
NONINVASIVE ARFI ULTRASOUND FOR DIFFERENTIATING CAROTID
PLAQUE WITH HIGH STROKE RISK

Gabriela Torres Garate

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of

Biomedical Engineering in the School of Medicine.

Chapel Hill
2021

Approved by:

Caterina M. Gallippi

Gianmarco Pinton

Xiaoning Jiang

Mark A. Farber

Jonathon W. Homeister



c© 2021
Gabriela Torres Garate

ALL RIGHTS RESERVED

ii



ABSTRACT

Gabriela Torres Garate: Noninvasive ARFI Ultrasound for Differentiating
Carotid Plaque with High Stroke Risk

(Under the direction of Caterina M. Gallippi)

Stroke is the leading cause of death worldwide. Fortunately, incidence and mortality rates are

declining due to the successes of pharmaceutical therapies and revascularization procedures such as

carotid endarterectomy (CEA). While CEA has high efficacy for preventing stroke in patients with

severe (>70%) carotid stenosis, its usefulness decreases as stroke risk declines in patients without

symptoms and less severe stenosis. Clinical studies show that 13 out of 14 symptomatic patients

with 50-69% stenosis, and 21 out of 22 asymptomatic patients with severe stenosis undergo CEA

unnecessarily [1, 2]. There is an unmet need to identify vulnerable carotid plaque and indicate stroke

risk.

Improving the assessment of carotid plaque vulnerability could be met by analyzing plaque

structure and composition. Post-mortem studies have shown that the presence of thin or ruptured

fibrous caps (TRFC), lipid-rich necrotic cores (LRNC), and intraplaque hemorrhage (IPH) is

associated with high stroke risk [3]. Further, MRI studies have shown association between the

presence of TRFC and IPH with previous stroke or transient ischemic attack (TIA), with increased

risk of stroke conferred by TRFC, LRNC, and IPH, in human carotid plaques. While features that

convey vulnerability to rupture are well known, there is currently no established low-cost, noninvasive

imaging method that consistently characterizes plaque structure and composition.

The project proposed herein aims to develop and evaluate Acoustic Radiation Force Impulse

(ARFI)-based ultrasound techniques for delineating the structure and composition of carotid plaque

in humans. First, novel ARFI imaging methods are evaluated in terms of sensitivity and specificity

for detecting of calcium, collagen, lipid-rich necrotic core, and intraplaque hemorrhage in human

atherosclerotic plaques in vivo. Second, an automatic classification framework is developed and

compared to a human reader-based ARFI image assessment. Third, the automatic classifier perfor-

iii



mance is improved by including additional data acquisitions in the cardiac cycle, and using high

frequency and harmonic tracking. Overall, this project demonstrates the efficacy of ARFI ultrasound,

evaluating log(VoA) and with a machine learning-based automatic classifier, to delineate vulnerable

plaque components in human carotid plaques in vivo. These findings have the potential to improve

the current state of the art in clinical diagnosis and management of atherosclerosis.
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CHAPTER 1

INTRODUCTION

1.1 Purpose

Carotid Endarderectomy (CEA) is one of the most common peripheral vascular procedures

performed in the United States, and the most frequent surgical procedure to prevent stroke. Ap-

proximately 93,000 CEA procedures were performed in the United States in 2009 [9]. Currently,

the main factor for clinicians to indicate CEA is the degree of carotid stenosis. However, previous

studies have shown that as many as 13 out of 14 symptomatic patients with 50-69% stenosis, and 21

out of 22 asymptomatic patients with 70-99% stenosis undergo CEA unnecessarily [1, 2, 10]. These

data show that degree of stenosis is insufficient as a primary biomarker for stroke risk, and there is

still a need for more accurate CEA indication.

Studies have shown that Thin or Ruptured Fibrous Cap (TRFC), Lipid-rich Necrotic Core

(LRNC), and Intraplaque Hemorrhage (IPH) are hallmarks of ruptured plaques [11, 12]. These

components allow understanding how plaques can progress from clinically benign fibrous cap

atheromata to fatal lesions. Additionally, studies have demonstrated that MRI-derived plaque

composition is correlated to current and future cerebrovascular events [13, 14, 15]. These data

support the clinical relevance of characterizing plaque components to assess stroke risk.

