).

1.3 New Contributions and Outline

In Sections 1.1 and 1.2, we have introduced the main frameworks for the individualized decision
making problem in the literature and discussed their advantages and disadvantages. However,
there are still a few open problems to be addressed. First of all, existing methods rely on the

assumption that the training and testing distributions are identical, while much less work has been
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done on the problem when potential distributional changes exist. Secondly, while double robustness
can guarantee the estimation consistency in presence of at most one model misspecification, the
consequence towards efficiency remains unclear. In particular, when one model misspecification
exists, we are able to show that a doubly robust estimate can suffer from downgraded efficiency.
Other than potential misspecified nuisance models, most existing methods do not account for the
heteroscedastic noise, which can greatly affect the estimation efficiency as well. Thirdly, for the
T (> 2)-stage K (> 3)-treatment decision problem, there exists gaps between the theory and practice
for semiparametric efficient methods. In particular, the rigorous semiparametric efficient estimation
procedure is rarely used in practice. This dissertation mainly aims to address all these problems.

The remaining chapters are organized as follows.

e In Chapter 2, we consider the problem when training and testing distributions can be differ-
ent. We make use of the development in the literature on Distributionally Robust Optimization
(DRO) and propose a novel Distributionally Robust ITR (DR-ITR) framework that maximizes
the worst-case value function across the values under a set of underlying distributions that are
“close” to the training distribution. The DR-ITR can guarantee the performance among all
such distributions reasonably well. We further propose the calibration procedures that tune the
DR-ITR adaptively to a small amount of calibration data generated from a specific testing dis-
tribution. In this way, the calibrated DR-ITR enjoys better generalizability than the standard
ITR in many different testing datasets. In our illustrating example, we show that the standard
ITR can have very poor values on many testing distributions, while our calibrated DR-ITRs still
enjoy relatively good performance. In particular, our proposed calibration procedures can pick
reasonably good DR~constants based on the small calibrating sample. To solve the worst-case op-
timization problem, we make use of the Difference-of-Convex (DC) relaxation of the nonsmooth
indicator, and propose two algorithms to solve the nonconvex problems of different scenarios. We
also provide the finite sample approximation guarantees for the proposed DR-ITR. Finally, we
apply our proposed DR-ITR to the AIDS clinical dataset ACTG 175 and evaluate its generaliz-
ability on the women patient subgroup. The manuscript of this chapter is accepted by Journal

of the American Statistical Association with discussion and our rejoinder (Mo et al., 2021a,b).
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e In Chapter 3, we consider the problem of potential treatment-free effect misspecification and het-
eroscedasticity. We demonstrate that the consequences of misspecified treatment-free effect and
heteroscedasticity can be unified as a covariate-treatment dependent variance of residuals. To im-
prove efficiency of the estimated ITR, we propose an Efficient Learning (E-Learning) framework
for finding an optimal ITR in the multi-treatment setting. We show that the proposed E-Learning
is optimal among a regular class of semiparametric estimates that can allow treatment-free mis-
specification and heteroscedasticity. In our simulation study, E-Learning demonstrates its ef-
fectiveness if one of or both misspecified treatment-free effect and heteroscedasticity exist. Our
analysis of a Type 2 Diabetes Mellitus (T2DM) observational study also suggests the improved

efficiency of E-Learning.

e In Chapter 4, we consider the multi-stage multi-treatment decision problem. We first introduce
a novel Backward Change Point SNMM (BCP-SNMM), where there exists an unknown back-
ward change point, such that the data generating process is completely nonparametric before
the change point, and then follows the SNMM starting from the change point to the end. The
BCP-SNMM can allow more robustness against model misspecifications. Any violations of the
SNMMs at previous stages do not affect the estimation properties at the current stage, including
consistency and semiparametric efficiency. Based on the BCP-SNMM, we further propose the
Dynamic Efficient Learning (DE-Learning) that solves the semiparametric efficient estimating
equations under the multiple treatment setting. DE-Learning is optimal under the BCP-SNMM
even in presence of heteroscedasticity and treatment-free effect misspecifications. It enjoys stage-
wise double robustness in addition to the robustness with respect to backward model misspeci-
fications. Moreover, DE-Learning is a tractable procedure for rigorous semiparametric efficient
estimation, with much fewer nuisance functions than G-Estimation and can be implemented in a
backward stagewise manner. The superiority of DE-Learning is demonstrated in our simulation

studies with stagewise misspecified treatment-free effects and heteroscedasticity.
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CHAPTER 2
Learning Optimal Distributionally Robust Individualized Treatment Rules

2.1 Introduction

Consider the single-stage problem to estimate an optimal ITR. When the training and testing
distributions are different, an estimated optimal ITR may not generalize well on the testing data
(Zhao et al., 2019b). Similar phenomenon for causal inference in randomized controlled trials
(RCTs) has also been pointed out by Muller (2014); Gatsonis and Morton (2017). Specifically, due
to the inclusion and exclusion criteria of an RCT, the training sample can be unrepresentative of the
testing population we are interested in. Therefore, the corresponding casual evidence may not be
broadly applicable or relevant for the real-world practice. In causal inference literature, it is common
to regard the training data as a selected sample from the pooled population of training and testing.
The selection bias can be adjusted by reweighing or stratifying the training data according to the
relationship between training and testing (O’Muircheartaigh and Hedges, 2014; Buchanan et al.,
2018). However, it requires strong assumptions on completely measuring the selection confounders
and correctly specifying the selection model, and thus can only work well on a prespecified testing
population. There are many other practical scenarios where the difference between the training
and testing distributions is unknown. One example is that the training data can be confounded
by some unidentified effects such as batch effects, which may cause potential covariate shifts (Luo
et al., 2010). Another possibility is that the testing distribution may evolve over time (Hand, 2006).
There is also a widely studied scenario that multiple datasets are aggregated to perform combined
analysis (Alyass et al., 2015; Shi et al., 2018b; Li et al., 2020). Aggregating data from various sources
can benefit from sharing common information, transferring knowledge from different but related
samples, and maintaining certain privacy. However, due to the heterogeneity among data sources,
standard approaches of finding pooled optimal ITRs may not generalize well on all these sources.

One way of handling the heterogeneity is to formulate it as a problem of distributional changes,
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where we train on the mixture of subpopulations while testing on one of the subpopulations (Duchi
et al., 2019). In all these applications, an optimal ITR that is robust to unattended distributional
differences is of great interest.

Despite a vast literature in I'TR, much less work has been done on the problem when the training
and testing distributions are different. Imai and Ratkovic (2013) and Johansson et al. (2018)
estimated the CTE function by reweighing the training loss to ensure the estimators generalizable
on a prespecified testing distribution. Zhao et al. (2019b) aimed to find an ITR that optimizes
the worst-case quality assessment among all testing covariate distributions satisfying some moment
conditions. However, since their method only requires some moment conditions, the uncertainty
set of the testing distributions can be very large. Recent developments in the distributionally
robust optimization (DRO) literature provide the opportunities to quantify the difference between
the training and testing distributions more precisely (Ben-Tal et al., 2013; Duchi and Namkoong,
2018; Rahimian and Mehrotra, 2019). Motivated by the DRO literature, we develop a new robust
optimal ITR framework in this chapter.

In this chapter, we consider the problem of finding an optimal ITR from a restricted ITR class,
where there is some unknown covariate changes between the training and testing distributions.
We propose to use the distributionally robust ITR (DR-ITR) that maximizes the defined worst-
case value function among value functions under a set of underlying distributions. More specifically,
value functions are evaluated under all testing covariate distributions that are “close” to the training
distribution, and the worst-case situation takes a minimal one. Our distributionally robust ITR
framework is different from the existing doubly robust ITR framwork that uses an AIPWE. In
particular, an ATPWE robustifies the model specification assumptions, while our DR-ITR robustifes
the underlying distributions. The DR-ITR aims to guarantee reasonable performance across all
testing distributions in an uncertainty set around the training distribution by optimizing the worst-
case scenarios. In particular, we parameterize the amount of “closeness” by the distributional
robustness-constant (DR-constant), where the smallest possible DR-constant corresponds to the
standard ITR that maximizes the value function under the training distribution. To ensure the
performance of the DR-ITR on a specific testing distribution, we fit a class of DR-ITRs for a
spectrum of DR-constants at the training stage, and calibrate the DR-constant based on a small

amount of the calibrating data from the testing distribution. In this way, the correctly calibrated
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DR-constant ensures that the DR-ITR performs at least as well as, often much better than, the
standard ITR. Using our illustrative example, we show that the standard ITR can have very poor
values on many testing distributions, while our calibrated DR-ITRs still maintain relatively good
performance. In particular, our proposed calibrating procedures can tune DR-constants based on
the small calibrating sample. To solve the worst-case optimization problem, we make use of the
difference-of-convex (DC) relaxation of the nonsmooth indicator, and propose two algorithms to
solve the related nonconvex optimization problems. We also provide the finite sample regret bound
for the proposed DR-ITR.

The rest of this chapter is organized as follows. In Section 2.2, we discuss an illustrative example
that the optimality of an ITR can be sensitive to the underlying distribution, and introduce the
DR-ITR that can generalize well across all testing distributions considered in this example. Then
we propose the DR-ITR framework and the corresponding learning problem. In Section 2.3, we
justify the theoretical guarantees of the finite sample approximations for the learning problem. In
Section 2.4, we evaluate the generalizability of our proposed DR-ITR on two simulation studies:
the problem of covariate shifts and the problem of mixture of multiple subgroups. We apply our
proposed DR-ITR on the AIDS clinical dataset ACTG 175 and evaluate its generalizability on the
subgroup of female patients in Section 2.5. Some related discussions and extensions are given in
Section 2.6. The implementation details, technical proofs and some additional numerical results

are all given in Section 2.7.

2.2 Methodology

In this section, we introduce the value maximization framework in the current literature, and
discuss its limitation when the training and testing distributions are different. Then we propose
the DR-value function that optimizes the worse-case value function across all distributions within

an uncertainty set around the training distribution.

2.2.1 Maximizing the Value Function

Consider the training data (X, A,Y) ~ P, where X € X < RP denotes the covariates, A € A =

{+1,—1} is the binary treatment assignment, and Y € ) € R is the observed outcome. We
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assume that the larger outcome is better. Let Y (4+1),Y (—1) be the potential outcomes. Consider a
prespecified ITR class D € {+1}*. For d € D, denote Y (d) := Y(1)1[d(X) = 1]+ Y (~1)1[d(X) =
—1] as the potential outcome following the treatment assignment prescribed by the ITR d. Then

the value function under the training distribution P is defined as

Denote m(a|x) := P(A = a|X = x) as the training propensity score function for treatment assign-
ment. If we assume 1) the consistency of the observed outcome Y = Y (A); 2) the strict overlap
m(+llx) = 7 > 0 for any € X; and 3) the strong ignorability (Y (+1),Y(-1)) L A|X (Ru-
bin, 1974), then we can identify V(d) in terms of the observed data (X, A,Y) by the IPWE of

Instead of targeting the value function directly, we instead consider the CTE function as
C(x) := E[Y(+1) — Y(-1)|X = x| under the training distribution P. Note that for an ITR
d and all £ € X, the prescribed treatment assignment satisfies d(x) € {£1}. Then we have
C(x)d(x) = E[Y(d) — Y(—d)|X = «]. Based on this representation, we define another value

function
Vi(d) := E[C(X)d(X)] =E[Y(d) — Y(—d)]. (2.1)

Since Y (d) + Y (—d) = Y(1) + Y(—1), it can be observed that V;(d) = 2 [V(d) - W] -
2[V(d) — V(dyana)], where dyang(x) = +1 with probability 1/2 and —1 with probability 1/2. There-
fore, Vi(d) can be interpreted as the value improvement of the ITR d upon the completely random
treatment rule dpanq. In terms of the optimal ITR, the resulting rules by optimizing the value
functions Vi (d) and V(d) over d are equivalent.

By the definition (2.1), we have Vi(d) < E[|C(X)|] with equality if d(X) = sign[C(X)]
almost surely. Such an I'TR is the global optimal ITR when D consists of all measurable functions
from X to {£1}. To obtain the global optimal ITR, we can estimate C'(X) from data using
flexible nonparametric techniques, such as the Bayesian additive regression tree (BART) (Hill,

2011), or the casual forest (Wager and Athey, 2018). However, in general, the global optimal ITR
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x — sign[C(x)] can take a very complicated functional form, while decision makers may want
to have a simpler ITR (Kitagawa and Tetenov, 2018). Then the ITR class D is often considered
as a restricted subset of measurable functions from X to {£1}. The following two-step procedure
can be implemented to estimate the restricted optimal ITR on D: first we estimate the CTE
function x© — é(w) using flexible nonparametric techniques; and then we estimate the ITR by

solving maxgep E,[C(X)d(X)] on the restricted ITR class D (Zhang et al., 2012a). Here, E,, is

the empirical average based on the training data.

2.2.2 Covariate Changes

It can be observed that the value functions defined in Section 2.2.1 depend on the underlying
distribution. Suppose we are interested in a testing distribution Pies; that may be different from
the training distribution P to some extent. Then ITRs estimated by most existing methods may
not be able to perform well on our target population. In order to address this problem, we first

make the following assumption on the potential difference between Pyes and IP.

Assumption 2.1 (Covariate Changes). For every training distribution P and testing distribution

Piest considered in this chapter, we assume the followings:
(I) Ptest < P7
(IT) There exists w : X — R, such that Epw(X) = 1, and dPyes/dP = w(X).

Assumption 2.1 (I) requires that the support of the testing distribution cannot go beyond the
training distribution. Assumption 2.1 (II) is mathematically equivalent to assuming that the dif-
ferences between P and Py only appear in the covariate distributions. The treatment-response
relationship conditional on covariates remains unchanged across training and testing distributions.
Specifically, let px (z)py|x (y(1), y(—=1)|x) and gx (x)gy|x (y(1), y(—1)|z) be the training and test-
ing densities of the data (X,Y(1),Y(—1)). Then the density ratio dPyes;/dP becomes

dPtest o QX(X) % QY|X(Y(1>7Y(_1)‘X>

dP px(X)  pyx(Y(1),Y(-1)|X)
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If gyx(Y(1),Y(-1)|X) = pyx(Y(1),Y(-1)[X), ie, the conditional distributions
(Y(1),Y(—1))|X are identical under Py and P, then dPiesi/dP = gx (X)/px(X), which is the
weighting function w(X) in Assumption 2.1 (II).

The assumption of covariate changes is commonly seen in the setting of randomized trial.
Consider the training and testing populations together as a pooled population with finite subjects.
For each subject i € {1,2,--- , N}, let S; € {0,1} be a selection random variable such that S; = 1
if 4 is a training sample point, and S; = 0 if ¢ is a testing sample point. Let the distributions of
(X, Yi(1),Yi(—1))[(Si = 1) and (X;,Yi(1),Yi(—1))|(S; = 0) be the training distribution P and the
testing distribution Py respectively. Denote P as the joint distribution of (X;, Y;(1),Y;(—1),S;).
Then conditions in Assumption 2.1 can correspond to the following (Hotz et al., 2005; Stuart et al.,

2011):
e (Overlapping Support) 0 < P(S; = 1| X;) < 1;
e (Selection Unconfoundedness) S; L (Y;(1),Y;(—1))|X;.

In particular, under this finite population setting, the overlapping support condition is equivalent
to that Pyt « P and P « Py, and the selection unconfoundedness condition is equivalent to
Assumption 2.1 (II). Such a correspondence can bring more intuitive implications of Assumption
2.1 under the randomized trial setting. Specifically, the overlapping support requires the chances
of each subject being selected into the training and testing populations to be both positive. The
selection unconfoundnedness requires that the selection mechanism is independent of the potential
outcomes given the covariates. Both conditions can be satisfied by a successful trial design (Pearl
and Bareinboim, 2014). The phenomenon of covariate changes between P and Pieg can exist if
P(S; = 1|X;) # P(S; = 0|X;) with a positive probability. This can be often the case if the subject
needs to satisfy certain requirements before enrolling a trial.

As a consequence from Assumption 2.1, the CTE function C(X) = Ep[Y (1) — Y (-1)|X] =
Etest[Y (1) =Y (—1)| X ] remains unchanged under P and Pyes;. Then it can be convenient to consider
the value functions Vi(d) = Ep[C(X)d(X)] and V) test(d) = Etest[C(X)d(X)] defined in (2.1).
When the testing value function Vi test(d) is of interest, maximizing the training value function
Vi(d) may not be optimal. Alternatively, we can rewrite the testing value function Vi test(d) =

Ep[w(X)C(X)d(X)] where w(X) = dPtest/dP. Then based on the training data from P, we can
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maximize Ep[w(X)C(X)d(X)] that targets the correct objective. It amounts to determine the

weighting function w that captures the differences between Pyt and P.

Remark 2.1. Notice that for any weighting function w : X — R4, we have Ep[w(X)C(X)d(X)] <
Ep[w(X)|C(X)|] with equality if d(X) = sign[C(X)]. That is, if D consists of all measurable
functions from X to {£1}, then the global optimal ITR is not sensitive to any covariate changes
in the testing distribution. However, the problem of covariate changes induces a challenge if D is

a restricted ITR class.

Remark 2.2. Our methodology only relies on the fact that C'(X) remains unchanged under P
and Piegt. Therefore, it can be possible to relax Assumption 2.1 to allowing distributional changes
in (Y(1),Y(—1))| X, while assuming that the CTE function C(-) remains identical across P and
Piest. Furthermore, our methodology can also be meaningful if the testing CTE function can be
different from training, but the optimal treatment assignment remains unchanged. We will discuss

this extension in Remark 2.5.

2.2.3 An Illustrative Example

In this section, we begin with an example as in Figure 2.1 that the optimality of an ITR depends
on the underlying distribution. There are two underlying bivariate normal distributions of means
(0,0)T (training) and (1.47,1.69)T (testing) respectively. We obtain the standard ITR by max-
imizing the value function V;(d) under the training distribution over the linear ITR class. We
also obtain the DR-ITR by maximizing the DR-value function V*(d) to be introduced in Section
2.2.4 over the linear ITR class. Then the DR-ITR is compared with the standard ITR through
the value functions V; under the training distribution and Vi test under the testing distribution
as in Table 2.1. Since the values can be comparable only through the same value function but
not across different value functions, we further define the criteria relative regret of an ITR as
[value(LB-ITR) —value(ITR)]/|value(LB-ITR)|, where “value” can be V; or V) test, and the LB-ITR
maximizes the corresponding value function over the linear ITR class. In this sense, value(LB-ITR)
is the best achievable value among the linear ITR class for the corresponding value function, and

becomes the benchmark reference for the relative regret criteria.
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Comparing the DR-ITR (k = 2, ¢ = 20) and the Standard ITR on the Training and Testing 95% Confidence Ellipsoids
Training mean = (0, 0), testing mean = (1.47, 1.96)

X2

Xy

type == DR-ITR == Standard ITR

domain . Testing Training . The DR-ITR Outperforms the Standard ITR . The DR-ITR Underperforms the Standard ITR

Figure 2.1: ITRs and the 95% confidence ellipsoids of the training distribution (X1, Xs) ~ N2((0,0)T,15)
and the testing distribution (X7, X3) ~ N ((1.47, 1.96)7, Ig). The blue dashed curve is the underlying CTE
boundary C'(X1, X2) = Xs — (X7 —2X;) = 0.

Table 2.1: Testing Values (Relative Regrets) Comparisons of ITRs

TR DR-ITR Standard ITR LB-ITR
Value

Training Vi || 0.6253 (37.36%) | 0.9982 (0%) | 0.9982
Testing V1 est || 4.8230 (9.16%) | 0.2927 (94.49%) || 5.3096

I DR-ITR maximizes V¥ (d) defined in (2.4) with k = 2 and ¢ = 20 over the linear
ITR class.
Standard ITR maximizes Vi (d) over the linear ITR class.

LB-ITR maximizes V1 (d) or Vi test(d) over the linear ITR class.
Values (larger the better) can be comparable within rows but incomparable

between rows.
5 Relative regret(ITR) = [value(LB-ITR) — value(ITR)]/|value(LB-ITR)| (smaller

the better).
6 A size-10,000 sample is generated for fitting DR-ITR and LB-ITRs, and an
independent size-100,000 sample is generated for evaluation under V1 and V1 test-

_wN

Two facts can be concluded from Table 2.1: 1) the optimality of an ITR can be different
across different distributions; and 2) maximizing the training value function may have poor testing

performance when covariate changes exist. In Table 2.1, even though the standard ITR is optimal
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under the training distribution, it can be far from optimal (94.49% off in terms of relative regret)
under the testing distribution. In contrast, the DR-ITR may not enjoy high training value, but

can have much better testing performance (only 9.16% off in terms of relative regret).

Remark 2.3. Figure 2.1 also illustrates how the covariate changes affect the optimality of ITRs.
Specifically, we can divide the covariate domain into two types of subdomains, annotated in blue
and red, on which the DR-ITR and standard ITR have different treatment assignments. On the
blue subdomain, the standard ITR assignment shares the same sign with the CTE function, while
the DR-ITR does not. In this case, the standard ITR outperforms the DR-ITR with the difference
of value |C(X)| at the individual level. The case reverses on the red subdomain on which the
DR-ITR outperforms the standard I'TR. The overall difference of values integrates the individual
difference with respect to the training or testing density.

The overall outperformance of the DR-ITR under the testing distribution can be explained from
the following three perspectives: 1) the 95% confidence ellipsoid of the training domain only covers
a small area of the red subdomain, while that of the testing domain covers a much larger area; 2) the
distance of the red subdomain from the testing centroid is much closer than its distance from the
training centroid. Then the red subdomain concentrates higher testing density than training; and
3) the individual value differences |C'(X)|’s are generally larger on the red subdomain intersected
with the testing domain than that intersected with the training domain. Therefore, the DR-ITR

performs much better than the standard ITR on the testing distribution.

2.2.4 Maximizing the Distributionally Robust Value (DR-Value) Function

We begin to introduce our DR-ITR that can show strong generalizability as in Figure 2.1. As
discussed in Section 2.1, our goal in this chapter is not to find an I'TR that is generalizable on a
specific testing distribution, but rather, to find an ITR that guarantees reasonable performance
across an uncertain set of testing distributions. We first define the k-th power uncertainty set in

two equivalent ways under Assumption 2.1:

PEP) : = {@ <P ‘ |dQ/dP| 11 p) < c} (2.2)

= {(@ <P ‘ w:X - Ry, Bpw(X) =1, Epw(X)* < ¥, —= :w(X)}. (2.3)
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The set P¥(P) consists of the probability distributions Q such that the L*(P)-norm of the density
ratio dQ/dP is bounded above by the DR-constant c¢. The definition (2.3) highlights that the
density ratio is a weighting function w of X, and the distribution Q in P¥(PP) can be characterized
by the weighting function w satisfying the conditions in (2.3). Here the DR-constant ¢ > 1 controls
the degree of the distributional robustness that measures how “close” Q is from P. In particular,
¢ = 1 reduces the power uncertainty set P¥(P) to the singleton {P}. The power order 1 < k < 40
parametrizes the measurement of the distance of Q from P. In particular, the power uncertainty
set PF(P) increases in ¢ as k is fixed, and decreases in k as c is fixed. The latter one is due
to the Lyapunov’s inequality: [dQ/dP|| k@) < Hd@/dIP’HLk/(P) whenever 1 < k < k¥ < +o0. In
Section 2.7, we will discuss the explicit form of P¥(P) in the context of specific parametric families
of distributions, and how it depends on the DR-constant ¢ and the power k. One important
conclusion from Example 2.2 in Section 2.7 for the mean-shifted p-dimensional normal distribution
is that Np(p, I,) € PF(Np(0p, I,)) if and only if |p]3 < 21%8¢.

With the power uncertainty set Pf(IP’), we propose to robustly maximize the following worst-

case value function among the values under Q € P¥(P):

VE@d) = Qei%fm) Eq[C(X)d(X)], (2.4)

which we term as the DR-value function. In particular, ¢ = 1 reduces the DR-value function Vf(d)

to the standard value function V;(d) = Ep[C(X)d(X)] in the definition (2.1).

Remark 2.4 (Optimality). The “optimality” of the DR-ITR is with respect to the DR-value
function V¥, which highlights its difference from the traditional “optimal” ITR with respect to the

standard value function V.

In the example in Section 2.2.3, the standard I'TR maximizes the value function under the
training distribution over the linear ITR class, while the DR-ITR maximizes the DR-~value function
VE(d) of k = 2 and ¢ = 20 over the linear ITR class. In particular, the randomness of P comes
from the training covariate distribution N%(02,I). Such a choice of P¥(P) contains the mean-
shifted normal distributions Na(p,Io) for all p € {(p1, p2)7 : pf + p3 < 4logh}. In Figure 2.2a,
we enumerate such mean-shifted normal distributions as the testing distributions, and evaluate the

relative improvement of the DR-ITR over the standard I'TR as the difference of their relative regrets.
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Among all testing distributions, the relative improvements of the DR-ITR span from —37.4% to
85.3%, suggesting that the potential of improvement can be large. Besides the DR-constant ¢ = 20,
we also consider the case ¢ = 2.71,6.51,10.31 in Section 2.7. As c increases, the range of relative
improvements becomes wider. The increase in the relative improvement upper bound is in general

much larger than the decrease in the lower bound.

Relative Value Improvements of the DR-ITR (c = 20) over Relative Value Improvements of the DR=ITR (g = 50) over
the Standard ITR on the (p, H)—Mean Testing Distributions the Standard ITR on the (u, Hz)—Mean Testing Distributions
Relative Value Relative Value

Improvements
90%

Improvements
90%

60%

60%

30%

-30%

-30%

Value
Improvements

Value
Improvements

>=0 >=0

[] rase [] racse
TRUE TRUE
2 . 0 1 2 2 a1 0 1 2
Ha Ha
Relative value improvements range in [-37.4%, 85.3%)]. Relative value improvements range in [-1.70%, 82.4%].
(a) ¢=20 (b) Calibrating ¢ on a size-50 Sample

Figure 2.2: Relative improvements of the DR-ITR over the standard ITR as the difference of relative
regrets on testing distributions N3 (u7 12) of ue {(ul, p2)T € R? : 2 + 3 < 4log 5} (lighter the better).

Based on these observations, the DR-constant ¢ should be carefully chosen. On one hand, as
can be seen from Figure 2.2a, the DR-ITR for a fixed DR-constant ¢ may or may not improve over
the standard ITR on a specific testing distribution within P¥(P). When the DR-constant ¢ can
be tuned adaptive to the specific testing distribution, then the DR-ITR can perform at least as
well as the standard ITR. On the other hand, we may not even have any prior information on ¢
to ensure that the power uncertainty set P¥(P) contains the testing distribution of interest. Both
cases ask for additional information to calibrate the choice of ¢ so that the DR-ITR performs well
on a specific testing distribution. Suppose we are able to obtain a small size of calibrating sample
from the testing distribution. We propose the following training-calibrating procedure to choose
c: 1) at the training stage, we estimate DR-ITRs {C’Z\C}CGC where c¢ is the DR-constant to compute

JC, and C is a set of candidate DR-constants; 2) we obtain a calibrating sample from the testing
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distribution, on which we estimate the testing values of {c?c}cec; 3) we select the ¢ that maximizes
the value of c?c among c € C.

In order to estimate the value function under the testing distribution, we consider the following
two possible calibration scenarios: 1) the calibrating sample is a randomized controlled trial (RCT)
dataset (X, A,Y) from the testing distribution; and 2) the calibrating sample only consists of the
covariates X from the testing distribution. Scenario 1 will be more ideal than Scenario 2 since
we have the testing information of both the treatment and the outcome. We can evaluate an ITR
d using the IPWE f)glygE(d) =E, .. {1[d(X) = AlY /7cain(A| X)}, where E,,_, . is the empirical
average over the calibrating sample, me.pp is the corresponding propensity score function, and 7ealin
is known or estimable from the calibrating data. We call the corresponding calibrate DR-ITR as

RCT-DR-ITR. In Scenario 2, we do not have the treatment-response information from the testing

~

distribution. We can instead use the value function estimate VCIE(d) = E [Cr(X)d(X)] to

calib Mcalib

evaluate d, where én(X ) is estimated at the training stage. However, the CTE estimate én() may
also suffer from a potential generalizability problem on the testing distribution. Practitioners need
to be careful of the generalizability of the CTE estimate when performing the calibration. We call
the corresponding DR-ITR as CTE-DR-ITR.

RCT-DR-ITR and CTE-DR-ITR are different in their use of information for calibration. Specif-
ically, the RCT-DR-ITR makes use of (X, A,Y) from the testing distribution, while the CTE-DR-
ITR only makes use of X from the testing distribution, and the underlying CTE function C(X). In
practice, C'(X) is estimated from training data. It requires Assumption 2.1 to generalize the CTE
estimate én(X ) from training to testing. If Assumption 2.1 holds, then CTE-DR-ITR can have
better performance than RCT-DR-ITR, since CTE-DR-ITR captures less variance from calibrated
data. If Assumption 2.1 is violated, which will be illustrated in Section 2.4.2, then CTE-DR-
ITR can have poorer performance than RCT-DR-ITR, since the testing value function estimate of
CTE-DR-ITR can be biased.

In Figure 2.2b, we generate a calibrating RCT sample from Pyegt of size 50. It shows that across
the mean-shifted testing distributions, the relative improvements of the calibrated DR-ITRs range
from —1.70% to 82.4%. It suggests that the small sample size 50 is sufficient for a reasonably good

calibration, with the positive relative improvements being maintained.
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Remark 2.5 (Extending Covariate Changes). Consider the case that Assumption 2.1 is violated.
Let Clest be the testing CTE function that can be different from the training CTE function C. We
use the notations P and Pieg to refer to the training and testing covariate distributions. Assume
that sign[Ciest(X)] = sign[C(X)] almost surely. Then we can still represent the value function

under the testing distribution as follows:

dPtest Ctest (X )
T HOX) # 0] x C(X)d(X)}.

IE'test [Ctest(X)d(X)] = E]P’ {

The definition of the DR-value function (2.4) can be robust with respect to the change of (Pyest, Ctest )
from (P, C), such that w(X) := (dPtest/dP) X [Crest (X )/C(X)]|L[C(X) # 0] satisfies Epw(X) =1

and Epw(X)* < c*.

Remark 2.6. The calibration procedure ensures that among the DR-ITRs of various DR-constants,
the best one is chosen to maximize the testing value function. In this sense, the calibrated DR-ITR
can have potential of improving the generalizability from training to testing. However, if the testing
distribution is very far from the training distribution, one cannot expect that an ITR estimated by
any method from the training data can perform well on the test data, even though our proposed
method may be able to protect against such a distributional change to some extent. Therefore, in

practice, we suggest to use our method when training and testing distributions are relatively close.

2.2.5 Distributionally Robust Expectation

In this section, we first discuss the rationale of considering the L*-norm of the density ratio as
the measurement of distributional distance. We show that the k-th power uncertainty set P¥(P)
is equivalent to the distributional ball induced by the ¢-divergence (Pardo, 2005) for some specific
divergence ¢. Then we derive the dual form of the worst-case expectation over P¥(P), which

provides a more tractable optimization problem.

2.2.5.1 Equivalence to the Divergence-Based Distributional Ball

As a generalization of the conventional likelihood-based framework which corresponds to the
Kullback-Leibler (KL) divergence, the framework of general ¢-divergence between distributions

has been well studied in the context of parameter estimation and hypothesis testing (Pardo, 2005).
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The ¢-divergence between two probability distributions P and Q such that Q « P is defined as

Do(IP) = [0 (5 ) ap -0 (F)s oeo

where @ is a class of convex functions on R that satisfies the regularity conditions: ¢(w) = +00

follows:

for w < 0, ¢(1) = ¢'(1) = 0, and wlLII()1+ wo(p/w) = wgrilw ¢(w)/w for p > 0. The definition
with various choices of ¢’s includes the empirical likelihood ¢gr(w) = —logw + w — 1, the KL
divergence ¢kp(w) = wlogw — w + 1, and the x*-divergence ¢,2(w) = 3(w — 1)%. There is
another important special case that relates to the power uncertainty set of k¥ = 4+00. Consider the
optimization indicator for ¢ > 1: ¢ = 0 if u € [0, ¢] and +0c0 otherwise, for which Dy (Q|P) =
0if |[dQ/dP| . py < ¢, and +o0 otherwise. Then Dy, .(Q|P) = 0 if and only if Q € P (P).
Although Dy is not a proper metric between probability distributions since it is asymmetric,
we can still define a Dy-distributional ball as ,@¢(IP’) = {Q « P : Dy(Q|P) < p}, where P is the
center and p > 0 is the radius. Then for any p > 0, the Dy, -distributional ball L@%O “(P)={Q «
P: Dy, .(Q|P) = 0}, which coincides with the power uncertainty set P.°(P) defined in (2.2) for
k = 0. Such an equivalence can be extended to all finite k € (1, +00) when a Cressie-Read (CR)
family (Cressie and Read, 1984) of divergence functions ®cr < @ is taken into consideration. For

k > 1, the corresponding ¢ € ®cR is defined as

wk—kw—I—k—l.
k(k—1) ’

w = 0.

Pr(w) 1=

Here, ¢, effectively measures the probability-distributional distance by the k-th moment of the
density ratio, since Dy, (Q|P) = ( [Ep(d@/dP) — 1] as long as Q is a probability distribution.
Then it can be inferred that the Dy, -distributional ball @g’ *(P) is actually equivalent to the power
uncertainty set Pfk () (P) in (2.2). Here, there is a one-to-one correspondence between the DR~
constant ¢ and the radius p of the Dy, -distributional ball with cx(p) := [k(k — 1)p + 1]V/*. We

conclude the case k = +00 and 1 < k < +00 with the following:

ZLRe®) = PEE) PPE®) =Pl (Bh >0 (25)
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2.2.5.2 Dual Representation

We begin with a general result on the dual representation of the ¢-divergence-based distributionally
robust expectation. We state the following lemma and refer readers to Duchi and Namkoong (2018,

Proposition 1).

Lemma 2.1. Fix a random variable Z on R with distribution P. Let ¢ € ® be a legitimate divergence

function. Define the convex conjugate of ¢ as

¢* (") = sup{(z”, x) — d(a)}; 2" eR.

zeR

Then for p > 0,

7 —
sup EgZ = inf {Ep [)\gzb* (n>] +Ap+ 7]} . (2.6)
Qe (P) 7R A

Let ¢ = 1. Lemma 2.1 can be directly applied to the optimization indicator: ¢e (u) := 0 if
u € [0, c] and +00 otherwise, whose convex conjugate is given by ¢, .(u) = cmax{u,0}. Then X in

(2.6) attains the infimum at A = 0, so that

sup EgZ = inf {cEp(Z — 1)+ +n}. (2.7)
QeZg™* (P) ek

In particular, the right hand side of (2.7) is solved by the (1—1/c)-value-at-risk VaR;_; . in finance,
or equivalently, the (1 — 1/c)-quantile of Z under the center distribution P. The right hand side of
(2.7) itself is defined as the (1 — 1/c)-conditional value-at-risk CVaR;_; . (Rockafellar and Uryasev,
2000). Next, we apply Lemma 2.1 to the k-th power divergence ¢ to derive the dual problem of

the worst-case expectation over P¥(PP).

Lemma 2.2. Let ®cr be the Cressie-Read family of divergence functions, k,k* € (1,+0) be

conjugate numbers, i.e., % + k—l* =1, and ¢ € Pcr. Then we have following conclusions:
(I) The convex conjugate of ¢y, is given by

61 = {lk =)z + 1y — 1},
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(II) Fix a probability measure P and a random wvariable Z on R. Then for p = 0,

sup  EqZ = inf {cx(p)[Er(Z —n)§ 1" + 1, (2.8)
Qe gk (P) 1

where ci(p) = [k(k —1)p + 1]V/*.

Note that the right hand side of (2.8) and its optimizer 7 are both coherent risk measures as
the higher-order generalizations of the CVaR and VaR (Krokhmal, 2007).
Using the equivalence in (2.5), the worst-case expectation over the power uncertainty set P¥(PP)

for k € (1,0] and k* = % (in particular, k = 00 < k* = 1) unifies (2.7) and (2.8) as follows:

sup EqZ = inf {C[EP(Z — )R 77}; c=1. (2.9)
QePk(P) ek

By inspecting the dual problem (2.9), the right hand side is computationally more tractable than
the left hand side, since instead of optimizing over an infinite-dimensional probability measure Q,
we only need to optimize over a univariate variable 7.

In order to apply the duality result to the DR-ITR problem, we negate the DR-value maxi-
mization to a risk minimization problem. Denote the risk function under the training distribution
Pas Ri(d) := —Vi(d) = Ep{C(X)[—d(X)]}. Then for k € (1, +o0] and ¢ > 1, the DR-risk function
is defined as

Re(d) == sup Eg{C(X)[-d(X)]}.
QePE(P)

Using the fact Z = —C(X)d(X) = C(X)1[d(X) = —=1] + [-C(X)]1[d(X) = 1], the dual repre-

sentation (2.9) can be expressed in the following particular form (2.10).

Corollary 2.3 (Dual Representation of the DR-Risk Function). Let k € (1,+x], k* = % if
k < 4w and k* = 1 if k = 40, ¢ = 1. Then the DR-risk function R¥ has the following dual
representation:

RY(d) = inf { [ (1006) 7t 10a(x) = 11+ [-0() - ¥ 11ax) = 17) |+ n} .
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2.2.6 Implementation

In this section, we introduce the implementation of DR-risk minimization based on the empirical
data. We cast the learning problem as finding a decision function f : X — R that induces an ITR
based on its sign: d(x) = sign[f(x)]. The ITR class D can correspond to a prespecified decision
function class F. The DR-risk function as a functional of the decision function becomes RE(f) =
SUPQepk (p) Eq{C(X)sign[—f(X)]}. However, directly optimizing the risk RE(f) is challenging,
since the sign(-) operation is nonconvex and nonsmooth. We consider a specific difference-of-
convex (DC) relaxation of the sign operator.

We propose to relax the indicators in the dual form (2.10) by the following robust smoothed
ramp loss (Zhou et al., 2017): ¥(u) :== (1-u)?1(0<u<1)+[2—(1+u)}]1(-1 <u<0)+21(u <
—1). The DC representation is given by 1 (u) = 14 (u) — 1_(u), where ¥y (u) = (1 — u)?1(0 <
u< 1)+ (1—2wl(u <0), Y_(u) = u?l(-1 <u<0)+ (-1 —2u)l(u < —1). The advantages
of using the symmetric nonconvex loss can be: 1) to protect from outliers in X and improve
generalizability (Shen et al., 2003; Wu and Liu, 2007), and 2) to equally indicate f(X) < 0 and
f(X) > 0. We would like to point out that 1[f(X) < 0] + 1[f(X) > 0] = 1 will be preserved to

vlf gX)] + w[_];(x)] = 1 in this surrogate loss. Then we define the DR-y-risk function as

neR

B 1/k*
RE (1) = inf{c[EQc*(X)—n]ﬁ*W+[—0<X>—n]i*W)] +?7}- (211)

Algebraically, we can invert (2.11) to its primal representation R’gw( f) =
supgepr ) Eg[C(X)Cy(f)] by introducing a sign random variable (y(f) € {1} with
P(Cy(f) = +1|X) := w That is, given the covariate X, the original deterministic
sign sign[—f(X)] is relaxed to the random sign (y;(f) with £1 probability w In par-
ticular, if f(X) > 0, then sign[—f(X)] = —1 is a hard sign while (;(f) is a soft sign with

P(Cy(f) = —1|X) = L] o U] _ p(¢,(f) = 1/X). When ¢ = 1, the DR-risk function
reduces to the risk function under the training distribution, and the DC relaxation here is
equivalent to the relaxation in Zhou et al. (2017).

The DR-%-risk function provides the learning objective based on the empirical data. In partic-

ular, the population expectation E is replaced by the empirical average E,,, and the CTE function
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C(+) is replaced by a plug-in estimate CA'n() The corresponding empirical objective is minimized

over the decision function f and the auxiliary variables (9, A) jointly:

~ . R - 1/k*
min {C [En <[Cn(X) — ] EiC.9In [—Cn(X) =] W)] + n}

feFmeR 2

E, ([C*n(X) —p L 6, x) - n]{fw[_";(xﬂ) vy n} |

) c
" feFneRAS0 {k:/\k—l
The objective function is a summation of multiple products of DC functions. For k < +o0, we
consider a block successive upper-bound minimization algorithm (Razaviyayn et al., 2013) to alter-
natively minimize the convex upper bounds over the decision function f and the auxiliary variables
(n, \) respectively. For k = +00, it requires a further probabilistic enhancement to break ties at
argmin and ensure the convergence to stationarity (Qi et al., 2019a,b). The implementation details

are given in Section 2.7.

2.3 Theoretical Properties

In this section, we justify the validity of the DC relaxation and the empirical substitution. First of

all, we introduce the following joint stochastic objectives:

= ey (1000 = 1A(X) < 0] + [-3(X) il 1[7(X) = 0]) + 5 4
Culfnxi0) = sy ([C’(X) g OL e - n]fW) + % +1.

EfmnC)

Here, C can be the plug-in estimate @n or the underlying true CTE C. Denote Elg(f,n,)\) =
Bk (f,m, N O), E’;w(f,n,)\) = Eﬁlgw(f,n,)\;(?). Then by Corollary 2.3, we have RE(f) =
inf,cr x>0 LECFm, N, R'Cid}(f) = inf,er 20 E’;w(f,n,)\). In the following proposition, we show

the validity of the DC relaxation.

Proposition 2.4 (Fisher Consistency and Excess Risk). Suppose R’j , Rf’w, Elg and E’;w are defined

as above. Fiz ke (1,+x], k* = %5, c=1, ne R, A > 0. Then the following results hold:

(I) (Fisher Consistency)

argmin Eff ,,Azarminﬁlj ,1M, ), min ~ £F (f,n,\) = min L'ff ;M A);
[ remin w5, A) Jpremin, (FrmA) - in Leg(fimA) = min | Le(fm,3)
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(II) (Excess Risk) Denote L (n, \) := min ey {41} LE(f,m,N\). Then for f: X — R, we have

LEFmA) = LE*(0,0) < 2[LEy (f,1,0) = LEF (0, )]
Denote RE* = inf,er x>0 Elé’*(n, A). Then for f: X — R, we have

LEfm A) = RE* <20LE ,(f,m,A) = RE*], RE(F) — RE* < 2[RE,(f) — RE*].

Suppose F is a functional class on X with norm | - |# that characterizes the complexity of
function. Motivated by Steinwart and Scovel (2007, (6)), we define for v > 0 the constrained

version of the approximation error

Ai() 1= int {REL() ¢ Il <7} - RE®,

Similarly to that in Steinwart and Scovel (2007), A¥(y) with the appropriately chosen tuning
parameter vy can trade off the learnability and the approximatability of F towards the population
Bayes rule argming.y_, (+1) le( f). Specifically, as «y increases, the population approximation error
(“bias”) AF(v) decreases with +y, while the empirical complexity (“variance”) increases with . The
trade-off will be stated more explicitly in the following Assumption 2.5.

Next, we make the following assumptions to show the regret bound for the empirical mini-
mization of the v-risk Enﬁlg’w( im0 CA'n) Without loss of generality, we restrict to consider the
functional class F as the Reproducing Kernel Hilbert Space (RKHS) with the Gaussian radial basis
function kernels, where | - |7 is the RKHS-norm. General results can be established by adopting

the covering number argument as in Zhao et al. (2019a, Theorem 3.1).
Assumption 2.2 (Boundedness). There exists M < +0 such that |C(X)| < M almost surely.

Assumption 2.3 (Diffuse Property). The distribution of C'(X) has a uniformly bounded density

with respect to the Lebesgue measure.
Assumption 2.4 (Convergence of the Plug-in CTE). For the CTE estimate C,(X), we assume

that |Cp, — C|o := sup |Cn(z) — C(x) 5o.
zeX
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Assumption 2.5 (Approximation Error Rate). There exists 8 € (0,1] and K4 < 400 such that

for all small enough v > 0, we have A¥(v) < K4y7".

As a remark, we note that Assumption 2.2 can hold if the difference of potential outcomes
Y (1) — Y(—1) is uniformly bounded, or X is compact and  — C(x) is continuous. Assumption
2.3 holds if X has a diffuse distribution, i.e., X doesn’t contain points with positive mass; and
x — C(x) is injective. Assumption 2.3 is the key assumption to bound A away from 0. This
assumption will not be necessary if &k = 400 and k* = 1. Assumption 2.4 can be met if X is
compact and é'n is a random forest estimate (Wager and Walther, 2015). Following Steinwart and
Scovel (2007, Theorem 2.7), Assumption 2.5 can be shown valid if the Tsybakov’s noise assumption
on the population margin is met and the kernel bandwidth parameter is chosen appropriately. In

the following proposition, we establish the regret bound.

Proposition 2.5 (Regret Bound). Suppose RY, T\’,’;w, £k and L”C“’w are defined as above. Fix

ke (1,+x], k* = %, c > 1. Assume that Assumptions 2.2-2.5 hold. Let

(fn>Thns An) € argmin {Enfﬁw(ﬁﬁa A Cn) | fllF < ’Yn} )
feF neRA =0
. . . 1 .
with the tuning parameter -y, satisfying v, = O(n" 28+1) as n — o. Then there ezists constants
Ky = Ky(c, M) < 40 and K1 = Ki(c, M) < +0 such that for 0 < ¢ < 1, with probability at least

1 -9, we have

RE(F) = RE* < LE(Fo fims An) — RE* < Kon/log(2/0)n” 77 + K1 |Gy — Clloo.

In particular, there exists Kyi, Koo, K11, K12 < +00 not depending on ¢, M, such that

(R*+1)(2k*—1) 4 1
c k¥ —1 2 E*+1/2 .
Koy s~y MM T2k < +oo; K1

KO(C7M): Kl(caM):
KooeM3/2, k= 4o0; Kisc, k = +o0.

