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ABSTRACT

Weibin Mo: Efficiency and Robustness in Individualized Decision Making
(Under the direction of Yufeng Liu)

Recent development in data-driven decision science has seen great advances in individualized

decision making. Given data with covariates, treatment assignments and outcomes, one common

goal is to find individualized decision rules that map the individual characteristics or contextual

information to the treatment assignment, such that the overall expected outcome can be optimized.

In this dissertation, we propose several new approaches to learn efficient and robust individualized

decision rules. In the first project, we consider the robust learning problem when training and

testing distributions can be different. A novel framework of the Distributionally Robust Individ-

ualized Treatment Rule (DR-ITR) is proposed to maximize the worst-case value function under

distributional changes. The testing performance among a set of distributions close to training can

be guaranteed reasonably well. For the second project, we consider the problem of treatment-

free effect misspecification and heteroscedasticity. We propose an Efficient Learning (E-Learning)

framework for finding an optimal ITR with improved efficiency in the multiple treatment setting.

The proposed E-Learning is optimal among a regular class of semiparametric estimates that can

allow treatment-free effect misspecification and heteroscedasticity. We demonstrate its effective-

ness when one of or both misspecified treatment-free effect and heteroscedasticity exist. For the

third project, we study the multi-stage multi-treatment decision problem. A new Backward Change

Point Structural Nested Mean Model (BCP-SNMM) is developed to allow an unknown backward

change point of the SNMM. We further propose the Dynamic Efficient Learning (DE-Learning)

framework that is optimal under the BCP-SNMM and enjoys more robustness. Compared with the

existing G-Estimation, DE-Learning is a tractable procedure for rigorous semiparametric efficient

estimation, with much fewer nuisance functions to estimate and can be implemented in a backward

stagewise manner.

iii



To my parents,

Yanping Deng and Jianmin Mo,

and my beloved fiancée,

Xiyue Li,

who have supported me throughout my life.

iv



ACKNOWLEDGEMENTS

The success of this dissertation cannot be achieved without my family, mentors and fellows

who stood by me all the way along my doctorate journey. I have been enjoying the exploration of

academic problems in my research area. Such an experience will be one of the most treasurable

wealth in my life.

I would like to express the most sincere gratitude to my advisor, Dr. Yufeng Liu, who has

paved the way of my current research and offered important instructions without any reservation.

During our research discussion, he always shared his professional points of view on our work and

provided the most helpful suggestions for substantial improvement. One of the most important

lessons I have learned from is to illustrate a comprehensive idea in the simplest way, which has

been an essential ingredient of my research projects. As a consequence, the significance of two

research projects can eventually be recognized by the peer reviews of top journals. Besides the

device of simplification, I have also learned a lot to address the most relevant research questions,

to begin with the study of concrete examples in a highly complicated problem, and many of others.

With his great encouragement and support to continue with my research, I am thrilled to make

more academic contributions in the future. Therefore, a significant part of my current academic

honors, and the future accomplishments if possible, should go to my advisor.

The completion of my dissertation should also acknowledge the devotion of the committee

members: Shankar Bhamidi, Jan Hannig, Quoc Tran-Dinh and Donglin Zeng. In particular, as

a pioneer researcher on the individualized decision making problem, Dr. Donglin Zeng has high-

lighted many important punchlines from this area during the discussion. The involvement of other

committee members has seen the meeting of minds extensively with probabilistic tools, statistical

decision theories and modern optimization techniques in this field. Besides the helpful comments

of the committee on the research projects, the dissertation has also benefited from the graduate

courses of Measure Theory and Probability by Prof. Shankar Bhamidi, Mathematical Statistics by

v



Prof. Jan Hannig, and Convex Optimization by Prof. Quoc Tran-Dinh. I am grateful to study and

do research in such a supportive environment surrounded by their intelligence.

During my doctorate research, I am also thankful to my collaborators: Drs. Zhengling Qi at the

George Washington University, Junlong Zhao at Beijing Normal University, Ji Zhu at University
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CHAPTER 1

Introduction

Data-driven individualized decision making problems are commonly seen in practice and have

been studied intensively in the literature. In disease management, the physician may decide whether

to introduce or switch a therapy for a patient based on his/her characteristics in order to achieve

better clinical outcome (Bertsimas et al., 2017). In public policy making, a policy that allocates

the resource based on the characteristics of the targets can improve the overall resource allocation

efficiency (Kube et al., 2019). In a context-based recommender system, the use of the contextual

information such as time, location and social connection can improve the effectiveness of the rec-

ommendation process (Aggarwal, 2016). One common goal of the individualized decision making

problem is to find decision rules that map the individual characteristics or contextual information

to the treatment assignment, such that the overall expected outcome can be optimized. In this

dissertation, we mainly focus on the efficiency and robustness of the individualized decision making

problem and investigate several new approaches.

In this chapter, we provide the general background and review some existing techniques in the

literature. In Section 1.1, we discuss the single-stage decision problem, on which many existing

methods have been developed. In Section 1.2, we consider the multi-stage decision problem that

can be more challenging due to the existence of time-varying treatment effects. In Section 1.3, we

introduce three main problems that this dissertation focuses on, and outline the organization of

the subsequent chapters.

1.1 Single-Stage Decision Problems

For a single-stage decision problem, each data point consists of a covariate vector X P X Ď Rp

incorporating the individual characteristics or contextual information, a treatment assignment A P

A and an outcome Y P Y Ď R. Assume without loss of generality that a larger outcome Y is

1



better. One important goal is to find the optimal Individualized Treatment Rule (ITR) d : X Ñ A

that maximizes the expected outcome (Manski, 2004):

d‹ P argmax
d:XÑA

!

single-stage value function
hkkkkkkkkkkkkkkikkkkkkkkkkkkkkj

Vpdq :“ ErY |A “ dpXqs
)

.

One approach for estimating an optimal ITR, known as the regression-based approach, is to

estimate some conditional mean functions associated with the optimal ITR. Specifically, consider

the Q-function Qpx, aq :“ EpY |X “ x, A “ aq as a function of the covariates x P X and the

treatment assignment a P A. Then the optimal ITR is induced by d‹pxq “ argminaPAQpx, aq. The

approach based on the Q-function estimate is known as the Q-Learning (Watkins, 1989; Qian and

Murphy, 2011). In the binary treatment case A “ t0, 1u, such an approach at the population level

is equivalent to estimating the treatment-covariate interaction effect Cpxq :“ Qpx, 1q ´ Qpx, 0q.

This is also known as the Conditional Average Treatment Effect (CATE) in the causal inference

literature, and aˆCpxq “ Qpx, aq´Qpx, 0q is the blip-to-zero function in Robins (1994)’s Structural

Mean Model (SMM). In particular, the optimal ITR at the population level can be represented by

the sign of the CATE d˚pxq “ 1rCpxq ě 0s.

In the binary treatment case, the regression-based optimal ITR can be further obtained via two

main different strategies. The first strategy, known as the A-Learning (Murphy, 2003), estimates

the CATE from the semiparameteric model:

Y “ mpXq `Aˆ CpX;βq ` ε; Epε|X, Aq “ 0. (1.1)

Here, the CATE CpX;βq is modeled by a p-dimensional parameter vector β P Rp of interest, and

mpXq is a nuisance function of covariates. When p is large, a sparse linear model CpX;βq “Xᵀ
SβS

is assumed to select a relevant variable subset S Ď t1, 2, ¨ ¨ ¨ , pu (Imai and Ratkovic, 2013; Lu et al.,

2013; Shi et al., 2016; Zhao et al., 2017; Jeng et al., 2018; Nie and Wager, 2020). When targeting the

CATE parameter β, the treatment-free effect function mp¨q is nuisance and assumed nonparametric.

To achieve the semiparametric efficiency when estimating β, Lu et al. (2013); Zhao et al. (2017);

2



Nie and Wager (2020) considered Robinson (1988)’s transformation:

Y ´ EpY |Xq “ rA´ EpA|XqsCpX;βq ` ε.

Denote the nuisance functions µpxq :“ EpY |X “ xq and πpxq :“ EpA|X “ xq. Let ppµ, pπq be some

estimates of pµ, πq. Then the CATE parameter β can be estimated from the least-squares problem:

min
βPRp

1

2
En

!

Y ´ pµpXq ´ rA´ pπpXqsCpX;βq
)2
.

The corresponding estimating function is equivalent to the G-Estimation for the single-stage doubly

robust SMM (Bickel and Kwon, 2001):

φeffpβ; pµ, pπq “
!

Y ´ pµpXq ´ rA´ pπpXqsCpX;βq
)

rA´ pπpXqs
B

Bβ
CpX;βq.

In particular, the G-estimator pβn as the solution to the empirical estimating equation

Enrφeffpβ; pµn, pπnqs “ 0 is consistent and asymptotic normal if at least one of pµ “ µ and pπ “ π.

This is known as the double robustness property. If we assume that ppµ, pπq “ pµ, πq and Varpε|X, Aq

is a constant, then pβn is semiparametric efficient. In order to ensure the estimation effects from

ppµn, pπnq are
?
n-negligible in pβn “ pβnppµn, pπnq, it requires that ppµn, pπnq “ pµ, πq ` OPpn

´1{2q. For

a less restrictive rate requirement on ppµn, pπnq, Zheng and van der Laan (2010); Chernozhukov

et al. (2018a,b) considered the nuisance function estimates ppµ
p´iq
n pXiq, pπ

p´iq
n pXiqq at the i-th sam-

ple point, where ppµ
p´iq
n , pπ

p´iq
n q are obtained from a sub-sample excluding the i-th sample point. The

corresponding cross-fitting estimate of β solving p1{nq
řn
i“1φeff,i

´

β; pµ
p´iq
n pXiq, pπ

p´iq
n pXiq

¯

“ 0 is

semiparametric efficient under the looser condition
›

›

›
pµ
p´iq
n ´ µ

›

›

›

L2pPq

›

›

›
pπ
p´iq
n ´ π

›

›

›

L2pPq
“ OPpn

´1{2q.

Such a property is known as the locally double robustness (Chernozhukov et al., 2018c) or the rate

double robustness (Rotnitzky et al., 2021).

Estimating a parametric CATE in A-Learning relies on the parametric model assumption, and

hence may suffer from potential model misspecification. It can be desirable to approximate it

using flexible nonparametric regression or machine learning approaches. This problem has been

intensively studied in the causal inference literature (Dorie et al., 2019; Guo et al., 2020), and

many flexible modeling methods have been proposed. Some main examples include nonparametric
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regression of the doubly robust transformed outcome (Kennedy et al., 2017; Semenova and Cher-

nozhukov, 2017; Kennedy, 2020; Curth et al., 2020), the index models (Song et al., 2017; Liang

and Yu, 2020; Guo et al., 2021), the Generalized Additive Model (GAM) (Moodie et al., 2014), the

local methods (Abrevaya et al., 2015; Bertsimas and Kallus, 2020), the ClassificAtion-Regression

Tree (CART) (Su et al., 2009; Athey and Imbens, 2016; Bertsimas et al., 2019), the Multivariate

Adaptive Regression Spline (MARS) and the boosting estimates (Powers et al., 2018), the random

regression forest models (Foster et al., 2011; Wager and Athey, 2018; Friedberg et al., 2020), the

Bayesian Additive Regression Tree (BART) (Hill, 2011; Hahn et al., 2020), the Gaussian process

(Alaa and van der Schaar, 2017, 2018), the Reproducing Kernel Hilbert Space (RKHS) (Bertsimas

and Koduri, 2021), the neural network (Johansson et al., 2016; Shalit et al., 2017; Louizos et al.,

2017; Yoon et al., 2018; Yao et al., 2018; Johansson et al., 2020; Curth and van der Schaar, 2021),

and the meta learners (Künzel et al., 2019).

Instead of estimating the CATE function x ÞÑ Cpxq from Model (1.1), another strategy is to

directly estimate the optimal ITR x ÞÑ signrCpxqs from a weighted loss minimization problem:

min
f :XÑr´1,1s

E
!

wpX, Aq`
´

Y, pA´ 1{2q ˆ fpXq
¯)

, (1.2)

where wpX, Aq ě 0 is a weight function, and `py, pyq ě 0 is a general loss function. In particular,

it requires the weight function wpX, Aq to satisfy the following balancing condition (Wallace and

Moodie, 2015):

wpx, 1qπpxq “ wpx, 0qr1´ πpxqs; @x P X . (1.3)

As a concrete example, the Inverse Probability Weights (IPWs) wpx, 1q “ πpxq´1 and wpx, 0q “

r1´ πpxqs´1 satisfies (1.3). Furthermore, the overlap weights (Crump et al., 2006, 2009) wpx, 1q “

1 ´ πpxq and wpx, 0q “ πpxq can be another example. Here, if we define Pw ! P such that

dPw{dP :“ wpX, Aq, then PwpA “ 1|Xq “ PwpA “ 0|Xq “ 1{2, and for any h : X Ñ R, we have

EwrhpXq|A “ 1s “ EwrhpXq|A “ 0s “ EwrhpXqs. That is, the weight wpX, Aq is a specific form

of Rosenbaum and Rubin (1983)’s balancing score in the sense that X KK A under Pw. Therefore,

the balancing condition (1.2) can correspond to the more general inverse Covariate Balancing
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Propensity Score (CBPS) weight (Imai and Ratkovic, 2014, 2015; Li et al., 2018; Wong and Chan,

2018; Fong et al., 2018; Zhao, 2019; Li and Li, 2019; Wang and Zubizarreta, 2020; Ning et al., 2020;

Bennett et al., 2020; Josey et al., 2020; Fan et al., 2020).

It further requires the loss function `py, pyq in (1.2) to satisfy the following two conditions under

the general Subgroup Identification framework (Chen et al., 2017).

� The score function Spy, pyq :“ pB{Bpyq`py, pyq is strictly increasing in py for every y P Y.

� The utility function Upyq :“ ´pB{Bpyq`py, 0q is strictly monotone in y.

Without loss of generality, assume that Upyq is strictly increasing in y. Given the conditions

on wpX, Aq and `py, pyq, the solution f‹ to (1.2) satisfies that for any x P X , f‹pxq ě 0 if and

only if ErUpY q|X “ x, A “ 1s ě ErUpY q|X “ x, A “ 0s. As a special case, suppose the

distribution of Y belongs to the exponential family with the canonically parametrized negative

log-likelihood function `py, ηq :“ ´yη ` ψpηq ´ log hpyq, where η is the canonical parameter and

ψpηq “ log
ş

hpyqeηydy is the log-partition function. Then the corresponding utility function is

UpY q “ Y ´ ψ1p0q, so that signrf‹pxqs “ signrCpxqs for all x P X . Therefore, the solution f‹ to

(1.2) is Fisher consistent with the optimal ITR. In this case, (1.2) with the negative log-likelihood

loss function `py, pyq corresponds to the Maximal Likelihood Estimate (MLE) under the working

model pψ1q´1rEpY |X, Aqs “ pA´1{2qˆfpXq with zero treatment-free effect. In particular, we have

ψ1rp1{2qf‹pxqs´ψ1r´p1{2qf‹pxqs “ Cpxq for all x P X , where the function η ÞÑ ψ1pη{2q´ψ1p´η{2q

is strictly increasing. In this way, the estimation of the treatment-free effect can be avoided. Based

on this framework, Tian et al. (2014); Xu et al. (2015); Chen et al. (2017); Qi and Liu (2018); Qi

et al. (2020) can consider the ITR problem for continuous, binary and survival outcomes with a

flexible decision function class f P F .

Problem (1.2) with the squared loss `py, pyq “ p1{2qpy´ pyq2 corresponds to the solution f‹pxq “

Cpxq for any x P X . In this case, the general use of the weight function wpX, Aq satisfying (1.3)

was studied in Huang et al. (2014); Wallace and Moodie (2015); Simoneau et al. (2020); Schulz and

Moodie (2021). Specifically, they considered the estimating function:

φpβ,η; pwq :“ pwpX, Aq
!

Y ´Xᵀη ´ pA´ 1{2qXᵀβ
)

¨

˚

˝

X

pA´ 1{2qX

˛

‹

‚

. (1.4)
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Here, Xᵀη and Xᵀβ are the parametric models for the treatment-free effect and the CATE re-

spectively. The parameters pβ,ηq are simultaneously estimated by solving the empirical estimat-

ing equations based on (1.4). The estimating function (1.4) is doubly robust if either the esti-

mated weight function pwpX, Aq satisfies (1.3), or the working linear model Xᵀη is correct for the

treatment-free effect.

Other than the regression-based approach, another approach for estimating the optimal ITR,

known as the direct-search approach, is to directly estimate the value function Vpdq for every ITR

d using the IPW Estimate (IPWE)

pVIPWE,npdq :“ En
"

1rdpXq “ As

pA pA|Xq
Y

*

,

where pA pa|xq :“ PpA “ a|X “ xq. The corresponding optimal ITR is pdIPWE,n P

argmaxdPD pVIPWEpdq, where D Ď td : X Ñ Au is a pre-specified function class of ITRs. Beygelz-

imer and Langford (2009); Laber and Zhao (2015); Zhu et al. (2017); Kallus (2017) considered D

as the class of decision trees, and introduced the splitting criteria that maximize the IPWE in

the corresponding CART algorithm. Kitagawa and Tetenov (2018) considered D as a general VC

class of ITRs, and established the
?
n-regret bound and the minimax rate optimality of pdIPWE,n.

For implementation, they used the Mixed Integer Programming (MIP) to maximize the IPWE

over the linear ITR class D. In order to overcome the challenge of nonconvex optimization, Zhao

et al. (2012) reformulated the IPWE maximization problem into the minimization of an outcome-

weighted misclassification error. The corresponding Outcome Weighted Learning (OWL) problem

is

min
fPF

"

En
ˆ

Y

pA pA|Xq
φrp2A´ 1qfpXqs

˙

` λn}f}
2
F

*

,

where φ is a margin-based convex surrogate loss function, and F is a pre-specified function class of

tf : X Ñ Ru, and λn} ¨ }F is the functional penalty associated with F . The OWL framework can

allow general types of outcomes, such as the binary (Huang and Fong, 2014) and survival (Zhao

et al., 2015b; Cui et al., 2017) outcomes, and the applications of any supervised learning methods,

such as the bagging and neural network (Mi et al., 2019). To reduce the finite sample variance,

Zhou et al. (2017); Liu et al. (2018) further proposed the Residual Weighted Learning (RWL) with
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Y replaced by Y ´gpXq for some function g : X Ñ R. To handle the possibly negative weights and

gain more robustness in presence of covariate outliers, Huang and Fong (2014); Zhou et al. (2017);

Qiu et al. (2018) considered the nonconvex ramp loss function for ψ. In particular, the weighted

loss functions Y
pA pA|Xq

φrp2A´ 1qfpXqs and |Y |
pA pA|Xq

φrp2A´ 1qsignpY qfpXqs are equivalent in this

case. Moreover, the ramp loss with a well tuned bandwidth parameter can converge to the 0-1 loss.

When the number of variables p is large, sparse penalties can be further incorporated in the OWL

framework (Song et al., 2015a; Xu et al., 2015). For multiple and continuous treatment problems,

the extensions were studied in Chen et al. (2016, 2018); Lou et al. (2018); Zhou et al. (2018a);

Liang et al. (2018); Huang et al. (2019); Fu et al. (2019); Zhang et al. (2020); Meng et al. (2020).

In observational studies, the propensity score function pA pA|Xq needs to be estimated from

data. In order to protect the risk of misspecifying the propensity score model, the Augmented

IPWE (AIPWE) of Vpdq was introduced in the literature:

pVAIPWE,npd; pQ, ppA q :“En
"

1rdpXq “ As

ppA pA|Xq
Y ´

1rdpXq “ As ´ ppA pA|Xq

ppA pA|Xq
pQpX, dq

*

“En
"

pQpX, dq `
1rdpXq “ As

ppA pA|Xq
rY ´ pQpX, Aqs

*

,

where for a general function hpx, aq and an ITR d : X Ñ A, we denote hpx, dq :“

ř

aPA hpx, aq1rdpxq “ as. The first definition can be obtained from the efficient influence func-

tion under the missing data framework (Robins et al., 1994) or Targeted Minimum Loss-based

Estimation (TMLE) (van der Laan and Rubin, 2006; van der Laan and Rose, 2018). The second

equivalent definition is represented with the additive augmented term 1rdpXq“As
ppA pA|Xq

rY ´ pQpX, Aqs

to the predicted Q-function pQpX, dq. The AIPWE is doubly robust in the sense that either

pQ “ Q or ppA “ pA implies that the pVAIPWE,npd; pQ, pπq is a consistent estimate of Vpdq (Dud́ık

et al., 2011; Zhang et al., 2012b). Notice that maxd:XÑA pVAIPWE,npd; pQ, ppA q is equivalent to

maxd:XÑA

!

pVAIPWE,npd; pQ, ppA q ´
pVAIPWE,np´d; pQ, ppA q :“ Enr pCAIPWEpXqsr2dpXq ´ 1s

)

, where

pCAIPWEpXq “ pCAIPWEpX; pQ, ppA q :“ pQpX, 1q ´ pQpX, 0q `
2A´ 1

ppA pA|Xq
rY ´ pQpX, Aqs.

This is also known as the doubly robust score in Zhou et al. (2018b); Athey and Wager (2021) and

the Doubly Robust (DR) pseudo outcome of Kennedy (2020); Curth et al. (2020).
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Based on the AIPWE, Zhang et al. (2012b) considered the direct maximization of

pVAIPWE,npdη; pQ, ppA q over a parametric ITR class Dη “ tdη : η P Ξu using the genetic algorithm,

while Zhang et al. (2015) considered the class of decision lists for D and proposed an approxi-

mation algorithm. Zhang et al. (2012a) proposed C-Learning that minimizes the CATE-weighted

misclassification error E
!ˇ

ˇ

ˇ

pCAIPWEpXq
ˇ

ˇ

ˇ
ˆ 1

”

dpXq ‰ 1

´

pCAIPWEpXq ě 0
¯ı)

. In a slightly differ-

ent way, Dud́ık et al. (2011) also considered cost-sensitive classification algorithms but based on

pVAIPWE,npX; pQ, ppA q directly. Similar to the regression-based doubly robust estimates, the cross-

fitting AIPWE can also be considered, where the estimates
´

pQ
p´iq
n pXi, aq, pp

p´iq
A pa|Xiq : a P A

¯

are

used for the AIPWE of the i-th sample point. In this way, Zhou et al. (2018b); Athey and Wager

(2021) maximized the cross-fitting AIPWE over the ITR class of decision trees. The performance

guarantee of AIPWE maximization over a Donsker ITR class D was justified in Luedtke and Cham-

baz (2020); Athey and Wager (2021). Alternatively, Zhao et al. (2019a); Liang et al. (2020) proposed

the Efficient Augmentation and Relaxation Learning (EARL) with convex surrogate loss relaxation

analogous to OWL. Similarly, based on the surrogate loss relaxation, Bennett and Kallus (2020a)

proposed the Efficient Surrogate Policy Risk Minimization (ESPRM) that solves the variational

method-of-moment problem (Bennett and Kallus, 2020b) and established a
?
n-regret bound with

the optimal constant dependency.

The IPW in an (A)IPWE can have unbounded variance if there exists some covariate domain on

which the propensity score pA pa|xq is close to zero. Swaminathan and Joachims (2015a,b) proposed

to trim the IPW from above, and introduced the variance penalty to trade off the trimming bias

and the reduced variance:

min
dPD

#

´En
„ˆ

1rdpXq “ As

ppA pA|Xq
^M

˙

Y



` λn

d

1

n
Varn

„ˆ

1rdpXq “ As

ppA pA|Xq
^M

˙

Y



+

.

The same strategy was also taken in Kallus and Zhou (2018) when considering the continuous

treatment problem. Let W d :“ 1rdpXq“As
pA pA|Xq

and consider the following decompositions:

pVIPWE,npdq “ EnrW dQpX, Aqs ` EnpW dεq;

pVAIPWE,npdq “ En
!

pQpX, dq `W drQpX, Aq ´ pQpX, Aqs
)

` EnpW dεq.
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Denote σ2
i :“ Epε2|Xi, Aiq for 1 ď i ď n. Then for pVnpdq “ pVIPWE,npdq (resp. pVnpdq “

pVAIPWE,npdq), the Conditional Mean Square Error (CMSE) is given by

CMSE
!

pVnpdq
ˇ

ˇ

ˇ
tXi, Aiu

n
i“1

)

:“E
"

”

pVnpdq ´ EnQpX, dq
ı2
ˇ

ˇ

ˇ

ˇ

tXi, Aiu
n
i“1

*

“En
!

rW dqpX, Aq ´ qpX, dqs2
)

`
1

n
Enrσ2pW dq2s,

where q :“ Q (resp. q “ Q ´ pQ). In particular, the decomposition of the CMSE entails the

bias-variance trade-off due to the sample weights tW d
i u

n
i“1. This also explains why the variance of

pVnpdq can be large if pA pAi|Xiq « 0 ô Wipdq " 0. In order to minimize the CMSE, Hirshberg and

Wager (2017); Kallus (2018, 2020); Kallus et al. (2021) considered the criteria

E2pWn, d;Q,σ2
nq :“ sup

qPQ

#

1

n

n
ÿ

i“1

“

WiqpXi, Aiq ´ q
`

Xi, dpXiq
˘‰

+2

`
1

n2

n
ÿ

i“1

σ2
iW

2
i ,

where Q is a pre-specified function class. Then Kallus (2018) proposed the balanced policy learning

to obtain the optimal ITR:

min
dPD

#

´pVnpd; pQ,W ˚
n q ` λEpW

˚
n , d;Q,σ2

nq : W ˚
n P argmin

WnP∆n´1

E2pWn, d;Q,σ2
nq

+

.

1.2 Multi-Stage Decision Problems

For a T -stage decision problem, each data point consists of a longitudinal trajectory pXt, At, Yt : 1 ď

t ď T q, with the time-varying covariatesXt P Xt Ď Rpt , treatment At P At and outcome Yt P Yt Ď R

for 1 ď t ď T . A Dynamic Treatment Regime (DTR) is defined as a sequence of stagewise decision

rules d1:T “ pd1, d2, ¨ ¨ ¨ , dT q P D1 ˆD2 ˆ ¨ ¨ ¨ ˆDT “ D1:T , where Dt “ tdt : Ht Ñ Atu consists of

all mappings from the stage-t pre-treatment history Ht :“
`

pXs, As, Ys : 1 ď s ď t´ 1q,Xt

˘

P Ht

to the stage-t treatment assignment At P At. The goal is to find the optimal DTR that maximizes

the expected cumulative outcome

d‹1:T P argmax
d1:T PD1:T

#

T -stage value function
hkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkj

Vpd1:T q :“
T
ÿ

t“1

ErYt|At “ dtpHtqs

+

.
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One key challenge of the DTR problem is that the stage-t treatment At can have time-varying

effects on the post-treatment variables
`

Yt, pXu, Au, Yu : t ` 1 ď u ď T q
˘

. However, a standard

regression analysis conditioning on the observed trajectory may cut off all indirect effects such as

At ÑXt`1 Ñ Yt`1 (Almirall et al., 2010). As a consequence, argmaxatPAt E
!

řT
u“t Yu

ˇ

ˇ

ˇ
Ht, At “ at

)

is the not same as the stage-t optimal decision rule d‹t pHtq. Therefore, the observed data should

be adjusted to unveil the time-varying treatment effects.

The first approach to adjust for the cross-stage treatment effects is to perform stagewise model-

based outcome transformations. Specifically, consider the Bellman equations (Bellman, 1966) that

recursively define the stagewise state-value functions tVtpHtqu
T
t“1 and Q-functions tQtpHt, Atqu

T
t“1:

VT pHT q :“ max
aT PAT

EpYT |HT , AT “ aT q
loooooooooooomoooooooooooon

:“QT pHT ,aT q

;

VtpHtq :“ max
atPAt

E
!

Yt ` Vt`1pHt`1q

ˇ

ˇ

ˇ
Ht, At “ at

)

looooooooooooooooooooomooooooooooooooooooooon

:“QtpHt,atq

; t “ T ´ 1, T ´ 2, ¨ ¨ ¨ , 1.
(1.5)

Then the stage-t optimal decision rule can be induced by d‹t pHtq “ argmaxatPAt QtpHt, atq.

In particular, the stage-T problem with data pHT , AT , YT q can be handled by any single-stage

methods in Section 1.1. For the stage-tpă T q problem, we can consider the q-outcome as

Y
pqq
t :“ Yt ` Qt`1

`

Ht`1, d
‹
t`1pHt`1q

˘

“ Yt ` maxat`1PAt`1 Qt`1pHt`1, at`!q. By (1.5), we have

EpY pqqt |Ht, Atq “ QtpHt, Atq. That is, the stage-t problem can be solved as a single-stage

problem with data pHt, At, Y
pqq
t q. Notice that both the optimal DTR pd‹1, d

‹
2, ¨ ¨ ¨ , d

‹
T q and the

stagewise q-outcomes tY
pqq
t uTt“1 require the complete knowledge of tQtpHt, Atqu

T
t“1. We can

consider statistical models for the stagewise Q-functions and perform estimation in a back-

ward stagewise manner. Specifically, at stage tpă T q, we first obtain the estimated q-outcome

pY
pqq
t :“ Yt ` maxat`1PAt`1

pQt`1pHt`1, at`1q based on the stage-pt ` 1q Q-function estimate pQt`1.

Then we can consider a single-stage regression problem using pY
pqq
t as the response and pHt, Atq

as the covariates to estimate pQt. Such an approach gives the T -stage Q-Learning (Watkins, 1989;

Murphy, 2005; Zhao et al., 2009; Goldberg and Kosorok, 2012; Murray et al., 2018; Zhang et al.,

2018; Zhu et al., 2019; Ertefaie et al., 2021).

If we further assume that the Q-functions are stationary EpY pqqt |Ht, Atq “ QpXt, Atq with

stationary covariate space Xt P X Ď Rp and stationary treatment space At P A across stages
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1 ď t ď T , then Q-Learning can be extended to the infinite-horizon setting (T “ `8) as a

reinforcement learning problem (Sutton and Barto, 2018; Ertefaie and Strawderman, 2018; Shi

et al., 2020b; Liao et al., 2020, 2021). As a method closely connected to the infinite-horizon Q-

Learning, Luckett et al. (2020) proposed the V-Learning framework that estimates the stationary

state-value function instead.

In the binary treatment case At “ t0, 1u, we define the stagewise CATE functions CtpHtq :“

QtpHt, 1q ´ QtpHt, 0q for 1 ď t ď T . Then the optimal DTR becomes d‹t pHtq “ 1rCtpHtq ě

0s p1 ď t ď T q. We further introduce the stagewise g-outcome as Y
pgq
t :“

řT
u“t Yu ´

řT
u“t`1 tAu ´ 1rCupHuq ě 0su CupHuq. It can be shown that EpY pgqt |Ht, Atq “ QtpHt, Atq “

QtpHt, 0q ` AtCtpHtq. Then the stage-t problem can be solved based on the single-stage semi-

parametric model:

Y
pgq
t “ mtpHtq `At ˆ CtpHt;βtq ` e

pgq
t ; Epepgqt |Ht, Atq “ 0. (1.6)

This modeling approach is an instance of the optimal Structural Nested Mean Model (SNMM)

(Robins, 2004).

There are three different estimation strategies for the optimal DTR based on the SNMM.

The first strategy, known as the stagewise A-Learning (Blatt et al., 2004; Shi et al., 2018a), is

implemented analogously to the Q-Learning. Specifically, at stage tpă T q, we obtain the esti-

mated g-outcome pY
pgq
t :“

řT
u“t Yu´

řT
u“t`1

!

A´ 1rCupHu; pβu,nq ě 0s
)

CupHu; pβu,nq based on the

estimated CATE parameters tpβu,nu
T
u“t`1 from the subsequent stages. Then we consider the single-

stage semiparametric regression problem (1.6) with pY
pgq
t as the response. Following this strategy,

Shi et al. (2018a) considered the linear working model CtpHt;βtq :“ Hᵀ
t βt and the single-stage

efficient estimating function

φeff,tpβ; pηt, pαtq “ rpY
pgq
t ´mtpHt; pηtq ´AtH

ᵀ
t βtsrAt ´ πtpHt; pαtqsHt,

where mtpHt;ηtq and πtpHt;αtq are the parametric models for ErY pgqt |Ht, At “ 0s and PpAt “

1|Htq respectively, and ppηt, pαtq are the corresponding estimates. On the other hand, Huang et al.

(2014); Wallace and Moodie (2015); Simoneau et al. (2020) considered the balancing weight func-
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tion (1.3) and proposed the dynamic Weighted Ordinary Least Squares (dWOLS) that solves the

weighted least-squares problem using pY
pgq
t as the response and pHt, AtHtq as the covariates. Both

the stagewise A-Learning and dWOLS are doubly robust.

The second strategy to estimate the optimal SNMM, known as the regret regression, (Murphy,

2003; Almirall et al., 2010; Henderson et al., 2010; Almirall et al., 2014), exploits the following

cross-stage representation that is equivalent to (1.6):

T
ÿ

t“1

Yt “ V0 `

T
ÿ

t“1

tAt ´ 1rCtpHt;βtq ě 0suCtpHt;βtq `
T`1
ÿ

t“1

∆MtpHtq,

subject to Er∆Mt`1pHt`1q|Ht, Ats “ 0; 0 ď t ď T.

Here, we denote pH0, A0q :“ H and HT`1 :“ pHT , AT , YT q for convenience. Then the following

fully parametric least-squares problem is considered:

min
`

pβt,ηt:1ďtďT q,v0

˘

En

#

T
ÿ

t“1

Yt ´ v0 ´

T
ÿ

t“1

tAt ´ 1rCtpHt;βtq ě 0suCtpHt;βtq ´
T
ÿ

t“1

∆mtpHt;ηtq

+2

,

where t∆mtpHt;ηtqu
T
t“1 are the parametric models for t∆MtpHtqu

T
t“1 subject to

Er∆mtpHt;ηtq|Ht´1, At´1s “ 0 for 1 ď t ď T . Although the regret regression can enjoy

better efficiency than the stagewise A-Learning if the nuisance models t∆mtpHt;ηtqu
T
t“1 are

correct, it can be vulnerable to nuisance model misspecifications.

The third strategy is the G-Estimation (Robins, 2004) for the optimal SNMM.

Under Model (1.6), the stage-t working g-outcomes is Y
pgq
t pβpt`1q:T q “

řT
u“t Yu ´

řT
u“t`1 tAu ´ 1rCupHu;βuq ě 0suCupHu;βuq, and the characterizing moment condition of (1.6)

is

E
"

:“Htpβt:T q
hkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkj

”

Y
pgq
t pβpt`1q:T q ´AtCtpHt;βtq

ı

´E
”

Y
pgq
t pβpt`1q:T q ´AtCtpHt;βtq

ˇ

ˇ

ˇ
Ht

ı

ˇ

ˇ

ˇ

ˇ

Ht, At

*

“ 0.

Let Gt : Ht ˆ At Ñ Rp be some user-defined instrument function, where p :“
řT
t“1 pt is the

dimension of the parameter β1:T . Then the G-estimating function is

φpβ1:T q :“
T
ÿ

t“1

!

Htpβt:T q ´ ErHtpβt:T q|Hts

)!

GtpHt, Atq ´ ErGtpHt, Atq|Hts

)

.
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At stage t, it requires the nuisance functions of the treatment-free effect ErHtpβt:T q|Hts and the

propensity score pA ,tpat|htq :“ PpAt “ at|Ht “ htq in evaluating ErGtpHt, Atq|Hts. If either of

the models of ErHtpβt:T q|Hts and pA ,tpAt|Htq is correct for 1 ď t ď T , then we have Erφpβ1:T qs “

0 at the true parameter β1:T . This gives the stagewise double robustness of G-Estimation. If

the models of tErHtpβt:T q|Htsu
T
t“1 and tpA ,tpAt|Htqu

T
t“1 are correct, then there exists optimal

instrument functions tGeff,tpHt, Atqu
T
t“1 such that the corresponding estimating function φeffpβ1:T q

is semiparametric efficient (Robins, 1994, 2004). However, the closed forms of tGeff,tpHt, Atqu
T
t“1

are intractable unless we assume the condition VarrHtpβt:T q|Ht, Ats “ VarrHtpβt:T q|Hts for 1 ď t ď

T . Even in this case, the efficient instrument functions tGeff,tpHt, Atqu
T
t“1 can involve too many

vector-valued nuisance functions and be hard to estimate (Vansteelandt and Joffe, 2014).

The G-estimating equations are solved simultaneously across stages. If we assume that the t-th

block of the estimating function φtpβ1:T q corresponding to βt satisfies

φtpβ1:T q “ φtpβt:T q “
T
ÿ

u“t

!

Hupβu:T q ´ ErHupβu:T q|Hus

)!

GtupHu, Auq ´ ErGtupHu, Auq|Hus

)

,

then G-Estimation is equivalent to a backward stagewise procedure in Robins (2004, Seciton

7.2) and Moodie et al. (2007, Section 3.3.2). Specifically, at stage tpă T q, we obtain the esti-

mated g-outcomes tY
pgq
u ppβpu`1q:T qu

T
u“t for the current and subsequent stages based on the esti-

mated parameters tpβuu
T
u“t`1. Then tHuppβu:T qu

T
u“t`1 can be computed, and Htpβt, pβpt`1q:T q “

Y
pgq
t ppβpt`1q:T q ´ AtCtpHt;βtq is expressed as a function of βt only. The stage-t estimate pβt is

obtained by solving the estimating equations Enrφtpβt, pβpt`1q:T qs “ 0. If we further assume that

GtupHu, Auq “ At ˆ pB{BβtqCtpHt;βtq1pu “ tq for 1 ď t, u ď T , then G-Estimation is equivalent

to the stagewise A-Learning in this case (Schulte et al., 2014).

The q-outcome and g-outcome are both nonsmooth functions of the parameters of interest.

Specifically, in the binary treatment case where we consider the semiparametric model (1.6), we

have for 1 ď t ď T ´ 1,

Y
pqq
t “ Y

pqq
t pβt`1q “ Yt `mt`1pHt`1q ` 1rCt`1pHt`1;βt`1q ě 0sCtpHt;βtq;

Y
pgq
t “ Y

pgq
t pβpt`1q:T q “

T
ÿ

u“t

Yu ´
T
ÿ

u“t`1

tAu ´ 1rCupHu;βuq ě 0suCupHu;βuq.

13



In particular, the indicator function 1rCupHu;βuq ě 0s is nonsmooth in βu no matter how

CupHu;βuq depends on βu. This can result in an exceptional law if PrCupHu;βuq “ 0s ą 0

that leads to a biased parameter estimate of G-Estimation (Robins, 2004; Moodie and Richardson,

2010). The same nonregularity was also studied for Q-Learning (Chakraborty et al., 2010; Laber

et al., 2014b) and dWOLS (Simoneau et al., 2018).

There are several strategies in the literature to overcome the challenge of nonregularity. If the

main goal is to perform hypothesis testings on the treatment effect parameters β1:T or to construct

their confidence intervals, then an adaptive m-out-of-n Bootstrap procedure was proposed to obtain

valid confidence intervals, where the Bootstrap sample size m is chosen adaptively to the data for

proper coverage (Chakraborty et al., 2013; Simoneau et al., 2018). If the estimation properties

are of the main concern, then several shrinkage estimates were proposed to modify the estimated

q-and g-outcomes. Specifically, the estimated optimal CATE CtpHt; pβt,nq1rCtpHt; pβt,nq ě 0s can

be replaced by the Zeroing Instead of Plugging In (ZIPI) estimate CtpHt; pβt,nq1rCtpHt; pβt,nq ě λns

(Moodie and Richardson, 2010; Chakraborty et al., 2010; Zhu et al., 2019). Alternatively, Song et al.

(2015b); Goldberg et al. (2013) introduced a subject-specific shrinkage penalty λnJrCtpHt;βtqs to

the stage-t estimation problem. Other than the shrinkage estimates, Laber et al. (2014a); Linn et al.

(2017) proposed to estimate the treatment-free effects tmtpHtqu
T
t“1 and the conditional distributions

of tCtpHtq|pHt´1, At´1qu
T
t“1. Then the q-outcomes can be obtained by pY

pqq
t “ Yt ` pmt`1pHt`1q `

pECt`1|Ht,AtpC
`
t`1|Ht, Atq for 1 ď t ď T ´ 1, which are smooth functions of data.

Besides the model-based approach, another framework, known as the Marginal Structural Mean

Model (MSMM) (Robins, 1998), allows the direct estimation of the stagewise state-value functions.

Fix a DTR d1:T P D1:T . Define the DTR-specific state-value functions tVdt pHtqu
T
t“1, Q-functions

tQdt pHt, Atqu
T
t“1, and Bellman-error functions t∆Md

t pHtqu
T`1
t“2 from the Bellman equations

$

’

’

’

’

&

’

’

’

’

%

QdT pHT , AT q :“ EpYT |HT , AT q

∆Md
T`1pHT`1q :“ YT ´QdT pHT , AT q

VdT pHT q :“ QdT
`

HT , dT pHT q
˘

,

/

/

/

/

.

/

/

/

/

-

;

$

’

’

’

’

&

’

’

’

’

%

Qdt pHt, Atq :“ E
!

Yt ` Vdt`1pHt`1q

ˇ

ˇ

ˇ
Ht, At

)

∆Md
t`1pHt`1q :“ Yt ` Vdt`1pHt`1q ´Qdt pHt, Atq

Vdt pHtq :“ Qdt
`

Ht, dtpHtq
˘

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t “ T ´ 1, ¨ ¨ ¨ , 1

,

/

/

/

/

.

/

/

/

/

-

.

(1.7)
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Then the stage-1 marginal value Vd0 :“ ErVd1 pH1qs gives the T -stage value function Vpd1:T q. Denote

Vs:t :“
řt
u“s Yu and Wd

s:t :“
śt
u“s

1rdupHuq“Aus
pA ,upAu|Huq

for 1 ď s ď t ď T . Murphy et al. (2001) studied the

estimation of the MSMM Vd0 pZ;βq :“ Zᵀβ using the IPW estimating function φdpβq “Wd
1:T pV1:T´

ZᵀβqZ, where Z is the subject-specific covariate vector, and β is the parameter of interest. As a

special case, if Z “ 1, then the estimating function of the MSMM Vd0 pβq :“ β simplifies as φdpβq “

Wd
1:T pV1:T´βq. The corresponding estimate is pVIPWE,npd1:T q “ rEnpWd

1:T qs
´1rEnpWd

1:TV1:T qs, which

gives the T -stage Hájek IPWE of Vpd1:T q. To obtain the optimal DTR, Orellana et al. (2010a,b)

proposed to first estimate the MSMM Vdη0 pZ;βq with the parametric DTR dη P Dη “ tdη : η P Ξu,

and then solve pηpZq P argmaxηPΞ Vdη0 pZ; pβq for the optimal DTR parameter. Despite the simplicity

of the MSMM compared to the SNMM, the parametric DTR class Dη is typically restrictive and

cannot handle too complicated functional forms.

To learn the optimal DTR of flexible functional forms, Zhao et al. (2015a) proposed the T -stage

extension of OWL that directly maximizes pVIPWE,npd1:T q “ EnpWd
1:TV1:T q. They considered two

strategies to relax the T -stage nonsmooth nonconvex function d1:T ÞÑ Wd
1:T . The first approach,

known as the Backward OWL (BOWL), solves T single-stage OWL problems in a backward stage-

wise manner:

pft,n P argmin
ftPFt

$

&

%

En

¨

˝

W
pfn
pt`1q:TVt:T

pA ,tpAt|Htq
φtrp2At ´ 1qftpHtqs

˛

‚` λt,n}ft}
2
Ft

,

.

-

; t “ T, ¨ ¨ ¨ , 1,

where W
pfn
pt`1q:T :“

śT
u“t`1

1rp2Au´1q pfu,npHuqě0s
pA ,upAu|Huq

based on t pfu,nu
T
u“t`1 from the subsequent stages.

Jiang et al. (2019) specifically considered the entropy loss functions and established the asymptotic

properties of the DTR parameter estimate. The second approach, known as the Simultaneous OWL

(SOWL), utilizes a multivariate surrogate loss φ : RT Ñ R` that approximates the multivariate 0-1

loss function u1:T ÞÑ 1 ´
śT
t“1 1put ě 0q. Then SOWL solves the multi-dimensional large-margin

classification problem:

pf1:T,n P argmin
f1:T PF1:T

$

’

’

’

’

&

’

’

’

’

%

En

»

—

—

—

—

–

V1:T
śT
t“1 pA ,tpAt|Htq

φ

¨

˚

˚

˚

˚

˝

p2A1 ´ 1qf1pH1q

...

p2AT ´ 1qfT pHT q

˛

‹

‹

‹

‹

‚

fi

ffi

ffi

ffi

ffi

fl

` λn}f1:T }
2
F1:T

,

/

/

/

/

.

/

/

/

/

-

.
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In particular, when considering the multivariate hinge loss φpu1:T q “ 1`
ŹT
t“1put ´ 1q`, the dual

problem of SOWL is a Quadratic Programming (QP) problem.

Analogous to the single-stage problem, the T -stage IPWE can correspond to an efficient esti-

mating function, which gives the T -stage AIPWE as in the following Theorem 1.1. The same result

was also used for Optimal Policy Evaluation (OPE) in the reinforcement learning literature (Jiang

and Li, 2016; Thomas and Brunskill, 2016; Kallus and Uehara, 2020).

Theorem 1.1 (T -Stage AIPWE). Consider a semiparametric model identified from the IPW esti-

mating function φdpβq “Wd
1:T pV1:T ´ βq. Then the efficient estimating function is

φdeffpβq “ Vd1 pH1q `

T
ÿ

t“1

Wd
1:t∆Md

t`1pHt`1q ´ β.

The corresponding semiparametric efficient estimate is

pVAIPWE,npdq “ En

#

Vd1 pH1q `

T
ÿ

t“1

Wd
1:t∆Md

t`1pHt`1q

+

.

Proof of Theorem 1.1.

φdeffpβq “ φdpβq ´
T
ÿ

t“1

!

Erφdpβq|Ht, Ats ´ Erφdpβq|Hts

)

(1.8)

“ Wd
1:T pV1:T ´ βq

´

T
ÿ

t“1

!

Wd
1:trV1:pt´1q `Qdt pHt, Atq ´ βs ´W

d
1:pt´1qrV1:pt´1q ` Vdt pHtq ´ βs

)

(1.9)

“Wd
1:T rYT ´QdT pHT , AT qs `

T´1
ÿ

t“1

Wd
1:trYt ´Qdt pHt, Atq ` Vdt`1pHt`1qs ` Vd1 pH1q ´ β

“

T
ÿ

t“1

Wd
1:t∆Md

t`1pHt`1q ` Vd1 pH1q ´ β,
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where (1.8) follows from Robins (2000, Theorem 4.2), and (1.9) follows from

EpWd
1:T |Ht, Atq “ Wd

1:t;

EpWd
1:TV1:T |Ht, Atq “ Wd

1:t ˆ rV1:pt´1q `Qdt pHt, Atqs;

EpWd
1:T |Htq “ Wd

1:pt´1q;

EpWd
1:TV1:T |Htq “ Wd

1:pt´1q ˆ rV1:pt´1q ` Vdt pHtqs.

.

Based on the AIPWE, Zhang et al. (2013) proposed to directly maximize pVAIPWE,npdηq over

a parametric DTR class Dη “ tdη : η P Ξu. However, the nuisance functions tQdt pHt, Atqu
T
t“1

also depend on d, which can result in a challenging computational problem. Nie et al. (2021)

considered a special class of the when-to-treat DTRs Dwhen-to-treat. The AIPWE maximization

problem can be further simplified by alternatively estimating the value differences tVpdq ´ Vpd1q :

d,d1 P Dwhen-to-treatu, which have special structures.

Jiang and Li (2016); Zhang and Zhang (2018) pointed out that pVAIPWE,npdq “ EnpV d1 q, where

V d1 can be computed from V dT`1 “ 0 and V dT , ¨ ¨ ¨ , V
d

1 in the following backward stagewise manner

according to (1.7):

V dt “ Vdt pHtq `W
dt
t

”

Yt ` V
d
t`1 ´Qdt pHt, Atq

ı

; t “ T, ¨ ¨ ¨ , 1.

At stage t, if d “ pd1:t,dpt`1q:T q is replaced by d “ pd1:t,d
‹
pt`1q:T q, then we further have

V
dt,d‹pt`1q:T

t “ QtpHt, dtq `W
dt
t

“

Yt ` V
d‹
t`1 ´QtpHt, Atq

‰

;

d‹t P argmax
dtPDt

E
"

V
dt,d‹pt`1q:T

t

*

;
t “ T, ¨ ¨ ¨ , 1.

This can lead to a method of stagewise AIPWE maximization: pV
paq
T`1 “ 0,

pdt,n P argmax
dtPDt

En
!

QtpHt, dtq `W
dt
t

”

Yt ` pV
paq
t`1 ´QtpHt, Atq

ı)

;

pV
paq
t “ QtpHt, pdt,nq `W

pdt,n
t

´

Yt ` pV
paq
t`1 ´QtpHt, Atq

¯

;

t “ T, ¨ ¨ ¨ , 1. (1.10)

In particular, the nuisance functions tQtpHt, Atqu
T
t“1 can be estimated from Q-Learning.
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Based on the stagewise computation of the AIPWE, Liu et al. (2018) proposed the Augmented

OwL (AOL) framework that can be equivalent to (1.10). Specifically, the stage-t AOL problem is

pft,n P argmax
ftPFt

"

En
ˆ

ˇ

ˇ

ˇ
Yt` pV

paq
t`1´gtpHtq

ˇ

ˇ

ˇ

pA ,tpAt|Htq
φt

!

p2At ´ 1qsign
”

Yt ` pV
paq
t`1 ´ gtpHtq

ı

ftpHtq

)

˙

` λt}ft}
2
Ft

*

;

pV
paq
t “ Qt

´

Ht,1r pft,npHtq ě 0s
¯

`
1rp2At´1q pft,npHtqě0s

pA ,tpAt|Htq

´

Yt ` pV
paq
t`1 ´QtpHt, Atq

¯

.

Here, gt : Ht Ñ R can be an arbitrary function for efficiency augmentation, and gtpHtq “

pA ,tpHt, 0qQtpHt, 1q`pA ,tpHt, 1qQtpHt, 0q corresponds to the case that pft,n maximizes the AIPWE

(Zhou and Kosorok, 2017). Instead of maximizing the stagewise value function estimates, Zhang

and Zhang (2018) proposed the T -stage C-Learning : pV
pgq
t`1 “ 0,

pC
paq
t “ QtpHt, 1q ´QtpHt, 0q `

2At´1
pA ,tpAt|Htq

”

Yt ` pV
pgq
t`1 ´QtpHt, Atq

ı

;

pdt,n P argmin
dtPDt

En
!ˇ

ˇ

ˇ

pC
paq
t

ˇ

ˇ

ˇ
1

”

dtpHtq ‰ 1

´

pC
paq
t ě 0

¯ı)

;

pV
pgq
t “ Yt ` pV

pgq
t`1 ´

!

At ´ 1

”

pdt,npHtq ě 0
ı)

rQtpHt, 1q ´QtpHt, 0qs ;

t “ T, ¨ ¨ ¨ , 1.

Here, analogous to the single-stage C-Learning, pdt,n is equivalent to maximizing a single-stage

AIPWE. Instead of the a-outcomes tpV
paq
t uTt“1 in (1.10), the g-outcomes tpV

pgq
t uTt“1 from the SNMM

are used instead. For implementation, C-Learning minimizes the CATE-weighted misclassification

rate over the class of decision trees at each stage. Extending from the binary treatment case, the

general T -stage Kpě 2q-treatment setting was further studied by Tao and Wang (2017); Tao et al.

(2018).

When considering the statistical inference of the estimated value at the optimal DTR

pVAIPWE,np
pd1:T,nq, the nonregularity problem can occur. The construction of valid confidence inter-

vals was studied in van der Laan and Luedtke (2014, 2015); Luedtke and van der Laan (2016); Shi

et al. (2020a).

1.3 New Contributions and Outline

In Sections 1.1 and 1.2, we have introduced the main frameworks for the individualized decision

making problem in the literature and discussed their advantages and disadvantages. However,

there are still a few open problems to be addressed. First of all, existing methods rely on the

assumption that the training and testing distributions are identical, while much less work has been
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done on the problem when potential distributional changes exist. Secondly, while double robustness

can guarantee the estimation consistency in presence of at most one model misspecification, the

consequence towards efficiency remains unclear. In particular, when one model misspecification

exists, we are able to show that a doubly robust estimate can suffer from downgraded efficiency.

Other than potential misspecified nuisance models, most existing methods do not account for the

heteroscedastic noise, which can greatly affect the estimation efficiency as well. Thirdly, for the

T pě 2q-stage Kpě 3q-treatment decision problem, there exists gaps between the theory and practice

for semiparametric efficient methods. In particular, the rigorous semiparametric efficient estimation

procedure is rarely used in practice. This dissertation mainly aims to address all these problems.

The remaining chapters are organized as follows.

� In Chapter 2, we consider the problem when training and testing distributions can be differ-

ent. We make use of the development in the literature on Distributionally Robust Optimization

(DRO) and propose a novel Distributionally Robust ITR (DR-ITR) framework that maximizes

the worst-case value function across the values under a set of underlying distributions that are

“close” to the training distribution. The DR-ITR can guarantee the performance among all

such distributions reasonably well. We further propose the calibration procedures that tune the

DR-ITR adaptively to a small amount of calibration data generated from a specific testing dis-

tribution. In this way, the calibrated DR-ITR enjoys better generalizability than the standard

ITR in many different testing datasets. In our illustrating example, we show that the standard

ITR can have very poor values on many testing distributions, while our calibrated DR-ITRs still

enjoy relatively good performance. In particular, our proposed calibration procedures can pick

reasonably good DR-constants based on the small calibrating sample. To solve the worst-case op-

timization problem, we make use of the Difference-of-Convex (DC) relaxation of the nonsmooth

indicator, and propose two algorithms to solve the nonconvex problems of different scenarios. We

also provide the finite sample approximation guarantees for the proposed DR-ITR. Finally, we

apply our proposed DR-ITR to the AIDS clinical dataset ACTG 175 and evaluate its generaliz-

ability on the women patient subgroup. The manuscript of this chapter is accepted by Journal

of the American Statistical Association with discussion and our rejoinder (Mo et al., 2021a,b).
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� In Chapter 3, we consider the problem of potential treatment-free effect misspecification and het-

eroscedasticity. We demonstrate that the consequences of misspecified treatment-free effect and

heteroscedasticity can be unified as a covariate-treatment dependent variance of residuals. To im-

prove efficiency of the estimated ITR, we propose an Efficient Learning (E-Learning) framework

for finding an optimal ITR in the multi-treatment setting. We show that the proposed E-Learning

is optimal among a regular class of semiparametric estimates that can allow treatment-free mis-

specification and heteroscedasticity. In our simulation study, E-Learning demonstrates its ef-

fectiveness if one of or both misspecified treatment-free effect and heteroscedasticity exist. Our

analysis of a Type 2 Diabetes Mellitus (T2DM) observational study also suggests the improved

efficiency of E-Learning.

� In Chapter 4, we consider the multi-stage multi-treatment decision problem. We first introduce

a novel Backward Change Point SNMM (BCP-SNMM), where there exists an unknown back-

ward change point, such that the data generating process is completely nonparametric before

the change point, and then follows the SNMM starting from the change point to the end. The

BCP-SNMM can allow more robustness against model misspecifications. Any violations of the

SNMMs at previous stages do not affect the estimation properties at the current stage, including

consistency and semiparametric efficiency. Based on the BCP-SNMM, we further propose the

Dynamic Efficient Learning (DE-Learning) that solves the semiparametric efficient estimating

equations under the multiple treatment setting. DE-Learning is optimal under the BCP-SNMM

even in presence of heteroscedasticity and treatment-free effect misspecifications. It enjoys stage-

wise double robustness in addition to the robustness with respect to backward model misspeci-

fications. Moreover, DE-Learning is a tractable procedure for rigorous semiparametric efficient

estimation, with much fewer nuisance functions than G-Estimation and can be implemented in a

backward stagewise manner. The superiority of DE-Learning is demonstrated in our simulation

studies with stagewise misspecified treatment-free effects and heteroscedasticity.
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CHAPTER 2

Learning Optimal Distributionally Robust Individualized Treatment Rules

2.1 Introduction

Consider the single-stage problem to estimate an optimal ITR. When the training and testing

distributions are different, an estimated optimal ITR may not generalize well on the testing data

(Zhao et al., 2019b). Similar phenomenon for causal inference in randomized controlled trials

(RCTs) has also been pointed out by Muller (2014); Gatsonis and Morton (2017). Specifically, due

to the inclusion and exclusion criteria of an RCT, the training sample can be unrepresentative of the

testing population we are interested in. Therefore, the corresponding casual evidence may not be

broadly applicable or relevant for the real-world practice. In causal inference literature, it is common

to regard the training data as a selected sample from the pooled population of training and testing.

The selection bias can be adjusted by reweighing or stratifying the training data according to the

relationship between training and testing (O’Muircheartaigh and Hedges, 2014; Buchanan et al.,

2018). However, it requires strong assumptions on completely measuring the selection confounders

and correctly specifying the selection model, and thus can only work well on a prespecified testing

population. There are many other practical scenarios where the difference between the training

and testing distributions is unknown. One example is that the training data can be confounded

by some unidentified effects such as batch effects, which may cause potential covariate shifts (Luo

et al., 2010). Another possibility is that the testing distribution may evolve over time (Hand, 2006).

There is also a widely studied scenario that multiple datasets are aggregated to perform combined

analysis (Alyass et al., 2015; Shi et al., 2018b; Li et al., 2020). Aggregating data from various sources

can benefit from sharing common information, transferring knowledge from different but related

samples, and maintaining certain privacy. However, due to the heterogeneity among data sources,

standard approaches of finding pooled optimal ITRs may not generalize well on all these sources.

One way of handling the heterogeneity is to formulate it as a problem of distributional changes,
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where we train on the mixture of subpopulations while testing on one of the subpopulations (Duchi

et al., 2019). In all these applications, an optimal ITR that is robust to unattended distributional

differences is of great interest.

Despite a vast literature in ITR, much less work has been done on the problem when the training

and testing distributions are different. Imai and Ratkovic (2013) and Johansson et al. (2018)

estimated the CTE function by reweighing the training loss to ensure the estimators generalizable

on a prespecified testing distribution. Zhao et al. (2019b) aimed to find an ITR that optimizes

the worst-case quality assessment among all testing covariate distributions satisfying some moment

conditions. However, since their method only requires some moment conditions, the uncertainty

set of the testing distributions can be very large. Recent developments in the distributionally

robust optimization (DRO) literature provide the opportunities to quantify the difference between

the training and testing distributions more precisely (Ben-Tal et al., 2013; Duchi and Namkoong,

2018; Rahimian and Mehrotra, 2019). Motivated by the DRO literature, we develop a new robust

optimal ITR framework in this chapter.

In this chapter, we consider the problem of finding an optimal ITR from a restricted ITR class,

where there is some unknown covariate changes between the training and testing distributions.