In spite of the high sensitivity achieved by Magnetic Resonance Imaging (MRI) in vivo, this

imaging methodology presents the following limitations: First, it requires long data acquisition

times that cause susceptibility to motion artifacts; additionally, in order to achieve adequate special

resolution for carotid imaging, it requires specialized phase-array surface coils [16]. Other limitations

of MRI include its cost and lack of portability [13]. An alternative to MRI for assessing carotid plaque

composition is CT radiodensity measurement. This modality, however, only allows identification

of calcifications and achieves low to moderate accuracy when delineating TRFC, LRNC, and IPH

[17, 18]. Additional limitations of CT include its ionizing characteristic, cost and lack of portability
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[19]. Studies of ultrasound grayscale echolucency have been shown to correlate with LRNC and

IPH, and echogenicity with fibrosis and calcification [20]. However, studies report a wide range of

sensitivities and specificities for grayscale-derived composition compared to histology [21]. Another

technique is Virtual Histology (VH) ultrasound, which allows classification between fibrous, fibro-

fatty, necrotic core and calcium through the interrogation of both the backscatter amplitude and the

spectral characteristics of raw radio frequency data [22, 23]. This technique is applied intravascularly,

and data have shown efficacy of identifying vulnerable plaque features and elucidated the highly

dynamic nature of coronary atherosclerosis [24]. One main limitation of this modality is its invasive

nature. Similarly, while Optical Coherence Tomography (OCT) [25] and photoacoustic (PA) [26]

imaging have been demonstrated for differentiating plaque features, penetration challenges have

limited these modalities to intravascular application, although PA methods exploiting interstitial

illumination are in development [27]. A noninvasive, low-cost, portable imaging modality that

reliably delineates carotid plaque structure and composition is still a major challenge for improving

stroke risk assessment.

The purpose of this dissertation is to develop a method for noninvasively characterizing inde-

pendent plaque components to assess structure and composition of carotid plaques using ARFI

ultrasound. Unlike conventional ARFI imaging, the methodologies developed in this work interrogate

the both mechanical and echogenic properties of tissues with the purpose of developing automatic

classification algorithms. Therefore, the work presented herein proposes a new atherosclerotic plaque

imaging methodology that has the potential to improve clinical ultrasonic plaque characterization,

with potential to enhance stroke-risk stratification.

1.2 Hypothesis

The hypothesis of this study is that enhanced noninvasive ARFI ultrasound methods improve

discrimination of Calcium (CAL), Collagen (COL), TRFC, LRNC, and IPH in human carotid

atherosclerotic plaques in vivo, relative to ARFI PD; the following three specific aims were pursued

in this work:

Aim 1: Determine which enhanced ARFI-derived imaging method best enables separation of CAL,

COL, LRNC, and IPH. Imaging will be performed in vivo on 50-99% stenotic plaques. Performance

will be assessed by evaluating contrast, receiver operating characteristic, and Bland-Altman analysis,

with histological validation, first using semi-automatic segmentation, and then, through a blinded
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reader study.

Aim 2: Develop a fully automated, machine learning-based, plaque delineation framework to

measure fibrous cap thickness and CAL, COL, LRNC and IPH size. Automatic delineation outcomes

will be compared to human reader outcomes for assessing accuracy and precision through receiver

operating characteristic and Bland-Altman analyses for measuring each plaque feature size, with

histological validation in comparison to reader performance.

Aim 3: Enhance machine learning-based automatic classification of carotid plaque features by

incorporating data acquisitions at systole and diastole, and by implementing high frequency and

harmonic tracking. Combinations of data inputs will be compared to the outcomes achieved in Aim

2 in terms of accuracy and precision of plaque feature size measurement, with histological validation

in comparison to reader performance.

1.3 Overview

Given the urgent yet unmet need for improved biomarkers that differentiate patients’ risk of

stroke, we have developed a non-invasive imaging methodology to characterize carotid atherosclerotic

plaques using Acoustic Radiation Force Impulse (ARFI) ultrasound. Our group conducted a

preliminary study in pigs, followed by an initial translation to humans in a pilot clinical study. The

outcomes demonstrated that ARFI ultrasound could separate soft and stiff carotid plaque regions.

However, this separation was still insufficient: plaque components have different effects over plaque’s

vulnerability to rupture.

To differentiate plaque components independently, the present project developed advanced

ARFI ultrasound techniques to improve plaque characterization. A new ARFI-based biomarker was

developed based on the concept that high ARFI-induced displacement variance, which arises in tissue

regions with high decorrelation and or low acoustic reflectivity, can be exploited to differentiate

tissue types. In this manner, we assessed the temporal variance in ARFI-induced displacement,

accentuated by a second time derivative, or ’acceleration’. Thus, this parameter was termed variance

of acceleration (VoA). We have demonstrated that VoA is statistically significantly different in

regions of IPH, LRNC, COL, and CAL, in a pilot clinical study of 20 human carotid atherosclerotic

plaques with histological validation, and further in a follow-on pilot clinical study of 20 human

carotid atherosclerotic plaques with histological validation through a blinded-reader study with

radiologists using log(VoA) for plaque component delineation.
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In the first pilot clinical study, Institutional Review Board (IRB) approval was first obtained

(UNC IRB 17-2700), and all patients approved a written consent. Images were acquired the day of

surgery prior to patient sedation by a registered sonographer. ARFI imaging was performed on 25

patients (16 M, 9 F; UNC Hospital patients) with clinical indication for CEA. Plaque specimens that

were damaged or fractured during surgery were excluded. 20 plaques were retained for analysis after

exclusion criteria. Following surgery, the extracted CEA specimens were fixated, and volumetric

microtomography (µCT) imaging was performed to match the orientation from ultrasound images.