*
ch +1

WM]C 71, k < +OO,

In Proposition 2.5, it can be of theoretical interest to understand how the regret bound depends
on the DR-constant ¢ and the power order k. Specifically, as ¢ — 400, 1 approaches to the essential
supremum of [C(X) —n]%" ki

% +[-C(X)—n)¥ w (Krokhmal, 2007, Example 2.3). Then
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A vanishes to 0 so that 1/ tends to +oo. Since the Lipschitz constant of Eléw(f, 1, A) with respect
to A scales with 1/)\1‘3*, the universal constants Ky and K1 grow to +00 as well.

Another important fact is that the conjugate number k* of k£ appears in the polynomial orders
of ¢ and M respectively in the universal constants Ky and K. In particular, for a large conjugate
order k*, the universal constants Ky and K7 increase with the DR~constant ¢ and the CTE bound
M more rapidly. In order to achieve a tighter finite sample regret bound, a smaller £* and hence
a larger k is preferred. Such a phenomenon complements the fact that the power uncertainty set
P(If (P) decreases in k. Specifically, as the power order k increases, its conjugate order k* decreases,
and the regret bound in Proposition 2.5 becomes tighter. On the contrary, the power uncertainty
set P¥(IP) gets smaller, and the worst-case objective is less distributionally robust. Therefore, the
power order k trades off between the distributional robustness in terms of the size of P¥(P), and

the finite sample regret bound.

2.4 Simulation Studies

In this section, we carry out two simulation studies to evaluate the generalizability of the DR-ITR
on the testing distributions that are different from the training distribution. The first simulation

considers the covariat shifts. The second simulation considers the mixture of subgroups.

2.4.1 Covariate Shifts

In this section, we extend the motivating example in Section 2.2.3 to a more practical simulation
setting. Consider the training data generating process: n = 1,000, p = 10, X ~ N,(0,,1,), A| X ~
Bernoulli(1/2) and Y|(X, A) = m(X) + (A —1/2)C(X) + N(0,1), where m(z) = 1+ 3 >F_, z;,
C(x) = z2 — (23 — 221).

At the training stage, we first obtain a CTE function estimate @n by fitting a ca-
sual forest (Wager and Athey, 2018) on the training data. Then we obtain the out-of-
bag prediction at the training covariates CA*n(X ). Next we fit the standard ITR by empiri-
cally minimizing En{én(X ) (W[f(X)] —1)} as the t-relaxation of the empirical risk function
En{én(X)sign[—f(X)]}, over the linear function class F, := {f(x) = b+ BTz : be R, B €

RP, |B|l2 < ~v}. The tuning parameter v > 0 is determined by 10-fold cross-validation among
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{0.1,0.5,1,2,4}. Finally, we fit the DR-ITRs for £k = 2 and c € C = {1.19,1.38,--- ,20} from the
function class F,, where v is the same as that of the standard ITR.

We consider the mean-shifted testing distribution X ~ N, (s, I,) for various covariate centroids
w’s. In order to calibrate the DR-constant ¢ for every fixed p, we generate a calibrating dataset of
size Nealip = 50 from the testing distribution. The following two scenarios for the calibrating data
are considered here: 1) a randomized controlled trial (RCT) dataset (X, A,Y") is generated, with
X ~ Np(p,1,) and (A,Y) as before; and 2) only the covariate vector X ~ N,(u,I,) is generated.
In Scenario 1, we use the IPWE of the calibrating value function 955}7,;[}3(]/";) =K, {Y1[(24 —
1)f.(X) > 0]/(1/2)} to evaulate the DR-constant ¢, while in Scenario 2, we use the CTE-based
calibrating value function f{g{g (fo) == Enca“b{CA'n(X )sign[f.(X)]} instead. Here, the estimated
CTE function C,, is obtained from the training stage.

For comparison, we consider the following: 1) the LB-ITR that maximizes the value func-
tion under the testing distribution; 2) the ¢;-penalized least-square (¢;-PLS) (Qian and Mur-
phy, 2011) of Q(X,A) = E(Y|X,A) on (1,X,A, AX) and the corresponding estimated ITR
d(z) € argminge 41y Qn(x,a); 3) the standard ITR; 4) the RCT-DR-ITR for the calibrating Sce-
nario 1; and 5) the CTE-DR-ITR for the calibrating Scenario 2. We compare the testing values
Epo [C(X )c/l\(X )] based on an independent testing dataset of size nest = 100,000 for every testing
distribution. The testing values across different testing distributions are not comparable. For a
specific testing distribution, the LB-ITR can be a benchmark to be compared to, since its testing
value is the best achievable in theory among the linear ITR class. The training-calibrating-testing
procedure is replicated for 500 times. The testing values (standard errors) for nc,;, = 50 are
reported in Table 2.2.

When the testing distribution is the same as training (u1,p2) = (0,0), the calibration pro-
cedures for the DR-ITRs are expected to choose ¢ = 1, which corresponds to the standard ITR.
With the finite calibrating sample, some DR-constant ¢ greater than 1 can be possibly chosen,
leading to smaller testing values for the DR-ITRs in Table 2.2. In particular, the testing value of
the CTE-DR-ITR is higher than that of the RCT-DR-ITR, and is closer to the testing value of the
standard ITR in this case. The reason is that, the RCT-based calibrating value function estimate

AclglygE depends on (X, A,Y) in the calibrating data, while the CTE-based one Agﬁg depends on
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X only. As a consequence, the CTE-based calibration can be more accurate than the RCT-based

one.

Table 2.2: Testing Values (Standard Errors) on the Mean-Shifted Covariate Domains (7ncap = 50)

Pl type 0 0.734 1.469 1.958
H2

LB-ITR 2.333 (0.00244) 2.907 (0.011) 5.834 (0.0362) 9.27 (0.0154)
¢,-PLS 2.124 (0.0022) 2.235 (0.011) 3.613 (0.0505) 6.32 (0.103)

1.958 Standard ITR 2.089 (0.00158) 1.735 (0.013) 1.348 (0.0595) 1.567 (0.13)
RCT-DR-ITR 2.085 (0.00444) 2.286 (0.0114) 4.545 (0.0255) 8.371 (0.0451)
CTE-DR-ITR 2.098 (0.00348) 2.304 (0.0106) 4.551 (0.0238) 8.459 (0.0424)
LB-ITR 1.893 (0.00712) 2.627 (0.00656) 5.28 (0.0213) 9.379 (0.0128)
£,-PLS 1.667 (0.00307) 2.021 (0.0076) 4.095 (0.0342) 7.573 (0.0706)

1.469 | Standard ITR 1.674 (0.00152) 1.645 (0.0127) 2.377 (0.0553) 4.011 (0.119)
RCT-DR-ITR 1.627 (0.00688) 1.987 (0.00997) 4.484 (0.0192) 8.611 (0.0285)
CTE-DR-ITR 1.663 (0.00326) 1.997 (0.00992) 4.55 (0.0163) 8.686 (0.0269)
LB-ITR 1.227 (0.00244) 2.144 (0.00609) 5.269 (0.00931) 9.608 (0.00898)
¢,-PLS 1.094 (0.00418) 1.676 (0.00442) 4.587 (0.0151) 8.8 (0.0314)

0.734 Standard ITR 1.174 (0.00149) 1.553 (0.00806) 3.739 (0.0379) 7.06 (0.0763)
RCT-DR-ITR 1.094 (0.00753) 1.651 (0.00675) 4.622 (0.0109) 9.036 (0.015)
CTE-DR-ITR 1.152 (0.00292) 1.667 (0.00588) 4.648 (0.0113) 9.06 (0.0161)
LB-ITR 0.9942 (0.00202) 1.774 (0.0034) 5.232 (0.00559) 9.767 (0.0068)
£1-PLS 0.8296 (0.00454) 1.648 (0.0036) 4.914 (0.00501) 9.476 (0.0103)

0.000 Standard ITR 0.9437 (0.00153) 1.679 (0.00336) 4.654 (0.017) 8.895 (0.0342)
RCT-DR-ITR 0.8374 (0.00821) 1.647 (0.00574) 4.868 (0.00797) 9.444 (0.00841)
CTE-DR-ITR 0.9206 (0.00272) 1.688 (0.00289) 4.888 (0.00698) 9.442 (0.00999)

Yy = (p1,p2,0,--+,0)T with g1 in column and us in row is the testing covariate centroid.

2 Values (larger the better) can be comparable for the same (1, p2) but incomparable across different (u1, p12).

3 LB-ITR maximizes the testing value function at (yi1, u2) over the linear ITR class. The corresponding testing value
is the best achievable among the linear ITR class.

When (u1, p2) # (0,0), the testing distribution is different from training, and the performance of
the standard ITR deteriorates while the DR-I'TRs still maintain reasonably good performance. The
phenomenon is more evident when p1, po € {1.469,1.958}. In particular at (p1, p2) = (1.958,1.958),
the value of the standard ITR can be as low as 17% of the best achievable value among the linear
ITR class, while the DR-ITRs can maintain more than 90%. In fact, such a phenomenon is general.
In Figure 2.3a, we further enumerate the testing covariate centroid p = (u1, p2,0,---,0)T for
1, o € [—2.448,2.448] and compute the relative regrets of the standard ITR and the RCT-DR-
ITR. Across all mean-shifted testing distributions, the relative regrets of the standard I'TRs can be
as high as 108%, in which case the standard ITR value is negative, and hence even worse than the
completely random treatment rule dy,nq. On the contrary, the relative regrets for the RCT-DR-ITR

(neatib = 50) shown in Figure 2.3b are at most 24% across all testing centroids. This suggests that
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the RCT-DR-ITR maintains relatively good performance on all such testing distributions, while the
standard ITR fails. Figure 2.4 further shows that the DR-ITR provides substantial testing value
improvements over the standard ITR. This demonstrates that the small sample size nca;p = 50 is
sufficient for calibrating the DR-ITR with significant testing improvement.

From Table 2.2, it can be also observed that ¢;-PLS can have better performance than the
standard I'TR when training and testing distributions are different. The reason is that, the objective
of £1-PLS does not target the value function under the training distribution directly, but rather, the
mean squared error of the linear approximation to Q(X, A) under the training distribution. Such
a linear approximation can perform well when the testing distribution is not far from the training
distribution. However, in the case pi, uo € {1.469,1.958} in the sense that the testing distribution
deviates more from the training one, the DR-ITRs enjoy notably higher testing values than ¢;-PLS.

In Section 2.7, we provide more detailed results for other comparisons including the relative
regrets/improvements on all mean-shifted covariate domains of all centroids, the misclassification
rates on all mean-shifted covariate domains of all centroids, the comparison with some other meth-
ods in relative regrets and misclassification rates, and the case of k € {1.25,1.5,2,3,00}. In par-
ticular, the misclassification rates inform similar conclusions as the relative regrets/improvements.
If we increase the calibrating sample size from 50 to 100, then the testing values of DR-ITRs can
be further improved. We also find that among our simulation scenarios, the testing values of the

DR-ITR are not very sensitive to difference choices of k.

2.4.2 Performance on the Mixture of Subgroups

In this section, we consider a population that consists of two subgroups, with each following a
distinct CTE function. We aim to find an ITR that can generalize well on different mixtures of
subgroups.

We modify the simulation setup in Section 2.4.1 as follows: X|¢ ~ &N, (p1,I,) + (1 —
E)Np(po, 1), where & ~ Bernoulli(pmix) is the unobservable mixture/subgroup indicator with
subgroup 1 probability pnix and subgroup 0 probability 1 — pmix, and the subgroup means
p1 = (—1/2,1/2,0,--- ,0)T and po = —p1. We consider the CTE function C(z;¢) = (2§ —

1)Bo + B121 + B2x2 that is linear in the covariate vector, but with a subgroup-dependent intercept
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Relative Regrets of the Standard ITR Relative Regrets of the RCT-DR-ITR (N¢gji, = 50)

on the (U1, Mo)—Mean Testing Distributions on the (U1, Mo)—Mean Testing Distributions
Relative Relative
Regrets Regrets
2- 2-
100% 100%
1- 1-
75% 75%
S o0- £ o-
50% 50%
1-
25% 25%
o-
0% 0%
2 1 0 1 2 2 A1 0 1 2
M1 H1
Maximal relative regret = 109%. Maximal relative regret = 24.4%.
(a) Standard ITR (b) RCT-DR-ITR (ncain = 50)

Figure 2.3: Relative Regrets on the Mean-Shifted Covariate Domains (lighter the better).

Relative Value Improvements of the RCT-DR-ITR (Nn¢qip = 50) over the Standard ITR
on the (U1, Mo)—Mean Testing Distributions

Relative Value

Improvements
2 -
100%

75%

50%

25%

0%

-2 -1 0 1 2

Relative value improvements range in [-10.7%, 102%].

Figure 2.4: Relative improvements of the RCT-DR-ITR over the standard ITR as the difference of their
relative regrets on the mean-shifted covariate domains (nca, = 50, darker the better).

(2¢ — 1), and (Bo, b1, B2) := (—3/2,—2,1). The unconditional CTE function is nonlinear:

ECteex o Pl = 1 3/2) — (1~ puse) expl—| — ol3/2)
)= RO =2l = oo ml3/2) + (1 pa) exp( e — pol3/2) 0+ 11+ P
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In particular, the unconditional CTE function C(x) depends on the subgroup 1 probability pmix.
The distributional changes are due to the subgroup 1 probability. Specifically, the training subgroup
1 probability is 0.75, while the testing subgroup 1 probability varies in {0.1,0.25,0.5,0.75,0.9}.
Since the training and testing CTE functions can be different, Assumption 2.1 cannot be fully met.
Therefore, our proposed DR-ITR can be robust to such distributional changes only to some extent.

We consider the same training-calibrating-testing procedure as that in Section 2.4.1, except
that the DR-constant ¢ ranges in {1.18,1.27,--- ,10}. The testing values of the ITRs are reported
in Table 2.3. When the training and testing distributions are the same at pyix = 0.75, all ITRs have
similar testing performance. The standard I'TRs have higher testing values than the DR-ITRs in this
case. When the testing pmix becomes smaller, the DR-ITRs show better testing performance than
the standard I'TR. When the testing punix = 0.25 or 0.1, the RCT-DR-ITR has the highest testing
values among all. Since the true testing CTE function changes along with the testing pmix, the
corresponding estimate CA’n based on the training data can suffer from the generalizability problem.
Therefore, the CTE-based calibration performs slightly worse than the RCT-based calibration in
this case. However, the CTE-based DR-ITR is superior to the standard ITR, and is comparable to
the ¢1-PLS. More detailed comparisons and the case nca, = 100 are provided in Section 2.7.

Table 2.3: Testing Values (Standard Errors) on the Mixture of Subgroups (ncaip = 50)

Testing Subgroup 1 Probability

type | 0.1 | 0.25 | 0.5 | 0.75 | 0.9

LB-ITR 1.665 (0.0067) 1.587 (0.00618) 1.444 (0.00412) 1.545 (0.00587) 1.679 (0.00585)
¢,-PLS 1.182 (0.00191) 1.264 (0.0014) 1.399 (0.000591) 1.537 (0.000333) 1.624 (0.000781)
Standard ITR 1.143 (0.00434) 1.232 (0.00329) 1.383 (0.0015) 1.535 (0.000543) 1.632 (0.00142)
RCT-DR-ITR 1.267 (0.0066) 1.305 (0.00423) 1.395 (0.00256) 1.52 (0.00212) 1.614 (0.00234)

CTE-DR-ITR 1.16 (0.00409) 1.247 (0.00323) 1.388 (0.00137) 1.534 (0.00055) 1.628 (0.00149)

I Testing subgroup 1 probability = 0.75 is the same as the training one.

2 Values (larger the better) can be comparable for the same subgroup 1 probability but incomparable across different
subgroup 1 probabilities

3 LB-ITR maximizes the testing value function over the linear ITR class. The corresponding testing value is the best
achievable among the linear ITR class.

2.5 Application to the ACTG 175 Trial Data

In this section, we evaluate the generalizability of our proposed DR-ITR on a clinical trial dataset
from the “AIDS clinical trial group study 175” (Hammer et al., 1996). The goal of this study was
to compare four treatment arms among 2,139 randomly assigned subjects with human immunode-

ficiency virus type 1 (HIV-1), whose CD4 counts were 200-500 cells/mm?®. The four treatments are
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the zidovudine (ZDV) monotherapy, the didanosine (ddI) monotherapy, the ZDV combined with
ddl, and the ZDV combined with zalcitabine (ZAL).

The evidence found from the AIDS trial data can have some generalizability problems. When
studying women living with HIV and women at risk for HIV infection in the USA cohort, the
Women’s Interagency HIV Study (WIHS) (Bacon et al., 2005) has been considered to be represen-
tative. However, it was reported in Gandhi et al. (2005) that 28-68% of the HIV positive women in
WIHS were excluded from the eligibility criteria of many ACTG studies. In the ACTG 175 dataset,
the number of female patients is only 368 out of 2139. Thus we suspect that the female patients
may be underrepresented in this dataset, and the ITR based on the dataset may not generalize
well on the women subgroup. In this section, we study the generalizability of DR-ITR when the
testing dataset consists of female patients only. Specifically, the training dataset is a subsample
from ACTG 175 with original male/female proportion, while the testing dataset is a subsample
from the female patients of ACTG 175, and there is no overlap across training and testing. We try
to resemble the ideal world that we can have independent testing data from the female population.

We consider the outcome Y as the difference between the early stage (at 20+5 weeks from
baseline) CD4 cell counts and the CD4 counts at baseline. We focus on the treatment comparison
between the ZDV + ZAL (A = 1) and the ddI (A = —1), and the corresponding patients from the
dataset. In particular, only 180 of them are women. The average treatment effects on the male and
female subgroups are —8.97 and —1.39 respectively, which suggests that there is treatment effect
discrepancy between these subgroups. We sample the training data from the ACTG 175 dataset
in the ZDV + ZAL or ddI arm of sample size 1,085 x 60% = 651 stratified to the gender. In
particular, the training dataset includes 180 x 60% = 108 female patients. The remaining female
data (180 — 108 = 72) are used for testing. We only consider female patients in testing. We further
sample 50 from the testing female data for calibration, and the remaining (72 — 50 = 22) are the
testing dataset. We also consider 12 selected baseline covariates X as was studied in Lu et al.
(2013). There are 5 continuous covariates: age (year), weight (kg, coded as wtkg), CD4 count
(cells/mm?) at baseline, Karnofsky score (scale of 0-100, coded as karnof), CD8 count (cells/mm?)
at baseline. They are centered and scaled before further analysis. In addition, there are 7 binary
variables: gender (1 = male, 0 = female), homosexual activity (homo, 1 = yes, 0 = no), race (1 =

nonwhite, 0 = white), history of intravenous drug use (drug, 1 = yes, 0 = no), symptomatic status
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(symptom, 1 = symptomatic, 0 = asymptomatic), antiretroviral history (str2, 1 = experienced, 0
= naive) and hemophilia (hemo, 1 = yes, 0 = no).

Before fitting ITRs, we estimate the CTE function C'(X) by the following regress-and-subtract
procedure: first we fit two separate random forests by regressing Y on X restricted on A = 1
and A = —1 respectively; then we subtract two regression models to obtain the CTE function
estimate én(X ). We follow the same implementation as in Section 2.4.1 to fit the standard ITR
and DR-ITRs over a constrained linear function class F, := {f(x) = b+ 87z : b e R, B €
RP, ||B]l2 < 7} on the training data. The testing performance is evaluated by the IPWE of
the value function on the testing data. The training-calibrating-testing procedure is repeated for
1,500 times. The testing values are reported in Table 2.4, where the value can be interpreted
as the expected CD4 count improvement from baseline at the early stage (20 + 5 weeks). In
addition to the calibrated DR-ITRs, we also include the value of the best DR-ITR that enjoys
the highest testing performance among all DR-constants. For comparison, we include the results
of residual weighted learning (RWL) (Zhou et al., 2017) with linear kernel. Both RWL and the
standard ITR share similar implementation, except that RWL can be shown equivalently using
Cn(X) = Qu(X,1) — Qn(X,—1) + 24[Y — Qn(X, A)] as a plug-in CTE estimate.

The testing results show that our proposed DR-ITRs can have better values than the standard
ITR and RWL. In particular, the improvement of the best DR-ITR is substantial, while the im-
provements of the calibrated I'TRs are not as strong. We plot the testing values of the DR-ITRs
against the corresponding DR-constants in Figure 2.5. It suggests that the testing values generally
increase with the DR-constant. In this analysis, the calibrated DR-constants are not close to the
optimal DR-constant. As a result, the testing performance of the calibrated DR-ITRs is not as
good as the best DR-ITR. One reason for this phenomenon can be that the outcome Y has a heavy
tail distribution, as was highlighted in Qi et al. (2019b), so that the value function estimate is
highly variable based on the small calibrating sample. Another reason can be that the random
forest regress-and-subtract estimate of the CTE function does not generalize well on the testing
distribution.

On the overall dataset, we fit the DR-ITRs and report their fitted coefficients in Table 2.5 for
selected DR-constants. To stabilize the randomness from the random forest estimate of the CTE

function, we refit the random forest 20 times and average the corresponding DR-ITR coefficients.
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Table 2.4: Expected CD4 Count Improvement (cells/mm?) from Baseline at the Early Stage (2045 weeks)
and Standard Errors on the ACTG-175 Female Patients (higher the better).

RWL Standard ITR Best DR-ITR RCT-DR-ITR CTE-DR-ITR
10.7617 (0.8636) 10.593 (0.8627) 13.9423 (0.8378) 11.8133 (0.8357) 11.1563 (0.8514)

Standard errors are computed based on 1,500 replications.

15-

CD4 Count Improvement

Expected

10-

DR-constant

Reference Lines — BestDR-ITR ---- CTE-DR-ITR --: RCT-DR-ITR - - RWL ---- Standard ITR

Figure 2.5: Expected CD4 Count Improvement (cells/mm?) from Baseline at the Early Stage (2045 weeks)
of the DR-ITRs of Various DR-Constants on the ACTG 175 Female Patients (higher the better)

We find that there are noticeable changes in the coefficients of the intercept and the homosexual
activity when the DR~constant gets large. Within the ACTG 175 dataset (ZDV + ZAL or ddlI),
we find that only 6 female patients have homosexual activity. Four of them are treated with ZDV
+ ZAL, and the change of their CD4 counts are 123, 34, —11 and 158 respectively. Two of them
are treated with ddI, and the change of their CD4 counts are —41, —182. Therefore, the ZDV +
ZAL (A = +1) may have more benefits compared to the ddI (A = —1) on these patients. This
helps to explain why the larger coefficients in homosexual activity for the larger DR~constants can

be beneficial for the female patients.
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Table 2.5: Linear Coefficients of the DR-ITRs Fitted on the ACTG 175 Dataset

DR- Intercept age wtkg cd40 karnof cd80 gender homo race drugs symptom str2 hemo
constant

1 —0.02 —0.25 0.06 —0.58 —0.06 0.53 —0.16 —0.4 0.16 0.16 0.16 0.16 0.09

4.8 —0.31 —0.23 0.12 —0.67 0.11 0.55 —0.12 —0.21 0.2 0.12 0.1 —0.06 0.09
8.6 —0.43 —0.23 0.11 —0.64 0.16 0.54 —0.11 —0.05 0.12 0.04 0.07 —0.24 0.01
12.4 —0.54 —0.22 0.1 —0.64 0.19 0.51 —0.04 0.01 0.08 0.05 0.04 —0.27 —0.02
16.2 —0.61 —0.23 0.1 —0.64 0.2 0.51 0 0.03 0.06 0.05 0.02 —0.27 —0.02
20 —0.64 —0.24 0.09 —0.63 0.22 0.5 0.01 0.03 0.05 0.07 0.01 —0.26 —0.01

T DR-constant = 1 corresponds to the standard ITR; DR-constant 16.2 has the highest testing value in Figure 2.5.

2.6 Discussion

In this chapter, we propose a new framework for learning a distributionally robust ITR by maximiz-
ing the worst-case value function among values under distributions within the power uncertainty
set. We introduce two possible calibration scenarios under which the DR-constant can be tuned
adaptively to a small amount of the calibrating data from the target population. In this way,
when the training and testing distributions are identical, the calibrated DR-ITRs can achieve sim-
ilar performance as compared to the standard ITR. When the testing distribution deviates from
the training distribution, we show that there are many possible scenarios that the standard ITR
generalizes poorly, while the calibrated DR-ITRs maintain relatively good testing performance.
Our simulation studies and an application to the ACTG 175 dataset demonstrate the competitive
generalizability of our proposed DR-ITR.

The main assumption on the changes of covariates in our DR-ITR framework is equivalent to
the selection unconfoundedness assumption in a randomized controlled trial. In practice, there
may exist unmeasured selection confounding problems for the trial data, and the distributional
changes affect both the covariates and the CTE function. One possible extension is to consider
the simultaneous changes of the covariate distribution and the CTE function, and leverage more
general robustness measure against these changes.

In our DR-ITR framework, we require an estimate of the CTE function based on the flexible
nonparametric techniques. The performance of our DR-ITR can depend on the quality of the CTE
function estimate. An alternative strategy is to avoid plugging in a CTE estimate. Instead, the dual
representation (2.10) can be identified from (X, A,Y") directly using a variational representation of
[+C(X) —n]¥ (Duchi et al., 2019). This can be a possible extension of our framework.

Another possible extension is to consider the problem of high-dimensional covariates. Our

current formulation involves an fs-constraint to control the model complexity. It can be extended
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to obtain sparse solutions when a f;-constraint is used instead. Besides the high-dimensional
extension, our current theoretical results assume that C(X) is uniformly bounded. It will be
interesting to relax the assumption, such as sub-Gaussianity. Further investigations along these

lines can be pursued.

2.7 Appendix

2.7.1 Explicit Forms of the Power Uncertainty Set

In this section, we study the explicit forms of the power uncertainty set Pf (P) on certain parameteric
families of distributions, and how they depend on the DR-constant ¢ and the power k. We first
examine the family of Bernoulli distributions and the normal distributions, and show that their
power uncertainty sets depend on ¢ and k differently. Then the general exponential family will be
discussed.

Example 2.1 (Bernoulli Distributional Ball). Consider two Bernoulli distributions

Bernoulli(p) and Bernoulli(q) for some p,q € [0,1]. We have Hgg:#ﬂ::;g;g‘

L*(Bernoulli(p))

[p (%) +(1-p) (%) ] . If p < q, then the above becomes % [p (1-p) <%) ] €

1/k
[(¢/p) x pl/k,q/p]. If p > ¢, then the above becomes 1 [p p —i—l—p} €

1-9)
[if_g x (1 —p)/k, 1—;] As k — 400, the above both approach to % v i—g. For fixed p
and every k € [1, +o0), we have

P (Bernoulli(p)) 2 {Bernoulli(q) : g € [0,1], 1 —¢(1 —p) < ¢ < cp},

and

73,£€(Bernoulli(p))C ) {Bernoulli(q) :qe0,1], ¢ > c(1—p) }’

with the meaningful ¢ < In particular as the large enough k increases while 1 < ¢ <

1 1
pA(l=p)” pA(1—p)

is fixed, Pf(BernouIIi(p)) contains less Bernoulli distributions, down to that of success probabilities
n [1—¢(1—p),cp] only.

Example 2.2 (Normal Distributional Ball of Mean Shifts). Consider two p-dimensional normal dis-

tributions N, (0, I,,) and NV, (u, I,) for some center parameter g € RP. The density ratio of N, (u, I,)
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Ml — 2
w.r.t. Np(0p, I,) is given by %M = e IMl3/2 x en™®  Then the L*-norm of the density ratio
1/k

under N,(0,,1,) can be calculated analytically as e~ Inl/2 (SRP efrT@ (277)_17/26_“:6“%/2(3193> =
elh=DIul3/2, Then Np(m, L) € PE(N,(0,, 1)) if and only if b DIk < ¢ o )3 < %-

Note that the conclusion is presented in terms of the L2-difference of the mean vec-
tors |p|2 between two normal components. It can be extended to two p-dimensional nor-
mal distributions of the same covariance matrix: N,(p1,%) € P¥(N,(po, X)) if and only if

21°gc Then we have

exp {%(“1 — o) TS Ny — po)} < ¢ e (1 — po)TE (1 — po) <

P ) 21
5(/\/}9(#072)) = {N}a(u,Z) cpeRP (p— uo)TE_ (n— pp) < k oglc}
and
P M) o 21
f(-/\/}a(uo, ))C = {'N;?(/J'a Y):peRP, (n— uo)TZ_l(u — o) > . oglc} .

In particular as k increases with ¢ > 1 fixed, P¥(N, (o, )) contains less normal distributions of

covariance matrix X.

Example 2.3 (Normal Distributional Ball of Covariance Scales). Consider two p-dimensional nor-

mal distributions N,(0,,1,) and N,(0,,01L,) for some scale parameter o > 0. The density ratio

of Np(0,,0%L,) w.r.t. Np(0,,1,) is given by Uﬁpfif\'";"égioz)} — 5 Pe—(@2=D2I3/2. Then the
XPL—lTll2

L*-norm of the density ratio under N,(0,,1,) can be calculated analytically as
1/k
o~ P (SRP e—k(e2=1)[2|3/2 (27T)_p/26_”m“%/2dw> / _ a_p[k(0_2 1)+ 1]—19/(2/%:)7 which is a nonlin-

2 ranging in (0,%*) and attaining the minimum at 0? = 1. Then N,(0,,0°1,) €

ear function in o
PE(N(0,,1,)) if and only if o P[k(c72=1)+1]7P/*) < c = 02 (c) < 0% < 57 (c) where o7 (c) € (0,1)
and 57(c) € (1, k*) are the unique roots solving the nonlinear equation o P[k(c~2—1)+1]7P/(2k) =

ook _2kP[k(072—1)+1] Lo Pl (t+1)F —c2#/P(kt+1) = 0 on the interval t € (¥ /P —1, +o0)

< 02 e (0,c2'/P) and t € (—1/k,0) < 0% € (1,k*) respectively. In particular as k increases
while ¢ is fixed, the lower root cg%(c) increases to 1 while the upper root o2(c) decreases to

1, so that P¥(N,(0,,1,)) contains fewer and fewer distributions of the form N, (0,,c%I,) with

o € [o3(). 53(0)].
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The result is general if the mean vector 0, is replaced by any vector p € RP and the covariance

matrix I, is replaced by some positive semi-definite matrix X:
PN (1, %)) 2 {Np (1, 0°%) 2 07(0) < 0® < Fi(e)}

and

PN, (1, %))t 2 {Np(p,0%E) : 0 < gi(c) or 0 > 5¢(c)}

As an extension of the Bernoulli and the normal distribution, we can also consider the mixture

of two fixed normal components.

Lemma 2.6 (Upper Bound of the Mixture ¢-Divergence). Suppose Py, Py are probability distribu-
tions, p,q € [0,1]. Denote Py := pP; + (1 — p)Py, Py := ¢P1 + (1 — q)Po. Let ¢ € O be a legitimate

divergence function. Then

Dy (Py|Pp) < Dy (qP1|(1 — p)dPg) + Dy ((1 — q)Po|pPy).
Proof.

DdJ(Pq”Pp)

_ qdP; + (1 — q)dPg )
_ng <ple’1 +(1 —p)dPO) [pdPy + (1 — p)dPo]

:j (1 —p)dPy o 9dPy pdPy o (1 —q)dPo
pdP; + (1 —p)dPy (1 —p)dPy  pdP; + (1 — p)dP pdPy

Jensen qdPy (1 - Q)dHDO
= o (e ) 0o Jo (B o

=Dy (qIPﬁH(l — p)dIP’o) + D¢((1 — q)IP’OHpH”l).

) [pdPy + (1 — p)dPo]

O]

Remark 2.7. The conclusion can be stated in terms of the k-th moment of the density ratio.

Suppose Py « P; and P; « Py. Then

ap,
P,

q k k
<(l-p) (1 = )
Lk(Pp) p

dp,
dPg

dpy
dPy

k k
1—
Lk (o) p

LE(EY)
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Remark 2.8 (Mixture Normal Distributional Ball). Consider two mixture normal distributions
GMMy, (1, po; 2) == pNa(p1, E) + (1 — p)Na(po, X) and GMMg(p1, po; E) := gNg(p, ) + (1 —
q)Ng(po,X) with the same components and different mixture probabilities p, ¢ € [0,1]. Example

2.2, Lemma 2.6 and Example 2.1 together imply that

H dGMM, (g1, po; %)
dGMM,, (1, po; 2)

LE(GMMp (p1,120;%))
1/k

(5) (5

PR +p —_—

1—0p p

1—g¢q -

-4 5 (

k—1 _
< <1 v >eXp{ p1— p0)TE " —Ho)}-
p P

Q

exp {_1(N1 — o) (g1 — Mo)} (2.12)

< [(1—19) 5
q

Consequently, if ¢ > exp {%(ul — po)TE (1 — po)},  then  PY¥(GMM,(p1, po; X))
contains all those GMMg(p1,po;E) with mixture probability ¢ such that 1 —
cexp {55 (1 —po) TS —po)}p < g < cexp{E5 (1 — po)TE (1 — po)} (1 — p).
However, since the inequality (2.12) applies the Jensen Inequality to (-)¥, the right hand side can

be loose when k is large.

Next we proceed to discuss the exponential family in its abstract canonical form. Depending on
the growth of the log-partition function, the power divergence might or might not increase with the
power k. And consequently when the distributional constant is held fixed, the power uncertainty

set P¥(PP) might or might not vanish.

Example 2.4 (Canonical Exponential Family Distributional Ball). Consider a canonical param-
eterized exponential family with density as f(x;n) = h(x)exp((n,x) — A(n)) where n € R?
is the canonical parameter, A(n) = logSh(w)e@*@dw is the log-partition function. Note that
A(- 4+ mo) — A(no) is the logarithm of the moment generating function of the sufficient statistic.

Then for fixed 11, 1o € R?,

k

‘ fim)
f(5m0)

_ o KLA(m)~A(m0)] - A(mo) f () eFm=m0) 0.3 g
L¥(mo)

— exp (A[k(n1 = m0) +mo] — [A(m1) = A(mo)] = A(m)).  (213)

o4



Note that the relationship of (2.13) and k& depends on the functional form of the log-partition
function A(-). In Example 2.2, A(n) = nTXn+logdet(X) is a quadratic function in the scaled mean
vector n = X'y as the canonical parameter (where the covariance matrix ¥ is assumed known
and fixed), and hence (2.13) is a quadratic function in & in the exponential, which coincides with
the conclusion from Example 2.2 that the LF-norm of the density ratio is exponentially linear in
k. In Example 2.1, the partition function A(n) = log(1l + 7)) = n + log (1 + e~ ") is at most linear
in the log-odd n = log (%) as the canonical parameter. Then the LF-norm of the density ratio
should be bounded when k varies.

In general, the L*-norm of the density ratio of distributions from the exponential family in-

A(m)

creases with k if A is super-linear: =t — +00 as In| — +oo.

2.7.2 Implementation Details

To practically optimize the DR-ITR, v-risk R’§¢( f) based on the empirical data, we first estimate
the CTE function én() using flexible nonparametric techniques. Then we replace the CTE function
C(+) by its estimate én(), and the population expectation E by its empirical version E,,. We solve

the following joint minimization problem based on the training data:

~ * -~ hhd v

feFm

In this section, we discuss more implementation details of k < 400 and k = +oo0.

2.7.2.1 Optimization when k£ < +o0

When k£ < 400 and k* > 1, the k*-moment makes the direct optimization more challenging.

To reduce the power 1/k*, we introduce the auxiliary variable A\ > 0 and consider (-)/*" =

infy>o (# + %), where due to the AM-GM Inequality, k%(% A+ -+ )\) > ()Y with

k*—1

Ik > 0. Then we consider the following joint objective to minimize:

equality if and only if A = ()

L(f,n,A) :

‘ REIVIC SIS S I

= ey (60— ) 6, 0 - e PR 4

(2.14)
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Note that the joint objective (2.14) as multiple sum-products of DC functions is difference-of-
convex in (f,n, \), but the DC representation can be messy. Instead of using a direct DC algorithm,
we apply the BSUM algorithm (Razaviyayn et al., 2013) to alternatively optimize over (1, A) and
f respectively, where the the upper-bound of the objective in f is a convex majorant. Specifically,

we fix a small € > 0 and alternatively implement the following two steps:

Step I: For fixed ft, we implement the t-th step optimization of (7, Xt) by solving

~ . £ ~ * _7 -~ * 1/k*
i€ angin { e [, (SR, (3) 1t + AHOA-6, 030 - )] )
ne

X i A o N
N = [En (M[Cn(ﬁf)—m]’i + W[—W%Mﬁ)] va

The objective in 7 is univariate and continuously differentiable and can be minimized by any
univariate solver. The A > 0 is a prespecified small constant such that the updated Xt is

trimmed at A from below for better numerical stability.

Step II: For fixed (ﬁ,ﬁt,xt), we solve the (¢ + 1)-th step ﬁf+1 by minimizing the following convex

upper-bound over F:

c ~ PUTEN

L(f: i de) = En(mw[wnm AR DL 0+ X))+
t

1) — Y S5 -FX1 )

where given ug € R, J(, ug) is a first-order convex majorant of ¢ expanded at wug:

W (u;up) = ¥y (u) — - (uo) — ¢ (uo)(u — uo); ueR.
In particular for fixed ug, 1 satisfies: 1) the majorization @Z(u, up) = ¥ (u) with equality if
u = ug; 2) the convexity of 1(-; ug); and 3) the first-order condition ¥/ (u; ug) = P (w) =" (uo)

and 1/ (uwo;up) = 9’ (up), where g (u; up) is taken over u. To organize the computation, define

Z = ch*_l[ién(X) AR S = 2 [ RX)] - 25 [ A(X)]. (2.16)
t
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Then at the t-th step, we only need to keep track of Zt(i), S; and minimize
L3 28,80 = Bu (2000 [+ £(XO] + 200 [ F(X0] = S x £(X)), - (247)

over F. We summarize the algorithm for learning the DR-ITR, when k£ < 400 in Algorithm 2.1.

Algorithm 2.1: Learning the DR-ITR (k < +0)

1 Input: Data {Xi,CA’n(Xi) ?_,, initial fg e F,c=1, A >0, and tolerance €y, > 0.
2 Repeat for t =0,1,---, do until |ﬁ+1 - ﬁ\ < (|ﬁ| v 1)egor

3 Solve (M, A¢) by (2.15);

4 Update (Zt(i), St) as in (2.16);

5 Solve ft+1 by optimizing the objective IN/(, Zt(i), Sy) as in (2.17);

6 Output: ﬁ+1.

2.7.2.2 Optimization when k = +

For k = 400 and ¢ > 1, it is possible that the BSUM algorithm introduced in Algorithm 2.1 suffers
potential convergence problems when the minimizer 7; given ft in (2.15) is non-unique. Following
Qi et al. (2019b, Proposition 3.1), we see that the joint objective is minimized with respect to n at
one of the 2n knots {n] }§Z1 = {+Cp(X;) ?_,. Then the joint minimization problem boils down to

min min {L;(f) i= $En ([Ca(X) = nf 1+ ()] + [~Ca(X) = ][ =f (X)]) + 1} |

feF 1<j<2n

That is, the minimization with respect to n can attain at only finitely many candidates {77;‘ ?11-

For 1 < j < 2n, we define the convex upper bound of L; at fj as
Li(f fo) = En (5[+Cn(X) = 1+ 0+ F(X): +/o(X)] + 5[=Ca(X) = mf ][ —F(X)i = fo(X)])

where 1; is the first-order convex majorant of 1) as before. Then the previously discussed BSUM
algorithm iteratively updates the following two steps: (I) for fixed ﬁ, solve for the t-th step 315 €
argming ¢ <o, Lj(ft); (II) for fixed (ﬁ,;t), solve for the (¢ + 1)-th step 141 by minimizing E;t (5 ft)
Notice that the non-uniqueness of the minimizer 7; given ﬁ now becomes the non-uniqueness of

the index Et-
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To overcome the difficulty due to the non-uniqueness, Pang et al. (2016, Section 5) showed
that the following two requirements should be met to ensure the convergence to stationarity: (1)
minimizing the surrogate function E;t(-; ft) of the chosen index j; should let the true objective
function L descend the most; (2) the most descent requirement (1) holds with respect to the

indices chosen among the following e-argmin index set for some fixed ¢ > 0:

~

M(Fy) = {1 <j<2n:Li(f) < min Li(f)+ e}, (2.18)

1<i<2n

rather than the traditional argmin index set . ( ft) To avoid too many surrogate functions to be
minimized at each step, Pang et al. (2016, Section 5.2) proposed to randomly choose ;t € //le(ft)
with a positive probability, so that at least for some positive chance the most descent index can
be picked. To ensure the true objective is strictly decreasing, we accept the minimizer ]‘N.t-&-l €
argmin ff}t(f; ft) only when E;t(ﬁ+1; ft) < L(ﬁ), or equivalently,
L (ft) — 1£iggnLj(ft) < Ls, (fis fi) — Ly, (s fo)-
That is, the descent in terms of the surrogate objective E;t(-; ﬁ) is no less than the excess value
(up to €) of the chosen jt—th objective L at ft
To organize the computation, we again define for 1 < j < 2n and fj

27 = S[ECu(X) = milas S(fo) 1= 28 [+fo(X)] = 20 [~ fol X0, (2.19)

similarly as in (2.16), but with the index ¢ replaced by j. Then at the ¢-th step, we first randomly
pick Et € M ﬁ) uniformly and keep the excess value ¢ := L}t(ﬁ) — minj<j<on Lj(ﬁ). Then we
keep Z; := E(ti) and S; := S;t(ﬁ) and minimize Z(, Zt(i), Sy) as in (2.17). Finally, we accept the
minimizer fiiq € argmin g E(f;Zt(i),St) if E(ﬁ;ZF),St) — E(fm;zt(i),st) > ¢;. We summarize

the algorithm for learning the DR-ITR when k = +00 in Algorithm 2.2.
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Algorithm 2.2: Learning the DR-ITR (k = +0)
1 Input: Data {Xi,(’f’n(Xi) ?_,, initial fo e F,c>1, e>0, and tolerance € > 0.
2 For t =0,1,---, do until 1Fis1 = Fel < (IF2]] v Deégor:
3 Choose j; € A(f) in (2.18) uniformly and randomly, and keep
e = L5 (fi) — mini<j<on L(f1);
4 Update Zt(i) = ngi) and S; = S;t(ft) as in (2.19);
5 Solve fi41 by optimizing the objective L(-; Zt(i), S¢) as in (2.17);
6 If E(ﬁ, Zt(i), Sy) — E(ftﬂ; Zt(i),St) > ¢, then set ﬁ+1 = ]?t+1; otherwise, set ﬁ.}rl = ft
7 Output: ﬁ+1.

2.7.3 Technical Proofs
2.7.3.1 Proof of Lemma 2.2

(I) follows from direct calculation. Now we admit (I) and prove (II). First notice that

. (k—1D)* /k A\
Ap(2/N) = 72—+t — ) — 1
AL/(k=1) k—1), k

. B (k — 1)1/(k—1) A 1/(k—1)
vﬁbk(z/)‘) - )\1/(1971) Z—n+ E—1 N .

Now using the (2.6)-R.H.S., the Cressie-Read family defining worst-case expectation is further

solved by

. . i k* _\/(k—1) 1/(k=1)
min_ [(k—1)¥ /k] x A~V 1)Ep<27n+ﬁ)++)\(pf%)+n, W*z%(an*+%> ,

A=0,neR +
. * _ _ * % _1)Y(k-1) % —
< min (k=D /R ATVETUEN(Z — )+ A (ot wimy) +m W = Uiy (2 - *Y.
where (\,7n) can be optimized stagewise.
Fix n e R.
* * ]_
k— 1) k] x \TYETUER(Z — )R + A —
kE—1)Y/ (k=1 . 1
_ 1) x A (DTN ey —
k- L . VE
> k [(M) [Ep(Z —n)¥ 1*! <p + k(kl 1>>1 (by AM-GM Inequality)

= [k(k—1)p+ 1VE[Ep(Z —n)E ]VF".
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Denote ci(p) := [k(k — 1)p + 1]%/*. Then the objective in 1 becomes

min  cx(p)[Ep(Z — )X TVF + .
neR

2.7.3.2 Proof of Proposition 2.4

Define

Cc

k*
- —E ([iC(X) — 5 o

X) , Cya(X) = O (x) — ¢)(x).
Then by conditioning on X,

£h(rn n) = E (EX01[(X) < 0] + 8 (0107(X) > 0]) + 2 4,

Y[f(X)] ~<—>(X)w[ f(X)])
2

o cA
hy (o =B (e 00 UL o R

k

. . . N o(f)
(I) (Fisher Consistency) Notice that for our ramp surrogate loss v, f > 1 implies that =~ = 0,

and f < —1 implies that @ = 1. Then without loss of generality, we might restrict to
consider f € [—1,1] for which f = 1 if and only if @ = 0 and f = —1 if and only if
%f) = 1. Then for fixed x € X,

-, {@i,&) <w>‘”2” oy <w>’“;f '

attained at the common function value f,(x) := sign[CN’n,)\(w)]. Define £5%(n,\) =
CE(f2 5 A) = B[O (X) A C5)(X)] + 2 + 1. Then

. k : k k,x
) = AN =LY A
f:)gn_}&l}ﬁc(f,m ) f:Xm—»%El,l]ﬁc’zb(fm’ )= £ )

argmin L£8(f,n,\) = argmin E o A) = foA(X)  as.

f:Xx—{+1} [:X—[-1,1]

’
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(IT) (Excess Risk) For fixed f: X — R,

LEfm, ) = £E5(,0) = B [y a(X) x (LX) < 0] = 1[f£2(X) < 0]) + CF (%)

I
£k (fimN) = L, \) = E + 89 x)

)

where the second equation follows from the fact that ¢ (u) + ¢¥(—u) = 2. For fixed x € X, if

6'777,\(:16) >0, then f, () =1, and

1[f(@) < 0] - 1[f}(2) < 0] = 1[f(x) < 0] <2

otherwise if CN'U’,\(:B) <0, then fy,(x) = —1, and

Therefore,

Finally, by rearranging £5" (1, \) to the same side and infimizing its (1, A) € R x R, we have

£lg(f7 n, )‘) < Q‘C]cc,w(fa UR )‘) - Elcgy*("% >‘) < 2£lc€,¢(fa UR >\) - R]c€7*

< Le(finA) = R < 2Ly (£ N) = RE).
And by partially infimizing (7, A) € R x Ry on both sides, we have

RE(F) — RE* < 2[RE,(f) — RE*].