We propose to use the distributionally robust ITR (DR-ITR) that maximizes the defined worst-

case value function among value functions under a set of underlying distributions. More specifically,

value functions are evaluated under all testing covariate distributions that are “close” to the training

distribution, and the worst-case situation takes a minimal one. Our distributionally robust ITR

framework is different from the existing doubly robust ITR framwork that uses an AIPWE. In

particular, an AIPWE robustifies the model specification assumptions, while our DR-ITR robustifes

the underlying distributions. The DR-ITR aims to guarantee reasonable performance across all

testing distributions in an uncertainty set around the training distribution by optimizing the worst-

case scenarios. In particular, we parameterize the amount of “closeness” by the distributional

robustness-constant (DR-constant), where the smallest possible DR-constant corresponds to the

standard ITR that maximizes the value function under the training distribution. To ensure the

performance of the DR-ITR on a specific testing distribution, we fit a class of DR-ITRs for a

spectrum of DR-constants at the training stage, and calibrate the DR-constant based on a small

amount of the calibrating data from the testing distribution. In this way, the correctly calibrated
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DR-constant ensures that the DR-ITR performs at least as well as, often much better than, the

standard ITR. Using our illustrative example, we show that the standard ITR can have very poor

values on many testing distributions, while our calibrated DR-ITRs still maintain relatively good

performance. In particular, our proposed calibrating procedures can tune DR-constants based on

the small calibrating sample. To solve the worst-case optimization problem, we make use of the

difference-of-convex (DC) relaxation of the nonsmooth indicator, and propose two algorithms to

solve the related nonconvex optimization problems. We also provide the finite sample regret bound

for the proposed DR-ITR.

The rest of this chapter is organized as follows. In Section 2.2, we discuss an illustrative example

that the optimality of an ITR can be sensitive to the underlying distribution, and introduce the

DR-ITR that can generalize well across all testing distributions considered in this example. Then

we propose the DR-ITR framework and the corresponding learning problem. In Section 2.3, we

justify the theoretical guarantees of the finite sample approximations for the learning problem. In

Section 2.4, we evaluate the generalizability of our proposed DR-ITR on two simulation studies:

the problem of covariate shifts and the problem of mixture of multiple subgroups. We apply our

proposed DR-ITR on the AIDS clinical dataset ACTG 175 and evaluate its generalizability on the

subgroup of female patients in Section 2.5. Some related discussions and extensions are given in

Section 2.6. The implementation details, technical proofs and some additional numerical results

are all given in Section 2.7.

2.2 Methodology

In this section, we introduce the value maximization framework in the current literature, and

discuss its limitation when the training and testing distributions are different. Then we propose

the DR-value function that optimizes the worse-case value function across all distributions within

an uncertainty set around the training distribution.

2.2.1 Maximizing the Value Function

Consider the training data pX, A, Y q „ P, where X P X Ď Rp denotes the covariates, A P A “

t`1,´1u is the binary treatment assignment, and Y P Y Ď R is the observed outcome. We
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assume that the larger outcome is better. Let Y p`1q, Y p´1q be the potential outcomes. Consider a

prespecified ITR class D Ď t˘1uX . For d P D, denote Y pdq :“ Y p1q1rdpXq “ 1s`Y p´1q1rdpXq “

´1s as the potential outcome following the treatment assignment prescribed by the ITR d. Then

the value function under the training distribution P is defined as

Vpdq :“ ErY pdqs.

Denote πpa|xq :“ PpA “ a|X “ xq as the training propensity score function for treatment assign-

ment. If we assume 1) the consistency of the observed outcome Y “ Y pAq; 2) the strict overlap

πp˘1|xq ě τ ą 0 for any x P X ; and 3) the strong ignorability pY p`1q, Y p´1qq KK A|X (Ru-

bin, 1974), then we can identify Vpdq in terms of the observed data pX, A, Y q by the IPWE of

E
´

1rdpXq“As
πpA|Xq Y

¯

.

Instead of targeting the value function directly, we instead consider the CTE function as

Cpxq :“ ErY p`1q ´ Y p´1q|X “ xs under the training distribution P. Note that for an ITR

d and all x P X , the prescribed treatment assignment satisfies dpxq P t˘1u. Then we have

Cpxqdpxq “ ErY pdq ´ Y p´dq|X “ xs. Based on this representation, we define another value

function

V1pdq :“ ErCpXqdpXqs “ ErY pdq ´ Y p´dqs. (2.1)

Since Y pdq ` Y p´dq ” Y p1q ` Y p´1q, it can be observed that V1pdq “ 2
”

Vpdq ´ ErY p`1q`Y p´1qs
2

ı

“

2rVpdq ´ Vpdrandqs, where drandpxq “ `1 with probability 1{2 and ´1 with probability 1{2. There-

fore, V1pdq can be interpreted as the value improvement of the ITR d upon the completely random

treatment rule drand. In terms of the optimal ITR, the resulting rules by optimizing the value

functions V1pdq and Vpdq over d are equivalent.

By the definition (2.1), we have V1pdq ď Er|CpXq|s with equality if dpXq “ signrCpXqs

almost surely. Such an ITR is the global optimal ITR when D consists of all measurable functions

from X to t˘1u. To obtain the global optimal ITR, we can estimate CpXq from data using

flexible nonparametric techniques, such as the Bayesian additive regression tree (BART) (Hill,

2011), or the casual forest (Wager and Athey, 2018). However, in general, the global optimal ITR
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x ÞÑ signrCpxqs can take a very complicated functional form, while decision makers may want

to have a simpler ITR (Kitagawa and Tetenov, 2018). Then the ITR class D is often considered

as a restricted subset of measurable functions from X to t˘1u. The following two-step procedure

can be implemented to estimate the restricted optimal ITR on D: first we estimate the CTE

function x ÞÑ pCpxq using flexible nonparametric techniques; and then we estimate the ITR by

solving maxdPD Enr pCpXqdpXqs on the restricted ITR class D (Zhang et al., 2012a). Here, En is

the empirical average based on the training data.

2.2.2 Covariate Changes

It can be observed that the value functions defined in Section 2.2.1 depend on the underlying

distribution. Suppose we are interested in a testing distribution Ptest that may be different from

the training distribution P to some extent. Then ITRs estimated by most existing methods may

not be able to perform well on our target population. In order to address this problem, we first

make the following assumption on the potential difference between Ptest and P.

Assumption 2.1 (Covariate Changes). For every training distribution P and testing distribution

Ptest considered in this chapter, we assume the followings:

(I) Ptest ! P;

(II) There exists w : X Ñ R` such that EPwpXq “ 1, and dPtest{dP “ wpXq.

Assumption 2.1 (I) requires that the support of the testing distribution cannot go beyond the

training distribution. Assumption 2.1 (II) is mathematically equivalent to assuming that the dif-

ferences between P and Ptest only appear in the covariate distributions. The treatment-response

relationship conditional on covariates remains unchanged across training and testing distributions.

Specifically, let pXpxqpY |Xpyp1q, yp´1q|xq and qXpxqqY |Xpyp1q, yp´1q|xq be the training and test-

ing densities of the data pX, Y p1q, Y p´1qq. Then the density ratio dPtest{dP becomes

dPtest

dP
“
qXpXq

pXpXq
ˆ
qY |XpY p1q, Y p´1q|Xq

pY |XpY p1q, Y p´1q|Xq
.
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If qY |XpY p1q, Y p´1q|Xq “ pY |XpY p1q, Y p´1q|Xq, i.e., the conditional distributions

pY p1q, Y p´1qq|X are identical under Ptest and P, then dPtest{dP “ qXpXq{pXpXq, which is the

weighting function wpXq in Assumption 2.1 (II).

The assumption of covariate changes is commonly seen in the setting of randomized trial.

Consider the training and testing populations together as a pooled population with finite subjects.

For each subject i P t1, 2, ¨ ¨ ¨ , Nu, let Si P t0, 1u be a selection random variable such that Si “ 1

if i is a training sample point, and Si “ 0 if i is a testing sample point. Let the distributions of

pXi, Yip1q, Yip´1qq|pSi “ 1q and pXi, Yip1q, Yip´1qq|pSi “ 0q be the training distribution P and the

testing distribution Ptest respectively. Denote sP as the joint distribution of pXi, Yip1q, Yip´1q, Siq.

Then conditions in Assumption 2.1 can correspond to the following (Hotz et al., 2005; Stuart et al.,

2011):

� (Overlapping Support) 0 ă sPpSi “ 1|Xiq ă 1;

� (Selection Unconfoundedness) Si KK pYip1q, Yip´1qq|Xi.

In particular, under this finite population setting, the overlapping support condition is equivalent

to that Ptest ! P and P ! Ptest, and the selection unconfoundedness condition is equivalent to

Assumption 2.1 (II). Such a correspondence can bring more intuitive implications of Assumption

2.1 under the randomized trial setting. Specifically, the overlapping support requires the chances

of each subject being selected into the training and testing populations to be both positive. The

selection unconfoundnedness requires that the selection mechanism is independent of the potential

outcomes given the covariates. Both conditions can be satisfied by a successful trial design (Pearl

and Bareinboim, 2014). The phenomenon of covariate changes between P and Ptest can exist if

sPpSi “ 1|Xiq ‰ sPpSi “ 0|Xiq with a positive probability. This can be often the case if the subject

needs to satisfy certain requirements before enrolling a trial.

As a consequence from Assumption 2.1, the CTE function CpXq “ EPrY p1q ´ Y p´1q|Xs “

EtestrY p1q´Y p´1q|Xs remains unchanged under P and Ptest. Then it can be convenient to consider

the value functions V1pdq “ EPrCpXqdpXqs and V1,testpdq “ EtestrCpXqdpXqs defined in (2.1).

When the testing value function V1,testpdq is of interest, maximizing the training value function

V1pdq may not be optimal. Alternatively, we can rewrite the testing value function V1,testpdq “

EPrwpXqCpXqdpXqs where wpXq “ dPtest{dP. Then based on the training data from P, we can
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maximize EPrwpXqCpXqdpXqs that targets the correct objective. It amounts to determine the

weighting function w that captures the differences between Ptest and P.

Remark 2.1. Notice that for any weighting function w : X Ñ R`, we have EPrwpXqCpXqdpXqs ď

EPrwpXq|CpXq|s with equality if dpXq “ signrCpXqs. That is, if D consists of all measurable

functions from X to t˘1u, then the global optimal ITR is not sensitive to any covariate changes

in the testing distribution. However, the problem of covariate changes induces a challenge if D is

a restricted ITR class.

Remark 2.2. Our methodology only relies on the fact that CpXq remains unchanged under P

and Ptest. Therefore, it can be possible to relax Assumption 2.1 to allowing distributional changes

in pY p1q, Y p´1qq|X, while assuming that the CTE function Cp¨q remains identical across P and

Ptest. Furthermore, our methodology can also be meaningful if the testing CTE function can be

different from training, but the optimal treatment assignment remains unchanged. We will discuss

this extension in Remark 2.5.

2.2.3 An Illustrative Example

In this section, we begin with an example as in Figure 2.1 that the optimality of an ITR depends

on the underlying distribution. There are two underlying bivariate normal distributions of means

p0, 0qᵀ (training) and p1.47, 1.69qᵀ (testing) respectively. We obtain the standard ITR by max-

imizing the value function V1pdq under the training distribution over the linear ITR class. We

also obtain the DR-ITR by maximizing the DR-value function Vkc pdq to be introduced in Section

2.2.4 over the linear ITR class. Then the DR-ITR is compared with the standard ITR through

the value functions V1 under the training distribution and V1,test under the testing distribution

as in Table 2.1. Since the values can be comparable only through the same value function but

not across different value functions, we further define the criteria relative regret of an ITR as

rvaluepLB-ITRq´valuepITRqs{|valuepLB-ITRq|, where “value” can be V1 or V1,test, and the LB-ITR

maximizes the corresponding value function over the linear ITR class. In this sense, value(LB-ITR)

is the best achievable value among the linear ITR class for the corresponding value function, and

becomes the benchmark reference for the relative regret criteria.
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Comparing the DR−ITR (k = 2, c = 20) and the Standard ITR on the Training and Testing 95% Confidence Ellipsoids

Figure 2.1: ITRs and the 95% confidence ellipsoids of the training distribution pX1, X2q „ N2

`

p0, 0qᵀ, I2

˘

and the testing distribution pX1, X2q „ N2

`

p1.47, 1.96qᵀ, I2

˘

. The blue dashed curve is the underlying CTE
boundary CpX1, X2q “ X2 ´ pX

3
1 ´ 2X1q “ 0.

Table 2.1: Testing Values (Relative Regrets) Comparisons of ITRs

Value
ITR

DR-ITR Standard ITR LB-ITR

Training V1 0.6253 (37.36%) 0.9982 (0%) 0.9982

Testing V1,test 4.8230 (9.16%) 0.2927 (94.49%) 5.3096
1 DR-ITR maximizes Vkc pdq defined in (2.4) with k “ 2 and c “ 20 over the linear

ITR class.
2 Standard ITR maximizes V1pdq over the linear ITR class.
3 LB-ITR maximizes V1pdq or V1,testpdq over the linear ITR class.
4 Values (larger the better) can be comparable within rows but incomparable

between rows.
5 Relative regretpITRq “ rvaluepLB-ITRq´valuepITRqs{|valuepLB-ITRq| (smaller

the better).
6 A size-10,000 sample is generated for fitting DR-ITR and LB-ITRs, and an

independent size-100,000 sample is generated for evaluation under V1 and V1,test.

Two facts can be concluded from Table 2.1: 1) the optimality of an ITR can be different

across different distributions; and 2) maximizing the training value function may have poor testing

performance when covariate changes exist. In Table 2.1, even though the standard ITR is optimal
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under the training distribution, it can be far from optimal (94.49% off in terms of relative regret)

under the testing distribution. In contrast, the DR-ITR may not enjoy high training value, but

can have much better testing performance (only 9.16% off in terms of relative regret).

Remark 2.3. Figure 2.1 also illustrates how the covariate changes affect the optimality of ITRs.

Specifically, we can divide the covariate domain into two types of subdomains, annotated in blue

and red, on which the DR-ITR and standard ITR have different treatment assignments. On the

blue subdomain, the standard ITR assignment shares the same sign with the CTE function, while

the DR-ITR does not. In this case, the standard ITR outperforms the DR-ITR with the difference

of value |CpXq| at the individual level. The case reverses on the red subdomain on which the

DR-ITR outperforms the standard ITR. The overall difference of values integrates the individual

difference with respect to the training or testing density.

The overall outperformance of the DR-ITR under the testing distribution can be explained from

the following three perspectives: 1) the 95% confidence ellipsoid of the training domain only covers

a small area of the red subdomain, while that of the testing domain covers a much larger area; 2) the

distance of the red subdomain from the testing centroid is much closer than its distance from the

training centroid. Then the red subdomain concentrates higher testing density than training; and

3) the individual value differences |CpXq|’s are generally larger on the red subdomain intersected

with the testing domain than that intersected with the training domain. Therefore, the DR-ITR

performs much better than the standard ITR on the testing distribution.

2.2.4 Maximizing the Distributionally Robust Value (DR-Value) Function

We begin to introduce our DR-ITR that can show strong generalizability as in Figure 2.1. As

discussed in Section 2.1, our goal in this chapter is not to find an ITR that is generalizable on a

specific testing distribution, but rather, to find an ITR that guarantees reasonable performance

across an uncertain set of testing distributions. We first define the k-th power uncertainty set in

two equivalent ways under Assumption 2.1:

Pk
c pPq : “

!

Q ! P
ˇ

ˇ

ˇ
}dQ{dP}LkpPq ď c

)

(2.2)

“

"

Q ! P
ˇ

ˇ

ˇ

ˇ

w : X Ñ R`, EPwpXq “ 1, EPwpXq
k ď ck,

dQ
dP

“ wpXq

*

. (2.3)
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The set Pk
c pPq consists of the probability distributions Q such that the LkpPq-norm of the density

ratio dQ{dP is bounded above by the DR-constant c. The definition (2.3) highlights that the

density ratio is a weighting function w of X, and the distribution Q in Pk
c pPq can be characterized

by the weighting function w satisfying the conditions in (2.3). Here the DR-constant c ě 1 controls

the degree of the distributional robustness that measures how “close” Q is from P. In particular,

c “ 1 reduces the power uncertainty set Pk
1 pPq to the singleton tPu. The power order 1 ă k ď `8

parametrizes the measurement of the distance of Q from P. In particular, the power uncertainty

set Pk
c pPq increases in c as k is fixed, and decreases in k as c is fixed. The latter one is due

to the Lyapunov’s inequality: }dQ{dP}LkpPq ď }dQ{dP}Lk1 pPq whenever 1 ă k ď k1 ď `8. In

Section 2.7, we will discuss the explicit form of Pk
c pPq in the context of specific parametric families

of distributions, and how it depends on the DR-constant c and the power k. One important

conclusion from Example 2.2 in Section 2.7 for the mean-shifted p-dimensional normal distribution

is that Nppµ, Ipq P Pk
c

`

Npp0p, Ipq
˘

if and only if }µ}22 ď
2 log c
k´1 .

With the power uncertainty set Pk
c pPq, we propose to robustly maximize the following worst-

case value function among the values under Q P Pk
c pPq:

Vkc pdq :“ inf
QPPkc pPq

EQrCpXqdpXqs, (2.4)

which we term as the DR-value function. In particular, c “ 1 reduces the DR-value function Vk1 pdq

to the standard value function V1pdq “ EPrCpXqdpXqs in the definition (2.1).

Remark 2.4 (Optimality). The “optimality” of the DR-ITR is with respect to the DR-value

function Vkc , which highlights its difference from the traditional “optimal” ITR with respect to the

standard value function V1.

In the example in Section 2.2.3, the standard ITR maximizes the value function under the

training distribution over the linear ITR class, while the DR-ITR maximizes the DR-value function

Vkc pdq of k “ 2 and c “ 20 over the linear ITR class. In particular, the randomness of P comes

from the training covariate distribution N2p02, I2q. Such a choice of Pk
c pPq contains the mean-

shifted normal distributions N2pµ, I2q for all µ P
 

pµ1, µ2q
ᵀ : µ2

1 ` µ
2
2 ď 4 log 5

(

. In Figure 2.2a,

we enumerate such mean-shifted normal distributions as the testing distributions, and evaluate the

relative improvement of the DR-ITR over the standard ITR as the difference of their relative regrets.
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Among all testing distributions, the relative improvements of the DR-ITR span from ´37.4% to

85.3%, suggesting that the potential of improvement can be large. Besides the DR-constant c “ 20,

we also consider the case c “ 2.71, 6.51, 10.31 in Section 2.7. As c increases, the range of relative

improvements becomes wider. The increase in the relative improvement upper bound is in general

much larger than the decrease in the lower bound.
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(a) c “ 20

−2

−1

0

1

2

−2 −1 0 1 2
µ1

µ 2

−30%

0%

30%

60%

90%

Relative Value
Improvements

Value
Improvements
>= 0

FALSE

TRUE

Relative Value Improvements of the DR−ITR (ncalib = 50) over

the Standard ITR on the (µ1, µ2)−Mean Testing Distributions

Relative value improvements range in [−1.70%, 82.4%].

(b) Calibrating c on a size-50 Sample

Figure 2.2: Relative improvements of the DR-ITR over the standard ITR as the difference of relative
regrets on testing distributions N2

`

µ, I2

˘

of µ P
 

pµ1, µ2q
ᵀ P R2 : µ2

1 ` µ
2
2 ď 4 log 5

(

(lighter the better).

Based on these observations, the DR-constant c should be carefully chosen. On one hand, as

can be seen from Figure 2.2a, the DR-ITR for a fixed DR-constant c may or may not improve over

the standard ITR on a specific testing distribution within Pk
c pPq. When the DR-constant c can

be tuned adaptive to the specific testing distribution, then the DR-ITR can perform at least as

well as the standard ITR. On the other hand, we may not even have any prior information on c

to ensure that the power uncertainty set Pk
c pPq contains the testing distribution of interest. Both

cases ask for additional information to calibrate the choice of c so that the DR-ITR performs well

on a specific testing distribution. Suppose we are able to obtain a small size of calibrating sample

from the testing distribution. We propose the following training-calibrating procedure to choose

c: 1) at the training stage, we estimate DR-ITRs tpdcucPC where c is the DR-constant to compute

pdc, and C is a set of candidate DR-constants; 2) we obtain a calibrating sample from the testing
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distribution, on which we estimate the testing values of tpdcucPC ; 3) we select the pc that maximizes

the value of pdc among c P C.

In order to estimate the value function under the testing distribution, we consider the following

two possible calibration scenarios: 1) the calibrating sample is a randomized controlled trial (RCT)

dataset pX, A, Y q from the testing distribution; and 2) the calibrating sample only consists of the

covariates X from the testing distribution. Scenario 1 will be more ideal than Scenario 2 since

we have the testing information of both the treatment and the outcome. We can evaluate an ITR

d using the IPWE pVIPWE
calib pdq “ Encalib

t1rdpXq “ AsY {πcalibpA|Xqu, where Encalib
is the empirical

average over the calibrating sample, πcalib is the corresponding propensity score function, and πcalib

is known or estimable from the calibrating data. We call the corresponding calibrate DR-ITR as

RCT-DR-ITR. In Scenario 2, we do not have the treatment-response information from the testing

distribution. We can instead use the value function estimate pVCTE
calib pdq “ Encalib

r pCnpXqdpXqs to

evaluate d, where pCnpXq is estimated at the training stage. However, the CTE estimate pCnp¨q may

also suffer from a potential generalizability problem on the testing distribution. Practitioners need

to be careful of the generalizability of the CTE estimate when performing the calibration. We call

the corresponding DR-ITR as CTE-DR-ITR.

RCT-DR-ITR and CTE-DR-ITR are different in their use of information for calibration. Specif-

ically, the RCT-DR-ITR makes use of pX, A, Y q from the testing distribution, while the CTE-DR-

ITR only makes use of X from the testing distribution, and the underlying CTE function CpXq. In

practice, CpXq is estimated from training data. It requires Assumption 2.1 to generalize the CTE

estimate pCnpXq from training to testing. If Assumption 2.1 holds, then CTE-DR-ITR can have

better performance than RCT-DR-ITR, since CTE-DR-ITR captures less variance from calibrated

data. If Assumption 2.1 is violated, which will be illustrated in Section 2.4.2, then CTE-DR-

ITR can have poorer performance than RCT-DR-ITR, since the testing value function estimate of

CTE-DR-ITR can be biased.

In Figure 2.2b, we generate a calibrating RCT sample from Ptest of size 50. It shows that across

the mean-shifted testing distributions, the relative improvements of the calibrated DR-ITRs range

from ´1.70% to 82.4%. It suggests that the small sample size 50 is sufficient for a reasonably good

calibration, with the positive relative improvements being maintained.
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Remark 2.5 (Extending Covariate Changes). Consider the case that Assumption 2.1 is violated.

Let Ctest be the testing CTE function that can be different from the training CTE function C. We

use the notations P and Ptest to refer to the training and testing covariate distributions. Assume

that signrCtestpXqs “ signrCpXqs almost surely. Then we can still represent the value function

under the testing distribution as follows:

EtestrCtestpXqdpXqs “ EP

"

dPtest

dP
CtestpXq

CpXq
1rCpXq ‰ 0s ˆ CpXqdpXq

*

.

The definition of the DR-value function (2.4) can be robust with respect to the change of pPtest, Ctestq

from pP, Cq, such that wpXq :“ pdPtest{dPq ˆ rCtestpXq{CpXqs1rCpXq ‰ 0s satisfies EPwpXq “ 1

and EPwpXq
k ď ck.

Remark 2.6. The calibration procedure ensures that among the DR-ITRs of various DR-constants,

the best one is chosen to maximize the testing value function. In this sense, the calibrated DR-ITR

can have potential of improving the generalizability from training to testing. However, if the testing

distribution is very far from the training distribution, one cannot expect that an ITR estimated by

any method from the training data can perform well on the test data, even though our proposed

method may be able to protect against such a distributional change to some extent. Therefore, in

practice, we suggest to use our method when training and testing distributions are relatively close.

2.2.5 Distributionally Robust Expectation

In this section, we first discuss the rationale of considering the Lk-norm of the density ratio as

the measurement of distributional distance. We show that the k-th power uncertainty set Pk
c pPq

is equivalent to the distributional ball induced by the φ-divergence (Pardo, 2005) for some specific

divergence φ. Then we derive the dual form of the worst-case expectation over Pk
c pPq, which

provides a more tractable optimization problem.

2.2.5.1 Equivalence to the Divergence-Based Distributional Ball

As a generalization of the conventional likelihood-based framework which corresponds to the

Kullback-Leibler (KL) divergence, the framework of general φ-divergence between distributions

has been well studied in the context of parameter estimation and hypothesis testing (Pardo, 2005).
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The φ-divergence between two probability distributions P and Q such that Q ! P is defined as

follows:

DφpQ}Pq :“

ż

φ

ˆ

dQ
dP

˙

dP “ EPφ

ˆ

dQ
dP

˙

; φ P Φ,

where Φ is a class of convex functions on R that satisfies the regularity conditions: φpwq “ `8

for w ă 0, φp1q “ φ1p1q “ 0, and lim
wÑ0`

wφpp{wq “ lim
wÑ`8

φpwq{w for p ą 0. The definition

with various choices of φ’s includes the empirical likelihood φELpwq “ ´ logw ` w ´ 1, the KL

divergence φKLpwq “ w logw ´ w ` 1, and the χ2-divergence φχ2pwq “ 1
2pw ´ 1q2. There is

another important special case that relates to the power uncertainty set of k “ `8. Consider the

optimization indicator for c ě 1: φ8,c “ 0 if u P r0, cs and `8 otherwise, for which Dφ8,cpQ}Pq “

0 if }dQ{dP}L8pPq ď c, and `8 otherwise. Then Dφ8,cpQ}Pq “ 0 if and only if Q P P8c pPq.

Although Dφ is not a proper metric between probability distributions since it is asymmetric,

we can still define a Dφ-distributional ball as Pφ
ρ pPq :“ tQ ! P : DφpQ}Pq ď ρu, where P is the

center and ρ ě 0 is the radius. Then for any ρ ě 0, the Dφ8,c-distributional ball P
φ8,c
ρ pPq ” tQ !

P : Dφ8,cpQ}Pq “ 0u, which coincides with the power uncertainty set P8c pPq defined in (2.2) for

k “ 8. Such an equivalence can be extended to all finite k P p1,`8q when a Cressie-Read (CR)

family (Cressie and Read, 1984) of divergence functions ΦCR Ď Φ is taken into consideration. For

k ą 1, the corresponding φk P ΦCR is defined as

φkpwq :“
wk ´ kw ` k ´ 1

kpk ´ 1q
; w ě 0.

Here, φk effectively measures the probability-distributional distance by the k-th moment of the

density ratio, since DφkpQ}Pq “
1

kpk´1q rEPpdQ{dPqk ´ 1s as long as Q is a probability distribution.

Then it can be inferred that the Dφk -distributional ball Pφk
ρ pPq is actually equivalent to the power

uncertainty set Pk
ckpρq

pPq in (2.2). Here, there is a one-to-one correspondence between the DR-

constant c and the radius ρ of the Dφk -distributional ball with ckpρq :“ rkpk ´ 1qρ ` 1s1{k. We

conclude the case k “ `8 and 1 ă k ă `8 with the following:

P
φ8,c
ρ pPq “ P8c pPq; Pφk

ρ pPq “ Pk
ckpρq

pPq; ρ ě 0. (2.5)
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2.2.5.2 Dual Representation

We begin with a general result on the dual representation of the φ-divergence-based distributionally

robust expectation. We state the following lemma and refer readers to Duchi and Namkoong (2018,

Proposition 1).

Lemma 2.1. Fix a random variable Z on R with distribution P. Let φ P Φ be a legitimate divergence

function. Define the convex conjugate of φ as

φ‹px‹q :“ sup
xPR
txx‹, xy ´ φpxqu; x‹ P R.

Then for ρ ą 0,

sup
QPPφ

ρ pPq
EQZ “ inf

λě0
ηPR

"

EP

„

λφ‹
ˆ

Z ´ η

λ

˙

` λρ` η

*

. (2.6)

Let c ě 1. Lemma 2.1 can be directly applied to the optimization indicator: φ8,cpuq :“ 0 if

u P r0, cs and `8 otherwise, whose convex conjugate is given by φ‹8,cpuq “ cmaxtu, 0u. Then λ in

(2.6) attains the infimum at λ “ 0, so that

sup
QPPφ8,c

ρ pPq
EQZ “ inf

ηPR
tcEPpZ ´ ηq` ` ηu . (2.7)

In particular, the right hand side of (2.7) is solved by the p1´1{cq-value-at-risk VaR1´1{c in finance,

or equivalently, the p1´ 1{cq-quantile of Z under the center distribution P. The right hand side of

(2.7) itself is defined as the p1´ 1{cq-conditional value-at-risk CVaR1´1{c (Rockafellar and Uryasev,

2000). Next, we apply Lemma 2.1 to the k-th power divergence φk to derive the dual problem of

the worst-case expectation over Pk
c pPq.

Lemma 2.2. Let ΦCR be the Cressie-Read family of divergence functions, k, k‹ P p1,`8q be

conjugate numbers, i.e., 1
k `

1
k‹ “ 1, and φk P ΦCR. Then we have following conclusions:

(I) The convex conjugate of φk is given by

φ‹kpzq “
1

k

!

rpk ´ 1qz ` 1sk
‹

` ´ 1
)

.
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(II) Fix a probability measure P and a random variable Z on R. Then for ρ ě 0,

sup
QPPφk

ρ pPq
EQZ “ inf

ηPR

!

ckpρqrEPpZ ´ ηq
k‹

` s
1{k‹ ` η

)

, (2.8)

where ckpρq “ rkpk ´ 1qρ` 1s1{k.

Note that the right hand side of (2.8) and its optimizer η are both coherent risk measures as

the higher-order generalizations of the CVaR and VaR (Krokhmal, 2007).

Using the equivalence in (2.5), the worst-case expectation over the power uncertainty set Pk
c pPq

for k P p1,8s and k‹ “ k
k´1 (in particular, k “ 8 ô k‹ “ 1) unifies (2.7) and (2.8) as follows:

sup
QPPkc pPq

EQZ “ inf
ηPR

!

crEPpZ ´ ηq
k‹

` s
1{k‹ ` η

)

; c ě 1. (2.9)

By inspecting the dual problem (2.9), the right hand side is computationally more tractable than

the left hand side, since instead of optimizing over an infinite-dimensional probability measure Q,

we only need to optimize over a univariate variable η.

In order to apply the duality result to the DR-ITR problem, we negate the DR-value maxi-

mization to a risk minimization problem. Denote the risk function under the training distribution

P as R1pdq :“ ´V1pdq “ EPtCpXqr´dpXqsu. Then for k P p1,`8s and c ě 1, the DR-risk function

is defined as

Rk
c pdq :“ sup

QPPkc pPq
EQtCpXqr´dpXqsu.

Using the fact Z “ ´CpXqdpXq “ CpXq1rdpXq “ ´1s ` r´CpXqs1rdpXq “ 1s, the dual repre-

sentation (2.9) can be expressed in the following particular form (2.10).

Corollary 2.3 (Dual Representation of the DR-Risk Function). Let k P p1,`8s, k‹ “ k
k´1 if

k ă `8 and k‹ “ 1 if k “ `8, c ě 1. Then the DR-risk function Rk
c has the following dual

representation:

Rk
c pdq “ inf

ηPR

"

c
”

E
´

rCpXq ´ ηsk
‹

` 1rdpXq “ ´1s ` r´CpXq ´ ηsk
‹

` 1rdpXq “ 1s
¯ı1{k‹

` η

*

.

(2.10)
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2.2.6 Implementation

In this section, we introduce the implementation of DR-risk minimization based on the empirical

data. We cast the learning problem as finding a decision function f : X Ñ R that induces an ITR

based on its sign: dpxq “ signrfpxqs. The ITR class D can correspond to a prespecified decision

function class F . The DR-risk function as a functional of the decision function becomes Rk
c pfq “

supQPPkc pPq EQ
 

CpXqsignr´fpXqs
(

. However, directly optimizing the risk Rk
c pfq is challenging,

since the signp¨q operation is nonconvex and nonsmooth. We consider a specific difference-of-

convex (DC) relaxation of the sign operator.

We propose to relax the indicators in the dual form (2.10) by the following robust smoothed

ramp loss (Zhou et al., 2017): ψpuq :“ p1´uq21p0 ď u ď 1q`r2´p1`uq2s1p´1 ď u ď 0q`21pu ď

´1q. The DC representation is given by ψpuq “ ψ`puq ´ ψ´puq, where ψ`puq “ p1 ´ uq21p0 ď

u ď 1q ` p1 ´ 2uq1pu ď 0q, ψ´puq “ u2
1p´1 ď u ď 0q ` p´1 ´ 2uq1pu ď ´1q. The advantages

of using the symmetric nonconvex loss can be: 1) to protect from outliers in X and improve

generalizability (Shen et al., 2003; Wu and Liu, 2007), and 2) to equally indicate fpXq ă 0 and

fpXq ą 0. We would like to point out that 1rfpXq ă 0s ` 1rfpXq ą 0s ” 1 will be preserved to

ψrfpXqs
2 `

ψr´fpXqs
2 ” 1 in this surrogate loss. Then we define the DR-ψ-risk function as

Rk
c,ψpfq :“ inf

ηPR

#

c

„

E
ˆ

rCpXq ´ ηsk
‹

`

ψrfpXqs

2
` r´CpXq ´ ηsk

‹

`

ψr´fpXqs

2

˙1{k‹

` η

+

. (2.11)

Algebraically, we can invert (2.11) to its primal representation Rk
c,ψpfq “

supQPPkc pPq EQrCpXqζψpfqs by introducing a sign random variable ζψpfq P t˘1u with

Ppζψpfq “ ˘1|Xq :“ ψr˘fpXqs
2 . That is, given the covariate X, the original deterministic

sign signr´fpXqs is relaxed to the random sign ζψpfq with ˘1 probability ψr˘fpXqs
2 . In par-

ticular, if fpXq ą 0, then signr´fpXqs “ ´1 is a hard sign while ζψpfq is a soft sign with

Ppζψpfq “ ´1|Xq “ ψr´fpXqs
2 ą

ψrfpXqs
2 “ Ppζψpfq “ 1|Xq. When c “ 1, the DR-risk function

reduces to the risk function under the training distribution, and the DC relaxation here is

equivalent to the relaxation in Zhou et al. (2017).

The DR-ψ-risk function provides the learning objective based on the empirical data. In partic-

ular, the population expectation E is replaced by the empirical average En, and the CTE function
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Cp¨q is replaced by a plug-in estimate pCnp¨q. The corresponding empirical objective is minimized

over the decision function f and the auxiliary variables pη, λq jointly:

min
fPF ,ηPR

#

c

„

En
ˆ

r pCnpXq ´ ηs
k‹

`

ψrfpXqs

2
` r´ pCnpXq ´ ηs

k‹

`

ψr´fpXqs

2

˙1{k‹

` η

+

“ min
fPF ,ηPR,λě0

"

c

k‹λk‹´1
En

ˆ

r pCnpXq ´ ηs
k‹

`

ψrfpXqs

2
` r´ pCnpXq ´ ηs

k‹

`

ψr´fpXqs

2

˙

`
cλ

k
` η

*

.

The objective function is a summation of multiple products of DC functions. For k ă `8, we

consider a block successive upper-bound minimization algorithm (Razaviyayn et al., 2013) to alter-

natively minimize the convex upper bounds over the decision function f and the auxiliary variables

pη, λq respectively. For k “ `8, it requires a further probabilistic enhancement to break ties at

argmin and ensure the convergence to stationarity (Qi et al., 2019a,b). The implementation details

are given in Section 2.7.

2.3 Theoretical Properties

In this section, we justify the validity of the DC relaxation and the empirical substitution. First of

all, we introduce the following joint stochastic objectives:

`kc pf, η, λ; rCq :“
c

k‹λk‹´1

´

r rCpXq ´ ηsk
‹

` 1rfpXq ă 0s ` r´ rCpXq ´ ηsk
‹

` 1rfpXq ą 0s
¯

`
cλ

k
` η;

`kc,ψpf, η, λ; rCq :“
c

k‹λk‹´1

ˆ

r rCpXq ´ ηsk
‹

`

ψrfpXqs

2
` r´ rCpXq ´ ηsk

‹

`

ψr´fpXqs

2

˙

`
cλ

k
` η.

Here, rC can be the plug-in estimate pCn or the underlying true CTE C. Denote Lkc pf, η, λq :“

E`kc pf, η, λ;Cq, Lkc,ψpf, η, λq :“ E`kc,ψpf, η, λ;Cq. Then by Corollary 2.3, we have Rk
c pfq “

infηPR,λě0 Lkc pf, η, λq, Rk
c,ψpfq “ infηPR,λě0 Lkc,ψpf, η, λq. In the following proposition, we show

the validity of the DC relaxation.

Proposition 2.4 (Fisher Consistency and Excess Risk). Suppose Rk
c , Rk

c,ψ, Lkc and Lkc,ψ are defined

as above. Fix k P p1,`8s, k‹ “ k
k´1 , c ě 1, η P R, λ ą 0. Then the following results hold:

(I) (Fisher Consistency)

argmin
f :XÑr´1,1s

Lkc,ψpf, η, λq “ argmin
f :XÑt˘1u

Lkc pf, η, λq, min
f :XÑr´1,1s

Lkc,ψpf, η, λq “ min
f :XÑt˘1u

Lkc pf, η, λq;
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(II) (Excess Risk) Denote Lk,˚c pη, λq :“ minfPXÑt˘1u Lkc pf, η, λq. Then for f : X Ñ R, we have

Lkc pf, η, λq ´ Lk,˚c pη, λq ď 2rLkc,ψpf, η, λq ´ Lk,˚c pη, λqs.

Denote Rk,˚
c :“ infηPR,λě0 Lk,˚c pη, λq. Then for f : X Ñ R, we have

Lkc pf, η, λq ´Rk,˚
c ď 2rLkc,ψpf, η, λq ´Rk,˚

c s, Rk
c pfq ´Rk,˚

c ď 2rRk
c,ψpfq ´Rk,˚

c s.

Suppose F is a functional class on X with norm } ¨ }F that characterizes the complexity of

function. Motivated by Steinwart and Scovel (2007, (6)), we define for γ ě 0 the constrained

version of the approximation error

Ak
c pγq :“ inf

fPF

!

Rk
c,ψpfq : }f}F ď γ

)

´Rk,˚
c .

Similarly to that in Steinwart and Scovel (2007), Ak
c pγq with the appropriately chosen tuning

parameter γ can trade off the learnability and the approximatability of F towards the population

Bayes rule argminf :XÑt˘1uRk
c pfq. Specifically, as γ increases, the population approximation error

(“bias”) Ak
c pγq decreases with γ, while the empirical complexity (“variance”) increases with γ. The

trade-off will be stated more explicitly in the following Assumption 2.5.

Next, we make the following assumptions to show the regret bound for the empirical mini-

mization of the ψ-risk En`kc,ψpf, η, λ; pCnq. Without loss of generality, we restrict to consider the

functional class F as the Reproducing Kernel Hilbert Space (RKHS) with the Gaussian radial basis

function kernels, where } ¨ }F is the RKHS-norm. General results can be established by adopting

the covering number argument as in Zhao et al. (2019a, Theorem 3.1).

Assumption 2.2 (Boundedness). There exists M ă `8 such that |CpXq| ďM almost surely.

Assumption 2.3 (Diffuse Property). The distribution of CpXq has a uniformly bounded density

with respect to the Lebesgue measure.

Assumption 2.4 (Convergence of the Plug-in CTE). For the CTE estimate pCnpXq, we assume

that } pCn ´ C}8 :“ sup
xPX

ˇ

ˇ

ˇ

pCnpxq ´ Cpxq
ˇ

ˇ

ˇ

P
Ñ 0.
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Assumption 2.5 (Approximation Error Rate). There exists β P p0, 1s and KA ă `8 such that

for all small enough γ ą 0, we have Ak
c pγq ď KAγ

´β.

As a remark, we note that Assumption 2.2 can hold if the difference of potential outcomes

Y p1q ´ Y p´1q is uniformly bounded, or X is compact and x ÞÑ Cpxq is continuous. Assumption

2.3 holds if X has a diffuse distribution, i.e., X doesn’t contain points with positive mass; and

x ÞÑ Cpxq is injective. Assumption 2.3 is the key assumption to bound λ away from 0. This

assumption will not be necessary if k “ `8 and k‹ “ 1. Assumption 2.4 can be met if X is

compact and pCn is a random forest estimate (Wager and Walther, 2015). Following Steinwart and

Scovel (2007, Theorem 2.7), Assumption 2.5 can be shown valid if the Tsybakov’s noise assumption

on the population margin is met and the kernel bandwidth parameter is chosen appropriately. In

the following proposition, we establish the regret bound.

Proposition 2.5 (Regret Bound). Suppose Rk
c , Rk

c,ψ, Lkc and Lkc,ψ are defined as above. Fix

k P p1,`8s, k‹ “ k
k´1 , c ą 1. Assume that Assumptions 2.2-2.5 hold. Let

p pfn, pηn, pλnq P argmin
fPF ,ηPR,λě0

!

En`kc,ψpf, η, λ; pCnq : }f}F ď γn

)

,

with the tuning parameter γn satisfying γn “ Opn´
1

2β`1 q as n Ñ 8. Then there exists constants

K0 “ K0pc,Mq ă `8 and K1 “ K1pc,Mq ă `8 such that for 0 ă δ ă 1, with probability at least

1´ δ, we have

Rk
c p
pfnq ´Rk,˚

c ď Lkc p pfn, pηn, pλnq ´Rk,˚
c ď K0

a

logp2{δqn
´

β
2β`1 `K1} pCn ´ C}8.

In particular, there exists K01,K02,K11,K12 ă `8 not depending on c,M , such that

K0pc,Mq “

$

’

&

’

%

K01
c
pk‹`1qp2k‹´1q

k‹´1
` 1

2

pc´1qk‹`1{2 Mk‹`1{2, k ă `8;

K02cM
3{2, k “ `8;

K1pc,Mq “

$

’

&

’

%

K11
c2k

‹`1

pc´1qk‹´1M
k‹´1, k ă `8;

K12c, k “ `8.

In Proposition 2.5, it can be of theoretical interest to understand how the regret bound depends

on the DR-constant c and the power order k. Specifically, as cÑ `8, η approaches to the essential

supremum of rCpXq´ηsk
‹

`
ψrfpXqs

2 `r´CpXq´ηsk
‹

`
ψr´fpXqs

2 (Krokhmal, 2007, Example 2.3). Then
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λ vanishes to 0 so that 1{λ tends to `8. Since the Lipschitz constant of `kc,ψpf, η, λq with respect

to λ scales with 1{λk
‹

, the universal constants K0 and K1 grow to `8 as well.

Another important fact is that the conjugate number k‹ of k appears in the polynomial orders

of c and M respectively in the universal constants K0 and K1. In particular, for a large conjugate

order k‹, the universal constants K0 and K1 increase with the DR-constant c and the CTE bound

M more rapidly. In order to achieve a tighter finite sample regret bound, a smaller k‹ and hence

a larger k is preferred. Such a phenomenon complements the fact that the power uncertainty set

Pk
c pPq decreases in k. Specifically, as the power order k increases, its conjugate order k‹ decreases,

and the regret bound in Proposition 2.5 becomes tighter. On the contrary, the power uncertainty

set Pk
c pPq gets smaller, and the worst-case objective is less distributionally robust. Therefore, the

power order k trades off between the distributional robustness in terms of the size of Pk
c pPq, and

the finite sample regret bound.

2.4 Simulation Studies

In this section, we carry out two simulation studies to evaluate the generalizability of the DR-ITR

on the testing distributions that are different from the training distribution. The first simulation

considers the covariat shifts. The second simulation considers the mixture of subgroups.

2.4.1 Covariate Shifts

In this section, we extend the motivating example in Section 2.2.3 to a more practical simulation

setting. Consider the training data generating process: n “ 1, 000, p “ 10, X „ Npp0p, Ipq, A|X „

Bernoullip1{2q and Y |pX, Aq “ mpXq ` pA ´ 1{2qCpXq ` N p0, 1q, where mpxq “ 1 ` 1
p

řp
j“1 xj ,

Cpxq “ x2 ´ px
3
1 ´ 2x1q.

At the training stage, we first obtain a CTE function estimate pCn by fitting a ca-

sual forest (Wager and Athey, 2018) on the training data. Then we obtain the out-of-

bag prediction at the training covariates pCnpXq. Next we fit the standard ITR by empiri-

cally minimizing En
 

pCnpXq pψrfpXqs ´ 1q
(

as the ψ-relaxation of the empirical risk function

En
 

pCnpXqsignr´fpXqs
(

, over the linear function class Fγ :“ tfpxq “ b ` βᵀx : b P R, β P

Rp, }β}2 ď γu. The tuning parameter γ ě 0 is determined by 10-fold cross-validation among
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t0.1, 0.5, 1, 2, 4u. Finally, we fit the DR-ITRs for k “ 2 and c P C “ t1.19, 1.38, ¨ ¨ ¨ , 20u from the

function class Fγ , where γ is the same as that of the standard ITR.

We consider the mean-shifted testing distribution X „ Nppµ, Ipq for various covariate centroids

µ’s. In order to calibrate the DR-constant c for every fixed µ, we generate a calibrating dataset of

size ncalib “ 50 from the testing distribution. The following two scenarios for the calibrating data

are considered here: 1) a randomized controlled trial (RCT) dataset pX, A, Y q is generated, with

X „ Nppµ, Ipq and pA, Y q as before; and 2) only the covariate vector X „ Nppµ, Ipq is generated.

In Scenario 1, we use the IPWE of the calibrating value function pVIPWE
calib p pfcq :“ Encalib

tY 1rp2A ´

1q pfcpXq ą 0s{p1{2qu to evaulate the DR-constant c, while in Scenario 2, we use the CTE-based

calibrating value function pVCTE
calib p

pfcq :“ Encalib
t pCnpXqsignr pfcpXqsu instead. Here, the estimated

CTE function pCn is obtained from the training stage.

For comparison, we consider the following: 1) the LB-ITR that maximizes the value func-

tion under the testing distribution; 2) the `1-penalized least-square (`1-PLS) (Qian and Mur-

phy, 2011) of QpX, Aq “ EpY |X, Aq on p1,X, A,AXq and the corresponding estimated ITR

pdpxq P argminaPt˘1u
pQnpx, aq; 3) the standard ITR; 4) the RCT-DR-ITR for the calibrating Sce-

nario 1; and 5) the CTE-DR-ITR for the calibrating Scenario 2. We compare the testing values

EntestrCpXq
pdpXqs based on an independent testing dataset of size ntest “ 100, 000 for every testing

distribution. The testing values across different testing distributions are not comparable. For a

specific testing distribution, the LB-ITR can be a benchmark to be compared to, since its testing

value is the best achievable in theory among the linear ITR class. The training-calibrating-testing

procedure is replicated for 500 times. The testing values (standard errors) for ncalib “ 50 are

reported in Table 2.2.

When the testing distribution is the same as training pµ1, µ2q “ p0, 0q, the calibration pro-

cedures for the DR-ITRs are expected to choose c “ 1, which corresponds to the standard ITR.

With the finite calibrating sample, some DR-constant c greater than 1 can be possibly chosen,

leading to smaller testing values for the DR-ITRs in Table 2.2. In particular, the testing value of

the CTE-DR-ITR is higher than that of the RCT-DR-ITR, and is closer to the testing value of the

standard ITR in this case. The reason is that, the RCT-based calibrating value function estimate

pVIPWE
calib depends on pX, A, Y q in the calibrating data, while the CTE-based one pVCTE

calib depends on
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X only. As a consequence, the CTE-based calibration can be more accurate than the RCT-based

one.

Table 2.2: Testing Values (Standard Errors) on the Mean-Shifted Covariate Domains (ncalib “ 50)

µ2

µ1 type 0 0.734 1.469 1.958

LB-ITR 2.333 (0.00244) 2.907 (0.011) 5.334 (0.0362) 9.27 (0.0154)

`1-PLS 2.124 (0.0022) 2.235 (0.011) 3.613 (0.0505) 6.32 (0.103)

Standard ITR 2.089 (0.00158) 1.735 (0.013) 1.348 (0.0595) 1.567 (0.13)

RCT-DR-ITR 2.085 (0.00444) 2.286 (0.0114) 4.545 (0.0255) 8.371 (0.0451)

1.958

CTE-DR-ITR 2.098 (0.00348) 2.304 (0.0106) 4.551 (0.0238) 8.459 (0.0424)

LB-ITR 1.893 (0.00712) 2.627 (0.00656) 5.28 (0.0213) 9.379 (0.0128)

`1-PLS 1.667 (0.00307) 2.021 (0.0076) 4.095 (0.0342) 7.573 (0.0706)

Standard ITR 1.674 (0.00152) 1.645 (0.0127) 2.377 (0.0553) 4.011 (0.119)

RCT-DR-ITR 1.627 (0.00688) 1.987 (0.00997) 4.484 (0.0192) 8.611 (0.0285)

1.469

CTE-DR-ITR 1.663 (0.00326) 1.997 (0.00992) 4.55 (0.0163) 8.686 (0.0269)

LB-ITR 1.227 (0.00244) 2.144 (0.00609) 5.269 (0.00931) 9.608 (0.00898)

`1-PLS 1.094 (0.00418) 1.676 (0.00442) 4.587 (0.0151) 8.8 (0.0314)

Standard ITR 1.174 (0.00149) 1.553 (0.00806) 3.739 (0.0379) 7.06 (0.0763)

RCT-DR-ITR 1.094 (0.00753) 1.651 (0.00675) 4.622 (0.0109) 9.036 (0.015)

0.734

CTE-DR-ITR 1.152 (0.00292) 1.667 (0.00588) 4.648 (0.0113) 9.06 (0.0161)

LB-ITR 0.9942 (0.00202) 1.774 (0.0034) 5.232 (0.00559) 9.767 (0.0068)

`1-PLS 0.8296 (0.00454) 1.648 (0.0036) 4.914 (0.00501) 9.476 (0.0103)

Standard ITR 0.9437 (0.00153) 1.679 (0.00336) 4.654 (0.017) 8.895 (0.0342)

RCT-DR-ITR 0.8374 (0.00821) 1.647 (0.00574) 4.868 (0.00797) 9.444 (0.00841)

0.000

CTE-DR-ITR 0.9206 (0.00272) 1.688 (0.00289) 4.888 (0.00698) 9.442 (0.00999)

1 µ “ pµ1, µ2, 0, ¨ ¨ ¨ , 0qᵀ with µ1 in column and µ2 in row is the testing covariate centroid.
2 Values (larger the better) can be comparable for the same pµ1, µ2q but incomparable across different pµ1, µ2q.
3 LB-ITR maximizes the testing value function at pµ1, µ2q over the linear ITR class. The corresponding testing value

is the best achievable among the linear ITR class.

When pµ1, µ2q ‰ p0, 0q, the testing distribution is different from training, and the performance of

the standard ITR deteriorates while the DR-ITRs still maintain reasonably good performance. The

phenomenon is more evident when µ1, µ2 P t1.469, 1.958u. In particular at pµ1, µ2q “ p1.958, 1.958q,

the value of the standard ITR can be as low as 17% of the best achievable value among the linear

ITR class, while the DR-ITRs can maintain more than 90%. In fact, such a phenomenon is general.

In Figure 2.3a, we further enumerate the testing covariate centroid µ “ pµ1, µ2, 0, ¨ ¨ ¨ , 0q
ᵀ for

µ1, µ2 P r´2.448, 2.448s and compute the relative regrets of the standard ITR and the RCT-DR-

ITR. Across all mean-shifted testing distributions, the relative regrets of the standard ITRs can be

as high as 108%, in which case the standard ITR value is negative, and hence even worse than the

completely random treatment rule drand. On the contrary, the relative regrets for the RCT-DR-ITR

(ncalib “ 50) shown in Figure 2.3b are at most 24% across all testing centroids. This suggests that
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the RCT-DR-ITR maintains relatively good performance on all such testing distributions, while the

standard ITR fails. Figure 2.4 further shows that the DR-ITR provides substantial testing value

improvements over the standard ITR. This demonstrates that the small sample size ncalib “ 50 is

sufficient for calibrating the DR-ITR with significant testing improvement.

From Table 2.2, it can be also observed that `1-PLS can have better performance than the

standard ITR when training and testing distributions are different. The reason is that, the objective

of `1-PLS does not target the value function under the training distribution directly, but rather, the

mean squared error of the linear approximation to QpX, Aq under the training distribution. Such

a linear approximation can perform well when the testing distribution is not far from the training

distribution. However, in the case µ1, µ2 P t1.469, 1.958u in the sense that the testing distribution

deviates more from the training one, the DR-ITRs enjoy notably higher testing values than `1-PLS.

In Section 2.7, we provide more detailed results for other comparisons including the relative

regrets/improvements on all mean-shifted covariate domains of all centroids, the misclassification

rates on all mean-shifted covariate domains of all centroids, the comparison with some other meth-

ods in relative regrets and misclassification rates, and the case of k P t1.25, 1.5, 2, 3,8u. In par-

ticular, the misclassification rates inform similar conclusions as the relative regrets/improvements.

If we increase the calibrating sample size from 50 to 100, then the testing values of DR-ITRs can

be further improved. We also find that among our simulation scenarios, the testing values of the

DR-ITR are not very sensitive to difference choices of k.

2.4.2 Performance on the Mixture of Subgroups

In this section, we consider a population that consists of two subgroups, with each following a

distinct CTE function. We aim to find an ITR that can generalize well on different mixtures of

subgroups.

We modify the simulation setup in Section 2.4.1 as follows: X|ξ „ ξNppµ1, Ipq ` p1 ´

ξqNppµ0, Ipq, where ξ „ Bernoullippmixq is the unobservable mixture/subgroup indicator with

subgroup 1 probability pmix and subgroup 0 probability 1 ´ pmix, and the subgroup means

µ1 “ p´1{2, 1{2, 0, ¨ ¨ ¨ , 0qᵀ and µ0 “ ´µ1. We consider the CTE function Cpx; ξq :“ p2ξ ´

1qβ0 ` β1x1 ` β2x2 that is linear in the covariate vector, but with a subgroup-dependent intercept
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Figure 2.3: Relative Regrets on the Mean-Shifted Covariate Domains (lighter the better).
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Figure 2.4: Relative improvements of the RCT-DR-ITR over the standard ITR as the difference of their
relative regrets on the mean-shifted covariate domains (ncalib “ 50, darker the better).

p2ξ ´ 1qβ0, and pβ0, β1, β2q :“ p´3{2,´2, 1q. The unconditional CTE function is nonlinear:

Cpxq :“ ErCpx; ξq|X “ xs “
pmix expp´}x´ µ1}

2
2{2q ´ p1´ pmixq expp´}x´ µ0}

2
2{2q

pmix expp´}x´ µ1}
2
2{2q ` p1´ pmixq expp´}x´ µ0}

2
2{2q

β0 ` β1x1 ` β2x2.
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In particular, the unconditional CTE function Cpxq depends on the subgroup 1 probability pmix.

The distributional changes are due to the subgroup 1 probability. Specifically, the training subgroup

1 probability is 0.75, while the testing subgroup 1 probability varies in t0.1, 0.25, 0.5, 0.75, 0.9u.

Since the training and testing CTE functions can be different, Assumption 2.1 cannot be fully met.

Therefore, our proposed DR-ITR can be robust to such distributional changes only to some extent.

We consider the same training-calibrating-testing procedure as that in Section 2.4.1, except

that the DR-constant c ranges in t1.18, 1.27, ¨ ¨ ¨ , 10u. The testing values of the ITRs are reported

in Table 2.3. When the training and testing distributions are the same at pmix “ 0.75, all ITRs have

similar testing performance. The standard ITRs have higher testing values than the DR-ITRs in this

case. When the testing pmix becomes smaller, the DR-ITRs show better testing performance than

the standard ITR. When the testing pmix “ 0.25 or 0.1, the RCT-DR-ITR has the highest testing

values among all. Since the true testing CTE function changes along with the testing pmix, the

corresponding estimate pCn based on the training data can suffer from the generalizability problem.

Therefore, the CTE-based calibration performs slightly worse than the RCT-based calibration in

this case. However, the CTE-based DR-ITR is superior to the standard ITR, and is comparable to

the `1-PLS. More detailed comparisons and the case ncalib “ 100 are provided in Section 2.7.

Table 2.3: Testing Values (Standard Errors) on the Mixture of Subgroups (ncalib “ 50)

Testing Subgroup 1 Probability

type 0.1 0.25 0.5 0.75 0.9

LB-ITR 1.665 (0.0067) 1.537 (0.00618) 1.444 (0.00412) 1.545 (0.00537) 1.679 (0.00585)
`1-PLS 1.182 (0.00191) 1.264 (0.0014) 1.399 (0.000591) 1.537 (0.000333) 1.624 (0.000781)
Standard ITR 1.143 (0.00434) 1.232 (0.00329) 1.383 (0.0015) 1.535 (0.000543) 1.632 (0.00142)
RCT-DR-ITR 1.267 (0.0066) 1.305 (0.00423) 1.395 (0.00256) 1.52 (0.00212) 1.614 (0.00234)
CTE-DR-ITR 1.16 (0.00409) 1.247 (0.00323) 1.388 (0.00137) 1.534 (0.00055) 1.628 (0.00149)

1 Testing subgroup 1 probability = 0.75 is the same as the training one.
2 Values (larger the better) can be comparable for the same subgroup 1 probability but incomparable across different

subgroup 1 probabilities
3 LB-ITR maximizes the testing value function over the linear ITR class. The corresponding testing value is the best

achievable among the linear ITR class.

2.5 Application to the ACTG 175 Trial Data

In this section, we evaluate the generalizability of our proposed DR-ITR on a clinical trial dataset

from the “AIDS clinical trial group study 175” (Hammer et al., 1996). The goal of this study was

to compare four treatment arms among 2,139 randomly assigned subjects with human immunode-

ficiency virus type 1 (HIV-1), whose CD4 counts were 200-500 cells/mm3. The four treatments are
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the zidovudine (ZDV) monotherapy, the didanosine (ddI) monotherapy, the ZDV combined with

ddI, and the ZDV combined with zalcitabine (ZAL).

The evidence found from the AIDS trial data can have some generalizability problems. When

studying women living with HIV and women at risk for HIV infection in the USA cohort, the

Women’s Interagency HIV Study (WIHS) (Bacon et al., 2005) has been considered to be represen-

tative. However, it was reported in Gandhi et al. (2005) that 28-68% of the HIV positive women in

WIHS were excluded from the eligibility criteria of many ACTG studies. In the ACTG 175 dataset,

the number of female patients is only 368 out of 2139. Thus we suspect that the female patients

may be underrepresented in this dataset, and the ITR based on the dataset may not generalize

well on the women subgroup. In this section, we study the generalizability of DR-ITR when the

testing dataset consists of female patients only. Specifically, the training dataset is a subsample

from ACTG 175 with original male/female proportion, while the testing dataset is a subsample

from the female patients of ACTG 175, and there is no overlap across training and testing. We try

to resemble the ideal world that we can have independent testing data from the female population.

We consider the outcome Y as the difference between the early stage (at 20˘5 weeks from

baseline) CD4 cell counts and the CD4 counts at baseline. We focus on the treatment comparison

between the ZDV + ZAL (A “ 1) and the ddI (A “ ´1), and the corresponding patients from the

dataset. In particular, only 180 of them are women. The average treatment effects on the male and

female subgroups are ´8.97 and ´1.39 respectively, which suggests that there is treatment effect

discrepancy between these subgroups. We sample the training data from the ACTG 175 dataset

in the ZDV + ZAL or ddI arm of sample size 1, 085 ˆ 60% “ 651 stratified to the gender. In

particular, the training dataset includes 180 ˆ 60% “ 108 female patients. The remaining female

data p180´ 108 “ 72q are used for testing. We only consider female patients in testing. We further

sample 50 from the testing female data for calibration, and the remaining p72 ´ 50 “ 22q are the

testing dataset. We also consider 12 selected baseline covariates X as was studied in Lu et al.