In this way, the location of the ultrasound imaging plane was used to guide histological sectioning.

After µCT imaging, samples were sectioned and stained with Hematoxylin and Eosin (H&E), and a

combined Masson’s elastin stain. Plaque components were delineated in histology by a pathologist.

Across all examined plaques, VoA values were statistically significantly different between histologically

confirmed plaque components regions of IPH, LRNC, COL, and CAL.

To further increase performance in delineating plaque components, a machine learning framework

for automatic classification was developed. ARFI data were used as inputs to a support vector

machines (SVM) algorithm to identify four output classes: IPH, LRNC, COL, and CAL. The

algorithm was trained by data with spatially-matched histology, and tested by five-fold cross-

validation. For all plaques, SVM-output maps achieved higher contrast than independent ARFI

parameters and allowed fully automated plaque feature detection. This framework removes user

dependence and bias, achieving better accuracy and precision for component delineation.

In the follow-on pilot clinical study, the same protocols for plaque imaging and collection were

followed as in [8]. Additionally, performance of the plaque characterization framework was improved

by assessing new clinical data from CEA patients at diastole and systole, and applying harmonic

imaging. A blinded-reader study was implemented to assess log(VoA) as an imaging marker for

differentiating plaque components. Results showed that radiologists achieved higher AUCs than in

previous studies evaluating ARFI PD, on average: CAL (0.770), COL (0.760), LRNC (0.790), and

IPH (0.820). Additionally, results also suggested that harmonic ARFI and acquisition at multiple

points of the cardiac cycle also improve performance for automatic plaque feature delineation by

an ML classifier. Specifically, augmented classification models incorporated high frequency and

harmonic tracking, achieved the following averaged AUCs: CAL (0.921), COL (0.909), LRNC (0.943),

and IPH (941). The work presented in this dissertation represents a substantial improvement towards
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noninvasive characterization and identification of vulnerable carotid plaques.
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CHAPTER 2

CLINICAL BACKGROUND

2.1 Introduction

Atherosclerosis is a lipid-driven chronic inflammatory disease of arteries, and is the underlying

pathology of the majority of cardiovascular-related deaths. Its sequelae, such as stroke and myocardial

infarction, have been historically challenging to prevent and characterize, and are the leading cause

of death worldwide.

While the origin of atherosclerosis development is still an area under investigation, understanding

of its hallmarks and metabolic pathways has improved over the last decades. This chapter will begin

with an introduction of the pathological changes occurring due to atherosclerosis, followed by the

current clinical system for plaque classification . Next, carotid plaque vulnerability will be assessed

and discussed. Finally, therapeutic options for atherosclerosis will be highlighted.

2.2 Atherosclerosis: Current Pathogenesis

Healthy human arteries are composed by three layers. The inner layer, or tunica intima, includes

endothelial cells grouped in a single sub-layer, supported by endothelial connective tissue and smooth

muscle cells. Next, the middle layer, or tunica media, contains smooth muscle cells embedded in a

complex extracellular matrix. Finally, the outer layer, or adventitia, contains mast cells, micro-vessels

and nerve endings.

In the beginning of atherosclerosis development, the inner layer is the first affected by adhesion

of blood leukocytes to the endothelial region [28]. In particular, studies have shown endothelial

cell activation and dysfunction, displaying a pro-inflammatory, pro-thrombotic phenotype with

a reduced barrier function [29]. These modification of cellular reactivity and metabolism have

been shown to be capable of also affecting lipid metabolism and further influence smooth muscle

activity. After the recruitment of inflammatory cells to the intima, newly recruited monocytes

express receptors that allow the uptake of modified low-density lipoprotein (LDL) particles, like
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oxidized LDL. These particles trigger further inflammatory responses. In addition, risk factors such

as hypertension, diabetes and smoking help exacerbate processes that help magnify and sustain

inflammation in the arterial wall. Monocytes go on to differentiate into macrophages and attempt to

scavenge oxidized-LDL, however they are incapable of clearing the cholesterol-laden proteins and

become trapped in the intima. While the foam cells remained trapped, they continue to produce

inflammatory cytokines, and also cause more lipoprotein movement into the intima by increasing

transcription of LDL-receptor gene. As inflammation propagates, lipoprotein trafficking and oxidation

and inflammation can be maintained in the artery for decades, leading into the development of an

atherosclerosis lesion.

Atheroma formation also typically involves the activation and migration of vascular SMCs from

the medial layer. These cells down-regulate expression of differentiation marker genes, and switch to

a remodeling phenotype that includes: migration, proliferation, and an increase in the production of

extracellular matrix. This increase leads to the general stiffening of arteries for which atherosclerosis

derives its name, and is responsible for the formation of a fibrous cap which covers the growing

lesion. Over time, a substantial number of foam cells die forming a cohesive region of extracellular

lipids and debris known as a lipid rich pool or necrotic core.