2.7.3.3 Proof of Proposition 2.5

By Assumption 2.4, without loss of generality, we also assume that Assumptions 2.2 and 2.3 also

hold for {Cy,(X)}nen uniformly.
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First assume k < 400 and k* > 1. We first provide a few boundedenss results implied by

Assumption 2.2. For f: X — R, define

B R
i :=argmin{c[E(W[c<X>—nJi*+W[—C(X)—n]i)} +n}, (2.20)

neR

B VR
o= 2 (e - a4 HI e )| (2.21)

By Assumption 2.2 that |C(X)| < M, the optimal objective of (2.20) is bounded from above by
minger{c(M —n)4 +n} = M. And for any fixed n € R, the objective of (2.20) is bounded from
below by ¢(—M —n)4 +n. Then by the optimality of n}, we have ¢(—M —nj). + nf < M <
—EHM <nj < M.

M—n*
As for A%, since the optimal value of (2.20) is cA} + 7}, we have cA} +nf < M = A} < Cnf <

%. On the other hand, we need to elaborate more to give the lower bound (away from 0) on /\;Z.

The following lemma is a useful tool to motivate our analysis.

Lemma 2.7. Suppose Z is a bounded random variable, k = 1, ¢ = 1. Define

n* := argmin {C[E(Z - n)ﬁ]l/k + 77} :
neR

Then P(Z = n*) = c*.

Proof. For k = 1, n* as the VaR (Krokhmal, 2007) can be obtained by n* = inf{n € R : P(Z <
n)=1—c '} Thenforany e >0, P(Z<n—¢€)<l—-c!eP(Z>n—¢) =c ' Lete— 0" and
by upper semi-continuity, we have P(Z = n*) = ¢~ L.

Suppose k > 1. If P(Z = ess.supZ) = ¢ %, then by n* < esssupZ, P(Z = n*) = P(Z =

ess.sup Z) = ¢ F holds trivially. Now assume P(Z = ess.sup Z) < ¢ *. By lower semi-continuity,

there exists ey > 0, such that for any 0 < e < ¢y, P(Z > ess.supZ —¢) < ¢ *. Then
c|[E(Z — ess.sup Z + e)]i]l/k +ess.sup Z — € < ceP(Z > ess.sup —6)1/k + ess.sup Z — € < ess.sup Z.

As a result, n* < ess.sup Z — ¢, hence

E(Z — 77*)11 > (eO/Q)k}P’(Z >0 +e/2) = (60/2)kP(Z > ess.sup Z — €p/2) > 0.

62



Finally, the first order condition for n* is given by

_ ox\k—1 ¥
cE(Z ) Y10 o I(Z —n*) 4] r— e

n
E[(Z —n*)§ ]2k I(Z = 7*) ]| e

On the other hand, by Holder Inequality,
E(Z — )i = B[(Z - )52 = )] < [B(Z - 0*)5) T P(Z = ) E.

We have

— o (Z =)+l s w31/ [k(k—1)] * —k
¢ k-1 = . <P(Z>7]) = P(ZZU)ZC .
I(Z = 1)+ x

O]

Next, we introduce the sign variable (y(f) € {£1} such that P[¢y(f) = +1|X] = w
Then n} € argmin,cp {c (E[C(X)¢y(f) — n]]_f)l/ L 77}. By Lemma 2.7, we immediately have
P[C(X)Cy(f) = n}] = c*. Next by Assumption 2.3, C'(X) has uniformly bounded density h with
respect to the Lebesgue measure. Then C(X)(y(f) also has density hy ¢(c) < h(c) v h(—c) with
respect to the Lebesgue measure, and hy ¢ is uniformly bounded as well: [|hy, [0 < [|h]o < +00.

Then for any fixed ¢ < ¢, we have P{C(X)(y(f) € [¢, €]} < (€—¢)||h]w-. In particular, for any ¢ > 0,
PIC(X)Cy(f) = nf +1] = ¢ = t]]oo.
In particular, by taking ¢ := 1/(2|h]«c?), we have

X; = (E[C(X)Gu(f) - n}“]’f)l/k*
> 1/(2 0" )PIC(X)Cu(f) = 1F + 1/(2] h]lcoc®) ]V
> 1/ o)™ — 1/ @[ hlc®) x [Alo] ™

_ 1/(2(2k—1)/thHOOCQk—1) = 0,
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which decreases in ¢ of order ¢

—(2k—1)

. Note that the lower bound on )\* depends on the order k,

while its upper bound doesn’t. In particular, as k increases, the vanishing rate of A% Fasc— +o

gets faster.

We conclude the preceding boundedness results by denoting 77?

AT e [A, A =

1
[Q(Qk—l)/kuh”wCQk—l ’

replaced by E,,, ( ) ;

c—11"

is replaced by 1(- <

E[ 777] =

Note that all those bounds above also hold when E

[ — <4 M, M] and

2M ] 18

0), and C(-) is replaced by én() As an immediate result,

we further have boundedness /¥, fﬁ,w € [¢%, 0F] where £F := ¢ 7A +n, and

cr e

c cA
l = max {*M—le—k—kn}
(nN)e{mm x{A N} fe* AR i ) k
(

FeIM + M, n=1, A=X
= 22K UK BT Y G2kt a2 g e 1 1 +1 _
max < k* (C 1)k* M + k21+1/k* “h“OO 02/(k*_1) z 1M T] Z’L )\ = A7
%Ci J;l Q%M C+1M n=1, )\:X

\

Notice that as ¢, (¢ — 1)™!, M — +00, the leading order term is O ( <

boundedness results, we introduce

2k* +2

WM k*). To conclude all

the joint parameter space

:(fana/\)e@n ::]:nXHnXAn;

where F, .= {f € F: |fl7 < Vn}, I, := [n,7] and A, := [\, A\]. Moreover, we have
-~ 20 * ~
£0:Cn) — €£0:0)| < o (M =) |Gu(X) — 0(X).
L¢
and
4 (6;C) = £5(6;C)| < Lo |Cu(X) - €(X)

. 2k* —1/k* | k=1
In particular, Lo = 2 [P s

*
CQkI +1

Mk:*—l

k.*

Next, we begin to prove the

(c—1)k*-1

regret bound. Recall that the empirical minimizer is 6,

(fn,ﬁn,xn) € argmin E Ecw(f,n,)\ Ch ) where the distributions of (n,\) can be constrained to

(fﬂ?v)\)GQn

I, x Ay, = [n,7] x

[A, A] due to the previous boundedness. We also define the within-©,, oracle
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0% = (f3,m3,A5) € (?rggleig ['I(f,zp(fv n,A). Then, by definition, we have EQ“G:) — RE* — Ak (y).
PR n
By Proposition 2.4, we have
£e(6,) —~RE
<2[L7(0n) — RE*]
2 (L’;w(en) — Btk (On; C)) + 2[5 (0 C) — £, (B Cr)] + 2 (Ene’g@(en; C) — R’”)

<2 sup (P = Ptk (0 C) + 2Lc|[Cr = Cloo + 2(Bnth (03 Cr) — RE*)

/e,
<2 sup (P — Pp)lk ,(0;C) + 4L Cp — Cllop + 2 (Enﬁém; C) - ﬁﬁ,¢<9:>) + 2A(7n)
0e©,,

<2 sup (P — Pn)glg,ww; )+ 4LC’Hén — Cllop + 2 sup (P, — P)E’g’d}(@; C) + 2A(m).
0O, 0O,

It follows standard routine to propose a Rademacher complexity bound. Fix § > 0. First by

McDiarmid Inequality (Bartlett and Mendelson, 2002, Theorem 9), with probability > 1 — §,

log(2
sup (B — Bo)ek ,(6:C) < E sup (B — B,) %k, (0: ) + (7 — ) /18310
0O, 0eO,, ’ 2n
sup (B, — B (6:C) < E sup (B — B, (6:C) + (£ — )y [ 25L2/0)
’ n

96@n eeen

Next we define the Rademacher complexity on ©,, as follows:

Ru(On) := E(x 0)~p es%p En[aélij(ﬁ; a)l,
€On

where o is the Rademacher variable independent of (X, A,Y) under P. Then by standard sym-

metrization arguments, we have

E sup (P - Pn)élg,w(e; C) < 2Rn(@n)a E sup (Pn - P)glcg,w(e; C) < 2Rn(@n)
0O, 0Oy,

To obtain an error bound on R,(©,), we decouple ©,, by exploiting the ¢'-Lipschitzness of

éﬁw. For ease of notation, we suppress the dependency on C' in éﬁw. Note that for 6; = (fi, ni, \i)
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|05 5 (01) — €5, (62)]

<|£5,¢(f1,7717>\1) —fﬁ,w(fh??h)\z)\ + |f§,¢(f177717>\2) —ff,w(fh??m)\z)\ + |35,¢(f177727)\2) —fﬁ,w(fzﬂm)\z)\
1 1

e (2eM\*
< -
k* \e—1 DU D Lt

c lw[+f(X>] ‘(+5n(x) )

C
+ E|)\1 — /\2|—|—

k* k*

+

- (+én(X) - 772)

k*)\k*—l 2

+ +

YI=fX)] '(—C’n(X) — nl)lj — (~Cu(x) - ”2)5

SLa|A1 — Xa| + Ly|m — 2| + Ly| f1(X) — fo( X)),

]+|771—772|+

y
) WLAX)] — S]]

where
( k* 2k* +1 K* (k*+1)(2k*_1)
¢ [2eM k*—1 c sl 11 [ k*—1 k* c.
Lyi= & (24) x ol -2 MY+ &
k*—1 2k* —1/k =1 K =1 ok* 41
4 .: c x ( 2eM _2 [R5 c k*—1 .
Lyi= ey %k <c_1> +1 = e ME T 4
k* 2k* 1K1 p k=1 op* o *
Lf = 7i — 2eM X 2 -2 i 1] c - Mk
\ k*A c—1 k (C—l)

We Denote Ly := Ly v L, v Ly. Notice that the leading order term as ¢, (¢ — ™Y, M — +oois

(E*+1)(2k*—1)
Ly=0 (C(Cil);*M k*> . And we also define the marginal Rademacher complexities

Ru(Fn) = Ex o)~p sup Ex[of(X)];  Ru(Ilp) := E; sup (nE,0);  Ru(An) := Eq sup (AE,0).
feFn nell, AeA,

Then by the multidimensional version (Qi et al., 2019b, Lemma 3.1) of the Rademarcher complexity

of the Lipschitz composition (Boucheron et al., 2005, Theorem 3.3), we have
Rn(©n) < Ly[Rn(Fn) + Ru(IL,) + Ru(Ay)],

where by Vapnik-Chervonenkis Inequality (Boucheron et al., 2005, Theorem 3.4), there exists a

universal constant Cyc such that R, (IT,) < Cvcr/2(|7] v [n])/n and R, (A,) < Cyvca/2M/n, and
by Bartlett and Mendelson (2002, Lemma 22), R, (F;,) < 24/7n/n. Combining the above results,
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our regret bound becomes

ﬁlg(fn,ﬁn, Xn) - Rlé’* <8L€ (2 rVn/n + CVC V 2(‘7_” Vv |ﬂ|)/n + CVC \/ 25‘/”)

log(2/6 ~
s 4 - 0B s L) O 24 ).

1
Finally by Assumption 2.5 that A¥(y) = K 4v?, we choose 7, := n?3+1 to obtain the desired regret

__B
bound of rate O(n~ 28+1) as n — o0, with the universal constant Ky as

Ko = 8L, (2 + CveV2(|7] v )2 + Cvc\/ij\l/Q) +2V2(08 — 08) + 2K 4

— O (Ll v [n)"/? + NV2] + 2 - ££)

(K*+1)(2k*—1) | 1
cC k*—1 +3 .
=0 E*+1/2

(c— 1)k +1/2 ’

2k* 41 *
and Ky = 4L, = O (WM’“ 1).
Consider the spectial case k = +o0 and k* = 1. Consider n} as in (2.20). Since for any
n < —M, the objective (2.20) remains constant. Then we have —M < n < M. The regret bound
analysis follows the same as above except that A is redundant in E(lw. For the bounds on 62 W have

0} = (2c+1)M and ¢! = —M. The Lipschitz constants are refined to be Lo = 2¢, L, = ¢ + 1,

Ly = 4cM. And the final universal constants become

Ko = O (L(lill v [nl) 2 + 7 = £8) = O(eM*2); Ky = 8¢ = O(0).
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2.7.4 Additional Tables and Figures

Relative Value Improvements of the DR-ITR (c = 2.71) over
the Standard ITR on the (p;, H)—Mean Testing Distributions

Relative Value

Improvements
90%
2-
60%
1-
30%
o -
I 0 0%
-30%
Z1-
Value
24 Improvements
>=0
[] rase
TRUE
2 1 0 1 2
M1
Relative value improvements range in [-15.0%, 25.9%)].
a) ¢c=2.71
Relative Value Improvements of the DR-ITR (c = 10.31) over
the Standard ITR on the (u3, Hp)-Mean Testing Distributions
Relative Value
Improvements
90%
2-
60%
1-
30%
N
I 00 0%
-30%
“1-
Value
24 Improvements
>=0
[] racse
TRUE
2 1 0 1 2
Ha
Relative value improvements range in [-31.7%, 62.1%)].
(c) ¢=10.31

Figure 2.6:

Relative Value Improvements of the DR-ITR (c = 6.51) over
the Standard ITR on the (u;, Hp)—Mean Testing Distributions

Relative Value
Improvements
90%

60%

30%

-30%

Value
Improvements
>=0

[] racse

TRUE

: 4 6 i :
Ha
Relative value improvements range in [-26.7%, 52.5%].
c=6.51
Relative Value Improvements of the DR-ITR (c = 20) over
the Standard ITR on the (u;, 4o)—Mean Testing Distributions

Relative Value
Improvements

90%
60%

30%

-30%

Value
Improvements
>=0

[] racse
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'
-1 0 1 2

H1
Relative value improvements range in [-37.4%, 85.3%].

C =

Comparing the testing values of the DR-ITR for various ¢’s with the standard ITR on testing

distributions N (p, 1) of means p € {(u1, u2)T € R? : puf + p3 < 4log5}.
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Table 2.6: Relative Regrets (%) of Standard ITRs on Mean-Shifted Covariate Domains

s 1 —2.45 —1.96 —1.47 —0.979 —0.49 0 0.49 0.979 1.47 1.96 2.45
2.45 0 0 0 0 2 8 27 58 91 107 108
1.96 0 0 0 0 2 10 28 54 75 83 80
1.47 0 0 0 0 2 12 28 46 55 57 52
0.979 1 1 1 0 1 11 25 35 38 35 31
0.49 3 3 3 2 2 2 16 23 22 19 16
0 7 9 11 10 3 5 3 10 11 9 7
—0.49 16 19 22 23 17 3 1 2 3 3 3
—0.979 30 35 38 34 26 10 1 0 1 1 1
—1.47 52 57 55 45 27 12 2 0 0 0 0
—1.96 79 82 75 53 29 11 2 0 0 0 0
—2.45 108 107 91 58 27 9 2 0 0 0 0
Ly = (p1, 2,0, -+ ,0)T with g7 in column and pe in row is the testing covariate centroid.

2 Relative regret(ITR) = [value(LB-ITR) — value(ITR)]/|value(LB-ITR)|

Table 2.7: Misclassification Rates (%) of Standard ITRs on Mean-Shifted Covariate Domains

1 1 —2.45 —1.96 —1.47 —0.979 —0.49 0 0.49 0.979 1.47 1.96 2.45
2.45 1 1 2 3 4 6 10 18 30 43 53
1.96 2 3 5 7 8 10 13 20 29 38 44
1.47 3 6 10 13 15 16 19 23 28 33 35
0.979 6 10 16 20 23 25 26 27 28 27 26
0.49 9 15 22 27 30 32 32 30 27 23 19
0 13 19 26 31 34 35 34 30 26 19 13
—0.49 18 23 27 30 32 32 30 27 21 15 9
—0.979 26 27 28 27 26 25 23 20 16 11 6
—1.47 34 33 28 23 19 16 15 13 10 6 3
—1.96 44 38 29 20 14 10 8 7 5 3 2
—2.45 53 43 30 18 10 6 4 3 2 1 1
L = (p1, 2,0, ,0)T with gy in column and us in row is the testing covariate centroid.

69



Table 2.8: Relative Regrets (%) of RCT-DR-ITRs on Mean-Shifted Covariate Domains (ncaip = 50)

s 1 —2.45 —1.96 —1.47 —0.979 —0.49 0 0.49 0.979 1.47 1.96 2.45
2.45 0 0 0 1 3 8 16 19 16 10 6
1.96 0 0 1 1 4 11 19 21 15 10 5
1.47 0 0 1 2 4 14 23 23 15 8 4
0.979 0 0 1 2 6 15 24 22 14 7 3
0.49 1 2 2 3 7 9 18 18 11 5 2
0 1 3 7 9 8 16 9 10 7 3 1
—0.49 2 5 11 17 19 10 7 3 2 1 1
—0.979 3 7 14 21 23 14 5 2 1 0 0
—1.47 3 7 14 22 21 13 4 1 0 0 0
—1.96 5 9 15 21 19 10 3 1 0 0 0
—2.45 6 9 15 18 15 8 2 1 0 0 0
Ly = (p1, 2,0, -+ ,0)T with g7 in column and pe in row is the testing covariate centroid.

2 Relative regret(ITR) = [value(LB-ITR) — value(ITR)]/|value(LB-ITR)|

Table 2.9: Relative Regrets (%) of RCT-DR-ITRs on Mean-Shifted Covariate Domains (ncain = 100)

1 1 —2.45 —1.96 —1.47 —0.979 —0.49 0 0.49 0.979 1.47 1.96 2.45
2.45 0 0 0 1 3 7 14 16 14 9 6
1.96 0 0 0 1 3 10 18 19 13 8 4
1.47 0 0 0 1 3 12 21 20 14 7 3
0.979 0 0 1 2 4 13 22 20 13 6 2
0.49 1 1 2 2 4 7 17 17 10 4 2
0 1 3 6 8 5 11 6 8 6 3 1
—0.49 2 4 10 16 17 7 4 2 2 1 1
—0.979 2 6 13 20 22 12 3 1 1 0 0
—1.47 3 7 13 20 20 12 3 1 0 0 0
—1.96 4 8 13 18 17 10 3 1 0 0 0
—2.45 5 8 14 16 13 7 2 0 0 0 0
L= (p1, 2,0, ,0)T with gy in column and ps in row is the testing covariate centroid.

2 Relative regret(ITR) = [value(LB-ITR) — value(ITR)]/|value(LB-ITR)|

70



Table 2.10: Relative Value Improvements (%) of RCT-DR-ITRs over Standard ITRs on Mean-Shifted
Covariate Domains (n¢aip = 50)

1 1 —2.45 —1.96 —1.47 —0.979 —0.49 0 0.49 0.979 1.47 1.96 2.45
2.45 0 0 0 —1 —1 1 11 40 75 98 102
1.96 0 0 -1 -1 -2 0 9 32 60 73 75
1.47 0 0 0 —2 -3 -3 6 23 40 49 48
0.979 0 0 0 -2 —4 -5 2 13 24 28 28
0.49 2 2 1 —2 —6 -7 —2 5 11 14 14
0 6 6 4 1 —5 —11 —6 0 4 6 5
—0.49 13 14 11 6 —2 —6 -5 -2 1 2 2
—0.979 27 29 24 13 2 —4 —4 -2 0 0 0
—1.47 48 49 41 23 6 -1 -3 -1 0 0 0
—1.96 74 73 60 33 10 0 -1 -1 0 0 0
—2.45 102 98 76 40 12 1 -1 -1 0 0 0
Yy = (p1, 2,0, ,0)T with g1 in column and p2 in row is the testing covariate centroid.

2 Relative value improvement = difference of relative regrets.

Table 2.11: Misclassification Rates (%) of RCT-DR-ITRs on Mean-Shifted Covariate Domains (ncain = 50)

1 1 —2.45 —1.96 —1.47 —0.979 —0.49 0 0.49 0.979 1.47 1.96 2.45
2.45 1 2 3 4 5 7 12 16 20 19 15
1.96 2 3 6 7 10 12 15 20 21 20 15
1.47 3 7 11 14 17 19 22 24 24 21 15
0.979 6 11 17 22 26 28 29 30 27 21 14
0.49 9 15 23 30 34 35 35 33 28 21 13
0 11 19 27 34 37 39 37 33 27 19 11
—0.49 13 21 28 33 35 35 34 30 23 15 9
—0.979 14 21 27 29 29 28 25 22 17 11 6
—1.47 14 20 24 24 21 19 17 14 11 7 3
—1.96 15 19 21 20 15 12 9 8 6 3 2
—2.45 15 18 19 16 11 7 5 4 2 1 1
L = (p1, 2,0, ,0)T with gy in column and ps2 in row is the testing covariate centroid.
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Table 2.12: Misclassification Rates (%) of RCT-DR-ITRs on Mean-Shifted Covariate Domains (ncain, =

100)

s 1 —2.45 —1.96 —1.47 —0.979 —0.49 0 0.49 0.979 1.47 1.96 2.45
2.45 1 2 3 4 5 7 11 16 19 19 15
1.96 2 3 6 7 9 12 15 20 21 20 14
1.47 3 7 10 14 17 18 21 24 24 21 14
0.979 6 11 17 22 25 27 28 29 27 21 14
0.49 9 15 23 29 32 34 34 33 28 21 13
0 11 19 27 33 36 37 36 33 27 19 11
—0.49 12 21 28 32 34 34 33 29 23 15 9
—0.979 13 21 27 29 28 27 25 22 17 11 6
—1.47 14 20 24 24 21 18 16 14 11 7 3
—1.96 14 19 21 19 15 11 9 7 6 3 2
—2.45 15 18 19 16 11 7 5 3 2 1 1

Yy = (1, p2,0,- -+ ,0)T with g1 in column and pe in row is the testing covariate centroid.

Table 2.13: Misclassification Improvements (%) of RCT-DR-ITRs over Standard ITRs on
Covariate Domains (n¢aip = 50)

Mean-Shifted

15 1 —2.45 —1.96 —1.47 —0.979 —0.49 0 049 0.979 1.47 1.96 2.45
2.45 0 0 —1 -1 —1 —1 -1 2 10 24 38
1.96 0 0 -1 -1 -1 -2 -2 0 8 18 29
1.47 0 0 —1 -1 —2 -3 -3 —1 3 12 20
0.979 0 0 -1 -2 -3 -3 -3 -3 1 6 12
0.49 1 0 —1 -3 -3 -3 -3 -3 -1 2 6
0 2 0 -2 -3 -3 —4 —4 -3 —2 1 2
—0.49 6 3 —1 -3 -3 -3 -3 -3 -1 0 1
—0.979 12 7 1 -2 -3 -3 -2 —2 -1 0 0
—1.47 20 12 4 -1 -2 -2 -2 -1 -1 0 0
—1.96 29 18 8 0 —2 —2 -1 —1 0 0 0
—2.45 38 24 11 3 -1 -1 -1 -1 0 0 0
Yy = (p1, 12,0, ,0)T with g7 in column and 2 in row is the testing covariate centroid.
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Table 2.14: Testing Values (Standard Errors) on Mean-Shifted Covariate Domains (ncann, = 50)

o L1 | type 0 0.734 1.469 1.958
LB-ITR 2.333 (0.00244) 2.907 (0.011) 5.834 (0.0362) 9.27 (0.0154)
¢'-PLS 2.124 (0.0022) 2.235 (0.011) 3.613 (0.0505) 6.32 (0.103)
RWL 2.067 (0.00125) 1.59 (0.0104) 0.7237 (0.0488) 0.2045 (0.108)
1.958 Standard ITR 2.089 (0.00158) 1.735 (0.013) 1.348 (0.0595) 1.567 (0.13)
RCT-ITR 1.913 (0.0082) 1.969 (0.026) 4.168 (0.034) 7.838 (0.0388)
RCT-DR-ITR 2.085 (0.00444) 2.286 (0.0114) 4.545 (0.0255) 8.371 (0.0451)
CTE-DR-ITR 2.098 (0.00348) 2.304 (0.0106) 4.551 (0.0238) 8.459 (0.0424)
LB-ITR 1.893 (0.00712) 2.627 (0.00656) 5.28 (0.0213) 9.379 (0.0128)
0-PLS 1.667 (0.00307) 2.021 (0.0076) 4.095 (0.0342) 7.573 (0.0706)
RWL 1.655 (0.00131) 1.501 (0.0106) 1.798 (0.0472) 2.791 (0.102)
1.469 | Standard ITR 1.674 (0.00152) 1.645 (0.0127) 2.377 (0.0553) 4.011 (0.119)
RCT-ITR 1.414 (0.0094) 1.597 (0.025) 4.075 (0.0299) 8.022 (0.0334)
RCT-DR-ITR 1.627 (0.00688) 1.987 (0.00997) 4.484 (0.0192) 8.611 (0.0285)
CTE-DR-ITR 1.663 (0.00326) 1.997 (0.00992) 4.55 (0.0163) 8.686 (0.0269)
LB-ITR 1.227 (0.00244) 2.144 (0.00609) 5.269 (0.00931) 9.608 (0.00898)
0'-PLS 1.094 (0.00418) 1.676 (0.00442) 4.587 (0.0151) 8.8 (0.0314)
RWL 1.168 (0.00134) 1.462 (0.00729) 3.357 (0.0344) 6.323 (0.0696)
0.734 | Standard ITR 1.174 (0.00149) 1.553 (0.00806) 3.739 (0.0379) 7.06 (0.0763)
RCT-ITR 0.7323 (0.011) 1.152 (0.021) 4.157 (0.0238) 8.534 (0.0299)
RCT-DR-ITR 1.094 (0.00753) 1.651 (0.00675) 4.622 (0.0109) 9.036 (0.015)
CTE-DR-ITR 1.152 (0.00292) 1.667 (0.00588) 4.648 (0.0113) 9.06 (0.0161)
LB-ITR 0.9942 (0.00202) 1.774 (0.0034) 5.232 (0.00559) 9.767 (0.0068)
¢'-PLS 0.8296 (0.00454) 1.648 (0.0036) 4.914 (0.00501) 9.476 (0.0103)
RWL 0.9457 (0.00126) 1.645 (0.00339) 4.494 (0.0165) 8.589 (0.0329)
0.000 | Standard ITR 0.9437 (0.00153) 1.679 (0.00336) 4.654 (0.017) 8.895 (0.0342)
RCT-ITR 0.4303 (0.0109) 1.161 (0.0145) 4.518 (0.0172) 8.983 (0.034)
RCT-DR-ITR 0.8374 (0.00821) 1.647 (0.00574) 4.868 (0.00797) 9.444 (0.00841)
CTE-DR-ITR 0.9206 (0.00272) 1.688 (0.00289) 4.888 (0.00698) 9.442 (0.00999)
Yy = (p1,p2,0,---,0)T with g1 in column and us in row is the testing covariate centroid.

2 Values (larger the better) can be comparable for the same (1, p2) but incomparable across different (1, p2).

3 LB-ITR maximizes the testing value function at (u1,u2) over the linear ITR class. The corresponding testing value
is the best achievable among the linear ITR class.

4 RWL (Zhou et al., 2017) implements the same routine as Standard ITR except that én(X) = @n(X, 1)—@n(X, -1+
2A[Y — Qn (X, A)].
5 RCT-ITR fits RWL on the calibrating RCT dataset directly.
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Table 2.15: Testing Values (Standard Errors) on Mean-Shifted Covariate Domains (neain, = 100)

o L1 | type 0 0.734 1.469 1.958
LB-ITR 2.333 (0.00244) 2.907 (0.011) 5.834 (0.0362) 9.27 (0.0154)
¢'-PLS 2.124 (0.0022) 2.235 (0.011) 3.613 (0.0505) 6.32 (0.103)
RWL 2.067 (0.00125) 1.59 (0.0104) 0.7237 (0.0488) 0.2045 (0.108)
1.958 Standard ITR 2.089 (0.00158) 1.735 (0.013) 1.348 (0.0595) 1.567 (0.13)
RCT-ITR 2.015 (0.00565) 2.593 (0.0132) 4.996 (0.0158) 8.588 (0.0208)
RCT-DR-ITR 2.109 (0.00342) 2.349 (0.00905) 4.62 (0.0219) 8.5 (0.0394)
CTE-DR-ITR 2.099 (0.00392) 2.34 (0.00954) 4.602 (0.0215) 8.488 (0.0393)
LB-ITR 1.893 (0.00712) 2.627 (0.00656) 5.28 (0.0213) 9.379 (0.0128)
0-PLS 1.667 (0.00307) 2.021 (0.0076) 4.095 (0.0342) 7.573 (0.0706)
RWL 1.655 (0.00131) 1.501 (0.0106) 1.798 (0.0472) 2.791 (0.102)
1.469 | Standard ITR 1.674 (0.00152) 1.645 (0.0127) 2.377 (0.0553) 4.011 (0.119)
RCT-ITR 1.54 (0.00529) 2.286 (0.0129) 4.846 (0.017) 8.713 (0.0183)
RCT-DR-ITR 1.662 (0.00367) 2.044 (0.00721) 4.566 (0.0153) 8.711 (0.0254)
CTE-DR-ITR 1.67 (0.00286) 2.044 (0.00818) 4.577 (0.0144) 8.734 (0.0251)
LB-ITR 1.227 (0.00244) 2.144 (0.00609) 5.269 (0.00931) 9.608 (0.00898)
0'-PLS 1.094 (0.00418) 1.676 (0.00442) 4.587 (0.0151) 8.8 (0.0314)
RWL 1.168 (0.00134) 1.462 (0.00729) 3.357 (0.0344) 6.323 (0.0696)
0.734 | Standard ITR 1.174 (0.00149) 1.553 (0.00806) 3.739 (0.0379) 7.06 (0.0763)
RCT-ITR 0.8905 (0.00647) 1.651 (0.0138) 4.701 (0.0168) 9.011 (0.013)
RCT-DR-ITR 1.134 (0.00408) 1.662 (0.0065) 4.671 (0.00885) 9.094 (0.0122)
CTE-DR-ITR 1.156 (0.00251) 1.68 (0.00573) 4.699 (0.00824) 9.132 (0.0112)
LB-ITR 0.9942 (0.00202) 1.774 (0.0034) 5.232 (0.00559) 9.767 (0.0068)
¢'-PLS 0.8296 (0.00454) 1.648 (0.0036) 4.914 (0.00501) 9.476 (0.0103)
RWL 0.9457 (0.00126) 1.645 (0.00339) 4.494 (0.0165) 8.589 (0.0329)
0.000 | Standard ITR 0.9437 (0.00153) 1.679 (0.00336) 4.654 (0.017) 8.895 (0.0342)
RCT-ITR 0.6198 (0.00875) 1.388 (0.00857) 4.745 (0.00861) 9.376 (0.00737)
RCT-DR-ITR 0.8879 (0.00506) 1.671 (0.00389) 4.901 (0.00451) 9.489 (0.0068)
CTE-DR-ITR 0.925 (0.00233) 1.689 (0.00262) 4.916 (0.00496) 9.508 (0.00626)
Yy = (p1,p2,0,---,0)T with g1 in column and us in row is the testing covariate centroid.

2 Values (larger the better) can be comparable for the same (1, p2) but incomparable across different (1, p2).

3 LB-ITR maximizes the testing value function at (u1,u2) over the linear ITR class. The corresponding testing value
is the best achievable among the linear ITR class.

4 RWL (Zhou et al., 2017) implements the same routine as Standard ITR except that én(X) = @n(X, 1)—@n(X, -1+
2A[Y — Qn (X, A)].
5 RCT-ITR fits RWL on the calibrating RCT dataset directly.
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Table 2.16: Testing Misclassification Rates (Standard Errors) on Mean-Shifted Covariate Domains (ncain, =

50)
1o M1 type 0 0.734 1.469 1.958

LB-ITR 0.05848 (0.000259) 0.0301 (0.000804) 0.02702 (0.0038) 0.02554 (0.00837)
¢'-PLS 0.113 (0.000781) 0.1625 (0.000913) 0.2239 (0.0015) 0.247 (0.00305)
RWL 0.09857 (0.000358) 0.1675 (0.000346) 0.3093 (0.00126) 0.4145 (0.00255)

1.958 | Standard ITR 0.0988 (0.000392) 0.1628 (0.000402) 0.29 (0.00163) 0.3802 (0.00322)
RCT-ITR 0.1148 (0.00191) 0.1783 (0.00334) 0.2567 (0.00477) 0.2687 (0.00374)
RCT-DR-ITR 0.118 (0.00135) 0.1785 (0.00196) 0.2148 (0.00178) 0.1997 (0.00192)
CTE-DR-ITR 0.1142 (0.00114) 0.1879 (0.0021) 0.236 (0.00237) 0.209 (0.00201)
LB-ITR 0.11 (0.00149) 0.05955 (0.000487) 0.0374 (0.00328) 0.03026 (0.00324)
¢'-PLS 0.1904 (0.00113) 0.2229 (0.00132) 0.2353 (0.0011) 0.2251 (0.00203)
RWL 0.1616 (0.000581) 0.2099 (0.000599) 0.2972 (0.00124) 0.3601 (0.00255)

1.469 Standard ITR 0.1637 (0.00067) 0.2066 (0.000681) 0.2781 (0.00153) 0.326 (0.00307)
RCT-ITR 0.1875 (0.00248) 0.2381 (0.00365) 0.2895 (0.00471) 0.2744 (0.00324)
RCT-DR-ITR 0.1927 (0.00205) 0.2306 (0.00196) 0.2437 (0.00199) 0.2109 (0.00173)
CTE-DR-ITR 0.181 (0.00132) 0.2373 (0.00221) 0.2514 (0.00208) 0.2155 (0.00168)
LB-ITR 0.2575 (0.0007083) 0.144 (0.00177) 0.07107 (0.00288) 0.04661 (0.00282)
¢*-PLS 0.3275 (0.00147) 0.3291 (0.00165) 0.273 (0.00104) 0.2085 (0.00091)
RWL 0.2764 (0.000746) 0.2877 (0.000915) 0.2858 (0.000886) 0.2747 (0.00184)

0.734 Standard ITR 0.283 (0.000914) 0.2898 (0.00109) 0.2747 (0.00101) 0.2519 (0.00205)
RCT-ITR 0.333 (0.00275) 0.3537 (0.0036) 0.3333 (0.00393) 0.2615 (0.00234)
RCT-DR-ITR 0.3178 (0.00237) 0.3203 (0.00214) 0.2778 (0.00192) 0.2102 (0.00128)
CTE-DR-ITR 0.2974 (0.00129) 0.3147 (0.00189) 0.2771 (0.00173) 0.2076 (0.00118)
LB-ITR 0.3246 (0.000396) 0.2802 (0.0015) 0.1293 (0.00214) 0.08388 (0.002677)
*-PLS 0.3988 (0.0016) 0.3649 (0.00139) 0.2742 (0.000873) 0.1875 (0.000467)
RWL 0.3358 (0.000755) 0.3147 (0.000808) 0.2582 (0.000556) 0.2033 (0.000881)

0.000 Standard ITR 0.3452 (0.000963) 0.3211 (0.001) 0.2564 (0.000666) 0.1942 (0.000918)
RCT-ITR 0.4085 (0.0025) 0.4158 (0.00234) 0.3261 (0.00214) 0.2349 (0.00169)
RCT-DR-ITR 0.3864 (0.00274) 0.3529 (0.0021) 0.2726 (0.0015) 0.1889 (0.000857)
CTE-DR-ITR 0.3575 (0.00126) 0.3345 (0.00123) 0.264 (0.00106) 0.1848 (0.000668)

Yy = (p1,p2,0,---,0)T with g1 in column and us in row is the testing covariate centroid.

2 LB-ITR maximizes the testing value function at (u1,u2) over the linear ITR class. The corresponding testing value

is the best achievable among the linear ITR class.

3 RWL (Zhou et al., 2017) implements the same routine as Standard ITR except that Cn (X) = @n(X7 1)—@n (X, -1+
2A[Y — Qn (X, A)].
4RCT-ITR fits RWL on the calibrating RCT dataset directly.
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Table 2.17: Testing Values of RCT-DR-ITRs of Various k’s on Mean-Shifted Covariate Domains (ncain, =

50)
S k 0 0.734 1.47 1.96
1.25 2.08(0.004443) 2.25(0.01238) 4.4(0.03824) 8.17(0.07266)
1.5 2.09(0.004052) 2.28(0.01154) 4.47(0.0317) 8.27(0.05863)
1.96 2 2.09(0.004445) 2.29(0.01139) 4.54(0.02549) 8.37(0.04507)
3 2.08(0.005431) 2.25(0.01187) 4.52(0.02422) 8.37(0.0428)
0 2.1(0.004169) 2.27(0.01313) 4.54(0.02419) 8.43(0.03522)
1.25 1.64(0.005444) 1.99(0.009954) 4.42(0.02606) 8.45(0.04875)
1.5 1.64(0.005729) 2(0.009707) 4.42(0.02437) 8.52(0.04136)
1.47 2 1.63(0.006885) 1.99(0.009965) 4.48(0.01924) 8.61(0.02852)
3 1.64(0.006302) 1.98(0.01028) 4.47(0.01846) 8.63(0.02501)
0 1.64(0.006803) 1.98(0.01093) 4.51(0.01848) 8.63(0.02595)
1.25 1.11(0.006071) 1.64(0.006628) 4.58(0.01659) 8.95(0.02455)
1.5 1.12(0.005547) 1.64(0.007019) 4.58(0.01508) 8.97(0.02298)
0.734 2 1.09(0.007527) 1.65(0.006753) 4.62(0.01089) 9.04(0.01496)
3 1.1(0.007473) 1.62(0.008308) 4.59(0.01228) 9.02(0.01563)
0 1.12(0.00672) 1.62(0.008311) 4.61(0.01417) 9.04(0.01468)
1.25 0.859(0.007158) 1.65(0.005616) 4.87(0.007131) 9.43(0.01052)
1.5 0.859(0.007117) 1.64(0.006172) 4.88(0.006802) 9.43(0.0116)
0 2 0.837(0.008205) 1.65(0.005744) 4.87(0.007969) 9.44(0.008415)
3 0.854(0.007488) 1.64(0.006564) 4.86(0.006542) 9.46(0.007206)
0 0.888(0.005782) 1.64(0.005722) 4.85(0.008767) 9.45(0.008676)

1"1': (Ml,,LLQ,O,"' )

2 Values (larger the better) can be

(B, pu2).

0)T with g1 in column and w2 in row is the testing covariate centroid.

comparable for the same (u1, u2) but incomparable across different
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Table 2.18: Testing Values (Standard Errors) on Mixture of Subgroups (ncaip = 50)

type

Testing Subgroup 1 Probability

0.1

‘ 0.25

‘ 0.5

0.75

‘ 0.9

LB-ITR
¢'-PLS

RWL
Standard ITR
RCT-ITR
RCT-DR-ITR

CTE-DR-ITR

1.665 (0.0067)
1.182 (0.00191)
1.092 (0.00349)
1.143 (0.00434)
1.251 (0.0108)

1.267 (0.0066)
1.16 (0.00409)

1.587 (0.00618)
1.264 (0.0014)
1.194 (0.00265)
1.232 (0.00329)
1.116 (0.011)

1.305 (0.00423)

1.247 (0.00323)

1.444 (0.00412)
1.399 (0.000591)
1.363 (0.00123)
1.383 (0.0015)
1.046 (0.0108)
1.395 (0.00256)

1.388 (0.00137)

1.545 (0.00587)
1.537 (0.000333)
1.535 (0.00046)
1.535 (0.000543)
1.144 (0.0101)
1.52 (0.00212)

1.534 (0.00055)

1.679 (0.00585)
1.624 (0.000781)
1.64 (0.00114)
1.632 (0.00142)
1.275 (0.0102)

1.614 (0.00234)

1.628 (0.00149)

I Testing subgroup 1 probability = 0.75 is the same as the training one.

2 Values (larger the better) can be comparable for the same subgroup 1 probability but incomparable across different
subgroup 1 probabilities

3 LB-ITR maximizes the testing value function over the linear ITR class. The corresponding testing value is the best
achievable among the linear ITR class.

4RWL (Zhou et al., 2017) implements the same routine as Standard ITR except that Chn (X) = On (X,1)— Qn(X7 1)+
2A[Y — Qn(X, A)].
5 RCT-ITR fits RWL on the calibrating RCT dataset directly.

Table 2.19: Testing Values (Standard Errors) on Mixture of Subgroups (neap = 100)

type

Testing Subgroup 1 Probability

0.1

‘ 0.25

‘ 0.5

0.75

‘ 0.9

LB-ITR
¢1-PLS

RWL
Standard ITR
RCT-ITR
RCT-DR-ITR

CTE-DR-ITR

1.665 (0.0067)
1.182 (0.00191)
1.092 (0.00349)
1.143 (0.00434)
1.493 (0.00431)
1.284 (0.00654)

1.165 (0.00403)

1.537 (0.00618)
1.264 (0.0014)
1.194 (0.00265)
1.232 (0.00329)
1.354 (0.00499)

1.324 (0.00421)

1.247 (0.00305)

1.444 (0.00412)
1.399 (0.000591)
1.363 (0.00123)
1.383 (0.0015)
1.25 (0.00489)

1.402 (0.00195)

1.389 (0.00134)

1.545 (0.00537)
1.537 (0.000333)
1.535 (0.00046)
1.535 (0.000543)
1.359 (0.0049)
1.524 (0.00191)

1.535 (0.000584)

1.679 (0.00585)
1.624 (0.000781)
1.64 (0.00114)
1.632 (0.00142)
1.5 (0.0046)
1.613 (0.00233)

1.628 (0.00147)

I Testing subgroup 1 probability = 0.75 is the same as the training one.
2 Values (larger the better) can be comparable for the same subgroup 1 probability but incomparable across different
subgroup 1 probabilities
3 LB-ITR maximizes the testing value function over the linear ITR class. The corresponding testing value is the best
achievable among the linear ITR class.

4 RWL (Zhou et al., 2017) implements the same routine as Standard ITR except that é’n(X) = QH(X, 1)— @n(X, —1)+
2A[Y — Qn(X, A)].
5 RCT-ITR fits RWL on the calibrating RCT dataset directly.
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Table 2.20: Testing Misclassification Rates (Standard Errors) on Mixture of Subgroups (ncaip = 50)

type

Testing Subgroup 1 Probability

0.1

0.25

‘ 0.5

‘ 0.75

‘ 0.9

LB-ITR
¢'-PLS

RWL
Standard ITR
RCT-ITR
RCT-DR-ITR

CTE-DR-ITR

0.06691 (0.0017)
0.3059 (0.00044)
0.3242 (0.00071)
0.3103 (0.00097)
0.2472 (0.0027)
0.2751 (0.0023)
0.3068 (0.00093)

0.1556 (0.0014)
0.2775 (0.00027)
0.2885 (4e-04)

0.2785 (0.00058)
0.2822 (0.0025)
0.2614 (0.0013)

0.2759 (0.00059)

0.2296 (0.00078)
0.2291 (0.00016)
0.2283 (0.00021)
0.2238 (0.00017)
0.3001 (0.0022)

0.2266 (0.00052)

0.2242 (0.00019)

0.153 (0.0012)
0.1789 (0.00041)
0.1664 (0.00069)
0.1676 (0.00074)
0.2763 (0.0023)

0.1809 (0.0012)

0.1701 (0.00074)

0.06668 (0.0015)
0.149 (0.00058)
0.1302 (0.00099)
0.1342 (0.0011)
0.2436 (0.0026)

0.147 (0.0014)

0.1379 (0.0011)

I Testing subgroup 1 probability = 0.75 is the same as the training one.

2 LB-ITR maximizes the testing value function over the linear ITR class. The corresponding testing value is the best
achievable among the linear ITR class.

3 RWL (Zhou et al., 2017) implements the same routine as Standard ITR except that an(X) = @n(X, 1)— @n(X7 —1)+
2A[Y — Qn(X, A)].
4RCT-ITR fits RWL on the calibrating RCT dataset directly.
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CHAPTER 3

Efficient Learning of Optimal Individualized Treatment Rules for Heteroscedastic
or Misspecified Treatment-Free Effect Models

3.1 Introduction

Among the methods of finding an optimal ITR, the double robustness property has been studied
and advocated to protect from potential model misspecifications. In the model-based approaches,
the optimal ITR only depends on the interaction effect between covariates and treatment within
the outcome mean model. Then the treatment-free effect that only depends on covariates can be a
nuisance component. Robins (2004) investigated the incorrectly specified parametric model for the
treatment-free effect, and introduced the G-estimating equation that can incorporate additional
information from the propensity score. The G-estimator can be doubly robust in the sense that
the estimate remains consistent even if one of the treatment-free effect model and the propensity
score model is misspecified. As special cases, Lu et al. (2013); Ertefaie et al. (2021) developed
least-squares approaches that can equivalently solve the G-estimating equation and enjoy double
robustness. Wallace and Moodie (2015); Meng and Qiao (2020) took a different approach to hedge
the risk of treatment-free effect misspecification. Specifically, they proposed the weighted least-
squares problem that utilizes the propensity score information to construct balancing weights, and
the resulting estimates can also be doubly robust. In the direct-search approaches, the AIPWE of
the value function is doubly robust in a slightly different way. Specifically, the AIPWE incorporates
the outcome mean function and the propensity score function. When estimating the outcome
mean and propensity score functions, even if one of their model specifications is incorrect, the
corresponding AIPWE can still remain consistent.