(2013). There are 5 continuous covariates: age (year), weight (kg, coded as wtkg), CD4 count

(cells/mm3) at baseline, Karnofsky score (scale of 0-100, coded as karnof), CD8 count (cells/mm3)

at baseline. They are centered and scaled before further analysis. In addition, there are 7 binary

variables: gender (1 = male, 0 = female), homosexual activity (homo, 1 = yes, 0 = no), race (1 =

nonwhite, 0 = white), history of intravenous drug use (drug, 1 = yes, 0 = no), symptomatic status
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(symptom, 1 = symptomatic, 0 = asymptomatic), antiretroviral history (str2, 1 = experienced, 0

= naive) and hemophilia (hemo, 1 = yes, 0 = no).

Before fitting ITRs, we estimate the CTE function CpXq by the following regress-and-subtract

procedure: first we fit two separate random forests by regressing Y on X restricted on A “ 1

and A “ ´1 respectively; then we subtract two regression models to obtain the CTE function

estimate pCnpXq. We follow the same implementation as in Section 2.4.1 to fit the standard ITR

and DR-ITRs over a constrained linear function class Fγ :“ tfpxq “ b ` βᵀx : b P R, β P

Rp, }β}2 ď γu on the training data. The testing performance is evaluated by the IPWE of

the value function on the testing data. The training-calibrating-testing procedure is repeated for

1,500 times. The testing values are reported in Table 2.4, where the value can be interpreted

as the expected CD4 count improvement from baseline at the early stage (20 ˘ 5 weeks). In

addition to the calibrated DR-ITRs, we also include the value of the best DR-ITR that enjoys

the highest testing performance among all DR-constants. For comparison, we include the results

of residual weighted learning (RWL) (Zhou et al., 2017) with linear kernel. Both RWL and the

standard ITR share similar implementation, except that RWL can be shown equivalently using

pCnpXq “ pQnpX, 1q ´ pQnpX,´1q ` 2ArY ´ pQnpX, Aqs as a plug-in CTE estimate.

The testing results show that our proposed DR-ITRs can have better values than the standard

ITR and RWL. In particular, the improvement of the best DR-ITR is substantial, while the im-

provements of the calibrated ITRs are not as strong. We plot the testing values of the DR-ITRs

against the corresponding DR-constants in Figure 2.5. It suggests that the testing values generally

increase with the DR-constant. In this analysis, the calibrated DR-constants are not close to the

optimal DR-constant. As a result, the testing performance of the calibrated DR-ITRs is not as

good as the best DR-ITR. One reason for this phenomenon can be that the outcome Y has a heavy

tail distribution, as was highlighted in Qi et al. (2019b), so that the value function estimate is

highly variable based on the small calibrating sample. Another reason can be that the random

forest regress-and-subtract estimate of the CTE function does not generalize well on the testing

distribution.

On the overall dataset, we fit the DR-ITRs and report their fitted coefficients in Table 2.5 for

selected DR-constants. To stabilize the randomness from the random forest estimate of the CTE

function, we refit the random forest 20 times and average the corresponding DR-ITR coefficients.
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Table 2.4: Expected CD4 Count Improvement (cells/mm3) from Baseline at the Early Stage (20˘5 weeks)
and Standard Errors on the ACTG-175 Female Patients (higher the better).

RWL Standard ITR Best DR-ITR RCT-DR-ITR CTE-DR-ITR

10.7617 (0.8636) 10.593 (0.8627) 13.9423 (0.8378) 11.8133 (0.8357) 11.1563 (0.8514)

Standard errors are computed based on 1,500 replications.
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Figure 2.5: Expected CD4 Count Improvement (cells/mm3) from Baseline at the Early Stage (20˘5 weeks)
of the DR-ITRs of Various DR-Constants on the ACTG 175 Female Patients (higher the better)

We find that there are noticeable changes in the coefficients of the intercept and the homosexual

activity when the DR-constant gets large. Within the ACTG 175 dataset (ZDV + ZAL or ddI),

we find that only 6 female patients have homosexual activity. Four of them are treated with ZDV

+ ZAL, and the change of their CD4 counts are 123, 34, ´11 and 158 respectively. Two of them

are treated with ddI, and the change of their CD4 counts are ´41, ´182. Therefore, the ZDV +

ZAL (A “ `1) may have more benefits compared to the ddI pA “ ´1q on these patients. This

helps to explain why the larger coefficients in homosexual activity for the larger DR-constants can

be beneficial for the female patients.
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Table 2.5: Linear Coefficients of the DR-ITRs Fitted on the ACTG 175 Dataset

DR-
constant

Intercept age wtkg cd40 karnof cd80 gender homo race drugs symptom str2 hemo

1 ´0.02 ´0.25 0.06 ´0.58 ´0.06 0.53 ´0.16 ´0.4 0.16 0.16 0.16 0.16 0.09
4.8 ´0.31 ´0.23 0.12 ´0.67 0.11 0.55 ´0.12 ´0.21 0.2 0.12 0.1 ´0.06 0.09
8.6 ´0.43 ´0.23 0.11 ´0.64 0.16 0.54 ´0.11 ´0.05 0.12 0.04 0.07 ´0.24 0.01

12.4 ´0.54 ´0.22 0.1 ´0.64 0.19 0.51 ´0.04 0.01 0.08 0.05 0.04 ´0.27 ´0.02
16.2 ´0.61 ´0.23 0.1 ´0.64 0.2 0.51 0 0.03 0.06 0.05 0.02 ´0.27 ´0.02

20 ´0.64 ´0.24 0.09 ´0.63 0.22 0.5 0.01 0.03 0.05 0.07 0.01 ´0.26 ´0.01
1 DR-constant = 1 corresponds to the standard ITR; DR-constant = 16.2 has the highest testing value in Figure 2.5.

2.6 Discussion

In this chapter, we propose a new framework for learning a distributionally robust ITR by maximiz-

ing the worst-case value function among values under distributions within the power uncertainty

set. We introduce two possible calibration scenarios under which the DR-constant can be tuned

adaptively to a small amount of the calibrating data from the target population. In this way,

when the training and testing distributions are identical, the calibrated DR-ITRs can achieve sim-

ilar performance as compared to the standard ITR. When the testing distribution deviates from

the training distribution, we show that there are many possible scenarios that the standard ITR

generalizes poorly, while the calibrated DR-ITRs maintain relatively good testing performance.

Our simulation studies and an application to the ACTG 175 dataset demonstrate the competitive

generalizability of our proposed DR-ITR.

The main assumption on the changes of covariates in our DR-ITR framework is equivalent to

the selection unconfoundedness assumption in a randomized controlled trial. In practice, there

may exist unmeasured selection confounding problems for the trial data, and the distributional

changes affect both the covariates and the CTE function. One possible extension is to consider

the simultaneous changes of the covariate distribution and the CTE function, and leverage more

general robustness measure against these changes.

In our DR-ITR framework, we require an estimate of the CTE function based on the flexible

nonparametric techniques. The performance of our DR-ITR can depend on the quality of the CTE

function estimate. An alternative strategy is to avoid plugging in a CTE estimate. Instead, the dual

representation (2.10) can be identified from pX, A, Y q directly using a variational representation of

r˘CpXq ´ ηsk
‹

` (Duchi et al., 2019). This can be a possible extension of our framework.

Another possible extension is to consider the problem of high-dimensional covariates. Our

current formulation involves an `2-constraint to control the model complexity. It can be extended
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to obtain sparse solutions when a `1-constraint is used instead. Besides the high-dimensional

extension, our current theoretical results assume that CpXq is uniformly bounded. It will be

interesting to relax the assumption, such as sub-Gaussianity. Further investigations along these

lines can be pursued.

2.7 Appendix

2.7.1 Explicit Forms of the Power Uncertainty Set

In this section, we study the explicit forms of the power uncertainty set Pk
c pPq on certain parameteric

families of distributions, and how they depend on the DR-constant c and the power k. We first

examine the family of Bernoulli distributions and the normal distributions, and show that their

power uncertainty sets depend on c and k differently. Then the general exponential family will be

discussed.

Example 2.1 (Bernoulli Distributional Ball). Consider two Bernoulli distributions

Bernoullippq and Bernoullipqq for some p, q P r0, 1s. We have
›

›

›

dBernoullipqq
dBernoullippq

›

›

›

LkpBernoullippqq
“

„

p
´

q
p

¯k
` p1´ pq

´

1´q
1´p

¯k
1{k

. If p ď q, then the above becomes q
p

„

p` p1´ pq
´

pp1´qq
qp1´pq

¯k
1{k

P

rpq{pq ˆ p1{k, q{ps. If p ě q, then the above becomes 1´q
1´p

„

p
´

qp1´pq
pp1´qq

¯k
` 1´ p

1{k

P

”

1´q
1´p ˆ p1´ pq

1{k, 1´q
1´p

ı

. As k Ñ `8, the above both approach to q
p _

1´q
1´p . For fixed p

and every k P r1,`8q, we have

Pk
c pBernoullippqq Ě tBernoullipqq : q P r0, 1s, 1´ cp1´ pq ď q ď cpu ,

and

Pk
c pBernoullippqq

A Ě

"

Bernoullipqq : q P r0, 1s, q ą
cp

p1{k
or q ă 1´

cp1´ pq

p1´ pq1{k

*

,

with the meaningful c ď 1
p^p1´pq . In particular as the large enough k increases while 1 ă c ď 1

p^p1´pq

is fixed, Pk
c pBernoullippqq contains less Bernoulli distributions, down to that of success probabilities

in r1´ cp1´ pq, cps only.

Example 2.2 (Normal Distributional Ball of Mean Shifts). Consider two p-dimensional normal dis-

tributions Npp0p, Ipq and Nppµ, Ipq for some center parameter µ P Rp. The density ratio of Nppµ, Ipq
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w.r.t. Npp0p, Ipq is given by
expp´}x´µ}22{2q

expp´}x}22{2q
“ e´}µ}

2
2{2ˆeµ

ᵀx. Then the Lk-norm of the density ratio

under Npp0p, Ipq can be calculated analytically as e´}µ}
2
2{2

´

ş

Rp e
kµᵀx ˆ p2πq´p{2e´}x}

2
2{2dx

¯1{k
“

epk´1q}µ}22{2. Then Nppµ, Ipq P Pk
c pNpp0p, Ipqq if and only if epk´1q}µ}22{2 ď c ô }µ}22 ď

2 log c
k´1 .

Note that the conclusion is presented in terms of the L2-difference of the mean vec-

tors }µ}2 between two normal components. It can be extended to two p-dimensional nor-

mal distributions of the same covariance matrix: Nppµ1,Σq P Pk
c pNppµ0,Σqq if and only if

exp
 

k´1
2 pµ1 ´ µ0q

ᵀΣ´1pµ1 ´ µ0q
(

ď c ô pµ1 ´ µ0q
ᵀΣ´1pµ1 ´ µ0q ď

2 log c
k´1 . Then we have

Pk
c pNppµ0,Σqq Ě

"

Nppµ,Σq : µ P Rp, pµ´ µ0q
ᵀΣ´1pµ´ µ0q ď

2 log c

k ´ 1

*

,

and

Pk
c pNppµ0,Σqq

A Ě

"

Nppµ,Σq : µ P Rp, pµ´ µ0q
ᵀΣ´1pµ´ µ0q ą

2 log c

k ´ 1

*

.

In particular as k increases with c ą 1 fixed, Pk
c pNppµ0,Σqq contains less normal distributions of

covariance matrix Σ.

Example 2.3 (Normal Distributional Ball of Covariance Scales). Consider two p-dimensional nor-

mal distributions Npp0p, Ipq and Npp0p, σ
2Ipq for some scale parameter σ2 ą 0. The density ratio

of Npp0p, σ
2Ipq w.r.t. Npp0p, Ipq is given by

σ´p expt´}x}22{p2σ
2qu

expp´}x}22{2q
“ σ´pe´pσ

´2´1q}x}22{2. Then the

Lk-norm of the density ratio under Npp0p, Ipq can be calculated analytically as

σ´p
´

ş

Rp e
´kpσ´2´1q}x}22{2 ˆ p2πq´p{2e´}x}

2
2{2dx

¯1{k
“ σ´prkpσ´2 ´ 1q ` 1s´p{p2kq, which is a nonlin-

ear function in σ2 ranging in p0, k‹q and attaining the minimum at σ2 “ 1. Then Npp0p, σ
2Ipq P

Pk
c pNpp0p, Ipqq if and only if σ´prkpσ´2´1q`1s´p{p2kq ď cô σ2

kpcq ď σ2 ď sσ2
kpcq where σ2

kpcq P p0, 1q

and sσ2
kpcq P p1, k

‹q are the unique roots solving the nonlinear equation σ´prkpσ´2´1q`1s´p{p2kq “ c

ô σ´2k´c2k{prkpσ´2´1q`1s
t:“σ´2´1
““““““ pt`1qk´c2k{ppkt`1q “ 0 on the interval t P pc2k‹{p´1,`8q

ô σ2 P p0, c´2k‹{pq and t P p´1{k, 0q ô σ2 P p1, k‹q respectively. In particular as k increases

while c is fixed, the lower root σ2
kpcq increases to 1 while the upper root sσ2

kpcq decreases to

1, so that Pk
c pNpp0p, Ipqq contains fewer and fewer distributions of the form Npp0p, σ

2Ipq with

σ2 P rσ2
kpcq, sσ

2
kpcqs.
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The result is general if the mean vector 0p is replaced by any vector µ P Rp and the covariance

matrix Ip is replaced by some positive semi-definite matrix Σ:

Pk
c pNppµ,Σqq Ě

 

Nppµ, σ
2Σq : σ2

kpcq ď σ2 ď sσ2
kpcq

(

,

and

Pk
c pNppµ,Σqq

A Ě
 

Nppµ, σ
2Σq : σ2 ă σ2

kpcq or σ2 ą sσ2
kpcq

(

.

As an extension of the Bernoulli and the normal distribution, we can also consider the mixture

of two fixed normal components.

Lemma 2.6 (Upper Bound of the Mixture φ-Divergence). Suppose P0,P1 are probability distribu-

tions, p, q P r0, 1s. Denote Pp :“ pP1 ` p1´ pqP0, Pq :“ qP1 ` p1´ qqP0. Let φ P Φ be a legitimate

divergence function. Then

DφpPq}Ppq ď Dφ

`

qP1

›

›p1´ pqdP0

˘

`Dφ

`

p1´ qqP0

›

›pP1

˘

.

Proof.

DφpPq}Ppq

“

ż

φ

ˆ

qdP1 ` p1´ qqdP0

pdP1 ` p1´ pqdP0

˙

rpdP1 ` p1´ pqdP0s

“

ż

φ

ˆ

p1´ pqdP0

pdP1 ` p1´ pqdP0
ˆ

qdP1

p1´ pqdP0
`

pdP1

pdP1 ` p1´ pqdP
ˆ
p1´ qqdP0

pdP1

˙

rpdP1 ` p1´ pqdP0s

Jensen
ď

ż

φ

ˆ

qdP1

p1´ pqdP0

˙

p1´ pqdP0 `

ż

φ

ˆ

p1´ qqdP0

pdP1

˙

pdP1

“Dφ

`

qP1

›

›p1´ pqdP0

˘

`Dφ

`

p1´ qqP0

›

›pP1

˘

.

Remark 2.7. The conclusion can be stated in terms of the k-th moment of the density ratio.

Suppose P0 ! P1 and P1 ! P0. Then

›

›

›

›

dPq
dPp

›

›

›

›

k

LkpPpq
ď p1´ pq

ˆ

q

1´ p

˙k ›
›

›

›

dP1

dP0

›

›

›

›

k

LkpP0q

` p

ˆ

1´ q

p

˙k ›
›

›

›

dP0

dP1

›

›

›

›

k

LkpP1q

.
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Remark 2.8 (Mixture Normal Distributional Ball). Consider two mixture normal distributions

GMMppµ1,µ0; Σq :“ pNdpµ1,Σq ` p1 ´ pqNdpµ0,Σq and GMMqpµ1,µ0; Σq :“ qNdpµ1,Σq ` p1 ´

qqNdpµ0,Σq with the same components and different mixture probabilities p, q P r0, 1s. Example

2.2, Lemma 2.6 and Example 2.1 together imply that

›

›

›

›

dGMMqpµ1,µ0; Σq

dGMMppµ1,µ0; Σq

›

›

›

›

LkpGMMppµ1,µ0;Σqq

ď

«

p1´ pq

ˆ

q

1´ p

˙k

` p

ˆ

1´ q

p

˙k
ff1{k

exp

"

k ´ 1

2
pµ1 ´ µ0q

ᵀΣ´1pµ1 ´ µ0q

*

(2.12)

ď

ˆ

q

1´ p
_

1´ q

p

˙

exp

"

k ´ 1

2
pµ1 ´ µ0q

ᵀΣ´1pµ1 ´ µ0q

*

.

Consequently, if c ě exp
 

k´1
2 pµ1 ´ µ0q

ᵀΣ´1pµ1 ´ µ0q
(

, then Pk
c

`

GMMppµ1,µ0; Σq
˘

contains all those GMMqpµ1,µ0; Σq with mixture probability q such that 1 ´

c exp
 

k´1
2 pµ1 ´ µ0q

ᵀΣ´1pµ1 ´ µ0q
(

p ď q ď c exp
 

k´1
2 pµ1 ´ µ0q

ᵀΣ´1pµ1 ´ µ0q
(

p1 ´ pq.

However, since the inequality (2.12) applies the Jensen Inequality to p¨qk, the right hand side can

be loose when k is large.

Next we proceed to discuss the exponential family in its abstract canonical form. Depending on

the growth of the log-partition function, the power divergence might or might not increase with the

power k. And consequently when the distributional constant is held fixed, the power uncertainty

set Pk
c pPq might or might not vanish.

Example 2.4 (Canonical Exponential Family Distributional Ball). Consider a canonical param-

eterized exponential family with density as fpx;ηq “ hpxq exppxη,xy ´ Apηqq where η P Rp

is the canonical parameter, Apηq “ log
ş

hpxqexη,xydx is the log-partition function. Note that

Ap¨ ` η0q ´ Apη0q is the logarithm of the moment generating function of the sufficient statistic.

Then for fixed η1,η0 P Rp,

›

›

›

›

fp¨;η1q

fp¨;η0q

›

›

›

›

k

Lkpη0q

“ e´krApη1q´Apη0qs´Apη0q

ż

hpxqexkpη1´η0q`η0,xydx

“ exp
´

Arkpη1 ´ η0q ` η0s ´ krApη1q ´Apη0qs ´Apη0q

¯

. (2.13)
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Note that the relationship of (2.13) and k depends on the functional form of the log-partition

function Ap¨q. In Example 2.2, Apηq “ ηᵀΣη` log detpΣq is a quadratic function in the scaled mean

vector η “ Σ´1µ as the canonical parameter (where the covariance matrix Σ is assumed known

and fixed), and hence (2.13) is a quadratic function in k in the exponential, which coincides with

the conclusion from Example 2.2 that the Lk-norm of the density ratio is exponentially linear in

k. In Example 2.1, the partition function Apηq “ logp1 ` eηq “ η ` log p1` e´ηq is at most linear

in the log-odd η “ log
´

p
1´p

¯

as the canonical parameter. Then the Lk-norm of the density ratio

should be bounded when k varies.

In general, the Lk-norm of the density ratio of distributions from the exponential family in-

creases with k if A is super-linear: Apηq
}η} Ñ `8 as }η} Ñ `8.

2.7.2 Implementation Details

To practically optimize the DR-ITR ψ-risk Rk
c,ψpfq based on the empirical data, we first estimate

the CTE function pCnp¨q using flexible nonparametric techniques. Then we replace the CTE function

Cp¨q by its estimate pCnp¨q, and the population expectation E by its empirical version En. We solve

the following joint minimization problem based on the training data:

min
fPF ,η

#

c

„

En
ˆ

r pCnpXq ´ ηs
k‹

`

ψrfpXqs

2
` r´ pCnpXq ´ ηs

k‹

`

ψr´fpXqs

2

˙1{k‹

` η

+

.

In this section, we discuss more implementation details of k ă `8 and k “ `8.

2.7.2.1 Optimization when k ă `8

When k ă `8 and k‹ ą 1, the k‹-moment makes the direct optimization more challenging.

To reduce the power 1{k‹, we introduce the auxiliary variable λ ě 0 and consider p¨q1{k
‹

“

infλě0

´

p¨q

k‹λk‹´1 `
λ
k

¯

, where due to the AM-GM Inequality, 1
k‹

`

p¨q

λk‹´1 ` λ` ¨ ¨ ¨ ` λlooooomooooon

k‹´1

˘

ě p¨q1{k
‹

with

equality if and only if λ “ p¨q1{k
‹

ą 0. Then we consider the following joint objective to minimize:

Lpf, η, λq :“
c

k‹λk‹´1
En

ˆ

r pCnpXq ´ ηs
k‹

`

ψrfpXqs

2
` r´ pCnpXq ´ ηs

k‹

`

ψr´fpXqs

2

˙

`
cλ

k
` η.

(2.14)
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Note that the joint objective (2.14) as multiple sum-products of DC functions is difference-of-

convex in pf, η, λq, but the DC representation can be messy. Instead of using a direct DC algorithm,

we apply the BSUM algorithm (Razaviyayn et al., 2013) to alternatively optimize over pη, λq and

f respectively, where the the upper-bound of the objective in f is a convex majorant. Specifically,

we fix a small ε ą 0 and alternatively implement the following two steps:

Step I: For fixed pft, we implement the t-th step optimization of ppηt, pλtq by solving

$

’

’

&

’

’

%

pηt P argmin
ηPR

"

c
”

En
´

ψr pftpXqs
2 r pCnpXq ´ ηs

k‹
` `

ψr´ pftpXqs
2 r´ pCnpXq ´ ηs

k‹
`

¯ı1{k‹

` η

*

pλt :“
”

En
´

ψr pftpXqs
2 r pCnpXq ´ pηts

k‹
` `

ψr´ pftpXqs
2 r´ pCnpXq ´ pηts

k‹
`

¯ı1{k‹

_ λ

. (2.15)

The objective in η is univariate and continuously differentiable and can be minimized by any

univariate solver. The λ ą 0 is a prespecified small constant such that the updated pλt is

trimmed at λ from below for better numerical stability.

Step II: For fixed p pft, pηt, pλtq, we solve the pt ` 1q-th step pft`1 by minimizing the following convex

upper-bound over F :

rLpf ; pft, pηt, pλtq :“ En
ˆ

c

2k‹pλk
‹´1
t

r` pCnpXq ´ pηts
k‹

`
rψr`fpXq;` pftpXqs`

c

2k‹pλk
‹´1
t

r´ pCnpXq ´ pηts
k‹

`
rψr´fpXq;´ pftpXqs

˙

,

where given u0 P R, rψp¨;u0q is a first-order convex majorant of ψ expanded at u0:

rψpu;u0q :“ ψ`puq ´ ψ´pu0q ´ ψ
1
´pu0qpu´ u0q; u P R.

In particular for fixed u0, rψ satisfies: 1) the majorization rψpu;u0q ě ψpuq with equality if

u “ u0; 2) the convexity of rψp¨;u0q; and 3) the first-order condition rψ1pu;u0q “ ψ1`puq´ψ
1
´pu0q

and rψ1pu0;u0q “ ψ1pu0q, where rψ1pu;u0q is taken over u. To organize the computation, define

Z
p˘q

t :“
c

2k‹pλk
‹´1
t

r˘ pCnpXq ´ pηts
k‹

` ; St :“ Z
p`q

t ψ1´r`
pftpXqs ´ Z

p´q

t ψ1´r´
pftpXqs. (2.16)
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Then at the t-th step, we only need to keep track of Z
p˘q

t , St and minimize

rLpf ;Z
p˘q

t , Stq :“ En
´

Z
p`q

t ψ`r`fpXqs ` Z
p´q

t ψ`r´fpXqs ´ St ˆ fpXq
¯

, (2.17)

over F . We summarize the algorithm for learning the DR-ITR when k ă `8 in Algorithm 2.1.

Algorithm 2.1: Learning the DR-ITR pk ă `8q

1 Input: Data tXi, pCnpXiqu
n
i“1, initial pf0 P F , c ě 1, λ ą 0, and tolerance εtol ą 0.

2 Repeat for t “ 0, 1, ¨ ¨ ¨ , do until | pft`1 ´ pft| ď p| pft| _ 1qεtol:

3 Solve ppηt, pλtq by (2.15);

4 Update pZ
p˘q

t , Stq as in (2.16);

5 Solve pft`1 by optimizing the objective rLp¨;Z
p˘q

t , Stq as in (2.17);

6 Output: pft`1.

2.7.2.2 Optimization when k “ `8

For k “ `8 and c ą 1, it is possible that the BSUM algorithm introduced in Algorithm 2.1 suffers

potential convergence problems when the minimizer pηt given pft in (2.15) is non-unique. Following

Qi et al. (2019b, Proposition 3.1), we see that the joint objective is minimized with respect to η at

one of the 2n knots tη˚j u
2n
j“1 :“ t˘ pCnpXiqu

n
i“1. Then the joint minimization problem boils down to

min
fPF

min
1ďjď2n

!

Ljpfq :“
c

2
En

´

r pCnpXq ´ η
˚
j s`ψr`fpXqs ` r´

pCnpXq ´ η
˚
j s`ψr´fpXqs

¯

` η˚j

)

.

That is, the minimization with respect to η can attain at only finitely many candidates tη˚j u
2n
j“1.

For 1 ď j ď 2n, we define the convex upper bound of Lj at f0 as

rLjpf ; f0q :“ En
´ c

2
r` pCnpXq ´ η

˚
j s`

rψr`fpXq;`f0pXqs `
c

2
r´ pCnpXq ´ η

˚
j s`

rψr´fpXq;´f0pXqs
¯

,

where rψ is the first-order convex majorant of ψ as before. Then the previously discussed BSUM

algorithm iteratively updates the following two steps: (I) for fixed pft, solve for the t-th step pjt P

argmin1ďjď2n Ljp
pftq; (II) for fixed p pft,pjtq, solve for the pt` 1q-th step pft`1 by minimizing rL

pjt
p¨; pftq.

Notice that the non-uniqueness of the minimizer pηt given pft now becomes the non-uniqueness of

the index pjt.

57



To overcome the difficulty due to the non-uniqueness, Pang et al. (2016, Section 5) showed

that the following two requirements should be met to ensure the convergence to stationarity: (1)

minimizing the surrogate function rL
pjt
p¨; pftq of the chosen index pjt should let the true objective

function L descend the most; (2) the most descent requirement (1) holds with respect to the

indices chosen among the following ε-argmin index set for some fixed ε ą 0:

Mεp pftq :“

"

1 ď j ď 2n : Ljp pftq ď min
1ďlď2n

Llp pftq ` ε

*

, (2.18)

rather than the traditional argmin index set M0p pftq. To avoid too many surrogate functions to be

minimized at each step, Pang et al. (2016, Section 5.2) proposed to randomly choose pjt P Mεp pftq

with a positive probability, so that at least for some positive chance the most descent index can

be picked. To ensure the true objective is strictly decreasing, we accept the minimizer rft`1 P

argminf rLpjt
pf ; pftq only when rL

pjt
p rft`1; pftq ď Lp pftq, or equivalently,

L
pjt
p pftq ´ min

1ďjď2n
Ljp pftq ď rL

pjt
p pft; pftq ´ rL

pjt
p rft`1; pftq.

That is, the descent in terms of the surrogate objective rL
pjt
p¨; pftq is no less than the excess value

(up to ε) of the chosen pjt-th objective L
pjt

at pft.

To organize the computation, we again define for 1 ď j ď 2n and f0

Z
p˘q

j :“
c

2
r˘ pCnpXq ´ η

˚
j s`; Sjpf0q :“ Z

p`q

j ψ1´r`f0pXqs ´ Z
p´q

j ψ1´r´f0pXqs, (2.19)

similarly as in (2.16), but with the index t replaced by j. Then at the t-th step, we first randomly

pick pjt P Mεp pftq uniformly and keep the excess value εt :“ L
pjt
p pftq ´ min1ďjď2n Ljp pftq. Then we

keep Zt :“ Z
p˘q

pjt
and St :“ S

pjt
p pftq and minimize rLp¨;Z

p˘q

t , Stq as in (2.17). Finally, we accept the

minimizer rft`1 P argminf rLpf ;Z
p˘q

t , Stq if rLp rft;Z
p˘q

t , Stq ´ rLp rft`1;Z
p˘q

t , Stq ě εt. We summarize

the algorithm for learning the DR-ITR when k “ `8 in Algorithm 2.2.
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Algorithm 2.2: Learning the DR-ITR (k “ `8)

1 Input: Data tXi, pCnpXiqu
n
i“1, initial pf0 P F , c ą 1, ε ą 0, and tolerance εtol ą 0.

2 For t “ 0, 1, ¨ ¨ ¨ , do until } pft`1 ´ pft} ď p} pft} _ 1qεtol:

3 Choose pjt P Mεp pftq in (2.18) uniformly and randomly, and keep

εt :“ L
pjt
p pftq ´min1ďjď2n Lp pftq;

4 Update Z
p˘q

t “ Z
p˘q

pjt
and St “ S

pjt
p pftq as in (2.19);

5 Solve rft`1 by optimizing the objective rLp¨;Z
p˘q

t , Stq as in (2.17);

6 If rLp pft;Z
p˘q

t , Stq ´ rLp rft`1;Z
p˘q

t , Stq ě εt, then set pft`1 “ rft`1; otherwise, set pft`1 “ pft.

7 Output: pft`1.

2.7.3 Technical Proofs

2.7.3.1 Proof of Lemma 2.2

(I) follows from direct calculation. Now we admit (I) and prove (II). First notice that

λφ‹kpz{λq “
pk ´ 1qk

‹

{k

λ1{pk´1q

ˆ

z ´ η `
λ

k ´ 1

˙k‹

`

´
λ

k
,

∇φ‹kpz{λq “
pk ´ 1q1{pk´1q

λ1{pk´1q

ˆ

z ´ η `
λ

k ´ 1

˙1{pk´1q

`

.

Now using the (2.6)-R.H.S., the Cressie-Read family defining worst-case expectation is further

solved by

min
λě0,ηPR

rpk ´ 1qk
‹

{ks ˆ λ´1{pk´1qEP

´

Z ´ η ` λ
k´1

¯k‹

`
` λ

`

ρ´ 1
k

˘

` η, W ˚ “
pk´1q1{pk´1q

pλ˚q1{pk´1q

´

Z ´ η˚ ` λ˚

k´1

¯1{pk´1q

`
,

ô min
λě0,ηPR

rpk ´ 1qk
‹

{ks ˆ λ´1{pk´1qEPpZ ´ ηq
k‹
` ` λ

´

ρ` 1
kpk´1q

¯

` η, W ˚ “
pk´1q1{pk´1q

pλ˚q1{pk´1q pZ ´ η
˚q

1{pk´1q
` .

where pλ, ηq can be optimized stagewise.

Fix η P R.

rpk ´ 1qk
‹

{ks ˆ λ´1{pk´1qEPpZ ´ ηq
k‹

` ` λ

ˆ

ρ`
1

kpk ´ 1q

˙

“ pk ´ 1q ˆ λ´1{pk´1q

ˆ

pk ´ 1q1{pk´1q

k

˙

EPpZ ´ ηq
k‹

` ` λ

ˆ

ρ`
1

kpk ´ 1q

˙

ě k

«

ˆ

pk ´ 1q1{pk´1q

k

˙k´1

rEPpZ ´ ηq
k‹

` s
k´1

ˆ

ρ`
1

kpk ´ 1q

˙

ff1{k

pby AM-GM Inequalityq

“ rkpk ´ 1qρ` 1s1{krEPpZ ´ ηq
k‹

` s
1{k‹ .
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Denote ckpρq :“ rkpk ´ 1qρ` 1s1{k. Then the objective in η becomes

min
ηPR

ckpρqrEPpZ ´ ηq
k‹

` s
1{k‹ ` η.

2.7.3.2 Proof of Proposition 2.4

Define

rC
p˘q

η,λ pXq :“
c

k‹λk‹´1
E
´

r˘CpXq ´ ηsk
‹

`

ˇ

ˇ

ˇ
X
¯

, rCη,λpXq :“ rC
p`q

η,λ pXq ´
rC
p´q

η,λ pXq.

Then by conditioning on X,

Lkc pf, η, λq “ E
´

rC
p`q

η,λ pXq1rfpXq ă 0s ` rC
p´q

η,λ pXq1rfpXq ą 0s
¯

`
cλ

k
` η,

Lkc,ψpf, η, λq “ E
ˆ

rC
p`q

η,λ pXq
ψrfpXqs

2
` rC

p´q

η,λ pXq
ψr´fpXqs

2

˙

`
cλ

k
` η.

(I) (Fisher Consistency) Notice that for our ramp surrogate loss ψ, f ě 1 implies that ψpfq
2 “ 0,

and f ď ´1 implies that ψpfq
2 “ 1. Then without loss of generality, we might restrict to

consider f P r´1, 1s for which f “ 1 if and only if ψpfq
2 “ 0 and f “ ´1 if and only if

ψpfq
2 “ 1. Then for fixed x P X ,

min
fPt˘1u

!

rC
p`q

η,λ pxq1pf ă 0q ` rC
p´q

η,λ pxq1pf ą 0q
)

“ min
fPr´1,1s

"

rC
p`q

η,λ pxq
ψpfq

2
` rC

p´q

η,λ pxq
ψp´fq

2

*

“ rC
p`q

η,λ pxq ^
rC
p´q

η,λ pxq

attained at the common function value f˚η,λpxq :“ signr rCη,λpxqs. Define Lk,˚c pη, λq :“

Lkc pf˚η,λ, η, λq “ Er rCp`qη,λ pXq ^
rC
p´q

η,λ pXqs `
cλ
k ` η. Then

min
f :XÑt˘1u

Lkc pf, η, λq “ min
f :XÑr´1,1s

Lkc,ψpf, η, λq “ Lk,˚c pη, λq,

argmin
f :XÑt˘1u

Lkc pf, η, λq “ argmin
f :XÑr´1,1s

Lkc,ψpf, η, λq “ f˚η,λpXq a.s.
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(II) (Excess Risk) For fixed f : X Ñ R,

Lkc pf, η, λq ´ Lk,˚c pη, λq “ E
”

rCη,λpXq ˆ
`

1rfpXq ă 0s ´ 1rf˚η,λpXq ă 0s
˘

` rC
p´q

η,λ pXq
ı

,

Lkc,ψpf, η, λq ´ Lk,˚c pη, λq “ E

«

rCη,λpXq ˆ
ψrfpXqs ´ ψrf˚η,λpXqs

2
` rC

p´q

η,λ pXq

ff

,

where the second equation follows from the fact that ψpuq ` ψp´uq ” 2. For fixed x P X , if

rCη,λpxq ą 0, then f˚η,λpxq “ 1, and

1rfpxq ă 0s ´ 1rf˚η,λpxq ă 0s “ 1rfpxq ă 0s ď 2ˆ
ψrfpxqs

2
“ 2ˆ

ψrfpxqs ´ ψrf˚η,λpxqs

2
;

otherwise if rCη,λpxq ă 0, then f˚η,λpxq “ ´1, and

2ˆ
ψrfpxqs ´ ψrf˚η,λpxqs

2
“ ´ψr´fpxqs ď ´1r´fpxq ď 0s “ 1rfpxq ă 0s ´ 1rf˚η,λpxq ă 0s.

Therefore,

Lkc pf, η, λq ´ Lk,˚c pη, λq ď 2rLkc,ψpf, η, λq ´ Lk,˚c pη, λqs.

Finally, by rearranging Lk‹c pη, λq to the same side and infimizing its pη, λq P RˆR`, we have

Lkc pf, η, λq ď 2Lkc,ψpf, η, λq ´ Lk,˚c pη, λq ď 2Lkc,ψpf, η, λq ´Rk,˚
c

ô Lkc pf, η, λq ´Rk,˚
c ď 2rLkc,ψpf, η, λq ´Rk,˚

c s.

And by partially infimizing pη, λq P Rˆ R` on both sides, we have

Rk
c pfq ´Rk,˚

c ď 2rRk
c,ψpfq ´Rk,˚

c s.

2.7.3.3 Proof of Proposition 2.5

By Assumption 2.4, without loss of generality, we also assume that Assumptions 2.2 and 2.3 also

hold for t pCnpXqunPN uniformly.

61



First assume k ă `8 and k‹ ą 1. We first provide a few boundedenss results implied by

Assumption 2.2. For f : X Ñ R, define

η˚f :“ argmin
ηPR

#

c

„

E
ˆ

ψrfpXqs

2
rCpXq ´ ηsk

‹

` `
ψr´fpXqs

2
r´CpXq ´ ηsk

‹

`

˙1{k‹

` η

+

, (2.20)

λ˚f :“

„

E
ˆ

ψrfpXqs

2
rCpXq ´ η˚f s

k‹

` `
ψr´fpXqs

2
r´CpXq ´ η˚f s

k‹

`

˙1{k‹

. (2.21)

By Assumption 2.2 that |CpXq| ď M , the optimal objective of (2.20) is bounded from above by

minηPRtcpM ´ ηq` ` ηu “ M . And for any fixed η P R, the objective of (2.20) is bounded from

below by cp´M ´ ηq` ` η. Then by the optimality of η˚f , we have cp´M ´ η˚f q` ` η˚f ď M ô

´ c`1
c´1M ď η˚f ďM .

As for λ˚f , since the optimal value of (2.20) is cλ˚f `η
˚
f , we have cλ˚f `η

˚
f ďM ñ λ˚f ď

M´η˚f
c ď

2M
c´1 . On the other hand, we need to elaborate more to give the lower bound (away from 0) on λ˚f .

The following lemma is a useful tool to motivate our analysis.

Lemma 2.7. Suppose Z is a bounded random variable, k ě 1, c ě 1. Define

η˚ :“ argmin
ηPR

!

crEpZ ´ ηqk`s1{k ` η
)

.

Then PpZ ě η˚q ě c´k.

Proof. For k “ 1, η˚ as the VaR (Krokhmal, 2007) can be obtained by η˚ “ inftη P R : PpZ ď

ηq ě 1´ c´1u. Then for any ε ą 0, PpZ ď η´ εq ă 1´ c´1 ô PpZ ą η´ εq ě c´1. Let εÑ 0` and

by upper semi-continuity, we have PpZ ě η˚q ě c´1.

Suppose k ą 1. If PpZ “ ess.supZq ě c´k, then by η˚ ď ess.supZ, PpZ ě η˚q ě PpZ “

ess.supZq ě c´k holds trivially. Now assume PpZ “ ess.supZq ă c´k. By lower semi-continuity,

there exists ε0 ą 0, such that for any 0 ď ε ď ε0, PpZ ě ess.supZ ´ εq ă c´k. Then

crEpZ ´ ess.supZ ` εqk`s
1{k ` ess.supZ ´ ε ď cεPpZ ě ess.sup´εq1{k ` ess.supZ ´ ε ă ess.supZ.

As a result, η˚ ă ess.supZ ´ ε0, hence

EpZ ´ η˚qk` ě pε0{2qkPpZ ě η˚ ` ε0{2q ě pε0{2q
kPpZ ě ess.supZ ´ ε0{2q ą 0.
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Finally, the first order condition for η˚ is given by

´
cEpZ ´ η˚qk´1

`

ErpZ ´ η˚qk`s1´1{k
` 1 “ 0 ô

}pZ ´ η˚q`}Lk´1

}pZ ´ η˚q`}Lk
“ c´

1
k´1 .

On the other hand, by Hölder Inequality,

EpZ ´ η˚qk´1
` “ ErpZ ´ η˚qk´1

` 1pZ ě η˚qs ď rEpZ ´ η˚qk`s
k´1
k PpZ ě η˚q1{k.

We have

c´
1
k´1 “

}pZ ´ η˚q`}Lk´1

}pZ ´ η˚q`}Lk
ď PpZ ě η˚q1{rkpk´1qs ô PpZ ě η˚q ě c´k.

Next, we introduce the sign variable ζψpfq P t˘1u such that Prζψpfq “ ˘1|Xs “ ψr˘fpXqs
2 .

Then η˚f P argminηPR

!

c
`

ErCpXqζψpfq ´ ηsk
‹

`

˘1{k‹
` η

)

. By Lemma 2.7, we immediately have

PrCpXqζψpfq ě η˚f s ě c´k. Next by Assumption 2.3, CpXq has uniformly bounded density h with

respect to the Lebesgue measure. Then CpXqζψpfq also has density hψ,f pcq ď hpcq _ hp´cq with

respect to the Lebesgue measure, and hψ,f is uniformly bounded as well: }hψ,f }8 ď }h}8 ă `8.

Then for any fixed c ď sc, we have PtCpXqζψpfq P rc,scsu ď psc´cq}h}8. In particular, for any t ą 0,

PrCpXqζψpfq ě η˚f ` ts ě c´k ´ t}h}8.

In particular, by taking t :“ 1{p2}h}8c
kq, we have

λ˚f “
´

ErCpXqζψpfq ´ η˚f sk
‹

`

¯1{k‹

ě 1{p2}h}8c
kqPrCpXqζψpfq ě η˚f ` 1{p2}h}8c

kqs1{k
‹

ě 1{p2}h}8c
kqrc´k ´ 1{p2}h}8c

kq ˆ }h}8s
1{k‹

“ 1{p2p2k´1q{k}h}8c
2k´1q ą 0,
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which decreases in c of order c´p2k´1q. Note that the lower bound on λ˚f depends on the order k,

while its upper bound doesn’t. In particular, as k increases, the vanishing rate of λ˚f as c Ñ `8

gets faster.

We conclude the preceding boundedness results by denoting η˚f P rη, sηs :“
“

´ c`1
c´1M,M

‰

and

λ˚f P rλ,
sλs :“

“

1
2p2k´1q{k}h}8c2k´1 ,

2M
c´1

‰

. Note that all those bounds above also hold when E is

replaced by En, ψp¨q2 is replaced by 1p¨ ă 0q, and Cp¨q is replaced by pCnp¨q. As an immediate result,

we further have boundedness `kc , `
k
c,ψ P r`

k
c ,
s`kc s where `kc :“ c

kλ` η, and

s`kc :“ max
pη,λqPtη,sηuˆtλ,sλu

"

c

k‹λk‹´1
pM ´ ηqk

‹

`
cλ

k
` η

*

“ max

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

2
k

c
c´1M `M, η “ sη, λ “ sλ;

22k‹´1{k‹}h}k
‹´1
8

k‹
c2k

‹`2

pc´1qk‹
Mk‹ ` 1

k21`1{k‹}h}8

1
c2{pk

‹´1q ´
c`1
c´1M, η “ η, λ “ λ;

2
k‹

ck
‹`1

c´1 M ` 2
k

c
c´1M ´ c`1

c´1M, η “ η, λ “ sλ.

Notice that as c, pc ´ 1q´1,M Ñ `8, the leading order term is O
´

c2k
‹`2

pc´1qk‹
Mk‹

¯

. To conclude all

boundedness results, we introduce the joint parameter space

θ :“ pf, η, λq P Θn :“ Fn ˆΠn ˆ Λn,

where Fn :“ tf P F : }f}F ď γnu, Πn :“ rη, sηs and Λn :“ rλ, sλs. Moreover, we have

ˇ

ˇ

ˇ
`kc pθ;

pCnq ´ `
k
c pθ;Cq

ˇ

ˇ

ˇ
ď

2c

λk
‹´1
pM ´ ηqk

‹´1

looooooooooomooooooooooon

LC

ˇ

ˇ

ˇ

pCnpXq ´ CpXq
ˇ

ˇ

ˇ
,

and
ˇ

ˇ

ˇ
`kc,ψpθ;

pCnq ´ `
k
c pθ;Cq

ˇ

ˇ

ˇ
ď LC

ˇ

ˇ

ˇ

pCnpXq ´ CpXq
ˇ

ˇ

ˇ
.

In particular, LC “
22k‹´1{k‹}h}k

‹´1
8

k‹
c2k

‹`1

pc´1qk‹´1M
k‹´1.

Next, we begin to prove the regret bound. Recall that the empirical minimizer is pθn :“

p pfn, pηn, pλnq P argmin
pf,η,λqPΘn

En`kc,ψpf, η, λ; pCnq where the distributions of pη, λq can be constrained to

Πn ˆ Λn “ rη, sηs ˆ rλ, sλs due to the previous boundedness. We also define the within-Θn oracle
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θ˚γ :“ pf˚γ , η
˚
γ , λ

˚
γq P argmin

pf,η,λqPΘn

Lkc,ψpf, η, λq. Then, by definition, we have Lkc,ψpθ˚γq ´Rk,˚
c “ Ak

c pγnq.

By Proposition 2.4, we have

Lkc ppθnq ´Rk,˚
c

ď2rLkc,ψppθnq ´Rk,˚
c s

“2
´

Lkc,ψppθnq ´ En`kc,ψppθn;Cq
¯

` 2Enr`kc,ψppθn;Cq ´ `kc,ψp
pθn; pCnqs ` 2

´

En`kc,ψppθn; pCnq ´Rk,˚
c

¯

ď2 sup
θPΘn

pP´ Pnq`kc,ψpθ;Cq ` 2LC} pCn ´ C}8 ` 2
´

En`kc,ψpθ˚γ ; pCnq ´Rk,˚
c

¯

ď2 sup
θPΘn

pP´ Pnq`kc,ψpθ;Cq ` 4LC} pCn ´ C}8 ` 2
´

En`kc,ψpθ˚γ ;Cq ´ Lkc,ψpθ˚γq
¯

` 2Apγnq

ď2 sup
θPΘn

pP´ Pnq`kc,ψpθ;Cq ` 4LC} pCn ´ C}8 ` 2 sup
θPΘn

pPn ´ Pq`kc,ψpθ;Cq ` 2Apγnq.

It follows standard routine to propose a Rademacher complexity bound. Fix δ ą 0. First by

McDiarmid Inequality (Bartlett and Mendelson, 2002, Theorem 9), with probability ě 1´ δ,

sup
θPΘn

pP´ Pnq`kc.ψpθ;Cq ď E sup
θPΘn

pP´ Pnq`kc,ψpθ;Cq ` ps`kc ´ `kc q
c

logp2{δq

2n
,

sup
θPΘn

pPn ´ Pq`kc.ψpθ;Cq ď E sup
θPΘn

pPn ´ Pq`kc,ψpθ;Cq ` ps`kc ´ `kc q
c

logp2{δq

2n
.

Next we define the Rademacher complexity on Θn as follows:

RnpΘnq :“ EpX,σq„P sup
θPΘn

Enrσ`kc,ψpθ;Cqs,

where σ is the Rademacher variable independent of pX, A, Y q under P. Then by standard sym-

metrization arguments, we have

E sup
θPΘn

pP´ Pnq`kc,ψpθ;Cq ď 2RnpΘnq, E sup
θPΘn

pPn ´ Pq`kc,ψpθ;Cq ď 2RnpΘnq.

To obtain an error bound on RnpΘnq, we decouple Θn by exploiting the `1-Lipschitzness of

`kc,ψ. For ease of notation, we suppress the dependency on C in `kc,ψ. Note that for θi “ pfi, ηi, λiq
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pi “ 1, 2q,

|`kc,ψpθ1q ´ `
k
c,ψpθ2q|

ď|`kc,ψpf1, η1, λ1q ´ `
k
c,ψpf1, η1, λ2q| ` |`

k
c,ψpf1, η1, λ2q ´ `

k
c,ψpf1, η2, λ2q| ` |`

k
c,ψpf1, η2, λ2q ´ `

k
c,ψpf2, η2, λ2q|

ď
c

k‹

ˆ

2cM

c´ 1

˙k‹ ˇ
ˇ

ˇ

ˇ

1

λk
‹´1

1

´
1

λk
‹´1

1

ˇ

ˇ

ˇ

ˇ

`
c

k
|λ1 ´ λ2|`

c

k‹λk
‹´1

«

ψr`fpXqs

2

ˇ

ˇ

ˇ

ˇ

´

` pCnpXq ´ η1

¯k‹

`
´

´

` pCnpXq ´ η2

¯k‹

`

ˇ

ˇ

ˇ

ˇ

`

ψr´fpXqs

2

ˇ

ˇ

ˇ

ˇ

´

´ pCnpXq ´ η1

¯k‹

`
´

´

´ pCnpXq ´ η2

¯k‹

`

ˇ

ˇ

ˇ

ˇ

ff

` |η1 ´ η2|`

c

k‹λk
‹´1

ˆ

2cM

c´ 1

˙k‹

|ψrf1pXqs ´ ψrf2pXqs|

ďLλ|λ1 ´ λ2| ` Lη|η1 ´ η2| ` Lf |f1pXq ´ f2pXq|,

where

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Lλ :“ c
k‹

´

2cM
c´1

¯k‹

ˆ k‹´1

λk
‹ `

c
k “

22k‹`1}h}k
‹

8

k
c
pk‹`1qp2k‹´1q

k‹´1

pc´1qk‹
Mk‹ ` c

k ;

Lη :“ c

k‹λk
‹´1 ˆ k

‹
´

2cM
c´1

¯k‹´1
` 1 “

22k‹´1{k‹´1}h}k
‹´1
8

k‹
c2k

‹`1

pc´1qk‹´1M
k‹´1 ` 1;

Lf :“ c

k‹λk
‹´1

´

2cM
c´1

¯k‹

ˆ 2 “
22k‹´1{k‹`1}h}k

‹´1
8

k‹
c2k

‹`2

pc´1qk‹
Mk‹ .

We Denote L` :“ Lf _ Lη _ Lλ. Notice that the leading order term as c, pc ´ 1q´1,M Ñ `8 is

Lλ “ O

˜

c
pk‹`1qp2k‹´1q

k‹´1

pc´1qk‹
Mk‹

¸

. And we also define the marginal Rademacher complexities

RnpFnq :“ EpX,σq„P sup
fPFn

EnrσfpXqs; RnpΠnq :“ Eσ sup
ηPΠn

pηEnσq; RnpΛnq :“ Eσ sup
λPΛn

pλEnσq.

Then by the multidimensional version (Qi et al., 2019b, Lemma 3.1) of the Rademarcher complexity

of the Lipschitz composition (Boucheron et al., 2005, Theorem 3.3), we have

RnpΘnq ď L`rRnpFnq ` RnpΠnq ` RnpΛnqs,

where by Vapnik-Chervonenkis Inequality (Boucheron et al., 2005, Theorem 3.4), there exists a

universal constant CVC such that RnpΠnq ď CVC

a

2p|sη| _ |η|q{n and RnpΛnq ď CVC

a

2sλ{n, and

by Bartlett and Mendelson (2002, Lemma 22), RnpFnq ď 2
a

γn{n. Combining the above results,
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our regret bound becomes

Lkc p pfn, pηn, pλnq ´Rk,˚
c ď8L`

ˆ

2
a

γn{n` CVC

a

2p|sη| _ |η|q{n` CVC

b

2sλ{n

˙

` 4ps`kc ´ `
k
c q

c

logp2{δq

2n
` 4LC} pCn ´ C}8 ` 2Ak

c pγnq.

Finally by Assumption 2.5 that Ak
c pγq “ KAγ

β, we choose γn :“ n
1

2β`1 to obtain the desired regret

bound of rate Opn´
β

2β`1 q as nÑ8, with the universal constant K0 as

K0 “ 8L`

´

2` CVC

?
2p|sη| _ |η|q1{2 ` CVC

?
2sλ1{2

¯

` 2
?

2ps`kc ´ `
k
c q ` 2KA

“ O
´

L`rp|sη| _ |η|q
1{2 ` sλ1{2s ` s`kc ´ `

k
c

¯

“ O

¨

˝

c
pk‹`1qp2k‹´1q

k‹´1
` 1

2

pc´ 1qk‹`1{2
Mk‹`1{2

˛

‚,

and K1 “ 4LC “ O
´

c2k
‹`1

pc´1qk‹´1M
k‹´1

¯

.

Consider the spectial case k “ `8 and k‹ “ 1. Consider η˚f as in (2.20). Since for any

η ď ´M , the objective (2.20) remains constant. Then we have ´M ď η ď M . The regret bound

analysis follows the same as above except that λ is redundant in `1c,ψ. For the bounds on `1c,ψ, have

s`1c “ p2c ` 1qM and `1c “ ´M . The Lipschitz constants are refined to be LC “ 2c, Lη “ c ` 1,

Lf “ 4cM . And the final universal constants become

K0 “ O
´

L`p|sη| _ |η|q
1{2 ` s`kc ´ `

k
c

¯

“ OpcM3{2q; K1 “ 8c “ Opcq.
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2.7.4 Additional Tables and Figures
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(d) c “ 20

Figure 2.6: Comparing the testing values of the DR-ITR for various c’s with the standard ITR on testing
distributions N2

`

µ, I2

˘

of means µ P
 

pµ1, µ2q
ᵀ P R2 : µ2

1 ` µ
2
2 ď 4 log 5

(

.
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Table 2.6: Relative Regrets (%) of Standard ITRs on Mean-Shifted Covariate Domains

µ2

µ1 ´2.45 ´1.96 ´1.47 ´0.979 ´0.49 0 0.49 0.979 1.47 1.96 2.45

2.45 0 0 0 0 2 8 27 58 91 107 108

1.96 0 0 0 0 2 10 28 54 75 83 80

1.47 0 0 0 0 2 12 28 46 55 57 52

0.979 1 1 1 0 1 11 25 35 38 35 31

0.49 3 3 3 2 2 2 16 23 22 19 16

0 7 9 11 10 3 5 3 10 11 9 7

´0.49 16 19 22 23 17 3 1 2 3 3 3

´0.979 30 35 38 34 26 10 1 0 1 1 1

´1.47 52 57 55 45 27 12 2 0 0 0 0

´1.96 79 82 75 53 29 11 2 0 0 0 0

´2.45 108 107 91 58 27 9 2 0 0 0 0

1 µ “ pµ1, µ2, 0, ¨ ¨ ¨ , 0qᵀ with µ1 in column and µ2 in row is the testing covariate centroid.
2 Relative regretpITRq “ rvaluepLB-ITRq ´ valuepITRqs{|valuepLB-ITRq|

Table 2.7: Misclassification Rates (%) of Standard ITRs on Mean-Shifted Covariate Domains

µ2

µ1 ´2.45 ´1.96 ´1.47 ´0.979 ´0.49 0 0.49 0.979 1.47 1.96 2.45

2.45 1 1 2 3 4 6 10 18 30 43 53

1.96 2 3 5 7 8 10 13 20 29 38 44

1.47 3 6 10 13 15 16 19 23 28 33 35

0.979 6 10 16 20 23 25 26 27 28 27 26

0.49 9 15 22 27 30 32 32 30 27 23 19

0 13 19 26 31 34 35 34 30 26 19 13

´0.49 18 23 27 30 32 32 30 27 21 15 9

´0.979 26 27 28 27 26 25 23 20 16 11 6

´1.47 34 33 28 23 19 16 15 13 10 6 3

´1.96 44 38 29 20 14 10 8 7 5 3 2

´2.45 53 43 30 18 10 6 4 3 2 1 1

1 µ “ pµ1, µ2, 0, ¨ ¨ ¨ , 0qᵀ with µ1 in column and µ2 in row is the testing covariate centroid.
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Table 2.8: Relative Regrets (%) of RCT-DR-ITRs on Mean-Shifted Covariate Domains (ncalib “ 50q

µ2

µ1 ´2.45 ´1.96 ´1.47 ´0.979 ´0.49 0 0.49 0.979 1.47 1.96 2.45

2.45 0 0 0 1 3 8 16 19 16 10 6

1.96 0 0 1 1 4 11 19 21 15 10 5

1.47 0 0 1 2 4 14 23 23 15 8 4

0.979 0 0 1 2 6 15 24 22 14 7 3

0.49 1 2 2 3 7 9 18 18 11 5 2

0 1 3 7 9 8 16 9 10 7 3 1

´0.49 2 5 11 17 19 10 7 3 2 1 1

´0.979 3 7 14 21 23 14 5 2 1 0 0

´1.47 3 7 14 22 21 13 4 1 0 0 0

´1.96 5 9 15 21 19 10 3 1 0 0 0

´2.45 6 9 15 18 15 8 2 1 0 0 0

1 µ “ pµ1, µ2, 0, ¨ ¨ ¨ , 0qᵀ with µ1 in column and µ2 in row is the testing covariate centroid.
2 Relative regretpITRq “ rvaluepLB-ITRq ´ valuepITRqs{|valuepLB-ITRq|

Table 2.9: Relative Regrets (%) of RCT-DR-ITRs on Mean-Shifted Covariate Domains (ncalib “ 100q

µ2

µ1 ´2.45 ´1.96 ´1.47 ´0.979 ´0.49 0 0.49 0.979 1.47 1.96 2.45

2.45 0 0 0 1 3 7 14 16 14 9 6

1.96 0 0 0 1 3 10 18 19 13 8 4

1.47 0 0 0 1 3 12 21 20 14 7 3

0.979 0 0 1 2 4 13 22 20 13 6 2

0.49 1 1 2 2 4 7 17 17 10 4 2

0 1 3 6 8 5 11 6 8 6 3 1

´0.49 2 4 10 16 17 7 4 2 2 1 1

´0.979 2 6 13 20 22 12 3 1 1 0 0

´1.47 3 7 13 20 20 12 3 1 0 0 0

´1.96 4 8 13 18 17 10 3 1 0 0 0

´2.45 5 8 14 16 13 7 2 0 0 0 0

1 µ “ pµ1, µ2, 0, ¨ ¨ ¨ , 0qᵀ with µ1 in column and µ2 in row is the testing covariate centroid.
2 Relative regretpITRq “ rvaluepLB-ITRq ´ valuepITRqs{|valuepLB-ITRq|
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Table 2.10: Relative Value Improvements (%) of RCT-DR-ITRs over Standard ITRs on Mean-Shifted
Covariate Domains (ncalib “ 50q

µ2

µ1 ´2.45 ´1.96 ´1.47 ´0.979 ´0.49 0 0.49 0.979 1.47 1.96 2.45

2.45 0 0 0 ´1 ´1 1 11 40 75 98 102

1.96 0 0 ´1 ´1 ´2 0 9 32 60 73 75

1.47 0 0 0 ´2 ´3 ´3 6 23 40 49 48

0.979 0 0 0 ´2 ´4 ´5 2 13 24 28 28

0.49 2 2 1 ´2 ´6 ´7 ´2 5 11 14 14

0 6 6 4 1 ´5 ´11 ´6 0 4 6 5

´0.49 13 14 11 6 ´2 ´6 ´5 ´2 1 2 2

´0.979 27 29 24 13 2 ´4 ´4 ´2 0 0 0

´1.47 48 49 41 23 6 ´1 ´3 ´1 0 0 0

´1.96 74 73 60 33 10 0 ´1 ´1 0 0 0

´2.45 102 98 76 40 12 1 ´1 ´1 0 0 0

1 µ “ pµ1, µ2, 0, ¨ ¨ ¨ , 0qᵀ with µ1 in column and µ2 in row is the testing covariate centroid.
2 Relative value improvement = difference of relative regrets.