In addition to the formation of a necrotic core, there is the possibility of development of intimal

calcification. Calcification tends to occur in one of two forms, either as diffuse microcalcifications, or

as large, focal punctate fragments or sheets. Diffuse microcalcifications tend to localize in areas of

fibrosis, including the fibrous cap, whereas the larger fragments are typically found in the necrotic

core where microcalcifications are able to coalesce. Precipitation of calcium occurs when the local

ionic concentration increases over the salt solubility product in the local microenvironment of

the plaque. This is known as the passive hypothesis for atherosclerotic calcification. Apoptotic

macrophages in particular have been shown to release high concentrations of mitochondrial phosphate

and phosphatidylserine-containing molecules that may tip the ionic balance and lead to precipitation.

Another hypothesis, driven as an active process, indicates that arterial cells in the atheroma can

differentiate into osteoblast-like phenotypes and express potent osteogenic factors. This suggests

that calcification may occur in a manner similar to conventional bone formation.

Finally, the most significant complication that can occur during late atherosclerosis is the

development of an intraluminal blood clot called a thrombus. Thrombosis arises when plaque
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material is exposed to the blood components. This scenario occurs most frequently when the fibrous

cap ruptures or fissures uncovering the thrombogenic lipid/necrotic core; an event known as plaque

rupture. In many cases, plaque rupture and thrombosis can be a clinically silent event and the

body is able to dissolve the thrombus and heal the site of rupture. Indeed, plaques may undergo a

number of rupture and healing cycles prior to the event that causes sudden death, and recent studies

have shown that a unique constellation of prothrombotic processes (e.g. systemic suppression of

fibrinolytic pathways, or increase inflammatory activity) may be necessary to facilitate the final

catastrophic occlusion event.

2.3 Atherosclerosis Classification System

The American Heart Association has developed a classification system for atherosclerotic plaques

using a numerical value based on the plaque histology [4]. The criteria proposed established six

categories of plaque progression, including a starting point of foam cell presence, up to a ruptured

plaque with hemorrhage. The categories are detailed in Table 2.1 and will be summarized in this

section.

Nomenclature Histological Characteristics
I Initial - Isolated macrophage foam cells
II Fatty streak - Mainly intracellular lipid accumulation
III Intermediate - Type II changes and small extracellular lipid pools
IV Atheroma - Type II changes and core of extracellular lipid
V Fibroatheroma - Lipid core and fibrotic layer, or multiple lipid cores and fibrotic layers,

or mainly calcific, or mainly fibrotic
VI Complicated - Surface defect, hematoma-hemorrhage, thrombus

Table 2.1: AHA-defined types of human atherosclerotic lesions. Adapted from [4].

Type I atherosclerotic lesions consist of the first chemically and microscopically detectable lipid

deposits in the intima layer. These lesions are not conventionally visible to the unaided eye and most

knowledge about early-stage mechanisms comes as a result from in vitro studies. Initial lesions are

characterized by isolated and small groups of macrophages containing lipid droplets. Accumulation

of macrophages and foam cells have also been correlated with hypercholesterolemia, which causes

monocytes to adhere to the endothelium in regions prone to atherosclerosis located in the intima

layer [30].

Type II lesions are composed of macrophage foam cells stratified in multiple layers, rather than

being present as an isolated cell group like in Type I lesions. Additionally, smooth muscle cells located
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in the intima layer now include lipid droplets. Due to the fatty streak characteristic of these lesions,

they are visible to the unaided eye, and have been identified in children with infectious diseases

and adults with high cholesterol. A present challenge in current studies conveys understanding the

procession of type II lesions to vulnerable symptom-producing atherosclerotic plaques [31].

Type III lesions are labeled as pre-atheroma and are considered the intermediate phase between

type II lesions and atheromas. Type III lesions are characterized by the presence of microscopically

visible extracellular lipid droplets, forming lipid pools among smooth muscle cell layers. At this stage

a massive, confluent, well-delineated accumulation of extracellular lipid, i.e., a lipid core, has not yet

developed. Studies have shown that the formation of a lipid core, the characteristic component of

most advanced lesions, is a consequence of the increase and confluence of the separate extracellular

lipid pools in type III lesions [32].

Type IV lesions are composed of extracellular lipid regions occupying extensive and concise

regions of the intima layer. The lipid accumulation is known as the lipid core, and causes severe

structural disorganization in the intima. This lesion does not cause significant narrowing of the

lumen, but can induce formation of fissures. The potential clinical significance of type IV lesions

varies according to the location and structure, and may be vulnerable to rupture due to macrophage

abundance.

Type V lesions are formed by lipid regions that include prominent fibrous connective tissue.