The double robustness property has also been widely studied in the causal inference literature
(Robins et al., 1994, 1995; Ding and Li, 2018). One problem of particular interest is to study the

case when one of or both model misspecifications happen. Kang and Schafer (2007) provided a
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comprehensive empirical study on how model misspecification can affect the resulting estimates.
They concluded that the misspecified outcome mean model can be generally more harmful than the
misspecified propensity score model. When both models are misspecified, the doubly robust esti-
mate can perform even worse than the IPWE. Later studies further developed improved estimates
and inference procedures to overcome such challenges (Tan, 2010; Rotnitzky et al., 2012; Vermeulen
and Vansteelandt, 2015; Benkeser et al., 2017). These studies have also motivated some improve-
ment of the AIPWE for the ITR problem. Specifically, when the outcome mean model is incorrectly
specified, Cao et al. (2009) proposed an optimal estimation strategy for the misspecified outcome
mean model in the sense that the resulting AIPWE can have the smallest variance. Pan and Zhao
(2021) further extended this work to the ITR problem, and utilized augmented inverse-probability
weighted estimating equations for the outcome mean model estimation.

Motivated from Kang and Schafer (2007) that the misspecified treatment-free effect can have
more severe consequence, we focus on addressing this challenge. In our study, we find that the
misspecified treatment-free effect in the model-based approach can have a consequence similar to
heteroscedasticity (Carroll, 1982). More specifically, both misspecified treatment-free effect and
heteroscedasticity can cause the variance of residuals being dependent on covariates and treatment.
Therefore, we take the approach of semiparametric efficient estimation under heteroscedasticity
(Ma et al., 2006) and propose an Efficient Learning (E-Learning) framework for the optimal ITR

in the multi-armed treatment setting. Our proposed E-Learning can enjoy the following properties:

1. When nuisance models are correctly specified, E-Learning performs semiparametric efficient esti-
mation. Our framework can allow the variance of outcome depends on covariates and treatment,
and hence is more general than existing semiparametric efficient procedures such as G-Estimation

and its equivalents;

2. E-Learning is doubly robust with respect to the treatment-free effect model and the propensity

score model;

3. In presence of misspecified treatment-free effect, E-Learning is optimal with the minimal /-
asymptotic variance among a regular class of semiparametric estimates based on the given work-
ing treatment-free effect function. Our optimality incorporates the standard semiparametric

efficiency (Tsiatis, 2007) as a special case for the ITR problem.
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This chapter contributes to existing literature in terms of the followings:

1. Parallel to the improved doubly robust procedure in Pan and Zhao (2021) for direct-search ap-
proaches, E-Learning is an improved doubly robust method for model-based approaches. Specif-
ically, E-Learning performs optimal efficiency improvement when one of or both misspecified

treatment-free effect and heteroscedasticity exist;

2. E-Learning incorporates many existing approaches as special cases, including Q-Learning, G-
Estimation, A-Learning, dWOLS, Subgroup Identification, D-Learning and RD-Learning. It
provides a more general framework to study the double robustness and estimation efficiency for

these methods;

3. We develop E-Learning for the setting with multiple treatments. In particular, E-Learning
utilizes a generalized equiangular coding of multiple treatment arms to develop the efficient esti-
mating function. This can be the first work to incorporate equiangularity in the semiparametric
framework among those utilizing the equiangular coding (Zhang and Liu, 2014; Zhang et al.,

2020; Qi et al., 2020; Meng et al., 2020; Xue et al., 2021);

4. In our simulation study, our proposed E-Learning demonstrates superior performance over exist-
ing methods when one of or both misspecified treatment-free effect and heteroscedasticity exist,
which confirms the superior performance of the proposed E-Learning. In the analysis of a Type
2 Diabetes Mellitus (T2DM) observational study, E-Learning also demonstrates its improved

efficiency compared to other methods.

The rest of this chapter is organized as follows. In Section 3.2, we introduce the methodology
of E-Learning. In particular, mathematical setups and notations are introduced in Section 3.2.1.
A motivating example is discussed in Section 3.2.2 to demonstrate the consequence of misspecified
treatment-free effect and heteroscedasticity. Semiparametric efficient estimating equation is devel-
oped in Section 3.2.3. E-Learning and its implementation details are proposed in Sections 3.2.4
and 3.2.5. In Section 3.3, we discuss the connection of E-Learning with the existing literature. In
Section 3.4, we establish theoretical results for E-Learning. Simulation studies and the application
to the T2DM dataset are provided in Sections 3.5 and 3.6 respectively. Some discussions are given

in Section 3.7. Additional discussions, including an analysis of the ACTG 175 dataset, technical
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proofs, additional tables and figures can be found in Section 3.8. The implementation based on R

of this chapter is available at https://github.com/harrymok/E-Learning.git.

3.2 Methodology

In this section, we first introduce the ITR problem as a semiparametric estimation problem. Then

we study the semiparametric efficient estimation procedure and propose E-Learning.

3.2.1 Setup

Consider the data (X, A,Y), where X € X < RP denotes the covariates, A € A = {1,2,--- , K}
is the treatment assignment with K treatment options, and Y € R is the observed outcome. For
1 < k < K, let Y(k) be the potential outcome under the assigned treatment k. An ITR is a
mapping from covariates to treatment assignment d : X — A. The wvalue function of an ITR is
defined as V(d) := E[Y (d(X))]. Assuming that a larger outcome is better, the goal is to find the
optimal ITR that maximizes the value function d* € argmaxg.y_, 4 V(d).

Assume the identifiability conditions (Rubin, 1974): (consistency) ¥ = Y (A); (uncon-
foundedness) A L {Y(k)}E||X; (strict overlap) for 1 < k < K, P(A = k|X) >
py for some p, > 0. Then the value function can be written as V(d) = E[Y|A =
d(X)] = E{ sz1 EY|X,A=Fk)I1[dX) = k]} Consequently, the optimal ITR satisfies d*(x) €
argmax; <,<x E(Y|X = x,A = k) for any © € X. This motivates us to study the following

semiparametric model:

Y = po(X) + (X, A; B) + ¢,
K
subject to ) (X, k;B) =0; E(e|X,A4)=0; 0%(X,A):=E(&2X,A) < +w; (3.1)
k=1
(Xv A, 6) ~ p%(m)pﬂ(dm)pe(dxa (I).
Here, 1p(X) is the treatment-free effect, and (X, A; 3) is the interaction effect between X and A
that is parametrized by the p-dimensional parameter vector 3 € # < RP. In particular, it requires
that the parametrized interaction effect satisfies a sum-to-zero constraint for identifiability. The

dependency on 3 may be suppressed for ease of notation in our later presentation. Moreover,

0%(X,A) is the wvariance function of ¢ that can depend on (X, A). Finally, py (x), po(a|z)
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and pc(e|lx,a) are density functions. Then the nuisance component 7 := (pa, Do, De, o) is left
unspecified only with the moment restriction § ep.(e|x, a)de = 0.

Given the true parameter 3 in Model (3.1), the optimal ITR is d*(x) € argmax; < i ¥(x, k; 3).
In Theorem 3.1 below, we show that maximizing the value function can be directly related to finding

a good estimate of the interaction effect v(X, A) in Model (3.1).

Theorem 3.1 (Estimation and Regret Bound). Consider Model (3.1). Let 4,(X, A) be an estimate

~

of Y(X,A), dy(x) € argmax| << ¢ Yn(x, k), and d*(x) € argmax, < v(x, k). Then
) = V(d,) < 2 E 7. (X, k) — (X, k)|
V(d") = V(dn) < 2 max B3 (X, k) —v(X, k)|

Here, 7, is fired and E takes expectation over X.

The proof of Theorem 3.1 is similar to Murphy (2005, Lemma 2) and is included in Section
3.8. It implies that minimizing the estimation error of the interaction effects {v(X, k)}X | can also
minimize the regret. In this chapter, we focus on finding an efficient estimate of the parametric

interaction effect v(X, A; B).

3.2.2 A Motivating Example

We introduce a motivating example to demonstrate that several existing approaches, including
Q-Learning, G-Estimation, A-Learning, dWOLS, Subgroup Identification, D-Learning and RD-
Learning, may not be optimal if either the treatment-free effect po(X) is misspecified, or the
variance function E(e?|X, A) depends on (X, A). In contrast, the E-Learning estimate can be
much more efficient. All these methods are compared in Section 3.3.

Consider the covariate X with a symmetric distribution on R, the treatment A ~ Bernoulli(1/2),

and the error term e ~ N(0,1), where X, A, € are mutually independent. Suppose the outcome Y

Y = alX| + (A=1/2)By + | 1+2c3AX? ¢,
—— —_— —_—
treatment-free effect  interaction effect variance function

for some By = 0. When estimating from the training data, suppose that we specify Xn for the

is generated by

treatment-free effect with 7 to be estimated, and (A — 1/2)/ for the interaction effect with 8 to be

estimated. If ¢; = 0, then the treatment-free effect is correctly specified, with the true parameter
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n = 0; otherwise, the treatment-free effect is misspecified. If co = 0, then the variance function is
1, and homogeneous with respect to (X, A); otherwise, we have a heteroscedastic model with the
variance of error depending on (X, A).

Denote E,, as the empirical average over the training dataset of size n. Then for this particular
example, Q-Learning (Watkins, 1989), G-Estimation (Robins, 2004), A-Learning (Murphy, 2003),
dWOLS (Wallace and Moodie, 2015), Subgroup Identification (Tian et al., 2014), D-Learning (Qi
and Liu, 2018) and RD-Learning (Meng and Qiao, 2020) are equivalent to the following Ordinary
Least-Squares (OLS) problem:

(ﬁm Bn) € argminEn[Y - X77 - (A - 1/2)6]2' (3'2)
n,BeR

Note that if ¢; = co = 0 with correctly specified treatment-free effect and homoscedasticity, then
Bn is semiparametric efficient. For the general ¢; and co, the OLS estimates Bn and 7, are asymp-

totically independent, with /n7, ZN (0,?) for some v? > 0 and

Vit(Ba — o) = VAIE(A — 1/2)% + op(1)]'E, [(A _12) (c1|X| s 2c3AX2e)] B (0.02),

where the y/n-asymptotic variance of 3, is given by v? = 4E[1 + (c} 4+ c3)X?] = 4E(1 + 2 X?) with
¢ := 2 + c3. Notice that the residual is € = Y — X7, — (24 — 1)Bn = 1] X| + /1 + 2c5AX %€ +

Op(n~1/2). Then we have E(€2|X) = 1+ ¢2X? + Op(n~1), which clearly depends on X.

Motivated from the heteroscedastic residual, we define ¥(z) := 4(1 + c?x?). Consider the
solutions to the generalized least-squares problem
(ﬁeff,n; Beff,n) € argmlnEn{ﬁgl(XMY - X’? - (A - 1/2)6]2} (33)

n,BER

Then Beﬂrm and 7eg », are asymptotically independent, with \/neg ZN (0, %) for some % > 0,

E’N(07v§f¥)a

= 1/2)2)] + on»(l)}l En [(A — <01|X| . WG)

V1 (Botin — Bo) = v/n {E [m 4(1 + 2X?)

where the y/n-asymptotic variance of Befﬂn is given by vgﬂ =4 [E(l + 32X 2)*1]71. The asymptotic

relative efficiency of B\eﬁ’n with respect to Bn is v2/0% = E(1 + 2X?)E (HC%XQ) > 1. That is,
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395,,1 has a smaller /n-asymptotic variance than Bn The strict inequality generally holds if ¢ # 0
and X is non-degenerate.

Next we consider an extreme case to illustrate that @ﬁ“’n can be much more efficient than 371
Suppose X ~ ¢f M) (z) + (1 —q) ) (), where fM)(z) is a symmetric probability density function
(PDF) with compact support on [—M, M], f(*)(z) is a symmetric PDF on R with Sz 22 ) (z)dz =
+0o0, and ¢ € (0, 1] is the mixture probability. Then for ¢ # 0, v? > 4[1 + C2EX~f(w) (X?)] = +oo,
while vZ; < [qEXNﬂM)(l + c2X2)_1]_1 < 4(1 + 2M?)/q. Here, v?> = 400 implies that B, cannot
even be Op(n_l/ 2), while in contrast, Beffm has a bounded /n-asymptotic variance vgﬂ. Therefore, if
either the treatment-free effect is misspecified (¢; # 0), or the variance function is not homogeneous
(co # 0), then Bn can have much worse perforamance than the more efficient estimate /’B\eﬂ"n.

From the motivating example above, we can conclude that the efficiency of many existing
approaches can be improved when either misspecified treatment-free effect or heteroscedasticity
happens. In fact, our example shows that misspecified treatment-free effect or heteroscedasticity
can cause the dependency of E(¢2|X) = 1+ c2X? on X. Motivated from efficient estimation under
heteroscedasticity (Ma et al., 2006) and our motivating example, we introduce the working variance
function vept(X) = 1 + ¢2X?2, and consider the generalized least-squares estimate as in (3.3). The
estimation efficiency can be greatly improved in this case.

Xiao et al. (2019, Theorem 6) pointed out a phenomenon similar to our finding in Section 3.2.2,
while their methodology and theoretical properties differ from ours. To be specific, Xiao et al.
(2019) replaced the squared loss by general robust loss functions. Under the assumption e 1L A| X,
their estimate based on the quantile loss function can be shown consistent and y/n-asymptotic
normal. However, it remains unclear whether the y/n-asymptotic normality still holds, and if so, how
large the corresponding +/n-asymptotic variance is, when treatment-free effect misspecification and
heteroscedasticity exist. In contrast, we show in Theorem 3.10 that, under a more general setting,
our proposed estimation strategy using the working variance function ¥.(x) is optimal, with the
smallest y/n-asymptotic variance, for heteroscedastic and misspecified treatment-free effect models.
This implies that E-Learning is more general with better optimality guarantee than Xiao et al.
(2019).

The methodology introduced in this section is special in the sense that the treatment assign-

ment is binary, i.e. A € {0,1}. For multiple treatment options A € {1,2,--- , K} with K > 2,
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the estimation problem is no longer an inverse-variance weighted least-squares problem. We will

motivate our general methodology from the semiparametric efficient estimate of Model (3.1).

3.2.3 Semiparametric Efficient Estimate

In this section, we derive the semiparametric efficient estimate of 8 for Model (3.1). The efficient
estimating function can be related to some existing methods in the literature. The connections are

discussed in Sections 3.3.1 and 3.3.2.

3.2.3.1 Efficient Score

In order to obtain the corresponding estimating equation, we first show the procedures to calculate
the semiparametric efficient score following Tsiatis (2007). To that end, we take the following steps
to derive: 1) the nuisance tangent space; 2) the efficient score; 3) the efficient estimating function.

We first derive the nuisance tangent space with respect to n following Tsiatis (2007, Chapter

7). The same result was also used in Ma et al. (2006); Liang and Yu (2020).

Lemma 3.2 (Nuisance Tangent Space). Consider Model (3.1). Define H := {h(X,A,¢e) | h :
X xAxR — RP, Eh(X,Ae) = 0, E|h(X,A,€)|3 < +oo}, which is equipped with the norm

||| := (E| - |3)Y2. Then the nuisance tangent space is

A {H e H : E(He|X,A) = E(He\X)}.

The proof of Lemma 3.2 is included in Section 3.8.
Next we discuss how to obtain the efficient score of Model (3.1). The efficient score is defined
as the projection of the score vector onto the orthogonal complement A of the nuisance tangent

space. Notice that the moment restriction in Lemma 3.2 is equivalent to
E(He|X,A=1)=E(He/X,A=2)=---=E(HeX,A=K).

Then we can introduce a set of coding vectors {wy}X | < RE~L such that S crwr = 0 if and
only if ¢; = ¢ = - - - = ¢k Equivalently, we can let Q := /1 — 1/K[wy,wa, - ,wg]|T € REXE-1),

and require that (1/v/ K )1k« is the only left singular vector corresponding to the singular value 0
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of ). In the following Lemma 3.3, we show that any coding vectors satisfying such a requirement

are equiangular up to normalization.

Lemma 3.3 (Equiangularity). Let Q := /1 —1/K[wi,wy, - ,wi]T € REX(E=D guch that
(1/VEK)1gyx1 is the only left singular vector corresponding to the singular value 0. Then

{(QTQ)"Y2w 3K | are equiangular.

The equiangular coding representation in Zhang and Liu (2014); Zhang et al. (2020); Qi et al.
(2020) is an example that satisfies Lemma 3.3. The equiangular coding vectors {wy}X_, can be

useful to define the following RX~!-valued decision function associated with the interaction effect.

Lemma 3.4 (Angle-Based Decision Function). Consider Model (3.1). For the coding vec-
tors {wp}l | < RE~! as in Lemma 5.3, define an RE"'-valued decision function f(:r:,,@) =
Q)L (@, k; B)wy,. Then we have

vz, k; B) = (1 — ;) (wp, fx;8)) 1<k<K.

Moreover, the optimal ITR is given by

d*(z) € argmax(wy, f(x; B)). (3.4)
1<k<K

Without loss of generality, assume that |wg|o = 1 for 1 < k < K. For ease of notation, we
denote f = f(x;B). Then the angle between wy and f satisfies cos Z(wy, f) = (Wi, £3/]F]l2-
The decision rule (3.4) is equivalent to argmin; <<y Z(wp, f). That is, among K coding vectors
{wk}iil, the decision function f seeks for the arm that the corresponding coding vector has the
least angle with respect to f

Based on the coding vectors, the tangent space in Lemma 3.2 can be rewritten as

K Hw'e
A={HeH:0,x_1) = EHeX,AzkwT=E<A‘X> .
{rr e Onn = S tatix <t =5 (1

Then we can obtain AL and the projection operator onto it as in the following Lemma 3.5. For a

vector a, we denote a®? := aaT.
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Lemma 3.5 (Projection onto AL1). Let A be the tangent space in Lemma 3.2, {wg} | € RE be

the coding vectors satisfying Zszl cpwi = 0 if and only if c1 = co = --- = cg. Then
1 {H(X)WA6 H. v Rpx(K—l)}.
P (A|X)

Furthermore, the projection operator onto A+ is

Hw e W€

E(H|AY) =E {M‘X} X)’lm,

where V(X)) = Zk 1 Up(jlf');’)“ e RE-DX(E=1) " Here, if V(X)) is degenerate, then V (X)™!

represents its measurable generalized inverse.
The efficient score of the semiparametric model (3.1) is defined as the projection of the score

vector, the gradient of the log-likelihood with respect to 3, onto At (Tsiatis, 2007). Proposition

3.6 provides the explicit form of the efficient score.

Proposition 3.6 (Efficient Score). Consider Model (3.1), the coding vectors {wy}E | € RE~! qs
in Lemma 8.8, and the angle-based representation in Lemma 3.4. The semiparametric efficient

score 18

o - WA
S (B) = F(X; 8)TQTQV(X) ™" x o (A X) X €,

where F(X; B) := (8/087) f(X; 8) e RE-V>P_ qnd V. (X)~! is the same as in Lemma 3.5.

As a consequence of Proposition 3.6, we can finally define the efficient estimating function:

¢eﬁ"(/6; ,EOJ\)/JZ/a 52)

-1
(X k:) ] wa

K ~9
- [Y — Jig(X) — <1 — > (wa, F(X; ,3)>] x F(X:0)7Q70 [];1 p%(k‘X) P (A|X)

R L.
residual

efficient instrument

(3.5)

which depends on the nuisance functions Jig(X), p.s(A|X) and 52(X, A). In particular, Seg(3) =
@it (B; 1o, oy, 02). That is, if the parameters B of interest and all nuisance functions (g, p.y, 0?)

match with the truth in Model (3.1), then the estimating function becomes the efficient score.
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3.2.4 E-Learning

In Section 3.2.3, we have obtained the efficient estimating function ¢eg(3; g, P, o) from (3.5).

An E-Learning estimate of 3 solves

En[d)eﬁ(:@; ﬁO,mﬁQ{,nyag)] =0, (3'6)

where (f10.n, Doy n) are the finite-sample estimates of treatment-free effect and treatment assignment

probability in Model (3.1). Furthermore, 52(X, A) is an estimate of the optimal variance function
opt (X, A3 flo.n) = [flon(X) = po(X)* + 0*(X, A). (37)

The optimality of Jgpt(X, A: [ig.n) is justified in Theorem 3.10 in Section 3.4.1.2. However, (3.7)
can depend on the true treatment-free effect function po(X) and variance function o(X, A), which
are unknown. Motivated from the example in Section 3.2.2, we can consider the working residual
2= Y — fion(X) — (X, 4: B), such that E(e|X, A, fion) = [flon(X) — no(X)]? + 0%(X, 4) =
o2(X, A; fign). Therefore, 52(X, A) can be obtained by regressing € on (X, A).

Similar to the general methodology in Davidian and Carroll (1987), the E-Learning estimate

of B can be solved by the following three steps:

Step 1. Obtain a consistent estimate BSLO) of 3. This can be done by solving (3.6) with 3&0)2 = 1 that

results in a consistent estimate of 3. The consistency is guaranteed by Proposition 3.7;

Step 2. Obtain 52(X, A). Specifically, we first compute the working residual € = Y — fig ,(X) —
(X, A; ,3\7(10)), and then perform a nonparametric regression using € as the response and

(X, A) as the covariates to estimate the optimal working variance function;
Step 3. Solve (3.6) again using 62(X, A) from Step 2 to obtain the E-Learning estimate Br.

More implementation details are discussed in Section 3.2.5 below.

89



3.2.5 Implementation

For the implementation of E-Learning, we first need to estimate the treatment assignment probabil-
ities {p (k| X)}X | and the treatment-free effect 11o(X). Then we follow the three-step procedures

in Section 3.2.4 for E-Learning estimation.

3.2.5.1 Estimating the Propensity Score Function

Suppose the treatment assignment probability p. is unknown. The first approach of estimating

Do is to consider the penalized multinomial logistic regression (Friedman et al., 2010). Specifically,

;

consider the multinomial logistic working model po (k| X;11,72, -+ ,TK) = M. The
D=1 exp(r], X)

propensity score parameters 71,72, , T € RP can be estimated by the following penalized log-

likelihood maximization:

KT AleTT,X pK21/2
it {En L;Tkxﬂ = k) — log (l;le ¢ )] - A%; (;;Tjk) },
1/2
where the group-LASSO penalty > _, <Zf:1 T]2k> takes {7j;}2_, for the j-th variable across all
treatments as a group, and A, is a tuning parameter and can be chosen using cross validation.

In observational studies, the propensity scores can be vulnerable to model misspecification.
Another approach for estimating p. is to consider flexible nonparametric regression using the
regression forest (Athey et al., 2019). Specifically, for each 1 < k < K, we run a regression forest
using 1(A = k) as the response and X as the covariates. Then each fitted regression forest provides
a prediction for E[1(A = k)| X]. The final estimate of p/ (k| X) is the prediction after normalization

such that the summation over kK = 1,--- , K is one.

3.2.5.2 Estimating the Treatment-Free Effect Function

Similar to Section 3.2.5.1, the treatment-free effect function po can be estimated from a parametric
model or nonparametric regression. For parametric estimation, we consider the linear working
model fig(X;m) = nTX. In this case, the outcome mean model in (3.1) is fully parametrized. For

example, if y(X, 4;B) = (1 — 1/K){w4,BTX), then we can consider the following joint penalized
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inverse-probability weighted least-squares problem with the ¢;-penalty:

1 1 2
mi Ey|————— (V-9 X—-(1-—= ,BTX A B ,
neRp,Bené?mn{ [pm(mX)( n ( K><wA >> ]+ wo (Ml + 1l h)}

where p,y ,, is the estimated treatment assignment probability, A, is a tuning parameter and can be
chosen using cross validation. Here, if p. ,(A|X) is the correct treatment assignment probability,
then the above estimate for 1 can be consistent even if the model for the interaction effect (X, A; 3)
is incorrect. If the model for the interaction effect v(X, A; 3) is correct, then the above estimate
for n can also be consistent for any arbitrary p,, , besides the correct one.

For nonparametric regression, we first divide the data into K subsets according to the received
treatments. Foreach 1 < k < K, we use Y as the response and X as the covariates to fit a regression
forest on the data subset {(X;,Y;) : A; = k}. Then each fitted regression forest corresponds to
the prediction of E(Y|X,A = k). We average the predictions over k = 1,---, K to obtain the

treatment-free effect estimate.

3.2.5.3 Estimating the Variance Function

Suppose € is the working residual in Step 2. In order to estimate the variance function, we
specifically consider the regression forest using € as the response and (X, A) as the covariates.
Then 62(X, k) is the regression forest prediction at (X, k) for 1 < k < K.

In the simulation study in Section 3.5.3, we also study another two nonparametric regression
methods, the Multivariate Adaptive Regression Splines (MARS) (Friedman, 1991) and the COm-
ponent Selection and Smoothing Operator (COSSO) (Lin and Zhang, 2006). Here, the COSSO
estimate of the working variance function is based on the following Smoothing Spline A Nalysis Of
VAriance (SS-ANOVA) model: E(€%| X, A) = vo+ YTy f5(X;)+ Dy o+ X0_y ey fin(X)) +u,
where 1 is the global main effect, {f;(X j)}];:l are the covariate main effects, {ak}szl are the treat-
ment main effects, {fjr(X;)}i<j<p,1<k<ik are the covariate-treatment interaction effects, and w is

the remainder term that is not modeled.
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3.2.5.4 Solving the Regularized E-Learning Estimating Equation

In this section, we consider further regularization J(3) on the parameters of interest. One example

—

from Qi et al. (2020) is to consider the linear angle-based decision function f(X;B) = BTX in
Lemma 3.4, where the covariate vector X € RP can be high-dimensional. They introduced the

row-wise group-LASSO penalty on the matrix coefficient B = [Bjx]px(x—1) € RP*(K=1) a5 J(B) :=

pX

IB

o1 = ?:1(2?:_11 2-k)1/ 2 which encourages sparsity among input covariates. Another example
can be the extension to nonlinear modeling of the decision function f| (X)), where a functional
penalty J( f) is applied.

To incorporate regularization in E-Learning from (3.6), we solve the penalized estimating equa-

tions (Johnson et al., 2008):

1 IO
min {2 | B [Beit (B3 o, Do s 32)] oy + /\J(ﬁ)} : (3.8)

where |z[3, := £TWz with some weighting matrix W € RP*P. A typical choice of W can be |y,
or the inverse of the empirical information matrix {En[(a/ﬁ,@T)¢eﬁr (B; Hon, Dot ms 8%)]}71. Problem
(3.8) can be solved by the accelerated proximal gradient method (Nesterov, 2013) with the gra-
dient B — E,[¢err(B; fio,n, Der s 02)]. A comprehensive lists of the proximal operators on various
penalties J(8) can be found in Mo and Liu (2021). For a fixed A, the estimation procedure follows
the three steps in Section 3.2.4. The parameter A can be further tuned by cross validation. The
IPWE of the value function is used as the tuning criteria. Denote @n()\) as the solution to (3.8).
The corresponding ITR becomes c?n(X7 A) = argmax; << V(X k; ,@n(/\)) Let {(X;, A;, Y;)} vand

1 Nvatia 1[dn(Xi:\)=A;] v, ich i
o~ Dl By (A% Y;, which is larger

be the validation dataset. Then the criteria for A is
the better.
More implementation details for E-Learning are discussed in Sections 3.8.3 and 3.8.4 in Section

3.8.

3.3 Connections to Existing Literature

In this section, we discuss the connection of the E-Learning estimating function (3.5) to several

methods in the existing literature. It can be shown that with more assumptions in addition to Model
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(3.1), several existing methods can be equivalent to (3.5). That is, E-Learning can incorporate
these methods as special cases. The motivating example in Section 3.2.2 is such a special case.
In Sections 3.3.1 and 3.3.2, we discuss the equivalence and the specific additional assumptions.
In Section 3.3.3, we further provide the general comparisons for these methods and some other

nonparametric methods in the literature.

3.3.1 Binary Treatment

We first consider the binary treatment case K = 2 and relate the efficient estimating function
(3.5) to some existing methods. We follow the convention to denote A = {0,1}. Then we have

one-dimensional coding for two treatment arms as wg, wi, which satisfies cowg + ciw; = 0 if and

only if ¢g = ¢;. Then we have w; = —wy. Without loss of generality, we can assume that w; = 1
and wy = —1, which become the sign coding of treatments. Then QT = 1.
. . s . . o%(X,1) a2(X,0)
The variance matrix from Proposition 3.6 becomes a scalar: v (X) := (X T 0%

The decision function f(X;3) is R-valued, such that v(X,A;3) = (1/2)waf(X;3). Then the
E-Learning efficient estimating function (3.5) becomes

~_1 )
0 (X)wAf

Dot (B0, 7, 5°) = [V = To(X) = (1/2)0af (Xs ) !

(X:8), (3.9)

where f(X;3) := (0/08)f(X;B) € RP. Moreover, (3.9) is also equivalent to the following weighed
least-squares problem:

n{ i H(X)

M . 2
Do (A X) [V = fio(X) = (1/2)waf(X; B)] } : (3.10)

There are some connections for this formulation to several methods in the existing literature.

Q-Learning Consider the additional assumptions: (a) homoscedasticity 02(X,1) = ¢%(X,0) =
02; and (b) complete-at-random treatment assignment p,(1/X) = p,(0/X) = 1/2. Then E-
Learning (3.10) reduces to an OLS problem. If we also assume that: (c) the treatment-free effect

satisfies uo(X) = XT(n + B/2), where (3,n) are jointly estimated, then E-Learning (3.10) can be
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equivalent to the standard @-Learning (Watkins, 1989) in this case:

in E,(Y — X™n— AXT3)2.
nin, n( n B)

G-Estimation, A-Learning and dWOLS Consider the additional assumption: (a) homoscedas-
ticity 02(X,1) = 02(X,0) = 0. Then v.1(X) = 0 2p (1| X)p.s(0|X). Without loss of gener-

ality, we can further assume that o? = 1. Denote 7, (X) := py(1|X) = E(A|X). Then we have

0. <X
STt — Ay (X) = |A — moy (X)|wa and XL — [A - 7y (X)].

Robins (2004) proposed the G-Estimation strategy for dynamic treatment regimes, which is
equivalent to the standard A-Learning (Murphy, 2003) in the single-stage setting. In particular,

G-Estimation solves the estimating equation
En{ [V = fion(X) — AXTB][A = 7y (X)] X} —0,
while A-Learning is equivalent to the estimating equation
]En{ [V = fi0n(X) = (A = oy (X)) XTB] [A — Ry (X)] X} — 0.

Then G-Estimation and A-Learning are equivalent to E-Learning (3.9) in this case up to
reparametrization, where [ig,(X) is replaced by mon(X) — Ty (X) XT8.

Wallace and Moodie (2015) proposed the dWOLS method. In the single-stage setting, they
considered the following weighted least-squares problem:

. YT T3)\2
Jmin B, {w(X, A)(Y — XTn— AXTB)},

where w(X, A) satisfies the balancing condition 74 (X)w(X,1) = [1 — 7y (X)]w(X,0). Note
that w(X,A) = |A — my(X)| meets this balancing condition. Assume that: (b) the treatment
assignment probability 7, (X) = p(1|X) is known; and (c) the treatment-free effect satisfies

wo(X) = XT(n + B/2), where (3,m) are jointly estimated. Then dWOLS with w(X,A) = |4 —
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7 (X)] is equivalent to E-Learning (3.10):

. . o Tor T 2
Jmin |4~y (X)|(Y — XTn — AX70)*}.

Subgroup Identification, D-Learning and RD-Learning Consider the additional assump-

2 2
tions: (a) the variance function satisfies v, (X) = 21 4 (X0

= p (X)) 1 po(ox) = Ve which is a constant; (b)

the treatment assignment probability p. (A|X) is known; and (c) the treatment-free effect satisfies
1o(X) = 0. Then E-Learning (3.10) is equivalent to the standard Subgroup Identification (Tian
et al., 2014; Chen et al., 2017) and the binary D-Learning (Qi and Liu, 2018):

. 1 B Wi XTA12
g&{gEn{W[Y (1/2)waX70] }

If both (b) and (c) are relaxed, then E-Learning (3.10) is equivalent to the augmented Subgroup
Identification (Chen et al., 2017, Web Appendix B) and the binary RD-Learning (Meng and Qiao,
2020):
1
mm&,AY—AnX——lthTQ}
in B {5V = i (X) — (12004 X78)

3.3.2 Multiple Treatments and Partially Linear Model

—

For general K > 3, we consider the linear decision function f(X;B) = BTX, where B € R? x(K-1)

is a parameter matrix. By Lemma 3.4, Model (3.1) becomes

1
Y = :UO(X) + <1 - K) <(.|JA, BTX> + € E(€’X>A) = 0; JQ(XaA) = E(EQ‘XaA) <+,

(3.11)

which is a Heteroscedasticitic Partially Linear Model (HPLM) (Ma et al., 2006).

—

Denote vec(B) € RPUK=D as the vectorization of B. The we further have f(X;B) =

—

(L—1yx (s—1) ® X)Tvec(B) and F(X;B) = [0/dvec(B)T]f(X;8) = (I(x—1)x(x—1) ® X)T, where
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® denotes the Kronecker product. The E-Learning efficient estimating function (3.5) becomes

~

o - (X)) 'w
Bur BT o 7) = (@D @ L] x | ¥ = %) — (1= 1 ) wa B30 | x LB @ x,
| —— PM(A|X)
constant matrix
(3.12)
where V(X)) := P p; :‘);’)“ and V.(X)~! denotes the generalized inverse if not invertible.

Consider the additional assumption: (a) the variance function satisfies V. (X) =

(X ,k)w
AR &

P S = V., which is a constant matrix. Then E-Learning (3.12) is equivalent to the

multi-arm RD-Learning:

1 2
in Byl |V —fign(X) = (1= = ) (wa,BTX
BeRpx (K1) {Pm,n(A|X) [ fion(X) = ( ><WA >] }

Notice that the multi-arm D-Learning (Qi et al., 2020) cannot be equivalent to E-Learning. In

fact, D-Learning solves the following vectorized least-squares problem:

1 2
i Ep{—————||KYwyq —BTX . 3.13
BEREE(EI(—U " {2Kpg(A|X) H wA |2} ( )
The estimating function of (3.13) is
Y - 1_7 (WA BTX) | x —A _@xy 1 [(1-L)uer_ L vec(X®?B)
A, o (AIX) o (AIX) 7 ) @a — Fla-nxae- .
efficient estimating function if (a) and po(X) =0 =¢p(X,A)

Note that E[¢p (X, A)|X] = 0 and E[¢p(X, A)®?] is strictly positive definite, which contributes
an extra term to the y/n-asymptotic variance of the D-Learning estimate. This suggests that when

K = 3, the D-Learning estimate can generally have a larger asymptotic variance than E-Learning.

3.3.3 General Comparisons

In Table 3.1, we provide the comparisons of the methods discussed in Sections 3.3.1 and 3.3.2.
We also compare several popular nonparametric approaches including Outcome Weighted Learning
(OWL) (Zhao et al., 2012), Residual Weighted Learning (RWL) (Zhou et al., 2017; Liu et al., 2018),

Efficient Augmentation and Relazation Learning (EARL) (Zhao et al., 2019a), and Policy Learning
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(Athey and Wager, 2021; Zhou et al., 2018b). In particular, EARL and Policy Learning utilize the
AIPWE of the value function, which incorporates the outcome and propensity score models and is
doubly robust. The listed methods are also compared in the simulation studies in Section 3.5.2.

Table 3.1: Comparisons of E-Learning with Several Existing Methods in the Literature

Nuisance Models Doubly Assumptions for Being Optimal Allow
Method ) Treatment- . .
Outcome | Propensity Robust Propensity | Variance K>3
Free Effect
E-Learning Yes Yes Yes Arbitrary| Correct Hetero. Yes
Q)-Learning Yes No No Correct 1/K Homo. Yes
G-Estimation Yes Yes Yes No
A-Learning Yes Yes Yes Correct Correct Homo. No
dWOLS Yes Yes Yes No
Subgroup | Std. No Yes No 0 Known Const. Yes
Identification| Aug. Yes Yes No Correct Known Const. Yes
RD-Learning Yes Yes Yes Correct Correct Const. Yes
D-Learning z : 2 No Yes No 0 Known Const. Yes
OWL No Yes No No
RWL Yes Yes No N/A No
FEARL Yes Yes Yes No
Policy Learning Yes Yes Yes Yes

I “Being optimal” is defined as the estimate of 3 in Model (3.1) achieves the smallest 1/n-asymptotic variance among the
class of estimates in Definition 3.1.
2 Methods of Subgroup Identification include the standard (std.) and augmented (aug.) versions.

3 Variance assumptions are: homo. < constant o2(X,A); hetero. < general 02(X,A); const. < V(X) =
o2(X k)w®?

Yot T (i s a constant matrix.

We also discuss the estimation optimality for B in Table 3.1. Note that the nonparametric
methods do not assume Model (3.1). Therefore, the estimation optimality for 3 is not available.
In Theorem 3.10 in Section 3.4.1.2, we establish that the E-Learning estimate of 3 achieves the
smallest y/n-asymptotic variance among the class of estimates in Definition 3.1. This is also referred
as “being optimal” in Table 3.1. Since the methods discussed in Sections 3.3.1 and 3.3.2, except for
D-Learning with K > 3, are equivalent to E-Learning under specific additional assumptions, this
also implies that the equivalent methods are optimal under those specific additional assumptions.
However, this is not true for the general case. In contrast, our proposed E-Learning remains optimal

under the most general scenario among all these methods.
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3.4 Theoretical Properties

We investigate some theoretical properties of E-Learning. In particular, in Section 3.4.1, we es-
tablish estimation properties based on the efficient estimating function (3.5). In Section 3.4.2, we

further relate the asymptotic properties to the regret bound of the estimated ITR.

3.4.1 Asymptotic Properties

We first focus on estimation properties of the proposed E-Learning. In Proposition 3.7, we show

the double robustness property of the estimating function (3.5).

Proposition 3.7 (Double Robustness). Consider Model (3.1) and the estimating function (3.5).

Suppose Jig(X), ps(A|X) and 52(X, A) are arbitrary nuisance functions. Then we have

E[d)eﬁ(ﬁ; ﬁO:pda \0/—2)] = E[¢eﬁ(16; /~L07ﬁﬂf7 &2)] =0.

If either fig = po or Py = pu, then Eloeg(B;fio, Py, 52)] = 0 at the true parameter 3 in
Model (3.1). By assuming the positivity of the information matrix at 3 (Assumption 3.4.3), the

~ 2
En[@et (Bn; Jio; Por, 72)] H2 can be established by the consistency of

consistency of ,@n € argming, % ‘
an M-estimator (van der Vaart and Wellner, 1996, Corollary 3.2.3). This implies the doubly robust
property of ,@n If (Jig, P, 02) are replaced by their finite-sample estimate (fign, Doy .n, 02), then
Lemma 3.8 can be further applied to obtain consistency. Based on the connections from Section
3.3, Proposition 3.7 provides a more general framework to explain the double robustness property
discussed in Robins (2004); Lu et al. (2013); Wallace and Moodie (2015); Meng and Qiao (2020).
Our next goal is to study how model specifications can affect estimation efficiency. In Section
3.4.1.1, we study the asymptotic properties of the parameter estimate under correctly specified
models. In Section 3.4.1.2, we further consider the case of misspecified treatment-free effect, and

show that there exists an optimal choice of the working variance function for efficiency improvement.

3.4.1.1 Correctly Specified Models

For simplicity, we assume that the treatment assignment probability p, is known, so that the

estimating function is consistent due to Proposition 3.7. This assumption can be relaxed to as-
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suming a consistent estimate p, ,, of p.s, and the theoretical results can be extended following the
cross-fitting argument in Ertefaie et al. (2021). For example, we can assume a correctly specified
parametric model for p,.

We make additional assumptions on the squared integrability of Model (3.1) and the conver-
gence of the plug-in treatment-free effect and variance function estimates. The estimated variance
function 52(X, A) is furthered assumed uniformly bounded away from 0 to ensure that the small-
est eigenvalue of \7€7n(X ) = Zle[&\%(X k) /ey (K| X)]wP? is uniformly bounded away from 0, so

-1

that the largest eigenvalue of \76’n (X)~" can be bounded from above. This can also be relaxed by

considering a specific generalized inverse of \767n(X ) to extend the theoretical results.

Assumption 3.1 (Treatment Assignment Probability). The treatment assignment probability p.,

is known, such that for some p, > 0, we have p(a|x) = p,, for all x € X and a € A.

Assumption 3.2 (Squared Integrability). Consider Model (3.1) and the angle-based decision func-

—

tion f(X;3) in Lemma 3.4. We assume the following:

o E[u(X)?] < +oo;

Esupéeﬂy(X, A; ,\6/)2 < +o0;

e E(?) = Eo?(X, A) < +o0;

F(X:8) = (6/0B")f(X;8) € RE=DXP exists for B € 8, and Esupg_, [F(X;8)[3 < +o0,

where | - ||2 is the spectral norm on RE-1)xp

Assumption 3.3 (Convergence of Plug-in Estimates).
e There exists some Jip : X — R, such that E[o(X)?] < +o0 and (1/n) X" [fon(Xi) —
fio(X)]* = op(n1).

e There exists some 0 < 02 < 32 < 400 and 02 : X x A — R4, such that o2 <

o (@,a),5°(z,a) < 0%, and |57 — 5|0 = SUPzer aeer [0 (@, a) — 52 (@, a)| = op(n™'/?).

Given Assumptions 3.1-3.3, we show in Lemma 3.8 that the plug-in estimating equation associated

with (3.5) is /n-asymptotically equivalent to the limiting estimating equation.
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Lemma 3.8 (Plug-in Estimating Equation). Consider Model (3.1) and the estimating function
(3.5). Under Assumptions 3.1-3.3, we have

sup E, | st (B: ons pur 52) = et (B: o, pur 7)| | = op(n™12).

,ée%’
Lemma 3.8 implies that the plug-in estimates (fig ,, 52 ) do not affect the \/n-asymptotic properties
of the estimating function (3.5). Then we can show the asymptotic normality of ,aeff,n as the
solution to E, [¢eﬂf(ﬁefﬁn; Tio.n, P> 02)] = 0 following the argument in Newey (1994). Moreover, if
the treatment-free effect and the variance function are correctly specified, i.e., (Jip, 52) = (uo,o?)
in Model (3.1), then 385’71 is semiparametric efficient, in the sense that its y/n-asymptotic variance
achieves the semiparametric variance lower bound. We summarize the regularity conditions in

Assumption 3.4.

Assumption 3.4 (Regularity Conditions). Consider Model (3.1) and the angle-based representa-

tion in Lemma 3.4. We assume the following:
3.4.1 A is a compact subset in R? and the true parameter 3 € @, where 4 is the interior of P,

3.4.2 F(m; B) = (0/0B)F(; B) € RE-DxPxp exists and satisfies Esups,, HF(X,B)H% < 400, where

| |2 is the operator norm of (RP. |- |2) — (]R(K*1 P 2);
3.4.3 Define V(X) := 35 X(,f|);;§ and Z(3) := E [F(X;g)mm\v/e(x)—lmgﬁ(x;g)], where

V.(X)~! denotes the generalized inverse if not invertible. Assume Z(3) is positive definite;
3.4.4 The true parameter 3 is a unique solution to E[¢eq(3; fio, o, 72)] = 0.

Note that the definition of i(ﬁ) only depends on the working variance function &2 through
\76 (X). We denote 7T to reflect that it depends on &2. It can be shown that for any ,5 € A, we have
f(é) = E[—(&/&BT)(]_')GH(B; fi0, Doy, 52)]. In Theorem 3.9, we establish the semiparametric efficiency
of E-Learning. For symmetric matrices A and B, the matrix inequality A < B means that B — A is

positive semi-definite.

Theorem 3.9 (Semiparametric Efficiency under Correct Specification). Consider Model (3.1) and

the angle-based representation in Lemma 3.4. Suppose Beﬂ‘,n 18 the solution to the estimating equa-
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tion En[(z)eﬁ‘(aeff,n;ﬁn,p(gj, 62)] = 0 from (8.6). Then under Assumptions 3.1-3.4, we have

Betn — B = T(B) " Buldest(B: fio, py, 53] + 0p(n %),

Moreover, if (Jip,52) = (po,02), then ,é\efﬁn is semiparametric efficient, in the sense that for any
other Regular and Asymptotic Linear (RAL) estimate Bn, we have

Z(8)~" = lim nVar(Beg,) < lim nVar(3,),

n—o0 n—ao0

where Z(B) :=E [F(X;,B)TQTQVG(X)_lS)TQF(X;,@)] is the semiparametric information matriz.

—

For specific parametric models of f(X;3), the information matrix can be simplified. In the

+

2 2
binary treatment case discussed in Section 3.3.1, we have v.(X) = - (X.1) | o (X.0) , which becomes

T p(11X) T per (01X)
a scalar weight. It is shown that E-Learning is equivalent to the generalized least-squares problem
(3.10) with the weight v 1 (X)p.,(A] X) ™!, which is also the overlap weight under heteroscedasticity
(Crump et al., 2006; Li and Li, 2019). Then the information is Z(8) = E[vc(X) (X 8)®?], where
f(X;3) := (0/08)f(X;B). For HPLM (3.11) in the multiple treatment case (Section 3.3.2), the
information matrix becomes Z(B) = E [V (X) ™! @ X®2].