Table 2.11: Misclassification Rates (%) of RCT-DR-ITRs on Mean-Shifted Covariate Domains (ncalib “ 50q

µ2

µ1 ´2.45 ´1.96 ´1.47 ´0.979 ´0.49 0 0.49 0.979 1.47 1.96 2.45

2.45 1 2 3 4 5 7 12 16 20 19 15

1.96 2 3 6 7 10 12 15 20 21 20 15

1.47 3 7 11 14 17 19 22 24 24 21 15

0.979 6 11 17 22 26 28 29 30 27 21 14

0.49 9 15 23 30 34 35 35 33 28 21 13

0 11 19 27 34 37 39 37 33 27 19 11

´0.49 13 21 28 33 35 35 34 30 23 15 9

´0.979 14 21 27 29 29 28 25 22 17 11 6

´1.47 14 20 24 24 21 19 17 14 11 7 3

´1.96 15 19 21 20 15 12 9 8 6 3 2

´2.45 15 18 19 16 11 7 5 4 2 1 1

1 µ “ pµ1, µ2, 0, ¨ ¨ ¨ , 0qᵀ with µ1 in column and µ2 in row is the testing covariate centroid.
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Table 2.12: Misclassification Rates (%) of RCT-DR-ITRs on Mean-Shifted Covariate Domains (ncalib “

100q

µ2

µ1 ´2.45 ´1.96 ´1.47 ´0.979 ´0.49 0 0.49 0.979 1.47 1.96 2.45

2.45 1 2 3 4 5 7 11 16 19 19 15

1.96 2 3 6 7 9 12 15 20 21 20 14

1.47 3 7 10 14 17 18 21 24 24 21 14

0.979 6 11 17 22 25 27 28 29 27 21 14

0.49 9 15 23 29 32 34 34 33 28 21 13

0 11 19 27 33 36 37 36 33 27 19 11

´0.49 12 21 28 32 34 34 33 29 23 15 9

´0.979 13 21 27 29 28 27 25 22 17 11 6

´1.47 14 20 24 24 21 18 16 14 11 7 3

´1.96 14 19 21 19 15 11 9 7 6 3 2

´2.45 15 18 19 16 11 7 5 3 2 1 1

1 µ “ pµ1, µ2, 0, ¨ ¨ ¨ , 0qᵀ with µ1 in column and µ2 in row is the testing covariate centroid.

Table 2.13: Misclassification Improvements (%) of RCT-DR-ITRs over Standard ITRs on Mean-Shifted
Covariate Domains (ncalib “ 50q

µ2

µ1 ´2.45 ´1.96 ´1.47 ´0.979 ´0.49 0 0.49 0.979 1.47 1.96 2.45

2.45 0 0 ´1 ´1 ´1 ´1 ´1 2 10 24 38

1.96 0 0 ´1 ´1 ´1 ´2 ´2 0 8 18 29

1.47 0 0 ´1 ´1 ´2 ´3 ´3 ´1 3 12 20

0.979 0 0 ´1 ´2 ´3 ´3 ´3 ´3 1 6 12

0.49 1 0 ´1 ´3 ´3 ´3 ´3 ´3 ´1 2 6

0 2 0 ´2 ´3 ´3 ´4 ´4 ´3 ´2 1 2

´0.49 6 3 ´1 ´3 ´3 ´3 ´3 ´3 ´1 0 1

´0.979 12 7 1 ´2 ´3 ´3 ´2 ´2 ´1 0 0

´1.47 20 12 4 ´1 ´2 ´2 ´2 ´1 ´1 0 0

´1.96 29 18 8 0 ´2 ´2 ´1 ´1 0 0 0

´2.45 38 24 11 3 ´1 ´1 ´1 ´1 0 0 0

1 µ “ pµ1, µ2, 0, ¨ ¨ ¨ , 0qᵀ with µ1 in column and µ2 in row is the testing covariate centroid.
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Table 2.14: Testing Values (Standard Errors) on Mean-Shifted Covariate Domains (ncalib “ 50)

µ2

µ1 type 0 0.734 1.469 1.958

LB-ITR 2.333 (0.00244) 2.907 (0.011) 5.334 (0.0362) 9.27 (0.0154)

`1-PLS 2.124 (0.0022) 2.235 (0.011) 3.613 (0.0505) 6.32 (0.103)

RWL 2.067 (0.00125) 1.59 (0.0104) 0.7237 (0.0488) 0.2045 (0.108)

Standard ITR 2.089 (0.00158) 1.735 (0.013) 1.348 (0.0595) 1.567 (0.13)

RCT-ITR 1.913 (0.0082) 1.969 (0.026) 4.168 (0.034) 7.838 (0.0388)

RCT-DR-ITR 2.085 (0.00444) 2.286 (0.0114) 4.545 (0.0255) 8.371 (0.0451)

1.958

CTE-DR-ITR 2.098 (0.00348) 2.304 (0.0106) 4.551 (0.0238) 8.459 (0.0424)

LB-ITR 1.893 (0.00712) 2.627 (0.00656) 5.28 (0.0213) 9.379 (0.0128)

`1-PLS 1.667 (0.00307) 2.021 (0.0076) 4.095 (0.0342) 7.573 (0.0706)

RWL 1.655 (0.00131) 1.501 (0.0106) 1.798 (0.0472) 2.791 (0.102)

Standard ITR 1.674 (0.00152) 1.645 (0.0127) 2.377 (0.0553) 4.011 (0.119)

RCT-ITR 1.414 (0.0094) 1.597 (0.025) 4.075 (0.0299) 8.022 (0.0334)

RCT-DR-ITR 1.627 (0.00688) 1.987 (0.00997) 4.484 (0.0192) 8.611 (0.0285)

1.469

CTE-DR-ITR 1.663 (0.00326) 1.997 (0.00992) 4.55 (0.0163) 8.686 (0.0269)

LB-ITR 1.227 (0.00244) 2.144 (0.00609) 5.269 (0.00931) 9.608 (0.00898)

`1-PLS 1.094 (0.00418) 1.676 (0.00442) 4.587 (0.0151) 8.8 (0.0314)

RWL 1.168 (0.00134) 1.462 (0.00729) 3.357 (0.0344) 6.323 (0.0696)

Standard ITR 1.174 (0.00149) 1.553 (0.00806) 3.739 (0.0379) 7.06 (0.0763)

RCT-ITR 0.7323 (0.011) 1.152 (0.021) 4.157 (0.0238) 8.534 (0.0299)

RCT-DR-ITR 1.094 (0.00753) 1.651 (0.00675) 4.622 (0.0109) 9.036 (0.015)

0.734

CTE-DR-ITR 1.152 (0.00292) 1.667 (0.00588) 4.648 (0.0113) 9.06 (0.0161)

LB-ITR 0.9942 (0.00202) 1.774 (0.0034) 5.232 (0.00559) 9.767 (0.0068)

`1-PLS 0.8296 (0.00454) 1.648 (0.0036) 4.914 (0.00501) 9.476 (0.0103)

RWL 0.9457 (0.00126) 1.645 (0.00339) 4.494 (0.0165) 8.589 (0.0329)

Standard ITR 0.9437 (0.00153) 1.679 (0.00336) 4.654 (0.017) 8.895 (0.0342)

RCT-ITR 0.4303 (0.0109) 1.161 (0.0145) 4.518 (0.0172) 8.983 (0.034)

RCT-DR-ITR 0.8374 (0.00821) 1.647 (0.00574) 4.868 (0.00797) 9.444 (0.00841)

0.000

CTE-DR-ITR 0.9206 (0.00272) 1.688 (0.00289) 4.888 (0.00698) 9.442 (0.00999)

1 µ “ pµ1, µ2, 0, ¨ ¨ ¨ , 0qᵀ with µ1 in column and µ2 in row is the testing covariate centroid.
2 Values (larger the better) can be comparable for the same pµ1, µ2q but incomparable across different pµ1, µ2q.
3 LB-ITR maximizes the testing value function at pµ1, µ2q over the linear ITR class. The corresponding testing value

is the best achievable among the linear ITR class.
4 RWL (Zhou et al., 2017) implements the same routine as Standard ITR except that pCnpXq “ pQnpX, 1q´ pQnpX,´1q`

2ArY ´ pQnpX, Aqs.
5 RCT-ITR fits RWL on the calibrating RCT dataset directly.
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Table 2.15: Testing Values (Standard Errors) on Mean-Shifted Covariate Domains (ncalib “ 100)

µ2

µ1 type 0 0.734 1.469 1.958

LB-ITR 2.333 (0.00244) 2.907 (0.011) 5.334 (0.0362) 9.27 (0.0154)

`1-PLS 2.124 (0.0022) 2.235 (0.011) 3.613 (0.0505) 6.32 (0.103)

RWL 2.067 (0.00125) 1.59 (0.0104) 0.7237 (0.0488) 0.2045 (0.108)

Standard ITR 2.089 (0.00158) 1.735 (0.013) 1.348 (0.0595) 1.567 (0.13)

RCT-ITR 2.015 (0.00565) 2.593 (0.0132) 4.996 (0.0158) 8.588 (0.0208)

RCT-DR-ITR 2.109 (0.00342) 2.349 (0.00905) 4.62 (0.0219) 8.5 (0.0394)

1.958

CTE-DR-ITR 2.099 (0.00392) 2.34 (0.00954) 4.602 (0.0215) 8.488 (0.0393)

LB-ITR 1.893 (0.00712) 2.627 (0.00656) 5.28 (0.0213) 9.379 (0.0128)

`1-PLS 1.667 (0.00307) 2.021 (0.0076) 4.095 (0.0342) 7.573 (0.0706)

RWL 1.655 (0.00131) 1.501 (0.0106) 1.798 (0.0472) 2.791 (0.102)

Standard ITR 1.674 (0.00152) 1.645 (0.0127) 2.377 (0.0553) 4.011 (0.119)

RCT-ITR 1.54 (0.00529) 2.286 (0.0129) 4.846 (0.017) 8.713 (0.0183)

RCT-DR-ITR 1.662 (0.00367) 2.044 (0.00721) 4.566 (0.0153) 8.711 (0.0254)

1.469

CTE-DR-ITR 1.67 (0.00286) 2.044 (0.00818) 4.577 (0.0144) 8.734 (0.0251)

LB-ITR 1.227 (0.00244) 2.144 (0.00609) 5.269 (0.00931) 9.608 (0.00898)

`1-PLS 1.094 (0.00418) 1.676 (0.00442) 4.587 (0.0151) 8.8 (0.0314)

RWL 1.168 (0.00134) 1.462 (0.00729) 3.357 (0.0344) 6.323 (0.0696)

Standard ITR 1.174 (0.00149) 1.553 (0.00806) 3.739 (0.0379) 7.06 (0.0763)

RCT-ITR 0.8905 (0.00647) 1.651 (0.0138) 4.701 (0.0168) 9.011 (0.013)

RCT-DR-ITR 1.134 (0.00408) 1.662 (0.0065) 4.671 (0.00885) 9.094 (0.0122)

0.734

CTE-DR-ITR 1.156 (0.00251) 1.68 (0.00573) 4.699 (0.00824) 9.132 (0.0112)

LB-ITR 0.9942 (0.00202) 1.774 (0.0034) 5.232 (0.00559) 9.767 (0.0068)

`1-PLS 0.8296 (0.00454) 1.648 (0.0036) 4.914 (0.00501) 9.476 (0.0103)

RWL 0.9457 (0.00126) 1.645 (0.00339) 4.494 (0.0165) 8.589 (0.0329)

Standard ITR 0.9437 (0.00153) 1.679 (0.00336) 4.654 (0.017) 8.895 (0.0342)

RCT-ITR 0.6198 (0.00875) 1.388 (0.00857) 4.745 (0.00861) 9.376 (0.00737)

RCT-DR-ITR 0.8879 (0.00506) 1.671 (0.00389) 4.901 (0.00451) 9.489 (0.0068)

0.000

CTE-DR-ITR 0.925 (0.00233) 1.689 (0.00262) 4.916 (0.00496) 9.508 (0.00626)

1 µ “ pµ1, µ2, 0, ¨ ¨ ¨ , 0qᵀ with µ1 in column and µ2 in row is the testing covariate centroid.
2 Values (larger the better) can be comparable for the same pµ1, µ2q but incomparable across different pµ1, µ2q.
3 LB-ITR maximizes the testing value function at pµ1, µ2q over the linear ITR class. The corresponding testing value

is the best achievable among the linear ITR class.
4 RWL (Zhou et al., 2017) implements the same routine as Standard ITR except that pCnpXq “ pQnpX, 1q´ pQnpX,´1q`

2ArY ´ pQnpX, Aqs.
5 RCT-ITR fits RWL on the calibrating RCT dataset directly.
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Table 2.16: Testing Misclassification Rates (Standard Errors) on Mean-Shifted Covariate Domains (ncalib “

50)

µ2

µ1 type 0 0.734 1.469 1.958

LB-ITR 0.05348 (0.000259) 0.0301 (0.000804) 0.02702 (0.0038) 0.02554 (0.00337)

`1-PLS 0.113 (0.000781) 0.1625 (0.000913) 0.2239 (0.0015) 0.247 (0.00305)

RWL 0.09857 (0.000358) 0.1675 (0.000346) 0.3093 (0.00126) 0.4145 (0.00255)

Standard ITR 0.0988 (0.000392) 0.1628 (0.000402) 0.29 (0.00163) 0.3802 (0.00322)

RCT-ITR 0.1148 (0.00191) 0.1783 (0.00334) 0.2567 (0.00477) 0.2687 (0.00374)

RCT-DR-ITR 0.118 (0.00135) 0.1785 (0.00196) 0.2148 (0.00178) 0.1997 (0.00192)

1.958

CTE-DR-ITR 0.1142 (0.00114) 0.1879 (0.0021) 0.236 (0.00237) 0.209 (0.00201)

LB-ITR 0.11 (0.00149) 0.05955 (0.000487) 0.0374 (0.00328) 0.03026 (0.00324)

`1-PLS 0.1904 (0.00113) 0.2229 (0.00132) 0.2353 (0.0011) 0.2251 (0.00203)

RWL 0.1616 (0.000581) 0.2099 (0.000599) 0.2972 (0.00124) 0.3601 (0.00255)

Standard ITR 0.1637 (0.00067) 0.2066 (0.000681) 0.2781 (0.00153) 0.326 (0.00307)

RCT-ITR 0.1875 (0.00248) 0.2381 (0.00365) 0.2895 (0.00471) 0.2744 (0.00324)

RCT-DR-ITR 0.1927 (0.00205) 0.2306 (0.00196) 0.2437 (0.00199) 0.2109 (0.00173)

1.469

CTE-DR-ITR 0.181 (0.00132) 0.2373 (0.00221) 0.2514 (0.00208) 0.2155 (0.00168)

LB-ITR 0.2575 (0.000703) 0.144 (0.00177) 0.07107 (0.00288) 0.04661 (0.00282)

`1-PLS 0.3275 (0.00147) 0.3291 (0.00165) 0.273 (0.00104) 0.2085 (0.00091)

RWL 0.2764 (0.000746) 0.2877 (0.000915) 0.2858 (0.000886) 0.2747 (0.00184)

Standard ITR 0.283 (0.000914) 0.2898 (0.00109) 0.2747 (0.00101) 0.2519 (0.00205)

RCT-ITR 0.333 (0.00275) 0.3537 (0.0036) 0.3333 (0.00393) 0.2615 (0.00234)

RCT-DR-ITR 0.3178 (0.00237) 0.3203 (0.00214) 0.2778 (0.00192) 0.2102 (0.00128)

0.734

CTE-DR-ITR 0.2974 (0.00129) 0.3147 (0.00189) 0.2771 (0.00173) 0.2076 (0.00118)

LB-ITR 0.3246 (0.000396) 0.2802 (0.0015) 0.1293 (0.00214) 0.08388 (0.00267)

`1-PLS 0.3988 (0.0016) 0.3649 (0.00139) 0.2742 (0.000873) 0.1875 (0.000467)

RWL 0.3358 (0.000755) 0.3147 (0.000808) 0.2582 (0.000556) 0.2033 (0.000881)

Standard ITR 0.3452 (0.000963) 0.3211 (0.001) 0.2564 (0.000666) 0.1942 (0.000918)

RCT-ITR 0.4085 (0.0025) 0.4158 (0.00234) 0.3261 (0.00214) 0.2349 (0.00169)

RCT-DR-ITR 0.3864 (0.00274) 0.3529 (0.0021) 0.2726 (0.0015) 0.1889 (0.000857)

0.000

CTE-DR-ITR 0.3575 (0.00126) 0.3345 (0.00123) 0.264 (0.00106) 0.1848 (0.000668)

1 µ “ pµ1, µ2, 0, ¨ ¨ ¨ , 0qᵀ with µ1 in column and µ2 in row is the testing covariate centroid.
2 LB-ITR maximizes the testing value function at pµ1, µ2q over the linear ITR class. The corresponding testing value

is the best achievable among the linear ITR class.
3 RWL (Zhou et al., 2017) implements the same routine as Standard ITR except that pCnpXq “ pQnpX, 1q´ pQnpX,´1q`

2ArY ´ pQnpX, Aqs.
4 RCT-ITR fits RWL on the calibrating RCT dataset directly.
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Table 2.17: Testing Values of RCT-DR-ITRs of Various k’s on Mean-Shifted Covariate Domains (ncalib “

50q

µ2

µ1 k 0 0.734 1.47 1.96

1.25 2.08p0.004443q 2.25p0.01238q 4.4p0.03824q 8.17p0.07266q

1.5 2.09p0.004052q 2.28p0.01154q 4.47p0.0317q 8.27p0.05863q

2 2.09p0.004445q 2.29p0.01139q 4.54p0.02549q 8.37p0.04507q

3 2.08p0.005431q 2.25p0.01187q 4.52p0.02422q 8.37p0.0428q

1.96

8 2.1p0.004169q 2.27p0.01313q 4.54p0.02419q 8.43p0.03522q

1.25 1.64p0.005444q 1.99p0.009954q 4.42p0.02606q 8.45p0.04875q

1.5 1.64p0.005729q 2p0.009707q 4.42p0.02437q 8.52p0.04136q

2 1.63p0.006885q 1.99p0.009965q 4.48p0.01924q 8.61p0.02852q

3 1.64p0.006302q 1.98p0.01028q 4.47p0.01846q 8.63p0.02501q

1.47

8 1.64p0.006803q 1.98p0.01093q 4.51p0.01848q 8.63p0.02595q

1.25 1.11p0.006071q 1.64p0.006628q 4.58p0.01659q 8.95p0.02455q

1.5 1.12p0.005547q 1.64p0.007019q 4.58p0.01508q 8.97p0.02298q

2 1.09p0.007527q 1.65p0.006753q 4.62p0.01089q 9.04p0.01496q

3 1.1p0.007473q 1.62p0.008308q 4.59p0.01228q 9.02p0.01563q

0.734

8 1.12p0.00672q 1.62p0.008311q 4.61p0.01417q 9.04p0.01468q

1.25 0.859p0.007158q 1.65p0.005616q 4.87p0.007131q 9.43p0.01052q

1.5 0.859p0.007117q 1.64p0.006172q 4.88p0.006802q 9.43p0.0116q

2 0.837p0.008205q 1.65p0.005744q 4.87p0.007969q 9.44p0.008415q

3 0.854p0.007488q 1.64p0.006564q 4.86p0.006542q 9.46p0.007206q

0

8 0.888p0.005782q 1.64p0.005722q 4.85p0.008767q 9.45p0.008676q

1 µ “ pµ1, µ2, 0, ¨ ¨ ¨ , 0qᵀ with µ1 in column and µ2 in row is the testing covariate centroid.
2 Values (larger the better) can be comparable for the same pµ1, µ2q but incomparable across different
pµ1, µ2q.
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Table 2.18: Testing Values (Standard Errors) on Mixture of Subgroups (ncalib “ 50)

Testing Subgroup 1 Probability

type 0.1 0.25 0.5 0.75 0.9

LB-ITR 1.665 (0.0067) 1.537 (0.00618) 1.444 (0.00412) 1.545 (0.00537) 1.679 (0.00585)

`1-PLS 1.182 (0.00191) 1.264 (0.0014) 1.399 (0.000591) 1.537 (0.000333) 1.624 (0.000781)

RWL 1.092 (0.00349) 1.194 (0.00265) 1.363 (0.00123) 1.535 (0.00046) 1.64 (0.00114)

Standard ITR 1.143 (0.00434) 1.232 (0.00329) 1.383 (0.0015) 1.535 (0.000543) 1.632 (0.00142)

RCT-ITR 1.251 (0.0108) 1.116 (0.011) 1.046 (0.0108) 1.144 (0.0101) 1.275 (0.0102)

RCT-DR-ITR 1.267 (0.0066) 1.305 (0.00423) 1.395 (0.00256) 1.52 (0.00212) 1.614 (0.00234)

CTE-DR-ITR 1.16 (0.00409) 1.247 (0.00323) 1.388 (0.00137) 1.534 (0.00055) 1.628 (0.00149)

1 Testing subgroup 1 probability = 0.75 is the same as the training one.
2 Values (larger the better) can be comparable for the same subgroup 1 probability but incomparable across different

subgroup 1 probabilities
3 LB-ITR maximizes the testing value function over the linear ITR class. The corresponding testing value is the best

achievable among the linear ITR class.
4 RWL (Zhou et al., 2017) implements the same routine as Standard ITR except that pCnpXq “ pQnpX, 1q´ pQnpX,´1q`

2ArY ´ pQnpX, Aqs.
5 RCT-ITR fits RWL on the calibrating RCT dataset directly.

Table 2.19: Testing Values (Standard Errors) on Mixture of Subgroups (ncalib “ 100)

Testing Subgroup 1 Probability

type 0.1 0.25 0.5 0.75 0.9

LB-ITR 1.665 (0.0067) 1.537 (0.00618) 1.444 (0.00412) 1.545 (0.00537) 1.679 (0.00585)

`1-PLS 1.182 (0.00191) 1.264 (0.0014) 1.399 (0.000591) 1.537 (0.000333) 1.624 (0.000781)

RWL 1.092 (0.00349) 1.194 (0.00265) 1.363 (0.00123) 1.535 (0.00046) 1.64 (0.00114)

Standard ITR 1.143 (0.00434) 1.232 (0.00329) 1.383 (0.0015) 1.535 (0.000543) 1.632 (0.00142)

RCT-ITR 1.493 (0.00431) 1.354 (0.00499) 1.25 (0.00489) 1.359 (0.0049) 1.5 (0.0046)

RCT-DR-ITR 1.284 (0.00654) 1.324 (0.00421) 1.402 (0.00195) 1.524 (0.00191) 1.613 (0.00233)

CTE-DR-ITR 1.165 (0.00403) 1.247 (0.00305) 1.389 (0.00134) 1.535 (0.000584) 1.628 (0.00147)

1 Testing subgroup 1 probability = 0.75 is the same as the training one.
2 Values (larger the better) can be comparable for the same subgroup 1 probability but incomparable across different

subgroup 1 probabilities
3 LB-ITR maximizes the testing value function over the linear ITR class. The corresponding testing value is the best

achievable among the linear ITR class.
4 RWL (Zhou et al., 2017) implements the same routine as Standard ITR except that pCnpXq “ pQnpX, 1q´ pQnpX,´1q`

2ArY ´ pQnpX, Aqs.
5 RCT-ITR fits RWL on the calibrating RCT dataset directly.
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Table 2.20: Testing Misclassification Rates (Standard Errors) on Mixture of Subgroups (ncalib “ 50)

Testing Subgroup 1 Probability

type 0.1 0.25 0.5 0.75 0.9

LB-ITR 0.06691 (0.0017) 0.1556 (0.0014) 0.2296 (0.00078) 0.153 (0.0012) 0.06668 (0.0015)

`1-PLS 0.3059 (0.00044) 0.2775 (0.00027) 0.2291 (0.00016) 0.1789 (0.00041) 0.149 (0.00058)

RWL 0.3242 (0.00071) 0.2885 (4e-04) 0.2283 (0.00021) 0.1664 (0.00069) 0.1302 (0.00099)

Standard ITR 0.3103 (0.00097) 0.2785 (0.00058) 0.2238 (0.00017) 0.1676 (0.00074) 0.1342 (0.0011)

RCT-ITR 0.2472 (0.0027) 0.2822 (0.0025) 0.3001 (0.0022) 0.2763 (0.0023) 0.2436 (0.0026)

RCT-DR-ITR 0.2751 (0.0023) 0.2614 (0.0013) 0.2266 (0.00052) 0.1809 (0.0012) 0.147 (0.0014)

CTE-DR-ITR 0.3068 (0.00093) 0.2759 (0.00059) 0.2242 (0.00019) 0.1701 (0.00074) 0.1379 (0.0011)

1 Testing subgroup 1 probability = 0.75 is the same as the training one.
2 LB-ITR maximizes the testing value function over the linear ITR class. The corresponding testing value is the best

achievable among the linear ITR class.
3 RWL (Zhou et al., 2017) implements the same routine as Standard ITR except that pCnpXq “ pQnpX, 1q´ pQnpX,´1q`

2ArY ´ pQnpX, Aqs.
4 RCT-ITR fits RWL on the calibrating RCT dataset directly.
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CHAPTER 3

Efficient Learning of Optimal Individualized Treatment Rules for Heteroscedastic
or Misspecified Treatment-Free Effect Models

3.1 Introduction

Among the methods of finding an optimal ITR, the double robustness property has been studied

and advocated to protect from potential model misspecifications. In the model-based approaches,

the optimal ITR only depends on the interaction effect between covariates and treatment within

the outcome mean model. Then the treatment-free effect that only depends on covariates can be a

nuisance component. Robins (2004) investigated the incorrectly specified parametric model for the

treatment-free effect, and introduced the G-estimating equation that can incorporate additional

information from the propensity score. The G-estimator can be doubly robust in the sense that

the estimate remains consistent even if one of the treatment-free effect model and the propensity

score model is misspecified. As special cases, Lu et al. (2013); Ertefaie et al. (2021) developed

least-squares approaches that can equivalently solve the G-estimating equation and enjoy double

robustness. Wallace and Moodie (2015); Meng and Qiao (2020) took a different approach to hedge

the risk of treatment-free effect misspecification. Specifically, they proposed the weighted least-

squares problem that utilizes the propensity score information to construct balancing weights, and

the resulting estimates can also be doubly robust. In the direct-search approaches, the AIPWE of

the value function is doubly robust in a slightly different way. Specifically, the AIPWE incorporates

the outcome mean function and the propensity score function. When estimating the outcome

mean and propensity score functions, even if one of their model specifications is incorrect, the

corresponding AIPWE can still remain consistent.

The double robustness property has also been widely studied in the causal inference literature

(Robins et al., 1994, 1995; Ding and Li, 2018). One problem of particular interest is to study the

case when one of or both model misspecifications happen. Kang and Schafer (2007) provided a
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comprehensive empirical study on how model misspecification can affect the resulting estimates.

They concluded that the misspecified outcome mean model can be generally more harmful than the

misspecified propensity score model. When both models are misspecified, the doubly robust esti-

mate can perform even worse than the IPWE. Later studies further developed improved estimates

and inference procedures to overcome such challenges (Tan, 2010; Rotnitzky et al., 2012; Vermeulen

and Vansteelandt, 2015; Benkeser et al., 2017). These studies have also motivated some improve-

ment of the AIPWE for the ITR problem. Specifically, when the outcome mean model is incorrectly

specified, Cao et al. (2009) proposed an optimal estimation strategy for the misspecified outcome

mean model in the sense that the resulting AIPWE can have the smallest variance. Pan and Zhao

(2021) further extended this work to the ITR problem, and utilized augmented inverse-probability

weighted estimating equations for the outcome mean model estimation.

Motivated from Kang and Schafer (2007) that the misspecified treatment-free effect can have

more severe consequence, we focus on addressing this challenge. In our study, we find that the

misspecified treatment-free effect in the model-based approach can have a consequence similar to

heteroscedasticity (Carroll, 1982). More specifically, both misspecified treatment-free effect and

heteroscedasticity can cause the variance of residuals being dependent on covariates and treatment.

Therefore, we take the approach of semiparametric efficient estimation under heteroscedasticity

(Ma et al., 2006) and propose an Efficient Learning (E-Learning) framework for the optimal ITR

in the multi-armed treatment setting. Our proposed E-Learning can enjoy the following properties:

1. When nuisance models are correctly specified, E-Learning performs semiparametric efficient esti-

mation. Our framework can allow the variance of outcome depends on covariates and treatment,

and hence is more general than existing semiparametric efficient procedures such as G-Estimation

and its equivalents;

2. E-Learning is doubly robust with respect to the treatment-free effect model and the propensity

score model;

3. In presence of misspecified treatment-free effect, E-Learning is optimal with the minimal
?
n-

asymptotic variance among a regular class of semiparametric estimates based on the given work-

ing treatment-free effect function. Our optimality incorporates the standard semiparametric

efficiency (Tsiatis, 2007) as a special case for the ITR problem.
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This chapter contributes to existing literature in terms of the followings:

1. Parallel to the improved doubly robust procedure in Pan and Zhao (2021) for direct-search ap-

proaches, E-Learning is an improved doubly robust method for model-based approaches. Specif-

ically, E-Learning performs optimal efficiency improvement when one of or both misspecified

treatment-free effect and heteroscedasticity exist;

2. E-Learning incorporates many existing approaches as special cases, including Q-Learning, G-

Estimation, A-Learning, dWOLS, Subgroup Identification, D-Learning and RD-Learning. It

provides a more general framework to study the double robustness and estimation efficiency for

these methods;

3. We develop E-Learning for the setting with multiple treatments. In particular, E-Learning

utilizes a generalized equiangular coding of multiple treatment arms to develop the efficient esti-

mating function. This can be the first work to incorporate equiangularity in the semiparametric

framework among those utilizing the equiangular coding (Zhang and Liu, 2014; Zhang et al.,

2020; Qi et al., 2020; Meng et al., 2020; Xue et al., 2021);

4. In our simulation study, our proposed E-Learning demonstrates superior performance over exist-

ing methods when one of or both misspecified treatment-free effect and heteroscedasticity exist,

which confirms the superior performance of the proposed E-Learning. In the analysis of a Type

2 Diabetes Mellitus (T2DM) observational study, E-Learning also demonstrates its improved

efficiency compared to other methods.

The rest of this chapter is organized as follows. In Section 3.2, we introduce the methodology

of E-Learning. In particular, mathematical setups and notations are introduced in Section 3.2.1.

A motivating example is discussed in Section 3.2.2 to demonstrate the consequence of misspecified

treatment-free effect and heteroscedasticity. Semiparametric efficient estimating equation is devel-

oped in Section 3.2.3. E-Learning and its implementation details are proposed in Sections 3.2.4

and 3.2.5. In Section 3.3, we discuss the connection of E-Learning with the existing literature. In

Section 3.4, we establish theoretical results for E-Learning. Simulation studies and the application

to the T2DM dataset are provided in Sections 3.5 and 3.6 respectively. Some discussions are given

in Section 3.7. Additional discussions, including an analysis of the ACTG 175 dataset, technical
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proofs, additional tables and figures can be found in Section 3.8. The implementation based on R

of this chapter is available at https://github.com/harrymok/E-Learning.git.

3.2 Methodology

In this section, we first introduce the ITR problem as a semiparametric estimation problem. Then

we study the semiparametric efficient estimation procedure and propose E-Learning.

3.2.1 Setup

Consider the data pX, A, Y q, where X P X Ď Rp denotes the covariates, A P A “ t1, 2, ¨ ¨ ¨ ,Ku

is the treatment assignment with K treatment options, and Y P R is the observed outcome. For

1 ď k ď K, let Y pkq be the potential outcome under the assigned treatment k. An ITR is a

mapping from covariates to treatment assignment d : X Ñ A. The value function of an ITR is

defined as Vpdq :“ ErY pdpXqqs. Assuming that a larger outcome is better, the goal is to find the

optimal ITR that maximizes the value function d‹ P argmaxd:XÑA Vpdq.

Assume the identifiability conditions (Rubin, 1974): (consistency) Y “ Y pAq; (uncon-

foundedness) A KK tY pkquKk“1|X; (strict overlap) for 1 ď k ď K, PpA “ k|Xq ě

pA for some pA ą 0. Then the value function can be written as Vpdq “ ErY |A “

dpXqs “ E
!

řK
k“1 EpY |X, A “ kq1rdpXq “ ks

)

. Consequently, the optimal ITR satisfies d‹pxq P

argmax1ďkďK EpY |X “ x, A “ kq for any x P X . This motivates us to study the following

semiparametric model:

Y “ µ0pXq ` γpX, A;βq ` ε,

subject to
K
ř

k“1

γpX, k;βq “ 0; Epε|X, Aq “ 0; σ2pX, Aq :“ Epε2|X, Aq ă `8;

pX, A, εq „ pX pxqpA pa|xqpεpε|x, aq.

(3.1)

Here, µ0pXq is the treatment-free effect, and γpX, A;βq is the interaction effect between X and A

that is parametrized by the p-dimensional parameter vector β P B Ď Rp. In particular, it requires

that the parametrized interaction effect satisfies a sum-to-zero constraint for identifiability. The

dependency on β may be suppressed for ease of notation in our later presentation. Moreover,

σ2pX, Aq is the variance function of ε that can depend on pX, Aq. Finally, pX pxq, pA pa|xq
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and pεpε|x, aq are density functions. Then the nuisance component η :“ ppX , pA , pε, µ0q is left

unspecified only with the moment restriction
ş

εpεpε|x, aqdε “ 0.

Given the true parameter β in Model (3.1), the optimal ITR is d‹pxq P argmax1ďkďK γpx, k;βq.

In Theorem 3.1 below, we show that maximizing the value function can be directly related to finding

a good estimate of the interaction effect γpX, Aq in Model (3.1).

Theorem 3.1 (Estimation and Regret Bound). Consider Model (3.1). Let pγnpX, Aq be an estimate

of γpX, Aq, pdnpxq P argmax1ďkďK pγnpx, kq, and d‹pxq P argmax1ďkďK γpx, kq. Then

Vpd‹q ´ Vppdnq ď 2 max
1ďkďK

E |pγnpX, kq ´ γpX, kq| .

Here, pγn is fixed and E takes expectation over X.

The proof of Theorem 3.1 is similar to Murphy (2005, Lemma 2) and is included in Section

3.8. It implies that minimizing the estimation error of the interaction effects tγpX, kquKk“1 can also

minimize the regret. In this chapter, we focus on finding an efficient estimate of the parametric

interaction effect γpX, A;βq.

3.2.2 A Motivating Example

We introduce a motivating example to demonstrate that several existing approaches, including

Q-Learning, G-Estimation, A-Learning, dWOLS, Subgroup Identification, D-Learning and RD-

Learning, may not be optimal if either the treatment-free effect µ0pXq is misspecified, or the

variance function Epε2|X, Aq depends on pX, Aq. In contrast, the E-Learning estimate can be

much more efficient. All these methods are compared in Section 3.3.

Consider the covariate X with a symmetric distribution on R, the treatment A „ Bernoullip1{2q,

and the error term ε „ N p0, 1q, where X,A, ε are mutually independent. Suppose the outcome Y

is generated by

Y “ c1|X|
loomoon

treatment-free effect

` pA´ 1{2qβ0
loooooomoooooon

interaction effect

`

d

1` 2c2
2AX

2
loooooomoooooon

variance function

ε,

for some β0 ě 0. When estimating from the training data, suppose that we specify Xη for the

treatment-free effect with η to be estimated, and pA´ 1{2qβ for the interaction effect with β to be

estimated. If c1 “ 0, then the treatment-free effect is correctly specified, with the true parameter
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η “ 0; otherwise, the treatment-free effect is misspecified. If c2 “ 0, then the variance function is

1, and homogeneous with respect to pX,Aq; otherwise, we have a heteroscedastic model with the

variance of error depending on pX,Aq.

Denote En as the empirical average over the training dataset of size n. Then for this particular

example, Q-Learning (Watkins, 1989), G-Estimation (Robins, 2004), A-Learning (Murphy, 2003),

dWOLS (Wallace and Moodie, 2015), Subgroup Identification (Tian et al., 2014), D-Learning (Qi

and Liu, 2018) and RD-Learning (Meng and Qiao, 2020) are equivalent to the following Ordinary

Least-Squares (OLS) problem:

ppηn, pβnq P argmin
η,βPR

EnrY ´Xη ´ pA´ 1{2qβs2. (3.2)

Note that if c1 “ c2 “ 0 with correctly specified treatment-free effect and homoscedasticity, then

pβn is semiparametric efficient. For the general c1 and c2, the OLS estimates pβn and pηn are asymp-

totically independent, with
?
npηn

D
Ñ N p0, ν2q for some ν2 ą 0 and

?
nppβn ´ β0q “

?
nrEpA´ 1{2q2 ` OPp1qs

´1En
„

pA´ 1{2q

ˆ

c1|X| `
b

1` 2c2
2AX

2ε

˙

D
Ñ N p0, v2q,

where the
?
n-asymptotic variance of pβn is given by v2 “ 4Er1`pc2

1` c
2
2qX

2s “ 4Ep1` c2X2q with

c2 :“ c2
1 ` c2

2. Notice that the residual is pe “ Y ´Xpηn ´ p2A ´ 1qpβn “ c1|X| `
a

1` 2c2
2AX

2ε `

OPpn
´1{2q. Then we have Eppe2|Xq “ 1` c2X2 `OPpn

´1q, which clearly depends on X.

Motivated from the heteroscedastic residual, we define qvεpxq :“ 4p1 ` c2x2q. Consider the

solutions to the generalized least-squares problem

ppηeff,n, pβeff,nq P argmin
η,βPR

En
!

qv´1
ε pXqrY ´Xη ´ pA´ 1{2qβs2

)

. (3.3)

Then pβeff,n and pηeff,n are asymptotically independent, with
?
npηeff,n

D
Ñ N p0, rν2q for some rν2 ą 0,

?
nppβeff,n ´ β0q “

?
n

"

E
„

pA´ 1{2q2

4p1` c2X2q



` OPp1q

*´1

En

»

–

pA´ 1{2q
´

c1|X| `
a

1` 2c22AX
2ε
¯

4p1` c2X2q

fi

fl

D
Ñ N p0, v2

effq,

where the
?
n-asymptotic variance of pβeff,n is given by v2

eff “ 4
“

Ep1` c2X2q´1
‰´1

. The asymptotic

relative efficiency of pβeff,n with respect to pβn is v2{v2
eff “ Ep1 ` c2X2qE

´

1
1`c2X2

¯

ě 1. That is,
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pβeff,n has a smaller
?
n-asymptotic variance than pβn. The strict inequality generally holds if c ‰ 0

and X is non-degenerate.

Next we consider an extreme case to illustrate that pβeff,n can be much more efficient than pβn.

Suppose X „ qf pMqpxq` p1´ qqf p8qpxq, where f pMqpxq is a symmetric probability density function

(PDF) with compact support on r´M,M s, f p8qpxq is a symmetric PDF on R with
ş

R x
2f p8qpxqdx “

`8, and q P p0, 1s is the mixture probability. Then for c ‰ 0, v2 ě 4r1 ` c2EX„f p8qpX2qs “ `8,

while v2
eff ď

“

qEX„f pMqp1` c2X2q´1
‰´1

ď 4p1 ` c2M2q{q. Here, v2 “ `8 implies that pβn cannot

even be OPpn
´1{2q, while in contrast, pβeff,n has a bounded

?
n-asymptotic variance v2

eff . Therefore, if

either the treatment-free effect is misspecified pc1 ‰ 0q, or the variance function is not homogeneous

pc2 ‰ 0q, then pβn can have much worse perforamance than the more efficient estimate pβeff,n.

From the motivating example above, we can conclude that the efficiency of many existing

approaches can be improved when either misspecified treatment-free effect or heteroscedasticity

happens. In fact, our example shows that misspecified treatment-free effect or heteroscedasticity

can cause the dependency of Eppe2|Xq “ 1` c2X2 on X. Motivated from efficient estimation under

heteroscedasticity (Ma et al., 2006) and our motivating example, we introduce the working variance

function voptpXq “ 1` c2X2, and consider the generalized least-squares estimate as in (3.3). The

estimation efficiency can be greatly improved in this case.

Xiao et al. (2019, Theorem 6) pointed out a phenomenon similar to our finding in Section 3.2.2,

while their methodology and theoretical properties differ from ours. To be specific, Xiao et al.

(2019) replaced the squared loss by general robust loss functions. Under the assumption ε KK A|X,

their estimate based on the quantile loss function can be shown consistent and
?
n-asymptotic

normal. However, it remains unclear whether the
?
n-asymptotic normality still holds, and if so, how

large the corresponding
?
n-asymptotic variance is, when treatment-free effect misspecification and

heteroscedasticity exist. In contrast, we show in Theorem 3.10 that, under a more general setting,

our proposed estimation strategy using the working variance function qvεpxq is optimal, with the

smallest
?
n-asymptotic variance, for heteroscedastic and misspecified treatment-free effect models.

This implies that E-Learning is more general with better optimality guarantee than Xiao et al.

(2019).

The methodology introduced in this section is special in the sense that the treatment assign-

ment is binary, i.e. A P t0, 1u. For multiple treatment options A P t1, 2, ¨ ¨ ¨ ,Ku with K ą 2,
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the estimation problem is no longer an inverse-variance weighted least-squares problem. We will

motivate our general methodology from the semiparametric efficient estimate of Model (3.1).

3.2.3 Semiparametric Efficient Estimate

In this section, we derive the semiparametric efficient estimate of β for Model (3.1). The efficient

estimating function can be related to some existing methods in the literature. The connections are

discussed in Sections 3.3.1 and 3.3.2.

3.2.3.1 Efficient Score

In order to obtain the corresponding estimating equation, we first show the procedures to calculate

the semiparametric efficient score following Tsiatis (2007). To that end, we take the following steps

to derive: 1) the nuisance tangent space; 2) the efficient score; 3) the efficient estimating function.

We first derive the nuisance tangent space with respect to η following Tsiatis (2007, Chapter

7). The same result was also used in Ma et al. (2006); Liang and Yu (2020).

Lemma 3.2 (Nuisance Tangent Space). Consider Model (3.1). Define H :“ thpX, A, εq | h :

X ˆ A ˆ R Ñ Rp, EhpX, A, εq “ 0, E}hpX, A, εq}22 ă `8u, which is equipped with the norm

} ¨ } :“ pE} ¨ }22q1{2. Then the nuisance tangent space is

Λ “
!

H P H : EpHε|X, Aq “ EpHε|Xq
)

.

The proof of Lemma 3.2 is included in Section 3.8.

Next we discuss how to obtain the efficient score of Model (3.1). The efficient score is defined

as the projection of the score vector onto the orthogonal complement ΛK of the nuisance tangent

space. Notice that the moment restriction in Lemma 3.2 is equivalent to

EpHε|X, A “ 1q “ EpHε|X, A “ 2q “ ¨ ¨ ¨ “ EpHε|X, A “ Kq.

Then we can introduce a set of coding vectors tωku
K
k“1 Ď RK´1, such that

řK
k“1 ckωk “ 0 if and

only if c1 “ c2 “ ¨ ¨ ¨ “ cK . Equivalently, we can let Ω :“
a

1´ 1{Krω1,ω2, ¨ ¨ ¨ ,ωKs
ᵀ P RKˆpK´1q,

and require that p1{
?
Kq1Kˆ1 is the only left singular vector corresponding to the singular value 0
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of Ω. In the following Lemma 3.3, we show that any coding vectors satisfying such a requirement

are equiangular up to normalization.

Lemma 3.3 (Equiangularity). Let Ω :“
a

1´ 1{Krω1,ω2, ¨ ¨ ¨ ,ωKs
ᵀ P RKˆpK´1q such that

p1{
?
Kq1Kˆ1 is the only left singular vector corresponding to the singular value 0. Then

tpΩᵀΩq´1{2ωku
K
k“1 are equiangular.

The equiangular coding representation in Zhang and Liu (2014); Zhang et al. (2020); Qi et al.

(2020) is an example that satisfies Lemma 3.3. The equiangular coding vectors tωku
K
K“1 can be

useful to define the following RK´1-valued decision function associated with the interaction effect.

Lemma 3.4 (Angle-Based Decision Function). Consider Model (3.1). For the coding vec-

tors tωku
K
k“1 Ď RK´1 as in Lemma 3.3, define an RK´1-valued decision function ~fpx;βq :“

pΩᵀΩq´1
řK
k“1 γpx, k;βqωk. Then we have

γpx, k;βq “

ˆ

1´
1

K

˙

xωk, ~fpx;βqy; 1 ď k ď K.

Moreover, the optimal ITR is given by

d‹pxq P argmax
1ďkďK

xωk, ~fpx;βqy. (3.4)

Without loss of generality, assume that }ωk}2 “ 1 for 1 ď k ď K. For ease of notation, we

denote ~f “ ~fpx;βq. Then the angle between ωk and ~f satisfies cos =pωk, ~fq “ xωk, ~fy{} ~f}2.

The decision rule (3.4) is equivalent to argmin1ďkďK =pωk, ~fq. That is, among K coding vectors

tωku
K
k“1, the decision function ~f seeks for the arm that the corresponding coding vector has the

least angle with respect to ~f .

Based on the coding vectors, the tangent space in Lemma 3.2 can be rewritten as

Λ “

#

H P H : OpˆpK´1q “

K
ÿ

k“1

EpHε|X, A “ kqωᵀ
k “ E

ˆ

Hωᵀ
Aε

pA pA|Xq

ˇ

ˇ

ˇ

ˇ

X

˙

+

.

Then we can obtain ΛK and the projection operator onto it as in the following Lemma 3.5. For a

vector a, we denote ab2 :“ aaᵀ.
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Lemma 3.5 (Projection onto ΛK). Let Λ be the tangent space in Lemma 3.2, tωku
K
k“1 Ď RK´1 be

the coding vectors satisfying
řK
k“1 ckωk “ 0 if and only if c1 “ c2 “ ¨ ¨ ¨ “ cK . Then

ΛK “

"

HpXqωAε

pA pA|Xq

ˇ

ˇ

ˇ

ˇ

H : X Ñ RpˆpK´1q

*

.

Furthermore, the projection operator onto ΛK is

EpH|ΛKq “ E
"

Hωᵀ
Aε

pA pA|Xq

ˇ

ˇ

ˇ

ˇ

X

*

VεpXq
´1 ωAε

pA pA|Xq
,

where VεpXq :“
řK
k“1

σ2pX,kqωb2
k

pA pk|Xq
P RpK´1qˆpK´1q. Here, if VεpXq is degenerate, then VεpXq

´1

represents its measurable generalized inverse.

The efficient score of the semiparametric model (3.1) is defined as the projection of the score

vector, the gradient of the log-likelihood with respect to β, onto ΛK (Tsiatis, 2007). Proposition

3.6 provides the explicit form of the efficient score.

Proposition 3.6 (Efficient Score). Consider Model (3.1), the coding vectors tωku
K
k“1 Ď RK´1 as

in Lemma 3.3, and the angle-based representation in Lemma 3.4. The semiparametric efficient

score is

Seffpβq “ 9FpX;βqᵀΩᵀΩVεpXq
´1 ˆ

ωA
pA pA|Xq

ˆ ε,

where 9FpX;βq :“ pB{Bβᵀq ~fpX;βq P RpK´1qˆp, and VεpXq
´1 is the same as in Lemma 3.5.

As a consequence of Proposition 3.6, we can finally define the efficient estimating function:

φeffpβ; qµ0, qpA , qσ
2q

:“

„

Y ´ qµ0pXq ´

ˆ

1´
1

K

˙

xωA, ~fpX;βqy



looooooooooooooooooooooooooomooooooooooooooooooooooooooon

residual

ˆ 9FpX;βqᵀΩᵀΩ

«

K
ÿ

k“1

qσ2pX, kqωb2
k

qpA pk|Xq

ff´1
ωA

qpA pA|Xq
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

efficient instrument

,

(3.5)

which depends on the nuisance functions qµ0pXq, qpA pA|Xq and qσ2pX, Aq. In particular, Seffpβq “

φeffpβ;µ0, pA , σ
2q. That is, if the parameters β of interest and all nuisance functions pµ0, pA , σ

2q

match with the truth in Model (3.1), then the estimating function becomes the efficient score.
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3.2.4 E-Learning

In Section 3.2.3, we have obtained the efficient estimating function φeffpβ; qµ0, qpA , qσ
2q from (3.5).

An E-Learning estimate of β solves

Enrφeffpβ; pµ0,n, ppA ,n, pσ
2
nqs “ 0, (3.6)

where ppµ0,n, ppA ,nq are the finite-sample estimates of treatment-free effect and treatment assignment

probability in Model (3.1). Furthermore, pσ2
npX, Aq is an estimate of the optimal variance function

σ2
optpX, A; pµ0,nq :“ rpµ0,npXq ´ µ0pXqs

2 ` σ2pX, Aq. (3.7)

The optimality of σ2
optpX, A; pµ0,nq is justified in Theorem 3.10 in Section 3.4.1.2. However, (3.7)

can depend on the true treatment-free effect function µ0pXq and variance function σ2pX, Aq, which

are unknown. Motivated from the example in Section 3.2.2, we can consider the working residual

pe :“ Y ´ pµ0,npXq ´ γpX, A;βq, such that Eppe2|X, A, pµ0,nq “ rpµ0,npXq ´ µ0pXqs
2 ` σ2pX, Aq “

σ2
optpX, A; pµ0,nq. Therefore, pσ2

npX, Aq can be obtained by regressing pe2 on pX, Aq.

Similar to the general methodology in Davidian and Carroll (1987), the E-Learning estimate

of β can be solved by the following three steps:

Step 1. Obtain a consistent estimate pβ
p0q
n of β. This can be done by solving (3.6) with pσ

p0q2
n “ 1 that

results in a consistent estimate of β. The consistency is guaranteed by Proposition 3.7;

Step 2. Obtain pσ2
npX, Aq. Specifically, we first compute the working residual pe “ Y ´ pµ0,npXq ´

γpX, A; pβ
p0q
n q, and then perform a nonparametric regression using pe2 as the response and

pX, Aq as the covariates to estimate the optimal working variance function;

Step 3. Solve (3.6) again using pσ2
npX, Aq from Step 2 to obtain the E-Learning estimate pβn.

More implementation details are discussed in Section 3.2.5 below.
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3.2.5 Implementation

For the implementation of E-Learning, we first need to estimate the treatment assignment probabil-

ities tpA pk|Xqu
K
k“1 and the treatment-free effect µ0pXq. Then we follow the three-step procedures

in Section 3.2.4 for E-Learning estimation.

3.2.5.1 Estimating the Propensity Score Function

Suppose the treatment assignment probability pA is unknown. The first approach of estimating

pA is to consider the penalized multinomial logistic regression (Friedman et al., 2010). Specifically,

consider the multinomial logistic working model qpA pk|X; τ1, τ2, ¨ ¨ ¨ , τKq :“
exppτᵀkXq

řK
k1“1

exppτᵀ
k1
Xq

. The

propensity score parameters τ1, τ2, ¨ ¨ ¨ , τK P Rp can be estimated by the following penalized log-

likelihood maximization:

max
τ1,¨¨¨ ,τKPRp

#

En

«

K
ÿ

k“1

τᵀkX1pA “ kq ´ log

˜

K
ÿ

k1“1

eτ
ᵀ
k1
X

¸ff

´ λA

p
ÿ

j“1

˜

K
ÿ

k“1

τ2
jk

¸1{2 +

,

where the group-LASSO penalty
řp
j“1

´

řK
k“1 τ

2
jk

¯1{2
takes tτjku

K
k“1 for the j-th variable across all

treatments as a group, and λA is a tuning parameter and can be chosen using cross validation.

In observational studies, the propensity scores can be vulnerable to model misspecification.

Another approach for estimating pA is to consider flexible nonparametric regression using the

regression forest (Athey et al., 2019). Specifically, for each 1 ď k ď K, we run a regression forest

using 1pA “ kq as the response and X as the covariates. Then each fitted regression forest provides

a prediction for Er1pA “ kq|Xs. The final estimate of pA pk|Xq is the prediction after normalization

such that the summation over k “ 1, ¨ ¨ ¨ ,K is one.

3.2.5.2 Estimating the Treatment-Free Effect Function

Similar to Section 3.2.5.1, the treatment-free effect function µ0 can be estimated from a parametric

model or nonparametric regression. For parametric estimation, we consider the linear working

model qµ0pX;ηq “ ηᵀX. In this case, the outcome mean model in (3.1) is fully parametrized. For

example, if γpX, A;Bq “ p1´ 1{KqxωA,B
ᵀXy, then we can consider the following joint penalized
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inverse-probability weighted least-squares problem with the `1-penalty:

min
ηPRp,BPRpˆpK´1q

#

En

«

1

ppA ,npA|Xq

ˆ

Y ´ ηᵀX ´

ˆ

1´
1

K

˙

xωA,B
ᵀXy

˙2
ff

` λµ0 p}η}1 ` }B}1q

+

,

where ppA ,n is the estimated treatment assignment probability, λµ0 is a tuning parameter and can be

chosen using cross validation. Here, if ppA ,npA|Xq is the correct treatment assignment probability,

then the above estimate for η can be consistent even if the model for the interaction effect γpX, A;βq

is incorrect. If the model for the interaction effect γpX, A;βq is correct, then the above estimate

for η can also be consistent for any arbitrary ppA ,n besides the correct one.

For nonparametric regression, we first divide the data into K subsets according to the received

treatments. For each 1 ď k ď K, we use Y as the response andX as the covariates to fit a regression

forest on the data subset tpXi, Yiq : Ai “ ku. Then each fitted regression forest corresponds to

the prediction of EpY |X, A “ kq. We average the predictions over k “ 1, ¨ ¨ ¨ ,K to obtain the

treatment-free effect estimate.

3.2.5.3 Estimating the Variance Function

Suppose pe is the working residual in Step 2. In order to estimate the variance function, we

specifically consider the regression forest using pe2 as the response and pX, Aq as the covariates.

Then pσ2
npX, kq is the regression forest prediction at pX, kq for 1 ď k ď K.

In the simulation study in Section 3.5.3, we also study another two nonparametric regression

methods, the Multivariate Adaptive Regression Splines (MARS) (Friedman, 1991) and the COm-

ponent Selection and Smoothing Operator (COSSO) (Lin and Zhang, 2006). Here, the COSSO

estimate of the working variance function is based on the following Smoothing Spline ANalysis Of

VAriance (SS-ANOVA) model: Eppe2|X, Aq “ ν0`
řp
j“1 fjpXjq`

řK
k“1 αk`

řp
j“1

řK
k“1 fjkpXjq`u,

where ν0 is the global main effect, tfjpXjqu
p
j“1 are the covariate main effects, tαku

K
k“1 are the treat-

ment main effects, tfjkpXjqu1ďjďp,1ďkďK are the covariate-treatment interaction effects, and u is

the remainder term that is not modeled.
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3.2.5.4 Solving the Regularized E-Learning Estimating Equation

In this section, we consider further regularization Jpβq on the parameters of interest. One example

from Qi et al. (2020) is to consider the linear angle-based decision function ~fpX;Bq “ BᵀX in

Lemma 3.4, where the covariate vector X P Rp can be high-dimensional. They introduced the

row-wise group-LASSO penalty on the matrix coefficient B “ rβjkspˆpK´1q P RpˆpK´1q as JpBq :“

}B}2,1 “
řp
j“1p

řK´1
k“1 β2

jkq
1{2, which encourages sparsity among input covariates. Another example

can be the extension to nonlinear modeling of the decision function ~fpXq, where a functional

penalty Jp ~fq is applied.

To incorporate regularization in E-Learning from (3.6), we solve the penalized estimating equa-

tions (Johnson et al., 2008):

min
βPRp

"

1

2

›

›Enrφeffpβ; pµ0,n, ppA ,n, pσ
2
nqs

›

›

2

W
` λJpβq

*

, (3.8)

where }x}2W :“ xᵀWx with some weighting matrix W P Rpˆp. A typical choice of W can be Ipˆp

or the inverse of the empirical information matrix
 

EnrpB{Bβᵀqφeffpβ; pµ0,n, ppA ,n, pσ
2
nqs

(´1
. Problem

(3.8) can be solved by the accelerated proximal gradient method (Nesterov, 2013) with the gra-

dient β ÞÑ Enrφeffpβ; pµ0,n, ppA ,n, pσ
2
nqs. A comprehensive lists of the proximal operators on various

penalties Jpβq can be found in Mo and Liu (2021). For a fixed λ, the estimation procedure follows

the three steps in Section 3.2.4. The parameter λ can be further tuned by cross validation. The

IPWE of the value function is used as the tuning criteria. Denote pβnpλq as the solution to (3.8).

The corresponding ITR becomes pdnpX;λq :“ argmax1ďkďK γpX, k; pβnpλqq. Let tpXi, Ai, Yiqu
nvalid
i“1

be the validation dataset. Then the criteria for λ is 1
nvalid

řnvalid
i“1

1r pdnpXi;λq“Ais
ppA ,npAi|Xiq

Yi, which is larger

the better.

More implementation details for E-Learning are discussed in Sections 3.8.3 and 3.8.4 in Section

3.8.

3.3 Connections to Existing Literature

In this section, we discuss the connection of the E-Learning estimating function (3.5) to several

methods in the existing literature. It can be shown that with more assumptions in addition to Model
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(3.1), several existing methods can be equivalent to (3.5). That is, E-Learning can incorporate

these methods as special cases. The motivating example in Section 3.2.2 is such a special case.

In Sections 3.3.1 and 3.3.2, we discuss the equivalence and the specific additional assumptions.

In Section 3.3.3, we further provide the general comparisons for these methods and some other

nonparametric methods in the literature.

3.3.1 Binary Treatment

We first consider the binary treatment case K “ 2 and relate the efficient estimating function

(3.5) to some existing methods. We follow the convention to denote A “ t0, 1u. Then we have

one-dimensional coding for two treatment arms as ω0, ω1, which satisfies c0ω0 ` c1ω1 “ 0 if and

only if c0 “ c1. Then we have ω1 “ ´ω0. Without loss of generality, we can assume that ω1 “ 1

and ω0 “ ´1, which become the sign coding of treatments. Then ΩᵀΩ “ 1.

The variance matrix from Proposition 3.6 becomes a scalar: vεpXq :“ σ2pX,1q
pA p1|Xq

`
σ2pX,0q
pA p0|Xq

.

The decision function fpX;βq is R-valued, such that γpX, A;βq “ p1{2qωAfpX;βq. Then the

E-Learning efficient estimating function (3.5) becomes

φeffpβ; qµ0, qpA , qσ
2q “ rY ´ qµ0pXq ´ p1{2qωAfpX;βqs

qv´1
ε pXqωA
qpA pA|Xq

9fpX;βq, (3.9)

where 9fpX;βq :“ pB{BβqfpX;βq P Rp. Moreover, (3.9) is also equivalent to the following weighed

least-squares problem:

min
βPRp

En
"

qv´1
ε pXq

qpA pA|Xq
rY ´ qµ0pXq ´ p1{2qωAfpX;βqs2

*

. (3.10)

There are some connections for this formulation to several methods in the existing literature.

Q-Learning Consider the additional assumptions: (a) homoscedasticity σ2pX, 1q “ σ2pX, 0q “

σ2; and (b) complete-at-random treatment assignment pA p1|Xq “ pA p0|Xq “ 1{2. Then E-

Learning (3.10) reduces to an OLS problem. If we also assume that: (c) the treatment-free effect

satisfies µ0pXq “X
ᵀpη ` β{2q, where pβ,ηq are jointly estimated, then E-Learning (3.10) can be
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equivalent to the standard Q-Learning (Watkins, 1989) in this case:

min
η,βPRp

EnpY ´Xᵀη ´AXᵀβq2.

G-Estimation, A-Learning and dWOLS Consider the additional assumption: (a) homoscedas-

ticity σ2pX, 1q “ σ2pX, 0q “ σ2. Then v´1
ε pXq “ σ´2pA p1|XqpA p0|Xq. Without loss of gener-

ality, we can further assume that σ2 “ 1. Denote πA pXq :“ pA p1|Xq “ EpA|Xq. Then we have

v´1
ε pXqωA
pA pA|Xq

“ A´ πA pXq “ |A´ πA pXq|ωA and v´1
ε pXq

pA pA|Xq
“ |A´ πA pXq|.