These lesions can be classified into sub-categories depending on their structure and composition. A

type V lesion with a lipid core associated with the new fibrous tissue is referred as a fibroatheroma

or type Va lesion. A type V lesion with a lipid core and calcifications is referred as a type Vb lesion.

Finally, a type V lesion without a defined lipid core and a sparse lipid presence is referred as a

type Vc lesion. These lesions are clinically relevant as they may develop fissures, hematoma, and

thrombus.

Type VI lesions are the most disruptive and mortal form of atherosclerosis. The lesion can

include surface splitting, hematoma, hemorrhage and thrombotic deposits. These types of lesions

can also be sub-classified according to the composition. Type VIa indicates surface disruption, type

VIb indicates presence of hematoma or hemorrhage, and type VIc indicates thrombosis. These

sub-categories can be combined to indicate multiple features, i.e., a type VIabc lesions indicates the

presence of all three features.
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In 2000, the AHA updated the classification to better characterize the sequence in the evolution

of atherosclerotic lesions. The modifications were twofold: Type Vb and Vc lesions were renamed to

Type VII and VIII lesions, respectively [33]. This classification is open to updates depending on new

developmental sequences with improved resolution and novel scaffolding approaches.

2.4 Carotid Plaque Vulnerability

One of the most critical features of a carotid atherosclerotic plaque is the fast transition from a

silent, non-obstructive lesion to one that becomes obstructive and symptomatic. Lesions that are at

the highest risk for this behavior have been denominated vulnerable plaques [3]. The transformation

is most commonly precipitated by atherothrombosis, a process characterized either by the rupture of

the fibrous cap or erosion of the endothelial layer followed by an acute thrombus formation that can

occlude the vessel or embolize and obstruct downstream vessels.

The concept of the vulnerable plaque, by and large, was derived from post-mortem histopatho-

logical studies done on ruptured coronary plaques [11, 34]. While erosion-prone plaques also fall

under the definition of vulnerable, researchers have yet to identify features in precursor lesions that

reliably predict erosion, representing a major limitation of the vulnerable plaque paradigm (it is

thought that 30-35% of SCD is caused by erosion, compared to 55-60% by rupture) [34]. Therefore,

the following discussion on vulnerable plaque characteristics will be limited to the hallmarks of

rupture-prone plaques, which include: (1) thin or ruptured fibrous cap, (2) increased inflammation,

(3) lipid-rich necrotic core, (4) vascular remodeling, (5) vasa vasorum neovascularization, and (6)

intraplaque hemorrhage.

2.4.1 Thin or Ruptured Fibrous Cap

Fibrous cap thickness was one of the first plaque features to be associated with rupture potential.

The fibrous cap is a layer of stiff collagenous tissue that protects the soft underlying necrotic core.

In the coronary arteries, autopsy studies in men who died suddenly from SCD showed that 95%

of plaques with ruptured caps (and consequently, atherothrombosis) had a thickness of <65 µm

[35]. In the carotid arteries, the critical value is substantially higher, and has been reported as <200

µm (minimum thickness) and <500 µm (average thickness) [12]. Numerous finite element method

(FEM) studies have shown that as the fibrous cap thickness decreases, the circumferential stress

experienced by the plaque increases exponentially, which can lead to rupture if the ultimate stress

(i.e. maximum stress at failure) is exceeded [36, 37].
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In addition to thickness, there are a number of additional factors that can weaken the fibrous

cap and make it susceptible to rupture. First, in caps with substantial inflammation, macrophage

apoptosis can result in the continuous release of MMPs that can degrade collagen in the cap [38, 39].

Second, loss of SMCs, which produce collagen, can lead to the thinning of the fibrous cap. Finally,

high resolution µCT and 3D FEM studies have demonstrated that microcalcifications in the fibrous

cap can act as local stress concentrators and cause rupture either through cavitation or interfacial

debonding [40].

2.4.2 Increased Inflammation

This condition is characterized by an abundance of T-cells and macrophages in plaques with

high vulnerability to rupture. Macrophages increase the vulnerability of the plaque by producing

proteolytic enzymes that are capable of degrading extracellular matrix and weakening/thinning the

fibrous cap.

In coronary atherectomy specimens from patients with unstable coronary disease, macrophages

occupied approximately 14% of the atherectomized culprit lesion [3], whilst macrophages only

occupied around 1% in carotid endarterectomy specimens from symptomatic patients. These

inflammatory infiltrates are not diffusely spread throughout the plaque, but cluster around the

lipid-rich core and in the fibrous cap.

Whilst plaque rupture is always accompanied by local inflammation of the cap, inflammation of

morphologically stable plaque types is also a frequent finding. Therefore, inflammation alone is not

enough to make a plaque rupture prone; a necrotic core and a thin cap are also required.