In Theorem 3.9, if fig # g, then éeffm is not semiparametric efficient. A natural question is to

ask whether there exists some &2 such that /@eﬁ,n is still “optimal” in certain sense. This motivates

our discussion in Section 3.4.1.2.

3.4.1.2 Misspecified Treatment-Free Effect Model

Going beyond the double robustness and semiparametric efficiency of the estimating function (3.5),
we are further interested in certain optimality when misspecified treatment-free effect happens.

Specifically, we first define the regular class of semiparametric estimates of 3.

Definition 3.1 (Regular Class of Semiparametric Estimates). Denote B, = Bn(ﬁo) as an estimate
based on n observations independent and identically distributed from Model (3.1), and take the
working treatment-free effect function fig as its input. We define a regular class of semiparametric
estimates B, (fip) as follows. For any Bn(ﬁo) € B, (fi), there exists some h : X x A — RP, which

can depend on (3, 1), such that:

101



e The estimate Bn (fip) corresponds to the estimating function

#(B; fio) = [Y — fio(X) — (X, 4; B)]h(X, A; B, 7).

~

That is, En[¢(5n(ﬁ0)7 ] = 0;
e (Consistency) E[h(X, A;3,7m)|X] = 0.

Note that the consistency condition is equivalent to E[¢(3;ig)] = O for any g : X — R.
This can be concluded from that E[h(X, A;3,17)|X] = 0 if and only if for any fip, we have
0 = E[¢(B;fi0)] = E{[MO(X) - EO(X)]IE[h(X,A;,B,ﬁ)]X]}. The consistency can be met by
any doubly robust estimates with a correct propensity score, such as G-Estimation, A-Learning,
dWOLS, and RD-Learning.

If [ip is the true treatment-free effect o in Model (3.1), then by Tsiatis (2007, Theorem 4.2),
any semiparametric RAL estimate of 3 must have an influence function in the form of ¢(3; po) in
Definition 3.1. That is, for any RAL estimate En, there exists some Bn(/m) € By(1o), such that
B = Bn(uo) + op(n~?) under Model (3.1). Therefore, B, (o) can represent the equivalent classes
of RAL estimates, where two RAL estimates are “equivalent” if and only if their y/n-asymptotic
variances are the same. In particular, B, (1) consists of the “regular versions” such that their
estimating functions coincide with their IFs.

Definition 3.1 provides a useful class of estimates with a specific form of dependency on the
working treatment-free effect function fig. In fact, the following Theorem 3.10 shows that, given
a working treatment-free effect function fig, there exists some optimal RAL estimate among the

regular class B, (fip), in the sense that its y/n-asymptotic variance is the smallest.

Theorem 3.10 (Optimal Efficiency Improvement under Misspecification). Given a working
treatment-free effect function fip : X — R, consider Model (3.1) and the regular class of semi-

parametric estimates By, (fig) in Definition 3.1. Define

0ot (X5 As o) == [fio(X) — po(X)]? + 0*(X, A),
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and B n(fio) € Bu(fio) as the solution to En[qﬁeﬁ(éeff,n(ﬁo);ﬁoapmagpt)] = 0 from (3.6). Then

under Assumptions 3.1-3.4, we have

Z(B; fio) ™" = lim nVar[Be n(fio)] < lim nVar[B,(fio)];  ¥Bn(fio) € Bu(fio),

n—o0 n—o0

- crg X, AL w®? >
where V(X o) = 25:1 % and Z(B; fio)

E [F(X; 8)TQIOV.(X: i)' TOF (X 8) |-

Note that Theorem 3.10 can be more general than the semiparametric efficiency in Theorem
3.9, in the sense that the optimality in Theorem 3.10 is for a general working treatment-free effect
function. Specifically, if jig = po, then B, (ug) in Definition 3.1 represents the equivalent classes
of RAL estimates with the y/n-asymptotic variance as the equivalence relationship. In that case,
Theorem 3.10 recovers Theorem 3.9 that ,é\eﬁcm has the smallest /n-asymptotic variance. As a
remark, we would like to point out that Theorem 3.10 can be extended to the estimating equation
E, [¢eg(,§eg,n; [i0.ns Pers 02)] = O with plug-in nuisance function estimates (fign,52). The argument
is similar to Theorem 3.9, and we omit the details here.

If the working treatment-free effect function fig is not identical to the true treatment-free effect

function 49 in Model (3.1), then Theorem 3.10 suggests an optimal variance function o3, (X, A; fio).

For the binary treatment case, the optimal working variance function can correspond to

vl Jio) = oot (@, 15 fio) | 055w, 0; i) _ o*(a, 1) N a*(x,0)  [fio(x) — po()]?
AR () ps0z) po(fa)  por(0@) | po(le)p. (0)

The corresponding generalized least-squares estimate from (3.10) can achieve the smallest /n-
asymptotic variance among the regular class of estimates B, (fip). The motivating example in

Section 3.2.2 is a special case when we further assume p.(1/X) = p (0| X) = 1/2.

Remark 3.1 (General Asymptotic Variance). It can be useful to compute the y/n-asymptotic
variance for arbitrary working treatment-free effect and variance function (jig, 5%). Suppose Bn is

the solution to ]E[(}’)eff(,é\n; fi0, Doy, 52)] = 0. Then we have

Elgest(8: o, Py, 557 = E[F(OXG B)TQTQV(X) V(X o Ve X) ' QTQF(X:8)), (3.14)
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and E[—(0/08T) et (8; Jio, Doy, 52)] = Z(B). The 1/n-asymptotic variance is given by the sandwich
form lim, o nVar(8,) = Z(8)1[(3.14)]Z(8) .

Remark 3.2 (Incorrect Propensity Score). In our theoretical analysis, we assume that the propen-
sity score is known or can be consistently estimated. In Section 3.8.2 in Section 3.8, we further
discuss the case when the propensity score is incorrect. Although the optimality of Theorem 3.10
cannot be recovered in this case, the covariate-dependent variance adjustment for the optimal work-

ing variance function &2,(X, A) can still be helpful. We demonstrate in our simulation studies

opt

(Section 3.5) that E-Learning still outperforms other methods even with incorrect propensity.

In Theorem 3.10, we establish the optimality of using the working variance function
Opt(X A; [ip) in the proposed E-Learning. As discussed in Section 3.2.4, the optimal working
variance function can be identified by the expectation of the squared working residual. This can

confirm the optimality of the E-Learning estimate.

3.4.2 Regret Bound

In this section, we relate the theoretical results for estimation in Section 3.4.1 to the regret bound
for the estimated ITR. Recall from Theorem 3.1 that the estimation error of the interaction effect
can dominate the regret. We further make compactness assumption on covariates to establish the

regret bound.
Assumption 3.5 (Compact Covariate Domain). The support of the distribution p 4 () is compact.

Theorem 3.11 (Regret Bound for RAL Estimate). Consider Model (3.1) and the angle-based
representation in Lemma 3.4. Suppose \/ﬁ(,én -B) A Np(0,%) for some ¥ > 0. Define c?n(a:) =
argmax << g Wk, f F; ,Bn)> and d*(x) := argmax, i<Wk, f F(x; 8)). Then under Assumptions
3.2, 8.4.2 and 3.5, we have

n—00 n—w0

K 1/2
lim sup v/n[V(d*) — EV(d,)] < 2 lim {n Z E[v(X, k; Bn) — V(X,k;;ﬂ)]z}

(1 - ;{) 2Tr F(X: B)TQTOF(X; /3)] }1/2.
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The regret bound in Theorem 3.11 can be tight compared to Theorem 3.1, since Theorem 3.11
only relaxes the absolute estimation error to the squared estimation error, and the maximization
to the summation. Theorem 3.11 further implies that the regret bound and the estimation error
are both in y/n-order, where the leading constant depends on the y/n-asymptotic variance ¥ of the

estimated parameters 3,. In particular, denote | - | as the Frobenius norm. Then we have
T{E[F(X; 8)70T0F(X: B)| £} < |E[FOXG 8 00F(X:8) || IS,

with equality if F(X ; B) contains X and we take supremum over all possible covariate distribution
pa- on both sides. This suggests that an RAL estimate with the smallest 1/n-asymptotic variance X
can achieve the minimal regret bound. This complements the theoretical results in Sections 3.4.1.1
and 3.4.1.2 that establish the optimality of E-Learning estimate of 3 in terms of the y/n-asymptotic
variance. In particular, if we use the efficient estimate /é\eﬁ‘Vn(,l\ZO) with the optimal choice of working
variance function ogpt (X, A; Jip), then the \/n-asymptotic variance ¥ becomes Z(3; Jig) !, and the
regret bound above is the smallest among all RAL estimates in B(fig).

To conclude this section, we have established that E-Learning is doubly robust and optimal
with the smallest /n-asymptotic variance among the class of regular semiparametric estimates in
Definition 3.1, which can allow multiple treatments, heteroscedasticity and misspecified treatment-

free effect. The corresponding regret bound can also have an optimal leading constant in the

n~Y2_order.

3.5 Simulation Study

We consider several simulation studies to compare the proposed E-Learning with existing methods

from the literature and demonstrate the superiority of E-Learning.

3.5.1 Data Generating Process and Model Specifications

The synthetic data generation process is as follows. Let n € {100, 200, 400, 800, 1600} be the training
sample size, p € {10,50,100} be the number of variables, and K € {2,3,5,7} be the number

of treatments. First, we generate the coefficients of the treatment-covariate-interaction effect by

(BOk,Blk,ng,ng,@k,ﬁ%) ~ Uniform{u € RS : |u], = 1} independently for 1 < k < K, Bjj, :=
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p—>5
~ ~ . —
Bk — %Zﬁzl Bjw for 0 < j <5, and By := (Bok, Bik, Bk, B3k, Bak» Psk, 0,- -+ ,0)T for 1 < k < K.

Then we generate the data from:

e(X,k)

X ~Ny(0,Lxp); P(A=E|X)= psk|X) = —t .
p( pp) ( | ) pgf(| ) Zgzle(X,k’)

propensity score
Y[(X,A) = po(X) —E[uo(X)]+ BL(LXT)T + o(X,4) xN(0,1).

-~ —_——

~
treatment-free effect interaction effect  variance function

For the coefficient vectors {B;}5_,, the optimal ITR is d*(z) = argmax; ;< B1(1,27)T. Here, the

i{:l and the propensity score

true treatment-free effect function juo(x), variance functions {o?(z, k)
functions {e(x, &)} | are defined according to Table 3.2.

Table 3.2: True Models and the Implying Model Specifications in the Simulation Studies

Correctly Specified Misspecified Treatment-Free Effect
Homo- Hetero- Homo- Hetero- .
) ) ) ) Variance
scedastic scedastic | scedastic | scedastic
_ 1 vk 1K V22 L Q
,U,()(.’B) - Z 1=1Tk! *Z 1—1€ k S v
VK “k'=1 K &ik'=1 e(m,k) _ e:tk/2 % § §
ﬁs o?(xz, k) = 1 22 1 e2V2ay, s |3
. 1 K 1 K 2 % <§
2 po(x) = VE D=1 Tw 7 Q=1 eV2ry e(x, k) = |zx| 2 k S | B
) = k S Q
=%
o?(xz, k) = 1 2V 22y, 1 2V 2w, ] 3

I The treatment-free effect is estimated by a linear working model.
2 The propensity score is estimated by a multinomial logistic working model.

When estimating the treatment-free effect po(X) — E[uo(X)], we consider a linear working
model fig(X;n) = n7(1,XT)T. Then the treatment-free effect model is correctly specified if
the truth is po(x) = \/%2521 xpr, while misspecified if the truth is pg(x) = %2521 eV
In Figure 3.5 in Section 3.8, we provide the fitted treatment-free effect plots when the model
is correctly and incorrectly specified. It shows that the estimated treatment-free effect is con-
sistent if correctly specified, and deviates from the truth if misspecified. When estimating

the propensity score functions {p. (k|X)}X |, we consider a multinomial logistic working model
exp[7] (1LXT)T]
Sy explr), (1,XT)7]

fied if the truth is generated from e(x, k) = e®*/2, while misspecified if the truth is generated from

Do (k| X571, T2, TK) = . Then the propensity score model is correctly speci-

e(x, k) = |2, In Figure 3.6 in Section 3.8, we provide the fitted propensity score plots when the
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model is correctly and incorrectly speceified, and demonstrate how the misspecified model affects
the fitted propensity scores. As discussed in Section 3.2.4, if one of or both misspecified treatment-
free effect model and heteroscedasticity exist, the squared residuals can depend on (X, A). In

Figures 3.7-3.10, we provide the residual plots in all these cases to demonstrate such dependencies.

3.5.2 Binary Treatments

In this section, we consider the binary treatment case (K = 2) and compare E-Learning with
existing methods from literature discussed in Table 3.1 in Section 3.3.3. The implementation
details of these methods are provided in Section 3.8.3 in Section 3.8.

For the implementation of E-Learning, we consider HPLM (3.11) and solve the regular-
ized estimating equation in Section 3.2.5.4 with the row-wise group-LASSO penalty. We fol-
low the implementation in Section 3.2.5 for the estimation of the treatment-free effect with the
linear working model, the propensity score with the multinomial logistic working model, and
the variance function with regression forest. The tuning parameter A is chosen based on 10-
fold cross validation. We consider the oracle working variance function agpt(X JA) = [fio(X) —
po(X)]? + 0%(X, A) and the estimated one from the regression forest using the squared residual

as the response and (X, A) as the covariates. At the testing stage, a testing covariate sample

{ X} Mepe=10000 i N,(0,1,.,) is generated, and the testing value of an estimated ITR d is com-

puted as Vies(d) = T i K BI(1, X))T1[d(X;) = k]. Recall that the optimal ITR is
d*(x) = argmax, << B1(1,27)T. Then we report the testing regret, Viest (d*) — Viest(d), and
the testing misclassification rate, ﬁ Dot H[J(Xz) # d*(X;)]. The training-testing process is
replicated for 100 times for each of the model specification scenarios in Table 3.2.

We first consider the low-dimensional setting (p = 10). Figure 3.1 reports the testing misclassi-
fication rates for the training sample sizes n € {100, 200, 400, 800, 1600} and each of the specification
scenarios listed in Table 3.2, while Figure 3.2 provides more details for n = 400. In the case of
correctly specified treatment-free effect, correctly specified propensity score, and homoscedasticity
(upper-left panel of the plots), E-Learning, Q-Learning, G-Estimation, A-Learning, RD-Learning,
dWOLS and Subgroup Identification have similar testing performance, since all of them leverage

the correct parametric model assumption. Here, although Subgroup Identification does not rely on

a specific parametric model assumption, it is equivalent to RD-Learning in this case as discussed
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Testing Misclassification Rates Averaged over 100 Replications

p=10,K=2
treatment_free: correct treatment_free: correct treatment_free: incorrect treatment_free: incorrect
variance: homo variance: hetero variance: homo variance: hetero
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Figure 3.1: Testing misclassification rates (smaller the better) for n € {100,200, 400,800, 1600}, p = 10,
K = 2 and each of the model specification scenarios in Table 3.2. Methods in Table 3.1 are compared, where
E-Learning (Oracle) corresponds to E-Learning with the oracle working variance function, and Policy Tree
corresponds to Policy Learning with decision trees.

in Section 3.3.1. Therefore, it can enjoy similar performance as other model-based methods. In
contrast, D-Learning, OWL, RWL, EARL and Policy Tree are based on nonparametric models,
and can have inferior performance in this case. When one of or both misspecified treatment-free
effect and heteroscedasticity happen (columns 2-4 of the plots), the E-Learning procedures with
the oracle and estimated working variance function both demonstrate the best performance among
all methods. In particular, the advantages of E-Learning are more evident as n increases. Such a
superiority can still maintain even if the propensity score model is misspecified (second rows of the
plots). This suggests that incorrect propensity score can have relatively small impacts.

In Section 3.8, we further provide more plots of misclassification rates for n €
{100, 200, 800, 1600} (Figures 3.11-3.14) and testing regrets (Figures 3.15-3.20). All of them show

the same patterns as in Figures 3.1 and 3.2. In order to further demonstrate the superiority of
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Testing Misclassification Rates across 100 Replications
n=400,p=10,K=2

treatment_free: correct treatment_free: correct treatment_free: incorrect treatment_free: incorrect
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Figure 3.2: Testing misclassification rates (smaller the better) for n = 400, p = 10, K = 2 and each of the
model specification scenarios in Table 3.2. Methods in Table 3.1 are compared, where E-Learning (Oracle)
corresponds to E-Learning with the oracle working variance function, and Policy Tree corresponds to Policy
Learning with decision trees. First and second best methods in terms of the averaged misclassification rates
are annotated in horizontal lines. The minimal averaged misclassification rate is shown by the vertical line.

E-Learning in presence of moderately large number of variables, we also study the case of p = 50
and report the testing performance in Figures 3.21 and 3.22. They show that even though the
increase in p can result in worse performance of all methods, the efficiency gain in sufficiently large

samples (n = 200,400, 800, 1600) of E-Learning remains.

3.5.3 Multiple Treatments

We consider the multiple treatment case (K = 3) and compare E-Learning with model-based
methods that can allow multiple treatments (Q-Learning, D-Learning, RD-Learning). In particular,

we are interested in the following questions:

(I) Efficiency of different methods as n increases across all model specifications in Table 3.2;
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(IT) The impacts of increase in the number of variables p;
III) The impacts of increase in the number of treatments K;
P

(IV) Effects of different nonparametric estimation methods for variance function on the perfor-

mance of E-Learning.

For Question I, we consider the same setup as in Section 3.5.2 but with K = 3. The testing
results are provided in Figure 3.23 in Section 3.8. In particular, E-Learning shows the same superi-
ority over Q-Learning, D-Learning, RD-Learning as in the binary case. For Question 11, we consider
K = 3 and varying p € {10, 50, 100} (Figures 3.24 and 3.25). As the number of variables p increases,
the performance of all methods become worse. For p = 50,100, Q-Learning, D-Learning and RD-
Learning have much worse performance when one of or both treatment-free effect misspecification
and heteroscedasticity happen, even with the sample size n = 1600. The misclassification rates of
these methods are 0.562, 0.429 and 0.433 respectively for incorrectly specified treatment-free effect
and heteroscedasticity with n = 1600 and p = 100. In contrast, for sufficiently large sample sizes
(n = 400,800, 1600), the number of variables p has less impacts on E-Learning with the oracle
working variance function, while it requires sizes (n = 800, 1600) for E-Learning with the estimated
working variance function to have comparable performance across p’s. The reason for requiring
larger sample sizes is due to the challenge of the high-dimensional nonparametric estimation of
the working variance function. The misclassification rates of E-Learning for incorrectly specified
treatment-free effect and heteroscedasticity with n = 1600 and p = 100 are 0.167 for the oracle
working variance function and 0.248 for the estimated working variance function respectively. These
results can confirm the superiority of E-Learning even when the number of variables increases to
100.

In order to study Question III, we consider p = 10 and varying K € {2,3,5,7}. Notice that
increasing the number of treatments can have two folds of effects. On one hand, the effective
dimensionality generally increases in K. For HPLM (3.11), the interaction effect v(X, A;B) = (1—
1/K){wa,BTX) is indexed by the matrix-valued parameter B € RP*(K~1)_ The effective dimension
is p(K — 1) and increases with K. Moreover, the number of variance functions {o2, (X, k)}5,
also increases in K, which means more nuisance functions to be nonparametrically estimated. On

the other hand, more treatments can lead to a harder classification problem. In particular, the
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misclassification rate of a random treatment rule dyang with Pldpang(X) = k] =1/K for 1 <k < K
is 1 — 1/K. Then the misclassification rate of the random treatment rule increases in K, which
suggests that the difficulty of the learning problem is also increasing. In Figures 3.26 and 3.27 in
Section 3.8, Q-Learning, D-Learning and RD-Learning have poor performance in presence of one
of or both treatment-free effect misspecification and heteroscedasticity. When both treatment-free
effect misspecification and heteroscedasticity exist, the misclassification rates of these methods with
n = 1600 and K = 7 are 0.811, 0.648 and 0.645 respectively. Notice that the misclassification rate
of the random treatment rule in this case is 1 — 1/7 = 0.857, which suggests that the performance
of Q-Learning is close to the random treatment rule. In contrast, the E-Learning procedures with
oracle working variance and estimated working variance have misclassification rates 0.299 and 0.424
in this case, which significantly outperform other methods.

Finally, for Question IV, we consider p € {10,50,100}, K = 3 and the comparisons among
E-Learning procedures with the oracle optimal working variance function, the working variance
function estimated by regression forest, MARS and COSSO. The numerical results in Figures
3.28 and 3.29 suggest that E-Learning with regression forest can have better performance than
E-Learning with MARS or COSSO, and the superiority remains even for p = 50,100. Therefore,

we recommend using regression forest for the working variance function estimation in E-Learning.

3.6 Application to a Type 2 Diabetes Mellitus (T2DM) Study

We consider a T2DM dataset from an observational study based on the Clinical Practice Research
Datalink (CPRD) (Herrett et al., 2015; Chen et al., 2018). The study population comprises T2DM
patients of age > 21 years (registered at a CPRD practice) who received at least one of the long-
acting insulins (Glargine or Detemir), the intermediate-acting insulins, the short-acting insulins,
and the Glucagon-Like Peptide 1 Receptor Agonists (GLP-1 RAs) of Exenatide and Liraglutide
during 01/01/2012 - 12/31/2013. The treatment exposure A is defined as: 1) the long-acting
insulins alone (with no addition of any short or intermediate-acting insulin within 60 days); 2)
the intermediate-acting insulins alone (with no addition of any short or long-acting insulins within
60 days); 3) any insulin regimens including a short-acting insulin (the short-acting insulins either

alone or in combinations with any long or intermediate-acting insulin); 4) the GLP-1 RAs alone.
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Here, for patients who received one of the insulins as well as the GLP-1 RAs, the corresponding
treatment is defined as the earliest received one.

The primary outcome Y of this study is the change of the Hemoglobin Alc (HbA1c) lab value
(%, smaller the better) between Day 182 and Day 1 (defined as the first treatment date). The
following individual covariates X are measured: age, gender, ethnicity, weight, height, Body Mass
Index (BMI), High Density Lipoprotein (HDL), Low Density Lipoprotein (LDL), baseline HbAlc,
smoking status, and comorbidities (any of angina, congestive heart failure, myocardial infarction,
stroke, retinopathy, macular edema, renal status, neuropathy, and lower extremity amputation).
The total number of records from this study is 1139, with the primary outcome available for
591 records and missing for the rest. Among the 591 observations, there is a large proportion
of missingness in HDL and LDL. Therefore, for HDL and LDL, we first discretize the available
observations into two levels: if the observation is above the median, then set as high; otherwise,
set as low. Then we code the missing observations as n/a. Consequently, all possible levels of
LDL and HDL become: high, low, and n/a. For categorical variables (gender, ethnicity, smoking
status and comorbidities), we also code the missing observations as n/a and combine it with the
original levels of these variables. Finally, the remaining numerical variables (age, weight, height,
BMI, baseline HbAlc) have mild missingness, and we remove the records that contain any missing
entries among these variables. After pre-processing the dataset as above, there remains 430 records
for further analysis.

Next, we estimate the propensity scores from the dataset using the regression forest estimator
in Section 3.2.5.1. Then we are ready to apply E-Learning, RD-Learning, D-Learning, Q-Learning
and Policy Tree to the analysis of this dataset. In order to estimate the expected change of HbAlc
under the fitted ITRs, we randomly sample two disjoint subsets from the dataset for training and
testing. We choose various training sample sizes as n € {100,200, 300}, and a testing sample size
ntest = 100. On the training set, we consider estimation of the propensity scores based on regression
forest in the same way as that on the full dataset. We also apply different estimation methods of
the treatment-free effect for RD-Learning, including: 1) the linear model on X with the ¢;-penalty
(fitted by glmnet) as in Section 3.5, 2) the regression forest on X, 3) fitted treatment-free effect
as the mean of the primary outcome on the training set, and 4) fitted treatment-free effect as 0.

We find that the fitted treatment-free effect as 0 can result in better testing performance for RD-
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Learning. Therefore, we also use 0 as the estimated treatment-free effect in E-Learning. Since a
smaller outcome is better for this problem, we negate the outcome before fitting all models. Other

implementation details of all these methods remain the same as in Section 3.5. On the testing

dataset, we use the IPWE ﬁZ?jft %Yi to estimate the expected change in HbAlc

under the estimated ITR d. The training-testing process is repeated for 500 times on this dataset.

Testing Performance across 500 Replications on the T2DM Dataset
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Change in HbAlc (%, smaller the better)

type best ---- mean change in HbAlc over the full data = -2.163%

Figure 3.3: Testing changes in HbAlc (%, smaller the better) for training sample sizes n € {100, 200, 300}
on the T2DM dataset. Here, t.f. represents the fitted treatment-free effect, and reg. forest corresponds to
the regression forest.

The testing results are reported in Figure 3.3. E-Learning enjoys the best testing performance
among all training sample sizes. As the training sample size n increases, the advantage of E-Learning
is more evident compared with other methods. This can confirm the efficiency improvement of E-
Learning by using an optimal working variance function on this dataset. Among patients in the
T2DM dataset, E-Learning recommends 19.77% for long-acting insulins, 18.14% for intermediate-
acting insulins, 30.23% for short-acting insulins, and 31.86% for GLP-1 RAs. The fitted E-Learning
coefficients are reported in Table 3.3. In particular, short-acting insulins (A = 3) is recommended
for the patients with average covariates. Patients as former smokers are more recommended for the

short-acting insulins than other patients. The general benefits of short-acting insulins are consistent
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Table 3.3: E-Learning Coeflicients on the T2DM Dataset

| a=1 A=2 A=3 A=4

Intercept -0.164 -0.053 0.168 0.048
gender (male) -0.008 -0.014 0.029 -0.007
ethnic (others)

ethnic (white) -0.023 0.081 -0.029 -0.03
smoke (former) -0.001 -0.174 0.361 -0.186

smoke (no)
smoke (yes)
comorbidity (yes)

HDL (low) 0.033 -0.009 -0.053 0.029
HDL (high)

LDL (low) 0.004 0.115 -0.122 0.003
LDL (high) 0.007 -0.002 -0.023 0.018
baseline HbAlc -0.492 0.139 0.168 0.185
age -0.058 0.169 0.106 -0.217
weight

height

BMI

Note:

Larger coefficients encourage better outcome.

Coefficients are fitted at standardized scales of covariates.

Blank coefficients are 0’s. Absolute value > 0.1 are bolded.
with the results in Chen et al. (2018); Meng et al. (2020). Moreover, it can be observed that the
coefficients for baseline HbAlc in Table 3.3 increase in the treatment arm. In fact, the averaged
baseline HbAlc values among recommended treatments A = 1,2,3,4 are 7.35%, 10.67%, 10.91%
and 11.18% respectively. This suggests that patients with worse baseline HbAlc are recommended
for faster-acting therapies, where the GLP-1 RAs (A = 4) can be regarded as an alternative for the
rapid-acting insulin (Ostroff, 2016). Such a phenomenon is also consistent with the recommended

treatment ordinality pointed out by Chen et al. (2018).

3.7 Discussion

In this chapter, we propose E-Learning for learning an optimal I'TR under heteroscedasticity or mis-
specified treatment-free effect. In particular, E-Learning is developed from semiparametric efficient
estimation in the multi-armed treatment setting. When nuisance models are correctly specified,
even if heteroscedasticity exists, the y/n-asymptotic variance of the estimated parameters achieve
the semiparametric variance lower bound. When the treatment-free effect model is misspecified,
E-Learning targets the optimal working variance function, so that the y/n-asymptotic variance of
the estimated parameters is still the smallest among the class of regular semiparametric estimates.

In summary, E-Learning extends the optimality of existing model-based methods to allow multi-
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ple treatments, heteroscedasticity and treatment-free effect misspecification. The efficiency gain
of E-Learning is demonstrated by our simulation studies when either of or both heteroscedasticity
and misspecified treatment-free effect happen, where existing methods can have much worse per-
formance. This also can be consistent with Kang and Schafer (2007)’s finding that the misspecified
treatment-free effect can have severe consequences.

E-Learning is developed based on the parametric assumption on the covariate-treatment inter-
action effect (X, A; 3). This can be further extended to flexible semiparametric or nonparametric
models such as the single-index model (Liang and Yu, 2020) and nonlinear functions in the repro-
ducing kernel Hilbert space (Zhao et al., 2012). Our proposed regularized estimation problem in
Section 3.2.5.4 can be ready for nonlinear learning when a functional penalty is used. It requires
further extensions of the efficient score from our Proposition 3.6 to semiparametric/nonparametric
settings.

Another direction of future work can be the high-dimensional problem. In Section 3.2.5.4, we
propose to solve the regularized estimating equation, which can handle high-dimensional parameter
estimation. However, the nonparametric estimation of the working variance function is also a po-
tential challenge when the dimension is growing. In our simulation study, our proposed E-Learning
with estimated working variance function requires larger sample sizes in presence of increasing
numbers of variables and treatments. In the literature, there exists three possible strategies to
accommodate this challenge: 1) considering index models for the variance function that can allow
dimension reduction (Zhu et al., 2013; Lian et al., 2015); 2) estimating the central variance sub-
space for sufficient dimension reduction (Zhu and Zhu, 2009; Luo et al., 2014; Ma and Zhu, 2019);
3) performing simultaneous nonlinear variable selection during nonparametric regression (Lin and
Zhang, 2006; Lafferty and Wasserman, 2008; Zhang et al., 2011; Allen, 2013). These can have

potential for further improvement of E-Learning.

3.8 Appendix

3.8.1 Analysis of the ACTG 175 Trial Data

We evaluate the effectiveness of our proposed E-Learning on a clinical trial dataset from the “AIDS

clinical trial group study 175” (Hammer et al., 1996). The goal of this study was to compare four
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treatment arms among 2,139 randomly assigned subjects with human immunodeficiency virus type
1 (HIV-1), whose CD4 counts were 200-500 cells/mm3. The four treatment options of A are the
zidovudine (ZDV) monotherapy, the didanosine (ddI) monotherapy, the ZDV combined with ddI,
and the ZDV combined with zalcitabine (ZAL).

The primary outcome Y of our interest is the difference between the CD4 cell counts at early
stage (2045 weeks from baseline) and the CD4 counts at baseline, which is larger the better. We
follow the analyses in Lu et al. (2013); Qi et al. (2020); Meng and Qiao (2020) and consider 12
selected baseline covariates X . There are 5 continuous covariates: age (year), weight (kg, coded as
wtkg), CD4 count (cells/mm3) at baseline, Karnofsky score (scale of 0-100, coded as karnof), CD8
count (cells/mm3) at baseline. They are centered and scaled before further analysis. In addition,
there are 7 binary variables: gender (1 = male, 0 = female), homosexual activity (homo, 1 = yes,
0 = no), race (1 = nonwhite, 0 = white), history of intravenous drug use (drug, 1 = yes, 0 = no),
symptomatic status (symptom, 1 = symptomatic, 0 = asymptomatic), antiretroviral history (str2,
1 = experienced, 0 = naive) and hemophilia (hemo, 1 = yes, 0 = no).

We consider the training sample size n € {100, 200, 400, 800, 1600} and the testing sample size
ntest = 400. The full dataset is randomly split into training and testing according to the given
sample sizes. Since the dataset is obtained from a randomized controlled trial, the propensity score
function is known to be p. (k| X) = 1/4 for k = 1,2, 3,4. For the treatment-free effect estimation,
we consider a linear working model with the ¢;-penalty throughout the analysis, which will be
different from the implementation in Meng and Qiao (2020). For this real-world data application,
the underlying truth is unknown to us. We cannot verify whether any of misspecified treatment-
free effect and heteroscedasticity on the original dataset exist. Nevertheless, after modifying the
dataset according to the following Table 3.4, the treatment-free effect misspecification and het-
eroscedasticity can be anticipated. Note that the unmodified cases can also have treatment-free
effect misspecification and heteroscedasticity as well. Our modification can enlarge such effects.
The goal of our analysis is to demonstrate the efficiency improvement of E-Learning in presence of
heavy treatment-free effect misspecification and heteroscedasticity. We further provide the residual
plots in Figure 3.30 in Section 3.8.6. Residuals are computed from the fitted E-Learning on each
modified dataset according to Table 3.4, and averaged over 10 replications. It confirms that the

modifications can result in the squared residuals heavily depending on the variables age and wtkg.
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Table 3.4: Modifications on the ACTG 175 Dataset and the Implying Model Specifications

Training Outcome Modification | Treatment-Free Effect Variance Function
Original Y unmodified unmodified

Y « Y 4 e?5xaee misspecified unmodified

Y « Y + bel2xvtke i ¢ unmodified heteroscedastic
Y « Y 4 e25xage | felSxvtkg o ¢ misspecified heteroscedastic

I The variables age and wtkg are centered and scaled at the data preparation stage.

2 The additional noise ¢ is randomly generated from P(¢ = 1) = P(§¢ = —1) = 1/2 independent of X, A,Y.
3 We further round the modified outcomes to their nearest integers to respect the integer nature of Y.

4 The treatment-free effect is estimated by a linear working model with the £;-penalty.

On the training sample, we implement the same procedures as in Section 3.5 to fit Q-Learning,
D-Learning, RD-Learning, and our proposed E-Learning. On the testing dataset, we evaluate the
an estimated ITR d by the IPWE (1/mgest) Dot Yil[A; = A(Xi)]/(l/él), which is larger the better.
Here, the testing outcome Y; is unmodified in contrast to the training outcome to ensure comparable

testing evaluation. Testing results based on 500 repeated training and testing for each of the four

cases in Table 3.4 are reported in Figure 3.4.

Testing Performance across 500 Replications on the ACTG 175 Dataset
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Figure 3.4: Testing changes in CD4 count (cell/mm?, larger the better) on the ACTG 175 dataset.

When we use the original training outcome Y, the testing CD4 count improvements of all
methods close to each other. In particular, Q-Learning demonstrates slightly better performance
for n = 100, 200,400, but all methods have similar performance when n = 800 and 1600. All these
methods have improving testing performance as n increases. When we modify Y to incorporate
heavy heteroscedasticity or/and treatment-free effect misspecification, E-Learning can maintain the

improvements as n increases, while other methods can have much poorer performance. In particular,
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other methods can even get worse as n increases in presence of heavy heteroscedasticity. We shall
anticipate that the scientific findings for the analysis with original outcome Y will not be disturbed
when we introduce additional treatment-free effect misspecification or/and heteroscedasticity. The
results in Figure 3.4 show that E-Learning maintains the testing performance well during these
modifications, while RD-Learning, D-Learning and Q-Learning are heavily affected. In this way,
E-Learning demonstrates its superiority of efficiency gain in presence of misspecified treatment-free
effect or/and heteroscedasticity.

We further report the estimated coefficients for D-Learning, RD-Learning and E-Learning in
Table 3.5 and Figure 3.31 in Section 3.8.6. The fitted coefficients on the original data are consistent
with existing literature. Specifically, Intercept, age and cd40 are common important covariates
that were frequently reported in the literature (Lu et al., 2013; Qi et al., 2020; Meng and Qjiao,
2020). When we incorporate heavy treatment-free effect misspecification or/and heteroscedasticity
in cases II, IIT and IV, the fitted coefficients of D-Learning and RD-Learning become highly unstable
with many extreme coefficients. In contrast, the fitted E-Learning coefficients are relatively stable
across these cases. This suggests that the E-Learning estimate can be more resilient to the training

outcome modifications in Table 3.4 compared with the other methods.

3.8.2 Optimal Estimating Function under Misspecified Propensity Score Model

Let p./(alx) be an arbitrary propensity score function. For any H : X — RP*(E=1) which can

depend on 3, consider the following estimating function:

H(X)wa

d(B; D) = [Y — po(X) — W(XaA;,@)]m

By Proposition 3.7, since the working treatment-free effect function ug is true, for any working
propensity score function p., we have E[¢(B3;p.s)] = 0 at the true 8. Our goal is to find the

optimal H(X) for a given working propensity score function p .
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The following derivations are analogous to the proof of Theorem 3.10:

Ww®2¢2
E[¢(B;5.)®?] =E [H(X) (W) H(X)T]

= E [H(X)Ve(X; P )H(X)T];
298] _ BRI G
E[ aﬁT]_E{H(X)[(l ) 7

—E [H(X)V%(X;m)F(X;ﬁ)] :

F(X;B)} E [ (X: ﬂ)wtﬁleX)}

=0

In the second equality, we define

i o (k| X))o (X, k)w®?
Do (k| X)?

In the forth equality, it follows from that E(e|X, A) = 0 and we define

o K W(k;X

Let B, (P.) be the solution to E,[¢(3;7.)] = 0. Then under the same regularity conditions

as in Theorems 3.9 and 3.10, we have

Jim nVar[ B, ()|
= e[ -22OEA wygapen fi BT L

BB = (BTACIB) s

)

where, analogous to Lemma 3.15, we define

A= E[H(X)Ve(X; 5o )H(X)T];
B := E[H(X )V (X;5,)F(X;8)];
C 1= E[F(X; 8) V. (X By Ve (X i)~V (X 5 )E (X B)],
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with equality if and only if exists some non-singular constant matrix Hy € RP*P such that
H(X) = HoF (X5 8) TV, (X3 By Ve (X5 5)
Therefore, the optimal estimating function under the working propensity score function p, is

Gt (B; Der) :=[Y — po(X) —y(X, 4; B)] x

=V (XiPer) ::Ve(if;f)m)
K @ [ K 2 ®2 171
. k| X k| X X,k
E(X:8)T (1_ 1) Z pzafv( [ X)wy Z P ( |v )o<( : Jwj, _ wa
K) & boklX) = Doy (k| X) P (A|X)

optimal instrument

Here, different from the case of misspecified treatment-free effect model discussed in Section 3.4.1.2,
the optimal estimating function cannot be defined from an optimal working variance as in Theorem

3.10. Tt require different strategies to estimate the optimal variance components V. (X;p.,/) and

X>,

where € is replaced by the working residual e = Y — uo(X) —v(X, A; 3). Therefore, we can perform

V(X;Dw). One potential strategy is to identified them from

1 w®? w®2e?
Vo (Xiiy) | (1—=) =4 __|x|. V.(X:p,)=FE[-24¢ _

®2 ®2 2
nonparametric regression on the RE-D*(E-1) _yalued matrices (1 — %) m and % on

X. However, such a strategy will be much different from the methodology proposed in this chapter.
In particular, in this chapter, we only need to estimate an R¥-valued function (5gpt(X k)1 <
k< K ), while the optimal estimating function under misspecified propensity score model require

the estimation of two R(K=D*(K=1)_yalued functions V., (X;P) and Ve (X; Py ).

3.8.3 More Implementation Details

e E-Learning (general K): When fitting the treatment-free effect and the propensity score func-
tions, we consider the 10-fold cross-fitting strategy as in Chernozhukov et al. (2018a); Zhao et al.
(2019a); Athey and Wager (2021). Specifically, the training sample is randomly divided into 10

folds. For the k-th fold fitting, we utilize the data other the k-th fold to fit a treatment-free effect
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or propensity score model, and then predict the treatment-free effects or the propensity scores

for the k-th fold data.

We use regression forest to estimate variance function from the squared working residual. The
regression_forest function from the grf package in R is called. We also fit the MARS and
COSSO estimates of variance function. The earth function from the earth package and a
modified program based on the cosso.Gaussian function from the cosso package are applied.

More details on the COSSO model and program are discussed in Section 3.8.4.

Before fitting E-Learning, we first center and scale each variables to ensure (1/n)>" | X;; =
0 and (1/n)>", ij = 1. When solving the penalized minimization problem (3.8) by the
accelerated proximal gradient descent, we call the apg function in R to perform optimization.
When determining the tuning sequence of \’s, we take the strategy analog to glmnet (Friedman

et al., 2010).

Q-Learning (general K): We consider the linear model using Y as the response and
(l,XT,XT,A'T ®XT)T as the covariates with the ¢1-penalty. Here, A = (]l(A = 2),1(A =
3), -, 1(A=K ))T, and ® denotes the Kronecker product. The method is also known as the
¢1-Penalized Least Square (¢1-PLS) (Qian and Murphy, 2011), and implemented by the glmnet

function in R.

G-Estimation, dWOLS (K = 2, A € {0,1}): The DTRreg function from the DTRreg pack-
age (Wallace et al., 2017) in R is called to fit G-Estimation (method = "gest") and dWOLS
(method = "dwols"). The treatment-free effect model (tf.mod) is specified as linear in (1, XT)T.
The propensity score model (treat.mod) is specified as the logistic model of A with respect to
(1, XT)T. The interaction effect model (blip.mod) is specified as linear in (1, XT)T. For dWOLS,

the weight function w(X,A) = |A — 77 ,(X)| in Section 3.3.1 is used.

A-Learning, Subgroup Identification (K = 2, A € {—1,1}): The fit.subgroup function
from the personalized package (Huling and Yu, 2018) in R is called to fit A-Learning and Sub-
group Identification with the ¢1-penalty (method = "a_learning" and method = "weighting"
respectively, loss = "sq_loss_lasso"). The propensity score model (propensity.func) is spec-

ified as the logistic model of A with respect to (1, XT)T with the ¢;-penalty, which is fitted by
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glmnet. The treatment-free effect, also known as the augmentation function (augment.func),
is specified as: for A-Learning, the linear model of Y with respect to (1, XT)T with the ¢;-
penalty, fitted by glmnet; and for Subgroup Identification, the linear model of Y with respect to
(1, XT, A, AXT)T with the ¢;-penalty, fitted by glmnet, and outputting the arithmetic average

of predictions at A =1and A = —1.

e D-Learning, RD-Learning: (general K) We consider the class of linear functions with the
row-wise grouped LASSO penalty. The training process is performed by the accelerated prox-
imal gradient descent using the apg function. The estimation of the treatment-free effect and
propensity score functions, the fitting details and the tuning strategy are the same as in E-

Learning.

e OWL, RWL, EARL (K =2, A€ {0,1}): The owl, rwl and earl functions are called from the
R package DynTxRegime to fit OWL, RWL and EARL respectively. The propensity score model
(moPropen) is specified as the logistic model of A with respect to (1, XT)T with the ¢;-penalty,
which is fitted by glmnet. The outcome models, including the main effect model (moMain, used
in rwl) and the contrast model (moCont, used in rwl and earl), are both specified as linear
in (1, XT)T with the ¢;-penalty, which are fitted by glmnet. The corresponding outcome mean
model is E(Y|X,A) = moMain(X) + A x moCont(X). These methods are fitted with linear
decision functions (kernel = "linear"). For owl and earl, the hinge surrogate loss is used
(surrogate = "hinge"). For rwl, the surrogate loss is the smoothed ramp loss (Zhou et al.,
2017). The tuning parameter A for all methods is determined by 5-fold cross validation (cvFolds

= 5). The sequence of \’s for tuning is determined analog to glmnet (Friedman et al., 2010).

e Policy Learning: (general K) We use the policy_tree function from the policytree package
(Sverdrup et al., 2020) in R to fit policy learning with decision trees. The outcome mean function

and the propensity score function are both fitted by regression forest from the grf package.

3.8.4 COSSO Estimate of the Working Variance Function

In this section, we consider the implementation details of estimating Jgpt(as, A; [ig.n) from COSSO
(Lin and Zhang, 2006). Specifically, we perform nonparametric regression using the squared working

residual €2 as the response and (X, A) as the covariates.
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First of all, we discuss an SS-ANOVA model in terms of the covariate vector X =
(X1,---,Xp)T € RP and the treatment variable A € {1,2,---, K}. If the j-th variable X is contin-
uously ranged, then the we first scale the domain of X; to [0, 1], and consider the j-th covariate

function space as H; = Sz, where (Sa, || - |s,) is the second order Sobolev Hilbert space:

Sy = {f :[0,1] - R ' f and f" are absolutely continuous, Jf”(z)Qd:L“ < +OO} ;

iz = ([ f(a:)dw>2 +([ f’(w)dw>2 + [ era

In particular, H; = Sz can be decomposed as {1} @ H; (Gu, 2013, Equation (2.26)), where H; is

the reproducing kernel Hilbert space (RKHS) corresponding to the kernel function
Rj(z, ) = ki(z)k1(2) + ko(2)ko(2") — ku(|lz — 2'|);  z,2" €]0,1].

Here, ki(z) = . — 0.5, kao(z) = (1/2)[k1(2)? —1/12], and ky(z) = (1/24)[Fk1(z)* — k1 (2)%/2 + 7/240].
If X; takes finitely many values in {1,2,---,L;}, then we consider H; = R, which can be
further decomposed as {1} @ H;. Here, H; = {(a1,a, - ,ar,)T € Rl Zlejl a; = 0}, and can
be regarded as an Lj-dimensional RKHS corresponding to the kernel matrix [r;(z, 2’ )]ﬁ,{z’:l =
Ip;xz; — (1/Ly) qu i}J Similarly, since the treatment variable A is valued in {1,2,--- , K}, we also
consider the treatment function space H, = RE with the decomposition H, = {1} ® H,,, where

H.s is the subspace of RX with the sum-to-zero constraint and corresponds to the kernel matrix

[ (0, a5 ) = oere — (1K) T T
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The SS-ANOVA model is based on the following tensor-product RKHS (Gu, 2013, Section
2.4.1):

M= [é%] ®Hoy = [é ({1}@%)] ® ({1} oHy)

j=1 j=1
d — —
- {3} e [@ Hj] ® A
global main effect N ) treatment main effect

covariate main effects

® [(Jia (H; ®ﬁp{)]

covariate-treatment interaction effect

@y @ K®Hj>®<®%j®%ﬂ>]
Jc{1,2,+ ,d} je s je g

|72

higher-order interaction effects

Here, we only consider first four effects from the above tensor-sum decomposition and ignore the

higher-order interaction effects. Then the SS-ANOVA model is

p K
~2
E(e*X,A) = Vo + Y A+ 3 oy
—— A
lobal main effect J=1 k=1
& — ~——
covariate main effect ~ treatment main effect
K K
+ ) Z + o
. f ]k: U
j=1k=1 remainder
—_—

covariate-treatment interaction effect

In particular, the tensor-product RKHS 7-_{3- ®%H .7, which models the covariate-treatment interaction

effect, corresponds to the kernel function
(Fj ®Ry) ((ﬂsj, a)T, (z, a')T> = Rj(xj, )R (a, ).