Robins (2004) proposed the G-Estimation strategy for dynamic treatment regimes, which is

equivalent to the standard A-Learning (Murphy, 2003) in the single-stage setting. In particular,

G-Estimation solves the estimating equation

En
!

rY ´ pµ0,npXq ´AX
ᵀβs

“

A´ pπA ,npXq
‰

X
)

“ 0,

while A-Learning is equivalent to the estimating equation

En
!

“

Y ´ pm0,npXq ´
`

A´ pπA ,npXq
˘

Xᵀβ
‰ “

A´ pπA ,npXq
‰

X
)

“ 0.

Then G-Estimation and A-Learning are equivalent to E-Learning (3.9) in this case up to

reparametrization, where pµ0,npXq is replaced by pm0,npXq ´ pπA ,npXqX
ᵀβ.

Wallace and Moodie (2015) proposed the dWOLS method. In the single-stage setting, they

considered the following weighted least-squares problem:

min
η,βPRp

En
!

wpX, AqpY ´Xᵀη ´AXᵀβq2
)

,

where wpX, Aq satisfies the balancing condition πA pXqwpX, 1q “ r1 ´ πA pXqswpX, 0q. Note

that wpX, Aq “ |A ´ πA pXq| meets this balancing condition. Assume that: (b) the treatment

assignment probability πA pXq “ pA p1|Xq is known; and (c) the treatment-free effect satisfies

µ0pXq “ X
ᵀpη ` β{2q, where pβ,ηq are jointly estimated. Then dWOLS with wpX, Aq “ |A ´
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πA pXq| is equivalent to E-Learning (3.10):

min
η,βPRp

En
!

|A´ πA pXq|pY ´X
ᵀη ´AXᵀβq2

)

.

Subgroup Identification, D-Learning and RD-Learning Consider the additional assump-

tions: (a) the variance function satisfies vεpXq “
σ2pX,1q
pA p1|Xq

`
σ2pX,0q
pA p0|Xq

“ vε, which is a constant; (b)

the treatment assignment probability pA pA|Xq is known; and (c) the treatment-free effect satisfies

µ0pXq “ 0. Then E-Learning (3.10) is equivalent to the standard Subgroup Identification (Tian

et al., 2014; Chen et al., 2017) and the binary D-Learning (Qi and Liu, 2018):

min
βPRp

En
"

1

pA pA|Xq
rY ´ p1{2qωAX

ᵀβs2
*

.

If both (b) and (c) are relaxed, then E-Learning (3.10) is equivalent to the augmented Subgroup

Identification (Chen et al., 2017, Web Appendix B) and the binary RD-Learning (Meng and Qiao,

2020):

min
βPRp

En
"

1

ppA ,npA|Xq
rY ´ pµ0,npXq ´ p1{2qωAX

ᵀβs2
*

.

3.3.2 Multiple Treatments and Partially Linear Model

For general K ě 3, we consider the linear decision function ~fpX;Bq “ BᵀX, where B P RpˆpK´1q

is a parameter matrix. By Lemma 3.4, Model (3.1) becomes

Y “ µ0pXq `

ˆ

1´
1

K

˙

xωA,B
ᵀXy ` ε; Epε|X, Aq “ 0; σ2pX, Aq “ Epε2|X, Aq ă `8,

(3.11)

which is a Heteroscedasticitic Partially Linear Model (HPLM) (Ma et al., 2006).

Denote vecpBq P RppK´1q as the vectorization of B. The we further have ~fpX;Bq “

pIpK´1qˆpK´1q b Xq
ᵀvecpBq and 9FpX;Bq “ rB{BvecpBqᵀs ~fpX;βq “ pIpK´1qˆpK´1q b Xq

ᵀ, where
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b denotes the Kronecker product. The E-Learning efficient estimating function (3.5) becomes

φeffpB; qµ0, qpA , qσ
2q “ rpΩᵀΩq b Idˆds

loooooooomoooooooon

constant matrix

ˆ

„

Y ´ qµ0pXq ´

ˆ

1´
1

K

˙

xωA,B
ᵀXy



ˆ
qVεpXq

´1ωA
qpA pA|Xq

bX,

(3.12)

where qVεpXq :“
řK
k“1

qσ2pX,kqωb2
k

qpA pk|Xq
, and qVεpXq

´1 denotes the generalized inverse if not invertible.

Consider the additional assumption: (a) the variance function satisfies VεpXq “

řK
k“1

σ2pX,kqωb2
k

pA pk|Xq
“ Vε, which is a constant matrix. Then E-Learning (3.12) is equivalent to the

multi-arm RD-Learning:

min
BPRpˆpK´1q

En

#

1

ppA ,npA|Xq

„

Y ´ pµ0,npXq ´

ˆ

1´
1

K

˙

xωA,B
ᵀXy

2
+

.

Notice that the multi-arm D-Learning (Qi et al., 2020) cannot be equivalent to E-Learning. In

fact, D-Learning solves the following vectorized least-squares problem:

min
BPRpˆpK´1q

En
"

1

2KpA pA|Xq
}KY ωA ´ BᵀX}22

*

. (3.13)

The estimating function of (3.13) is

„

Y ´

ˆ

1´
1

K

˙

xωA,B
ᵀXy



ˆ
ωA

pA pA|Xq
bX

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

efficient estimating function if (a) and µ0pXq “ 0

`
1

pA pA|Xq

„ˆ

1´
1

K

˙

ωb2
A ´

1

K
IpK´1qˆpK´1q



vecpXb2Bq
looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

:“φDpX,Aq

.

Note that ErφDpX, Aq|Xs “ 0 and ErφDpX, Aqb2s is strictly positive definite, which contributes

an extra term to the
?
n-asymptotic variance of the D-Learning estimate. This suggests that when

K ě 3, the D-Learning estimate can generally have a larger asymptotic variance than E-Learning.

3.3.3 General Comparisons

In Table 3.1, we provide the comparisons of the methods discussed in Sections 3.3.1 and 3.3.2.

We also compare several popular nonparametric approaches including Outcome Weighted Learning

(OWL) (Zhao et al., 2012), Residual Weighted Learning (RWL) (Zhou et al., 2017; Liu et al., 2018),

Efficient Augmentation and Relaxation Learning (EARL) (Zhao et al., 2019a), and Policy Learning
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(Athey and Wager, 2021; Zhou et al., 2018b). In particular, EARL and Policy Learning utilize the

AIPWE of the value function, which incorporates the outcome and propensity score models and is

doubly robust. The listed methods are also compared in the simulation studies in Section 3.5.2.

Table 3.1: Comparisons of E-Learning with Several Existing Methods in the Literature

Method
Nuisance Models

Doubly
Robust

Assumptions for Being Optimal
Allow
K ě 3Outcome Propensity

Treatment-

Free Effect
Propensity Variance

E-Learning Yes Yes Yes Arbitrary Correct Hetero. Yes

Q-Learning Yes No No Correct 1{K Homo. Yes

G-Estimation Yes Yes Yes
Correct Correct Homo.

No
A-Learning Yes Yes Yes No

dWOLS Yes Yes Yes No

Subgroup

Identification

Std. No Yes No 0 Known Const. Yes
Aug. Yes Yes No Correct Known Const. Yes

RD-Learning Yes Yes Yes Correct Correct Const. Yes

D-Learning
K “ 2

No Yes No
0 Known Const.

Yes
K ě 3

N/A
OWL No Yes No No
RWL Yes Yes No No

EARL Yes Yes Yes No
Policy Learning Yes Yes Yes Yes
1 “Being optimal” is defined as the estimate of β in Model (3.1) achieves the smallest

?
n-asymptotic variance among the

class of estimates in Definition 3.1.
2 Methods of Subgroup Identification include the standard (std.) and augmented (aug.) versions.
3 Variance assumptions are: homo. ô constant σ2pX, Aq; hetero. ô general σ2pX, Aq; const. ô VεpXq “
řK
k“1

σ2pX,kqωb2
k

pA pk|Xq
is a constant matrix.

We also discuss the estimation optimality for β in Table 3.1. Note that the nonparametric

methods do not assume Model (3.1). Therefore, the estimation optimality for β is not available.

In Theorem 3.10 in Section 3.4.1.2, we establish that the E-Learning estimate of β achieves the

smallest
?
n-asymptotic variance among the class of estimates in Definition 3.1. This is also referred

as “being optimal” in Table 3.1. Since the methods discussed in Sections 3.3.1 and 3.3.2, except for

D-Learning with K ě 3, are equivalent to E-Learning under specific additional assumptions, this

also implies that the equivalent methods are optimal under those specific additional assumptions.

However, this is not true for the general case. In contrast, our proposed E-Learning remains optimal

under the most general scenario among all these methods.
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3.4 Theoretical Properties

We investigate some theoretical properties of E-Learning. In particular, in Section 3.4.1, we es-

tablish estimation properties based on the efficient estimating function (3.5). In Section 3.4.2, we

further relate the asymptotic properties to the regret bound of the estimated ITR.

3.4.1 Asymptotic Properties

We first focus on estimation properties of the proposed E-Learning. In Proposition 3.7, we show

the double robustness property of the estimating function (3.5).

Proposition 3.7 (Double Robustness). Consider Model (3.1) and the estimating function (3.5).

Suppose qµ0pXq, qpA pA|Xq and qσ2pX, Aq are arbitrary nuisance functions. Then we have

Erφeffpβ; qµ0, pA , qσ
2qs “ Erφeffpβ;µ0, qpA , qσ

2qs “ 0.

If either qµ0 “ µ0 or qpA “ pA , then Erφeffpβ; qµ0, qpA , qσ
2qs “ 0 at the true parameter β in

Model (3.1). By assuming the positivity of the information matrix at β (Assumption 3.4.3), the

consistency of pβn P argminβPB
1
2

›

›

›
Enrφeffp

pβn; qµ0, qpA , qσ
2qs

›

›

›

2

2
can be established by the consistency of

an M-estimator (van der Vaart and Wellner, 1996, Corollary 3.2.3). This implies the doubly robust

property of pβn. If pqµ0, qpA , qσ
2q are replaced by their finite-sample estimate ppµ0,n, ppA ,n, pσ

2
nq, then

Lemma 3.8 can be further applied to obtain consistency. Based on the connections from Section

3.3, Proposition 3.7 provides a more general framework to explain the double robustness property

discussed in Robins (2004); Lu et al. (2013); Wallace and Moodie (2015); Meng and Qiao (2020).

Our next goal is to study how model specifications can affect estimation efficiency. In Section

3.4.1.1, we study the asymptotic properties of the parameter estimate under correctly specified

models. In Section 3.4.1.2, we further consider the case of misspecified treatment-free effect, and

show that there exists an optimal choice of the working variance function for efficiency improvement.

3.4.1.1 Correctly Specified Models

For simplicity, we assume that the treatment assignment probability pA is known, so that the

estimating function is consistent due to Proposition 3.7. This assumption can be relaxed to as-
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suming a consistent estimate ppA ,n of pA , and the theoretical results can be extended following the

cross-fitting argument in Ertefaie et al. (2021). For example, we can assume a correctly specified

parametric model for pA .

We make additional assumptions on the squared integrability of Model (3.1) and the conver-

gence of the plug-in treatment-free effect and variance function estimates. The estimated variance

function pσ2
npX, Aq is furthered assumed uniformly bounded away from 0 to ensure that the small-

est eigenvalue of pVε,npXq “
řK
k“1rpσ

2
npX, kq{pA pk|Xqsω

b2
k is uniformly bounded away from 0, so

that the largest eigenvalue of pVε,npXq
´1 can be bounded from above. This can also be relaxed by

considering a specific generalized inverse of pVε,npXq to extend the theoretical results.

Assumption 3.1 (Treatment Assignment Probability). The treatment assignment probability pA

is known, such that for some pA ą 0, we have pA pa|xq ě pA for all x P X and a P A.

Assumption 3.2 (Squared Integrability). Consider Model (3.1) and the angle-based decision func-

tion ~fpX;βq in Lemma 3.4. We assume the following:

� ErµpXq2s ă `8;

� E sup
qβPB

γpX, A; qβq2 ă `8;

� Epε2q “ Eσ2pX, Aq ă `8;

� 9FpX; qβq “ pB{Bβᵀq ~fpX; qβq P RpK´1qˆp exists for qβ P B, and E sup
qβPB

} 9FpX; qβq}22 ă `8,

where } ¨ }2 is the spectral norm on RpK´1qˆp.

Assumption 3.3 (Convergence of Plug-in Estimates).

� There exists some qµ0 : X Ñ R, such that Erqµ0pXq
2s ă `8 and p1{nq

řn
i“1rpµ0,npXiq ´

qµ0pXiqs
2 “ OPpn

´1q.

� There exists some 0 ă σ2 ď sσ2 ă `8 and qσ2 : X ˆ A Ñ R`, such that σ2 ď

pσ2
npx, aq, qσ

2px, aq ď sσ2, and }pσ2
n ´ qσ2}8 “ supxPX ,aPA |pσ

2
npx, aq ´ qσ2px, aq| “ OPpn

´1{2q.

Given Assumptions 3.1-3.3, we show in Lemma 3.8 that the plug-in estimating equation associated

with (3.5) is
?
n-asymptotically equivalent to the limiting estimating equation.
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Lemma 3.8 (Plug-in Estimating Equation). Consider Model (3.1) and the estimating function

(3.5). Under Assumptions 3.1-3.3, we have

sup
qβPB

En
›

›

›
φeffp

qβ; pµ0,n, pA , pσ
2
nq ´ φeffp

qβ; qµ0, pA , qσ
2q

›

›

›

2
“ OPpn

´1{2q.

Lemma 3.8 implies that the plug-in estimates ppµ0,n, pσ
2
nq do not affect the

?
n-asymptotic properties

of the estimating function (3.5). Then we can show the asymptotic normality of pβeff,n as the

solution to Enrφeffp
pβeff,n; pµ0,n, pA , pσ

2
nqs “ 0 following the argument in Newey (1994). Moreover, if

the treatment-free effect and the variance function are correctly specified, i.e., pqµ0, qσ
2q “ pµ0, σ

2q

in Model (3.1), then pβeff,n is semiparametric efficient, in the sense that its
?
n-asymptotic variance

achieves the semiparametric variance lower bound. We summarize the regularity conditions in

Assumption 3.4.

Assumption 3.4 (Regularity Conditions). Consider Model (3.1) and the angle-based representa-

tion in Lemma 3.4. We assume the following:

3.4.1 B is a compact subset in Rp and the true parameter β P B̊, where B̊ is the interior of B;

3.4.2 :Fpx; qβq “ pB{Bβq 9Fpx; qβq P RpK´1qˆpˆp exists and satisfies E sup
qβPB

}:FpX; qβq}22 ă `8, where

} ¨ }2 is the operator norm of pRp, } ¨ }2q Ñ pRpK´1qˆp, } ¨ }2q;

3.4.3 Define qVεpXq :“
řK
k“1

qσ2pX,kqωb2
k

qpA pk|Xq
and qIpβq :“ E

”

9FpX;βqᵀΩᵀΩqVεpXq
´1ΩᵀΩ 9FpX;βq

ı

, where

qVεpXq
´1 denotes the generalized inverse if not invertible. Assume qIpβq is positive definite;

3.4.4 The true parameter β is a unique solution to Erφeffpβ; qµ0, pA , qσ
2qs “ 0.

Note that the definition of qIpβq only depends on the working variance function qσ2 through

qVεpXq. We denote qI to reflect that it depends on qσ2. It can be shown that for any qβ P B, we have

qIpqβq “ Er´pB{Bβᵀqφeffp
qβ; qµ0, pA , qσ

2qs. In Theorem 3.9, we establish the semiparametric efficiency

of E-Learning. For symmetric matrices A and B, the matrix inequality A ď B means that B´ A is

positive semi-definite.

Theorem 3.9 (Semiparametric Efficiency under Correct Specification). Consider Model (3.1) and

the angle-based representation in Lemma 3.4. Suppose pβeff,n is the solution to the estimating equa-
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tion Enrφeffp
pβeff,n; pµn, pA , pσ

2
nqs “ 0 from (3.6). Then under Assumptions 3.1-3.4, we have

pβeff,n ´ β “ qIpβq´1Enrφeffpβ; qµ0, pA , qσ
2qs ` OPpn

´1{2q.

Moreover, if pqµ0, qσ
2q “ pµ0, σ

2q, then pβeff,n is semiparametric efficient, in the sense that for any

other Regular and Asymptotic Linear (RAL) estimate pβn, we have

Ipβq´1 “ lim
nÑ8

nVarppβeff,nq ď lim
nÑ8

nVarppβnq,

where Ipβq :“ E
”

9FpX;βqᵀΩᵀΩVεpXq
´1ΩᵀΩ 9FpX;βq

ı

is the semiparametric information matrix.

For specific parametric models of ~fpX;βq, the information matrix can be simplified. In the

binary treatment case discussed in Section 3.3.1, we have vεpXq “
σ2pX,1q
pA p1|Xq

`
σ2pX,0q
pA p0|Xq

, which becomes

a scalar weight. It is shown that E-Learning is equivalent to the generalized least-squares problem

(3.10) with the weight v´1
ε pXqpA pA|Xq

´1, which is also the overlap weight under heteroscedasticity

(Crump et al., 2006; Li and Li, 2019). Then the information is Ipβq “ ErvεpXq´1 9fpX;βqb2s, where

9fpX;βq :“ pB{BβqfpX;βq. For HPLM (3.11) in the multiple treatment case (Section 3.3.2), the

information matrix becomes IpBq “ E
“

VεpXq
´1 bXb2

‰

.

In Theorem 3.9, if qµ0 ‰ µ0, then pβeff,n is not semiparametric efficient. A natural question is to

ask whether there exists some qσ2 such that pβeff,n is still “optimal” in certain sense. This motivates

our discussion in Section 3.4.1.2.

3.4.1.2 Misspecified Treatment-Free Effect Model

Going beyond the double robustness and semiparametric efficiency of the estimating function (3.5),

we are further interested in certain optimality when misspecified treatment-free effect happens.

Specifically, we first define the regular class of semiparametric estimates of β.

Definition 3.1 (Regular Class of Semiparametric Estimates). Denote pβn “ pβnpqµ0q as an estimate

based on n observations independent and identically distributed from Model (3.1), and take the

working treatment-free effect function qµ0 as its input. We define a regular class of semiparametric

estimates Bnpqµ0q as follows. For any pβnpqµ0q P Bnpqµ0q, there exists some h : X ˆ A Ñ Rp, which

can depend on pβ, qηq, such that:
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� The estimate pβnpqµ0q corresponds to the estimating function

φpβ; qµ0q “ rY ´ qµ0pXq ´ γpX, A;βqshpX, A;β, qηq.

That is, Enrφppβnpqµ0q; qηqs “ 0;

� (Consistency) ErhpX, A;β, qηq|Xs “ 0.

Note that the consistency condition is equivalent to Erφpβ; qµ0qs “ 0 for any qµ0 : X Ñ R.

This can be concluded from that ErhpX, A;β, qηq|Xs “ 0 if and only if for any qµ0, we have

0 “ Erφpβ; qµ0qs “ E
!

rµ0pXq ´ qµ0pXqsErhpX, A;β, qηq|Xs
)

. The consistency can be met by

any doubly robust estimates with a correct propensity score, such as G-Estimation, A-Learning,

dWOLS, and RD-Learning.

If qµ0 is the true treatment-free effect µ0 in Model (3.1), then by Tsiatis (2007, Theorem 4.2),

any semiparametric RAL estimate of β must have an influence function in the form of φpβ;µ0q in

Definition 3.1. That is, for any RAL estimate rβn, there exists some pβnpµ0q P Bnpµ0q, such that

rβn “ pβnpµ0q`OPpn
´1{2q under Model (3.1). Therefore, Bnpµ0q can represent the equivalent classes

of RAL estimates, where two RAL estimates are “equivalent” if and only if their
?
n-asymptotic

variances are the same. In particular, Bnpµ0q consists of the “regular versions” such that their

estimating functions coincide with their IFs.

Definition 3.1 provides a useful class of estimates with a specific form of dependency on the

working treatment-free effect function qµ0. In fact, the following Theorem 3.10 shows that, given

a working treatment-free effect function qµ0, there exists some optimal RAL estimate among the

regular class Bnpqµ0q, in the sense that its
?
n-asymptotic variance is the smallest.

Theorem 3.10 (Optimal Efficiency Improvement under Misspecification). Given a working

treatment-free effect function qµ0 : X Ñ R, consider Model (3.1) and the regular class of semi-

parametric estimates Bnpqµ0q in Definition 3.1. Define

σ2
optpX, A; qµ0q :“ rqµ0pXq ´ µ0pXqs

2 ` σ2pX, Aq,
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and pβeff,npqµ0q P Bnpqµ0q as the solution to Enrφeffp
pβeff,npqµ0q; qµ0, pA , σ

2
optqs “ 0 from (3.6). Then

under Assumptions 3.1-3.4, we have

Ipβ; qµ0q
´1 “ lim

nÑ8
nVarrpβeff,npqµ0qs ď lim

nÑ8
nVarrpβnpqµ0qs; @pβnpqµ0q P Bnpqµ0q,

where VεpX; qµ0q :“
řK
k“1

σ2
optpX,A;qµ0qω

b2
k

pA pk|Xq
and Ipβ; qµ0q :“

E
”

9FpX;βqᵀΩᵀΩVεpX; qµ0q
´1ΩᵀΩ 9FpX;βq

ı

.

Note that Theorem 3.10 can be more general than the semiparametric efficiency in Theorem

3.9, in the sense that the optimality in Theorem 3.10 is for a general working treatment-free effect

function. Specifically, if qµ0 “ µ0, then Bnpµ0q in Definition 3.1 represents the equivalent classes

of RAL estimates with the
?
n-asymptotic variance as the equivalence relationship. In that case,

Theorem 3.10 recovers Theorem 3.9 that pβeff,n has the smallest
?
n-asymptotic variance. As a

remark, we would like to point out that Theorem 3.10 can be extended to the estimating equation

Enrφeffp
pβeff,n; pµ0,n, pA , pσ

2
nqs “ 0 with plug-in nuisance function estimates ppµ0,n, pσ

2
nq. The argument

is similar to Theorem 3.9, and we omit the details here.

If the working treatment-free effect function qµ0 is not identical to the true treatment-free effect

function µ0 in Model (3.1), then Theorem 3.10 suggests an optimal variance function σ2
optpX, A; qµ0q.

For the binary treatment case, the optimal working variance function can correspond to

vεpx; qµ0q “
σ2

optpx, 1; qµ0q

pA p1|xq
`
σ2

optpx, 0; qµ0q

pA p0|xq
“
σ2px, 1q

pA p1|xq
`
σ2px, 0q

pA p0|xq
`
rqµ0pxq ´ µ0pxqs

2

pA p1|xqpA p0|xq
.

The corresponding generalized least-squares estimate from (3.10) can achieve the smallest
?
n-

asymptotic variance among the regular class of estimates Bnpqµ0q. The motivating example in

Section 3.2.2 is a special case when we further assume pA p1|Xq “ pA p0|Xq “ 1{2.

Remark 3.1 (General Asymptotic Variance). It can be useful to compute the
?
n-asymptotic

variance for arbitrary working treatment-free effect and variance function pqµ0, qσ
2q. Suppose pβn is

the solution to Erφeffp
pβn; qµ0, pA , qσ

2qs “ 0. Then we have

Erφeffpβ; qµ0, pA , qσ
2qb2s “ E

”

9FpX;βqᵀΩᵀΩqVεpXq
´1VεpX; qµ0qqVεpXq

´1ΩᵀΩ 9FpX;βq
ı

, (3.14)
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and Er´pB{Bβᵀqφeffpβ; qµ0, pA , qσ
2qs “ qIpβq. The

?
n-asymptotic variance is given by the sandwich

form limnÑ8 nVarppβnq “ qIpβq´1rp3.14qsqIpβq´1.

Remark 3.2 (Incorrect Propensity Score). In our theoretical analysis, we assume that the propen-

sity score is known or can be consistently estimated. In Section 3.8.2 in Section 3.8, we further

discuss the case when the propensity score is incorrect. Although the optimality of Theorem 3.10

cannot be recovered in this case, the covariate-dependent variance adjustment for the optimal work-

ing variance function qσ2
optpX, Aq can still be helpful. We demonstrate in our simulation studies

(Section 3.5) that E-Learning still outperforms other methods even with incorrect propensity.

In Theorem 3.10, we establish the optimality of using the working variance function

σ2
optpX, A; qµ0q in the proposed E-Learning. As discussed in Section 3.2.4, the optimal working

variance function can be identified by the expectation of the squared working residual. This can

confirm the optimality of the E-Learning estimate.

3.4.2 Regret Bound

In this section, we relate the theoretical results for estimation in Section 3.4.1 to the regret bound

for the estimated ITR. Recall from Theorem 3.1 that the estimation error of the interaction effect

can dominate the regret. We further make compactness assumption on covariates to establish the

regret bound.

Assumption 3.5 (Compact Covariate Domain). The support of the distribution pX pxq is compact.

Theorem 3.11 (Regret Bound for RAL Estimate). Consider Model (3.1) and the angle-based

representation in Lemma 3.4. Suppose
?
nppβn ´ βq

D
Ñ Npp0,Σq for some Σ ą 0. Define pdnpxq :“

argmax1ďkďKxωk,
~fpx; pβnqy and d‹pxq :“ argmax1ďkďKxωk,

~fpx;βqy. Then under Assumptions

3.2, 3.4.2 and 3.5, we have

lim sup
nÑ8

?
nrVpd‹q ´ EVppdnqs ď 2 lim

nÑ8

#

n
K
ÿ

k“1

ErγpX, k; pβnq ´ γpX, k;βqs2

+1{2

“ 2

ˆ

1´
1

K

˙1{2

Tr
!

E
”

9FpX;βqᵀΩᵀΩ 9FpX;βq
ı

Σ
)1{2

.
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The regret bound in Theorem 3.11 can be tight compared to Theorem 3.1, since Theorem 3.11

only relaxes the absolute estimation error to the squared estimation error, and the maximization

to the summation. Theorem 3.11 further implies that the regret bound and the estimation error

are both in
?
n-order, where the leading constant depends on the

?
n-asymptotic variance Σ of the

estimated parameters pβn. In particular, denote } ¨ }F as the Frobenius norm. Then we have

Tr
!

E
”

9FpX;βqᵀΩᵀΩ 9FpX;βq
ı

Σ
)

ď

›

›

›
E
”

9FpX;βqᵀΩᵀΩ 9FpX;βq
ı
›

›

›

F
ˆ }Σ}F,

with equality if 9FpX;βq contains X and we take supremum over all possible covariate distribution

pX on both sides. This suggests that an RAL estimate with the smallest
?
n-asymptotic variance Σ

can achieve the minimal regret bound. This complements the theoretical results in Sections 3.4.1.1

and 3.4.1.2 that establish the optimality of E-Learning estimate of β in terms of the
?
n-asymptotic

variance. In particular, if we use the efficient estimate pβeff,npqµ0q with the optimal choice of working

variance function σ2
optpX, A; qµ0q, then the

?
n-asymptotic variance Σ becomes Ipβ; qµ0q

´1, and the

regret bound above is the smallest among all RAL estimates in Bpqµ0q.

To conclude this section, we have established that E-Learning is doubly robust and optimal

with the smallest
?
n-asymptotic variance among the class of regular semiparametric estimates in

Definition 3.1, which can allow multiple treatments, heteroscedasticity and misspecified treatment-

free effect. The corresponding regret bound can also have an optimal leading constant in the

n´1{2-order.

3.5 Simulation Study

We consider several simulation studies to compare the proposed E-Learning with existing methods

from the literature and demonstrate the superiority of E-Learning.

3.5.1 Data Generating Process and Model Specifications

The synthetic data generation process is as follows. Let n P t100, 200, 400, 800, 1600u be the training

sample size, p P t10, 50, 100u be the number of variables, and K P t2, 3, 5, 7u be the number

of treatments. First, we generate the coefficients of the treatment-covariate-interaction effect by

prβ0k, rβ1k, rβ2k, rβ3k, rβ4k, rβ5kq „ Uniformtu P R6 : }u}2 “ 1u independently for 1 ď k ď K, βjk :“
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rβjk ´
1
K

řK
k1“1

rβjk1 for 0 ď j ď 5, and βk :“ pβ0k, β1k, β2k, β3k, β4k, β5k,

p´5
hkkkikkkj

0, ¨ ¨ ¨ , 0qᵀ for 1 ď k ď K.

Then we generate the data from:

X „ Npp0, Ipˆpq; PpA “ k|Xq “ pA pk|Xq
loooomoooon

propensity score

“
epX, kq

řK
k1“1 epX, k1q

; 1 ď k ď K;

Y |pX, Aq “ µ0pXq ´ Erµ0pXqs
looooooooooomooooooooooon

treatment-free effect

` βᵀ
Ap1,X

ᵀqᵀ
looooomooooon

interaction effect

` σpX, Aq
looomooon

variance function

ˆN p0, 1q.

For the coefficient vectors tβku
K
k“1, the optimal ITR is d‹pxq “ argmax1ďkďK β

ᵀ
kp1,x

ᵀqᵀ. Here, the

true treatment-free effect function µ0pxq, variance functions tσ2px, kquKk“1 and the propensity score

functions tepx, kquKk“1 are defined according to Table 3.2.

Table 3.2: True Models and the Implying Model Specifications in the Simulation Studies

Correctly Specified Misspecified Treatment-Free Effect

Homo-

scedastic

Hetero-

scedastic

Homo-

scedastic

Hetero-

scedastic
Variance

T
ru

th

µ0pxq “
1?
K

řK
k1“1 xk1

1
K

řK
k1“1 e

?
2xk1

epx, kq “ exk{2

C
o

rrectly

S
pecifi

ed

P
ro

p
e
n

sity
S

co
re

σ2px, kq “ 1 e2
?

2xk 1 e2
?

2xk

µ0pxq “
1?
K

řK
k1“1 xk1

1
K

řK
k1“1 e

?
2xk1

epx, kq “ |xk|
1{2

M
is-

specifi
edσ2px, kq “ 1 e2

?
2xk 1 e2

?
2xk

1 The treatment-free effect is estimated by a linear working model.
2 The propensity score is estimated by a multinomial logistic working model.

When estimating the treatment-free effect µ0pXq ´ Erµ0pXqs, we consider a linear working

model qµ0pX; ηq “ ηᵀp1,Xᵀqᵀ. Then the treatment-free effect model is correctly specified if

the truth is µ0pxq “
1?
K

řK
k1“1 xk1 , while misspecified if the truth is µ0pxq “

1
K

řK
k1“1 e

?
2xk1 .

In Figure 3.5 in Section 3.8, we provide the fitted treatment-free effect plots when the model

is correctly and incorrectly specified. It shows that the estimated treatment-free effect is con-

sistent if correctly specified, and deviates from the truth if misspecified. When estimating

the propensity score functions tpA pk|Xqu
K
k“1, we consider a multinomial logistic working model

qpA pk|X; τ1, τ2, ¨ ¨ ¨ , τKq “
exprτᵀk p1,X

ᵀqᵀs
řK
k1“1

exprτᵀ
k1
p1,Xᵀqᵀs

. Then the propensity score model is correctly speci-

fied if the truth is generated from epx, kq “ exk{2, while misspecified if the truth is generated from

epx, kq “ |xk|
1{2. In Figure 3.6 in Section 3.8, we provide the fitted propensity score plots when the
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model is correctly and incorrectly speceified, and demonstrate how the misspecified model affects

the fitted propensity scores. As discussed in Section 3.2.4, if one of or both misspecified treatment-

free effect model and heteroscedasticity exist, the squared residuals can depend on pX, Aq. In

Figures 3.7-3.10, we provide the residual plots in all these cases to demonstrate such dependencies.

3.5.2 Binary Treatments

In this section, we consider the binary treatment case (K “ 2) and compare E-Learning with

existing methods from literature discussed in Table 3.1 in Section 3.3.3. The implementation

details of these methods are provided in Section 3.8.3 in Section 3.8.

For the implementation of E-Learning, we consider HPLM (3.11) and solve the regular-

ized estimating equation in Section 3.2.5.4 with the row-wise group-LASSO penalty. We fol-

low the implementation in Section 3.2.5 for the estimation of the treatment-free effect with the

linear working model, the propensity score with the multinomial logistic working model, and

the variance function with regression forest. The tuning parameter λ is chosen based on 10-

fold cross validation. We consider the oracle working variance function σ2
optpX, Aq “ rqµ0pXq ´

µ0pXqs
2 ` σ2pX, Aq and the estimated one from the regression forest using the squared residual

as the response and pX, Aq as the covariates. At the testing stage, a testing covariate sample

tXiu
ntest“10000
i“1

i.i.d.
„ Npp0, Ipˆpq is generated, and the testing value of an estimated ITR pd is com-

puted as pVtestp pdq “
1

ntest

řntest
i“1

řK
k“1 β

ᵀ
kp1,X

ᵀ
i q

ᵀ
1rpdpXiq “ ks. Recall that the optimal ITR is

d‹pxq “ argmax1ďkďK β
ᵀ
kp1,x

ᵀqᵀ. Then we report the testing regret, pVtestpd
‹q ´ pVtestppdq, and

the testing misclassification rate, 1
ntest

řntest
i“1 1rpdpXiq ‰ d‹pXiqs. The training-testing process is

replicated for 100 times for each of the model specification scenarios in Table 3.2.

We first consider the low-dimensional setting (p “ 10). Figure 3.1 reports the testing misclassi-

fication rates for the training sample sizes n P t100, 200, 400, 800, 1600u and each of the specification

scenarios listed in Table 3.2, while Figure 3.2 provides more details for n “ 400. In the case of

correctly specified treatment-free effect, correctly specified propensity score, and homoscedasticity

(upper-left panel of the plots), E-Learning, Q-Learning, G-Estimation, A-Learning, RD-Learning,

dWOLS and Subgroup Identification have similar testing performance, since all of them leverage

the correct parametric model assumption. Here, although Subgroup Identification does not rely on

a specific parametric model assumption, it is equivalent to RD-Learning in this case as discussed
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Figure 3.1: Testing misclassification rates (smaller the better) for n P t100, 200, 400, 800, 1600u, p “ 10,
K “ 2 and each of the model specification scenarios in Table 3.2. Methods in Table 3.1 are compared, where
E-Learning (Oracle) corresponds to E-Learning with the oracle working variance function, and Policy Tree
corresponds to Policy Learning with decision trees.

in Section 3.3.1. Therefore, it can enjoy similar performance as other model-based methods. In

contrast, D-Learning, OWL, RWL, EARL and Policy Tree are based on nonparametric models,

and can have inferior performance in this case. When one of or both misspecified treatment-free

effect and heteroscedasticity happen (columns 2-4 of the plots), the E-Learning procedures with

the oracle and estimated working variance function both demonstrate the best performance among

all methods. In particular, the advantages of E-Learning are more evident as n increases. Such a

superiority can still maintain even if the propensity score model is misspecified (second rows of the

plots). This suggests that incorrect propensity score can have relatively small impacts.

In Section 3.8, we further provide more plots of misclassification rates for n P

t100, 200, 800, 1600u (Figures 3.11-3.14) and testing regrets (Figures 3.15-3.20). All of them show

the same patterns as in Figures 3.1 and 3.2. In order to further demonstrate the superiority of
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Figure 3.2: Testing misclassification rates (smaller the better) for n “ 400, p “ 10, K “ 2 and each of the
model specification scenarios in Table 3.2. Methods in Table 3.1 are compared, where E-Learning (Oracle)
corresponds to E-Learning with the oracle working variance function, and Policy Tree corresponds to Policy
Learning with decision trees. First and second best methods in terms of the averaged misclassification rates
are annotated in horizontal lines. The minimal averaged misclassification rate is shown by the vertical line.

E-Learning in presence of moderately large number of variables, we also study the case of p “ 50

and report the testing performance in Figures 3.21 and 3.22. They show that even though the

increase in p can result in worse performance of all methods, the efficiency gain in sufficiently large

samples pn “ 200, 400, 800, 1600q of E-Learning remains.

3.5.3 Multiple Treatments

We consider the multiple treatment case (K “ 3) and compare E-Learning with model-based

methods that can allow multiple treatments (Q-Learning, D-Learning, RD-Learning). In particular,

we are interested in the following questions:

(I) Efficiency of different methods as n increases across all model specifications in Table 3.2;
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(II) The impacts of increase in the number of variables p;

(III) The impacts of increase in the number of treatments K;

(IV) Effects of different nonparametric estimation methods for variance function on the perfor-

mance of E-Learning.

For Question I, we consider the same setup as in Section 3.5.2 but with K “ 3. The testing

results are provided in Figure 3.23 in Section 3.8. In particular, E-Learning shows the same superi-

ority over Q-Learning, D-Learning, RD-Learning as in the binary case. For Question II, we consider

K “ 3 and varying p P t10, 50, 100u (Figures 3.24 and 3.25). As the number of variables p increases,

the performance of all methods become worse. For p “ 50, 100, Q-Learning, D-Learning and RD-

Learning have much worse performance when one of or both treatment-free effect misspecification

and heteroscedasticity happen, even with the sample size n “ 1600. The misclassification rates of

these methods are 0.562, 0.429 and 0.433 respectively for incorrectly specified treatment-free effect

and heteroscedasticity with n “ 1600 and p “ 100. In contrast, for sufficiently large sample sizes

(n “ 400, 800, 1600), the number of variables p has less impacts on E-Learning with the oracle

working variance function, while it requires sizes (n “ 800, 1600) for E-Learning with the estimated

working variance function to have comparable performance across p’s. The reason for requiring

larger sample sizes is due to the challenge of the high-dimensional nonparametric estimation of

the working variance function. The misclassification rates of E-Learning for incorrectly specified

treatment-free effect and heteroscedasticity with n “ 1600 and p “ 100 are 0.167 for the oracle

working variance function and 0.248 for the estimated working variance function respectively. These

results can confirm the superiority of E-Learning even when the number of variables increases to

100.

In order to study Question III, we consider p “ 10 and varying K P t2, 3, 5, 7u. Notice that

increasing the number of treatments can have two folds of effects. On one hand, the effective

dimensionality generally increases in K. For HPLM (3.11), the interaction effect γpX, A;Bq “ p1´

1{KqxωA,B
ᵀXy is indexed by the matrix-valued parameter B P RpˆpK´1q. The effective dimension

is ppK ´ 1q and increases with K. Moreover, the number of variance functions tσ2
optpX, kquKk“1

also increases in K, which means more nuisance functions to be nonparametrically estimated. On

the other hand, more treatments can lead to a harder classification problem. In particular, the
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misclassification rate of a random treatment rule drand with PrdrandpXq “ ks “ 1{K for 1 ď k ď K

is 1 ´ 1{K. Then the misclassification rate of the random treatment rule increases in K, which

suggests that the difficulty of the learning problem is also increasing. In Figures 3.26 and 3.27 in

Section 3.8, Q-Learning, D-Learning and RD-Learning have poor performance in presence of one

of or both treatment-free effect misspecification and heteroscedasticity. When both treatment-free

effect misspecification and heteroscedasticity exist, the misclassification rates of these methods with

n “ 1600 and K “ 7 are 0.811, 0.648 and 0.645 respectively. Notice that the misclassification rate

of the random treatment rule in this case is 1´ 1{7 “ 0.857, which suggests that the performance

of Q-Learning is close to the random treatment rule. In contrast, the E-Learning procedures with

oracle working variance and estimated working variance have misclassification rates 0.299 and 0.424

in this case, which significantly outperform other methods.

Finally, for Question IV, we consider p P t10, 50, 100u, K “ 3 and the comparisons among

E-Learning procedures with the oracle optimal working variance function, the working variance

function estimated by regression forest, MARS and COSSO. The numerical results in Figures

3.28 and 3.29 suggest that E-Learning with regression forest can have better performance than

E-Learning with MARS or COSSO, and the superiority remains even for p “ 50, 100. Therefore,

we recommend using regression forest for the working variance function estimation in E-Learning.

3.6 Application to a Type 2 Diabetes Mellitus (T2DM) Study

We consider a T2DM dataset from an observational study based on the Clinical Practice Research

Datalink (CPRD) (Herrett et al., 2015; Chen et al., 2018). The study population comprises T2DM

patients of age ě 21 years (registered at a CPRD practice) who received at least one of the long-

acting insulins (Glargine or Detemir), the intermediate-acting insulins, the short-acting insulins,

and the Glucagon-Like Peptide 1 Receptor Agonists (GLP-1 RAs) of Exenatide and Liraglutide

during 01/01/2012 - 12/31/2013. The treatment exposure A is defined as: 1) the long-acting

insulins alone (with no addition of any short or intermediate-acting insulin within 60 days); 2)

the intermediate-acting insulins alone (with no addition of any short or long-acting insulins within

60 days); 3) any insulin regimens including a short-acting insulin (the short-acting insulins either

alone or in combinations with any long or intermediate-acting insulin); 4) the GLP-1 RAs alone.
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Here, for patients who received one of the insulins as well as the GLP-1 RAs, the corresponding

treatment is defined as the earliest received one.

The primary outcome Y of this study is the change of the Hemoglobin A1c (HbA1c) lab value

(%, smaller the better) between Day 182 and Day 1 (defined as the first treatment date). The

following individual covariates X are measured: age, gender, ethnicity, weight, height, Body Mass

Index (BMI), High Density Lipoprotein (HDL), Low Density Lipoprotein (LDL), baseline HbA1c,

smoking status, and comorbidities (any of angina, congestive heart failure, myocardial infarction,

stroke, retinopathy, macular edema, renal status, neuropathy, and lower extremity amputation).

The total number of records from this study is 1139, with the primary outcome available for

591 records and missing for the rest. Among the 591 observations, there is a large proportion

of missingness in HDL and LDL. Therefore, for HDL and LDL, we first discretize the available

observations into two levels: if the observation is above the median, then set as high; otherwise,

set as low. Then we code the missing observations as n/a. Consequently, all possible levels of

LDL and HDL become: high, low, and n/a. For categorical variables (gender, ethnicity, smoking

status and comorbidities), we also code the missing observations as n/a and combine it with the

original levels of these variables. Finally, the remaining numerical variables (age, weight, height,

BMI, baseline HbA1c) have mild missingness, and we remove the records that contain any missing

entries among these variables. After pre-processing the dataset as above, there remains 430 records

for further analysis.

Next, we estimate the propensity scores from the dataset using the regression forest estimator

in Section 3.2.5.1. Then we are ready to apply E-Learning, RD-Learning, D-Learning, Q-Learning

and Policy Tree to the analysis of this dataset. In order to estimate the expected change of HbA1c

under the fitted ITRs, we randomly sample two disjoint subsets from the dataset for training and

testing. We choose various training sample sizes as n P t100, 200, 300u, and a testing sample size

ntest “ 100. On the training set, we consider estimation of the propensity scores based on regression

forest in the same way as that on the full dataset. We also apply different estimation methods of

the treatment-free effect for RD-Learning, including: 1) the linear model on X with the `1-penalty

(fitted by glmnet) as in Section 3.5, 2) the regression forest on X, 3) fitted treatment-free effect

as the mean of the primary outcome on the training set, and 4) fitted treatment-free effect as 0.

We find that the fitted treatment-free effect as 0 can result in better testing performance for RD-
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Learning. Therefore, we also use 0 as the estimated treatment-free effect in E-Learning. Since a

smaller outcome is better for this problem, we negate the outcome before fitting all models. Other

implementation details of all these methods remain the same as in Section 3.5. On the testing

dataset, we use the IPWE 1
ntest

řntest
i“1

1r pdpXiq“Ais
ppA pAi|Xiq

Yi to estimate the expected change in HbA1c

under the estimated ITR pd. The training-testing process is repeated for 500 times on this dataset.
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Figure 3.3: Testing changes in HbA1c (%, smaller the better) for training sample sizes n P t100, 200, 300u
on the T2DM dataset. Here, t.f. represents the fitted treatment-free effect, and reg. forest corresponds to
the regression forest.

The testing results are reported in Figure 3.3. E-Learning enjoys the best testing performance

among all training sample sizes. As the training sample size n increases, the advantage of E-Learning

is more evident compared with other methods. This can confirm the efficiency improvement of E-

Learning by using an optimal working variance function on this dataset. Among patients in the

T2DM dataset, E-Learning recommends 19.77% for long-acting insulins, 18.14% for intermediate-

acting insulins, 30.23% for short-acting insulins, and 31.86% for GLP-1 RAs. The fitted E-Learning

coefficients are reported in Table 3.3. In particular, short-acting insulins (A = 3) is recommended

for the patients with average covariates. Patients as former smokers are more recommended for the

short-acting insulins than other patients. The general benefits of short-acting insulins are consistent
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Table 3.3: E-Learning Coefficients on the T2DM Dataset

A = 1 A = 2 A = 3 A = 4

Intercept -0.164 -0.053 0.168 0.048

gender (male) -0.008 -0.014 0.029 -0.007

ethnic (others)

ethnic (white) -0.023 0.081 -0.029 -0.03

smoke (former) -0.001 -0.174 0.361 -0.186
smoke (no)

smoke (yes)

comorbidity (yes)

HDL (low) 0.033 -0.009 -0.053 0.029

HDL (high)

LDL (low) 0.004 0.115 -0.122 0.003
LDL (high) 0.007 -0.002 -0.023 0.018

baseline HbA1c -0.492 0.139 0.168 0.185

age -0.058 0.169 0.106 -0.217
weight

height

BMI

Note:

Larger coefficients encourage better outcome.

Coefficients are fitted at standardized scales of covariates.

Blank coefficients are 0’s. Absolute value ą 0.1 are bolded.

with the results in Chen et al. (2018); Meng et al. (2020). Moreover, it can be observed that the

coefficients for baseline HbA1c in Table 3.3 increase in the treatment arm. In fact, the averaged

baseline HbA1c values among recommended treatments A “ 1, 2, 3, 4 are 7.35%, 10.67%, 10.91%

and 11.18% respectively. This suggests that patients with worse baseline HbA1c are recommended

for faster-acting therapies, where the GLP-1 RAs (A = 4) can be regarded as an alternative for the

rapid-acting insulin (Ostroff, 2016). Such a phenomenon is also consistent with the recommended

treatment ordinality pointed out by Chen et al. (2018).

3.7 Discussion

In this chapter, we propose E-Learning for learning an optimal ITR under heteroscedasticity or mis-

specified treatment-free effect. In particular, E-Learning is developed from semiparametric efficient

estimation in the multi-armed treatment setting. When nuisance models are correctly specified,

even if heteroscedasticity exists, the
?
n-asymptotic variance of the estimated parameters achieve

the semiparametric variance lower bound. When the treatment-free effect model is misspecified,

E-Learning targets the optimal working variance function, so that the
?
n-asymptotic variance of

the estimated parameters is still the smallest among the class of regular semiparametric estimates.

In summary, E-Learning extends the optimality of existing model-based methods to allow multi-
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ple treatments, heteroscedasticity and treatment-free effect misspecification. The efficiency gain

of E-Learning is demonstrated by our simulation studies when either of or both heteroscedasticity

and misspecified treatment-free effect happen, where existing methods can have much worse per-

formance. This also can be consistent with Kang and Schafer (2007)’s finding that the misspecified

treatment-free effect can have severe consequences.

E-Learning is developed based on the parametric assumption on the covariate-treatment inter-

action effect γpX, A;βq. This can be further extended to flexible semiparametric or nonparametric

models such as the single-index model (Liang and Yu, 2020) and nonlinear functions in the repro-

ducing kernel Hilbert space (Zhao et al., 2012). Our proposed regularized estimation problem in

Section 3.2.5.4 can be ready for nonlinear learning when a functional penalty is used. It requires

further extensions of the efficient score from our Proposition 3.6 to semiparametric/nonparametric

settings.

Another direction of future work can be the high-dimensional problem. In Section 3.2.5.4, we

propose to solve the regularized estimating equation, which can handle high-dimensional parameter

estimation. However, the nonparametric estimation of the working variance function is also a po-

tential challenge when the dimension is growing. In our simulation study, our proposed E-Learning

with estimated working variance function requires larger sample sizes in presence of increasing

numbers of variables and treatments. In the literature, there exists three possible strategies to

accommodate this challenge: 1) considering index models for the variance function that can allow

dimension reduction (Zhu et al., 2013; Lian et al., 2015); 2) estimating the central variance sub-

space for sufficient dimension reduction (Zhu and Zhu, 2009; Luo et al., 2014; Ma and Zhu, 2019);

3) performing simultaneous nonlinear variable selection during nonparametric regression (Lin and

Zhang, 2006; Lafferty and Wasserman, 2008; Zhang et al., 2011; Allen, 2013). These can have

potential for further improvement of E-Learning.

3.8 Appendix

3.8.1 Analysis of the ACTG 175 Trial Data

We evaluate the effectiveness of our proposed E-Learning on a clinical trial dataset from the “AIDS

clinical trial group study 175” (Hammer et al., 1996). The goal of this study was to compare four
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treatment arms among 2,139 randomly assigned subjects with human immunodeficiency virus type

1 (HIV-1), whose CD4 counts were 200-500 cells/mm3. The four treatment options of A are the

zidovudine (ZDV) monotherapy, the didanosine (ddI) monotherapy, the ZDV combined with ddI,

and the ZDV combined with zalcitabine (ZAL).

The primary outcome Y of our interest is the difference between the CD4 cell counts at early

stage (20˘5 weeks from baseline) and the CD4 counts at baseline, which is larger the better. We

follow the analyses in Lu et al. (2013); Qi et al. (2020); Meng and Qiao (2020) and consider 12

selected baseline covariates X. There are 5 continuous covariates: age (year), weight (kg, coded as

wtkg), CD4 count (cells/mm3) at baseline, Karnofsky score (scale of 0-100, coded as karnof), CD8

count (cells/mm3) at baseline. They are centered and scaled before further analysis. In addition,

there are 7 binary variables: gender (1 = male, 0 = female), homosexual activity (homo, 1 = yes,

0 = no), race (1 = nonwhite, 0 = white), history of intravenous drug use (drug, 1 = yes, 0 = no),

symptomatic status (symptom, 1 = symptomatic, 0 = asymptomatic), antiretroviral history (str2,

1 = experienced, 0 = naive) and hemophilia (hemo, 1 = yes, 0 = no).

We consider the training sample size n P t100, 200, 400, 800, 1600u and the testing sample size

ntest “ 400. The full dataset is randomly split into training and testing according to the given

sample sizes. Since the dataset is obtained from a randomized controlled trial, the propensity score

function is known to be pA pk|Xq “ 1{4 for k “ 1, 2, 3, 4. For the treatment-free effect estimation,

we consider a linear working model with the `1-penalty throughout the analysis, which will be

different from the implementation in Meng and Qiao (2020). For this real-world data application,

the underlying truth is unknown to us. We cannot verify whether any of misspecified treatment-

free effect and heteroscedasticity on the original dataset exist. Nevertheless, after modifying the

dataset according to the following Table 3.4, the treatment-free effect misspecification and het-

eroscedasticity can be anticipated. Note that the unmodified cases can also have treatment-free

effect misspecification and heteroscedasticity as well. Our modification can enlarge such effects.

The goal of our analysis is to demonstrate the efficiency improvement of E-Learning in presence of

heavy treatment-free effect misspecification and heteroscedasticity. We further provide the residual

plots in Figure 3.30 in Section 3.8.6. Residuals are computed from the fitted E-Learning on each

modified dataset according to Table 3.4, and averaged over 10 replications. It confirms that the

modifications can result in the squared residuals heavily depending on the variables age and wtkg.
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Table 3.4: Modifications on the ACTG 175 Dataset and the Implying Model Specifications

Training Outcome Modification Treatment-Free Effect Variance Function

Original Y unmodified unmodified
Y Ð Y ` e2.5ˆage misspecified unmodified
Y Ð Y ` 5e1.5ˆwtkg ˆ ξ unmodified heteroscedastic
Y Ð Y ` e2.5ˆage ` 5e1.5ˆwtkg ˆ ξ misspecified heteroscedastic
1 The variables age and wtkg are centered and scaled at the data preparation stage.
2 The additional noise ξ is randomly generated from Ppξ “ 1q “ Ppξ “ ´1q “ 1{2 independent of X, A, Y .
3 We further round the modified outcomes to their nearest integers to respect the integer nature of Y .
4 The treatment-free effect is estimated by a linear working model with the `1-penalty.

On the training sample, we implement the same procedures as in Section 3.5 to fit Q-Learning,

D-Learning, RD-Learning, and our proposed E-Learning. On the testing dataset, we evaluate the

an estimated ITR pd by the IPWE p1{ntestq
řntest
i“1 Yi1rAi “ pdpXiqs{p1{4q, which is larger the better.

Here, the testing outcome Yi is unmodified in contrast to the training outcome to ensure comparable

testing evaluation. Testing results based on 500 repeated training and testing for each of the four

cases in Table 3.4 are reported in Figure 3.4.
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Figure 3.4: Testing changes in CD4 count (cell/mm3, larger the better) on the ACTG 175 dataset.

When we use the original training outcome Y , the testing CD4 count improvements of all

methods close to each other. In particular, Q-Learning demonstrates slightly better performance

for n “ 100, 200, 400, but all methods have similar performance when n “ 800 and 1600. All these

methods have improving testing performance as n increases. When we modify Y to incorporate

heavy heteroscedasticity or/and treatment-free effect misspecification, E-Learning can maintain the

improvements as n increases, while other methods can have much poorer performance. In particular,
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other methods can even get worse as n increases in presence of heavy heteroscedasticity. We shall

anticipate that the scientific findings for the analysis with original outcome Y will not be disturbed

when we introduce additional treatment-free effect misspecification or/and heteroscedasticity. The

results in Figure 3.4 show that E-Learning maintains the testing performance well during these

modifications, while RD-Learning, D-Learning and Q-Learning are heavily affected. In this way,

E-Learning demonstrates its superiority of efficiency gain in presence of misspecified treatment-free

effect or/and heteroscedasticity.

We further report the estimated coefficients for D-Learning, RD-Learning and E-Learning in

Table 3.5 and Figure 3.31 in Section 3.8.6. The fitted coefficients on the original data are consistent

with existing literature. Specifically, Intercept, age and cd40 are common important covariates

that were frequently reported in the literature (Lu et al., 2013; Qi et al., 2020; Meng and Qiao,

2020). When we incorporate heavy treatment-free effect misspecification or/and heteroscedasticity

in cases II, III and IV, the fitted coefficients of D-Learning and RD-Learning become highly unstable

with many extreme coefficients. In contrast, the fitted E-Learning coefficients are relatively stable

across these cases. This suggests that the E-Learning estimate can be more resilient to the training

outcome modifications in Table 3.4 compared with the other methods.

3.8.2 Optimal Estimating Function under Misspecified Propensity Score Model

Let qpA pa|xq be an arbitrary propensity score function. For any H : X Ñ RpˆpK´1q, which can

depend on β, consider the following estimating function:

φpβ; qpA q “ rY ´ µ0pXq ´ γpX, A;βqs
HpXqωA
qpA pA|Xq

.

By Proposition 3.7, since the working treatment-free effect function µ0 is true, for any working

propensity score function qpA , we have Erφpβ; qpA qs “ 0 at the true β. Our goal is to find the

optimal HpXq for a given working propensity score function qpA .
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The following derivations are analogous to the proof of Theorem 3.10:

Erφpβ; qpA q
b2s “ E

«

HpXq

˜

ωb2
A ε2

qpA pA|Xq2

¸

HpXqᵀ

ff

“ E rHpXqVεpX; qpA qHpXq
ᵀs ;

E

«

´
B qφpβq

Bβᵀ

ff

“ E

#

HpXq

«

ˆ

1´
1

K

˙

ωb2
A

qpA pA|Xq

ff

9FpX;βq

+

´ E
„

9HpX;βq
ωAε

qpA pA|Xq



loooooooooooooomoooooooooooooon

“0

“ E
”

HpXqVA pX; qpA q
9FpX;βq

ı

.

In the second equality, we define

VεpX; qpA q :“
K
ÿ

k“1

pA pk|Xqσ
2pX, kqωb2

k

qpA pk|Xq2
.

In the forth equality, it follows from that Epε|X, Aq “ 0 and we define

VA pX; qpA q :“

ˆ

1´
1

K

˙ K
ÿ

k“1

pA pk|Xqω
b2
k

qpA pk|Xq
.

Let pβnpqpA q be the solution to Enrφpβ; qpA qs “ 0. Then under the same regularity conditions

as in Theorems 3.9 and 3.10, we have

lim
nÑ8

nVarrpβnpqpA qs

“

"

E
„

´
Bφpβ; qpA q

Bβᵀ

*´1

Er qφpβqb2s

"

E
„

´
Bφpβ; qpA q

ᵀ

Bβ

*´1

“rB´1
rArB´ᵀ “ prBᵀ

rA´1
rBq´1 ě rC´1,

where, analogous to Lemma 3.15, we define

rA :“ ErHpXqVεpX; qpA qHpXq
ᵀs;

rB :“ ErHpXqVA pX; qpA q
9FpX;βqs;

rC :“ Er 9FpX;βqᵀVA pX; qpA qVεpX; qµ0q
´1VA pX; qpA q

9FpX;βqs,
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with equality if and only if exists some non-singular constant matrix H0 P Rpˆp such that

HpXq “ H0
9FpX;βqᵀVA pX; qpA qVεpX; qpA q

´1.

Therefore, the optimal estimating function under the working propensity score function qpA is

φeffpβ; qpA q :“rY ´ µ0pXq ´ γpX, A;βqsˆ

9FpX;βqᵀ

:“VA pX;qpA q
hkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkj

«

ˆ

1´
1

K

˙ K
ÿ

k“1

pA pk|Xqω
b2
k

qpA pk|Xq

ff«

:“VεpX;qpA q
hkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkj

K
ÿ

k“1

pA pk|Xqσ
2pX, kqωb2

k

qpA pk|Xq2

ff´1
ωA

qpA pA|Xq
looooooooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

optimal instrument

.

Here, different from the case of misspecified treatment-free effect model discussed in Section 3.4.1.2,

the optimal estimating function cannot be defined from an optimal working variance as in Theorem

3.10. It require different strategies to estimate the optimal variance components VA pX; qpA q and

VεpX; qpA q. One potential strategy is to identified them from

VA pX; qpA q “ E

«

ˆ

1´
1

K

˙

ωb2
A

qpA pA|Xq

ˇ

ˇ

ˇ

ˇ

ˇ

X

ff

; VεpX; qpA q “ E

˜

ωb2
A ε2

qpA pA|Xq2

ˇ

ˇ

ˇ

ˇ

ˇ

X

¸

,

where ε is replaced by the working residual e “ Y ´µ0pXq´γpX, A;βq. Therefore, we can perform

nonparametric regression on the RpK´1qˆpK´1q-valued matrices
`

1´ 1
K

˘ ωb2
A

qpA pA|Xq
and

ωb2
A e2

qpA pA|Xq
on

X. However, such a strategy will be much different from the methodology proposed in this chapter.

In particular, in this chapter, we only need to estimate an RK-valued function
`

qσ2
optpX, kq : 1 ď

k ď K
˘

, while the optimal estimating function under misspecified propensity score model require

the estimation of two RpK´1qˆpK´1q-valued functions VA pX; qpA q and VεpX; qpA q.

3.8.3 More Implementation Details

� E-Learning (general K): When fitting the treatment-free effect and the propensity score func-

tions, we consider the 10-fold cross-fitting strategy as in Chernozhukov et al. (2018a); Zhao et al.