2.4.3 Lipid-rich Necrotic Core

The necrotic core is one of the main destabilizing features of the atherosclerotic plaque. It is

characterized by a lack of supporting collagen and cells, as well as the accumulation of free/esterified

cholesterol. Following plaque rupture, the necrotic core is the most thrombogenic component of an

atherosclerotic plaque, estimated to be six-fold greater than collagen due to the high concentration

of tissue factor [41].

Initial pathology studies identified a wide range of necrotic core areas that were associated

with vulnerability; on the low end, necrotic core areas of 24% and 34% were considered vulnerable

[42, 43], while on the high end the values were above 50% [3]. Subsequent FEM modelling studies

demonstrated that necrotic core thickness is a better indicator of plaque vulnerability compared to
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necrotic core area, and that no single value can reliably confer vulnerability without considering the

thickness of the fibrous cap as well [44].

2.4.4 Vascular Remodeling

The majority of advanced plaques do not cause significant luminal narrowing, because the arterial

wall expands as a response to plaque development, known as expansive or positive remodelling.

Plaques that are not detectable on angiography are often observed in the proximal portions of the

coronary arteries with intravascular ultrasound.

Expansive remodelling is common and makes stenotic plaques relatively rare compared with

nonstenotic plaques. Ruptured plaques in particular are associated with expansive remodelling

and, consequently, most rupture-prone plaques are asymptomatic and nonstenotic at angiographic

examination.

2.4.5 Intraplaque Hemorrhage

The phenomenon involving the presence of neovessels tending to be leaky and extravasate erythro-

cytes into the plaque, is commonly referred to as intraplaque hemorrhage. The release of red blood

cells into the sub-intimal space triggers the recruitment of additional macrophages for the purpose

of erythrophagocytosis. This can activate pathways leading to macrophage production of matrix

metalloproteinases that can disrupt protective fibrosis through collagenolysis [45, 46]. Furthermore,

hemoglobin, which is released from lysing red blood cells, can act as a potent inflammatory agent

[47, 48].

2.5 Atherosclerosis: Therapeutic Options

The development of a cure for atherosclerosis is still a challenge. Treatment can include a

combination of pharmaceutical therapies and lifestyle changes that are intended to reduce risk factors

and slow the buildup of plaque. Numerous surgical techniques also exist including procedures to

widen/bypass occluded arteries, or procedures to remove plaque that may precipitate a fatal ischemic

event. In the following section, these techniques and their efficacy will be described [49].

2.5.1 Pharmaceutical Therapies

Current pharmaceutical therapies for atherosclerosis are targeted to control major risk factors such

as hyperlipidemia and hypertension, or controlling hemostasis to prevent thrombosis. Some of the

main pharmaceutical therapies are lipid-lowering therapy, anti-platelet therapy, and anti-hypertensive
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therapy.

2.5.2 Surgical Procedures

Surgeries vary depending on the location and condition of the target. For coronary arteries,

percutaneous coronary interventions are minimally invasive procedures that involve the use of a

catheter to treat the arteries. The most common coronary intervention is balloon angioplasty

and stent deployment. Coronary artery bypass grafting is an invasive procedure, alternative to

a percutaneous coronary intervention. This surgery is open-heart and a healthy artery or vein is

connected to the blocked coronary artery forming a bypass for blood to flow around the obstruction.

For carotid arteries, the most common procedure is a CEA, where atherosclerotic plaque is

removed from the carotid arteries in order to prevent stroke. The procedure starts with an incision

along the front neck to expose the carotid, then it is clamped on either side of the stenosis to remove

the inner lining of the artery. The plaque is removed as a block, and most of the medial layer is

stripped away. Finally, a patch is sutured to the damaged portion of the artery to avoid re-stenosis,

and the artery is closed. While CEA is still utilized in patients with high-grade asymptomatic

stenosis, there has been a trend away from surgical management to medical management alone.

Current studies suggest that only 5% of patients with asymptomatic carotid stenosis benefit from

CEA. Therefore, there is a great need for an improved method of predicting which patients are at

high risk for stroke to enhance the benefit and cost-efficacy of surgery or treatment.

2.6 Summary

Atherosclerosis is a silent, dynamic inflammatory disease that is influenced by many factors,

including genetics, diet, and lifestyle. If undiagnosed, atherosclerosis can have severe consequences,

and potential death. In the last decades, research has allowed better understanding of this disease,

with novel procedures and treatments to improve patient’s quality of life. Unfortunately, despite great

advances, cardiovascular disease remains the leading cause of death in the world. The improvement

of therapeutic strategies, early detection, and diagnostic technologies, remain relevant for further

reducing this disease mortality. Specifically, medical imaging technologies are needed to both diagnose

the presence of vulnerable plaque and also provide a better disease characterization for improving

the treatment decision-making process. In the next chapter, the state of the art of atherosclerosis

imaging will be reviewed, and current challenges will be discussed.
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CHAPTER 3

IMAGING ATHEROSCLEROSIS

3.1 Introduction

Advances in atherosclerosis imaging technology and research have provided a range of diagnostic

tools to characterize high-risk plaque in vivo. These advances in vascular imaging methods additionally

promise great scientific and translational applications beyond this disease. When combined with

conventional anatomic- and hemodynamic-based assessments of disease severity, cross-sectional

multimodal imaging, and other novel noninvasive techniques can add detailed interrogation of plaque

composition, activity, and overall disease burden.