Then the COSSO estimate 52(X, A) of the working variance function is obtained by solving:

I;él%[l{ Z e; — f(Xi, A + A2 <Z 1, + 1, + Z Hf|HJ®Hw«>}
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Here, |- |l5,, |7, and |- |5, g%, are the RKHS-norms corresponding to the associated component

spaces, and A, 2 is a tuning parameter.

For implementation, we define the empirical kernel matrices K; := [;(Xij, Xi;)]?y_, and
Ky = [Fa (A, At _y. Then P_(j, K. and P_(jﬂ = Kj ® K,y are the empirical kernel matrices on

7:[j, H., and 7?[j ® M.y respectively, where Rj O K,y is the elementwise product of P_(j and K,,. For a
vector @ := (01, ,04;0;01 o7, ,04.0)T € Ridﬂ of kernel weights, we write Kg := Z;'l:1 ijj +
0.,Ky + Z;-lzl 0; . Rj’ o € R™™™ ag the weighted sum of the empirical kernel matrices. For a vector
o € R™ of representer coefficients, we write Go = [Kia, -, Ko Ko R]_’M/a,"' ,Rdyda] €
R™*(2d+1) a5 the gram matrix of the componentwise prediction values. We also denote €% :=
(e2,---,€2)T as the empirical squared residual vector. Then we fit a COSSO model by calling the R
function cosso: : cosso.Gaussian with the aforementioned kernel matrices and the squared residual

vector as inputs. In particular, a random subset of sample points with size max{40, [12n%9]} is

used for representers. The following two steps are alternatively implemented:

e For a given kernel weight vector 6, we solve

1 L2 _
min { H52 b1, — KgaH2 + )\OaTKga}
n

b,
for the representer coefficient vector (b, aT)T;

e For a given representer coefficient vector (b, aT)T, we solve

1 B} 2 )
min {n = b1, —Gab| +XaTGab subject to 6 RY™!, 1],,,0< M} :

for the kernel weight vector 6.

Here, the tuning parameters (Ao, M) are chosen according to Lin and Zhang (2006, Section 6).

3.8.5 Technical Proofs
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3.8.5.1 Proof of Theorem 3.1

Proof of Theorem 3.1.

K
V(d*) — =E{ D (X, k){1[d*( ):k]-ﬂ[&n(X):k]}}

ahaP
{

—_

N

E |7 V(X’k/)‘;d*(X) = k‘, c/i\n()() = k/}

k/

k+#
1E{Z|7Xk; (X, K);

k#E

X) =k and dp(X) = K or d*(X) = k" and d,,(X) :k}

{ DX ) = (XK + Fn(X k) — (XK
kK

d*(X) =k and dp(X) = k' or d*(X) = k' and d,,(X) = k}
{ Z ’ (X k)]_['/)\/n(X>k)_:)\’n(X7k/)]|§
k£k!
d*(X) =k and dy(X) = k' or d*(X) = k' and dp,(X) = k} (%)
{ Z |’YX k (X’k;)|+’7(X’k,)_:)\/n(Xvk/)|;
k£k!
d*(X) =k and dp(X) = k' or d*(X) = k' and d,,(X) = k}
<E (X, d") = 3u( X, d)| + B [y(X, du) = (X, d,)

< .
<2 max E|y(X, k) — (X, k)

~

The equality (x) holds since the event d*(X) = k and dp,(X) = k' or d*(X) = k' and dn(X) = k
implies that
[(X, k) = (X, K)][An(X, k) = An (X, K)] <0
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3.8.5.2 Proof of Lemma 3.2

Proof of Lemma 3.2. Denote
A= {H e H :E(He|X,A) = E(He|X)}.

Consider the following family of parametric submodels of (3.1):

€
A

P = {(X, AY) ~ par(X; ap)xpo (A1 X; @) xpe (Y — 10(X; a) — (X, A B) | X, 4; ae)},

where a = a gy ® ay @ a. ® oy, are finite-dimensional parameters for the nuisance components

N = (P2 ,Dw,Pe, o). Then the nuisance score vector is

Ologpa (Xiaa)
S,%’ oo g

0log poy (Al X0t er)
S — sz{ O0tey

* dlog pe (€| X, Ajaxe)
€ Ooxe

_alnge(dX»A;ae) a,u‘O(X§a,U«0)
Ho Oe oy,

Then the nuisance tangent space of the family of submodels &3 o is defined as (Tsiatis, 2007):

A = {BSa ‘Be Rpxdimw)}

{ngs% +BySy + BeSe + By S -

By € Rpxdim(agg)7 B, € Rpxdim(ozﬂ)7 B, € Rpxdim(ae)’ B#o c Rpxdim(auo)}_

We aim to show that A, © A. By A is a linear space, it is equivalent to show that S, S, Se, Sy, €

A. Denote Eg,a as the expectation under the submodel parametrized by (3, c).

e Since S4 is a function of X, we have that

Ega(Sa€|X,A) = SyEgale|X,A) =0=8y9Ega(c|X) =Egal(SseX).
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That is, Sy € A.

e Since S, is a function of (X, A), we have that
Ega(SyelX,A) = Sy/Ega(e|X,A) =0.
On the other hand, by Eg (| X) = 0 for any o, we have

0
0 = @Eﬁ’a(dX)

o [ talXsanne X, asa0dade
(0 %74

_J (000 )pw(a| X 0ugy)
= € X
P (a|X;oy)
_ fﬁ " dlogp(a| X; ay)
ooy

X Doy (a| X5 0 )pe(€| X, a; o )dade

X oy (a| X5 oy )pe(€| X, a; o )dade

=Eg.o(SxelX).

That is, Eg,a(Sy€| X, A) = 0 = Eg.o(Sye|X), and S,y € A.

e By Eg (€| X, A) =0 for any a, we have

2
0= —EgalclX, )

€

—a Jepe(e\X,A;aE)de
o
J (5/aa€)pe(€|X, A; 0‘6)
= |ex
(€| X, A; o)

B J  logpe(e X, A )
oo,

X pe(€| X, A; ate)de

X pe(€| X, A; ae)de

= Eg (S| X, A).

That is, Eg,a(Sc€| X, A) = 0 = Eg o(Sce| X), and S, € A.

e Note that

_cOlogpe(e] X, Ay o) | Opo(X; Q)

Sha€ = 0O doy,

function of X
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Lemma 3.12. Suppose X ~ p(x) where p(z) is a probability density function with respect to

the Lebesque measure on R, such that |x|p(x) — 0 as |z| — +00. Then

. (XdlZip(X)> .

By Lemma 3.12, we have

<Ga 10gp€(6|X, A5 a)
E
Oe

X,A) — 1. (3.15)

Then

elogpe(e| X, 4; ae)
Oe

)

Ega(S,€/X,A)=—-E <

X,A) po(X; a,uo) _ aNO(X;auo)
aa#o aa#o

which is a function of X. Consequently, Eg «(Su,€| X, A) = Eg .o (S,,€/X), and S, € A.

Therefore, we can conclude that A, < A. By the definition of nuisance tangent space of the
semiparametric model, we have that A < A.

Next, we aim to justify A 2 A. Fix an H = h(X, A,¢) € A, i.e.,
E(H)=0; E(He|X,A)=E(HeX).

We need to construct a parametric submodel whose nuisance score vector is H. Consider the

following orthogonal decompositions:

H =E(H|X)+E(H|X,A) - E(H|X)+H —E(H|X, A).
Y ~—

~—
=H o =H =H,

Without loss of generality, we assume that |H|js < M < +00. Define

por(X;ag) :=pr(X)(1+alyHy); leegr|la < 1/M;
P (AlX; 0y ) = pos (A X)(1 + a,Hy); o |2 < 1/M;
(1 X, As ) := pe(€] X, A)(1 + al H); leeellz < 1/M.
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Here, pa (X)), ps(A|X) and pe(€| X, A) are the densities of Model (3.1). Then we consider the
following data generating process (DGP) parametrized by (3, a) where a = a9 ® oy @ a:
Vo= po(X) + (X, A;8) + &

K
subject to Y (X, k) = 0; Egal(?1X,A) = Eg o X);
pat
(X,A4,8) ~ pa(x; 002 )poy(a]@; oy )pe(€, a; ).

Notice that the above DGP can be transformed to the form of (3.1) by setting uo(X; ) :=
po(X) + Ega(€]X) and € := € — po(X; ). Next, we verify that the above DGP is well defined

and corresponds to the nuisance score vectors H 9, H, and H..

e By

laly Hy| < lagzlo|Hl2 <1 |af,Hyl < |oyl2|Hl2 <1; [alH < [acl2|H|2 <1,

we have py (X;a9),ps (Al X; o), pe(€1 X, A; o) = 0.

e ByE(Hy)=0,E(H,|X)=0and E(HX,A) =0, we have

fp%'(fv;aﬁr)dw = Jpﬁzr(w)dw +al, E(Hy) = 1;
me/(a]X;am/)da = fpﬂ«(a\X)da +al E(Hy|X) =1,

f Pe(E1X, As ) de = J pe(?1 X, A)dE + aJE(H,| X, A) = 1.

Therefore, po (x;9), pa(a|X; ay) and pe(€]| X, A; a.) are probability density functions.

e The conditional mean restriction becomes

Epo(?X, A) = f 1+ o Hpo (X, A2
=E(e|] X,A) + o]E(H €| X, A)

= a]E(H.| X, A),
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which is a function of X, by the fact that

E(H.e|X,A) = E(He| X, A) — E(H|X, A)E(e| X, A) = E(He| X) — E(H| X, A)E(e| X) = E(H.€|X).

=0 =0

Then it can be clear that

Ega(€1X,A) = Eg (€ X).

e The nuisance score vectors are

dlogpa (X0 ) H
S = [ = |—FZ — = H
z o g g =0 1+alme% g =0 X
0logpey (Al X 0uer) Hy
S, — [— - | Hs - H.-
o 00t e oy =0 I+al, Hy a =0 @
— alOgP€(€|X7A§ae) — He —
Se = [ Ooce =0 - 1+al H. =0 = He.

Therefore, the DGP above corresponds to the nuisance score vectors H, so that A 2 A. That is,

A= {H e :E(HelX,A) = ]E(He\X)}.

Proof of Lemma 3.12.
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3.8.5.3 Proof of Lemmas 3.3 and 3.4

Proof of Lemma 3.3. Since the column space of {2 is the orthogonal complement of the space
spanned by 1k, we have

_ 1
QT IO = Tk — Kl%xl

In particular, for 1 < k, k' < K, we haveb

~1
() (@) Py = (1= 1) (RO s = Uk = K) = Uk £ )
Therefore, {wg}X | are unit vectors and equiangular. O

Proof of Lemma 3.4. By Lemma 3.3, we have

QU TIOT = T,k — (1/K)TFA .

Denote ’?(waﬂ) = (’7($’1n@)77(x72a/3)7 77($7Ka18))1- Then

VI—1/KQf(z; B) = QQTQ) " 1QT(x; B)

Il
ﬁi
H
&)

That is,

v(z, k; B) = (1 - ;) (wi, fl®;8)); 1<k<K.

3.8.5.4 Proof of Lemma 3.5

Proof of Lemma 3.5. Suppose H € A and H: X — RP*(E=1_ Then
E\H | ————— =E|E(—2—~|X |HX)T| = Opxp.
B (o ey S| = O
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That is,
H(X)wae
AL ——"r
{W(A!X)

H : X—»Rpx(K—l)}.

Now suppose H € H. Define

HwAe
P (A|X)

wye

H ::E{ P (AX)

‘X} (X)™ ! H,:— H-H,.

RPX (K —1)_ Valued function of X

Then the following shows that Hy € A:

Hywle ) ( Huwle ) { Huwle } . < u.,v%ﬂe2 )
— X |=E( —— X)) -E{——— X}V X)) 'E| ————= =0, (K-1),
(ot P (AIX) poax) g VAR TE G e P
where
X2 2 ®2 2 K 2 ®2
wq e (X,A)
E(-YA° |\x|_g(¥a7 ) — V.(X).
<W<A|X 2 ) ( P (AIX)? ) ,;1 ) Ve
Therefore,

1 H(X)wae
A ‘{M(A|X>

H: X—»RPX(K”}.

3.8.5.5 Proof of Proposition 3.6

Proof of Proposition 3.6. The score vector of Model (3.1) is defined as (Tsiatis, 2007)

Ologpe (Y ~ pno(X) — 1(X, 4;8)| X, A)
Sg = B

0log pe(e| X, A)

In particular,

E { Sgwj;‘e
P (Al X)

o VXA B {_ealogpe(eleAH }(315) {7(X,A;B)wlx
X}‘E{ por (AIX) e X = B T, A

x}.
Then by Lemma 3.5, the efficient score (Tsiatis, 2007) is

(X, A; B)w)

Sur = E(SplAL) = E{ s

_ WAE
X
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Consider the angle-based decision function (3.4). We have

5, 4:8) = (1 ¢ ) FOG B
Then
(X, A; B)w) }_( 1 ) F(X;8)Twd?
{ ax) -\ ) B ax K
K
oy (1- 5 ) X uf - Py
k=1
Therefore,
_F L A\TOT _1 WAE
Sef‘f F(XﬂIB) Q QVE(X) p%(A]X)

3.8.5.6 Proof of Proposition 3.7

Proof of Proposition 3.7. It follows from direct calculation that

o } ps(AX)
E[¢eﬁf(ﬂ»ﬂ0apd702)|XaA] = [#O(X) - MO(X)]H(X)Z\)/M(A’X> p%(A’X)

If fip = po, then the above is 0. If ,; = p.y, the above becomes

E[(beﬁ(ﬁ;ﬁOvb/%,bl'ZﬂX,A] = [MO(X) _ ﬁO(X)]H(X)]ﬁ

Then we have

E[@ert(8: o, B, 7)1 X] = [110(X) — Jio(X)H(X)E (W(AX)\X) _o.
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3.8.5.7 Proof of Lemma 3.8

Proof of Lemma 3.8. Denote F(X) := SUD 5 HF(X,B/)HQ Define

K ~9 ®2
~ oo (X, Aw
Ven(X) = )] k

and
hoft.n(X, A; f) = F(X;ENQTQ\ZW(X)*%;
on(X, 4 ) = FOG ATQTOV(X) ™S

Then

Get (B flon, Por» 52) — et (Bs io, Doy 72)

= Y~ Jio(X) =X, A B)lhern(X, 45 B) — henr (X, 4 B)] (3.16)
=&(B)
— [flon(X) = Jio(X)|Prer (X, A; B) (3.17)
— [flon(X) = fio(X)][hern(X, A, B) — her(X, 4; B)]. (3.18)

o We first relate i\befhn — fVLeff to 62 — 2. Note that

|

huitn(X, A: ) — hea (X, 4 8)| < |FOX:B)| < 1903 x|

2 .
K Doy

Ve ()7 V) < A

Here, || - | is the Frobenius norm. By o2 < 62(X,k),5%(X,k) < 2 for 1 < k < K, we further

have

K -1
NG 1
2 2 2
Ven(X), Vo(X) > 0 ];w;? 5 (1—K> a0 > 0,

=V

€
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Here, “A = B” means that A—B is positive semi-definite, with strict inequality if A—B is positive

definite. Then

Ven(X) = Vo(X)

56X k) — F(X K w?
Z:: P (k| X)

2

Ha — U2Hoo (3.19)

1
L ——— w®?
py{)‘min(yg)2 H ];1 K 9

—(1-1/K)-1QTQ

Therefore,

e (Bound for Residual) First note that

Pt (X, A; B) — heg (X, A; B)H < constant x F(X) x [62 — 52|

E.[2(8)%] = E[&(8)*] + op(1) (by SLLN)

< SE{Jig(X)? + 1o (X)? + (X, 4 B)° + 1(X, A4; ) + €} + on(1),

which is bounded by Assumption 3.2.

e (Convergence of (3.16))

[E.1(3.16) |21 < constant x B, {[&(8) £(X) )} 162 ~ 5
< constant x {E[E(B)2]E[F(X)2] + OP(1)} x |62 — 522,

= Op(n_l).

e (Convergence of (3.17)) First note that

V(X _1H |wall2
X, Al

1\ oBeE
<|1-—— —= — _x F(X). 3.20
< K > Doy )‘min(ye) ( ) ( )

hoin(X, 4 B)| < |F(X3B)| < 19203 x|
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Here, Amin(+) is the smallest eigenvalue of a matrix. Then

[E, (3.17)2]? < constant x En[E(X)?] x En[fion(X) — Fio(X)]?
< constant x {E[F(X)2] + OP(U} % En[fion(X) — Jio(X)]2

= O[p(nil).
e (Convergence of (3.18))

. 2
[ (3.18)]2]2 < constant x By {[7i0.n(X) — Fio(X)| x F(X) | x 52 — 5%
< constant x {E[F(X)2] + OP(1)} % En[fion(X) — fio(X)]2 x |52 — 522,

= op(n_Q).

Therefore,

%up En”¢eff(167 /~/Z0,TL>p<Q77 87%) - d)eff(ﬁ; /-\207 Py \0/—2) H2
Be#

<E,[(3.16)[]2 + Ey,[[(3.17) |2 4+ En[(3.18)]2
<op(n™Y?) + op(n"V?) + op(n™h)

=op(n™?).

3.8.5.8 Proof of Theorem 3.9

Proof of Theorem 3.9. We follow Newey (1994, Lemmas 5.1-5.3) to establish the asymptotic linear

representation.

Step I: (Asymptotic Linear Representation) Our Lemma 3.8 can imply the asymptotic linear representation

of the plug-in estimating function as in Newey (1994, Lemma 5.1):

VB[ Dot (B; Tiom, Dy 52)] = VB[ et (B; Tio, ay, 52)] + op(n2).
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Step II: (Uniform Convergence and Consistency) We aim to establish the convergence of

B, [@ett (B; flo.ns Der» 62)] and B, [(8/087) et (B; fioms por, 62)] uniform for 3 € %, and the

consistency of Bef p-

Recall from Lemma 3.8 that:

sup E,,
,éa%’

Gt (B: fioms Puv, 52) — st (B io, p.r, 52)| | = ox(n™17).

The same conclusion can be drawn for (0/037)@eg following the same argument.

Lemma 3.13. Consider Model (3.1) and the estimating function (3.5). Under Assumptions 3.1-3.3

and 8.4.2, we have

0ot (B; fiom, Doy, 02)  Oest (B; Fios ey 52)

0BT 0BT

sup E,
ﬁe%

Next, we apply Glivenko-Cantelli Theorem to replace E, by E. We establish the conditions in

Lemma 3.14.

Lemma 3.14. Consider Model (3.1) and the estimating function (3.5). Under Assumptions 3.1-3.3

and 3.4.2, we have:

(1) There exists L : X x A x R — Ry such that EL(X, A €) < o0, and for any ,él,,éz € B, we

(II) There exists L: XxAxR — R, such that EE(X,A, €) < o, and for any ,él,,éz € B, we

have

¢eff(51; /\107p&2f7 5_2) - d)eff(BQ; /j07p.12{7 5_2)H2 < L(X7A7 6) H/\Bll - BQHQ .

have

et (B Jio, Py, 52) bt (B o, por, 5°)
opT opT

‘ <I(x. 49| - .
2
(III) Esupﬁe% H¢eff(/é7 /jO,pM, EZ)HQ < +00, Esupﬁe@ H(a/a/BT)¢eff(lév ﬁ07p%7 52)“2 < +00.
By % is compact and Lemma 3.14, we can conclude that

{$ett(Biio,por 5) : Be ) and  {(2/0BT) et (Bs fio,pir 57) : B e 2}
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are both P-Glivenko-Cantelli. Then, by Glivenko-Cantelli Theorem, we have

a¢eﬁ (Ba /\107 Py 5-2)

5 —0. (3.21)

2

sup (P, — P) | @eit (53 o, s, 52)| , sup(P, —P)
Be 2 Bew

Remark 3.3. From the proof of Lemma 3.14, we have

E|— a¢eﬁ(5; ﬁ(]:p%a 5-2)
0BT

—E(3.27) + E(3.28)

=E{F(X;E)TQTQ\V/6(X)_1E [(1 —~ Il{> W‘ﬁlQX)‘X] F(X;ﬁ)}

_ E{#(X; B)TQTOV (X)) I\E (2%{;‘1’45:')() E(B)}
=0

=7(8).
By Lemma 3.14 (II) and (3.21), we further have that 3 — Z(3) is continuous.

Combining Lemmas 3.8, 3.13 and (3.21), we have

SUp |y et (B: fo.ns por 52)] = Eleat (B:Fio,per, 31| | 0 (3.22)
BeA
3.7 ~2 3.5 ~2
Sup En [a(ﬁeﬁ(ﬂvgg:ap&{?gn)] _E [6¢eﬁ(ﬂva/g{;pﬂv 4 )] L 0. (323)
2

Bve%

The consistency of Beffm follows from that £ is compact,

g 2
; B € argmax HE[¢eff(,3§M0ap%><72)]’
BeR 2

I

- 2
En[d’eff(ﬁ? Hony Pat 0721)] ) 9

Beft,n € argmax ’
Be

and the uniform convergence in probability in (3.22).
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Step III: By Mean Value Theorem, there exists some «,, € [0,1] and Bn =(1- O[n),é\eff,n + an B, such that

0 = Ep[@est (Bet n; Hons Pers 02)]

0 e Nn;/\ [ 7/\721 >
=En[¢eﬁ<ﬁ;ﬁ0,n,pﬂ,a,%>]+En[ B e )] (Bettn = B):

That is,

opT
8+ op()} % {Eulgen(B: fio.per. 5] + op(n)}

~ X A ~2 -1
Bettn =8 = {E” [_6¢eﬁ(ﬁm Lo P Un)] } En[@eit (B; fiom, Py, 53)]
i(:@)_lEn[(ﬁeﬂ(/@; fi0, Dt » 52)] + OP(n_l/Q),

Here, the second equality follows from that

~

(Bn) +op(1)  (by (3.23))

¢

B _0¢eﬁ(5n;ﬁ0,mpm&%) _
n 037

Z(8) + op(1). (by Beg,n % 3 and the continuity of 7)

Step IV: (Semiparametric Efficiency) If (fig, 52) = (10, 02), then ¢eg(B; Jio, por, 02) = Set(B3). Moreover,

®2
wie (X)laTQF(X;ﬂ)]

E[Sex(8)%*] = E [F<X B)TATOVX) Ve

wE(e2| X, A)
Por (A X)?

"

=Ve(X)

= E[F(X;ﬂ)TQTQVG(X)l E (

X) Vg(X)lQTQF(X;ﬂ)]

»

=1(B)-

That is, Z(83) defined in Theorem 3.9 is the semiparametric Fisher information matrix. We further

have

Vi(Betin — B) = VnZ(B) "En[Serr(8)] + op(1) > N, (0,Z(8)7").

Therefore, Beg p is semiparametric efficient.
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O
Proof of Lemma 3.14. We follow the notations in Section 3.8.5.7. Denote F(X) :=
sup s | F(X5 8] 2.

(I) Fix By, B2 € #. Then

ot (B1; Ji0, Do 72) — et (B2 lo, per, 5°)
(1—) FX: By — FX Ba) hen (X, A: 1) (3.24)

~

heH(X A; /61) eH(X A; ,82)] (325)

e (Lipschitz Bound on (3.24))

—

— (Lipschitz Bound on f)

\/ — ‘ ’

[F(X3B) ~ FXB)| = |FXGB)B— Bl (for some B = (1 - a)i + o)

<[FexB), x |8 - ],
< F(X) % H'él _'52H2'

— Then we have

(3.24) 1\2_( )rwArQHf (X:8) — FIX: 8o,

£XAm%

_

<(1-1/K)1/2]Qs <(3.20)

< constant x F(X)2 X Hél — BQHQ.
e (Lipschitz Bound on (3.25))
— Note that

WA

Feir (X, A; B1) — bt (X, A; B2) = [F(X;51) — F(X;BQ)]TQTQ\V/e(X)_lm'

141



— (Lipschitz Bound on F)
F(X3B0) — FOXG )| < F(X) x B B

— Then we have

= [Fx: By —FX )| 193]

hea(X, A; B1) — heg (X, A;B2>H2

lwall2
2 pgy(A|X)

J

x|

v~

<(1=1/K) =2 Q)3 p/ (R Amin (V)]

<constant x F(X) X H'él - BQHZ.
— The residual &(82) in (3.25) can be bounded by

sup [£()] < [Jio(X) — (X)) + (1 - j() sup

WLIF(X:B) - F(X: 8] + e

Be BeB
1\Y? L
< )]+ o301+ (1= 72 )  I90e sup | £33 5) -~ 7, + e
3 2
BeA
< |Jio(X)| + |po(X)| + constant x F(X) x sup |3 — ﬂHQ el
,ée@
—_—
<diam(%)
< |Jio(X)| + |po(X)| + constant x F(X) + |e|. (3.26)

— Then we have
[(3.25)[]2 < constant x [|,E0(X)| + o (X)| + F(X) + |e|] X F(X) X H'él — B/QH2

Combining the Lipschitz bounds on (3.24) and (3.25), we have

< constant x {F(X)2 + [[ﬁo(X)\ o (X)| + F(X) + \e\] x F(X)} x Hél . 52H2 .

"

Gt (B1; Fio, Doy 72) — Dot (Bas o, Py 5’2)H2

:=L(X,A)
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(1)

In particular,

EL(X, A,e)

1/2 1/2

<constant x [E[F(X)Q] - ({E[ﬁo(X)2]} +{E[uo(X)?]}

s {Epoon) v gy friExn) )

which is finite by Assumptions 3.2 and 3.4.2.

Note that
0Peit (B 10,052 _ /v Hr0mON (-1 LW Gl v
S CenBiRp T s Brana () [(1—K)MA,X) FGH) @)
—F(X;8)TQTQV (X)) wa?lp) (3.28)

P (AIX)

Fix B1, 32 € #. Denote (3.27)(81) and (3.27)(3) as (3.27) with B replaced by B; and B respec-

tively.

[F(X;81) — F(X;82)]+

~ ~ . > \7 1 w®2
(3:27)(B1) — (3.27)(B2) =F(X; BTV (X) ! Kl - K) b (ATX)

. -~ . -~ - 1 w®2 . ~
[F(X581) — F(X5 82) 7TV (X) ™! [(1 - K) oA | FXPa).
Then
% % 21Q1510% N
“(3.27)(@1) _ (3.27)(@)”2 < m x F(X) x HF(X,,Bl) . F(Xﬁg)H2

< constant x F(X)F(X) x Hél — BQHz.

Denote (3.28)(51) and (3.28)(,52) as (3.28) with B replaced by 31 and 35 respectively.

-1 wAé(Bl)

(3:28)(81) — (3:28)(B2) = = [F(X: B1) = F(X: Bo) T V(X) T = (3:29)
F 3 NTOTOV - wA (3 (3
— F(X B)TQTQV (X))~ s [E(B) — &(B2)]- (330)
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Here,

()~ 28| = (1 g ) [whl s B - Fxs )|
< (1-5) 10t x P00 ¢ [ o],

Then

I\ jeBiole :
1(3.29)], < (1 - K) oy % )]+ Lo (X)] + constant x F(X) +e|

—€

< |F(X:B1) - F(X: )

2

)

<constant x [[Jio(X)| + o(X)| + F(X) + e | x F(X) x | o]

1\ 72 [013]2]e
3.30)[p < | 1—— W YA
H( )“2 < K> QJZ()\mln(ye)

<constant x F(X)F(X) x HBI - B2H2-

And the Lipschitz bound for (3.28) is

|(3:28)(8) - (3:28)(B)
<1329z + (33012

<constant x [|/70(X)| + o (X)| + F(X) + |6|] x F(X) Hél _BQHQ

Combining the Lipschitz bounds for (3.27) and (3.28), we have
Oert (B Jio, Py, 7°) bt (B; flo, par, 5°)
0BT 0BT

< constant x [\ﬁO(X)| + |po(X)] + F(X) + |e|] X F(X) X HBl - BQHQ

<

2

=L(X,A)
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In particular,
1/2

EL(X, A, ) <constant x <{E[ﬁ0(x)2]}1/2 4 {E[MO(X)Z]}

+{ioon) " - ey {eEcon)

which is finite by Assumptions 3.2 and 3.4.2.

(ITI) Note that

bt (B: o, por )| = [#B)] x |Rer(X. 4: B)
—

<(3.26) <(3.20)

< constant x [\ﬁU(XH + o (X)| + F(X) + |e|] x F(X).

Therefore,

Esup‘

s (f)eH(IBQIjO’PMa&Q)H
Bes 2

1/2

<constant x <{E[pO(X)2]}1/2 + {E[uo (X)) + {E[F(X)2]} + {Eé}”) {E[F(X)2]}l/ ‘.

which is finite by Assumptions 3.2 and 3.4.2. Next, we consider bounds for (3.27) and (3.28).

|03

3.27)|s < 2 o p(X)2
1(3.27)]2 o A (V) (X)
1\ 72 Q20 o~
13:28)]> < (1 - ) ey “3)
K p;g{)\min(ye)
<(3.26)

< constant x [\EO(X)| o (X)] + F(X) + |e|] x F(X).

Then we have

ad)eﬂ(é? /\2071)&{7 52)
opT )

<constant x []E[F(X)z] + ({E[EO(X)2]}1/2 +{E[uo(X)?]}

E

<E|(3.27)]2 + E[(3.28)[2

+{EF(X)7)}

+ (&) {aEce)

145



which is finite by Assumptions by 3.2 and 3.4.2.

O]

Proof of Lemma 8.13. We follow the notations in Section 3.8.5.7 and the proof of Lemma 3.14.

Note that

¢ (B; o, Py, 52) N Ot (B Jio, por, 5°)
opT opT

— E(X;8)TQTQV (X)) - V(X)) [(1 _ 1) e

= F(X;03) (3.31)

_ WA
P (A|X)

- F(X, B)TQTQ[Ve,n(X)_l -

+F(X;8)7QTQV(X) ™! [F10.0(X) — fio(X)] (3.32)

~

wAé(B)
P (Al X)
o wa
P (A|X)

<{
[0}
—
s
—
[ —

(3.33)

+ F(X, B)TQTQ[VGJL(X)_I - \76(X)_1] [/’ZO,n(X) - :ZZO(X)] (3'34)

Then

21012 )
IOBI2IE |, o2

3.31) s <
1(3.31)] -~ Ve )

< constant x F(X)2 x 162 = 520

1(3.32)]2

N

1\ B -
1- = 2« F(X) X |fion(X) — Jio(X)];
(1= %) S X 00 x [ () - ()

<1 B 1)1/2 IR0 | o x (3| <|
——

N

1(3-33)[2

K Doy

<(3.26) <(3.19)

< constant x [[fio(X)| + [uo(X)| + F(X) + [el| x F(X) x |62 ~ 572

-1/2 2 .

I(3:39)12 N

N

)

Py < 5
<(3.19)

Ve X)) = V()™ ¢ Jfion(X) = io(X)|

< constant x F(X) x 62 — 52| x |fiom(X) — Jio(X)] .
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Then we have

o |29t (Bifion.pr,3h)  Opet(B: fio, s, 5)
n 0BT 0BT
<E,|(3.31)]2 + En[(3.32) ]2 + En]|(3.33) ]2 + En(3.34)]2

2

<op(n™Y?) + op(n2) + op(n Y op(n?) + op(nY)

—op(n"1/?).
O

3.8.5.9 Proof of Theorem 3.10
Proof of Theorem 3.10. By Theorem 3.9, we have

Bott.n(i0) — B = T(B; io) " En[est (B; io, por o250)] + op(n™1/?).

Therefore, it suffices to study the asymptotic variance First of all, we derive the y/n-asymptotic

variance of @ﬂm(ﬁg). Denote

1-— ]heff(XaAhBul\zO)

- |y - - (1- %

= [po(X) — [io(X) + elhesr (X, A; B, [io);

beit(B) := bert (B; Ji0, D Oo)
) Gwa FXi8)

=&(8)
WA

L3 ) F . A\TOT i) T t——A—
he (X, A; B, fio) := F(X; 8)TQTQV(X; fio) P (A|X)
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First notice that

o ) w®25(3)2 .
E[er(9)%] = E [F(X;ﬂ)TQTQVe(X;ﬁo)_l <M> Ve(X;ﬁo)_IQTQF(X;B)]

E[F(X: 8)7QTQV. (X fio) "' QTOF(X: 8) |

=Z(B;fio)

00etB) | o e avror U O D) G e
E[ o ]—E{F(X,mmve(xuo) [(1 K)pﬂ(mX)]F(X,ﬂ)}
£ . A\TOT v =1 [MO(X) - /jO(X> + E]WA

=0

~ E [F(X38)T 7V (X o) QTOF (X3 8)) .

=Z(B;fio)

Here, the second equality follows from that

E[Z(8)*|X, A] = [Jio(X) — po(X)]* + 0*(X, A) = 00,4(X, A; fio);

. WS2E(B)? ) & w202, (X, A; Jio) %) _ i oot (X, s fio)wp” VLX)
P (A1X)? e (A X)? Pe (K| X) o

k=1

The forth equality follows from that E[wa/ps(A|X)|X] =0, E(e| X, A) =0 and

(1 - ;{) E (}%‘X) = <1 - ;{) éw,g?? =QTQ.

Then

lim nVar [Befﬂn (/\20)] =

n—00

-~ -1 o 1
{E[—w;giﬁ)]} E[ieﬁw)@?]{ma[—%eggﬁ”]} — Z(8s o) .

Next, we study the y/n-asymptotic variance of estimates from the regular class B, (fip). Fix

B (fi0) € By (fip) that corresponds to the estimating function ¢(3; fip), and denote qvb(ﬂ) = @(B; fio)-
There exists h : X x A — RP, which can depend on (83, fip), such that E[h(X, A)|X] = 0 and

38) = | ¥ = 1o(x) = (1 ) on FX: ) |Bix. )

J

=éB)
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Here, we suppress the potential dependency of h on (3, fip) and only mention it if necessary. Note

that E[h(X, A)| X ] = 0 informs the representation

H(X)wa

A Ay

H(X) := <1 - 1> i P (K| X)R(X, k)w] (QTQ) 7 e RPX(E-D),
K k=1 { F

since by QT(Q7Q)1QT = I,k — (1/K)1%?, we have

1
K

1=

H(X)wa = ps (A|X)R(X, A) — P (K| X)R(X, k) = pos (A X)h(X, A).

(>
Il

1

_E[R(X,A)|X]=0

Then

=E [H(X)V(X; fio)H(X)T];

0(8) 1\ ¥ |
|52 e o | (1 1) 5o | v
[100(X) — Jio(X) + e]wA}
P (AlX)

ng

=0

—E [H(X)QTQF(X;ﬁ)] .

—E{H<X;ﬂ,n0>

<

Here, the second equality follows from that E[¢(8)?| X, A] = 02.,(X, A) and

opt
X =F w(§2agpt (Xa A)
P (AlX)?

K 2 ®2
Z X, A
) B Uopt( )wk = Ve(-XHjO)'

& p(RIX)

W5(B)?
¢ <pﬂ<AX>2

The forth equality follows from that E[wa/p(A|X)|X] =0, E(e| X, A) =0 and

(1 — ;{) E (}%‘X) = <1 - ;{) glw,?? =QTQ.
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Lemma 3.15 (Sandwich Variance Inequality). Define

A = E[H(X)V(X; Jio)H(X)T];

B := E[H(X)QTQF(X; 8)];

C:= E[F(X; 8)TQTQV(X; Jig) ' QTQF(X; B)];
A B
BT C

Then

Schur complement

X>0 < X/A=C-BA'B>0,

with equality if and only if there exists some non-singular constant matriz Hy € RP*P such that
H(X) = HoF (X B)TQTOV (X fio) .
Following the notations in Lemma 3.15, we have

lim nVar([B, (7o)]

_ {E [ﬁ;;;@]} E[3(9)%] {E [ﬁqﬁ;gﬁ]}

=B~!AB"T = (BTA"!B)"! > ! (by Lemma 3.15)

:I(ﬁ7 /10)_17

with equality attained at
H(X) = HoF(X; 8)TQTQV (X fio) ™,

for some non-singular constant matrix Hg € RP*P,

Proof of Lemma 3.15. For any u,v € RP, define

U = V(X Jio) *H(X)Tu;

V = V(X Jio) " Y2QTOF(X; B)v.
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Then

u
(uT,vT)X = uTAu + 2v'BTu + v"Cv

—E({UU +2VU + VV)
=E|U + V|3

=0,
with equality if and only if
U=-V < V(X;Ji)?H(X)Tu = -V (X; i) V2QTOF(X; B)v  a.s.
That is, for some constant matrix K € RP*P, we have u = —KTv, and

V(X3 Jio)2H(X)TKT = V(X fio) " V2QTOF (X ; B)

o KH(X) = F(X;8)TQTQV (X i)' a.s.
This proves X = 0 and the equality condition. Finally, by A > 0, we have

u
vT(X/A)v = vTCv — vTBTA™!1Bv = | (uT,vT)X > 0.

v
u=—A"1Bv

That is, X/A > 0 with equality if and only if for K = BTA and Hg := K~! = A"!B~T, we have

H(X) = HoF(X; B)TQTQV(X; Jio) ™" a.s.

3.8.5.10 Proof of Theorem 3.11

Proof of Theorem 3.11. By Assumption 3.5, the distribution of X has compact support. Without

loss of generality, assume that X is compact. Recall from the proof of Lemma 3.13 that F is
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the envelop function of F. Then by Assumption 3.4.2 that EF(X) + o0, we further have that
|Elloo = supgex F(a) < +0.

By Bn = B+ Op(n~?), we have

su)[; HF(wué\n) - F(ﬂ:,ﬁ)HQ < |F oo % |8 = Bll2 = Op(n?).

Fix € X. By Mean Value Theorem, there exists some «,, € [0,1] and ,@n =(1- an)én + anf,

such that

~ —

fa;B,) — fla;8) = F(z, 8,)(Bn — B)
= [F(z, B) + Op(n"Y)](B - B)
= F(z,8)(Bn — B) + Op(n™1).

By lim,, nVar(,@n) =Y, we have

—

lim nVar[f(a: B,)] = F(a: 8)SF(@: B)T,

n—o0

Suppose X ~ pg(x) and X L Bn. Then

K

limsupn Y E[(X, k: Bn) — +(X, k; 8)]?
now o o
= lim sup <1 - K> k;wZE[ (X;8n) — F(X;8)|%wy (by Lemma 3.4)
(1LY i wTE[ lim nE{[ F(X; Bn) — *(X;ﬁ)]@‘x}]wk (by DCT)
K) S e 5 ,

k=1

Tr {E[F(X, B)TOTOF(X; ,8)]2} . (commutativity under trace)

(%)
(%)

_ <1 1 )2 T {i WIE[F(X; B)SF(X; ﬂ)T]wk} (trace of a scalar)
(%)
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Finally, by Theorem 3.1, we have

n—o0

n—a0

lim sup v/n[V(d*) — EV(d,,)] < 2lim sup {ﬁlgngE }v(X, ks Bn) — (X, k;ml}

~

Here, E is taken over (X, 3,).

< 2limsup {n ma)%E['Y(kahén) — (X, k;ﬁ)]Q}

—2 (1 - K) o {E[F(X;B)TQTQF(X;B)]E}

1/2

<k<

n—o0

n—a0

X 1/2
<2 lim {n D E[V(X ki Ba) - v(X, k‘;ﬂ)]Q}

k=1

1 1/2
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3.8.6 Additional Tables and Figures

Table 3.5: Estimated Coefficients on the ACTG175 Dataset (averaged over 10 replications)

variable D-Learning RD-Learning E-Learning

ddI ZDV ZDV+ddI ZDV+ZAL ddI ZDV ZDV+ddI ZDV+ZAL ddI ZDV ZDV+ddI ZDV+ZAL

I: original data

Intercept 4.72 -29.9 26.45 -1.27 4.33 -31.54 27.87 -0.66 4.67 -30.67 26.52 -0.52
gender -0.25 0.36 0.05 -0.16
homo 2.2 -0.12 -2.74 0.65 3.63 -0.53 -4.55 1.45 3.26 -0.4 -4.36 1.49
race -0.12 0.4 -0.41 0.13 -0.41 1.04 -1.08 0.45 -0.57 2.56 -2.67 0.69
drugs -3.29 -0.96 2.77 1.49 -3.3 -1.12 2.48 1.94 -4.26 -2.68 3.13 3.81
symptom -0.08 0.08 -0.06 0.06
str2 0.11 0.07 -0.26 0.09
hemo 0.25 -0.5 -0.01 0.26
age -0.54 -0.48 4.79 -3.77 -0.64 -0.55 7.67 -6.48 -0.2 0.1 6.65 -6.55
wtkg 0.24 -0.26 -0.19 0.21 0.5 -1.03 -0.36 0.9
cd40 9.02 3.22 -13.54 1.29 7.94 1.02 -7.94 -1.03 5.82 1.15 -5.56 -1.41
karnof -0.02 -0.08 0.1 0 0.15 -0.25 -0.01 0.1
cd80 -0.22 -0.1 -0.03 0.35

II: modified treatment-free effect in age

Intercept 1.69 -3.98 16.8 -14.5 3.44 -15.74 11.17 1.12
gender -0.5 5.59 -6.06 0.97 0.95 -0.28 -1 0.34
homo 0.16 -0.19 0.81 -0.78 0.84 -0.31 -0.77 0.24
race -3.52 2.19 -4.69 6.03 -0.76 0.46 -1.87 2.18
drugs -12.55 -16.86 24.37 5.04 -0.64 -0.4 0.49 0.55
symptom 13.4 -8.08 -9.37 4.05
str2 -14.12 -2.69 9.25 7.56 -0.01 -0.09 -0.06 0.16
hemo -0.19 1.34 1.08 -2.23 0.05 -0.56 -0.91 1.43
age 3.77 50.53 20.2 -74.49 -0.07 0.02 0.01 0.04
wtkg -20.77 0.78 11.18 8.81 1.08 -0.71 -1.79 1.42
cd40 16.05 6.65 -22.85 0.15 1.58 2.24 -4.34 0.53
karnof -9.9 -1.56 9.31 2.14 -0.01 0 0.01 -0.01
cd80 -18.92 7.55 17.75 -6.37 -0.18 0.13 -0.24 0.28

III: modified variance function in wtkg

Intercept 0.02 -22.65 27.54 -4.91
gender 0.74 3.24 -8.76 4.78
homo 4.36 -1.31 1.44 -4.49
race -2.17 -0.28 3.72 -1.28
drugs -1.77 -0.9 -0.51 3.18
symptom -1.06 -0.78 -1.01 2.85
str2 0.72 -1.68 -1.18 2.14
hemo 1.6 -1.41 2.57 -2.76
age 2.2 -0.41 0.02 -1.8
wtkg -41.32 -13.14 87.41 -32.96 -15.54 -5.29 32.88 -12.04 -11.18 -1.19 16.93 -4.56
cd40 1.94 -0.72 1.74 -2.96
karnof 2.84 -1.02 -3.35 1.53
cd80 -20.1 -20.18 61 -20.73 -7.14 -8.31 24.04 -8.59 -3.51 -4.5 11.98 -3.97

IV = II 4 III: modified treatment-free effect in age and modified variance function in wtkg

Intercept 3.97 -0.11 -4.08 0.22 1.43  -24.28 25.71 -2.87

gender -7.29 1.49 11.15 -5.35 5.8 2.22 -5.33 -2.68

homo 5.02 1.7 -10.68 3.96 9.9 -5.34 -10.71 6.16

race 6.09 10.4 -27.53 11.04 4.47 -0.29 -13.69 9.51

drugs -3.77 -3.03 9.26 -2.45 -1.61 -2.18 -0.12 3.9

symptom 1.18 -0.57 0.56 -1.17 1.79 -0.47 -1.29 -0.03

str2 -5.19 0.95 5.4 -1.17 1.98 -10.15 -5.35 13.52

hemo 2.88 1.93 -6.75 1.94 4.35 -8.64 -4.36 8.64

age -9.42 11.74 25.67 -27.99 -4.6 5.59 4.94 -5.93

wtkg 65.69 17.05 -153.12 70.38 18.9 5.13 -43.57 19.53 6.31 -9.97 -1.03 4.7

cd40 16.05 14.91 -44.87 13.91 -1.12 0.11 -0.22 1.23

karnof -9.03 -1.3 16.11 -5.78 -5.12 0.38 0.97 3.77

cd80 26.31 40.74 -95.75 28.7 5.37 6.4 -16.73 4.96 0.98 -1.14 -7.01 7.18
Note:

Larger coefficients encourage better outcome.
Coefficients are fitted at standardized scales of covariates.

Coefficients at blank are 0’s. Absolute values > 5 are bolded.