(2019a); Athey and Wager (2021). Specifically, the training sample is randomly divided into 10

folds. For the k-th fold fitting, we utilize the data other the k-th fold to fit a treatment-free effect
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or propensity score model, and then predict the treatment-free effects or the propensity scores

for the k-th fold data.

We use regression forest to estimate variance function from the squared working residual. The

regression forest function from the grf package in R is called. We also fit the MARS and

COSSO estimates of variance function. The earth function from the earth package and a

modified program based on the cosso.Gaussian function from the cosso package are applied.

More details on the COSSO model and program are discussed in Section 3.8.4.

Before fitting E-Learning, we first center and scale each variables to ensure p1{nq
řn
i“1Xij “

0 and p1{nq
řn
i“1X

2
ij “ 1. When solving the penalized minimization problem (3.8) by the

accelerated proximal gradient descent, we call the apg function in R to perform optimization.

When determining the tuning sequence of λ’s, we take the strategy analog to glmnet (Friedman

et al., 2010).

� Q-Learning (general K): We consider the linear model using Y as the response and
`

1,Xᵀ, ~Aᵀ, ~Aᵀ b Xᵀ
˘ᵀ

as the covariates with the `1-penalty. Here, ~A “
`

1pA “ 2q,1pA “

3q, ¨ ¨ ¨ ,1pA “ Kq
˘ᵀ

, and b denotes the Kronecker product. The method is also known as the

`1-Penalized Least Square (`1-PLS) (Qian and Murphy, 2011), and implemented by the glmnet

function in R.

� G-Estimation, dWOLS (K “ 2, A P t0, 1u): The DTRreg function from the DTRreg pack-

age (Wallace et al., 2017) in R is called to fit G-Estimation (method = "gest") and dWOLS

(method = "dwols"). The treatment-free effect model (tf.mod) is specified as linear in p1,Xᵀqᵀ.

The propensity score model (treat.mod) is specified as the logistic model of A with respect to

p1,Xᵀqᵀ. The interaction effect model (blip.mod) is specified as linear in p1,Xᵀqᵀ. For dWOLS,

the weight function wpX, Aq “ |A´ pπA ,npXq| in Section 3.3.1 is used.

� A-Learning, Subgroup Identification (K “ 2, A P t´1, 1u): The fit.subgroup function

from the personalized package (Huling and Yu, 2018) in R is called to fit A-Learning and Sub-

group Identification with the `1-penalty (method = "a learning" and method = "weighting"

respectively, loss = "sq loss lasso"). The propensity score model (propensity.func) is spec-

ified as the logistic model of A with respect to p1,Xᵀqᵀ with the `1-penalty, which is fitted by

121



glmnet. The treatment-free effect, also known as the augmentation function (augment.func),

is specified as: for A-Learning, the linear model of Y with respect to p1,Xᵀqᵀ with the `1-

penalty, fitted by glmnet; and for Subgroup Identification, the linear model of Y with respect to

p1,Xᵀ, A,AXᵀqᵀ with the `1-penalty, fitted by glmnet, and outputting the arithmetic average

of predictions at A “ 1 and A “ ´1.

� D-Learning, RD-Learning: (general K) We consider the class of linear functions with the

row-wise grouped LASSO penalty. The training process is performed by the accelerated prox-

imal gradient descent using the apg function. The estimation of the treatment-free effect and

propensity score functions, the fitting details and the tuning strategy are the same as in E-

Learning.

� OWL, RWL, EARL (K “ 2, A P t0, 1u): The owl, rwl and earl functions are called from the

R package DynTxRegime to fit OWL, RWL and EARL respectively. The propensity score model

(moPropen) is specified as the logistic model of A with respect to p1,Xᵀqᵀ with the `1-penalty,

which is fitted by glmnet. The outcome models, including the main effect model (moMain, used

in rwl) and the contrast model (moCont, used in rwl and earl), are both specified as linear

in p1,Xᵀqᵀ with the `1-penalty, which are fitted by glmnet. The corresponding outcome mean

model is EpY |X, Aq “ moMainpXq ` A ˆ moContpXq. These methods are fitted with linear

decision functions (kernel = "linear"). For owl and earl, the hinge surrogate loss is used

(surrogate = "hinge"). For rwl, the surrogate loss is the smoothed ramp loss (Zhou et al.,

2017). The tuning parameter λ for all methods is determined by 5-fold cross validation (cvFolds

= 5). The sequence of λ’s for tuning is determined analog to glmnet (Friedman et al., 2010).

� Policy Learning: (general K) We use the policy tree function from the policytree package

(Sverdrup et al., 2020) in R to fit policy learning with decision trees. The outcome mean function

and the propensity score function are both fitted by regression forest from the grf package.

3.8.4 COSSO Estimate of the Working Variance Function

In this section, we consider the implementation details of estimating σ2
optpx, A; pµ0,nq from COSSO

(Lin and Zhang, 2006). Specifically, we perform nonparametric regression using the squared working

residual pe2 as the response and pX, Aq as the covariates.
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First of all, we discuss an SS-ANOVA model in terms of the covariate vector X “

pX1, ¨ ¨ ¨ , Xpq
ᵀ P Rp and the treatment variable A P t1, 2, ¨ ¨ ¨ ,Ku. If the j-th variable Xj is contin-

uously ranged, then the we first scale the domain of Xj to r0, 1s, and consider the j-th covariate

function space as Hj “ S2, where pS2, } ¨ }S2q is the second order Sobolev Hilbert space:

S2 “

"

f : r0, 1s Ñ R
ˇ

ˇ

ˇ

ˇ

f and f 1 are absolutely continuous,

ż

f2pxq2dx ă `8

*

;

}f}2S2
“

ˆ
ż 1

0
fpxqdx

˙2

`

ˆ
ż 1

0
f 1pxqdx

˙2

`

ż 1

0
f2pxq2dx.

In particular, Hj “ S2 can be decomposed as t1u ‘ sHj (Gu, 2013, Equation (2.26)), where sHj is

the reproducing kernel Hilbert space (RKHS) corresponding to the kernel function

sκjpx, x
1q “ k1pxqk1px

1q ` k2pxqk2px
1q ´ k4p|x´ x

1|q; x, x1 P r0, 1s.

Here, k1pxq “ x´ 0.5, k2pxq “ p1{2qrk1pxq
2´ 1{12s, and k4pxq “ p1{24qrk1pxq

4´ k1pxq
2{2` 7{240s.

If Xj takes finitely many values in t1, 2, ¨ ¨ ¨ , Lju, then we consider Hj “ RLj , which can be

further decomposed as t1u ‘ sHj . Here, sHj “ tpα1, α2, ¨ ¨ ¨ , αLj q
ᵀ P RLj :

řLj
l“1 αl “ 0u, and can

be regarded as an Lj-dimensional RKHS corresponding to the kernel matrix rsκjpx, x
1qs
Lj
x,x1“1 “

ILjˆLj ´ p1{Ljq~1Lj~1
ᵀ
Lj

. Similarly, since the treatment variable A is valued in t1, 2, ¨ ¨ ¨ ,Ku, we also

consider the treatment function space HA “ RK with the decomposition HA “ t1u ‘ sHA , where

sHA is the subspace of RK with the sum-to-zero constraint and corresponds to the kernel matrix

rsκA pa, a
1qsKa,a1“1 “ IKˆK ´ p1{Kq~1K~1

ᵀ
K .
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The SS-ANOVA model is based on the following tensor-product RKHS (Gu, 2013, Section

2.4.1):

H :“

«

d
â

j“1

Hj

ff

bHA “

«

d
â

j“1

`

t1u ‘ sHj

˘

ff

b
`

t1u ‘ sHA

˘

“ t1u
loomoon

global main effect

‘

«

d
à

j“1

sHj

ff

loooomoooon

covariate main effects

‘ sHA
loomoon

treatment main effect

‘

«

d
à

j“1

`

sHj b sHA

˘

ff

loooooooooomoooooooooon

covariate-treatment interaction effect

‘

$

’

’

&

’

’

%

à

JĎt1,2,¨¨¨ ,du
|J |ě2

«˜

â

jPJ

sHj

¸

‘

˜

â

jPJ

sHj b sHA

¸ff

,

/

/

.

/

/

-

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

higher-order interaction effects

.

Here, we only consider first four effects from the above tensor-sum decomposition and ignore the

higher-order interaction effects. Then the SS-ANOVA model is

Eppe2|X, Aq “ ν0
loomoon

global main effect

`

p
ÿ

j“1

fjpXjq

loooomoooon

covariate main effect

`

K
ÿ

k“1

αk
loomoon

treatment main effect

`

K
ÿ

j“1

K
ÿ

k“1

fjkpXjq

loooooooomoooooooon

covariate-treatment interaction effect

` u
loomoon

remainder

.

In particular, the tensor-product RKHS sHjb sHA , which models the covariate-treatment interaction

effect, corresponds to the kernel function

psκj b sκA q

´

pxj , aq
ᵀ, px1j , a

1qᵀ
¯

“ sκjpxj , x
1
jqsκA pa, a

1q.

Then the COSSO estimate pσ2
npX, Aq of the working variance function is obtained by solving:

min
fPH

#

1

n

n
ÿ

i“1

re2
i ´ fpXi, Aiqs

2 ` λσ2

˜

d
ÿ

j“1

}f}
sHj
` }f}

sHA
`

d
ÿ

j“1

}f}
sHjb sHA

¸+

.
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Here, }¨}
sHj

, }¨}
sHA

and }¨}
sHjb sHA

are the RKHS-norms corresponding to the associated component

spaces, and λσ2 is a tuning parameter.

For implementation, we define the empirical kernel matrices sKj :“ rsκjpXij , Xi1jqs
n
i,i1“1 and

sKA :“ rsκA pAi, Ai1qs
n
i,i1“1. Then sKj , sKA and sKj,A :“ sKj d sKA are the empirical kernel matrices on

sHj , sHA and sHjb sHA respectively, where sKjd sKA is the elementwise product of sKj and sKA . For a

vector θ :“ pθ1, ¨ ¨ ¨ , θd; θA ; θ1,A , ¨ ¨ ¨ , θd,A q
ᵀ P R2d`1

` of kernel weights, we write sKθ :“
řd
j“1 θj

sKj `

θA
sKA `

řd
j“1 θj,A

sKj,A P Rnˆn as the weighted sum of the empirical kernel matrices. For a vector

α P Rn of representer coefficients, we write Gα :“ rsK1α, ¨ ¨ ¨ , sKdα; sKAα; sK1,Aα, ¨ ¨ ¨ , sKd,Aαs P

Rnˆp2d`1q as the gram matrix of the componentwise prediction values. We also denote ~e2 :“

pe2
1, ¨ ¨ ¨ , e

2
nq

ᵀ as the empirical squared residual vector. Then we fit a COSSO model by calling the R

function cosso::cosso.Gaussian with the aforementioned kernel matrices and the squared residual

vector as inputs. In particular, a random subset of sample points with size maxt40, r12n2{9su is

used for representers. The following two steps are alternatively implemented:

� For a given kernel weight vector θ, we solve

min
b,α

"

1

n

›

›

›
~e2 ´ b~1n ´ sKθα

›

›

›

2

2
` λ0α

ᵀ
sKθα

*

for the representer coefficient vector pb,αᵀqᵀ;

� For a given representer coefficient vector pb,αᵀqᵀ, we solve

min
θ

"

1

n

›

›

›
~e2 ´ b~1n ´ Gαθ

›

›

›

2

2
` λ0α

ᵀGαθ subject to θ P R2d`1
` , ~1ᵀ

2d`1θ ďM

*

,

for the kernel weight vector θ.

Here, the tuning parameters pλ0,Mq are chosen according to Lin and Zhang (2006, Section 6).

3.8.5 Technical Proofs
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3.8.5.1 Proof of Theorem 3.1

Proof of Theorem 3.1.

Vpd‹q ´ Vppdnq “E

#

K
ÿ

k“1

γpX, kqt1rd‹pXq “ ks ´ 1rpdnpXq “ ksu

+

ďE

#

ÿ

k‰k1

|γpX, kq ´ γpX, k1q|; d‹pXq “ k, pdnpXq “ k1

+

“
1

2
E

#

ÿ

k‰k1

|γpX, kq ´ γpX, k1q|;

d‹pXq “ k and pdnpXq “ k1 or d‹pXq “ k1 and pdnpXq “ k

+

ď
1

2
E

#

ÿ

k‰k1

|γpX, kq ´ γpX, k1q| ` |pγnpX, kq ´ pγnpX, k1q|;

d‹pXq “ k and pdnpXq “ k1 or d‹pXq “ k1 and pdnpXq “ k

+

“
1

2
E

#

ÿ

k‰k1

ˇ

ˇrγpX, kq ´ γpX, k1qs ´ rpγnpX, kq ´ pγnpX, k1qs
ˇ

ˇ ;

d‹pXq “ k and pdnpXq “ k1 or d‹pXq “ k1 and pdnpXq “ k

+

(‹)

ď
1

2
E

#

ÿ

k‰k1

|γpX, kq ´ pγnpX, kq| ` |γpX, k1q ´ pγnpX, k1q|;

d‹pXq “ k and pdnpXq “ k1 or d‹pXq “ k1 and pdnpXq “ k

+

ďE |γpX, d‹q ´ pγnpX, d‹q| ` E
ˇ

ˇ

ˇ
γpX, pdnq ´ pγnpX, pdnq

ˇ

ˇ

ˇ

ď2 max
1ďkďK

E |γpX, kq ´ pγnpX, kq| .

The equality (‹) holds since the event d‹pXq “ k and pdnpXq “ k1 or d‹pXq “ k1 and pdnpXq “ k

implies that

rγpX, kq ´ γpX, k1qsrpγnpX, kq ´ pγnpX, k1qs ă 0.
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3.8.5.2 Proof of Lemma 3.2

Proof of Lemma 3.2. Denote

rΛ :“
!

H P H : EpHε|X, Aq “ EpHε|Xq
)

.

Consider the following family of parametric submodels of (3.1):

Pβ,α :“
!

pX, A, Y q „ pX pX;αX qˆpA pA|X;αA qˆpε
`

ε
hkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkj

Y ´ µ0pX;αµ0q ´ γpX, A;βq
ˇ

ˇX, A;αε
˘

)

,

where α “ αX ‘ αA ‘ αε ‘ αµ0 are finite-dimensional parameters for the nuisance components

η “ ppX , pA , pε, µ0q. Then the nuisance score vector is

Sα “

¨

˚

˚

˚

˚

˚

˚

˚

˝

SX
B log pX pX;αX q

BαX

SA
B log pA pA|X;αA q

BαA

Sε
B log pεpε|X,A;αεq

Bαε

Sµ0 ´
B log pεpε|X,A;αεq

Bε
Bµ0pX;αµ0 q

Bαµ0

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Then the nuisance tangent space of the family of submodels Pβ,α is defined as (Tsiatis, 2007):

Λα “
!

BSα : B P Rpˆdimpαq
)

“

!

BX SX ` BA SA ` BεSε ` Bµ0Sµ0 :

BX P RpˆdimpαX q, BA P RpˆdimpαA q,Bε P Rpˆdimpαεq,Bµ0 P Rpˆdimpαµ0 q
)

.

We aim to show that Λα Ď rΛ. By rΛ is a linear space, it is equivalent to show that SX ,SA ,Sε,Sµ0 P

rΛ. Denote Eβ,α as the expectation under the submodel parametrized by pβ,αq.

� Since SX is a function of X, we have that

Eβ,αpSX ε|X, Aq “ SX Eβ,αpε|X, Aq “ 0 “ SX Eβ,αpε|Xq “ Eβ,αpSX ε|Xq.
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That is, SX P rΛ.

� Since SA is a function of pX, Aq, we have that

Eβ,αpSA ε|X, Aq “ SA Eβ,αpε|X, Aq “ 0.

On the other hand, by Eβ,αpε|Xq “ 0 for any α, we have

0 “
B

αA
Eβ,αpε|Xq

“
B

αA

ż

εpA pa|X;αA qpεpε|X, a;αεqdadε

“

ż

εˆ
pB{BαA qpA pa|X;αA q

pA pa|X;αA q
ˆ pA pa|X;αA qpεpε|X, a;αεqdadε

“

ż

εˆ
B log pA pa|X;αA q

BαA
ˆ pA pa|X;αA qpεpε|X, a;αεqdadε

“ Eβ,αpSA ε|Xq.

That is, Eβ,αpSA ε|X, Aq “ 0 “ Eβ,αpSA ε|Xq, and SA P rΛ.

� By Eβ,αpε|X, Aq “ 0 for any α, we have

0 “
B

αε
Eβ,αpε|X, Aq

“
B

αε

ż

εpεpε|X, A;αεqdε

“

ż

εˆ
pB{Bαεqpεpε|X, A;αεq

pεpε|X, A;αεq
ˆ pεpε|X, A;αεqdε

“

ż

εˆ
B log pεpε|X, A;αεq

Bαε
ˆ pεpε|X, A;αεqdε

“ Eβ,αpSεε|X, Aq.

That is, Eβ,αpSεε|X, Aq “ 0 “ Eβ,αpSεε|Xq, and Sε P rΛ.

� Note that

Sµ0ε “ ´
εB log pεpε|X, A;αεq

Bε
ˆ
Bµ0pX;αµ0q

Bαµ0
looooooomooooooon

function of X

.
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Lemma 3.12. Suppose X „ ppxq where ppxq is a probability density function with respect to

the Lebesgue measure on R, such that |x|ppxq Ñ 0 as |x| Ñ `8. Then

E
ˆ

Xd log ppXq

dx

˙

“ ´1.

By Lemma 3.12, we have

E
ˆ

εB log pεpε|X, A;αεq

Bε

ˇ

ˇ

ˇ

ˇ

X, A

˙

“ ´1. (3.15)

Then

Eβ,αpSµ0ε|X, Aq “ ´E
ˆ

ε log pεpε|X, A;αεq

Bε

ˇ

ˇ

ˇ

ˇ

X, A

˙

Bµ0pX;αµ0q

Bαµ0

“
Bµ0pX;αµ0q

Bαµ0

,

which is a function of X. Consequently, Eβ,αpSµ0ε|X, Aq “ Eβ,αpSµ0ε|Xq, and Sµ0 P
rΛ.

Therefore, we can conclude that Λα Ď rΛ. By the definition of nuisance tangent space of the

semiparametric model, we have that Λ Ď rΛ.

Next, we aim to justify Λ Ě rΛ. Fix an H “ hpX, A, εq P rΛ, i.e.,

EpHq “ 0; EpHε|X, Aq “ EpHε|Xq.

We need to construct a parametric submodel whose nuisance score vector is H. Consider the

following orthogonal decompositions:

H “ EpH|Xq
looomooon

:“HX

`EpH|X, Aq ´ EpH|Xq
loooooooooooooomoooooooooooooon

:“HA

`H ´ EpH|X, Aq
looooooooomooooooooon

:“Hε

.

Without loss of generality, we assume that }H}2 ďM ă `8. Define

pX pX;αX q :“ pX pXqp1`α
ᵀ
XHX q; }αX }2 ď 1{M ;

pA pA|X;αA q :“ pA pA|Xqp1`α
ᵀ
AHA q; }αA }2 ď 1{M ;

p
rεprε|X, A;αεq :“ pεprε|X, Aqp1`αᵀ

εHεq; }αε}2 ď 1{M.
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Here, pX pXq, pA pA|Xq and pεpε|X, Aq are the densities of Model (3.1). Then we consider the

following data generating process (DGP) parametrized by pβ,αq where α “ αX ‘αA ‘αε:

Y “ µ0pXq ` γpX, A;βq ` rε;

subject to
K
ÿ

k“1

γpX, k;βq “ 0; Eβ,αprε|X, Aq “ Eβ,αprε|Xq;

pX, A,rεq „ pX px;αX qpA pa|x;αA qprεprε|x, a;αεq.

Notice that the above DGP can be transformed to the form of (3.1) by setting µ0pX;αεq :“

µ0pXq ` Eβ,αprε|Xq and ε :“ rε ´ µ0pX;αεq. Next, we verify that the above DGP is well defined

and corresponds to the nuisance score vectors HX , HA and Hε.

� By

|αᵀ
XHX | ď }αX }2}H}2 ď 1; |αᵀ

AHA | ď }αA }2}H}2 ď 1; |αᵀ
εHε| ď }αε}2}H}2 ď 1,

we have pX pX;αX q, pA pA|X;αA q, prεprε|X, A;αεq ě 0.

� By EpHX q “ 0, EpHA |Xq “ 0 and EpHε|X, Aq “ 0, we have

ż

pX px;αX qdx “

ż

pX pxqdx`α
ᵀ
X EpHX q “ 1;

ż

pA pa|X;αA qda “

ż

pA pa|Xqda`α
ᵀ
A EpHA |Xq “ 1;

ż

p
rεprε|X, A;αεqdrε “

ż

pεprε|X, Aqdrε`αᵀ
εEpHε|X, Aq “ 1.

Therefore, pX px;αX q, pX pa|X;αA q and p
rεprε|X, A;αεq are probability density functions.

� The conditional mean restriction becomes

Eβ,αprε|X, Aq “

ż

rεp1`αᵀ
εHεqpεprε|X, Aqdrε

“ Epε|X, Aq `αᵀ
εEpHεε|X, Aq

“ αᵀ
εEpHεε|X, Aq,

130



which is a function of X, by the fact that

EpHεε|X, Aq “ EpHε|X, Aq ´ EpH|X, AqEpε|X, Aq
looooooooooooomooooooooooooon

“0

“ EpHε|Xq ´ EpH|X, AqEpε|Xq
looooooooooomooooooooooon

“0

“ EpHεε|Xq.

Then it can be clear that

Eβ,αprε|X, Aq “ Eβ,αprε|Xq.

� The nuisance score vectors are

SX “

”

B log pX pX;αX q

BαX

ı

αX“0
“

”

HX

1`αᵀ
XHX

ı

αX“0
“ HX ;

SA “

”

B log pA pA|X;αA q

BαA

ı

αA“0
“

”

HA

1`αᵀ
XHA

ı

αA“0
“ HA ;

Sε “

”

B log p
rεprε|X,A;αεq
Bαε

ı

αε“0
“

”

Hε

1`αᵀ
εHε

ı

αε“0
“ Hε.

Therefore, the DGP above corresponds to the nuisance score vectors H, so that Λ Ě rΛ. That is,

Λ “
!

H P H : EpHε|X, Aq “ EpHε|Xq
)

.

Proof of Lemma 3.12.

E
ˆ

XB log ppXq

Bx

˙

“

ż

xBdppxq

dx
ppxqdx

“

ż

x
dppxq

dx
ˆ

1

ppxq
ˆ ppxqdx

“

ż

xdppxq

“

”

xppxq
ıxÑ`8

xÑ´8
´

ż

ppxqdx

“ ´1.
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3.8.5.3 Proof of Lemmas 3.3 and 3.4

Proof of Lemma 3.3. Since the column space of Ω is the orthogonal complement of the space

spanned by 1K , we have

ΩpΩᵀΩq´1Ωᵀ “ IKˆK ´
1

K
1b2
Kˆ1.

In particular, for 1 ď k, k1 ď K, we have5

xpΩᵀΩq´1{2ωk, pΩ
ᵀΩq´1{2ωk1y “

ˆ

1´
1

K

˙´1

rΩpΩᵀΩq´1Ωᵀskk1 “ 1pk “ k1q ´
1

K ´ 1
1pk ‰ k1q.

Therefore, tωku
K
k“1 are unit vectors and equiangular.

Proof of Lemma 3.4. By Lemma 3.3, we have

ΩpΩᵀΩq´1Ωᵀ “ IKˆK ´ p1{Kq~1
b2
Kˆ1.

Denote ~γpx;βq :“
`

γpx, 1;βq, γpx, 2;βq, ¨ ¨ ¨ , γpx,K;βq
˘ᵀ

. Then

a

1´ 1{KΩ ~fpx;βq “ ΩpΩᵀΩq´1Ωᵀ~γpx;βq

“ ~γpx;βq ´
1

K

K
ÿ

k“1

γpx, k;βq

looooooooomooooooooon

“0

~1K

“ ~γpx;βq.

That is,

γpx, k;βq “

ˆ

1´
1

K

˙

xωk, ~fpx;βqy; 1 ď k ď K.

3.8.5.4 Proof of Lemma 3.5

Proof of Lemma 3.5. Suppose H P Λ and H : X Ñ RpˆpK´1q. Then

E
„

H

ˆ

HpXqωAε

pA pA|Xq

˙ᵀ

“ E
„

E
ˆ

Hωᵀ
Aε

pA pA|Xq

ˇ

ˇ

ˇ

ˇ

X

˙

HpXqᵀ


“ Opˆp.
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That is,

Λ K

"

HpXqωAε

pA pA|Xq

ˇ

ˇ

ˇ

ˇ

H : X Ñ RpˆpK´1q

*

.

Now suppose H P H. Define

H1 :“ E
"

Hωᵀ
Aε

pA pA|Xq

ˇ

ˇ

ˇ

ˇ

X

*

VεpXq
´1

looooooooooooooooomooooooooooooooooon

RpˆpK´1q-valued function of X

ωAε

pA pA|Xq
; H2 :“H ´H1.

Then the following shows that H2 P Λ:

E
ˆ

H2ω
ᵀ
Aε

pA pA|Xq

ˇ

ˇ

ˇ

ˇ

X

˙

“ E
ˆ

Hωᵀ
Aε

pA pA|Xq

ˇ

ˇ

ˇ

ˇ

X

˙

´ E
"

Hωᵀ
Aε

pA pA|Xq

ˇ

ˇ

ˇ

ˇ

X

*

VεpXq
´1E

ˆ

ωb2
A ε2

pA pA|Xq2

ˇ

ˇ

ˇ

ˇ

X

˙

“ OpˆpK´1q,

where

E

˜

ωb2
A ε2

pA pA|Xq2

ˇ

ˇ

ˇ

ˇ

ˇ

X

¸

“ E

˜

ωb2
A σ2pX, Aq

pA pA|Xq2

ˇ

ˇ

ˇ

ˇ

ˇ

X

¸

“

K
ÿ

k“1

σ2pX, Aqωb2
k

pA pk|Xq
“ VεpXq.

Therefore,

ΛK “

"

HpXqωAε

pA pA|Xq

ˇ

ˇ

ˇ

ˇ

H : X Ñ RpˆpK´1q

*

.

3.8.5.5 Proof of Proposition 3.6

Proof of Proposition 3.6. The score vector of Model (3.1) is defined as (Tsiatis, 2007)

Sβ “
B log pε

´

Y ´ µ0pXq ´ γpX, A;βq
ˇ

ˇ

ˇ
X, A

¯

Bβ
“ ´ 9γpX, A;βq

B log pεpε|X, Aq

Bε
.

In particular,

E
"

Sβω
ᵀ
Aε

pA pA|Xq

ˇ

ˇ

ˇ

ˇ

X

*

“ E
"

9γpX, A;βqωᵀ
A

pA pA|Xq

„

´
εB log pεpε|X, Aq

Bε

ˇ

ˇ

ˇ

ˇ

X

*

p3.15q
“ E

"

9γpX, A;βqωᵀ
A

pA pA|Xq

ˇ

ˇ

ˇ

ˇ

X

*

.

Then by Lemma 3.5, the efficient score (Tsiatis, 2007) is

Seff “ EpSβ|ΛKq “ E
"

9γpX, A;βqωᵀ
A

pA pA|Xq

ˇ

ˇ

ˇ

ˇ

X

*

VεpXq
´1 ωAε

pA pA|Xq
.
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Consider the angle-based decision function (3.4). We have

9γpX, A;βq “

ˆ

1´
1

K

˙

9FpX;βqᵀωA.

Then

E
"

9γpX, A;βqωᵀ
A

pA pA|Xq

ˇ

ˇ

ˇ

ˇ

X

*

“

ˆ

1´
1

K

˙

E

#

9FpX;βqᵀωb2
A

pA pA|Xq

ˇ

ˇ

ˇ

ˇ

ˇ

X

+

“ 9FpX;βqᵀ
ˆ

1´
1

K

˙ K
ÿ

k“1

ωb2
k “ 9FpX;βqᵀΩᵀΩ.

Therefore,

Seff “
9FpX;βqᵀΩᵀΩVεpXq

´1 ωAε

pA pA|Xq
.

3.8.5.6 Proof of Proposition 3.7

Proof of Proposition 3.7. It follows from direct calculation that

Erφeffpβ; qµ0, qpA , qσ
2q|X, As “ rµ0pXq ´ qµ0pXqsHpXq

pA pA|Xq

qpA pA|Xq

ωA
pA pA|Xq

.

If qµ0 “ µ0, then the above is 0. If qpA “ pA , the above becomes

Erφeffpβ; qµ0, qpA , qσ
2q|X, As “ rµ0pXq ´ qµ0pXqsHpXq

ωA
pA pA|Xq

.

Then we have

Erφeffpβ; qµ0, qpA , qσ
2q|Xs “ rµ0pXq ´ qµ0pXqsHpXqE

ˆ

ωA
pA pA|Xq

ˇ

ˇ

ˇ

ˇ

X

˙

“ 0.
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3.8.5.7 Proof of Lemma 3.8

Proof of Lemma 3.8. Denote 9F pXq :“ sup
qβPB

} 9FpX; qβq}2. Define

pVε,npXq :“
K
ÿ

k“1

pσ2
npX, Aqωb2

k

pA pA|Xq
,

and

pheff,npX, A; qβq :“ 9FpX; qβqᵀΩᵀΩpVε,npXq
´1 ωA
pA pA|Xq

;

qheffpX, A; qβq :“ 9FpX; qβqᵀΩᵀΩqVεpXq
´1 ωA
pA pA|Xq

.

Then

φeffp
qβ; pµ0,n, pA , pσ

2
nq ´ φeffp

qβ; qµ0, pA , qσ
2q

“ rY ´ qµ0pXq ´ γpX, A; qβq
looooooooooooooomooooooooooooooon

:“qep qβq

srpheff,npX, A; qβq ´ qheffpX, A; qβqs (3.16)

´ rpµ0,npXq ´ qµ0pXqsqheff,npX, A; qβq (3.17)

´ rpµ0,npXq ´ qµ0pXqsrpheff,npX, A, qβq ´ qheffpX, A; qβqs. (3.18)

� We first relate pheff,n ´
qheff to pσ2

n ´ qσ2. Note that

›

›

›

pheff,npX, A; qβq ´ qheffpX, A; qβq
›

›

›

2
ď

›

›

›

9FpX; qβq
›

›

›

2
ˆ }Ω}22 ˆ

›

›

›

pVε,npXq
´1 ´ qVεpXq

´1
›

›

›

2
ˆ

}ωA}2
pA pA|Xq

ď

ˆ

1´
1

K

˙

}Ω}22}Ω}F
pA

ˆ 9F pXq ˆ
›

›

›

pVε,npXq
´1 ´ qVεpXq

´1
›

›

›

2
.

Here, } ¨ }F is the Frobenius norm. By σ2 ď pσ2
npX, kq, qσ2pX, kq ď sσ2 for 1 ď k ď K, we further

have

pVε,npXq, qVεpXq ě σ2
K
ÿ

k“1

ωb2
k “ σ2

ˆ

1´
1

K

˙´1

ΩᵀΩ
looooooooooomooooooooooon

:“Vε

ą 0.
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Here, “A ě B” means that A´B is positive semi-definite, with strict inequality if A´B is positive

definite. Then

›

›

›

pVε,npXq
´1 ´ qVεpXq

´1
›

›

›

2
ď }V´2

ε }2 ˆ

›

›

›

pVε,npXq ´ qVεpXq
›

›

›

2

“
1

λminpVεq
2
ˆ

›

›

›

›

›

K
ÿ

k“1

rpσ2
npX, kq ´ qσ2pX, kqsωb2

k

pA pk|Xq

›

›

›

›

›

2

ď
1

pA λminpVεq
2

›

›

›

›

›

K
ÿ

k“1

ωb2
k

looomooon

“p1´1{Kq´1ΩᵀΩ

›

›

›

›

›

2

ˆ }pσ2
n ´ qσ2}8. (3.19)

Therefore,

›

›

›

pheff,npX, A; qβq ´ qheffpX, A; qβq
›

›

›

2
ď constantˆ 9F pXq ˆ }pσ2

n ´ qσ2}8.

� (Bound for Residual) First note that

Enrqepqβq2s “ Erqepqβq2s ` OPp1q pby SLLNq

À 5E
!

qµ0pXq
2 ` µ0pXq

2 ` γpX, A;βq2 ` γpX, A; qβq2 ` ε2
)

` OPp1q,

which is bounded by Assumption 3.2.

� (Convergence of (3.16))

rEn}p3.16q}2s
2 ď constantˆ En

!ˇ

ˇ

ˇ
qepqβq

ˇ

ˇ

ˇ

9F pXq
)2
}pσ2
n ´ qσ2}28

À constantˆ
!

Erqepqβq2sEr 9F pXq2s ` OPp1q
)

ˆ }pσ2
n ´ qσ2}28

“ OPpn
´1q.

� (Convergence of (3.17)) First note that

›

›

›

pheff,npX, A; qβq
›

›

›

2
ď

›

›

›

9FpX; qβq
›

›

›

2
ˆ }Ω}22 ˆ

›

›

›

qVεpXq
´1
›

›

›

2
ˆ

}ωA}2
pA pA|Xq

ď

ˆ

1´
1

K

˙´1{2
}Ω}22}Ω}F
pA λminpVεq

ˆ 9F pXq. (3.20)
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Here, λminp¨q is the smallest eigenvalue of a matrix. Then

rEn}p3.17q}2s
2 ď constantˆ Enr 9F pXq2s ˆ Enrpµ0,npXq ´ qµ0pXqs

2

À constantˆ
!

Er 9F pXq2s ` OPp1q
)

ˆ Enrpµ0,npXq ´ qµ0pXqs
2

“ OPpn
´1q.

� (Convergence of (3.18))

rEn}p3.18q}2s
2 ď constantˆ En

!

|pµ0,npXq ´ qµ0pXq| ˆ 9F pXq
)2
ˆ }pσ2

n ´ qσ2}28

ď constantˆ
!

Er 9F pXq2s ` OPp1q
)

ˆ Enrpµ0,npXq ´ qµ0pXqs
2 ˆ }pσ2

n ´ qσ2}28

“ OPpn
´2q.

Therefore,

sup
qβPB

En}φeffp
qβ; pµ0,n, pA , pσ

2
nq ´ φeffp

qβ; qµ0, pA , qσ
2q}2

ďEn}p3.16q}2 ` En}p3.17q}2 ` En}p3.18q}2

ÀOPpn
´1{2q ` OPpn

´1{2q ` OPpn
´1q

“OPpn
´1{2q.

3.8.5.8 Proof of Theorem 3.9

Proof of Theorem 3.9. We follow Newey (1994, Lemmas 5.1-5.3) to establish the asymptotic linear

representation.

Step I: (Asymptotic Linear Representation) Our Lemma 3.8 can imply the asymptotic linear representation

of the plug-in estimating function as in Newey (1994, Lemma 5.1):

?
nEnrφeffpβ; pµ0,n, pA , pσ

2
nqs “

?
nEnrφeffpβ; qµ0, pA , qσ

2qs ` OPpn
´1{2q.
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Step II: (Uniform Convergence and Consistency) We aim to establish the convergence of

Enrφeffp
qβ; pµ0,n, pA , pσ

2
nqs and EnrpB{Bβᵀqφeffp

qβ; pµ0,n, pA , pσ
2
nqs uniform for qβ P B, and the

consistency of pβeff,n.

Recall from Lemma 3.8 that:

sup
qβPB

En
›

›

›
φeffp

qβ; pµ0,n, pA , pσ
2
nq ´ φeffp

qβ; qµ0, pA , qσ
2q

›

›

›

2
“ OPpn

´1{2q.

The same conclusion can be drawn for pB{Bβᵀqφeff following the same argument.

Lemma 3.13. Consider Model (3.1) and the estimating function (3.5). Under Assumptions 3.1-3.3

and 3.4.2, we have

sup
qβPB

En

›

›

›

›

›

Bφeffp
qβ; pµ0,n, pA , pσ

2
nq

Bβᵀ ´
Bφeffp

qβ; qµ0, pA , qσ
2q

Bβᵀ

›

›

›

›

›

2

“ OPpn
´1{2q.

Next, we apply Glivenko-Cantelli Theorem to replace En by E. We establish the conditions in

Lemma 3.14.

Lemma 3.14. Consider Model (3.1) and the estimating function (3.5). Under Assumptions 3.1-3.3

and 3.4.2, we have:

(I) There exists L : X ˆ A ˆ R Ñ R` such that ELpX, A, εq ă 8, and for any qβ1, qβ2 P B, we

have
›

›

›
φeffp

qβ1; qµ0, pA , qσ
2q ´ φeffp

qβ2; qµ0, pA , qσ
2q

›

›

›

2
ď LpX, A, εq

›

›

›

qβ1 ´ qβ2

›

›

›

2
.

(II) There exists rL : X ˆ A ˆ R Ñ R` such that ErLpX, A, εq ă 8, and for any qβ1, qβ2 P B, we

have
›

›

›

›

›

Bφeffp
qβ1; qµ0, pA , qσ

2q

Bβᵀ ´
Bφeffp

qβ2; qµ0, pA , qσ
2q

Bβᵀ

›

›

›

›

›

2

ď rLpX, A, εq
›

›

›

qβ1 ´ qβ2

›

›

›

2
.

(III) E sup
qβPB

}φeffp
qβ; qµ0, pA , qσ

2q}2 ă `8, E sup
qβPB

}pB{Bβᵀqφeffp
qβ; qµ0, pA , qσ

2q}2 ă `8.

By B is compact and Lemma 3.14, we can conclude that

!

φeffp
qβ; qµ0, pA , qσ

2q : qβ P B
)

and
!

pB{Bβᵀqφeffp
qβ; qµ0, pA , qσ

2q : qβ P B
)
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are both P-Glivenko-Cantelli. Then, by Glivenko-Cantelli Theorem, we have

sup
pβPB

pPn ´ Pq
›

›

›
φeffp

qβ; qµ0, pA , qσ
2q

›

›

›

2
, sup

pβPB

pPn ´ Pq

›

›

›

›

›

Bφeffp
qβ; qµ0, pA , qσ

2q

Bβᵀ

›

›

›

›

›

2

P
ÝÑ 0. (3.21)

Remark 3.3. From the proof of Lemma 3.14, we have

E

«

´
Bφeffp

qβ; qµ0, pA , qσ
2q

Bβᵀ

ff

“Ep3.27q ` Ep3.28q

“E
"

9FpX; qβqᵀΩᵀΩqVεpXq
´1 E

«

ˆ

1´
1

K

˙

ωb2
A

pA pA|Xq

ˇ

ˇ

ˇ

ˇ

ˇ

X

ff

looooooooooooooooomooooooooooooooooon

“ΩᵀΩ

9FpX; qβq

*

´ E
"

:FpX; qβqᵀΩᵀΩqVεpXq
´1 E

ˆ

ωA
pA pA|Xq

ˇ

ˇ

ˇ

ˇ

X

˙

loooooooooomoooooooooon

“0

qepqβq

*

“qIpqβq.

By Lemma 3.14 (II) and (3.21), we further have that qβ Ñ qIpqβq is continuous.

Combining Lemmas 3.8, 3.13 and (3.21), we have

sup
pβPB

›

›

›
Enrφeffp

qβ; pµ0,n, pA , pσ
2
nqs ´ Erφeffp

qβ; qµ0, pA , qσ
2qs

›

›

›

2

P
ÝÑ 0; (3.22)

sup
qβPB

›

›

›

›

›

En

«

Bφeffp
qβ; pµ0,n, pA , pσ

2
nq

Bβᵀ

ff

´ E

«

Bφeffp
qβ; qµ0, pA , qσ

2q

Bβᵀ

ff›

›

›

›

›

2

P
ÝÑ 0. (3.23)

The consistency of pβeff,n follows from that B is compact,

pβeff,n P argmax
qβPB

›

›

›
Enrφeffp

qβ; pµ0,n, pA , pσ
2
nqs

›

›

›

2

2
; β P argmax

qβPB

›

›

›
Erφeffp

qβ; qµ0, pA , qσ
2qs

›

›

›

2

2
,

and the uniform convergence in probability in (3.22).
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Step III: By Mean Value Theorem, there exists some αn P r0, 1s and rβn “ p1´ αnqpβeff,n ` αnβ, such that

0 “ Enrφeffp
pβeff,n; pµ0,n, pA , pσ

2
nqs

“ Enrφeffpβ; pµ0,n, pA , pσ
2
nqs ` En

«

Bφeffp
rβn; pµ0,n, pA , pσ

2
nq

Bβᵀ

ff

ppβeff,n ´ βq.

That is,

pβeff,n ´ β “

#

En

«

´
Bφeffp

rβn; pµ0,n, pA , pσ
2
nq

Bβᵀ

ff+´1

Enrφeffpβ; pµ0,n, pA , pσ
2
nqs

“

!

qIpβq ` OPp1q
)´1

ˆ

!

Enrφeffpβ; qµ0, pA , qσ
2qs ` OPpn

´1{2q

)

“ qIpβq´1Enrφeffpβ; qµ0, pA , qσ
2qs ` OPpn

´1{2q.

Here, the second equality follows from that

En

«

´
Bφeffp

rβn; pµ0,n, pA , pσ
2
nq

Bβᵀ

ff

“ qIprβnq ` OPp1q pby (3.23)q

“ qIpβq ` OPp1q. pby pβeff,n
P
Ñ β and the continuity of qIq

Step IV: (Semiparametric Efficiency) If pqµ0, qσ
2q “ pµ0, σ

2q, then φeffpβ; qµ0, pA , qσ
2q “ Seffpβq. Moreover,

ErSeffpβq
b2s “ E

«

9FpX;βqᵀΩᵀΩVεpXq
´1 ωb2

A ε2

pA pA|Xq2
VεpXq

´1ΩᵀΩ 9FpX;βq

ff

“ E

«

9FpX;βqᵀΩᵀΩVεpXq
´1 E

˜

ωb2
A Epε2|X, Aq

pA pA|Xq2

ˇ

ˇ

ˇ

ˇ

ˇ

X

¸

looooooooooooooomooooooooooooooon

“VεpXq

VεpXq
´1ΩᵀΩ 9FpX;βq

ff

“ Ipβq.

That is, Ipβq defined in Theorem 3.9 is the semiparametric Fisher information matrix. We further

have
?
nppβeff,n ´ βq “

?
nIpβq´1EnrSeffpβqs ` OPp1q

D
ÝÑ Np

`

0, Ipβq´1
˘

.

Therefore, pβeff,n is semiparametric efficient.
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Proof of Lemma 3.14. We follow the notations in Section 3.8.5.7. Denote :F pXq :“

sup
qβPB

}:FpX; qβq}2.

(I) Fix qβ1, qβ2 P B. Then

φeffp
qβ1; qµ0, pA , qσ

2q ´ φeffp
qβ2; qµ0, pA , qσ

2q

“ ´

ˆ

1´
1

K

˙

ωᵀ
Ar
~fpX; qβ1q ´ ~fpX; qβ2qsheffpX, A; qβ1q (3.24)

` qepqβ2qrqheffpX, A; qβ1q ´ qheffpX, A; qβ2qs. (3.25)

� (Lipschitz Bound on (3.24))

– (Lipschitz Bound on ~f)

›

›

›

~fpX; qβ1q ´ ~fpX; qβ2q

›

›

›

2
“

›

›

›

9FpX; rβqrqβ1 ´ qβ2s

›

›

›

2

´

for some rβ “ p1´ αqqβ1 ` α qβ2

¯

ď

›

›

›

9FpX; rβq
›

›

›

2
ˆ

›

›

›

qβ1 ´ qβ2

›

›

›

2

ď 9F pXq ˆ
›

›

›

qβ1 ´ qβ2

›

›

›

2
.

– Then we have

}p3.24q}2 “

ˆ

1´
1

K

˙

}ωA}2
looooooooomooooooooon

ďp1´1{Kq1{2}Ω}F

›

›

›

~fpX; qβ1q ´ ~fpX; qβ2q

›

›

›

2

›

›

›

qheffpX, A; qβ1q

›

›

›

2
looooooooomooooooooon

ďp3.20q

ď constantˆ 9F pXq2 ˆ
›

›

›

qβ1 ´ qβ2

›

›

›

2
.

� (Lipschitz Bound on (3.25))

– Note that

qheffpX, A; qβ1q ´ qheffpX, A; qβ2q “ r 9FpX; qβ1q ´ 9FpX; qβ2qs
ᵀΩᵀΩqVεpXq

´1 ωA
pA pA|Xq

.
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– (Lipschitz Bound on 9F)

›

›

›

9FpX; qβ1q ´ 9FpX; qβ2q

›

›

›

2
ď :F pXq ˆ

›

›

›

qβ1 ´ qβ2

›

›

›

2
.

– Then we have

›

›

›

qheffpX, A; qβ1q ´ qheffpX, A; qβ2q

›

›

›

2

“

›

›

›

9FpX; qβ1q ´ 9FpX; qβ2q

›

›

›

2
}Ω}22

›

›

›

qVεpXq
´1
›

›

›

2

}ωA}2
pA pA|Xq

looooooooooooooooomooooooooooooooooon

ďp1´1{Kq´1{2}Ω}22}Ω}F{rpA λminpVεqs

ďconstantˆ :F pXq ˆ
›

›

›

qβ1 ´ qβ2

›

›

›

2
.

– The residual qepqβ2q in (3.25) can be bounded by

sup
qβPB

ˇ

ˇ

ˇ
qepqβq

ˇ

ˇ

ˇ
ď |qµ0pXq ´ µ0pXq| `

ˆ

1´
1

K

˙

sup
qβPB

ˇ

ˇ

ˇ
ωᵀ
Ar
~fpX; qβq ´ ~fpX;βqs

ˇ

ˇ

ˇ
` |ε|

ď |qµ0pXq| ` |µ0pXq| `

ˆ

1´
1

K

˙1{2

}Ω}F sup
qβPB

›

›

›

~fpX; qβq ´ ~fpX;βq
›

›

›

2
` |ε|

ď |qµ0pXq| ` |µ0pXq| ` constantˆ 9F pXq ˆ sup
qβPB

›

›

›

qβ ´ β
›

›

›

2
looooooomooooooon

ďdiampBq

`|ε|

ď |qµ0pXq| ` |µ0pXq| ` constantˆ 9F pXq ` |ε|. (3.26)

– Then we have

}p3.25q}2 ď constantˆ
”

|qµ0pXq| ` |µ0pXq| ` 9F pXq ` |ε|
ı

ˆ :F pXq ˆ
›

›

›

qβ1 ´ qβ2

›

›

›

2

Combining the Lipschitz bounds on (3.24) and (3.25), we have

›

›

›
φeffp

qβ1; qµ0, pA , qσ
2q ´ φeffp

qβ2; qµ0, pA , qσ
2q

›

›

›

2

ď constantˆ
!

9F pXq2 `
”

|qµ0pXq| ` |µ0pXq| ` 9F pXq ` |ε|
ı

ˆ :F pXq
)

loooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooon

:“LpX,A,εq

ˆ

›

›

›

qβ1 ´ qβ2

›

›

›

2
.
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In particular,

ELpX, A, εq

ďconstantˆ
”

Er 9F pXq2s `
´

 

Erqµ0pXq
2s
(1{2

`
 

Erµ0pXq
2s
(1{2

`

!

Er 9F pXq2s
)1{2

`
 

Eε2
(1{2

¯!

Er :F pXq2s
)1{2 ı

,

which is finite by Assumptions 3.2 and 3.4.2.

(II) Note that

´
Bφeffp

qβ; qµ0, pA , qσ
2q

Bβᵀ “ 9FpX; qβqᵀΩᵀΩqVεpXq
´1

«

ˆ

1´
1

K

˙

ωb2
A

pA pA|Xq

ff

9FpX; qβq (3.27)

´ :FpX; qβqᵀΩᵀΩqVεpXq
´1 ωAqep

qβq

pA pA|Xq
. (3.28)

Fix qβ1, qβ2 P B. Denote p3.27qpqβ1q and p3.27qpqβ2q as (3.27) with qβ replaced by qβ1 and qβ2 respec-

tively.

p3.27qpqβ1q ´ p3.27qpqβ2q “ 9FpX; qβ1q
ᵀΩᵀΩqVεpXq

´1

«

ˆ

1´
1

K

˙

ωb2
A

pA pA|Xq

ff

r 9FpX; qβ1q ´ 9FpX; qβ2qs`

r 9FpX; qβ1q ´ 9FpX; qβ2qs
ᵀΩᵀΩqVεpXq

´1

«

ˆ

1´
1

K

˙

ωb2
A

pA pA|Xq

ff

9FpX; qβ2q.

Then

›

›

›
p3.27qpqβ1q ´ p3.27qpqβ2q

›

›

›

2
ď

2}Ω}22}Ω}
2
F

pA λminpVεq
ˆ 9F pXq ˆ

›

›

›

9FpX; qβ1q ´ 9FpX; qβ2q

›

›

›

2

ď constantˆ 9F pXq :F pXq ˆ
›

›

›

qβ1 ´ qβ2

›

›

›

2
.

Denote p3.28qpqβ1q and p3.28qpqβ2q as (3.28) with qβ replaced by qβ1 and qβ2 respectively.

p3.28qpqβ1q ´ p3.28qpqβ2q “ ´ r 9FpX; qβ1q ´ 9FpX; qβ2qs
ᵀΩᵀΩqVεpXq

´1 ωAqep
qβ1q

pA pA|Xq
(3.29)

´ :FpX; qβ2q
ᵀΩᵀΩqVεpXq

´1 ωA
pA pA|Xq

rqepqβ1q ´ qepqβ2qs. (3.30)
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Here,

ˇ

ˇ

ˇ
qepqβ1q ´ qepqβ2q

ˇ

ˇ

ˇ
“

ˆ

1´
1

K

˙

ˇ

ˇ

ˇ
ωᵀ
Ar
~fpX; qβ1q ´ ~fpX; qβ2qs

ˇ

ˇ

ˇ

ď

ˆ

1´
1

K

˙1{2

}Ω}F ˆ 9F pXq ˆ
›

›

›

qβ1 ´ qβ2

›

›

›

2
.

Then

}p3.29q}2 ď

ˆ

1´
1

K

˙´1{2
}Ω}22}Ω}F
pA λminpVεq

ˆ

”

|qµ0pXq| ` |µ0pXq| ` constantˆ 9F pXq ` |ε|
ı

ˆ

›

›

›

9FpX; qβ1q ´ 9FpX; qβ2q

›

›

›

2

ďconstantˆ
”

|qµ0pXq| ` |µ0pXq| ` 9F pXq ` |ε|
ı

ˆ :F pXq ˆ
›

›

›

qβ1 ´ qβ2

›

›

›

2
;

}p3.30q}2 ď

ˆ

1´
1

K

˙´1{2
}Ω}22}Ω}F
pA λminpVεq

ˆ :F pXq ˆ
ˇ

ˇ

ˇ
qepqβ1q ´ qepqβ2q

ˇ

ˇ

ˇ

ďconstantˆ 9F pXq :F pXq ˆ
›

›

›

qβ1 ´ qβ2

›

›

›

2
.

And the Lipschitz bound for (3.28) is

›

›

›
p3.28qpqβ1q ´ p3.28qpqβ2q

›

›

›

2

ď}p3.29q}2 ` }p3.30q}2

ďconstantˆ
”

|qµ0pXq| ` |µ0pXq| ` 9F pXq ` |ε|
ı

ˆ :F pXq ˆ
›

›

›

qβ1 ´ qβ2

›

›

›

2

Combining the Lipschitz bounds for (3.27) and (3.28), we have

›

›

›

›

›

Bφeffp
qβ1; qµ0, pA , qσ

2q

Bβᵀ ´
Bφeffp

qβ2; qµ0, pA , qσ
2q

Bβᵀ

›

›

›

›

›

2

ď constantˆ
”

|qµ0pXq| ` |µ0pXq| ` 9F pXq ` |ε|
ı

ˆ :F pXq
looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

:“rLpX,A,εq

ˆ

›

›

›

qβ1 ´ qβ2

›

›

›

2
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In particular,

ErLpX, A, εq ďconstantˆ
´

 

Erqµ0pXq
2s
(1{2

`
 

Erµ0pXq
2s
(1{2

`

!

Er 9F pXq2s
)1{2

`
 

Eε2
(1{2

¯!

Er :F pXq2s
)1{2

,

which is finite by Assumptions 3.2 and 3.4.2.

(III) Note that

›

›

›
φeffp

qβ; qµ0, pA , qσ
2q

›

›

›

2
“

ˇ

ˇ

ˇ
qepqβq

ˇ

ˇ

ˇ

loomoon

ďp3.26q

ˆ

›

›

›

qheffpX, A; qβq
›

›

›

2
looooooooomooooooooon

ďp3.20q

ď constantˆ
”

|qµ0pXq| ` |µ0pXq| ` 9F pXq ` |ε|
ı

ˆ 9F pXq.

Therefore,

E sup
qβPB

›

›

›
φeffp

qβ; qµ0, pA , qσ
2q

›

›

›

2

ďconstantˆ

ˆ

 

Erqµ0pXq
2s
(1{2

`
 

Erµ0pXq
2s
(1{2

`

!

Er 9F pXq2s
)1{2

`
 

Eε2
(1{2

˙

!

Er 9F pXq2s
)1{2

,

which is finite by Assumptions 3.2 and 3.4.2. Next, we consider bounds for (3.27) and (3.28).

}p3.27q}2 ď
}Ω}22}Ω}

2
F

pA λminpVεq
ˆ 9F pXq2;

}p3.28q}2 ď

ˆ

1´
1

K

˙´1{2
}Ω}22}Ω}F
pA λminpVεq

ˆ :F pXq ˆ
ˇ

ˇ

ˇ
qepqβq

ˇ

ˇ

ˇ

loomoon

ďp3.26q

ď constantˆ
”

|qµ0pXq| ` |µ0pXq| ` 9F pXq ` |ε|
ı

ˆ :F pXq.

Then we have

E

›

›

›

›

›

Bφeffp
qβ; qµ0, pA , qσ

2q

Bβᵀ

›

›

›

›

›

2

ď E}p3.27q}2 ` E}p3.28q}2

ďconstantˆ
”

Er 9F pXq2s `
´

 

Erqµ0pXq
2s
(1{2

`
 

Erµ0pXq
2s
(1{2

`

!

Er 9F pXq2s
)1{2

`
 

Eε2
(1{2

¯!

Er :F pXq2s
)1{2 ı

,
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which is finite by Assumptions by 3.2 and 3.4.2.

Proof of Lemma 3.13. We follow the notations in Section 3.8.5.7 and the proof of Lemma 3.14.

Note that

´
Bφeffp

qβ; pµ0,n, pA , pσ
2
nq

Bβᵀ `
Bφeffp

qβ; qµ0, pA , qσ
2q

Bβᵀ

“ 9FpX; qβqᵀΩᵀΩrpVε,npXq
´1 ´ qVεpXq

´1s

«

ˆ

1´
1

K

˙

ωb2
A

pA pA|Xq

ff

9FpX; qβq (3.31)

` :FpX; qβqᵀΩᵀΩqVεpXq
´1 ωA
pA pA|Xq

rpµ0,npXq ´ qµ0pXqs (3.32)

´ :FpX; qβqᵀΩᵀΩrpVε,npXq
´1 ´ qVεpXq

´1s
ωAqepqβq

pA pA|Xq
(3.33)

` :FpX; qβqᵀΩᵀΩrpVε,npXq
´1 ´ qVεpXq

´1s
ωA

pA pA|Xq
rpµ0,npXq ´ qµ0pXqs. (3.34)

Then

}p3.31q}2 ď
}Ω}22}Ω}

2
F

pA
ˆ 9F pXq2 ˆ

›

›

›

pVε,npXq
´1 ´ qVεpXq

´1
›

›

›

2
looooooooooooooomooooooooooooooon

ďp3.19q

ď constantˆ 9F pXq2 ˆ }pσ2
n ´ qσ2}8;

}p3.32q}2 ď

ˆ

1´
1

K

˙´1{2
}Ω}22}Ω}F
pA λminpVεq

ˆ :F pXq ˆ |pµ0,npXq ´ qµ0pXq| ;

}p3.33q}2 ď

ˆ

1´
1

K

˙´1{2
}Ω}22}Ω}F

pA
ˆ :F pXq ˆ

ˇ

ˇ

ˇ
qepqβq

ˇ

ˇ

ˇ

loomoon

ďp3.26q

ˆ

›

›

›

pVε,npXq
´1 ´ qVεpXq

´1
›

›

›

2
looooooooooooooomooooooooooooooon

ďp3.19q

ď constantˆ
”

|qµ0pXq| ` |µ0pXq| ` 9F pXq ` |ε|
ı

ˆ :F pXq ˆ }pσ2
n ´ qσ2}8;

}p3.34q}2 ď

ˆ

1´
1

K

˙´1{2
}Ω}22}Ω}F

pA
ˆ :F pXq ˆ

›

›

›

pVε,npXq
´1 ´ qVεpXq

´1
›

›

›

2
looooooooooooooomooooooooooooooon

ďp3.19q

ˆ |pµ0,npXq ´ qµ0pXq|

ď constantˆ :F pXq ˆ }pσ2
n ´ qσ2}8 ˆ |pµ0,npXq ´ qµ0pXq| .
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Then we have

En

›

›

›

›

›

Bφeffp
qβ; pµ0,n, pA , pσ

2
nq

Bβᵀ ´
Bφeffp

qβ; qµ0, pA , qσ
2q

Bβᵀ

›

›

›

›

›

2

ďEn}p3.31q}2 ` En}p3.32q}2 ` En}p3.33q}2 ` En}p3.34q}2

ÀOPpn
´1{2q ` OPpn

´1{2q ` OPpn
´1{2qOPpn

´1{2q ` OPpn
´1q

“OPpn
´1{2q.

3.8.5.9 Proof of Theorem 3.10

Proof of Theorem 3.10. By Theorem 3.9, we have

pβeff,npqµ0q ´ β “ Ipβ; qµ0q
´1Enrφeffpβ; qµ0, pA , σ

2
optqs ` OPpn

´1{2q.

Therefore, it suffices to study the asymptotic variance First of all, we derive the
?
n-asymptotic

variance of pβeff,npqµ0q. Denote

qφeffpβq :“ φeffpβ; qµ0, pA , σ
2
optq

“

„

Y ´ qµ0pXq ´

ˆ

1´
1

K

˙

xωA, ~fpX;βqy



heffpX, A;β, qµ0q

“ rµ0pXq ´ qµ0pXq ` ε
looooooooooomooooooooooon

“qepβq

sheffpX, A;β, qµ0q;

heffpX, A;β, qµ0q :“ 9FpX;βqᵀΩᵀΩVεpX; qµ0q
´1 ωA
pA pA|Xq

.
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First notice that

Er qφeffpβq
b2s “ E

«

9FpX;βqᵀΩᵀΩVεpX; qµ0q
´1

˜

ωb2
A qepβq2

pA pA|Xq2

¸

VεpX; qµ0q
´1ΩᵀΩ 9FpX;βq

ff

“ E
”

9FpX;βqᵀΩᵀΩVεpX; qµ0q
´1ΩᵀΩ 9FpX;βq

ı

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

“Ipβ;qµ0q

;

E

«

´
B qφeffpβq

Bβᵀ

ff

“ E

#

9FpX;βqᵀΩᵀΩVεpX; qµ0q
´1

«

ˆ

1´
1

K

˙

ωb2
A

pA pA|Xq

ff

9FpX;βq

+

´ E
"

:FpX;βqᵀΩᵀΩVεpX; qµ0q
´1 rµ0pXq ´ qµ0pXq ` εsωA

pA pA|Xq

*

looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

“0

“ E
”

9FpX;βqᵀΩᵀΩVεpX; qµ0q
´1ΩᵀΩ 9FpX;βq

ı

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

“Ipβ;qµ0q

.