This chapter will begin with an introduction of the general atherosclerosis imaging pipeline. The

following sections are organized by imaging type, with detail to different imaging modalities per

category.

3.2 Imaging Pipeline

Atherosclerosis imaging encompasses an combination of established and experimental radiological

methods and modalities. Broadly, these techniques can be used to detect anatomic and physiological

consequences of long-standing atherosclerosis, to provide detail on plaque composition and molecular

activity, and to estimate biomechanical stresses acting within the arterial system. Together, these

methods provide measures of disease severity, which are indispensable to everyday clinical practice

and cardiovascular research.

3.3 Anatomic Imaging

Contrast angiography is the main clinically-used technique for imaging anatomical properties

of atherosclerosis. This invasive methodology is most often perform for diagnosing coronary artery

disease, where intubation of the coronary is performed with a preshaped catheter introduced through

the peripheral arterial sheath, and it is used to inject contrast under x-ray fluoroscopy.

Invasive angiography has a spatial resolution on the range between 0.1 and 0.2 mm with a
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temporal resolution of approximately 10 ms. These characteristics allow high diagnostic accuracy

for determining severity of coronary luminal obstruction and for guiding clinical management in

revascularization. However, the generally low diagnostic yield of coronary angiography, which

remains elective, supports initial noninvasive testing. Noninvasive angiography techniques that

are standards of practice include computed tomographic angiography and Magnetic Resonance

Angiography (MRA), combined with ECG-gating to account for cardiac movement. Currently,

computed tomography is preferred over MRA for evaluating coronary imaging in adults. However,

MRA is preferred when evaluating carotid arteries and large vessels in general such as the aorta or

peripheral arteries.

3.3.1 Duplex Ultrasonography

Ultrasound imaging, specifically duplex ultrasonography (DU), is globally accepted as the first-

line diagnosis of stenosis in peripheral vessels. In DU, a combined-imaging mode, conventional

B-mode ultrasound is used to visualize the anatomy of the vessel and Doppler imaging is used to

measure both systolic and diastolic flow velocities in the artery. Velocity values are then used to

derive stenosis percentages, with higher velocities indicating more severe stenosis.

Another common ultrasound metric used to diagnose atherosclerosis is carotid Intima-Media

Thickness (IMT), which are typically done in the common carotid artery, and have been used for

many years as a biomarker to indicate overall patient plaque burden and cardiovascular risk.

While the mobility and speed of ultrasound are some of its greatest strengths, these features are

also a limitation in terms of inter-operator variability. As opposed to MR or CT systems, where a

patient lies in an immobile bore, the majority of clinical ultrasound images are produced dynamically

by a hand-held transducer that is manipulated into position by a skilled technician. Error in probe

placement, or incorrect angle measurement for Doppler studies can result in statistically-variable

performance of the technique. Studies have recommended to avoid DU for general population

screening with asymptomatic carotid stenosis of 60-99% because the specificity (approximately 92%)

results in too many false positives.

3.3.2 Computed Tomographic Angiography

Computed tomographic angiography (CTA) a commonly used first-line diagnostic test for

appropriately selected patients with symptoms of angina and a low-to-moderate pretest probability of

coronary artery disease. Studies have shown that this technique has an excellent negative predictive
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value, providing a reliable means to exclude coronary artery disease when the clinical diagnosis

is negative. Computed tomographic angiography is often performed in conjunction with coronary

artery calcification imaging, a risk stratification tool that gives an overall estimate of disease burden

and risk of future events.

Clinical indications for anatomic CTA assessment have the main objective to improve early

clinical decision making for patients with acute chest pain in the emergency department, as an

adjunct to invasive angiography when planning complex percutaneous intervention. Additionally,

CTA is also used for detection of in-stent restenosis to check patency of coronary artery bypass

grafts. Finally, CTA is used to exclude CAD as a cause of left ventricular dysfunction or before

cardiac valve surgery, and to understand the 3D anatomic relationship of an anomalous coronary

artery to its surrounding structures.

3.3.3 Magnetic Resonance Angiography

Although 2D-Doppler ultrasound is typically the most accessible first-line test to assess for

carotid artery disease in patients with recent stroke or transient ischemic attack, MRA is also used

routinely for this purpose. Compared with CT, MRI has superior soft-tissue characterization and

lacks ionizing radiation.