154



Scatter Plots with LOESS Curves: treatment—free effect ~ X
propensity score: correct; treatment—free effect: correct; homoscedasticity

variable: X1 variable: X2 variable: X3 variable: X4 variable: X5

treatment-free effect

type ~— estimate == truth

Scatter Plots with LOESS Curves: treatment—free effect ~ X
propensity score: incorrect*; treatment-free effect: correct; homoscedasticity

variable: X1 variable: X2 variable: X3 variable: X4 variable: X5

treatment—free effect

type =~ estimate == truth

Scatter Plots with LOESS Curves: treatment—free effect ~ X
propensity score: correct; treatment-free effect: incorrect*; homoscedasticity

variable: X1 variable: X2 variable: X3 variable: X4 variable: X5

w
o
'

treatment-free effect

type = estimate == truth

Figure 3.5: Fitted treatment-free effect plots with respect to Xy for 1 < k < 5 for the simulation studies (Section
3.5) with n = 400, p = 10, K = 3. Curves are fitted by the LOcally wEighted Scatterplot Smoothing (LOESS) of cubic
spline. When the treatment-free effect model is correctly specified (Rows 1 and 2), it can be consistently estimated.
Note that the treatment-free effect estimation utilizes the estimated propensity scores according to Section 3.2.5.2.
The correctness of the treatment-free effect is not affected by the correctness of the propensity score model. When
the treatment-free effect model is misspecified (Row 3), the estimated treatment-free effect deviates from the truth.
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Scatter Plots with LOESS Curves: propensity score ~ (X, A)
propensity score: correct; treatment-free effect: correct; homoscedasticity

variable: X1 variable: X2 variable: X3 variable: X4 variable: X5

propensity score

type —— estimate == truth

Scatter Plots with LOESS Curves: propensity score ~ (X, A)
propensity score: incorrect*; treatment-free effect: correct; homoscedasticity

variable: X1 variable: X2 variable: X3 variable: X4 variable: X5

0
X

type —— estimate == truth

Figure 3.6: Fitted propensity score plots with respect to (Xj, A) for 1 < k < 5 for the simulation studies
(Section 3.5) with n = 400, p = 10, K = 3. Curves are fitted by the LOESS of cubic spline. When the
propensity score model is correctly specified (Panel 1), it can be consistently estimated. When the propensity
score model is misspecified (Panel 2), the estimated IfiiGpensity score deviates from the truth.



Scatter Plots with LOESS Curves: log(residual®) ~ X

propensity score: correct; treatment—free effect: correct; homoscedasticity

variable: X1 variable: X2 variable: X3 variable: X4 variable: X5 variable: XXX

log(residual®)

Scatter Plots with LOESS Curves: log(residual®) ~ (X, A)
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Figure 3.7: Residual plots with respect to X3 and (X, A) for 1 < k < 5 for the simulation studies (Section
3.5) with n = 400, p = 10, K = 3, correctly specified treatment-free effect and homoscedasticity. Define X X X :=

log [% (e‘/EX1 VX 4 eﬁx3)]‘ Residuals are computed from the fitted E-Learning. Curves are fitted by the
LOESS of cubic spline. It shows no patterns of log(residual?®) with respect to X or A.
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Scatter Plots with LOESS Curves: log(residual®) ~ X

propensity score: correct; treatment—free effect: incorrect*; homoscedasticity

variable: X2 variable: X3 variable: X4 variable: X5 variable: XXX
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Figure 3.8: Residual plots with respect to X3 and (X, A) for 1 < k < 5 for the simulation studies (Section
3.5) with n = 400, p = 10, K = 3, misspecified treatment-free effect and homoscedasticity. Define XXX :=

log [% (e‘/EX1 VX 4 eﬁx3)]‘ Residuals are computed from the fitted E-Learning. Curves are fitted by the
LOESS of cubic spline. It shows patterns of log(residual®) ~ Xj for k = 1,2, 3 and log(residual?®) ~ X X X.
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Scatter Plots with LOESS Curves: log(residual®) ~ X
propensity score: correct; treatment-free effect: correct; heteroscedasticity*
variable: X3 variable: X4 variable: X5 variable: XXX

variable: X1 variable: X2

log(residual®)

Scatter Plots with LOESS Curves: log(residual®) ~ (X, A)
propensity score: correct; treatment—free effect: correct; heteroscedasticity*
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Figure 3.9: Residual plots with respect to X5 and (Xi, A) for 1 < k < 5 for the simulation studies (Section
3.5) with n = 400, p = 10, K = 3, correctly specified treatment-free effect and heteroscedasticity. Define X X X :=

log [% (e\@X1 +eV?X2 4 eﬁX3)]. Residuals are computed from the fitted E-Learning. Curves are fitted by the

LOESS of cubic spline. It shows patterns of log(residual?) ~ X on A = k for k = 1,2,3 and log(residual?) ~
XXX.
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Scatter Plots with LOESS Curves: log(residual®) ~ X

propensity score: correct; treatment—free effect: incorrect*; heteroscedasticity*

variable: X1 variable: X2 variable: X3 variable: X4 variable: X5 variable: XXX

log(residual®)

Scatter Plots with LOESS Curves: log(residual®) ~ (X, A)
propensity score: correct; treatment-free effect: incorrect*; heteroscedasticity*

variable: X1 variable: X2 variable: X3 variable: X4 variable: X5 variable: XXX
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Figure 3.10: Residual plots with respect to X% and (Xj, A) for 1 < k < 5 for the simulation studies (Section
3.5) with n = 400, p = 10, K = 3, misspecified treatment-free effect and heteroscedasticity. Define XXX :=

log [% (e\@X1 +eV?X2 4 eﬁX3)]. Residuals are computed from the fitted E-Learning. Curves are fitted by the

LOESS of cubic spline. It shows patterns of log(residual?) ~ X on A = k for k = 1,2,3 and log(residual?) ~
XXX.
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Testing Misclassification Rates across 100 Replications

n =100, p = 10, K
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Figure 3.11: Testing misclassification rates (smaller the better) for n = 100, p = 10, K = 2 and each of the
model specification scenarios in Table 3.2. Methods in Table 3.1 are compared, where E-Learning (Oracle)
corresponds to E-Learning with the oracle working variance function, and Policy Tree corresponds to Policy

Learning with decision trees.

First and second best methods in terms of the averaged misclassification

rates are annotated in horizontal lines, while the minimal averaged misclassification rate is annotated in the

vertical line.
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Testing Misclassification Rates across 100 Replications

n=200,p=10,K=2
treatment_free: correct
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Figure 3.12: Testing misclassification rates (smaller the better) for n = 200, p = 10, K = 2 and each of the
model specification scenarios in Table 3.2. Methods in Table 3.1 are compared, where E-Learning (Oracle)
corresponds to E-Learning with the oracle working variance function, and Policy Tree corresponds to Policy

Learning with decision trees.

First and second best methods in terms of the averaged misclassification

rates are annotated in horizontal lines, while the minimal averaged misclassification rate is annotated in the

vertical line.
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Testing Misclassification Rates across 100 Replications
n=800,p=10,K=2
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Figure 3.13: Testing misclassification rates (smaller the better) for n = 800, p = 10, K = 2 and each of the
model specification scenarios in Table 3.2. Methods in Table 3.1 are compared, where E-Learning (Oracle)
corresponds to E-Learning with the oracle working variance function, and Policy Tree corresponds to Policy
Learning with decision trees. First and second best methods in terms of the averaged misclassification
rates are annotated in horizontal lines, while the minimal averaged misclassification rate is annotated in the
vertical line.
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Testing Misclassification Rates across 100 Replications
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Figure 3.14: Testing misclassification rates (smaller the better) for n = 1600, p = 10, K = 2 and each of the
model specification scenarios in Table 3.2. Methods in Table 3.1 are compared, where E-Learning (Oracle)
corresponds to E-Learning with the oracle working variance function, and Policy Tree corresponds to Policy

Learning with decision trees.

First and second best methods in terms of the averaged misclassification

rates are annotated in horizontal lines, while the minimal averaged misclassification rate is annotated in the

vertical line.
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Testing Regrets Averaged over 100 Replications

p=10,K=2
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Figure 3.15: Testing regrets (smaller the better) for n = {100, 200, 400, 800, 1600}, p = 10, K = 2 and each
of the model specification scenarios in Table 3.2. Methods in Table 3.1 are compared, where FE-Learning
(Oracle) corresponds to E-Learning with the oracle working variance function, and Policy Tree corresponds
to Policy Learning with decision trees.
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Testing Regrets across 100 Replications
n=100,p=10,K=2
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Figure 3.16: Testing regrets (smaller the better) for n = 100, p = 10, K = 2 and each of the model specifi-
cation scenarios in Table 3.2. Methods in Table 3.1 are compared, where E-Learning (Oracle) corresponds to
E-Learning with the oracle working variance function, and Policy Tree corresponds to Policy Learning with
decision trees. First and second best methods in terms of the averaged regrets are annotated in horizontal
lines, while the minimal averaged regret is annotated in the vertical line. The optimal value is 0.788 and is
annotated in the vertical long dashed line.
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Testing Regrets across 100 Replications
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Figure 3.17: Testing regrets (smaller the better) for n = 200, p = 10, K = 2 and each of the model specifi-
cation scenarios in Table 3.2. Methods in Table 3.1 are compared, where E-Learning (Oracle) corresponds to
E-Learning with the oracle working variance function, and Policy Tree corresponds to Policy Learning with
decision trees. First and second best methods in terms of the averaged regrets are annotated in horizontal
lines, while the minimal averaged regret is annotated in the vertical line. The optimal value is 0.788 and is
annotated in the vertical long dashed line.
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Testing Regrets across 100 Replications
n=400,p=10,K=2
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Figure 3.18: Testing regrets (smaller the better) for n = 400, p = 10, K = 2 and each of the model specifi-
cation scenarios in Table 3.2. Methods in Table 3.1 are compared, where E-Learning (Oracle) corresponds to
E-Learning with the oracle working variance function, and Policy Tree corresponds to Policy Learning with
decision trees. First and second best methods in terms of the averaged regrets are annotated in horizontal
lines, while the minimal averaged regret is annotated in the vertical line. The optimal value is 0.788 and is
annotated in the vertical long dashed line.
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Testing Regrets across 100 Replications
n=800,p=10,K=2
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Figure 3.19: Testing regrets (smaller the better) for n = 800, p = 10, K = 2 and each of the model specifi-
cation scenarios in Table 3.2. Methods in Table 3.1 are compared, where E-Learning (Oracle) corresponds to
E-Learning with the oracle working variance function, and Policy Tree corresponds to Policy Learning with
decision trees. First and second best methods in terms of the averaged regrets are annotated in horizontal
lines, while the minimal averaged regret is annotated in the vertical line. The optimal value is 0.788 and is
annotated in the vertical long dashed line.



Testing Regrets across 100 Replications
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Figure 3.20: Testing regrets (smaller the better) for n = 1600, p = 10, K = 2 and each of the model
specification scenarios in Table 3.2. Methods in Table 3.1 are compared, where E-Learning (Oracle) cor-
responds to E-Learning with the oracle working variance function, and Policy Tree corresponds to Policy
Learning with decision trees. First and second best methods in terms of the averaged regrets are annotated
in horizontal lines, while the minimal averaged regret is annotated in the vertical line. The optimal value is
0.788 and is annotated in the vertical long dashed line.
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Testing Misclassification Rates across 100 Replications
p =50, K = 2, correctly specified propensity
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Figure 3.21: Testing misclassification rates (smaller the better) for n € {100, 200,400,800}, p = 50, K = 2
and each of the model specification scenarios (correct propensity score) in Table 3.2. The optimal value
is 0.788. Methods in Table 3.1 are compared, where E-Learning (Oracle) corresponds to E-Learning with
the oracle working variance function, and Policy Tree corresponds to Policy Learning with decision trees.
dWOLS and G-Estimation for n = 100 cannot be implemented due to more number of parameters 2(p + 1)
than the training sample size n. First and second best methods in terms of the averaged misclassification
rates are annotated in horizontal lines, while the minimal averaged misclassification rates is annotated in
the vertical line.
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Testing Regrets across 100 Replications
p =50, K = 2, correctly specified propensity
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Figure 3.22: Testing regrets (smaller the better) for n € {100,200,400,800}, p = 50, K = 2 and each
of the model specification scenarios (correct propensity score) in Table 3.2. The optimal value is 0.788.
Methods in Table 3.1 are compared, where E-Learning (Oracle) corresponds to E-Learning with the oracle
working variance function, and Policy Tree corresponds to Policy Learning with decision trees. dWOLS and
G-Estimation for n = 100 cannot be implemented due to more number of parameters 2(p + 1) than the
training sample size n. First and second best methods in terms of the averaged regrets are annotated in
horizontal lines, while the minimal averaged regret is annotated in the vertical line.
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Testing Misclassification Rates Averaged over 100 Replications
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Figure 3.23: Testing misclassification rates and regrets (smaller the better) for n = {100,200, 400, 800, 1600},
p = 10, K = 3 and each of the model specification scenarios in Table 3.2. E-Learning (Oracle) corresponds to
E-Learning with the oracle working variance function, and E-Learning corresponds to E-Learning with the working
variance function estimated by regression forest. 173



Testing Misclassification Rates Averaged over 100 Replications
K = 3, correctly specified propensity
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Figure 3.24: Testing misclassification rates (smaller the better) for n = {100, 200, 400, 800, 1600}, p € {10, 50, 100},
K = 3 and each of the model specification scenarios with correctly specified propensity score in Table 3.2. E-Learning
(Oracle) corresponds to E-Learning with the oracle workisg variance function, and E-Learning corresponds to E-
Learning with the working variance function estimated by regression forest.



Testing Regrets Averaged over 100 Replications
K = 3, correctly specified propensity
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Figure 3.25: Testing regrets (smaller the better) for n = {100, 200, 400, 800, 1600}, p € {10,50,100}, K = 3 and
each of the model specification scenarios with correctly specified propensity score in Table 3.2. E-Learning (Oracle)
corresponds to E-Learning with the oracle working varjggge function, and E-Learning corresponds to E-Learning
with the working variance function estimated by regression forest.



Testing Misclassification Rates Averaged over 100 Replications
p = 10, correctly specified propensity
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Figure 3.26: Testing misclassification rates (smaller the better) for n = {100, 200, 400, 800, 1600}, p = 10,
K € {2,3,5,7} and each of the model specification scenarios with correctly specified propensity score in

Table 3.2. E-Learning (Oracle) corresponds to E-Learning with the oracle working variance function, and
E-Learning corresponds to E-Learning with the working variance function estimated by regression forest.
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Testing Regrets Averaged over 100 Replications
p = 10, correctly specified propensity
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Figure 3.27: Testing regrets (smaller the better) for n = {100, 200, 400, 800, 1600}, p = 10, K € {2,3,5,7}
and each of the model specification scenarios with correctly specified propensity score in Table 3.2. E-

Learning (Oracle) corresponds to E-Learning with the oracle working variance function, and E-Learning
corresponds to E-Learning with the working variance function estimated by regression forest.
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Testing Misclassification Rates Averaged over 100 Replications
K = 3, correctly specified propensity
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Figure 3.28: Testing misclassification rates (smaller the better) for n = {100, 200, 400, 800, 1600}, p € {10, 50, 100},
K = 3 and each of the model specification scenarios with correctly specified propensity score in Table 3.2. The
E-Learning procedures with different nonparametric estipfegion methods for variance function are compared.



Testing Regrets Averaged over 100 Replications
K = 3, correctly specified propensity
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Figure 3.29: Testing regrets (smaller the better) for n = {100, 200, 400, 800, 1600}, p € {10,50,100}, K = 3 and
each of the model specification scenarios with correctly specified propensity score in Table 3.2. The E-Learning
procedures with different nonparametric estimation methqds for variance function are compared.



Scatter Plots with GAM Curves: log(residual®) ~ X
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Figure 3.30: Residual plots with respect to age and wtkg on the ACTG175 dataset (Section 3.8.1). Curves are
fitted by the Generalized Additive Model (GAM) of cubic spline. Residuals are computed from the fitted E-Learning
on each modified dataset according to Table 3.4, and avgig@ged over 10 replications.



Estimated Coefficients on the ACTG175 Dataset
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CHAPTER 4

Efficient Learning for Optimal Dynamic Treatment Regimes

4.1 Introduction

In this chapter, we focus on the multi-stage decision problem. Among the existing approaches for
estimating DTR, a model-based method can be more preferable if causal interpretations of the DTR
are desired. In particular, the interaction effects in an SNMM can be interpreted as the stagewise
individualized causal effects, which can be of primary interest when analyzing adaptive treatment
strategies in randomized trials (Bembom and van der Laan, 2008). Moreover, under the correct
model assumptions, the optimality of model-based methods can be established as the optimality of
the parameter estimates, where the semiparametric efficiency theory can be applied (Robins, 1994,
2004). In practice, if the data generating process is close to the working semiparametric models,
then model-based methods can generally enjoy superior performance (Shi et al., 2018a; Zhu et al.,
2019; Ertefaie et al., 2021).

There remains gaps between the theory and practice for semiparametric efficient model-based
methods. Specifically, Robins (2004) developed the G-Estimation procedures for an optimal DTR
under the SNMM framework. The theoretical properties of G-Estimation can be applied to the
analysis of other model-based methods due to the connections with Q-Learning (Chakraborty et al.,
2010), A-Learning (Almirall et al., 2010) and dWOLS (Wallace and Moodie, 2015). The semipara-
metric efficiency can be established with the optimal estimating equations and correct nuisance
models. However, the efficient G-estimating equations generally take a complicated form. The
simplified versions under specific assumptions still require high-dimensional vector-valued nuisance
functions, which can be hard to estimate in practice (Vansteelandt and Joffe, 2014). Moreover,
there are conflicts in model specifications and the commonly used linear model can always mis-
specify the truth (Schulte et al., 2014). The residuals in the SNMM are generally heteroscedastic

and positively correlated across stages. General practice can ignore these facts and implement a
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suboptimal version of G-Estimation (Wallace et al., 2019). Last but not least, the algorithm based
on backward recursive estimation is commonly used in practice, including Q-Learning (Watkins,
1989), recursive G-Estimation (Robins, 2004, Section 7.2), stagewise A-Learning (Shi et al., 2018a),
and dWOLS (Wallace and Moodie, 2015). These methods do not solve the efficient G-estimating
equations. Therefore, despite the well studied theoretical properties of G-Estimation, the rigorous
semiparametric efficient procedure is rarely used in practice.

In this chapter, we first review the semiparametric theory of SNMM. The complicated semi-
parametric efficient score can be simplified if we consider a larger class of semiparametric estimates.
Specifically, we propose a novel Backward Change Point SNMM (BCP-SNMM), where there ex-
ists an unknown nuisance change point ¢y, such that the data generating process is completely
nonparametric for stages 1 to tg — 1, and then follows the SNMM from stage to to the end. The
BCP-SNMM can allow more robustness against model misspecifications. For any backward change
point £y such that the SNMMSs are violated before stage tg, the properties of a Regular and Asymp-
totically Linear (RAL) estimate after stage ty remains, including consistency and semiparametric
efficiency. The key observation is that an RAL estimate must be pivotal with respect to the nuisance
change point ty, and hence can only depend on the future model assumptions. In this way, many
existing backward recursive estimates for the SNMM can be studied under the BCP-SNMM. We
further propose Dynamic Efficient Learning (DE-Learning) that solves the semiparametric efficient
estimating equations under the multiple treatment setting. In particular, DE-Learning enjoys the

following properties:

1. (Optimality) Under correct model assumptions, DE-Learning is semiparametric efficient under
the BCP-SNMM. In particular, it can handle the heteroscedasticity and cross-stage correlation
with the efficient estimating equations. For general working treatment-free effect functions
(possibly misspecified), the DE-Learning estimate achieves the smallest y/n-asymptotic variance

among a regular class of semiparametric estimates that allows misspecified treatment-free effects.

2. (Robustness) DE-Learning is stagewise doubly robust. For each stage, the corresponding esti-
mate remains consistent when at most one of the treatment-free effect and propensity score is

incorrect. Furthermore, DE-Learning is robust with respect to any backward model misspecifi-
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cations. In particular, any violations of the SNMMs at stages 1,2,--- ,¢ — 1 do not affect the

consistency and optimality of the stage-t estimate.

3. (Tractability) DE-Learning can be implemented in a backward stagewise manner. The nuisance
functions required by DE-Learning are much fewer than that of the semiparametric efficient

G-Estimation. More details on efficient G-Estimation are provided in Section 4.6.2.

This chapter makes the following contributions to the existing literature.

1. To our limited knowledge, this is the first work to establish the semiparametric efficiency of a
backward stagewise estimate. The BCP-based model provides the framework for studying the

optimality, robustness and cross-stage orthogonality of such an estimates.

2. DE-Learning is a tractable procedure for rigorous semiparametric efficient estimation. It can

allow high-dimensional extensions with much fewer nuisance functions than G-Estimation.

3. In many practical scenarios, we show that the treatment-free effects in the SNMM can always
be misspecified, and the stagewise heteroscedasticity generally exists. In presence of these chal-

lenges, DE-Learning remains optimal and enjoys significantly improved performance.

4. Under the BCP-SNMM, DE-Learning enjoys the cross-stage orthogonality, and hence can be

less affected by the error propagation during backward stagewise estimation.

5. DE-Learning is developed for multiple treatments. We incorporate the equiangular coding in

the semiparametric theory, which provides a tractable way of extending Robins (1994, 2004).

The rest of this chapter is organized as follows. In Section 4.2, we introduce the semiparametric
models for the DTR problem. In particular, mathematical setups and notations are introduced in
Section 4.2.1. The general SNMM and its semiparametric theories are discussed in Sections 4.2.2-
4.2.4. The BCP-SNMM is proposed in Section 4.2.5. In Section 4.3, we propose DE-Learning
and provide the implementation details. Simulation studies are provided in Section 4.4. General
discussions and future work are given in Section 4.5. Additional discussions and technical proofs

are provided in Section 4.6.
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4.2 Semiparametric Models

In this section, we first consider the SNMM for the DTR problem. Then we propose the BCP-

SNMM that can simplify the semiparametric theory of the standard SNMM.

4.2.1 Setup

Consider the observed data {OZ- = ((Xz'u Ay 1<t < T),Yi)} where X;; € X; < R? denotes

n
i=1’
the covariates at the t-th stage for the i-th subject, A; € A = {1,2,---, K} is the correspond-
ing treatment assignment with K treatment options, and Y; € R is the corresponding observed
outcome at the end. For ¢ = 1,---,T, we recursively define Hy := X; € H1 = Xy, H; =
(H] |, Ai—1, X])T € H; as the vector of pre-treatment historical information. We further introduce

1

the stage-t potential pre-treatment history as Ht(c_i'i*l), where (i? = (a1,a, -+ ,a,1)Te A7 lis

a treatment assignment trajectory from stage 1 to stage t—1. At stage t = 1, we define @) = (¥, and
the potential pre-treatment history H1(¢) = Hy. Analogously, Y (@7) is deifined as the potential
outcome under the treatment assignment trajectory Eirf. A Dynamic Treatment Regime (DTR) is
defined as a sequence of mappings di.p = (di,da, - ,dr) € D1 X Dy X -+ x Dp = Dy.p, where

dy € Dy :={d; : Hy — A} for 1 <t < T. The value function of DTR is defined as
Vidir) i=E{Y(A])|d, [H(ATY] = 4, 1 <t <1}

Assuming that a larger outcome is better, the goal is to find the optimal DTR that maximizes the

M *
value function d},, € argmaxy cp, . V(di.7).

4.2.2 Structural Nested Mean Model (SNMM)

In order to identify V(d;.7) from the observed data, we make the following identifiability conditions

as in Robins (2004).
Assumption 4.1 (Consistency). For 2 <t < T, H; = Ht(jﬁfl); Y = Y(AT).

Assumption 4.2 (Sequential Ignorability). For 1 <t < T,

{ (Ht,(ag’—l) 1<t < T) y(@r):al e AT} 1 At‘Ht; 1<t<T.
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Assumption 4.3 (Strict Overlap). There exists some p,, > 0 such that P(4; = k|H;) > p,, for
1<k<Kandl<t<T.

Given Assumptions 4.1-4.3, the value function can be identified from the observed data by V(d1.7) =
E[Y|di(H;) = A (1 <t < T)]. In order to obtain the optimal DTR in a stagewise manner, we

introduce the state value functions, also known as the V-functions, as

Vi(H,) = max E[V|H,d,(H,) =A, t<u<T)]; 1<t<T. (4.1)

dt:TeDt:T

Then {V;(H;)}!_, satisfy the following Bellman equations (Bellman, 1966):

VT(HT) = max E(Y’HT,AT = ]{),
1<k<K - — o
= Hrk
Qr(Hr,k) (4.2)
Vi(Hy) = 1I<T}€a<XKE{Vt+1 [(H], A, X[ 1)"] ‘Ht,At = k}; t=T-1,T—2,---,1.
— 0/ (Hy k)

Here, {Q;(Hy, A)}]_, are also known as the state-action value functions or the Q-functions. The
optimal DTR dj, satisfies that d; (H;) € argmax <y Qi(Hy, k) for 1 <t <T.

The Q-functions can be interpreted as the conditional means for the pseudo outcomes, which
are informally defined as Y;* = }Q*(Aﬁ) =Y (A, Ay df g, ,dp) for 1 <t < T, that is, the
potential outcomes following the observed treatments up to stage ¢, while following the optimal
treatments from stage t+1 to stage T'. The precise definition is given in Section 4.6.1. The following
Lemma 4.1 establishes the equivalence between the conditional mean of Y;* given (H;, A;) and the

Q—fllIlCtiOD Qt (Ht y At) .

Lemma 4.1 (Pseudo Outcome and Q-Functions). Consider the pseudo outcomes {Y;*}I_, in (4.16)

in Section 4.6 and the Q-functions in (4.2). Under Assumptions 4.1 and 4.2, we have

E(Y;ﬂHt, At) = Qt(Ht, At), 1<t<T.
The proof of Lemma 4.1 is provided in Section 4.6. Lemma 4.1 implies that
Vi(Hy) = max E(Y*|H, A = k); dj(H;) € argmax E(Y,*|Hy, Ay = k).
I<k<K 1<k<K
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The motivates us to study the following Structural Nested Mean Model (SNMM) (Robins, 1994,
2004). For 1 <t < T, the stage-t SNMM is defined as:

Y;* = /Lt(Ht) + ’Yt(Hta Ataﬂt) + 6l>fk;
K
Z Y (Hy, ks Be) = 05 (SNMM)
subject to k=1

E(ef|Hy, A;) = 0; E[(ef)?] < +o0.

For the rest of this chapter, we use (SNMM), to represent the stage-t SNMM, and (SNMM),(8;)
to emphasize the true parameter B;. In (SNMM),, 1 (H;) is the stage-t treatment-free effect, and
~v¢(Hy, Ag; Be) is the stage-t history-treatment interaction effect, also known as the “blip function”
(Robins, 1994), which is parametrized by the p;-dimensional parameter vector 3; € %; < RPt. The
sum-to-zero constraint Z,I::l ~v¢(Hy, k; B¢) = 0 is incorporated for identifiability. Since the stage-t
Q-function is modeled in (SNMM), as Qi(Hy, A;) = p(Hy) + v (Hy, Ag; Be), the induced stage-t
optimal decision rule becomes d; (H;) € argmax; <<y ve(Hz, k; Bt).

In the following Theorem 4.2, we further show that maximizing the value function can be

directly related to finding good estimates of the interaction effects {y;(Hp, A;)}L, in (SNMM)T.

Theorem 4.2 (Estimation and Regret Bound). Consider Model (SNMM)]_,. For 1 <t < T,
let Aen(Xy, Ar) be an estimates of ~vi( Xy, At), Jtn(Ht) € argmax << Ve;n (Hy, k), and df (Hy) €
argmax, <<y Ve(Hi, k) . Then

T
V(d") - 2 Jax B Ve (He, k) — v (Hy, k)|

Here, {qin}1_, are fived and E takes expectation over {H;}1_,.

The proof is similar to Murphy (2005, Lemma 2), and is included in Section 4.6. Theorem 4.2
implies that minimizing the estimation error of v can also minimize the regret. In this chapter, we

focus on finding efficient estimates of the parametric interaction effects {v;(Hy, As; Br)}L ;.
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4.2.3 Identification

Model (SNMM), is “structural” since the stage-t pseudo outcome Y;* is not directly observed

from the data except for t = T. It is “nested” because (SNMM), depends on (SNI\/H\/[)IETJrl =

.1 (SNMM),. Specifically, assume that Model (SNMM)/"; (B 1).7) = Naes1 (SNMM), (B.)

is known. Define the stagewise g-outcomes from the observed data O as

T
YT(g) =Y Kt(g) =Y - Z {’Yu(Hu,Au§:8u) - 1Lna<x ’YU(Huvk§Bu)} ;o t=T-1,---,1

u=t+1 U

(4.3)
The following Lemma 4.3 connects the pseudo outcome with the g-outcome.

Lemma 4.3 (Pseudo Outcome Identification). Fiz 1 < ¢t < T. Consider the stage-t pseudo
outcome Y;* in (4.16) and the g-outcome Yt(g) in (4.3). Then under Model (SNMM)?+1(B(t+1):T),

Assumptions 4.1 and 4.2, we have
Eﬁ(m):T(Yt(g)’HﬁAt) - Eﬁ<t+1>:T(Yt*|Hta Ay).

Here, Eg, ., denotes the expectation wunder the data generating process of Model

(SNMM), 1 (Be+1)7)-

In Lemma 4.3, the stage-t g-outcome Yt(g) can be obtained from the observed data {O;}}_,

and the true parameters {8,}._, , in the subsequent-stage models. In this way, (SNMM), is

T

identified from the g-outcome Yt(g), and the identification depends on (SNMM), ;.

We point out
that (SNMM), does not depend on the previous-stage models (SNMM):™! := N2t (SNMM)..
Therefore, the estimation of the stage-t parameter 3; can also be free from the model assumptions

of (SNMM)tl_l. This can provide the potential for robustness with respect to backward model

misspecifications.
As a corollary of Lemma 4.3, Model (SNMM)F{ can be characterized by some moment conditions

on the observed data O. Define the stage-t g-residual from the observed data O as:

T
et(tg) = egg)(ﬁt:Tﬁlt) =Y — Z {Vu(HuaAuv/Bu) - 1inka<XK7u(Hua k,ﬁu)} - :u‘t(Ht) - fYt(Ht’At;ﬁt)'
u=t+1 U

(4.4)
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In the following Theorem 4.4, we establish the moment conditions for (SNMM){ in terms of the

observed data.

Theorem 4.4 (Characterizing Moment Conditions). Consider Model (SNMM)lT(ﬂl:T) with the
true parameter Br.r = (B],--- ,BL)T € B x By x -+ x Br = Bui.7. Let {egg)(,ét;T;ﬁ,t)}?ﬂ be the
g-residuals in (4.4) based on the working parameter él;T € HB1.r and the working treatment-free

effect function fiy(H;). Then Bl:T = B1.7 if and only if
Eg,. (et (Br; Jie) | Hy, Af] = Eg,.r [\ (Bur; )| HY; 1<t<T. (4.5)

Here, Eg,,, denotes the expectation under the data generating process of Model (SNMM) (Ber)-

Robins (2004, Theorem 3.2 (ii)) also used similar moment conditions as our (4.5). These
moment conditions define the nuisance tangent spaces in Lemma 4.6 in Section 4.2.4. In the
following Corollary 4.5, we further obtain the equivalent data generating process implied by (4.5).
Different from the stagewise models in (SNMM)F{, Corollary 4.5 provides cross-stage the data
generating process.

Corollary 4.5 (Equivalent Data Generating Process). Under Assumptions 4.1 and 4.2, Model
(SNMM)lT(Bl;T) 18 equivalent to the following data generating process:

T
Y =Vo+ D AM(Hy) - Z { max v, (H, k; Br) — ’Yt(Ht,At;ﬂt)} + AMryi(Hri),

t=1 t=1

K
Z'Vt(Hhk?/Bt):O; 1<t<T;
subject to k=1

E[AMt+1(Ht+1)|Ht, At] = 0, E[AMH_l(HH_l)Q] < +00; 0 <t < T,

(4.6)

where Hy = Ao = &, Hy = (H |, 41, X])" (1<t<T), Hry1 = (H}, Ar,Y)T. In particular,
the equivalent stage-t mean model on the g-outcome (4.3) is Y & _ = ue(Hy) + v (Hy, Ay Be) + egg),
where p(Hy) = Vi(H;) — maxi<p<i ve(Hye, k; Be), e &) — Zfitlﬂ AM,(H,y), and Vi(H;) = Vo +

22:1 AMS(HS) - 22;11 {maxléksK ’YS(H& k; ﬁs) - VS(H& Ag; ﬁs)}
The stagewise g-residuals {egg)}le are generally heteroscedastic and positively correlated:
T+1

E<egg)e§g)‘ﬂt,,4t> :E(e§g>2’Ht,At) = N E[AM(HH A, 1<s<t<T. (47
u=t+1
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Moreover, the stage-t-treatment-free effect p;(Hy;) consists of {maxicr<x vs(Hs, k;Bs)}_,. If
v(Hs, k; Bs) is modeled as the linear model HIBsy for 1 < k < K and 1 < s < t, then j;(Hy)
is nonlinear in H;. This implies that existing strategies based on linear working models (Almirall
et al., 2010; Henderson et al., 2010; Wallace and Moodie, 2015; Shi et al., 2018a; Zhu et al., 2019;
Wallace et al., 2019) may always misspecify the treatment-free effect models (Laber et al., 2014a;
Schulte et al., 2014).

Murphy (2003, Equation (12)) also obtained the same representation as our (4.6). In particu-
lar, {AM,(H;)} 1 is a (Hy, Ay)E-martingale-difference sequence, where AM,(H;) = V,(H}) —
E[Vi(H};)|H;-1, A¢t—1]. The nonparametric function AM; : H; — R is part of the treatment-free ef-
fects {pu(Hy)}L_,. The predicted quadratic variation E[AM,(H;)?|Hj, As] is part of the variance
function E(egg)2|HS, Ag)for 1 <s<t—1.

Almirall et al. (2010); Henderson et al. (2010) utilized this cross-stage data generating process
representation, and estimated Vo, {AM;(Hy)}L_; and {;(Hy, Ay; B¢)}; simultaneously. However,
{AM;(H;)} | are nuisance components that can be vulnerable to model misspecifications.

Q-Learning (Watkins, 1989) utilized the nuisance components in a different way. Specifically,

the following stagewise q-outcomes are considered:
ViV = Y5 Y= g (Hien) + max yen(He kiBrn); t=T— 1o 1L (48)

If the treatment-free effects {u;(H;)}_, are correctly specified, then the stage-t mean model on
the g-outcome is Yt(q) = w(Hy) + v (Hy, Ag; Be) + ei‘”, where the stage-t q-residual is egoo =
AMyy1(Hyyq). Here, different from the representation of g-residual in Corollary 4.5, the g-residual
egq) consists of fewer martingale-difference terms than the g-residual eig). Therefore, Q-Learning
under correct model assumptions can enjoy higher efficiency than methods based on the g-outcomes
(Schulte et al., 2014). However, Q-Learning can also be vulnerable to model misspecifications. In

particular, the stage-t g-outcome Yt(q)

can heavily depend on the stage-(t+1) mean model, especially
the treatment-free effect function pyi1 (Hyy1).
To conclude this section, we use the following example to demonstrate (4.7) and the nonlinear

treatment-free effects.
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Example 4.1. Consider the data (X1, 41, Xa, A2, X3, A3,Y) as follows:
Al, AQ, Ag, Zl, ZQ, Z3 i'kd' 2 % Bernoulli(1/2) — 1;

3 3
X1 = Zl; X2 = ZQ]l(Xl = Al = 1); X3 = Z3]1(X2 = AQ = 1 Z 2 ‘Xt‘ — AtXt

The stagewise pre-treatment histories are H3 = (X1, A1, Xo, Ag, X3)T, Hy = (X1, A1, X2)T, and

H; = X;. Compared with (4.6), the martingale-difference sequence is {X;}3_;.

e The stage-3 mean model is Y3(g) =Y = [Z?Zl(Xt— | Xe|+ A Xy) + X3 — | X3]] 4+ (A3 X3), where
the treatment-free effect is puz(Hz) = So_ (X; — | X¢| + A:X;) + X3 — | X3/, the interaction
effect is v3(Hs, A3) = A3X3, and the g-residual is 0.

e The stage-2 mean model is YQ(g) =Y — {73(H3, A3) — maxgeq_1,13 73 (Hs, a } Y — (A3X3—
| Xs3|) = [(X1— | X1+ A1 X7) + Xo — | Xo|] + (A2X2) + (X3);, where the treatment-free effect
is /LQ(HQ) = (Xl - |X1| + Ale) + Xo — ’Xg‘, the interaction effect is ’)/Q(HQ,AQ) = Ay Xo,

and the g-residual is egg) = Xs.

e The stage-1 mean model is Yl(g) =Y — Zi:2 {7u(Hy, Ay) — maxae{,lyl}%(Hu,a)} =Y —
(A2 X9 —|Xa|) — (A3X3 —|X3|) = (X1 —|X1|) + (A1X1) + (X2 + X3), where the treatment-free
effect is p1 (H7p) = X1 — | X1/, the interaction effect is v1(H1, A1) = A1 X5, and the g-residual

is egg) = X9 + X3.

It can be clear that us(Hs), pe(Hz) must be nonlinear functions. For the g-residuals, we have
E(el®?|Hy, Ay) = E(X2|X1, A1, X0, As) = 1(Xy = Ay = 1) and E(e\®?Hy, A1) = E[(X, +
X3)*1 X0, A1) = [E(Z3)1(Xq = 1) + E(Z3)P(X2 = Ay = 1|X7, A1)]1(A; = ) = (5/4) (X1

Ay = 1). That is, both egg) and egg) are heteroscedastic. Moreover, E( |H2,A2)
E[(X2 + X3)X35|X1, Ay, Xa, Ag] = E(Z2)1(Xy = Ay = 1) = 1(Xy = Ay = 1). Then E(e§g>egg>) -

P(Xy = Ay = 1) = 1/16, which suggests that egg) and egg) are positively correlated.

4.2.4 Semiparametric Theory

Our next goal is to further study the semiparametric efficient estimation of (SNMM)lT. We first
review several concepts in semiparametric inference. Consider an RAL estimate Bl:T,n of B1.7 with
the y/n-asymptotic linear representation: BLT’n — Brr =E,(IF) + oP(n_l/Q). Here, IF is the Influ-

ence Function (IF) of Bl:T,n, and E,, is the empirical average. Then under regularity conditions,
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lim,, o nVar(BlzT’n) = E(IF®2) where a®? := aa'. The goal is to find the semiparametric Efficient
IF (EIF) with the smallest E(EIF®?) among that of all RAL estimates. By Tsiatis (2007, Theorem
4.2 (ii)), IF € Afp, where Aj.7 is the nuisance tangent space of (SNMM)lT7 which can be charac-
terized by the moment conditions (4.5) in Theorem 4.4. Then it remains to characterize the IFs in
A{.; and choose the EIF with the minimal E(EIF®?).
We first derive the nuisance tangent space following Robins (1994, Theorem 8).

Lemma 4.6 (Nuisance Tangent Spaces). Consider (SNMM)]_, and the g-residuals {egg)}z;l in
(4.4). Define p := Zthlpt and G :={g(0O) | g: O - RP, E[g(O)] =0, IEHg(O)H% < +oo}, which
is equipped with the norm | - | := (B|| - ||3)"/2. Then the nuisance tangent space is Ay.p := ﬂz;l Ay,
where

A = {G €G:E (Ge§g>(ﬂt,At) —E <Ge§g>’Ht)} L o1<t<T.

By Tsiatis (2007, Theorem 4.3), the IF of an RAL estimate belongs to A{, =
span {Ai t<u < T}, where span represents the closed linear span. Therefore, it suffices to study

Af for each 1 <t < T. Notice that the moment restriction in Lemma 4.6 is equivalent to
E (Ge,ﬁg)‘ﬂt,At — 1) —E (Gegg)‘Ht,At - 2) —...—FE (Gegg)‘Ht,At - K) .

Then we can introduce a set of coding vectors {wy}& ;| < RE~1 such that ZkK:1 cpwi, = 0 if and
only if ¢; = ¢g = - -+ = ck. Equivalently, we can let Q := \/m[wl,w% L wi|T e REX (K1)
and require that (1/v/K)1xx; is the only left singular vector corresponding to the singular value 0
of Q. In the following Lemma 4.7, we show that any coding vectors satisfying such a requirement
are equiangular up to normalization.
Lemma 4.7 (Equiangularity). Let Q := /1 — 1/K[wj,w, - ,wg]|T € REXE=D sych that
(1/\/?)1;(“ is the only left singular wvector corresponding to the singular value 0.  Then
{((QTQ) 2w 3K | are equiangular.

The equiangular coding representation in Zhang and Liu (2014); Qi et al. (2020); Zhang et al.
(2020) is an example that satisfies Lemma 4.7. The equiangular coding vectors {wk}gzl can be
useful to define the following R¥~!-valued decision function associated with the interaction effect.

Lemma 4.8 (Angle-Based Decision Function). Consider (SNMM),. For the coding vectors

{witE | < RETL as in Lemma 4.7, define an RE ! valued decision function as ft(Ht;ﬂt) =
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(QTQ)_l 25:1 Ye(Hy, k; By )wy. Then

Y (Hy, k; By) = <1 - > (wi, i Hi; By)); 1<k <K
Moreover, the stage-t optimal decision rule is given by
di (Hy; Br) € argmax(wy, £, (Hy; By))- (4.9)

1<k<K

Denote A; := w 4,- Based on the coding vectors, the stage-t nuisance tangent space in Lemma

Ht) = Opx(Kl)} :

Then we can characterize Aj- as in the following Lemma 4.9.

4.6 can be rewritten as

GA'Te(g)
AN={GeG: E Tttt
! { (p,@/,t(Ath)

Lemma 4.9 (Characterization of AtL) Let Ay be the stage-t nuisance tangent space in Lemma 4.6,
{wi}E | < RE=L be the coding vectors satisfying Zszl crwi = 0 if and only if c1 = co = -+ = ck.

Denote A} :=wy,. Then

AL Gt(Ht)Ate(g)
¢ Dot (Ae| Hy)

Gt : Ht — Rpx(K—l)} .

Here, po i(alhy) := P(Ay = ai|[Hy = hy).

(2)
L o T Gt Ht Atet
Based on Lemma 4.9, we have Ay = {Zt 1 m

Gi:Hy — Rpx(K*l) (1 <t < T)}
Compared with Robins (2004, Equation (3.10)), our characterization of the nuisance tangent space
AL utilize the equivangular coding {u.:k}/,cK_1 to re-express the working instruments Gy(Hy, Ay) —

E[G+(H}, At)|H;] in Robins (2004) by % and can be more tractable to analyze.

Notice that {A}}7_; are not mutually orthogonal, since E(egg)egg”Ht, Ay) is generally nonzero
for 1 < s <t < T asin (4.7). In the next Lemma 4.10, we perform orthogonalization on {A}}7_;

to obtain a direct sum representation of Asz. For a vector & and a positive semi-definite matrix

W with compatible dimensions, we define ||z|3, := zTWz.
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Lemma 4.10 (Orthogonalization). Consider {Aj}I_, in Lemma 4.9. Define

/OXL o Gt(Ht)Ate(Ort)
Por (A Hy)

Gt:HtHRPX(K—l)}; 1<t<T.

T

Here, the ort-residuals {et _, are recursively defined from

T
egport) = eg,g); egort) = egg) — Z Tu e(ort), t=T-1,---,1. (4.10)
u=t+1

The stage-t orthogonalization coefficient is 7 = 14(Hy, Ay) = <ZkK:1 pt(Ht,k)wk,%>

where p(Hy, Ay) = E(egg)egort)|ﬂt,At), o2(Hy, Ay) = E(egort)Q\Ht,At), and Vi(H;) :=
X2 ° °
Zk X U;)Sﬁ}fl);z) . Then {A{}E | are mutually orthogonal and Ay = @tT:l Af.

If we assume the additional condition (Robins, 2004, Equation (3.11)): E(egg)2|Ht,At) =
E(e(g)2|Ht) for1 <t <T, then egort) = egg) and A+ = AL for 1 <t <T. In this case, {AFYL | are

mutually orthogonal, and Ay = @;‘F:I Af.

Robins (1994, Theorem 9) also performed the same orthogonalization as in our Lemma 4.10 to
derive the semiparametric efficient score. However, the form of efficient score in Robins (1994) can
be too complicated to use without assuming the stronger condition: E(egg)2|Ht, Ay) = E(egg)2|Ht)
for 1 <t < T, as in his Corollary A3.2. Note that this condition is not satisfied in our Example
4.1.

Given the direct-sum representation As, = @thl A, we are finally able to characterize the IF
of an RAL estimate as in the following Theorem 4.11. For symmetric matrices A, B of compatible

dimensions, A < B means B — A is positive semi-definite.
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Theorem 4.11 (IF under the SNMM). Consider (SNMM)?=1 and the ort-residuals {egort)}le in
Lemma 4.10. The IF of an RAL estimate Bl:T,n = (Ain,égm, e ,B; n)T for B1.7 takes the form

”e(ort)
Gui(Hi) Gi2(Hz) -+ Gir(Hi) m
j2€gort)
Goi1(H1) Goa(H2) -+ Gor(Hr) | | 550
IF(G) = ’ ’
A
| Gri(Hy) Grao(Hz) -+ Grr(Hr) | | 5o iam |

subject to  E[IF(G)ST] = L,xp,

where G := [Gg : 1 < s,t < T with the working instrument functions Gg @ Hi — RPs* (K-1)
(1<s,t<T), and S = (0/08T) log[likelihood(B])] is the semiparametric score vector.
Consider the lower-triangular instrument matriz L := [Lg : 1 < s,t < T| with Ly := G4 1(s =

t). Then IF(L) is also an IF, and E[IF(L)®?] < E[IF(G)®2].

Our Theorem 4.11 extends the characterization in Robins (2004, Equation (3.10)). In particular,
if the upper-triangular entries of the instrument matrix G is nonzero, then the corresponding IF is
inadmissible. In this case, there exists another IF with a lower-triangular instrument matrix and a
smaller y/n-asymptotic variancee.