Here, the second equality follows from that

Erqepβq2|X, As “ rqµ0pXq ´ µ0pXqs
2 ` σ2pX, Aq “ σ2

optpX, A; qµ0q;

E

˜

ωb2
A qepβq2

pA pA|Xq2

ˇ

ˇ

ˇ

ˇ

ˇ

X

¸

“ E

˜

ωb2
A σ2

optpX, A; qµ0q

pA pA|Xq2

ˇ

ˇ

ˇ

ˇ

ˇ

X

¸

“

K
ÿ

k“1

σ2
optpX, k; qµ0qω

b2
k

pA pk|Xq
“ VεpX; qµ0q.

The forth equality follows from that ErωA{pA pA|Xq|Xs “ 0, Epε|X, Aq “ 0 and

ˆ

1´
1

K

˙

E

˜

ωb2
A

pA pA|Xq

ˇ

ˇ

ˇ

ˇ

ˇ

X

¸

“

ˆ

1´
1

K

˙ K
ÿ

k“1

ωb2
k “ ΩᵀΩ.

Then

lim
nÑ8

nVarrpβeff,npqµ0qs “

#

E

«

´
B qφeffpβq

Bβᵀ

ff+´1

Er qφeffpβq
b2s

#

E

«

´
B qφeffpβq

ᵀ

Bβ

ff+´1

“ Ipβ; qµ0q
´1.

Next, we study the
?
n-asymptotic variance of estimates from the regular class Bnpqµ0q. Fix

pβnpqµ0q P Bnpqµ0q that corresponds to the estimating function φpβ; qµ0q, and denote qφpβq :“ φpβ; qµ0q.

There exists h : X ˆAÑ Rp, which can depend on pβ, qµ0q, such that ErhpX, Aq|Xs “ 0 and

qφpβq “

„

Y ´ qµ0pXq ´

ˆ

1´
1

K

˙

xωA, ~fpX;βqy
looooooooooooooooooooooooomooooooooooooooooooooooooon

“qepβq



hpX, Aq.
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Here, we suppress the potential dependency of h on pβ, qµ0q and only mention it if necessary. Note

that ErhpX, Aq|Xs “ 0 informs the representation

hpX, Aq “
HpXqωA
pA pA|Xq

; HpXq :“

ˆ

1´
1

K

˙ K
ÿ

k“1

pA pk|XqhpX, kqωᵀ
kpΩ

ᵀΩq´1 P RpˆpK´1q,

since by ΩᵀpΩᵀΩq´1Ωᵀ “ IKˆK ´ p1{Kq~1
b2
K , we have

HpXqωA “ pA pA|XqhpX, Aq ´
1

K

K
ÿ

k“1

pA pk|XqhpX, kq

loooooooooooomoooooooooooon

“ErhpX,Aq|Xs“0

“ pA pA|XqhpX, Aq.

Then

Er qφpβqb2s “E

«

HpXq

˜

ωb2
A qepβq2

pA pA|Xq2

¸

HpXqᵀ

ff

“E rHpXqVεpX; qµ0qHpXq
ᵀs ;

E

«

´
B qφpβq

Bβᵀ

ff

“E

#

HpXq

«

ˆ

1´
1

K

˙

ωb2
A

pA pA|Xq

ff

9FpX;βq

+

´ E
"

9HpX;β, qµ0q
rµ0pXq ´ qµ0pXq ` εsωA

pA pA|Xq

*

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

“0

“E
”

HpXqΩᵀΩ 9FpX;βq
ı

.

Here, the second equality follows from that Erqepβq2|X, As “ σ2
optpX, Aq and

E

˜

ωb2
A qepβq2

pA pA|Xq2

ˇ

ˇ

ˇ

ˇ

ˇ

X

¸

“ E

˜

ωb2
A σ2

optpX, Aq

pA pA|Xq2

ˇ

ˇ

ˇ

ˇ

ˇ

X

¸

“

K
ÿ

k“1

σ2
optpX, Aqωb2

k

pA pk|Xq
“ VεpX; qµ0q.

The forth equality follows from that ErωA{pA pA|Xq|Xs “ 0, Epε|X, Aq “ 0 and

ˆ

1´
1

K

˙

E

˜

ωb2
A

pA pA|Xq

ˇ

ˇ

ˇ

ˇ

ˇ

X

¸

“

ˆ

1´
1

K

˙ K
ÿ

k“1

ωb2
k “ ΩᵀΩ.
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Lemma 3.15 (Sandwich Variance Inequality). Define

A :“ ErHpXqVεpX; qµ0qHpXq
ᵀs;

B :“ ErHpXqΩᵀΩ 9FpX;βqs;

C :“ Er 9FpX;βqᵀΩᵀΩVεpX; qµ0q
´1ΩᵀΩ 9FpX;βqs;

X :“

¨

˚

˝

A B

Bᵀ C

˛

‹

‚

.

Then

X ě 0 ô

Schur complement
hkkkkkkkkkkkikkkkkkkkkkkj

X{A “ C´ BᵀA´1B ě 0,

with equality if and only if there exists some non-singular constant matrix H0 P Rpˆp such that

HpXq “ H0
9FpX;βqᵀΩᵀΩVεpX; qµ0q

´1.

Following the notations in Lemma 3.15, we have

lim
nÑ8

nVarrpβnpqµ0qs

“

#

E

«

´
B qφpβq

Bβᵀ

ff+´1

Er qφpβqb2s

#

E

«

´
B qφpβqᵀ

Bβ

ff+´1

“B´1AB´ᵀ “ pBᵀA´1Bq´1 ě C´1 pby Lemma 3.15q

“Ipβ; qµ0q
´1,

with equality attained at

HpXq “ H0
9FpX;βqᵀΩᵀΩVεpX; qµ0q

´1,

for some non-singular constant matrix H0 P Rpˆp.

Proof of Lemma 3.15. For any u,v P Rp, define

U :“ VεpX; qµ0q
1{2HpXqᵀu;

V :“ VεpX; qµ0q
´1{2ΩᵀΩ 9FpX;βqv.
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Then

puᵀ,vᵀqX

¨

˚

˝

u

v

˛

‹

‚

“ uᵀAu` 2vᵀBᵀu` vᵀCv

“ EpUᵀU ` 2V ᵀU ` V ᵀV q

“ E}U ` V }22

ě 0,

with equality if and only if

U “ ´V ô VεpX; qµ0q
1{2HpXqᵀu “ ´VεpX; qµ0q

´1{2ΩᵀΩ 9FpX;βqv a.s.

That is, for some constant matrix K P Rpˆp, we have u “ ´Kᵀv, and

VεpX; qµ0q
1{2HpXqᵀKᵀ “ VεpX; qµ0q

´1{2ΩᵀΩ 9FpX;βq

ô KHpXq “ 9FpX;βqᵀΩᵀΩVεpX; qµ0q
´1 a.s.

This proves X ě 0 and the equality condition. Finally, by A ą 0, we have

vᵀpX{Aqv “ vᵀCv ´ vᵀBᵀA´1Bv “

»

—

–

puᵀ,vᵀqX

¨

˚

˝

u

v

˛

‹

‚

fi

ffi

fl

u“´A´1Bv

ě 0.

That is, X{A ě 0 with equality if and only if for K “ BᵀA and H0 :“ K´1 “ A´1B´ᵀ, we have

HpXq “ H0
9FpX;βqᵀΩᵀΩVεpX; qµ0q

´1 a.s.

3.8.5.10 Proof of Theorem 3.11

Proof of Theorem 3.11. By Assumption 3.5, the distribution of X has compact support. Without

loss of generality, assume that X is compact. Recall from the proof of Lemma 3.13 that :F is
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the envelop function of :F. Then by Assumption 3.4.2 that E :F pXq ` 8, we further have that

} :F }8 “ supxPX :F pxq ă `8.

By pβn “ β `OPpn
´1{2q, we have

sup
xPX

›

›

›

9Fpx, pβnq ´ 9Fpx,βq
›

›

›

2
ď } :F }8 ˆ }pβn ´ β}2 “ OPpn

´1{2q.

Fix x P X . By Mean Value Theorem, there exists some αn P r0, 1s and rβn “ p1 ´ αnqpβn ` αnβ,

such that

~fpx; pβnq ´ ~fpx;βq “ 9Fpx, rβnqppβn ´ βq

“ r 9Fpx,βq `OPpn
´1{2qsppβn ´ βq

“ 9Fpx,βqppβn ´ βq `OPpn
´1q.

By limnÑ8 nVarppβnq “ Σ, we have

lim
nÑ8

nVarr ~fpx; pβnqs “ 9Fpx;βqΣ 9Fpx;βqᵀ.

Suppose X „ pX pxq and X KK pβn. Then

lim sup
nÑ8

n
K
ÿ

k“1

ErγpX, k; pβnq ´ γpX, k;βqs2

“ lim sup
nÑ8

ˆ

1´
1

K

˙2 K
ÿ

k“1

ωᵀ
kEr ~fpX; pβnq ´ ~fpX;βqsb2ωk pby Lemma 3.4q

“

ˆ

1´
1

K

˙2 K
ÿ

k“1

ωᵀ
kE

„

lim
nÑ8

nE
!

r ~fpX; pβnq ´ ~fpX;βqsb2
ˇ

ˇ

ˇ
X
)

loooooooooooooooooooomoooooooooooooooooooon

“Varr ~fpx; pβnqs|x“X



ωk (by DCT)

“

ˆ

1´
1

K

˙2 K
ÿ

k“1

ωᵀ
kEr 9FpX;βqΣ 9FpX;βqᵀsωk

“

ˆ

1´
1

K

˙2

Tr

#

K
ÿ

k“1

ωᵀ
kEr 9FpX;βqΣ 9FpX;βqᵀsωk

+

ptrace of a scalarq

“

ˆ

1´
1

K

˙

Tr
!

Er 9FpX;βqᵀΩᵀΩ 9FpX;βqsΣ
)

. pcommutativity under traceq
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Finally, by Theorem 3.1, we have

lim sup
nÑ8

?
nrVpd‹q ´ EVppdnqs ď 2 lim sup

nÑ8

"

?
n max

1ďkďK
E
ˇ

ˇ

ˇ
γpX, k; pβnq ´ γpX, k;βq

ˇ

ˇ

ˇ

*

ď 2 lim sup
nÑ8

"

n max
1ďkďK

ErγpX, k; pβnq ´ γpX, k;βqs2
*1{2

ď 2 lim
nÑ8

#

n
K
ÿ

k“1

ErγpX, k; pβnq ´ γpX, k;βqs2

+1{2

“ 2

ˆ

1´
1

K

˙1{2

Tr
!

Er 9FpX;βqᵀΩᵀΩ 9FpX;βqsΣ
)1{2

.

Here, E is taken over pX, pβnq.
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3.8.6 Additional Tables and Figures

Table 3.5: Estimated Coefficients on the ACTG175 Dataset (averaged over 10 replications)

variable D-Learning RD-Learning E-Learning

ddI ZDV ZDV+ddI ZDV+ZAL ddI ZDV ZDV+ddI ZDV+ZAL ddI ZDV ZDV+ddI ZDV+ZAL

I: original data

Intercept 4.72 -29.9 26.45 -1.27 4.33 -31.54 27.87 -0.66 4.67 -30.67 26.52 -0.52

gender -0.25 0.36 0.05 -0.16

homo 2.2 -0.12 -2.74 0.65 3.63 -0.53 -4.55 1.45 3.26 -0.4 -4.36 1.49

race -0.12 0.4 -0.41 0.13 -0.41 1.04 -1.08 0.45 -0.57 2.56 -2.67 0.69

drugs -3.29 -0.96 2.77 1.49 -3.3 -1.12 2.48 1.94 -4.26 -2.68 3.13 3.81

symptom -0.08 0.08 -0.06 0.06

str2 0.11 0.07 -0.26 0.09

hemo 0.25 -0.5 -0.01 0.26

age -0.54 -0.48 4.79 -3.77 -0.64 -0.55 7.67 -6.48 -0.2 0.1 6.65 -6.55

wtkg 0.24 -0.26 -0.19 0.21 0.5 -1.03 -0.36 0.9

cd40 9.02 3.22 -13.54 1.29 7.94 1.02 -7.94 -1.03 5.82 1.15 -5.56 -1.41

karnof -0.02 -0.08 0.1 0 0.15 -0.25 -0.01 0.1

cd80 -0.22 -0.1 -0.03 0.35

II: modified treatment-free effect in age

Intercept 1.69 -3.98 16.8 -14.5 3.44 -15.74 11.17 1.12

gender -0.5 5.59 -6.06 0.97 0.95 -0.28 -1 0.34

homo 0.16 -0.19 0.81 -0.78 0.84 -0.31 -0.77 0.24

race -3.52 2.19 -4.69 6.03 -0.76 0.46 -1.87 2.18

drugs -12.55 -16.86 24.37 5.04 -0.64 -0.4 0.49 0.55

symptom 13.4 -8.08 -9.37 4.05

str2 -14.12 -2.69 9.25 7.56 -0.01 -0.09 -0.06 0.16

hemo -0.19 1.34 1.08 -2.23 0.05 -0.56 -0.91 1.43

age 3.77 50.53 20.2 -74.49 -0.07 0.02 0.01 0.04

wtkg -20.77 0.78 11.18 8.81 1.08 -0.71 -1.79 1.42

cd40 16.05 6.65 -22.85 0.15 1.58 2.24 -4.34 0.53

karnof -9.9 -1.56 9.31 2.14 -0.01 0 0.01 -0.01

cd80 -18.92 7.55 17.75 -6.37 -0.18 0.13 -0.24 0.28

III: modified variance function in wtkg

Intercept 0.02 -22.65 27.54 -4.91

gender 0.74 3.24 -8.76 4.78

homo 4.36 -1.31 1.44 -4.49

race -2.17 -0.28 3.72 -1.28

drugs -1.77 -0.9 -0.51 3.18

symptom -1.06 -0.78 -1.01 2.85

str2 0.72 -1.68 -1.18 2.14

hemo 1.6 -1.41 2.57 -2.76

age 2.2 -0.41 0.02 -1.8

wtkg -41.32 -13.14 87.41 -32.96 -15.54 -5.29 32.88 -12.04 -11.18 -1.19 16.93 -4.56

cd40 1.94 -0.72 1.74 -2.96

karnof 2.84 -1.02 -3.35 1.53

cd80 -20.1 -20.18 61 -20.73 -7.14 -8.31 24.04 -8.59 -3.51 -4.5 11.98 -3.97

IV = II + III: modified treatment-free effect in age and modified variance function in wtkg

Intercept 3.97 -0.11 -4.08 0.22 1.43 -24.28 25.71 -2.87

gender -7.29 1.49 11.15 -5.35 5.8 2.22 -5.33 -2.68

homo 5.02 1.7 -10.68 3.96 9.9 -5.34 -10.71 6.16

race 6.09 10.4 -27.53 11.04 4.47 -0.29 -13.69 9.51

drugs -3.77 -3.03 9.26 -2.45 -1.61 -2.18 -0.12 3.9

symptom 1.18 -0.57 0.56 -1.17 1.79 -0.47 -1.29 -0.03

str2 -5.19 0.95 5.4 -1.17 1.98 -10.15 -5.35 13.52

hemo 2.88 1.93 -6.75 1.94 4.35 -8.64 -4.36 8.64

age -9.42 11.74 25.67 -27.99 -4.6 5.59 4.94 -5.93

wtkg 65.69 17.05 -153.12 70.38 18.9 5.13 -43.57 19.53 6.31 -9.97 -1.03 4.7

cd40 16.05 14.91 -44.87 13.91 -1.12 0.11 -0.22 1.23

karnof -9.03 -1.3 16.11 -5.78 -5.12 0.38 0.97 3.77

cd80 26.31 40.74 -95.75 28.7 5.37 6.4 -16.73 4.96 0.98 -1.14 -7.01 7.18

Note:

Larger coefficients encourage better outcome.

Coefficients are fitted at standardized scales of covariates.

Coefficients at blank are 0’s. Absolute values ą 5 are bolded.
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variable: X1 variable: X2 variable: X3 variable: X4 variable: X5
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Figure 3.5: Fitted treatment-free effect plots with respect to Xk for 1 ď k ď 5 for the simulation studies (Section
3.5) with n “ 400, p “ 10, K “ 3. Curves are fitted by the LOcally wEighted Scatterplot Smoothing (LOESS) of cubic
spline. When the treatment-free effect model is correctly specified (Rows 1 and 2), it can be consistently estimated.
Note that the treatment-free effect estimation utilizes the estimated propensity scores according to Section 3.2.5.2.
The correctness of the treatment-free effect is not affected by the correctness of the propensity score model. When
the treatment-free effect model is misspecified (Row 3), the estimated treatment-free effect deviates from the truth.
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variable: X1 variable: X2 variable: X3 variable: X4 variable: X5

A
: 1

A
: 2

A
: 3

−2 0 2 −2 0 2 −2 0 2 −2 0 2 −2 0 2

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

X

pr
op

en
si

ty
 s

co
re

type estimate truth

propensity score: correct; treatment−free effect: correct; homoscedasticity

Scatter Plots with LOESS Curves: propensity score ~ (X, A)

variable: X1 variable: X2 variable: X3 variable: X4 variable: X5

A
: 1

A
: 2

A
: 3

−2 0 2 −2 0 2 −2 0 2 −2 0 2 −2 0 2

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

X

pr
op

en
si

ty
 s

co
re

type estimate truth

propensity score: incorrect*; treatment−free effect: correct; homoscedasticity

Scatter Plots with LOESS Curves: propensity score ~ (X, A)

Figure 3.6: Fitted propensity score plots with respect to pXk, Aq for 1 ď k ď 5 for the simulation studies
(Section 3.5) with n “ 400, p “ 10, K “ 3. Curves are fitted by the LOESS of cubic spline. When the
propensity score model is correctly specified (Panel 1), it can be consistently estimated. When the propensity
score model is misspecified (Panel 2), the estimated propensity score deviates from the truth.156
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Figure 3.7: Residual plots with respect to Xk and pXk, Aq for 1 ď k ď 5 for the simulation studies (Section
3.5) with n “ 400, p “ 10, K “ 3, correctly specified treatment-free effect and homoscedasticity. Define XXX :“

log
”

1
3

´

e
?

2X1 ` e
?

2X2 ` e
?

2X3

¯ı

. Residuals are computed from the fitted E-Learning. Curves are fitted by the

LOESS of cubic spline. It shows no patterns of logpresidual2
q with respect to X or A.
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Figure 3.8: Residual plots with respect to Xk and pXk, Aq for 1 ď k ď 5 for the simulation studies (Section
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Figure 3.11: Testing misclassification rates (smaller the better) for n “ 100, p “ 10, K “ 2 and each of the
model specification scenarios in Table 3.2. Methods in Table 3.1 are compared, where E-Learning (Oracle)
corresponds to E-Learning with the oracle working variance function, and Policy Tree corresponds to Policy
Learning with decision trees. First and second best methods in terms of the averaged misclassification
rates are annotated in horizontal lines, while the minimal averaged misclassification rate is annotated in the
vertical line.
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Figure 3.12: Testing misclassification rates (smaller the better) for n “ 200, p “ 10, K “ 2 and each of the
model specification scenarios in Table 3.2. Methods in Table 3.1 are compared, where E-Learning (Oracle)
corresponds to E-Learning with the oracle working variance function, and Policy Tree corresponds to Policy
Learning with decision trees. First and second best methods in terms of the averaged misclassification
rates are annotated in horizontal lines, while the minimal averaged misclassification rate is annotated in the
vertical line.
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Figure 3.13: Testing misclassification rates (smaller the better) for n “ 800, p “ 10, K “ 2 and each of the
model specification scenarios in Table 3.2. Methods in Table 3.1 are compared, where E-Learning (Oracle)
corresponds to E-Learning with the oracle working variance function, and Policy Tree corresponds to Policy
Learning with decision trees. First and second best methods in terms of the averaged misclassification
rates are annotated in horizontal lines, while the minimal averaged misclassification rate is annotated in the
vertical line.

163



0.03
0.031
0.031
0.031
0.027
0.036
0.029
0.024
0.039
0.042
0.053
0.055
0.172

0.027
0.028
0.026
0.026
0.025
0.045
0.027
0.024
0.076
0.042
0.053
0.082
0.17

0.072
0.066
0.134
0.135
0.139
0.162
0.169
0.259
0.165
0.18

0.172
0.185
0.246

0.077
0.081
0.199
0.199
0.201
0.209
0.203
0.243
0.222
0.213
0.196
0.205
0.247

0.061
0.065
0.107
0.107
0.104
0.137
0.142
0.238
0.156
0.156
0.153
0.164
0.183

0.06
0.071
0.136
0.136
0.14

0.139
0.135
0.135
0.231
0.144
0.154
0.207
0.189

0.073
0.083
0.165
0.167
0.176
0.214
0.209
0.307
0.217
0.217
0.212
0.216
0.242

0.088
0.097
0.239
0.239
0.245
0.248
0.229
0.245
0.264
0.232
0.242
0.24

0.242

treatment_free: correct

variance: homo

treatment_free: correct

variance: hetero

treatment_free: incorrect

variance: homo

treatment_free: incorrect

variance: hetero

propensity: correct
propensity: incorrect

Mean 0.750.25 0.5 Mean 0.750.25 0.5 Mean 0.750.25 0.5 Mean 0.750.25 0.5

Policy Tree
OWL
RWL

EARL
D−Learning
Q−Learning

RD−Learning
Supgroup Identification

A−Learning
G−Estimation

dWOLS
E−Learning

E−Learning (Oracle)

Policy Tree
OWL
RWL

EARL
D−Learning
Q−Learning

RD−Learning
Supgroup Identification

A−Learning
G−Estimation

dWOLS
E−Learning

E−Learning (Oracle)

Misclassification Rate (smaller the better)

type first best second best

n = 1600, p = 10, K = 2

Testing Misclassification Rates across 100 Replications

Figure 3.14: Testing misclassification rates (smaller the better) for n “ 1600, p “ 10, K “ 2 and each of the
model specification scenarios in Table 3.2. Methods in Table 3.1 are compared, where E-Learning (Oracle)
corresponds to E-Learning with the oracle working variance function, and Policy Tree corresponds to Policy
Learning with decision trees. First and second best methods in terms of the averaged misclassification
rates are annotated in horizontal lines, while the minimal averaged misclassification rate is annotated in the
vertical line.
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Figure 3.15: Testing regrets (smaller the better) for n “ t100, 200, 400, 800, 1600u, p “ 10, K “ 2 and each
of the model specification scenarios in Table 3.2. Methods in Table 3.1 are compared, where E-Learning
(Oracle) corresponds to E-Learning with the oracle working variance function, and Policy Tree corresponds
to Policy Learning with decision trees.
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Figure 3.16: Testing regrets (smaller the better) for n “ 100, p “ 10, K “ 2 and each of the model specifi-
cation scenarios in Table 3.2. Methods in Table 3.1 are compared, where E-Learning (Oracle) corresponds to
E-Learning with the oracle working variance function, and Policy Tree corresponds to Policy Learning with
decision trees. First and second best methods in terms of the averaged regrets are annotated in horizontal
lines, while the minimal averaged regret is annotated in the vertical line. The optimal value is 0.788 and is
annotated in the vertical long dashed line.
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Figure 3.17: Testing regrets (smaller the better) for n “ 200, p “ 10, K “ 2 and each of the model specifi-
cation scenarios in Table 3.2. Methods in Table 3.1 are compared, where E-Learning (Oracle) corresponds to
E-Learning with the oracle working variance function, and Policy Tree corresponds to Policy Learning with
decision trees. First and second best methods in terms of the averaged regrets are annotated in horizontal
lines, while the minimal averaged regret is annotated in the vertical line. The optimal value is 0.788 and is
annotated in the vertical long dashed line.
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Figure 3.18: Testing regrets (smaller the better) for n “ 400, p “ 10, K “ 2 and each of the model specifi-
cation scenarios in Table 3.2. Methods in Table 3.1 are compared, where E-Learning (Oracle) corresponds to
E-Learning with the oracle working variance function, and Policy Tree corresponds to Policy Learning with
decision trees. First and second best methods in terms of the averaged regrets are annotated in horizontal
lines, while the minimal averaged regret is annotated in the vertical line. The optimal value is 0.788 and is
annotated in the vertical long dashed line.
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Figure 3.19: Testing regrets (smaller the better) for n “ 800, p “ 10, K “ 2 and each of the model specifi-
cation scenarios in Table 3.2. Methods in Table 3.1 are compared, where E-Learning (Oracle) corresponds to
E-Learning with the oracle working variance function, and Policy Tree corresponds to Policy Learning with
decision trees. First and second best methods in terms of the averaged regrets are annotated in horizontal
lines, while the minimal averaged regret is annotated in the vertical line. The optimal value is 0.788 and is
annotated in the vertical long dashed line.
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Figure 3.20: Testing regrets (smaller the better) for n “ 1600, p “ 10, K “ 2 and each of the model
specification scenarios in Table 3.2. Methods in Table 3.1 are compared, where E-Learning (Oracle) cor-
responds to E-Learning with the oracle working variance function, and Policy Tree corresponds to Policy
Learning with decision trees. First and second best methods in terms of the averaged regrets are annotated
in horizontal lines, while the minimal averaged regret is annotated in the vertical line. The optimal value is
0.788 and is annotated in the vertical long dashed line.
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Figure 3.21: Testing misclassification rates (smaller the better) for n P t100, 200, 400, 800u, p “ 50, K “ 2
and each of the model specification scenarios (correct propensity score) in Table 3.2. The optimal value
is 0.788. Methods in Table 3.1 are compared, where E-Learning (Oracle) corresponds to E-Learning with
the oracle working variance function, and Policy Tree corresponds to Policy Learning with decision trees.
dWOLS and G-Estimation for n “ 100 cannot be implemented due to more number of parameters 2pp` 1q
than the training sample size n. First and second best methods in terms of the averaged misclassification
rates are annotated in horizontal lines, while the minimal averaged misclassification rates is annotated in
the vertical line.
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Figure 3.22: Testing regrets (smaller the better) for n P t100, 200, 400, 800u, p “ 50, K “ 2 and each
of the model specification scenarios (correct propensity score) in Table 3.2. The optimal value is 0.788.
Methods in Table 3.1 are compared, where E-Learning (Oracle) corresponds to E-Learning with the oracle
working variance function, and Policy Tree corresponds to Policy Learning with decision trees. dWOLS and
G-Estimation for n “ 100 cannot be implemented due to more number of parameters 2pp ` 1q than the
training sample size n. First and second best methods in terms of the averaged regrets are annotated in
horizontal lines, while the minimal averaged regret is annotated in the vertical line.
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Figure 3.23: Testing misclassification rates and regrets (smaller the better) for n “ t100, 200, 400, 800, 1600u,
p “ 10, K “ 3 and each of the model specification scenarios in Table 3.2. E-Learning (Oracle) corresponds to
E-Learning with the oracle working variance function, and E-Learning corresponds to E-Learning with the working
variance function estimated by regression forest. 173
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Figure 3.24: Testing misclassification rates (smaller the better) for n “ t100, 200, 400, 800, 1600u, p P t10, 50, 100u,
K “ 3 and each of the model specification scenarios with correctly specified propensity score in Table 3.2. E-Learning
(Oracle) corresponds to E-Learning with the oracle working variance function, and E-Learning corresponds to E-
Learning with the working variance function estimated by regression forest.
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Figure 3.25: Testing regrets (smaller the better) for n “ t100, 200, 400, 800, 1600u, p P t10, 50, 100u, K “ 3 and
each of the model specification scenarios with correctly specified propensity score in Table 3.2. E-Learning (Oracle)
corresponds to E-Learning with the oracle working variance function, and E-Learning corresponds to E-Learning
with the working variance function estimated by regression forest.
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Figure 3.26: Testing misclassification rates (smaller the better) for n “ t100, 200, 400, 800, 1600u, p “ 10,
K P t2, 3, 5, 7u and each of the model specification scenarios with correctly specified propensity score in
Table 3.2. E-Learning (Oracle) corresponds to E-Learning with the oracle working variance function, and
E-Learning corresponds to E-Learning with the working variance function estimated by regression forest.
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Figure 3.27: Testing regrets (smaller the better) for n “ t100, 200, 400, 800, 1600u, p “ 10, K P t2, 3, 5, 7u
and each of the model specification scenarios with correctly specified propensity score in Table 3.2. E-
Learning (Oracle) corresponds to E-Learning with the oracle working variance function, and E-Learning
corresponds to E-Learning with the working variance function estimated by regression forest.
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Figure 3.28: Testing misclassification rates (smaller the better) for n “ t100, 200, 400, 800, 1600u, p P t10, 50, 100u,
K “ 3 and each of the model specification scenarios with correctly specified propensity score in Table 3.2. The
E-Learning procedures with different nonparametric estimation methods for variance function are compared.178
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Figure 3.29: Testing regrets (smaller the better) for n “ t100, 200, 400, 800, 1600u, p P t10, 50, 100u, K “ 3 and
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CHAPTER 4

Efficient Learning for Optimal Dynamic Treatment Regimes

4.1 Introduction

In this chapter, we focus on the multi-stage decision problem. Among the existing approaches for

estimating DTR, a model-based method can be more preferable if causal interpretations of the DTR

are desired. In particular, the interaction effects in an SNMM can be interpreted as the stagewise

individualized causal effects, which can be of primary interest when analyzing adaptive treatment

strategies in randomized trials (Bembom and van der Laan, 2008). Moreover, under the correct

model assumptions, the optimality of model-based methods can be established as the optimality of

the parameter estimates, where the semiparametric efficiency theory can be applied (Robins, 1994,

2004). In practice, if the data generating process is close to the working semiparametric models,

then model-based methods can generally enjoy superior performance (Shi et al., 2018a; Zhu et al.,

2019; Ertefaie et al., 2021).

There remains gaps between the theory and practice for semiparametric efficient model-based

methods. Specifically, Robins (2004) developed the G-Estimation procedures for an optimal DTR

under the SNMM framework. The theoretical properties of G-Estimation can be applied to the

analysis of other model-based methods due to the connections with Q-Learning (Chakraborty et al.,

2010), A-Learning (Almirall et al., 2010) and dWOLS (Wallace and Moodie, 2015). The semipara-

metric efficiency can be established with the optimal estimating equations and correct nuisance

models. However, the efficient G-estimating equations generally take a complicated form. The

simplified versions under specific assumptions still require high-dimensional vector-valued nuisance

functions, which can be hard to estimate in practice (Vansteelandt and Joffe, 2014). Moreover,

there are conflicts in model specifications and the commonly used linear model can always mis-

specify the truth (Schulte et al., 2014). The residuals in the SNMM are generally heteroscedastic

and positively correlated across stages. General practice can ignore these facts and implement a
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suboptimal version of G-Estimation (Wallace et al., 2019). Last but not least, the algorithm based

on backward recursive estimation is commonly used in practice, including Q-Learning (Watkins,

1989), recursive G-Estimation (Robins, 2004, Section 7.2), stagewise A-Learning (Shi et al., 2018a),

and dWOLS (Wallace and Moodie, 2015). These methods do not solve the efficient G-estimating

equations. Therefore, despite the well studied theoretical properties of G-Estimation, the rigorous

semiparametric efficient procedure is rarely used in practice.

In this chapter, we first review the semiparametric theory of SNMM. The complicated semi-

parametric efficient score can be simplified if we consider a larger class of semiparametric estimates.

Specifically, we propose a novel Backward Change Point SNMM (BCP-SNMM), where there ex-

ists an unknown nuisance change point t0, such that the data generating process is completely

nonparametric for stages 1 to t0 ´ 1, and then follows the SNMM from stage t0 to the end. The

BCP-SNMM can allow more robustness against model misspecifications. For any backward change

point t0 such that the SNMMs are violated before stage t0, the properties of a Regular and Asymp-

totically Linear (RAL) estimate after stage t0 remains, including consistency and semiparametric

efficiency. The key observation is that an RAL estimate must be pivotal with respect to the nuisance

change point t0, and hence can only depend on the future model assumptions. In this way, many

existing backward recursive estimates for the SNMM can be studied under the BCP-SNMM. We

further propose Dynamic Efficient Learning (DE-Learning) that solves the semiparametric efficient

estimating equations under the multiple treatment setting. In particular, DE-Learning enjoys the

following properties:

1. (Optimality) Under correct model assumptions, DE-Learning is semiparametric efficient under

the BCP-SNMM. In particular, it can handle the heteroscedasticity and cross-stage correlation

with the efficient estimating equations. For general working treatment-free effect functions

(possibly misspecified), the DE-Learning estimate achieves the smallest
?
n-asymptotic variance

among a regular class of semiparametric estimates that allows misspecified treatment-free effects.

2. (Robustness) DE-Learning is stagewise doubly robust. For each stage, the corresponding esti-

mate remains consistent when at most one of the treatment-free effect and propensity score is

incorrect. Furthermore, DE-Learning is robust with respect to any backward model misspecifi-
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cations. In particular, any violations of the SNMMs at stages 1, 2, ¨ ¨ ¨ , t ´ 1 do not affect the

consistency and optimality of the stage-t estimate.

3. (Tractability) DE-Learning can be implemented in a backward stagewise manner. The nuisance

functions required by DE-Learning are much fewer than that of the semiparametric efficient

G-Estimation. More details on efficient G-Estimation are provided in Section 4.6.2.

This chapter makes the following contributions to the existing literature.

1. To our limited knowledge, this is the first work to establish the semiparametric efficiency of a

backward stagewise estimate. The BCP-based model provides the framework for studying the

optimality, robustness and cross-stage orthogonality of such an estimates.

2. DE-Learning is a tractable procedure for rigorous semiparametric efficient estimation. It can

allow high-dimensional extensions with much fewer nuisance functions than G-Estimation.

3. In many practical scenarios, we show that the treatment-free effects in the SNMM can always

be misspecified, and the stagewise heteroscedasticity generally exists. In presence of these chal-

lenges, DE-Learning remains optimal and enjoys significantly improved performance.

4. Under the BCP-SNMM, DE-Learning enjoys the cross-stage orthogonality, and hence can be

less affected by the error propagation during backward stagewise estimation.

5. DE-Learning is developed for multiple treatments. We incorporate the equiangular coding in

the semiparametric theory, which provides a tractable way of extending Robins (1994, 2004).

The rest of this chapter is organized as follows. In Section 4.2, we introduce the semiparametric

models for the DTR problem. In particular, mathematical setups and notations are introduced in

Section 4.2.1. The general SNMM and its semiparametric theories are discussed in Sections 4.2.2-

4.2.4. The BCP-SNMM is proposed in Section 4.2.5. In Section 4.3, we propose DE-Learning

and provide the implementation details. Simulation studies are provided in Section 4.4. General

discussions and future work are given in Section 4.5. Additional discussions and technical proofs

are provided in Section 4.6.
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4.2 Semiparametric Models

In this section, we first consider the SNMM for the DTR problem. Then we propose the BCP-

SNMM that can simplify the semiparametric theory of the standard SNMM.

4.2.1 Setup

Consider the observed data
 

Oi :“
`

pXit, Ait : 1 ď t ď T q, Yi
˘(n

i“1
, where Xit P Xt Ď Rd denotes

the covariates at the t-th stage for the i-th subject, Ait P A “ t1, 2, ¨ ¨ ¨ ,Ku is the correspond-

ing treatment assignment with K treatment options, and Yi P R is the corresponding observed

outcome at the end. For t “ 1, ¨ ¨ ¨ , T , we recursively define H1 :“ X1 P H1 “ X1, Ht :“

pHᵀ
t´1, At´1,X

ᵀ
t q

ᵀ P Ht as the vector of pre-treatment historical information. We further introduce

the stage-t potential pre-treatment history as Htp~a
t´1
1 q, where ~at´1

1 :“ pa1, a2, ¨ ¨ ¨ , at´1q
ᵀ P At´1 is

a treatment assignment trajectory from stage 1 to stage t´1. At stage t “ 1, we define ~a0
1 “ H, and

the potential pre-treatment history H1pHq “ H1. Analogously, Y p~aT1 q is deifined as the potential

outcome under the treatment assignment trajectory ~aT1 . A Dynamic Treatment Regime (DTR) is

defined as a sequence of mappings d1:T “ pd1, d2, ¨ ¨ ¨ , dT q P D1 ˆ D2 ˆ ¨ ¨ ¨ ˆ DT “ D1:T , where

dt P Dt :“ tdt : Ht Ñ Au for 1 ď t ď T . The value function of DTR is defined as

Vpd1:T q :“ E
!

Y p ~AT
1 q

ˇ

ˇ

ˇ
dt

”

Htp ~A
t´1
1 q

ı

“ At p1 ď t ď T q
)

.

Assuming that a larger outcome is better, the goal is to find the optimal DTR that maximizes the

value function d‹1:T P argmaxd1:T PD1:T
Vpd1:T q.

4.2.2 Structural Nested Mean Model (SNMM)

In order to identify Vpd1:T q from the observed data, we make the following identifiability conditions

as in Robins (2004).

Assumption 4.1 (Consistency). For 2 ď t ď T , Ht “Htp ~A
t´1
1 q; Y “ Y p ~AT

1 q.

Assumption 4.2 (Sequential Ignorability). For 1 ď t ď T ,

!´

Ht1p~a
t1´1
1 q : 1 ď t1 ď T

¯

, Y p~aT1 q : ~aT1 P AT
)

KK At

ˇ

ˇ

ˇ
Ht; 1 ď t ď T.
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Assumption 4.3 (Strict Overlap). There exists some pA ą 0 such that PpAt “ k|Htq ě pA for

1 ď k ď K and 1 ď t ď T .

Given Assumptions 4.1-4.3, the value function can be identified from the observed data by Vpd1:T q “

ErY |dtpHtq “ At p1 ď t ď T qs. In order to obtain the optimal DTR in a stagewise manner, we

introduce the state value functions, also known as the V-functions, as

VtpHtq :“ max
dt:T PDt:T

ErY |Ht, dupHuq “ Au pt ď u ď T qs; 1 ď t ď T. (4.1)

Then tVtpHtqu
T
t“1 satisfy the following Bellman equations (Bellman, 1966):

VT pHT q “ max
1ďkďK

EpY |HT , AT “ kq
loooooooooomoooooooooon

:“QT pHT ,kq

;

VtpHtq “ max
1ďkďK

E
!

Vt`1

“`

Hᵀ
t , At,X

ᵀ
t`1

˘ᵀ‰
ˇ

ˇ

ˇ
Ht, At “ k

)

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

:“QtpHt,kq

; t “ T ´ 1, T ´ 2, ¨ ¨ ¨ , 1.

(4.2)

Here, tQtpHt, Atqu
T
t“1 are also known as the state-action value functions or the Q-functions. The

optimal DTR d‹1:T satisfies that d‹t pHtq P argmax1ďkďK QtpHt, kq for 1 ď t ď T .

The Q-functions can be interpreted as the conditional means for the pseudo outcomes, which

are informally defined as Y ˚t “ Y ˚t p
~At

1q :“ Y pA1, ¨ ¨ ¨ , At, d
‹
t`1, ¨ ¨ ¨ , d

‹
T q for 1 ď t ď T , that is, the

potential outcomes following the observed treatments up to stage t, while following the optimal

treatments from stage t`1 to stage T . The precise definition is given in Section 4.6.1. The following

Lemma 4.1 establishes the equivalence between the conditional mean of Y ˚t given pHt, Atq and the

Q-function QtpHt, Atq.

Lemma 4.1 (Pseudo Outcome and Q-Functions). Consider the pseudo outcomes tY ˚t u
T
t“1 in (4.16)

in Section 4.6 and the Q-functions in (4.2). Under Assumptions 4.1 and 4.2, we have

EpY ˚t |Ht, Atq “ QtpHt, Atq; 1 ď t ď T.

The proof of Lemma 4.1 is provided in Section 4.6. Lemma 4.1 implies that

VtpHtq “ max
1ďkďK

EpY ˚t |Ht, At “ kq; d‹t pHtq P argmax
1ďkďK

EpY ˚t |Ht, At “ kq.
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The motivates us to study the following Structural Nested Mean Model (SNMM) (Robins, 1994,

2004). For 1 ď t ď T , the stage-t SNMM is defined as:

Y ˚t “ µtpHtq ` γtpHt, At;βtq ` e
˚
t ;

subject to

$

’

’

’

’

&

’

’

’

’

%

K
ÿ

k“1

γtpHt, k;βtq “ 0;

Epe˚t |Ht, Atq “ 0; Erpe˚t q2s ă `8.

(SNMM)

For the rest of this chapter, we use (SNMM)t to represent the stage-t SNMM, and (SNMM)tpβtq

to emphasize the true parameter βt. In (SNMM)t, µtpHtq is the stage-t treatment-free effect, and

γtpHt, At;βtq is the stage-t history-treatment interaction effect, also known as the “blip function”

(Robins, 1994), which is parametrized by the pt-dimensional parameter vector βt P Bt Ď Rpt . The

sum-to-zero constraint
řK
k“1 γtpHt, k;βtq “ 0 is incorporated for identifiability. Since the stage-t

Q-function is modeled in (SNMM)t as QtpHt, Atq “ µtpHtq ` γtpHt, At;βtq, the induced stage-t

optimal decision rule becomes d‹t pHtq P argmax1ďkďK γtpHt, k;βtq.

In the following Theorem 4.2, we further show that maximizing the value function can be

directly related to finding good estimates of the interaction effects tγtpHt, Atqu
T
t“1 in (SNMM)T1 .

Theorem 4.2 (Estimation and Regret Bound). Consider Model (SNMM)Tt“1. For 1 ď t ď T ,

let pγt,npXt, Atq be an estimates of γtpXt, Atq, pdt,npHtq P argmax1ďkďK pγt,npHt, kq, and d‹t pHtq P

argmax1ďkďK γtpHt, kq . Then

Vpd‹q ´ Vp pdnq ď 2
T
ÿ

t“1

max
1ďkďK

E |pγt,npHt, kq ´ γtpHt, kq| .

Here, tpγt,nu
T
t“1 are fixed and E takes expectation over tHtu

T
t“1.

The proof is similar to Murphy (2005, Lemma 2), and is included in Section 4.6. Theorem 4.2

implies that minimizing the estimation error of γ can also minimize the regret. In this chapter, we

focus on finding efficient estimates of the parametric interaction effects tγtpHt, At;βtqu
T
t“1.
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4.2.3 Identification

Model (SNMM)t is “structural” since the stage-t pseudo outcome Y ˚t is not directly observed

from the data except for t “ T . It is “nested” because (SNMM)t depends on (SNMM)Tt`1 :“

ŞT
u“t`1 (SNMM)u. Specifically, assume that Model (SNMM)Tt`1pβpt`1q:T q “

ŞT
u“t`1 (SNMM)upβuq

is known. Define the stagewise g-outcomes from the observed data O as

Y
pgq
T :“ Y ; Y

pgq
t :“ Y ´

T
ÿ

u“t`1

"

γupHu, Au;βuq ´ max
1ďkďK

γupHu, k;βuq

*

; t “ T ´ 1, ¨ ¨ ¨ , 1.

(4.3)

The following Lemma 4.3 connects the pseudo outcome with the g-outcome.

Lemma 4.3 (Pseudo Outcome Identification). Fix 1 ď t ď T . Consider the stage-t pseudo

outcome Y ˚t in (4.16) and the g-outcome Y
pgq
t in (4.3). Then under Model (SNMM)Tt`1pβpt`1q:T q,

Assumptions 4.1 and 4.2, we have

Eβpt`1q:T
pY
pgq
t |Ht, Atq “ Eβpt`1q:T

pY ˚t |Ht, Atq.

Here, Eβpt`1q:T
denotes the expectation under the data generating process of Model

(SNMM)Tt`1pβpt`1q:T q.

In Lemma 4.3, the stage-t g-outcome Y
pgq
t can be obtained from the observed data tOiu

n
i“1

and the true parameters tβuu
T
u“t`1 in the subsequent-stage models. In this way, (SNMM)t is

identified from the g-outcome Y
pgq
t , and the identification depends on (SNMM)Tt`1. We point out

that (SNMM)t does not depend on the previous-stage models (SNMM)t´1
1 :“

Şt´1
s“1 (SNMM)s.

Therefore, the estimation of the stage-t parameter βt can also be free from the model assumptions

of (SNMM)t´1
1 . This can provide the potential for robustness with respect to backward model

misspecifications.

As a corollary of Lemma 4.3, Model (SNMM)T1 can be characterized by some moment conditions

on the observed data O. Define the stage-t g-residual from the observed data O as:

e
pgq
t “ e

pgq
t pβt:T ;µtq :“ Y ´

T
ÿ

u“t`1

"

γupHu, Au;βuq ´ max
1ďkďK

γupHu, k;βuq

*

´ µtpHtq ´ γtpHt, At;βtq.

(4.4)
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In the following Theorem 4.4, we establish the moment conditions for (SNMM)T1 in terms of the

observed data.

Theorem 4.4 (Characterizing Moment Conditions). Consider Model (SNMM)T1 pβ1:T q with the

true parameter β1:T “ pβ
ᵀ
1 , ¨ ¨ ¨ ,β

ᵀ
T q

ᵀ P B1 ˆB2 ˆ ¨ ¨ ¨ ˆBT “ B1:T . Let te
pgq
t p

qβt:T ; qµtqu
T
t“1 be the

g-residuals in (4.4) based on the working parameter qβ1:T P B1:T and the working treatment-free

effect function qµtpHtq. Then qβ1:T “ β1:T if and only if

Eβt:T re
pgq
t p

qβt:T ; qµtq|Ht, Ats “ Eβt:T re
pgq
t p

qβt:T ; qµtq|Hts; 1 ď t ď T. (4.5)

Here, Eβt:T denotes the expectation under the data generating process of Model (SNMM)Tt pβt:T q.

Robins (2004, Theorem 3.2 (ii)) also used similar moment conditions as our (4.5). These

moment conditions define the nuisance tangent spaces in Lemma 4.6 in Section 4.2.4. In the

following Corollary 4.5, we further obtain the equivalent data generating process implied by (4.5).

Different from the stagewise models in (SNMM)T1 , Corollary 4.5 provides cross-stage the data

generating process.

Corollary 4.5 (Equivalent Data Generating Process). Under Assumptions 4.1 and 4.2, Model

(SNMM)T1 pβ1:T q is equivalent to the following data generating process:

Y “ V0 `

T
ÿ

t“1

∆MtpHtq ´

T
ÿ

t“1

"

max
1ďkďK

γtpHt, k;βtq ´ γtpHt, At;βtq

*

`∆MT`1pHT`1q,

subject to

$

’

’

’

&

’

’

’

%

K
ÿ

k“1

γtpHt, k;βtq “ 0; 1 ď t ď T ;

Er∆Mt`1pHt`1q|Ht, Ats “ 0; Er∆Mt`1pHt`1q
2s ă `8; 0 ď t ď T,

(4.6)

where H0 “ A0 “ H, Ht “
`

Hᵀ
t´1, At´1,X

ᵀ
t

˘ᵀ
p1 ď t ď T q, HT`1 “ pH

ᵀ
T , AT , Y q

ᵀ. In particular,

the equivalent stage-t mean model on the g-outcome (4.3) is Y
pgq
t “ µtpHtq ` γtpHt, At;βtq ` e

pgq
t ,

where µtpHtq “ VtpHtq ´max1ďkďK γtpHt, k;βtq, e
pgq
t “

řT`1
u“t`1 ∆MupHuq, and VtpHtq “ V0 `

řt
s“1 ∆MspHsq ´

řt´1
s“1 tmax1ďkďK γspHs, k;βsq ´ γspHs, As;βsqu.

The stagewise g-residuals te
pgq
t u

T
t“1 are generally heteroscedastic and positively correlated:

E
´

epgqs e
pgq
t

ˇ

ˇ

ˇ
Ht, At

¯

“ E
´

e
pgq2
t

ˇ

ˇ

ˇ
Ht, At

¯

“

T`1
ÿ

u“t`1

Er∆MupHuq
2|Ht, Ats; 1 ď s ď t ď T. (4.7)
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Moreover, the stage-t-treatment-free effect µtpHtq consists of tmax1ďkďK γspHs, k;βsqu
t
s“1. If

γpHs, k;βsq is modeled as the linear model Hᵀ
sβs,k for 1 ď k ď K and 1 ď s ď t, then µtpHtq

is nonlinear in Ht. This implies that existing strategies based on linear working models (Almirall

et al., 2010; Henderson et al., 2010; Wallace and Moodie, 2015; Shi et al., 2018a; Zhu et al., 2019;

Wallace et al., 2019) may always misspecify the treatment-free effect models (Laber et al., 2014a;

Schulte et al., 2014).

Murphy (2003, Equation (12)) also obtained the same representation as our (4.6). In particu-

lar, t∆MtpHtqu
T`1
t“1 is a pHt, Atq

T
t“1-martingale-difference sequence, where ∆MtpHtq “ VtpHtq ´

ErVtpHtq|Ht´1, At´1s. The nonparametric function ∆Mt : Ht Ñ R is part of the treatment-free ef-

fects tµupHuqu
T
u“t. The predicted quadratic variation Er∆MtpHtq

2|Hs, Ass is part of the variance

function Epepgq2s |Hs, Asq for 1 ď s ď t´ 1.

Almirall et al. (2010); Henderson et al. (2010) utilized this cross-stage data generating process

representation, and estimated V0, t∆MtpHtqu
T
t“1 and tγtpHt, At;βtqu

T
t“1 simultaneously. However,

t∆MtpHtqu
T
t“1 are nuisance components that can be vulnerable to model misspecifications.

Q-Learning (Watkins, 1989) utilized the nuisance components in a different way. Specifically,

the following stagewise q-outcomes are considered:

Y
pqq
T :“ Y ; Y

pqq
t :“ µt`1pHt`1q ` max

1ďkďK
γt`1pHt`1, k;βt`1q; t “ T ´ 1, ¨ ¨ ¨ , 1. (4.8)

If the treatment-free effects tµtpHtqu
T
t“2 are correctly specified, then the stage-t mean model on

the q-outcome is Y
pqq
t “ µtpHtq ` γtpHt, At;βtq ` e

pqq
t , where the stage-t q-residual is e

pqq
t “

∆Mt`1pHt`1q. Here, different from the representation of g-residual in Corollary 4.5, the q-residual

e
pqq
t consists of fewer martingale-difference terms than the g-residual e

pgq
t . Therefore, Q-Learning

under correct model assumptions can enjoy higher efficiency than methods based on the g-outcomes

(Schulte et al., 2014). However, Q-Learning can also be vulnerable to model misspecifications. In

particular, the stage-t q-outcome Y
pqq
t can heavily depend on the stage-pt`1qmean model, especially

the treatment-free effect function µt`1pHt`1q.

To conclude this section, we use the following example to demonstrate (4.7) and the nonlinear

treatment-free effects.
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Example 4.1. Consider the data pX1, A1, X2, A2, X3, A3, Y q as follows:

A1, A2, A3, Z1, Z2, Z3
i.i.d.
„ 2ˆ Bernoullip1{2q ´ 1;

X1 “ Z1; X2 “ Z21pX1 “ A1 “ 1q; X3 “ Z31pX2 “ A2 “ 1q; Y “
3
ÿ

t“1

Xt ´

3
ÿ

t“1

p|Xt| ´AtXtq.

The stagewise pre-treatment histories are H3 “ pX1, A1, X2, A2, X3q
ᵀ, H2 “ pX1, A1, X2q

ᵀ, and

H1 “ X1. Compared with (4.6), the martingale-difference sequence is tXtu
3
t“1.

� The stage-3 mean model is Y
pgq

3 “ Y “
“
ř2
t“1pXt´|Xt|`AtXtq`X3´|X3|

‰

`pA3X3q, where

the treatment-free effect is µ3pH3q “
ř2
t“1pXt ´ |Xt| ` AtXtq ` X3 ´ |X3|, the interaction

effect is γ3pH3, A3q “ A3X3, and the g-residual is 0.

� The stage-2 mean model is Y
pgq

2 “ Y ´
 

γ3pH3, A3q ´maxaPt´1,1u γ3pH3, aq
(

“ Y ´pA3X3´

|X3|q “ rpX1 ´ |X1| `A1X1q `X2 ´ |X2|s ` pA2X2q ` pX3q;, where the treatment-free effect

is µ2pH2q “ pX1 ´ |X1| ` A1X1q `X2 ´ |X2|, the interaction effect is γ2pH2, A2q “ A2X2,

and the g-residual is e
pgq
2 “ X3.

� The stage-1 mean model is Y
pgq

1 “ Y ´
ř3
u“2

 

γupHu, Auq ´maxaPt´1,1u γupHu, aq
(

“ Y ´

pA2X2´|X2|q´pA3X3´|X3|q “ pX1´|X1|q`pA1X1q`pX2`X3q, where the treatment-free

effect is µ1pH1q “ X1 ´ |X1|, the interaction effect is γ1pH1, A1q “ A1X1, and the g-residual

is e
pgq
1 “ X2 `X3.

It can be clear that µ3pH3q, µ2pH2q must be nonlinear functions. For the g-residuals, we have

Epepgq22 |H2, A2q “ EpX2
3 |X1, A1, X2, A2q “ 1pX2 “ A2 “ 1q and Epepgq21 |H1, A1q “ ErpX2 `

X3q
2|X1, A1s “ rEpZ2

2 q1pX1 “ 1q ` EpZ2
3 qPpX2 “ A2 “ 1|X1, A1qs1pA1 “ 1q “ p5{4q1pX1 “

A1 “ 1q. That is, both e
pgq
1 and e

pgq
2 are heteroscedastic. Moreover, Epepgq1 e

pgq
2 |H2, A2q “

ErpX2 ` X3qX3|X1, A1, X2, A2s “ EpZ2
3 q1pX2 “ A2 “ 1q “ 1pX2 “ A2 “ 1q. Then Epepgq1 e

pgq
2 q “

PpX2 “ A2 “ 1q “ 1{16, which suggests that e
pgq
1 and e

pgq
2 are positively correlated.

4.2.4 Semiparametric Theory

Our next goal is to further study the semiparametric efficient estimation of (SNMM)T1 . We first

review several concepts in semiparametric inference. Consider an RAL estimate pβ1:T,n of β1:T with

the
?
n-asymptotic linear representation: pβ1:T,n´β1:T “ EnpIFq ` OPpn

´1{2q. Here, IF is the Influ-

ence Function (IF) of pβ1:T,n, and En is the empirical average. Then under regularity conditions,
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limnÑ8 nVarppβ1:T,nq “ EpIFb2q where ab2 :“ aaᵀ. The goal is to find the semiparametric Efficient

IF (EIF) with the smallest EpEIFb2q among that of all RAL estimates. By Tsiatis (2007, Theorem

4.2 (ii)), IF P ΛK1:T , where Λ1:T is the nuisance tangent space of (SNMM)T1 , which can be charac-

terized by the moment conditions (4.5) in Theorem 4.4. Then it remains to characterize the IFs in

ΛK1:T and choose the EIF with the minimal EpEIFb2q.

We first derive the nuisance tangent space following Robins (1994, Theorem 8).

Lemma 4.6 (Nuisance Tangent Spaces). Consider (SNMM)Tt“1 and the g-residuals te
pgq
t u

T
t“1 in

(4.4). Define p :“
řT
t“1 pt and G :“ tgpOq | g : O Ñ Rp, ErgpOqs “ 0, E}gpOq}22 ă `8u, which

is equipped with the norm } ¨ } :“ pE} ¨ }22q1{2. Then the nuisance tangent space is Λ1:T :“
ŞT
t“1 Λt,

where

Λt “
!

G P G : E
´

Ge
pgq
t

ˇ

ˇ

ˇ
Ht, At

¯

“ E
´

Ge
pgq
t

ˇ

ˇ

ˇ
Ht

¯)

; 1 ď t ď T.

By Tsiatis (2007, Theorem 4.3), the IF of an RAL estimate belongs to ΛK1:T “

Ęspan
 

ΛKu : t ď u ď T
(

, where Ęspan represents the closed linear span. Therefore, it suffices to study

ΛKt for each 1 ď t ď T . Notice that the moment restriction in Lemma 4.6 is equivalent to

E
´

Ge
pgq
t

ˇ

ˇ

ˇ
Ht, At “ 1

¯

“ E
´

Ge
pgq
t

ˇ

ˇ

ˇ
Ht, At “ 2

¯

“ ¨ ¨ ¨ “ E
´

Ge
pgq
t

ˇ

ˇ

ˇ
Ht, At “ K

¯

.

Then we can introduce a set of coding vectors tωku
K
k“1 Ď RK´1, such that

řK
k“1 ckωk “ 0 if and

only if c1 “ c2 “ ¨ ¨ ¨ “ cK . Equivalently, we can let Ω :“
a

1´ 1{Krω1,ω2, ¨ ¨ ¨ ,ωKs
ᵀ P RKˆpK´1q,

and require that p1{
?
Kq1Kˆ1 is the only left singular vector corresponding to the singular value 0

of Ω. In the following Lemma 4.7, we show that any coding vectors satisfying such a requirement

are equiangular up to normalization.

Lemma 4.7 (Equiangularity). Let Ω :“
a

1´ 1{Krω1,ω2, ¨ ¨ ¨ ,ωKs
ᵀ P RKˆpK´1q such that

p1{
?
Kq1Kˆ1 is the only left singular vector corresponding to the singular value 0. Then

tpΩᵀΩq´1{2ωku
K
k“1 are equiangular.

The equiangular coding representation in Zhang and Liu (2014); Qi et al. (2020); Zhang et al.

(2020) is an example that satisfies Lemma 4.7. The equiangular coding vectors tωku
K
K“1 can be

useful to define the following RK´1-valued decision function associated with the interaction effect.

Lemma 4.8 (Angle-Based Decision Function). Consider (SNMM)t. For the coding vectors

tωku
K
k“1 Ď RK´1 as in Lemma 4.7, define an RK´1-valued decision function as ~ftpHt;βtq :“
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pΩᵀΩq´1
řK
k“1 γtpHt, k;βtqωk. Then

γtpHt, k;βtq “

ˆ

1´
1

K

˙

xωk, ~ftpHt;βtqy; 1 ď k ď K.

Moreover, the stage-t optimal decision rule is given by

d‹t pHt;βtq P argmax
1ďkďK

xωk, ~ftpHt;βtqy. (4.9)

Denote ~At :“ ωAt . Based on the coding vectors, the stage-t nuisance tangent space in Lemma

4.6 can be rewritten as

Λt “

#

G P G : E

˜

G ~Aᵀ
t e
pgq
t

pA ,tpAt|Htq

ˇ

ˇ

ˇ

ˇ

ˇ

Ht

¸

“ OpˆpK´1q

+

.

Then we can characterize ΛKt as in the following Lemma 4.9.

Lemma 4.9 (Characterization of ΛKt ). Let Λt be the stage-t nuisance tangent space in Lemma 4.6,

tωku
K
k“1 Ď RK´1 be the coding vectors satisfying

řK
k“1 ckωk “ 0 if and only if c1 “ c2 “ ¨ ¨ ¨ “ cK .

Denote ~At :“ ωAt. Then

ΛKt “

#

GtpHtq ~Ate
pgq
t

pA ,tpAt|Htq

ˇ

ˇ

ˇ

ˇ

ˇ

Gt : Ht Ñ RpˆpK´1q

+

.

Here, pA ,tpat|htq :“ PpAt “ at|Ht “ htq.

Based on Lemma 4.9, we have ΛK1:T “

"

řT
t“1

GtpHtq ~Ate
pgq
t

pA ,tpAt|Htq

ˇ

ˇ

ˇ

ˇ

Gt : Ht Ñ RpˆpK´1q p1 ď t ď T q

*

.

Compared with Robins (2004, Equation (3.10)), our characterization of the nuisance tangent space

ΛKt utilize the equivangular coding tωku
K
k“1 to re-express the working instruments GtpHt, Atq ´

ErGtpHt, Atq|Hts in Robins (2004) by GtpHtq ~At
pA ,tpAt|Htq

, and can be more tractable to analyze.

Notice that tΛKt u
T
t“1 are not mutually orthogonal, since Epepgqs e

pgq
t |Ht, Atq is generally nonzero

for 1 ď s ď t ď T as in (4.7). In the next Lemma 4.10, we perform orthogonalization on tΛKt u
T
t“1

to obtain a direct sum representation of ΛK1:T . For a vector x and a positive semi-definite matrix

W with compatible dimensions, we define }x}2W :“ xᵀWx.

193



Lemma 4.10 (Orthogonalization). Consider tΛKt u
T
t“1 in Lemma 4.9. Define

Λ̊Kt :“

#

GtpHtq ~Ate
portq
t

pA ,tpAt|Htq

ˇ

ˇ

ˇ

ˇ

ˇ

Gt : Ht Ñ RpˆpK´1q

+

; 1 ď t ď T.

Here, the ort-residuals te
portq
t uTt“1 are recursively defined from

e
portq
T :“ e

pgq
T ; e

portq
t :“ e

pgq
t ´

T
ÿ

u“t`1

τue
portq
u ; t “ T ´ 1, ¨ ¨ ¨ , 1. (4.10)

The stage-t orthogonalization coefficient is τt “ τtpHt, Atq :“
A

řK
k“1 ρtpHt, kqωk,

VtpHtq
´1 ~At

pA ,tpAt|Htq

E

,

where ρtpHt, Atq “ Epepgqt e
portq
t |Ht, Atq, σ2

t pHt, Atq :“ Epeportq2
t |Ht, Atq, and VtpHtq :“

řK
k“1

σ2
t pHt,kqω

b2
t

pA ,tpk|Htq
. Then tΛ̊Kt u

T
t“1 are mutually orthogonal and ΛK1:T “

ÀT
t“1 Λ̊Kt .

If we assume the additional condition (Robins, 2004, Equation (3.11)): Epepgq2t |Ht, Atq “

Epepgq2t |Htq for 1 ď t ď T , then e
portq
t “ e

pgq
t and Λ̊Kt “ ΛKt for 1 ď t ď T . In this case, tΛKt u

T
t“1 are

mutually orthogonal, and ΛK1:T “
ÀT

t“1 ΛKt .

Robins (1994, Theorem 9) also performed the same orthogonalization as in our Lemma 4.10 to

derive the semiparametric efficient score. However, the form of efficient score in Robins (1994) can

be too complicated to use without assuming the stronger condition: Epepgq2t |Ht, Atq “ Epepgq2t |Htq

for 1 ď t ď T , as in his Corollary A3.2. Note that this condition is not satisfied in our Example

4.1.

Given the direct-sum representation ΛK1:T “
ÀT

t“1 ΛKt , we are finally able to characterize the IF

of an RAL estimate as in the following Theorem 4.11. For symmetric matrices A,B of compatible

dimensions, A ď B means B´ A is positive semi-definite.
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Theorem 4.11 (IF under the SNMM). Consider (SNMM)Tt“1 and the ort-residuals te
portq
t uTt“1 in

Lemma 4.10. The IF of an RAL estimate pβ1:T,n “
`

pβᵀ
1,n,

pβᵀ
2,n, ¨ ¨ ¨ ,

pβᵀ
T,n

˘ᵀ
for β1:T takes the form

IFpGq “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

G11pH1q G12pH2q ¨ ¨ ¨ G1T pH1q

G21pH1q G22pH2q ¨ ¨ ¨ G2T pHT q

...
...

. . .
...

GT1pH1q GT2pH2q ¨ ¨ ¨ GTT pHT q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

—

—

–

~A1e
portq
1

pA ,1pA1|H1q

~A2e
portq
2

pA ,2pA2|H2q

...

~AT e
portq
T

pA ,T pAT |HT q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

;

subject to ErIFpGqSᵀs “ Ipˆp,

where G :“ rGst : 1 ď s, t ď T s with the working instrument functions Gst : Ht Ñ RpsˆpK´1q

p1 ď s, t ď T q, and S “ pB{BβT1 q logrlikelihoodpβT1 qs is the semiparametric score vector.

Consider the lower-triangular instrument matrix L :“ rLst : 1 ď s, t ď T s with Lst :“ Gst1ps ě

tq. Then IFpLq is also an IF, and ErIFpLqb2s ď ErIFpGqb2s.

Our Theorem 4.11 extends the characterization in Robins (2004, Equation (3.10)). In particular,

if the upper-triangular entries of the instrument matrix G is nonzero, then the corresponding IF is

inadmissible. In this case, there exists another IF with a lower-triangular instrument matrix and a

smaller
?
n-asymptotic variancee.

In Section 4.6.2, we discuss the semiparametric efficient estimate based on the IF characteriza-

tion in Theorem 4.11. We also point out that the semiparametric efficient estimate requires many

vector-valued nuisance functions, which can be challenging to estimate in practice. Assuming

Epepgq2t |Ht, Atq “ Epepgq2t |Htq and ~ftpHt;Btq “ Bᵀ
tHt for 1 ď t ď T , the required nuisance func-

tions are Hs ÞÑ p1´1{KqEtr ~At´ ~d‹t pHtqsbHt|Hs, As “ ku for 1 ď k ď K and 1 ď s ď t´1 ď T ,

where b denotes the Kronecker product. There are KT pT ´ 1q{2 vector-valued nuisance functions

to estimate, and each of them can be generally nonlinear. This shows the challenge of implementing

the efficient estimation procedure rigorously.

4.2.5 Backward Change Point SNMM (BCP-SNMM)

Motivated from the challenge of semiparametric efficient estimation, we introduce an unknown

backward change point t0 P t1, 2, ¨ ¨ ¨ , T u, such that Model (SNMM)Tt0 holds for t0 ď t ď T , while
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a nonparametric data distribution is allowed during 1 ď t ď t0 ´ 1. Such a model is defined as the

BCP-SNMM:

pXs, As : 1 ď s ď t0 ´ 1q „ P0;

`

pXt, At : t0 ď t ď T q, Y
˘

„ (SNMM)Tt0 ;

t0 P t1, 2, ¨ ¨ ¨ , T u, P0 is arbitrary.

(4.11)

It can be clear that (4.11) incorporates
ŤT
t0“1 (SNMM)Tt0 , which can allow any initial time

t0 P t1, 2, ¨ ¨ ¨ , T u for the SNMM. Therefore, Model (4.11) consists of a larger class of semiparametric

models compared with Model (SNMM)T1 . The change point t0 is an unknown nuisance parameter

rather than a parameter of interest in most change point detection literature (Jirak, 2015; Wang and

Samworth, 2018; Liu et al., 2020). Since the change point t0 and the data distribution P0 before t0

are unknown, a stage-t semiparametric estimate of βt must be pivotal with respect to the moment

characterizations (4.5) for stages 1, 2, ¨ ¨ ¨ , t ´ 1. In this way, we can further eliminate the lower-

triangular entries of the instrument matrix in Theorem 4.11, and obtain the IF characterization

with an upper-triangular instrument matrix as in the following Theorem 4.12. As a consequence,

the admissible instrument matrix becomes diagonal.

Theorem 4.12 (IF under the BCP-SNMM). Consider Model (4.11) and the ort-residuals te
portq
t uTt“1

in Lemma 4.10. The IF of an RAL estimate pβt0:T,n “
`

pβᵀ
t0,n

, pβᵀ
t0,n

, ¨ ¨ ¨ , pβᵀ
T,n

˘ᵀ
for βt0:T takes the

form

IFpGq “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

Gt0t0pHt0q Gt0,t0`1pHt0`1q ¨ ¨ ¨ Gt0T pHT q

Gt0`1,t0`1pHt0`1q ¨ ¨ ¨ Gt0`1,T pHT q

. . .
...

GT pHT q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

—

—

–

~At0e
portq
t0

pA ,t0
pAt0 |Ht0 q

~At0`1e
portq
t0`1

pA ,t0`1pAt0`1|Ht0`1q

...

~AT e
portq
T

pA ,T pAT |HT q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

;

subject to ErIFpGqSᵀs “ I,
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where G :“ rGst : t0 ď s ď t ď T s with the working instrument functions Gst : Ht Ñ RpsˆpK´1q

pt0 ď s ď t ď T q, and S “ pB{BβTt0q logrlikelihoodpβT1 qs is the semiparametric score vector.

Consider the diagonal instrument matrix D :“ diagtGttu
T
t“t0. Then IFpDq is also an IF, and

ErIFpDqb2s ď ErIFpGqb2s.

Comparing Theorems 4.11 and 4.12, the lower-triangular entries of the instrument matrix are

forced to zero under Model (4.11). The reason is that, as a stage-s RAL estimate of Model (4.11),

pβt,n is pivotal to any t0 ă s, and hence can only depend on the future model assumptions (SNMM)Ts .

For 1 ď t ď s´ 1, the instrument function GstpHtq corresponds to
sAte

portq
t

pA ,tpAt|Htq
, where the leveraged

moment condition Epeportq
t |Ht, Atq “ 0 is based on (SNMM)t. Therefore, GstpHtq must be zero so

that the s-th IF is pivotal to (SNMM)t.

Notice that an admissible IF with diagonal instrument matrix in Theorem 4.12 is cross-stage

uncorrelated. Specifically,
GttpHtq ~Ate

portq
t

pA ,tpAt|Htq
P Λ̊Kt where, by Lemma 4.10, tΛ̊Kt u

T
t“1 are orthogonal.

This implies that an admissible RAL estimate of Model (4.11) is
?
n-asymptotically across-stages

independent.

The advantage of the semiparametric estimates for (4.11) is that these estimates are robust

to backward model misspecifications. Specifically, consider the stage-t estimate pβt,n that does not

depend on model assumptions of (SNMM)t´1
1 . Then if any of (SNMM)t´1

1 are incorrectly specified,

the estimate pβt,n still remains consistent. In this way, studying the bigger class of semiparametric

models in Model (4.11) can allow the gain of more robustness.

The fact that an RAL estimate of Model (4.11) can only depend on future model assumptions

also suggests that Model (4.11) can incorporate several backward stagewise estimates, including Q-

Learning (Watkins, 1989; Chakraborty et al., 2010), recursive G-Estimation (Robins, 2004, Section

7.2), stagewise A-Learning (Shi et al., 2018a), and dWOLS (Wallace and Moodie, 2015).

The cross-stage orthogonality of any admissible RAL estimates for Model (4.11) can simplify

the semiparametric efficient estimate. Specifically, we can find the efficient estimates pβeff,t,n for

each stage separately, where the efficient working instrument function GttpHtq is chosen such that

the
?
n-asymptotic variance of the stage-t estimate pβeff,t,n is minimized regardless of its influence

to other stages. The efficient estimate combines the stagewise estimates together. The following

Theorem 4.13 describes this procedure in terms of the semiparametric efficient score.
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Theorem 4.13 (Semiparametric Efficient Score under BCP-SNMM). Consider Model (4.11), the

angle-based representation in Lemma 4.8, and the ort-residuals te
portq
t uTt“1 in Lemma 4.10. Assume

t0 is known. The semiparametric efficient score for βt0:T is S
pt0q
eff :“

`

Sᵀ
eff,t0

,Sᵀ
eff,t0`1, ¨ ¨ ¨ ,S

ᵀ
eff,T

˘ᵀ

where

Seff,t :“ 9FtpHt;βtq
ᵀΩᵀΩVtpHtq

´1
~Ate

portq
t

pA ,tpAt|Htq
; 1 ď t ď T,

and 9FtpHt;βtq :“ pB{Bβᵀ
t q
~ftpHt;βtq. The semiparametric Fisher information matrix is

Ipt0qpβ1:T q “ diagtItpβtquTt“t0, where Itpβtq :“ E
”

9FtpHt;βtq
ᵀΩᵀΩVtpHtq

´1ΩᵀΩ 9FtpHt;βtq
ı

for

t0 ď t ď T .

Notice that Theorems 4.12 and 4.13 hold for stages after a given change point t0, since for stage

t ă t0, the data distribution in Model (4.11) is fully nonparametric, and the RAL estimate and

semiparametric efficient score are not defined for these stages. In this chapter, our main focus is not

to determine the change point t0. Instead, we want to ensure that for any given t0, the parameter

estimates pβt0:T,n for (SNMM)Tt0 are optimal, which can be guaranteed from the semiparametric

efficient scores tSeff,tu
T
t“1 in Theorem 4.13 that are pivotal with respect to t0.

Based on Theorem 4.13, we can finally define the efficient estimating function for Model (4.11).

Denote qηt:T :“ pqµt:T , qpA ,t:T , qσ
2
t:T , qρpt`1q:T q as the nuisance components with the treatment-free

effect functions tqµupHuqu
T
u“t, propensity score functions tqpA ,upAu|Huqu

T
u“t, variance functions

tqσ2
upHu, Auqu

T
u“t, and covariance functions tqρupHu, Auqu

T
u“t`1. Let qβpt`1q:T be working param-

eters for stages t ` 1 to T . We first introduce the stagewise ort-outcomes: Y
portq
T :“ Y , and for

t “ T ´ 1, ¨ ¨ ¨ , 1,

Y
portq
t “ Y

portq
t

´

βt; qβpt`1q:T , qηpt`1q:T

¯

:“ Y ´
T
ÿ

u“t`1

„

γupHu, Au; qβuq ´ max
1ďkďK

γupHu, k; qβuq



pg-outcomeq

´

T
ÿ

u“t`1

C

K
ÿ

k“1

qρupHu, kqωk,

«

K
ÿ

k“1

qσ2
upHu, Auqω

b2
k

qpA ,upAu|Huq

ff´1
~Au

qpA ,upAu|Huq

G

ˆ

”

Y
portq
u ´ qµupHuq ´ γupHu, Au; qβuq

ı

. porthogonalizationq

(4.12)
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Then the stage-t efficient estimating function is defined as

φeff,t

´

βt; qβpt`1q:T , qηt:T

¯

:“
”

Y
portq
t ´ qµtpHtq ´ γtpHt, At; qβtq

ı

loooooooooooooooooooooomoooooooooooooooooooooon

ort-residual

ˆ 9FtpHt;βtq
ᵀΩᵀΩ

«

K
ÿ

k“1

qσ2
t pHt, kqω

b2
k

qpA ,tpAt|Htq

ff´1
~At

qpA ,tpAt|Htq
looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

efficient instrument

.

(4.13)

We obtain the stage-t estimate pβt,n by solving the estimating equation

Enrφeff,tpβt; pβpt`1q:T,n, qµt:T qs “ 0, and the estimation proceeds with t “ T, T ´ 1, ¨ ¨ ¨ , 1.

4.3 Dynamic Efficient Learning (DE-Learning)

Based on Model (4.11), we are able to propose the DE-Learning the solves the corresponding

semiparametric efficient estimation equations. We first consider the high-level procedures for DE-

Learning in Section 4.3.1. Then we provide more implementation details in Section 4.3.2.

4.3.1 General Procedure

In Section 4.2.5, we have obtained the efficient estimating functions tφeff,tpβt; qβpt`1q:T , qηt:T qu
T
t“1

from (4.13). A DE-Learning estimate of β1:T recursively solves:

pβt,n P argmin
βtPBt

"

1

2

›

›

›
En

”

φeff,t

´

βt; pβpt`1q:T,n, pηt:T,n

¯ı›

›

›

2

Itpβtq´1

*

; t “ T, T ´ 1, ¨ ¨ ¨ , 1, (4.14)

where }x}2W :“ xᵀWx, and pηt:T,n are finite-sample estimates of nuisance functions. Given the

working nuisance functions qηt:T “ pqµt:T , qpA ,t:T , qσ
2
pt`1q:T , qρpt`1q:T q, it can be shown that the following

stage-t working variance function is for optimal stage-t estimation:

σ2
opt,tpHt, At; qηt:T q :“ E

”

e
portq
t pβt:T ; qηt:T q

2
ˇ

ˇ

ˇ
Ht, At

ı

,

while the following stage-t working covariance function is for stage-t orthogonalization:

ρort,tpHt, At; qηt:T q :“ E
”

e
pgq
t pβt:T ; qηt:T qe

portq
t pβt:T ; qηt:T q

ˇ

ˇ

ˇ
Ht, At

ı

.
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Both the working variance and covariance functions can be identified from the computable ort-

residual e
portq
t from (4.10) and the g-residual e

pgq
t from (4.10) with 0 orthogonalization. Therefore,

we can obtain the estimated variance function pσ2
t,npHt, Atq by regressing e

portq2
t on pHt, Atq, and

obtain the estimated covariance function pρt,npHt, Atq by regressing e
pgq
t e

portq
t on pHt, Atq.

The general procedures of DE-Learning are given as follows.

� Input data tpXit, Ait : 1 ď t ď T q, Yiu
n
i“1. Define H1 “ X1, Ht :“ pHᵀ

t´1, A
ᵀ
t´1,X

ᵀ
t q

ᵀ for

2 ď t ď T . Input or estimate the propensity score functions tppA ,t,npHt, kqu1ďkďK
1ďtďT

.

� Set the initial g-outcome and ort-outcome as Y
pgq
T Ð Y

portq
T Ð Y . For stage t “ T, ¨ ¨ ¨ , 1, do

the following.

Step 1. Estimate the treatment-free effects pµt,npHtq using Y
portq
t as the response.

Step 2. Obtain a consistent estimate pβ
p0q
t,n of βt in (SNMM)t. This can be done by solving (4.14)

with the stage-t working variance function as 1.

Step 3. Compute the ort-residual re
portq
t Ð Y

portq
t ´ pµt,npHtq ´ γtpHt, At; pβ

p0q
t,nq. Then perform a

nonparametric regression using re
portq2
t as the response and pHt, Atq as the covariates to

estimate the variance function rσ2
t,npHt, Atq.

Step 4. Solve (4.14) again but with the stage-t working variance function rσ2
t,npHt, Atq from Step

3 for the stage-t DE-Learning estimate pβt,n.

Step 5. Compute the g-residual e
pgq
t Ð Y

pgq
t ´ pµt,npHtq ´ γtpHt, At; pβt,nq and the ort-residual

e
portq
t Ð Y

portq
t ´ pµt,npHtq ´ γtpHt, At; pβt,nq. Then:

– Perform a nonparametric regression using e
portq2
t as the response and pHt, Atq as the

covariates to estimate the variance function pσ2
t,npHt, Atq;

– Perform a nonparametric regression using e
pgq
t e

portq
t as the response and pHt, Atq as

the covariates to estimate the covariance function pρt,npHt, Atq.
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Step 6. If t ě 2, then update the stage-pt´ 1q g-outcome and the ort-outcome as

Y
pgq
t´1 ÐY

pgq
t ´

ˆ

γtpHt, At; pβt,nq ´ max
1ďkďK

γtpHt, k; pβt,nq

˙

;

Y
portq
t´1 ÐY

portq
t ´

ˆ

γtpHt, At; pβt,nq ´ max
1ďkďK

γtpHt, k; pβt,nq

˙

´

C

K
ÿ

k“1

pρt,npHt, kqωk,

«

K
ÿ

k“1

pσ2
t,npHt, Atqω

b2
k

ppA ,t,npAt|Htq

ff´1
~At

ppA ,t,npAt|Htq

G

e
portq
t ,

with e
portq
t , pσ2

t,npHt, Atq and pρt,npHt, Atq from Step 5.

Continue with the next t or stop if t “ 1.

Notice that the stage-t variance function has been estimated twice. The first variance function

estimate rσ2
t,npHt, Atq based on the initial consistent estimate pβ

p0q
t,n is used to obtain the DE-Learning

estimate pβt,n. The second variance function estimate pσ2
t,npHt, Atq based on the DE-Learning esti-

mate pβt,n is used for updating the ort-outcome Y
portq
t . The reason for estimating for the second time

is to ensure pσ2
t,npHt, Atq and e

portq
t used in updating Y

portq
t satisfy pσ2

t,npHt, Atq « Epeportq2
t |Ht, Atq.

The second estimation of pσ2
t,n can improve the performance.

4.3.2 Implementation

We provide more details for DE-Learning implementation in this section. In the input step and

Steps 1, 3 and 5 of Section 4.3.1, we estimate the propensity score, treatment-free effect, variance

and covariance functions. We provide more details in Sections 4.3.2.1-4.3.2.3. In Section 4.3.2.4,

we further consider to solve the regularized version of DE-Learning (4.14).

4.3.2.1 Estimating the Propensity Score Function

Suppose the stage-t treatment assignment probability pA ,tpAt|Htq is unknown. The first

approach of estimating pA ,tpAt|Htq is to consider the penalized multinomial logistic regres-

sion (Friedman et al., 2010). Specifically, consider the multinomial logistic working model

qpA ,tpk|Ht; τ1, τ2, ¨ ¨ ¨ , τKq :“
exppτᵀkHtq

řK
k1“1

exppτᵀ
k1
Htq

. The propensity score parameters τ1, τ2, ¨ ¨ ¨ , τK P Rp
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can be estimated by the following penalized log-likelihood maximization:

max
τ1,¨¨¨ ,τKPRp

#

En

«

K
ÿ

k“1

τᵀkHt1pAt “ kq ´ log

˜

K
ÿ

k1“1

eτ
ᵀ
k1
Ht

¸ff

´ λA

p
ÿ

j“1

˜

K
ÿ

k“1

τ2
jk

¸1{2 +

,

where the group-LASSO penalty
řp
j“1

´

řK
k“1 τ

2
jk

¯1{2
takes tτjku

K
k“1 for the j-th variable across all

treatments as a group, and λA is a tuning parameter and can be chosen using cross validation.

In observational studies, the propensity scores can be vulnerable to model misspecification.

Another approach for estimating pA pAt|Htq is to consider flexible nonparametric regression using

the regression forest (Athey et al., 2019). Specifically, for each 1 ď k ď K, we run a regression

forest using 1pAt “ kq as the response and Ht as the covariates. Then each fitted regression forest

provides a prediction for Er1pAt “ kq|Hts. The final estimate of pA ,tpk|Htq is the prediction after

normalization such that the summation over k “ 1, ¨ ¨ ¨ ,K is one.

4.3.2.2 Estimating the Treatment-Free Effect Function

Similar to Section 4.3.2.1, the stage-t treatment-free effect function µtpHtq can be estimated from

a parametric model or nonparametric regression. For parametric estimation, we consider the linear

working model qµtpHt;ηtq “ H
ᵀ
t ηt as in Wallace and Moodie (2015); Shi et al. (2018a); Zhu et al.

(2019). As pointed out in the remark on Corollary 4.5, if we specify linear models for the interaction

effects tγtpHt, At;βtqu
T
t“1, then the true treatment-free effects tµtpHtqu

T
t“1 are generally nonlinear,

and linear working models always misspecify the true model. Nevertheless, the linear working model

has been widely used for implementation convenience and interpretability (Chakraborty et al., 2010;

Wallace and Moodie, 2015; Zhu et al., 2019). In this case, we consider a joint estimation of µt and βt

by the following penalized inverse-probability weighted least-squares problem with the `1-penalty:

min
ηt,βt

"

En
„

1

ppA ,t,npAt|Htq

´

pYt ´H
ᵀ
t ηt ´ γtpHt, At;βtq

¯2


` λµt p}ηt}1 ` }βt}1q

*

,

where pYt is the stage-t working outcome, λµt is a tuning parameter and can be chosen using cross

validation. Here, the weighted least-squares problem can be equivalent to solving an inefficient but

consistent estimating equation for (SNMM)t. If ppA ,t,npAt|Htq is the correct propensity score, then

the above estimate for ηt can be consistent even if the model for the interaction effect γtpHt, At;βtq
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is incorrect. If the model for the interaction effect γtpHt, At;βtq is correct, then the above estimate

for ηt can also be consistent for any arbitrary ppA ,t,n besides the correct one.

For nonparametric estimation of µtpHtq, which was also considered in Ertefaie et al. (2021),

we first divide the data into K subsets according to the received treatments. For each 1 ď k ď

K, we use pYt as the response and Ht as the covariates to fit a regression forest on the data

subset tpHit, Yort,itq : Ait “ ku. Then each fitted regression forest corresponds to the prediction of

EppYt|Ht, At “ kq. We average the predictions over k “ 1, ¨ ¨ ¨ ,K to obtain the treatment-free effect

estimate.

4.3.2.3 Estimating the Variance and Covariance Functions

Suppose e
pgq
t and e

portq
t are the working residuals in the general DE-Learning procedure. In order

to estimate the variance function, we specifically consider the regression forest using e
portq2
t as

the response and pHt, Atq as the covariates. Then pσ2
t,npHt, kq is the regression forest prediction at

pHt, kq for 1 ď k ď K. Similarly, for the covariance function estimation, we consider e
pgq
t e

portq
t as the

response and pHt, Atq as the covariates to obtain the regression forest estimates tpρt,npHt, kqu
K
k“1.

4.3.2.4 Solving the Regularized DE-Learning Estimating Equation

In this section, we consider a general penalty Jtpβtq for the stage-t parameter estimation. To

incorporate regularization in DE-Learning from (4.14), we solve a penalized minimization problem:

pβt,n P argmin
βtPBt

"

1

2

›

›

›
En

”

φeff,t

´

βt; pβpt`1q:T,n, pηt:T,n

¯ı
›

›

›

2

W
` λtJtpβtq

*

; t “ T, T ´ 1, ¨ ¨ ¨ , 1, (4.15)

where W can be a general positive definite weighting matrix W P Rptˆpt . A

typical choice of W can be Iptˆpt or the inverse of the empirical information ma-

trix
!

En
”

´pB{Bβᵀ
t qφeff,t

´

βt; pβpt`1q:T,n, pηt:T,n

¯ı)´1
. Problem (4.15) can be solved by

the accelerated proximal gradient method (Nesterov, 2013) with the gradient βt ÞÑ

En
”

φeff,t

´

βt; pβpt`1q:T,n, pηt:T,n

¯ı

. For a fixed tuning parameter λt, the estimation procedure fol-

lows Steps 1-4 in Section 4.3.1. The parameter λt can be further tuned by cross validation.

The IPWE of the value function is used as the tuning criteria. Denote pβt,npλtq as the solu-

tion to (4.15). The corresponding decision rule is pdt,npHt;λtq :“ argmax1ďkďK γtpHt, k; pβt,npλtqq.
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Let tpHit, Ait, Yort,itqu
nvalid
i“1 be the stage-t validation dataset. Then the criteria for tuning λt is

1
nvalid

řnvalid
i“1

1r pdt,npHit;λtq“Aits
ppA ,t,npAit|Hitq

Yort,it, which is larger the better.

4.4 Simulation Studies

We compare the proposed DE-Learning with serveral existing methods via simulation studies in this

section. Consider the following data generation process. First we generate the stagewise covariates,

pre-treatment histories and treatments from:

tZtj : 1 ď t ď T ` 1, 1 ď j ď pu
i.i.d.
„ N p0, 1q;

X1j “ H1j “ Z1j ; PpA1 “ k|X1q “
eX1k{2

řK
k1“1 e

X1k1{2
;

Xtj “ Ztj ` 1pAt´1 “ jq ´ 1
K´11pAt´1 ‰ j, 1 ď j ď Kq;

Ht “ pH
ᵀ
t´1, At´1,X

ᵀ
t q

ᵀ; PpAt “ k|Htq “
eXtk{2

řK
k1“1

eXtk1 {2
;

2 ď t ď T.

Then we generate outcome according to Corollary 4.5 as follows. Consider the coefficient vector

for the stage-t interaction effect γtpHt, At;β
ptqq at the k-th treatment as:

β
ptq
k “ pβ

ptq
00k;β

ptq
11k, β

ptq
12k,

p´2
hkkkikkkj

0, ¨ ¨ ¨ , 0
loooooooooomoooooooooon

X1

; β
ptq
1A k

loomoon

A1

; ¨ ¨ ¨ ;β
ptq
t´1,1k, β

ptq
t´1,2k,

p´2
hkkkikkkj

0, ¨ ¨ ¨ , 0
loooooooooooooomoooooooooooooon

Xt´1

;β
ptq
t´1,A k

looomooon

At´1

;β
ptq
t1k, β

ptq
t2k,

p´2
hkkkikkkj

0, ¨ ¨ ¨ , 0
loooooooooomoooooooooon

Xt

q,

where we first randomly generate prβ
ptq
00k;

rβ
ptq
11k,

rβ
ptq
12k;

rβ
ptq
1A k; ¨ ¨ ¨ ; rβ

ptq
t´1,1k,

rβ
ptq
t´1,2k;

rβ
ptq
t´1,A k;

rβ
ptq
t1k,

rβ
ptq
t2kq

ᵀ P

R3t from the unit sphere tu P R3t : }u}2 “ 1u, and then let β
ptq
sjk :“

a

1´ 1{Krrβ
ptq
sjk ´

p1{Kq
řK
k1“1

rβ
ptq
sjk1s for 0 ď s ď t ď T , 0 ď j ď p, j “ A and 1 ď k ď K. Then we define

the pHt, Atq
T
t“1-martingale-difference sequence as: for 1 ď t ď T ,

∆M1pH1q “
1
?
K

K
ÿ

k“1

Z1k; ∆Mt`1pHt`1q “ eXt,At ˆ
1
?
K

K
ÿ

k“1

Zt`1,k; γtpHt, At;β
ptqq “ β

ptqᵀ
At
p1,Hᵀ

t q
ᵀ.

The outcome according to (4.6) is finally given by

Y “ 1
loomoon

optimal value

`

T
ÿ

t“1

∆MtpHtq ´

T
ÿ

t“1

"

max
1ďkďK

γtpHt, k;βptqq ´ γtpHt, At;β
ptqq

*

`∆MT`1pHT`1q.
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To implement penalized Q-Learning (Zhu et al., 2019), penalized stagewise A-Learning (Shi

et al., 2018a), and our proposed DE-Learning, we consider the q-outcomes (4.8), the g-outcomes

(4.3) and the ort-outcomes (4.12) respectively for stagewise working outcomes. The nuisance func-

tions utilized in Q-Learning, A-Learning and DE-Learning are estimated according to the imple-

mentation details discussed in Section 4.3.2. In particular, the stagewise treatment-free effects are

estimated from linear working models with the `1-penalty, and the stagewise propensity scores are

estimated from multinomial logistic working models with the `1-penalty. Both Q-Learning and

A-Learning utilize 1 as the working variance function and 0 as the working covariance function.

Our proposed DE-Learning with the ort-outcomes estimates the variance and covariance functions

using regression forest. In order to demonstrate the performance improvement of cross-stage or-

thogonalization, we also consider DE-Learning with the g-outcomes, in which case the working

covariance function is set to 0.
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Figure 4.1: Testing misclassification rates in the simulation studies.
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During the training stage, we consider the training sample size n P

t100, 200, 400, 800, 1600, 3200u, with the number of variables p “ 2, the number of treat-

ments K “ 2 and the number of stages T “ 3. In Figure 4.1, we report the misclassification

rates on the testing sample of size 10,000 across 100 replications. Among the comparing methods,

DE-Learning demonstrates the best testing performance, and the superiority is more evident as

the training sample size increases. Q-Learning generally has the worst performance other than the

final stage, since the working treatment-free effect functions are misspecified, and the q-outcomes

for stages 1 and 2 are incorrect. A-Learning demonstrates its robustness in presence of misspecified

treatment-free effects. However, since A-Learning is suboptimal in presence of treatment-free effect

misspecification and heteroscedasticity, the testing misclassification rates are generally inferior

to our proposed DE-Learning. When comparing DE-Learning with the ort-outcomes and the

g-outcomes, the ort-outcomes can generally help to improve the testing performance, especially

when the training sample size increases. This confirms the optimality of DE-Learning based on

the efficient estimating procedure.

4.5 Discussion

In this chapter, we introduce a general class of semiparametric models, the BCP-SNMM, that in-

corporates the standard SNMM and enjoys more robustness. The class of semiparametric estimates

for the BCP-SNMM can be a suitable framework for theoretically studying backward stagewise esti-

mates. We also propose DE-Learning that solves the semiparametric efficient estimating equations

under the BCP-SNMM and the multiple treatment setting. In particular, DE-Learning is optimal

among a class of regular estimates of the BCP-SNMM even when the treatment-free effects are

misspecified. It enjoys stagewise double robustness and the robustness with respect to backward

model misspecifications. Compared with G-Estimation, DE-Learning is more tractable with much

fewer nuisance functions to estimate and can be carried out in a backward stagewise fashion, which

allows implementable rigorous semiparametric efficient estimation. Our simulation studies also

demonstrate the superiority of DE-Learning in presence of stagewise misspecified treatment-free

effects and heteroscedasticity.
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There are some important future work for this chapter. First of all, we can explore more

on the connections of DE-Learning with existing methods from literature under the BCP-SNMM

framework. More comprehensive numerical studies are also needed to demonstrate the superiority

of DE-Learning, including the cases with increasing numbers of variables and treatments, the

existence of a backward change point, and the comparisons with other nonparametric methods.

Furthermore, we can establish more theoretical properties for DE-Learning, including the stagewise

double robustness and the optimality in presence of misspecified treatment-free effect models. Last

but not least, the high-dimensional estimation properties as in Shi et al. (2018a); Zhu et al. (2019)

can be established for DE-Learning.

4.6 Appendix

4.6.1 Pseudo Outcome

The pseudo outcome Y ˚t is defined as

Y ˚t “ Y ˚t p
~At

1q :“ Y
” ´

A1, ¨ ¨ ¨ , At, A
˚
t`1p

~At
1q, A

˚
t`2p

~At
1q, ¨ ¨ ¨ , A

˚
T p
~At

1q

¯ᵀ

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

:“ ~A˚T1 p ~At1q

ı

; 1 ď t ď T. (4.16)

Here, ~A˚T1 p ~AT
1 q “

~AT
1 , and hence Y ˚T p

~AT
1 q “ Y p ~AT1 q “ Y from Assumption 4.1. For 1 ď t ď T ´ 1,

tA˚up
~At

1qu
T
u“t`1 are pseudo treatments obtained from the following algorithm:

H˚
t`1p

~At
1q :“ Ht`1p ~A

t
1q;

A˚t`1p
~At

1q :“ d‹t`1

”

H˚
t`1p

~At
1q

ı

;

H˚
u p
~At

1q :“ Hu

”´

A1, ¨ ¨ ¨ , At, A
˚
t`1p

~At
1q, ¨ ¨ ¨ , A

˚
u´1p

~At
1q

¯ᵀı

;

A˚up
~At

1q :“ d‹u

”

H˚
u p
~At

1q

ı

; u “ t` 2, t` 3, ¨ ¨ ¨ , T.

(4.17)

Then ~AT˚
1 p ~At

1q can be interpreted as the treatment assignment trajectory that follows the observed

treatments up to stage t and then follows the optimal treatments up to the end. Such a treatment

trajectory corresponds to the potential pre-treatment historiesH1, ¨ ¨ ¨ ,Ht,H
˚
t`1p

~At
1q, ¨ ¨ ¨ ,H

˚
T p
~At

1q
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defined from (4.17).The pseudo outcome (4.16) is the potential outcomes under such a treatment

trajectory and the resulting pre-treatment histories.

4.6.2 Semiparametric Efficient Estimate under the SNMM

Theorem 4.14 (Semiparametric Efficient Score under SNMM). Consider (SNMM)T1 and

the ort-residuals te
portq
t uTt“1 in Lemma 4.10. The semiparametric efficient score is Seff “

´

Sᵀ
eff,1,S

ᵀ
eff,2, ¨ ¨ ¨ ,S

ᵀ
eff,T

¯ᵀ
, where

Seff,t :“
t
ÿ

s“1

#

K
ÿ

k“1

E

«

´
Be
portq
s pβs:T q

Bβt

ˇ

ˇ

ˇ

ˇ

ˇ

Hs, As “ k

ff

ωᵀ
k

+

VspHsq
´1

~Asrs
pA ,spAs|Hsq

; 1 ď t ď T.

The semiparametric Fisher information matrix for β1:T is Ipβ1:T q “ rIutpβ1:T q : 1 ď u, t ď T s,

where for 1 ď u, t ď T ,

Iutpβ1:T q :“
u^t
ÿ

s“1

K
ÿ

k,k1“1

ωᵀ
kVspHsq

´1ωk1E

«

´
Be
portq
s pβs:T q

Bβu

ˇ

ˇ

ˇ

ˇ

ˇ

Hs, As “ k

ff

E

«

´
Be
portq
s pβs:T q

Bβt

ˇ

ˇ

ˇ

ˇ

ˇ

Hs, As “ k1

ffᵀ

.

As a consequence of Theorem 4.14, the semiparametric efficient estimate for β1:T in

(SNMM)T1 can be obtained as follows. Consider the angle-based decision functions t ~ftpHt;βtqu

in Lemma 4.8. Denote 9FtpHt;βtq :“ pB{Bβᵀ
t q
~ftpHt;βtq, ~At “ ωAt and ~d‹t pHtq “

ωd‹t pHtq. Then pB{BβtqγtpHt, At;βtq “ p1 ´ 1{Kq 9FtpHt;βtq
ᵀ ~At, and ´pB{Bβtqe

pgq
s pβs:T q “ p1 ´

1{Kq 9FtpHt;βtq
ᵀr ~At1ps ď tq ´ ~d‹t pHtq1ps ă tqs for 1 ď s ď t ď T . By definition, the stage-s ort-

residual can be represented as e
portq
s “

řT
t“s νste

pgq
t , where νst “ νstpHt, Atq “ 1 if 1 ď s “ t ď T ;

and
śt
u“s`1r´τupHu, Auqs if 1 ď s ă t ď T . Define sνst “ sνstpHt, Atq :“

řt
u“s νsupHu, Auq if s ď t;

and 0 if s ą t. Then for 1 ď s ď t ď T , we have

´
Be
portq
s pβs:T q

Bβt
“

ˆ

1´
1

K

˙

9FtpHt;βtq
ᵀ
”

sνstpHt, Atq ~At ´ sνs,t´1pHt´1, At´1q ~d
‹
t pHtq

ı

.

Therefore, for 1 ď t ď T , the stage-t semiparametric efficient score can be expressed as

Seff,t “

t´1
ÿ

s“1

K
ÿ

k“1

an Rpt -valued nuisance function of Hs ÞÑ Er´pB{Bβtqe
portq
s pβs:T q|Hs, As “ ks

hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

ˆ

1´
1

K

˙

E
!

9FtpHt;βtq
ᵀ
”

sνstpHt, Atq ~At ´ sνs,t´1pHt´1, At´1q ~d
‹
t pHtq

ıˇ

ˇ

ˇ
Hs, As “ k

)

ωᵀ
k

ˆ VspHsq
´1

~Ase
portq
s pβs:T q

pA ,spAs|Hsq
` 9FpHt;βtq

ᵀΩᵀΩVtpHtq
´1

~Ate
portq
t pβt:T q

pA ,tpAt|Htq
. (4.18)
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In order to implement the semiparametric efficient procedure, we need to estimate the Rpt-

valued nuisance functions in (4.18). If we assume the additional condition: Epepgq2t |Ht, Atq “

Epepgq2t |Htq for 1 ď t ď T , then sνst “ 1ps ď tq. The required nuisance functions are Hs ÞÑ

p1 ´ 1{KqEt 9FtpHt;βtq
ᵀr ~At ´ ~d‹t pHtqs|Hs, As “ ku for 1 ď k ď K and 1 ď s ď t ´ 1 ď T .

For the linear decision function ~ftpHt;Btq “ Bᵀ
tHt with Bt P RdimpHtqˆpK´1q, it further reduces

to Hs ÞÑ p1 ´ 1{KqEtr ~At ´ ~d‹t pHtqs b Ht|Hs, As “ ku (Almirall et al., 2010, Section 3.3.1).

Such an RpK´1q dimpHtq-valued nuisance function is generally nonlinear can be hard to estimate

well in practice. The total number of such nuisance functions are KT pT ´ 1q{2. Therefore, the

semiparametric efficient G-Estimation is rarely used in practice (Vansteelandt and Joffe, 2014;

Wallace et al., 2019; Liu et al., 2021).

4.6.3 Technical Proofs

4.6.3.1 Proof of Lemma 4.1

Proof of Lemma 4.1. By Assumption 4.1, the algorithm (4.17) implies that Hu “ H˚
u p
~At

1q and

Au “ A˚up
~At

1q for u “ t` 1, t` 2, ¨ ¨ ¨ , T on td‹upHuq “ Au pt` 1 ď u ď T qu. Then, we further have

Y “ Y
”

~A˚T1 p ~At
1q

ı

“ Y ˚t on
!

d‹upHuq “ Au pt` 1 ď u ď T q
)

; 1 ď t ď T. (4.19)

Therefore, for 1 ď t ď T , we have

E
!

Vt`1

”´

Hᵀ
t , At,

~Xᵀ
t`1

¯ᵀıˇ
ˇ

ˇ
Ht, At

)

“E
!

ErY |Ht, At,Xt`1
loooooomoooooon

Ht`1

, d‹upHuq “ Au pt` 1 ď u ď T qs
ˇ

ˇ

ˇ
Ht, At

)

pby definition (4.1)q

“ErY |Ht, At, d
‹
upHuq “ Au pt` 1 ď u ď T qs

“ErY ˚t |Ht, At, d
‹
upHuq “ Au pt` 1 ď u ď T qs pby (4.19)q

“EpY ˚t |Ht, Atq. pby Assumption 4.2q
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4.6.3.2 Proof of Lemma 4.3

Proof of Lemma 4.3. For t “ T ´ 1, we have

Y
pgq
T´1 “ Y ´ γT pHT , AT ;βT q ` max

1ďkďK
γT pHT , k;βT q pby definitionq

“ Y ˚T ´ γT pHT , AT ;βT q ` max
1ďkďK

γT pHT , k;βT q pby definitionq

“ µT pHT q ` max
1ďkďK

γT pHT , k;βT q ` ε
˚
T pby (SNMM)T q

“ max
1ďkďK

EpY ˚T |HT , AT “ kq ` ε˚T . pby (SNMM)T q

In particular, Epε˚T |HT´1, AT´1q “ ErEpε˚T |HT , AT q|HT´1, AT´1s “ 0 by (SNMM)T . Then

EpY pgqT´1|HT´1, AT´1q “ E
"

max
1ďkďK

EpY ˚T |HT , AT “ kq
loooooooooooooooomoooooooooooooooon

“VT pHT q

ˇ

ˇ

ˇ

ˇ

HT´1, AT´1

*

“ EpY ˚T´1|HT´1, AT´1q. pby Lemma 4.1q

For Mathematical Induction on stage t “ T ´ 1, T ´ 2, ¨ ¨ ¨ , 1, we assume

EpY pgqt |Ht, Atq “ EpY ˚t |Ht, Atq, (4.20)

which we have proven for stage t “ T ´ 1 as above.

Next, for stage t´ 1, by definition,

Y
pgq
t´1 “ Y ´

T
ÿ

u“t

"

γupHu, Au;βuq ´ max
1ďkďK

γupHu, k;βuq

*

“ Y
pgq
t ´ γtpHt, At;βtq ` max

1ďkďK
γtpHt, k;βtq.
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Conditional on pHt´1, At´1q, we further have

EpY pgqt´1|Ht´1, At´1q

“E
"

Y
pgq
t ´ γtpHt, At;βtq ` max

1ďkďK
γtpHt, k;βtq

ˇ

ˇ

ˇ

ˇ

Ht´1, At´1

*

“E
"

Y ˚t ´ γtpHt, At;βtq ` max
1ďkďK

γtpHt, k;βtq

ˇ

ˇ

ˇ

ˇ

Ht´1, At´1

*

pby induction hypothesis (4.20)q

“E
"

µtpHtq ` max
1ďkďK

γtpHt, k;βtq ` ε
˚
t

ˇ

ˇ

ˇ

ˇ

Ht´1, At´1

*

pby (SNMM)tq

“E
!

max
1ďkďK

EpY ˚t |Ht, At “ kq
looooooooooooooomooooooooooooooon

VtpHtq

ˇ

ˇ

ˇ
Ht´1, At´1

)

pby (SNMM)tq

“EpY ˚t´1|Ht´1, At´1q. pby Lemma 4.1q

This proves the induction hypothesis (4.20) at stage t´ 1.

By Mathematical Induction, the induction hypothesis (4.20) holds for 1 ď t ď T ´ 1.

4.6.3.3 Proof of Corollary 4.5

Proof of Corollary 4.5. First, we assume (4.6). By Lemma 4.3, (SNMM)T1 pβ1:T q is equivalent to:

there exists some treatment-free effect functions tµtpHtqu
T
t“1 such that

EpY pgqt |Ht, Atq “ µtpHtq ` γtpHt, At;βtq; 1 ď t ď T.

Under (4.6), for 1 ď t ď T , we have

Y
pgq
t “Y ´

T
ÿ

u“t`1

„

γupHu, Au;βuq ´ max
1ďkďK

γupHu, k;βuq



“V0 `

t´1
ÿ

s“1

"

∆MspHsq ´ max
1ďkďK

γspHs, k;βsq ` γspHs, As;βsq

*

`∆MtpHtq ´ max
1ďkďK

γtpHt, k;βtq

loooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

:“µtpHtq

` γtpHt, At;βtq `
T`1
ÿ

u“t`1

∆MupHuq

looooooooomooooooooon

:“e
pgq
t

,

where Epepgqt |Ht, Atq “
řT`1
u“t`1 Er∆MupHuq|Ht, Ats “ 0. Therefore, (4.6) implies (SNMM)T1 . In

particular, µtpHtq and e
pgq
t can be defined from above.
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Next, we assume Model (SNMM)T1 . Define

Y
pgq

0 :“ Y ´
T
ÿ

t“1

"

γtpHt, At;βtq ´ max
1ďkďK

γtpHt, k;βtq

*

.

Then Y
pgq

0 can be further decomposed as:

Y
pgq

0 “ E
´

Y
pgq

0

¯

loooomoooon

:“V0

`

T
ÿ

t“1

”

E
´

Y
pgq

0

ˇ

ˇ

ˇ
Ht, At

¯

´ E
´

Y
pgq

0

ˇ

ˇ

ˇ
Ht´1, At´1

¯

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

:“∆MtpHt,Atq

ı

` Y
pgq

0 ´ E
´

Y
pgq

0

ˇ

ˇ

ˇ
HT , AT

¯

looooooooooooooomooooooooooooooon

:“∆MT`1pHT`1q

.

For 1 ď t ď T , the stage-t working pseudo outcome can be represented as:

Y
pgq
t “Y ´

T
ÿ

u“t`1

"

γupHu, Au;βuq ´ max
1ďkďK

γupHu, k;βuq

*

“Y
pgq
0 `

t´1
ÿ

s“1

"

γspHs, As;βsq ´ max
1ďkďK

γspHs, k;βsq

*

´ max
1ďkďK

γtpHt, k;βtq ` γtpHt, At;βtq

“m0 `

t´1
ÿ

s“1

"

∆MspHs, Asq ` γspHs, As;βsq ´ max
1ďkďK

γspHs, k;βsq

*

`∆MtpHt, Atq ´ max
1ďkďK

γtpHt, k;βtq

loooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

function of pHt, Atq, while depending on At only through ∆MtpHt, Atq

` γtpHt, At;βtq `
T`1
ÿ

u“t`1

∆MupHu, Auq

looooooooooooomooooooooooooon

:“e
pgq
t

.

By construction, we have Er∆MtpHt, Atq|Ht´1, At´1s “ 0 for 1 ď t ď T , which implies that

Epepgqt |Ht, Atq “ 0 for 1 ď t ď T . Then (SNMM)T1 and Theorem 4.4 together imply that

∆MtpHt, Atq “ ∆MtpHtq; 1 ď t ď T.

Therefore, Y
pgq

0 satisfies the following restrictions:

Y
pgq

0 “ V0 `

T`1
ÿ

t“1

∆MtpHtq subject to Er∆MtpHtq|Ht´1, At´1s “ 0; 1 ď t ď T ` 1,

which gives (4.6).
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4.6.3.4 Proof of Lemma 4.10

Proof of Lemma 4.10. By definition,

Λ̊Kt “

#

GtpHtq ~Ate
portq
t

pA ,tpAt|Htq

ˇ

ˇ

ˇ

ˇ

ˇ

Gt : Ht Ñ RpˆpK´1q

+

.

For any G P G, we have

EpG|Λ̊Kt q “ E

«

G ~Aᵀ
t e
portq
t

pA ,tpAt|Htq

ˇ

ˇ

ˇ

ˇ

ˇ

Ht

ff

E

»

–

˜

~Ate
portq
t

pA ,tpAt|Htq

¸b2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ht

fi

fl

´1
~Ate

portq
t

pA ,tpAt|Htq

“

«

K
ÿ

k“1

E
´

Ge
portq
t

ˇ

ˇ

ˇ
Ht, At “ k

¯

ωᵀ
k

ff

VtpHtq
´1 ~Ate

portq
t

pA ,tpAt|Htq
. (4.21)

For Mathematical Induction on stage t “ T, T ´ 1, T ´ 2, ¨ ¨ ¨ , 1, we assume

tΛ̊Ku u
T
u“t are mutually orthogonal and ΛKt:T “

T
à

u“t

Λ̊Ku . (4.22)

Then the induction hypothesis (4.22) holds for t “ T by definition.

Consider the induction hypothesis (4.22) at stage t ´ 1. Fix 1 ď s ď t ´ 1. Let Gs : Hs Ñ

RpˆpK´1q be an arbitrary function. First, we consider G
pgq
s :“ GspHsq ~Ase

pgq
s

pA ,spAs|Hsq
P ΛKs . For t ď u ď T ,

we have

EpGpgqs |Λ̊Ku q “ E

«

GspHsq ~Ase
pgq
s

pA ,spAs|Hsq

ˇ

ˇ

ˇ

ˇ

ˇ

Λ̊Ku

ff

“

#

K
ÿ

k“1

E

«

GspHsq ~Ase
pgq
s e

portq
u

pA ,spAs|Hsq

ˇ

ˇ

ˇ

ˇ

ˇ

Hu, Au “ k

ff

ωᵀ
k

+

VupHuq
´1 ~Aue

portq
u

pA ,upAu|Huq
pby (4.21)q

“
GspHsq ~As

pA ,spAs|Hsq

C

K
ÿ

k“1

E
´

epgqs eportq
u

ˇ

ˇ

ˇ
Hu, Au “ k

¯

ωk,
VupHuq

´1 ~Au

pA ,upAu|Huq

G

eportq
u

“
GspHsq ~As

pA ,spAs|Hsq

C

K
ÿ

k“1

ρupHu, kqωk,
VupHuq

´1 ~Au

pA ,upAu|Huq

G

eportq
u

“
GspHsq ~As

pA ,spAs|Hsq
τue

portq
u .
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Here, the second last equality follows from Proposition 4.5 that for 1 ď s ď u ď T , we have

e
pgq
s “

řT`1
t“s`1 ∆MtpHtq “

řu
t“s`1 ∆MtpHtq ` e

pgq
u , so that

E
´

epgqs eportq
u

ˇ

ˇ

ˇ
Hu, Au

¯

“

u
ÿ

t“s`1

∆MtpHtqE
´

eportq
u

ˇ

ˇ

ˇ
Hu, Au

¯

loooooooooomoooooooooon

“0

`E
´

epgqu eportq
u

ˇ

ˇ

ˇ
Hu, Au

¯

“ ρupHu, Auq.

Next, we specifically consider s “ t ´ 1 and G
portq
t´1 :“ G

pgq
t´1 ´

řT
u“t EpG

pgq
t´1|Λ̊

K
u q “

Gt´1pHt´1q ~At´1e
portq
t´1

pA ,t´1pAt´1|Ht´1q
. It can be clear that G

portq
t´1 K

ÀT
u“t Λ̊Tu . By Gt´1 is arbitrary, we further

have Λ̊Kt´1 K
ÀT

u“t Λ̊Tu , and Λt´1 Ď
ÀT

u“t´1 Λ̊Tu . Then by induction hypothesis (4.22) that

ΛKt:T “
ÀT

u“t Λ̊Ku , we have ΛK
pt´1q:T Ď

ÀT
u“t´1 Λ̊Ku . Conversely, Λ̊Kt´1 ĎĘspantΛKt´1, Λ̊

K
t:T u “ ΛK

pt´1q:T .

Therefore, ΛK
pt´1q:T “

ÀT
u“t´1 Λ̊Ku , and the induction hypothesis (4.22) at stage t´ 1 is proved.

By Mathematical Induction, the induction hypothesis (4.22) holds for 1 ď t ď T ,

Assume the additional assumption:

E
´

e
pgq2
t

ˇ

ˇ

ˇ
Ht, At

¯

“ E
´

e
pgq2
t

ˇ

ˇ

ˇ
Ht

¯

; 1 ď t ď T. (4.23)

We aim to show the following by Mathematical Induction:

e
portq
t “ e

pgq
t ; ρtpHt, 1q “ ¨ ¨ ¨ “ ρtpHt,Kq “ E

´

e
pgq2
t

ˇ

ˇ

ˇ
Ht

¯

. (4.24)

By definition, e
portq
T “ e

pgq
T and ρT pHT , kq “ Epepgq2T |HT , AT “ kq. Then by (4.23), we have

ρT pHT , 1q “ ¨ ¨ ¨ “ ρT pHT ,Kq “ Epepgq2T |HT q, which proves the induction hypothesis (4.24) at

t “ T .

Assume the induction hypothesis (4.24) holds for stages t, t` 1, ¨ ¨ ¨ , T . Notice that the second

part of the induction hypothesis (4.24) implies that τu “ 0 for t ď u ď T . Then for stage t´ 1, we

have by definition e
portq
t´1 “ e

pgq
t´1´

řT
u“t τue

portq
u “ e

pgq
t´1, and ρt´1pHt´1, kq “ Epepgq2t´1 |Ht´1, At´1 “ kq.

By (4.23), we further have ρt´1pHt´1, 1q “ ¨ ¨ ¨ “ ρt´1pHt´1,Kq “ Epepgq2t´1 |Ht´1q, which proves the

induction hypothesis (4.24) at stage t´ 1.

By Mathematical induction, the induction hypothesis (4.24) holds for 1 ď t ď T . Combining

(4.24) for 1 ď t ď T with (4.22) at t “ 1, we have tΛKt u
T
t“1 are mutually orthogonal and ΛK1:T “

ÀT
t“1 ΛKt .
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4.6.3.5 Proof of Theorem 4.11

Proof of Theorem 4.11. The general characterization of the G-Estimation IF in Robins (2004,

Equation (3.10)) is

T
ÿ

t“1

!

Y
pgq
t ´ γ

pgq
t pHt, At;βtq ´ ErY pgqt ´ γ

pgq
t pHt, At;βtq|Hts

)!

GtpHt, Atq ´ ErGtpHt, Atq|Hts

)

(4.25)

for some instrument functions Gt : Ht Ñ Rp p1 ď t ď T q. This can be related to

the form in our Theorem 4.11 as follows. We first replace GtpHt, Atq ´ ErGtpHt, Atq|Hts

by GtpHtq ~At
pA ,tpAt|Htq

with some Gt : Ht Ñ RpˆpK´1q, and then consider the block representation

GtpHtq :“ rG1tpHtq
ᵀ, ¨ ¨ ¨ ,GTtpHtq

ᵀsᵀ for Gst : Ht Ñ RpsˆpK´1q p1 ď s ď T q. The function

Ht ÞÑ ErY pgqt ´ γ
pgq
t pHt, At;βtq|Hts at the true parameter βt is further replaced by the treatment-

free effect function µtpHtq. Then (4.25) is equivalent to the block matrix form

»

—

—

—

—

—

—

—

—

—

—

—

—

–

G11pH1q G12pH2q ¨ ¨ ¨ G1T pH1q

G21pH1q G22pH2q ¨ ¨ ¨ G2T pHT q

...
...

. . .
...

GT1pH1q GT2pH2q ¨ ¨ ¨ GTT pHT q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

—

—

–

~A1e
pgq
1

pA ,1pA1|H1q

~A2e
pgq
2

pA ,2pA2|H2q

...

~AT e
pgq
T

pA ,T pAT |HT q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

By G “ rGst : 1 ď s, t ď T s is arbitrary, (4.25) is equivalent to (4.25) with te
pgq
t u

T
t“1 replaced by

te
portq
t uTt“1. The restriction ErIFpGqSᵀs “ Ipˆp follows from (Tsiatis, 2007, Theorem 4.2 (i)).

Next, we consider IFpLq. In order to show IFpLq is also an IF, it suffices to show

ErIFpLqSᵀs “ Ipˆp. Denote stpGq “ pIFᵀ1, IF
ᵀ
2, ¨ ¨ ¨ , IF

ᵀ
T q

ᵀpGq with IFspGq :“
řT
t“1 GstpHtq

~Ate
portq
t

pA pAt|Htq
,

and S “ pSᵀ
1 ,S

ᵀ
2 ¨ ¨ ¨ ,S

ᵀ
T q

ᵀ with St :“ pB{Bβtq logrlikelihoodpβ1:T qs. Consider some

1 ď u, t ď T . By EβT1 re
portq
u pβu:T q|Hu, Aus “ 0 for any βt P Bt, we have 0 “

pB{BβtqEβT1 re
portq
u pβu:T q|Hu, Aus “ Eβ1:T

rpB{Bβtqe
portq
u pβt:T q|Hu, Aus`Eβ1:T

re
portq
u pβu:T qSt|Hu, Aus.

In particular, Ereportq
u St|Hu, Aus “ Er´pB{Bβtqe

portq
u pβu:T q|Hu, Aus “ 0 for 1 ď t ă u ď T . Then

1ps “ tqI “ ErIFspGqSᵀ
t s “ E

«

T
ÿ

u“1

GsupHuq ~Au

pA ,upAu|Huq
eportq
u Sᵀ

t

ff

“ E

«

t
ÿ

u“1

GsupHuq ~Au

pA ,upAu|Huq
eportq
u Sᵀ

t

ff

p1 ď s, t ď T q

ñ 1ps “ tqI “ ErIFspLqSᵀ
t s “ E

«

s
ÿ

u“1

GsupHuq ~Au

pA ,upAu|Huq
eportq
u Sᵀ

t

ff

“ E

«

s^t
ÿ

u“1

GsupHuq ~Au

pA ,upAu|Huq
eportq
u Sᵀ

t

ff

p1 ď s, t ď T q.
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Finally, we compare ErIFpLqb2s “ EpLDLᵀq with ErIFpGqb2s “ EpGDGᵀq, where D :“

diagtVtpHtqu
T
t“1. For ease of notation, we suppress the dependency on Ht. Then we have

ErIFpGqb2s ´ ErIFpLqb2s “

T
ÿ

t“1

pGtVtG
ᵀ
t ´ LtVtL

ᵀ
t q “

T
ÿ

t“1

UtVtU
ᵀ
t ě 0,

where Lt :“ rO, ¨ ¨ ¨ ,O,Gᵀ
tt, ¨ ¨ ¨ ,G

ᵀ
Tts

ᵀ and Ut :“ Gt ´ Lt “ rG1t, ¨ ¨ ¨ ,Gt´1,t,O, ¨ ¨ ¨ ,Os
ᵀ. This

concludes ErIFpLqb2s ď ErIFpGqb2s.
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