In Section 4.6.2, we discuss the semiparametric efficient estimate based on the IF characteriza-
tion in Theorem 4.11. We also point out that the semiparametric efficient estimate requires many
vector-valued nuisance functions, which can be challenging to estimate in practice. Assuming
E(egg)QIHt,At) = E(eggplﬂt) and fi(Hy;B,) = Bl H; for 1 <t < T, the required nuisance func-
tions are Hy — (1—1/K)E{[A; — d¥(H;)|Q Hy|H,, Ay =k} for I< k< Kand1<s<t—1<T,
where ® denotes the Kronecker product. There are KT(T — 1)/2 vector-valued nuisance functions
to estimate, and each of them can be generally nonlinear. This shows the challenge of implementing

the efficient estimation procedure rigorously.

4.2.5 Backward Change Point SNMM (BCP-SNMM)

Motivated from the challenge of semiparametric efficient estimation, we introduce an unknown

backward change point ¢y € {1,2,---, T}, such that Model (SNMM)?; holds for tg < ¢t < T, while
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a nonparametric data distribution is allowed during 1 < ¢ < ¢y — 1. Such a model is defined as the

BCP-SNMM:

(X57As:1<8<t0—1)~P0;
(X1, Az tg <t <T),Y) ~ (SNMM)T; (4.11)

toe{1,2,---,T}, Py is arbitrary.

It can be clear that (4.11) incorporates U%:l (SNMM)Z), which can allow any initial time
toe{1,2,---,T} for the SNMM. Therefore, Model (4.11) consists of a larger class of semiparametric
models compared with Model (SNMM)IT. The change point ¢y is an unknown nuisance parameter
rather than a parameter of interest in most change point detection literature (Jirak, 2015; Wang and
Samworth, 2018; Liu et al., 2020). Since the change point ¢y, and the data distribution Py before ¢
are unknown, a stage-t semiparametric estimate of 3; must be pivotal with respect to the moment
characterizations (4.5) for stages 1,2,---,¢ — 1. In this way, we can further eliminate the lower-
triangular entries of the instrument matrix in Theorem 4.11, and obtain the IF characterization
with an upper-triangular instrument matrix as in the following Theorem 4.12. As a consequence,

the admissible instrument matrix becomes diagonal.

Theorem 4.12 (IF under the BCP-SNMM). Consider Model (4.11) and the ort-residuals {e§°rt) |7
in Lemma 4.10. The IF of an RAL estimate Bto:T,n = (BtTo,naévao,nv e ,@}n)T for By, takes the

form

A (ort)
Ato €y

Groto (Hto)  Groto+1(Higr1) -+ Gror(Hr) P G TH)

(ort)

FG) Gigr1to+1(Higs1) -+ Gyoyrr(Hy) pd,to+l(At0iqT;It0+l)

At0+16

Arele)

Gr(Hr) P, 7(AT|HT)

subject to  E[IF(G)ST] =1,
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where G 1= [Gg : tg < s < t < T| with the working instrument functions Gg : Hy — Rpsx (K1)
(to<s<t<T), and S = (0/0BL,)log[likelihood(B])] is the semiparametric score vector.

Consider the diagonal instrument matrixz D := diag{Gtt}thtO. Then IF(D) is also an IF, and

E[IF(D)®?] < E[IF(G)®2].

Comparing Theorems 4.11 and 4.12, the lower-triangular entries of the instrument matrix are

forced to zero under Model (4.11). The reason is that, as a stage-s RAL estimate of Model (4.11),

Bt,n is pivotal to any ¢ty < s, and hence can only depend on the future model assumptions (SNMM)Z.
1 (ort)
For 1 <t < s—1, the instrument function Gg(H;) corresponds to %, where the leveraged

moment condition E(egort)|Ht, Ay) = 0 is based on (SNMM),. Therefore, Gy (H;) must be zero so
that the s-th IF is pivotal to (SNMM),.

Notice that an admissible IF with diagonal instrument matrix in Theorem 4.12 is cross-stage
Gtt(Ht)Xtegorw 1

e En) : A A} where, by Lemma 4.10, {A}Z | are orthogonal.

This implies that an admissible RAL estimate of Model (4.11) is y/n-asymptotically across-stages

uncorrelated. Specifically,

independent.

The advantage of the semiparametric estimates for (4.11) is that these estimates are robust
to backward model misspecifications. Specifically, consider the stage-t estimate Bt,n that does not
depend on model assumptions of (SNMM)'i_l. Then if any of (SNMM), ™! are incorrectly specified,
the estimate ,é\t,n still remains consistent. In this way, studying the bigger class of semiparametric
models in Model (4.11) can allow the gain of more robustness.

The fact that an RAL estimate of Model (4.11) can only depend on future model assumptions
also suggests that Model (4.11) can incorporate several backward stagewise estimates, including Q-
Learning (Watkins, 1989; Chakraborty et al., 2010), recursive G-Estimation (Robins, 2004, Section
7.2), stagewise A-Learning (Shi et al., 2018a), and dWOLS (Wallace and Moodie, 2015).

The cross-stage orthogonality of any admissible RAL estimates for Model (4.11) can simplify
the semiparametric efficient estimate. Specifically, we can find the efficient estimates Beff’tm for
each stage separately, where the efficient working instrument function G (H;) is chosen such that
the y/n-asymptotic variance of the stage-t estimate I@eff,t,n is minimized regardless of its influence
to other stages. The efficient estimate combines the stagewise estimates together. The following

Theorem 4.13 describes this procedure in terms of the semiparametric efficient score.
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Theorem 4.13 (Semiparametric Efficient Score under BCP-SNMM). Consider Model (4.11), the

angle-based representation in Lemma 4.8, and the ort-residuals {egort)}le in Lemma 4.10. Assume

to is known. The semiparametric efficient score for By .1 is S’ég)) = (ngf,to’ ngf,toJrl’ . ,SeTH’T)T
where
) ) A’tegort)
Seft s i= Fo(Hy B)TQTOV(H) ' — 2% 1<t <,
off t «(Hy; By) +(Hy) Py (AHL)
and Fi(Hy;B,) = (3/8Bg)ﬁ(Ht;,[3t). The semiparametric Fisher information matriz is

T (Byy) = diag{Z;(By)}Ly,, where T(B:) = E[Fxfﬂ;50TQTQVAJIQ*19TQFAIQ;ﬁg] for

to<t<T.

Notice that Theorems 4.12 and 4.13 hold for stages after a given change point ¢g, since for stage
t < to, the data distribution in Model (4.11) is fully nonparametric, and the RAL estimate and
semiparametric efficient score are not defined for these stages. In this chapter, our main focus is not
to determine the change point ¢g. Instead, we want to ensure that for any given ty, the parameter
estimates BtO:T,n for (SNMM)Z are optimal, which can be guaranteed from the semiparametric
efficient scores {Seg,t}z;l in Theorem 4.13 that are pivotal with respect to %.

Based on Theorem 4.13, we can finally define the efficient estimating function for Model (4.11).
Denote .7 := (/jt:T,jb/;a/,t:T;5,52;T7b/(t+1):T) as the nuisance components with the treatment-free
effect functions {fi,(Hy)}L_,, propensity score functions {P. .(Au|Hy)}L_,, variance functions
{52(Hy, Ay)}L_;, and covariance functions {p,(Hy, Au)}L_,. ;. Let B(t+1):T be working param-
eters for stages t + 1 to T'. We first introduce the stagewise ort-outcomes: Y:ﬁort) =Y, and for

t=T—1,--,1,

y,ort) = y (o) (ﬁt;ﬁ(wl):T’ﬁ(t“):T)

T
= Y — w(Hoy, Ay; vu - w(Hy, k; vu _
U_Zt:+1 [’Y ( Bu) 1ISI}€ang7 ( B )] (g-outcome)
71 5
i i Pu(Hoy, k)w i T (H, AuJw” A,
o u U» k> = —
u=t+1 \k=1 = Pou(Au|Hy) Peru(AulH,)
" [Yu(ort) = Bu(Hu) = 7u(Hu, Au; B“)] ' (orthogonalization)

(4.12)
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Then the stage-t efficient estimating function is defined as

et t (ﬁt,ﬁ t41) TaUtT)

K ~2 @2 -1 g
or ~ 3 J Ha A
v= [Yt( Y — iy (Hy) — ’Vt(HtaAﬁﬂt)] x Fi(Hy; B)TQTQ [Z d ] 5 d

L s 24 (A H) (AJH)
ort-residual ~~ -
efficient instrument
(4.13)

We obtain the stage-f estimate Bt,n by  solving the estimating equation

E, [ e +(Bt; B(tﬂ);T,n, ft.7)] = 0, and the estimation proceeds with ¢t = 7,7 —1,--- , 1.

4.3 Dynamic Efficient Learning (DE-Learning)

Based on Model (4.11), we are able to propose the DE-Learning the solves the corresponding
semiparametric efficient estimation equations. We first consider the high-level procedures for DE-

Learning in Section 4.3.1. Then we provide more implementation details in Section 4.3.2.

4.3.1 General Procedure

In Section 4.2.5, we have obtained the efficient estimating functions {gbeg,t(ﬁt;E(Hl):T,ﬁt;T)}tT:l

from (4.13). A DE-Learning estimate of B1.7 recursively solves:

~ (1 ~ ~ 2
B¢ € argmin { HEn [¢eff,t (ﬁt;ﬁ(t+1):T,nynt:T,n>] B } s ot=T,T—-1,---,1, (4.14)
Bte@t 2 It(ﬁt) 1
where ||z|3, := £TWz, and 7.1, are finite-sample estimates of nuisance functions. Given the

working nuisance functions 9.1 = (fie:1, Por 4.7 5(2t+1):T’ P(t+1):1), it can be shown that the following

stage-t working variance function is for optimal stage-t estimation:

optt(HtaAt>77tT> E[ (ﬁtT»ntT ‘HtaAt]

while the following stage-t working covariance function is for stage-t orthogonalization:

port,t(Hta Ay T7t:T) = [ (BtTmtT) (ﬁtTﬂ?tT ’Ht,At]
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Both the working variance and covariance functions can be identified from the computable ort-
residual egort) from (4.10) and the g-residual egg) from (4.10) with O orthogonalization. Therefore,
we can obtain the estimated variance function 67, (Hy, A;) by regressing e%ort)? on (Hy, As), and
obtain the estimated covariance function p; ,,(Hy, A¢) by regressing egg) egort) on (Hy, Ay).

The general procedures of DE-Learning are given as follows.

e Input data {(X;, Ay : 1 <t <7T),Y;}",. Define Hy = X3, H, := (H] |, A]_,, X])T for

2 <t <T. Input or estimate the propensity score functions {po + »(Hy, k) }1<k<i-
1<t<T

e Set the initial g-outcome and ort-outcome as YT(g) — YT(,O“) — Y. For staget=1T,---,1, do

the following.

(ort)

Step 1. Estimate the treatment-free effects fi; ,,(H;) using Y, as the response.

Step 2. Obtain a consistent estimate Bﬁf of B¢ in (SNMM),. This can be done by solving (4.14)
with the stage-t working variance function as 1.

Step 3. Compute the ort-residual éﬁ‘)“) «— Yt(ort) — Jien (Hy) — v (Hy, Ay ,@t(og) Then perform a
~(ort)2

. . . or .
nonparametric regression using €, as the response and (Hy, A¢) as the covariates to

estimate the variance function 67, (Hy, A;).

Step 4. Solve (4.14) again but with the stage-t working variance function 57, (Hy, A;) from Step

3 for the stage-t DE-Learning estimate 3,5,“.

Step 5. Compute the g-residual egg) — Yt(g) — [ (Hy) — ’yt(Ht,At;Bt,n) and the ort-residual
e,ﬁort) — Yt(ort) — Jign (Hy) — v (Hy, At;,ét,n)- Then:
rt)2

. . . @)
— Perform a nonparametric regression using e; as the response and (Hy, A;) as the
covariates to estimate the variance function 67, (Hy, A);
9’

%g) egort)

— Perform a nonparametric regression using e as the response and (Hy, A;) as

the covariates to estimate the covariance function p, (Hy, Ay).
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Step 6. If t > 2, then update the stage-(t — 1) g-outcome and the ort-outcome as

(&) _y (&) _ .3, ) .3 .
Y5 <Y, (%(Ht,At,Bt,n) lgCZXK’Yt(Hhhﬁt,n))v

Yt(fit) <—Y;f(0rt) - (’Yt(Ht,At;,@t,n) - 12}2([( %(ku;aﬂn))

K K ~2 @21t A
~ g n(HtaAt)w A or
— Z ptm(Ht,k?)LUk, Z 72 A Hk = 2 GE t)a
P = Do (A Hy) Pe t.n(Ad|Hy)

with egort), 0;n(Ht, A¢) and py,(Hy, At) from Step 5.

Continue with the next ¢ or stop if t = 1.

Notice that the stage-t variance function has been estimated twice. The first variance function
estimate &gn(Ht, A) based on the initial consistent estimate BSB is used to obtain the DE-Learning
estimate :étm- The second variance function estimate 8?’n(Ht, A;) based on the DE-Learning esti-

(o

mate Bt,n is used for updating the ort-outcome Y, ™) The reason for estimating for the second time

is to ensure 67, (Hy, Ay) and egort) used in updating Y;(Om satisfy 67, (Hy, A;) ~ E(egort)QlHt, Ayp).

The second estimation of 57, can improve the performance.
)

4.3.2 Implementation

We provide more details for DE-Learning implementation in this section. In the input step and
Steps 1, 3 and 5 of Section 4.3.1, we estimate the propensity score, treatment-free effect, variance
and covariance functions. We provide more details in Sections 4.3.2.1-4.3.2.3. In Section 4.3.2.4,

we further consider to solve the regularized version of DE-Learning (4.14).

4.3.2.1 Estimating the Propensity Score Function

Suppose the stage-t treatment assignment probability pg ¢(A¢ H;) is unknown. The first
approach of estimating p. (A H;) is to consider the penalized multinomial logistic regres-
sion (Friedman et al., 2010). Specifically, consider the multinomial logistic working model

- TH, .
Doyt (k| Hy 11,2, -, TK) exp(ry H) The propensity score parameters 71,79, -+ , 7k € RP

TS eo(r HY)
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can be estimated by the following penalized log-likelihood maximization:

s K P [ K 1/2
Z T]IHtﬂ(At = k‘) —log (Z eTII'Ht>] — A Z (Z 7_]2k> }’

k=1 k=1 j=1 \k=1

max E,
Ti,,TKERP

where the group-LASSO penalty Z§=1 <ZkK:1 Tfk)l/Q takes {Tjk}szl for the j-th variable across all
treatments as a group, and A, is a tuning parameter and can be chosen using cross validation.

In observational studies, the propensity scores can be vulnerable to model misspecification.
Another approach for estimating p,(A¢|H;) is to consider flexible nonparametric regression using
the regression forest (Athey et al., 2019). Specifically, for each 1 < k < K, we run a regression
forest using 1(A; = k) as the response and H; as the covariates. Then each fitted regression forest
provides a prediction for E[1(A; = k)|H;]. The final estimate of p. +(k|H;) is the prediction after

normalization such that the summation over £k = 1,--- , K is one.

4.3.2.2 Estimating the Treatment-Free Effect Function

Similar to Section 4.3.2.1, the stage-t treatment-free effect function u:(H};) can be estimated from
a parametric model or nonparametric regression. For parametric estimation, we consider the linear
working model fi;(Hy;n:) = H/m; as in Wallace and Moodie (2015); Shi et al. (2018a); Zhu et al.
(2019). As pointed out in the remark on Corollary 4.5, if we specify linear models for the interaction
effects {;(Hy, Ay; B¢)}1_;, then the true treatment-free effects {1 (H;)}7_, are generally nonlinear,
and linear working models always misspecify the true model. Nevertheless, the linear working model
has been widely used for implementation convenience and interpretability (Chakraborty et al., 2010;
Wallace and Moodie, 2015; Zhu et al., 2019). In this case, we consider a joint estimation of u; and 3¢

by the following penalized inverse-probability weighted least-squares problem with the ¢1-penalty:

1

~ 2
. R O Te )
flrtuﬁri {En [ﬁﬂ,t,n(At| i) (Yt H/n, ’Yt(HtaAtaﬂt)) ] + A (Imefr + ﬁt‘l)} )

where }A/} is the stage-t working outcome, A, is a tuning parameter and can be chosen using cross
validation. Here, the weighted least-squares problem can be equivalent to solving an inefficient but
consistent estimating equation for (SNMM),. If p ¢ ,,(A¢|H}) is the correct propensity score, then

the above estimate for 7, can be consistent even if the model for the interaction effect v, (Hy, As; B¢)
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is incorrect. If the model for the interaction effect v (Hy, As; Bt) is correct, then the above estimate
for 1, can also be consistent for any arbitrary Do, besides the correct one.

For nonparametric estimation of p;(H;), which was also considered in Ertefaie et al. (2021),
we first divide the data into K subsets according to the received treatments. For each 1 < k <
K, we use }A/t as the response and H; as the covariates to fit a regression forest on the data
subset {(Hit, You,it) : Ait = k}. Then each fitted regression forest corresponds to the prediction of
E(}Z\Ht, A = k). We average the predictions over k = 1,--- , K to obtain the treatment-free effect

estimate.

4.3.2.3 Estimating the Variance and Covariance Functions

Suppose egg) and egort) are the working residuals in the general DE-Learning procedure. In order
to estimate the variance function, we specifically consider the regression forest using egort)Q as

the response and (Hy, Ay) as the covariates. Then 67, (Hy, k) is the regression forest prediction at
(Hy, k) for 1 < k < K. Similarly, for the covariance function estimation, we consider egg) egort) as the

response and (Hy, A¢) as the covariates to obtain the regression forest estimates {py,(Hy, k).

4.3.2.4 Solving the Regularized DE-Learning Estimating Equation

In this section, we consider a general penalty J;(3;) for the stage-t parameter estimation. To

incorporate regularization in DE-Learning from (4.14), we solve a penalized minimization problem:

Bin € argmin {; (B [ (86 Bnyr era) |, + Attht)} =TT -1 1 (415)

BieHy

where W can be a general positive definite weighting matrix W e RP:¥Pt, A
typical choice of W can be l,x, or the inverse of the empirical information ma-
trix {En [—(8/0,82)¢eﬁc7t (Bt;B(Hl):TWﬁt;Tm)]}il. Problem (4.15) can be solved by
the accelerated proximal gradient method (Nesterov, 2013) with the gradient B; +—
E, |:¢eﬁ‘7t (,@t; B(t+1);T,mﬁt:T,n>]- For a fixed tuning parameter )\;, the estimation procedure fol-
lows Steps 1-4 in Section 4.3.1. The parameter A; can be further tuned by cross validation.

The TPWE of the value function is used as the tuning criteria. Denote Bt,n(/\t) as the solu-

tion to (4.15). The corresponding decision rule is cft,n(Ht; A¢) := argmax << e (Hy, k;Bt,n()\t))-

203



Let {(Hit, Ait, Yoreit) i3 be the stage-t validation dataset. Then the criteria for tuning A; is

1 Nyalid ]l[dt n(Highe)=Aqt ] S
o P Bor (A Hor) Yort,it, which is larger the better.

4.4 Simulation Studies

We compare the proposed DE-Learning with serveral existing methods via simulation studies in this
section. Consider the following data generation process. First we generate the stagewise covariates,

pre-treatment histories and treatments from:

(Zy:1<t<T+1,1<j<p} ™ N(0,1);

eX1k/2

Xy =ty =2y Bl = bX0) = S o
k=1

Xij = Zj + L(A-1 = j) — g WA # 5,1 < j < K);

th/2

Hy = (H{_ |, Ay, X[)T; P(A; = k|Hy) = SE ST
k/

Then we generate outcome according to Corollary 4.5 as follows. Consider the coefficient vector

for the stage-t interaction effect v, (Hy, Ay; B(t)) at the k-th treatment as:

p—2 p—2 p—2
0 Y. o) . (t) ‘ ) 0 )
5 (BOOk’Blllw 12k> 0,---,0; 51m¢’"'» t llk’ t— 12k’0" 0 5t 1ﬂk7ﬁt1k’ﬁt2k7 L »0)’
et ~ v —— g
X1 Aq X1 A1 Xt
h first doml t (-1 -1 B () \1
where we irst randomly generate (50%75111«312@51%@ 7/315 11k75t 12k7/3t 1, Qilwﬁtlk?BtQk)
R3 from the unit sphere {u e R3 . HuH2 = 1}, and then let Bs'k = /1 l/K[ sgk -
(1/K) Sk _ lﬂsjk/] for 0 < s <T,0<j<p j= and 1l < k < K. Then we define

the (Ht,At)t:1—martingale—d1fference sequence as: for 1 <t < T,

Ziviw: (He A B9) = gYT(1,HT)T.

S~
D=

e
Il

K
AM, (Hy) Z iy AMog1(Hygr) = eX0ar x
= 1

The outcome according to (4.6) is finally given by
T

T
Y= 1 +YAM(H)-) {lgzwa(Ht, k; BY) — %(Ht,At;ﬁ“))} + AMr i1 (Hryo).

optimal value t=1 t=1
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To implement penalized Q-Learning (Zhu et al., 2019), penalized stagewise A-Learning (Shi
et al., 2018a), and our proposed DE-Learning, we consider the g-outcomes (4.8), the g-outcomes
(4.3) and the ort-outcomes (4.12) respectively for stagewise working outcomes. The nuisance func-
tions utilized in Q-Learning, A-Learning and DE-Learning are estimated according to the imple-
mentation details discussed in Section 4.3.2. In particular, the stagewise treatment-free effects are
estimated from linear working models with the ¢1-penalty, and the stagewise propensity scores are
estimated from multinomial logistic working models with the ¢i-penalty. Both Q-Learning and
A-Learning utilize 1 as the working variance function and 0 as the working covariance function.
Our proposed DE-Learning with the ort-outcomes estimates the variance and covariance functions
using regression forest. In order to demonstrate the performance improvement of cross-stage or-
thogonalization, we also consider DE-Learning with the g-outcomes, in which case the working
covariance function is set to 0.

Testing Misclassification Rates across 100 Replications
p=2,K=2,T=3

stage: 1 stage: 2 stage: 3
DE-Learning (ort-outcome)- 0.385 =3 0.394 —EEI— 0.38 I s S
DE-Learning (g—outcome)- 0404 - 0392 ——f - F——--e-en 039 — T +— Z
A-Learning- 0.418 0.386 =4 s 0.389- —--- - 2
Q-Learning- 0. 493—:III— 0455 @— T —— 0402 — T F——-
DE-Learning (ort-outcome)- 0.365 —F--- se-  (.366 I e 0.321 I ==
DE-Learning (g—outcome)- 0.358 I 0.377———f= [ ®----- 0.331--—f - J———----a--- :)
A-Learning- 0.388 I 0378 —{ 1 H——— e 034 —{T F—— S
Q-Learning- o421—|:|:|— 0.485 I 0348 — T — eee
DE-Learning (ort-outcome)- 0.311—F———] ss— (0.285 I s 0.235—f v
DE-Learning (g—outcome)- 0. 322—_— - 0302——fF T 0.228 I i
A-Learning- 0366— | ———® 0316—{] ———= o 0.272 —|:|:|— S
Q-Learning- 0.401—{ 1 1 0.435: 1T 1+— 0284— T ——— o
DE-Learning (ort-outcome)- 0.259———] =e 0.241 I 017 I }—e>o--corooanas S
DE-Learning (g—outcome)- 0. 263—_— 0.247—fTJ———9-e----oomno- 0.166— === >
A-Learning- 0.268— | |——— e 0.265— 1 —— 0234 —[T |——=oe o o S
Q-Learning- 0.372—{ T } 0.432 | ° 024 —T 11— o =
DE-Learning (ort—outcome)- 0.21 ——] se—os 0.198—H— e 0.119-f[}—eee®--0----- oo 5
DE-Learning (g-outcome)- 0.242— 1 —— oo 0207 —FF—o-@-----omn- 0119-[—+=—- Z
A-Learning- 0.23—[ - }——e----s--e-- 0222—{] | — o= 0.183 [ ]—we e 3
Q-Learning- 0.374—{ T 1 0.406 I . 0184 —T1— ee o e
DE-Learning (ort-outcome)- 0.194—H—1 sese—o— 0.136—H—=-—se 0.091{f—=—== =
DE-Learning (g-outcome)- 0.219—f-—F-J————-eee---0------ 08 T | e e e e e e 0.097-[}—-em----ooomuimiiaiin s
A-Learning- 0.231— ] }———® oo 0.161—{T1— e 014 {T+—= ° §

Q-Learning- 0.354— [ }— 0399—— [ |——ee 0.139—J}—= .
Mean 025 05 075 1 Mean 025 05 075 1 Mean 025 05 075 1
Misclassification Rate (smaller the better)

type first best ---- second best

Figure 4.1: Testing misclassification rates in the simulation studies.
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During the training stage, we consider the training sample size n €
{100, 200, 400, 800, 1600, 3200}, with the number of variables p = 2, the number of treat-
ments K = 2 and the number of stages T = 3. In Figure 4.1, we report the misclassification
rates on the testing sample of size 10,000 across 100 replications. Among the comparing methods,
DE-Learning demonstrates the best testing performance, and the superiority is more evident as
the training sample size increases. Q-Learning generally has the worst performance other than the
final stage, since the working treatment-free effect functions are misspecified, and the g-outcomes
for stages 1 and 2 are incorrect. A-Learning demonstrates its robustness in presence of misspecified
treatment-free effects. However, since A-Learning is suboptimal in presence of treatment-free effect
misspecification and heteroscedasticity, the testing misclassification rates are generally inferior
to our proposed DE-Learning. When comparing DE-Learning with the ort-outcomes and the
g-outcomes, the ort-outcomes can generally help to improve the testing performance, especially
when the training sample size increases. This confirms the optimality of DE-Learning based on

the efficient estimating procedure.

4.5 Discussion

In this chapter, we introduce a general class of semiparametric models, the BCP-SNMM, that in-
corporates the standard SNMM and enjoys more robustness. The class of semiparametric estimates
for the BCP-SNMM can be a suitable framework for theoretically studying backward stagewise esti-
mates. We also propose DE-Learning that solves the semiparametric efficient estimating equations
under the BCP-SNMM and the multiple treatment setting. In particular, DE-Learning is optimal
among a class of regular estimates of the BCP-SNMM even when the treatment-free effects are
misspecified. It enjoys stagewise double robustness and the robustness with respect to backward
model misspecifications. Compared with G-Estimation, DE-Learning is more tractable with much
fewer nuisance functions to estimate and can be carried out in a backward stagewise fashion, which
allows implementable rigorous semiparametric efficient estimation. Our simulation studies also
demonstrate the superiority of DE-Learning in presence of stagewise misspecified treatment-free

effects and heteroscedasticity.
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There are some important future work for this chapter. First of all, we can explore more
on the connections of DE-Learning with existing methods from literature under the BCP-SNMM
framework. More comprehensive numerical studies are also needed to demonstrate the superiority
of DE-Learning, including the cases with increasing numbers of variables and treatments, the
existence of a backward change point, and the comparisons with other nonparametric methods.
Furthermore, we can establish more theoretical properties for DE-Learning, including the stagewise
double robustness and the optimality in presence of misspecified treatment-free effect models. Last
but not least, the high-dimensional estimation properties as in Shi et al. (2018a); Zhu et al. (2019)

can be established for DE-Learning.

4.6 Appendix

4.6.1 Pseudo Outcome

The pseudo outcome Y;* is defined as

—. —. —. - T
V= Y(AD = Y] (A1 A A (AD), AT o(AD) - ARAD) |5 1<t T (416)

=AY (AL)

Here, A*T(AT) = AT and hence Y;(A?) — Y(AT) = Y from Assumption 4.1. For 1 <t < T —1,

—.

{A*(AD}L_, | are pseudo treatments obtained from the following algorithm:

(A7) = Hp(AY);

Fa(AD = d [HE(AD):

Hi(AD) = Hy[ (A A AL (AD, - A7 (AD)]:

A3(AY) = dy [H(AD)]: w=t+2t+3,,T.

(4.17)

Then A?* (ffﬁ) can be interpreted as the treatment assignment trajectory that follows the observed
treatments up to stage ¢t and then follows the optimal treatments up to the end. Such a treatment

trajectory corresponds to the potential pre-treatment histories Hy, - - - , Hy, H, (AL),---  HE(AY)
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defined from (4.17).The pseudo outcome (4.16) is the potential outcomes under such a treatment

trajectory and the resulting pre-treatment histories.

4.6.2 Semiparametric Efficient Estimate under the SNMM

Theorem 4.14 (Semiparametric Efficient Score under SNMM). Consider (SNMM)! and

the ort-residuals {eﬁ"“)}le in Lemma 4.10. The semiparametric efficient score is Seg =

T
T T T
<Seﬂ?,1’ Seff72’ o Seff,T) ’ where

js s
H87A8 :k] WZ}VS(HS)IW; 1<t <T.

aesort N
eﬁt—Z{ZE[ é’ﬁ(;@ T)

The semiparametric Fisher information matriz for By.r is Z(B1.r) = [Zu(Brr) : 1 < u,t < T,
where for 1 <u,t < T,

unt K (ort) (ort) T
Tu(Brr) == Y, Y. wiVi(H,) 'wpE l_aes aﬁ(ﬁs:ﬂ H, A, =k|E l—aes aﬁ(ﬁsﬂ H,, A, = k’] :
s=1k,k'=1 u Pt

As a consequence of Theorem 4.14, the semiparametric efficient estimate for Gq.p in
(SNMM)lT can be obtained as follows. Consider the angle-based decision functions {f;(Hy; 3;)}
in Lemma 4.8. Denote Fy(Hy;8) := (8/081)fi(Hy;B), A, = wa, and di(H,) =
war (- Then (9/08)v(Hy, Ai; Br) = (1 — 1/K)Fy(Hy; By)TA,, and —(0/0B1)e® (Byr) = (1 —
1/K)Ft(Ht;5t)T[Atﬂ(s <t)— ci%(Ht)]l(s < t)] for 1 < s <t < T. By definition, the stage-s ort-
residual can be represented as eg"”) = ZZ;S Vstegg), where vg = vy (Hy, Ay) =111 < s =t <T;
and HZ=S+1[—TU(HU, Ay ifl1 <s <t <T. Define vy = vg(Hy, Ay) := ZZ:s Vs (Hy, Ay) if s < t;

and 0 if s > ¢t. Then for 1 < s <t < T, we have

(ort) ) . .
_565618(?;;;T) = < - [1(> Fe(Hy; Be)T [17st(Ht,At)At — Vg1 (Hi—1,A1-1) Z(Ht)] .

Therefore, for 1 <t < T, the stage-t semiparametric efficient score can be expressed as

an RPt-valued nuisance function of Hy — E[—(9/08:)e*™ (Bs.7)|Hs, As = k]

t—1

K
= Z Z (1 - Il() E {Ft(Ht§Bt>T [Dst(Ht7At)£t — Vs g1 (He—1, Ar—1) _%(Ht)”HmAs = k’} w
1k=1

—1 A‘tegort) (ﬁt:T)
pw,t(At|Ht) ’

segort) (/35 T)

x Vg(H,)™? —p%,s(A H.)

+ F(Hy; B)TQTQV, (H,) (4.18)
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In order to implement the semiparametric efficient procedure, we need to estimate the RPt-
valued nuisance functions in (4.18). If we assume the additional condition: E(et |Ht,At) =
E(e(g)QIHt) for 1 <t < T, then vy = 1(s < t). The required nuisance functions are Hy +—
(1 — 1/K)E{F,(Hy; 3:)T[ A, dt(Ht)]|H5,A =k}forl<k< Kandl1l <s<t—-1<T.
For the linear decision function ft(Ht; B:) = B]H; with B; € REMH)*(K-1) it further reduces
to Hy, — (1 — 1/K)E{[A; — d*(H;)] ® H;|H,, A, = k} (Almirall et al., 2010, Section 3.3.1).
Such an RE-Ddim(H:)_yalyed nuisance function is generally nonlinear can be hard to estimate
well in practice. The total number of such nuisance functions are KT(T — 1)/2. Therefore, the
semiparametric efficient G-Estimation is rarely used in practice (Vansteelandt and Joffe, 2014;

Wallace et al., 2019; Liu et al., 2021).

4.6.3 Technical Proofs

4.6.3.1 Proof of Lemma 4.1

Proof of Lemma 4.1. By Assumption 4.1, the algorithm (4.17) implies that H, = H;‘(A”i) and

Ay = A*(A) foru=t+1,t+2,--- ,T on {d(H,) = A, (t+1 < u < T)}. Then, we further have
—Y [A{T(A’ﬁ)] — Y on {d;(Hu) — A (t+1<u< T)}; 1<t<T. (4.19)

Therefore, for 1 <t < T, we have

E{Vier | (BT, A X7 ) ][ H A

{ [V Hy, A, Xesr, d(Hy) = Ay (t+1<u < T)]‘Ht,At} (by definition (4.1))
—_—

H;q
=E[Y|Hy, Ay, dy(Hy) = Ay (t+1<u<T)]
:E[K*’HhAt?d;(Hu) = A, (t +1<u< T)] (by (4_19))

=E(Y;*|Hy, At). (by Assumption 4.2)
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4.6.3.2 Proof of Lemma 4.3

Proof of Lemma 4.3. For t =T — 1, we have

Yi(fi)l =Y —yr(Hrp, Ar; Br) + lg}gag(K yr(Hr, k; Br) (by definition)
=Yy —yr(Hr, Ar; Br) + max yr(Hr, k; Br) (by definition)
— . %
= pr(Hr) + max r(Hr,k; Br) + e (by (SNMM),)
_ # _ s
~ max E(Yj[Hr, Az = k) + ¢} (by (SNMM),)

In particular, E(ef.|Hr_1, Ar—1) = E[E(e}|Hp, Ar)|Hr—1, A7—1] = 0 by (SNMM),.. Then

E(Y,®, | Hro1, Ar—1) = E{ max E(Y|Hy, Ap = k) ‘HTl,ATl}

1<k<K
—Vr(Hr)
= E(Y7_[Hr-1, Ar—1). (by Lemma 4.1)
For Mathematical Induction on stage t =T — 1,7 — 2,--- , 1, we assume
E(Y,®[H,, Ay) = E(Y/*|H,, Ay), (4.20)

which we have proven for stage t = T — 1 as above.

Next, for stage t — 1, by definition,

T
(&) _ v _ 2: . _ .
1/t—l =Y {VU(H’LHA’IMIBU) 12}CZXK7“(H“’]€”6“)}

u=t

= Y,® —u(Hy A B) + max v (He ks Br).
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Conditional on (Hy_1, A¢—1), we further have

H; ., At—l}

H, ., At—l} (by induction hypothesis (4.20))

=K {Yt* — ve(Hy, Ag; Br) + lg}iXK%(Ht, k; Bt)

=E { e (Hy) + 1I<I}€3<XK’Yt(Ht>k;5t) +e HtlaAtl} (by (SNMM),)

— * —

=B{ max E(Y;"|Hy, A, = k) ’Ht_l,At_l} (by (SNMM),)
VtE;{t)

=E(Y;* | Hi—1, Ai—1). (by Lemma 4.1)

This proves the induction hypothesis (4.20) at stage ¢t — 1.
By Mathematical Induction, the induction hypothesis (4.20) holds for 1 <t < T — 1. O

4.6.3.3 Proof of Corollary 4.5

Proof of Corollary 4.5. First, we assume (4.6). By Lemma 4.3, (SNMM)? (8.7 is equivalent to:

there exists some treatment-free effect functions {u;(H;)}/_, such that
E(Y,®|Hy, A) = ju(Hy) + 7ve(He, A Br); 1<t <T.

Under (4.6), for 1 <t < T, we have

T

v® _y— Y [fyu(Hu,Au;ﬁu)_

max, %(Hu,k;ﬁu)]
u=t+1

1<k

t—1
Vot 2 AMUAEL) s 2 (HLo ki B+ 9 (H A )|+ AMU(EL) — o 0 (HiJs )

= 1<k<K
izﬂt(Ht)
T+1
+ 3 (Hy A Br) + ), AM,(H.),
u=t+1
[ —

(2)

I:Bt

where E(egg)|Ht,At) = ZZ;IHIE[AMU(Hu)\Ht,At] = 0. Therefore, (4.6) implies (SNMM){. In

particular, p;(H;) and egg) can be defined from above.
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Next, we assume Model (SNMM)IT. Define

T
v -y - > {’Yt(Hu Ap; Be) — lg};ixK%(Ht’ k;ﬁt)} ‘
t=1 o

Then Yo(g) can be further decomposed as:

Yo(g) =FE (Yo(g)) +§1 [IE (Y()(g)‘Ht, At) - IE (Yo(g))Ht—l»At—l) ] + E/O(g) —-E (Yf)fg)’HT, AT) :
=V =AM, (Hy,Ay) =AMri1(Hr41)

For 1 <t < T, the stage-t working pseudo outcome can be represented as:

T
Y;(E) -y — Z {’Yu(HuyAu;ﬂu) — ILI}CE;XKWu(Hu,k;IBu)}

u=t+1

t—1
=Y® + ) {vs(HaAs;ﬁs) - 1gngvs(Hs,k;ﬁs)} — max_y(Hy k; B) + vu(Hy, A B1)

s=1

t—1
=mo + Z

s=1

{AMS(H&AS) +7s(Hs, As; Bs) — @i"KVS(HS’ k;ﬁs)} + AM(Hy, At) — 1g€a§XK%(Ht,k;ﬂt)

function of (H¢, A¢), while depending on A; only through AM(H¢, Ay)
T+1

+ ve(Hy, Ag; Be) + Z AM(Hy, Ay) .

u=t+1

(2)

i=e;

By construction, we have E[AM;(Hy, A¢)|Hi—1,Ai—1] = 0 for 1 < t < T, which implies that
E(egg)\Ht, A;) =0for 1 <t <T. Then (SNMM)F{ and Theorem 4.4 together imply that

AM(Hy, Ay) = AMy(Hy); 1<t<T.

Therefore, Yb(g) satisfies the following restrictions:
T+1
Yo(g) =V + Z AM(Hy) subject to E[AM(Hy)|Hi—1,A:1]=0; 1<t<T+1,

t=1

which gives (4.6).
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4.6.3.4 Proof of Lemma 4.10

Proof of Lemma 4.10. By definition,

AL _ {Gt(Ht)x‘ftet(ort)
Lo ) edd) e

G : Hy — RPE-D L
P (A Hy) |00

For any G € G, we have

1

or 1 (or ®2 a 1 (or
E(G|A}) = GAJe,™ g| [ A H, A
Por t At|Ht p(c./,t(At‘Ht) p%,t(At‘Ht)
; Vi (H,) LAl
E (G |H,, A, = k) t . 421
[Z ( ! ' P,Qf,t(At\Ht) ( )
For Mathematical Induction on stage t =T,T —1,T —2,--- ,1, we assume

{ARYT_, are mutually orthogonal and Ajp = @ AL (4.22)

u=t

Then the induction hypothesis (4.22) holds for ¢ = T" by definition.
Consider the induction hypothesis (4.22) at stage t — 1. Fix 1 < s <t —1. Let G5 : Hs —

(g)
RP*(E=1) be an arbitrary function. First, we consider Ggg) = % € ASL. Fort <u<T,

Pot,s Sl
AL
Au]

we have

A 8
B(GPIAL) = B [Gs(Hs)Ases

Y24 S(A |H)
S)Asegg)eﬁ rt) Vo (H,)~ A (Ort)
E Hy, Ay = k| w! by (4.21
{Z [ pds(A ‘H) k pgcz{,u(Au’Hu) ( Y( ))
V. (H,) A
— M E e(g) (ort) HujAu =klw ’M e(ort)
p,Q/,s(As|H <Z ) b p,%,u(Au|Hu) “

pﬂs(A |H) py/u(A |H )

33(118)‘18 (ort)
Tu
p% S(‘1 ‘11 )

- o
GS(HS)A Z Pu Hu,k)wk, Vy ( ) Ay >6(ort)
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Here, the second last equality follows from Proposition 4.5 that for 1 < s < u < T, we have

el = o AM(Hy) = S AMG(Hy) + i), so that

u

Hu,Au) = ) A/\/lt(Ht)IE<e§f“)

E (egg) elort)
t=s+1

H,, Au) +E (egg)egort)

Hy Au) = pu(Hu Au).

-0
Next, we (sp;aciﬁcally consider s = ¢ — 1 and Ggorlt) = G§g1 YR £§)1|Aj) =
1 ort
G;;(tl_qlt(_ jt)ﬁt‘;{ljj;)l . It can be clear that G’torlt 1 @u tAT By G;_1 is arbitrary, we further
have Af, L PF AT and A < DL, AT, Then by induction hypothesis (4.22) that

A = @I, AL we have A(t T S c @, | AL. Conversely, Al | < span{Aft |, AL} =
Therefore, A%

AL
(t 1):T*

(1T = @u 1 Al and the induction hypothesis (4.22) at stage ¢ — 1 is proved.
By Mathematical Induction, the induction hypothesis (4.22) holds for 1 <t < T,

Assume the additional assumption:
E <e§g)2‘Ht, At> _E (eggﬂ\ﬂt) . 1<t<T. (4.23)
We aim to show the following by Mathematical Induction:
e = e p(H 1) = = py(H, K) = E (eggﬂ’HO - (4.24)

By definition, e(Tort) = egg) and pr(Hr, k) = E(egg)2|HT, Ar = k). Then by (4.23), we have
pr(Hr,1) = -+ = pr(Hp,K) = E(e%)2|HT), which proves the induction hypothesis (4.24) at
t="T.

Assume the induction hypothesis (4.24) holds for stages ¢,¢t + 1,--- ,T. Notice that the second
part of the induction hypothesis (4.24) implies that 7, = 0 for ¢ < u < T'. Then for stage t — 1, we
have by definition ei f) = eg )1 ZT . ueq(frt) egg_;)l, and pr_1(Hy—1,k) = E(e§§)12|Ht_1, A1 = k).
By (4.23), we further have p;_1(Hy—1,1) = - = py_1(Hy—1, K) = E(ei@ﬁHt,l), which proves the
induction hypothesis (4.24) at stage ¢ — 1.

By Mathematical induction, the induction hypothesis (4.24) holds for 1 < ¢ < T. Combining

(4.24) for 1 <t < T with (4.22) at t = 1, we have {Aj}7_; are mutually orthogonal and A{, =
@1 At =
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4.6.3.5 Proof of Theorem 4.11

Proof of Theorem 4.11. The general characterization of the G-Estimation IF in Robins (2004,
Equation (3.10)) is

T
Z {Y(g Ht, Ata/@t) [Yt(g) - ’Yt(g) (Ht, At;ﬂtﬂHt]} {Gt(Hta At) - E[Gt(Ht,At)\Ht]}
t=1
(4.25)
for some instrument functions Gy : H; — RP (1 < ¢t < T). This can be related to

the form in our Theorem 4.11 as follows. We first replace G(Hy, A:) — E[Gi(Hy, Ar)|Hy]
by % with some G, : H; — RP*KE=D_and then consider the block representation
Gi(H;) := [Gu(Hy)T, -, Gpe(Hy)T|T for Gy @ Hy — RPX(E=D (1 < s < T). The function
H; — E[Yt(g) - 'yt(g)(Ht, Ay; Br)|Hy] at the true parameter 3; is further replaced by the treatment-

free effect function p(Hy). Then (4.25) is equivalent to the block matrix form

11z ]

Gu(Hi1) Gia(Hz) - Gip(Hh) m
A‘Qeég)

Goi1(Hy) Goo(Hz) -+ Gor(Hr) | | 5ot
Are®

| Gri(H) Gra(Hz) -+ Grr(Hr) | | ot |

By G = [Gs : 1 < s,t < T] is arbitrary, (4.25) is equivalent to (4.25) with {elt I, replaced by
{egort)}z;l. The restriction E[IF(G)ST] = I, follows from (Tsiatis, 2007, Theorem 4.2 (i)).

Next, we consider IF(L). In order to show IF(L) is also an IF, it suffices to show
(ort)

E[IF(L)ST] = I,xp. Denote st(G) = (IF],IF],--- ,IF}.)T(G) with IF4(G) := S Gst(Ht)%,
and § = (87,8]---,8%)7 with S; := (0/08;)log[likelihood(B1.7)].  Consider some
1 < u,t < T. By EﬂT[euort (Bur)|Huy Ayl = 0 for any B, € 9&, we have 0 =

(/0B Egr[ef™ (Bur)| Hu, Au] = Bp, , [(0/080)ei™ (Bur)| Hu, Aul+Ep, o [ (Buer) i Ha, Au).
In particular, E[e Ort)St]Hu,A | =E[- (8/6,&5) (ort) (,Bu:T)\Hu,Au] =0for1 <t<wu<T. Then

u=1

He = O = BIR(ST) = [Z AIH)(M)ST]_ [Z o fﬁ)m)sﬂ (ssrsh

= 1(s=t)I =E[IF,(L)S]] = [Z L)A) (Or”sT] = [SZMGM(H)A gt (1<s,t<T)

Pt u(Au| H Potu(Au|Hy) ™

u=1 u=1
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Finally, we compare E[IF(L)®?] = E(LDLT) with E[IF(G)®?] = E(GDGT), where
diag{V;(H;)}_,. For ease of notation, we suppress the dependency on H;. Then we have
T T
E[IF(G)®?] — E[IF(L)®?] = Z(GtVtGg —LVil]) = Z UV Uf =0,
t=1 t=1

where L, := [0,--,0,G},---,GL,]T and U, := G, — L, = [Gys,-+,Gy_14,0,---,0O]T.

concludes E[IF(L)®?] < E[IF(G)®?].
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