Obtaining good-quality MRA images is challenging because of motion artefacts arising during

prolonged acquisition time and difficulties achieving satisfactory contrast-to-noise ratio, spatial

resolution, and volumetric coverage. It is, therefore, not currently recommended for routine clinical

use. Recent technological improvements are allowing to provide reliable imaging of the proximal

and midvessels. These advances include free-breathing 3D wholeheart acquisition with ECG-gating

and navigator respiratory motion correction, high-field magnetic resonance (MR), 32-channel coils

with high parallel imaging to accelerate acquisition, T1/T2 spin preparations, and different pulsed

sequences to increase signal/contrast-to-noise ratios.

At 1.5 T, MRA can identify coronary stenoses >50% and identify left main stem and three-vessel

CAD. Moreover, improved diagnostic accuracy has been reported with 3T contrast-enhanced whole-

heart MRA when compared with x-ray angiography. Absence of significant stenosis on coronary

MRA has also been associated with a low risk of subsequent cardiac events when monitored over 2

years.
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3.4 Functional Imaging

For patients with more advanced-disease prognosis, a diagnostic strategy that incorporates

functional testing over anatomic assessment alone results in overall better symptom control and less

invasive procedures. This is in part due to the fact that percentage luminal stenosis does not reliably

correlate with hemodynamic obstruction or ischemic burden.

Hemodynamically significant CAD can be determined noninvasively with stress imaging or by

pressure-wire assessment during invasive angiography, although these tests are often underused before

elective PCI. For functional assessment, exercise is either performed before imaging or simulated

pharmacologically with adenosine or another stress-inducing agent. Noninvasive functional imaging

modalities include stress echocardiography, cardiac MR with stress perfusion, and nuclear myocardial

perfusion scanning with single photon energy computed tomography (SPECT) or positron emission

tomography (PET). Fractional flow reserve (FFR) is the most popular invasive functional method,

which provides a reliable pressure-based marker of relative coronary flow reserve obtained during

maximum pharmacological hyperemia, which is comparable with absolute myocardial blood flow

measured by quantitative PET. CT perfusion is another emerging technique, which if combined with

coronary CTA has comparable accuracy when evaluated against SPECT, FFR, and MR perfusion.

3.5 Imaging Plaque Morphology and Composition

Beyond conventional anatomic and hemodynamic assessments of disease severity, detailed plaque

characterization can be obtained when imaging the vessel wall and inflamed area. Data from

autopsy studies performed in patients with carotid artery disease who died suddenly provide the

histopathologic basis for high-risk plaque identification and have paved the way for the development

of imaging techniques focused on vulnerable plaque imaging [34, 42].

From previous work, the most common underlying plaque morphology leading to myocardial

infarction and stroke comprises a thin ruptured fibrous cap with heavy macrophage infiltration

and few smooth muscle cells, large necrotic core and overlying intraluminal thrombosis. Intimal

neovascularization is a source of intraplaque hemorrhage, which contributes to increased risk of

plaque rupture. These features are among the list of recognized high-risk plaque features detectable

in vivo, however, the role of high-risk plaque imaging in routine clinical practice for risk stratification

improvement has yet to be determined [50].
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3.5.1 Computed Tomography (CT)

In addition to defining coronary anatomy and luminal stenosis severity, CCTA can provide

information on plaque morphology and composition. Although the spatial resolution of CCTA is

insufficient to allow measurement of cap thickness, necrotic cores of fibrous caps are typically large

enough for detection by CT. Plaques can be readily classified as calcified, partially calcified (<50%),

or noncalcified plaques using CCTA. When assessing plaque volume, CCTA tends to underestimate

the size of noncalcified plaques and overestimate calcified plaque because of blooming artifact.

The sensitivity of CCTA to detect noncalcific plaques with >1 mm intimal thickness on IVUS is

approximately 90% [18].

Using absolute CT attenuation values to determine plaque composition is challenging because

of the influence of various factors, including size of necrotic core, wall thickness, measurement

point, density of intraluminal contrast, slice thickness, and reconstruction filter. Contrast-adjusted

attenuation ranges have been proposed to improve accuracy of CCTA plaque component analysis

[17].

3.5.2 Magnetic Resonance Imaging (MRI)

MRI is another methodology used for coronary plaque analysis and wall thickness measurement,

especially in proximal vessels. Using black-blood MRI, positive remodeling and increased coronary

wall thickness has been shown in asymptomatic patients with cardiovascular risk factors. Visualization

of wall edema relating to culprit ACS lesions using T2-weighted short inversion recovery sequence

MRI has also been reported [51, 52]. Furthermore, hyperintense coronary signal on T1-weighed MRI

might serve as a marker of high-risk plaque, which has been linked to clinical angina severity and

increased cardiovascular risk [53].

T1 and T2 sequences on multicontrast weighted MRI distinguish plaque components, which

exhibit differing relaxation properties and signal intensity. Using this technique, carotid wall thickness

can be accurately measured without intravenous contrast on a standard 1.5-T scanner, although

better image quality due to improved signal- and contrast-to-noise ratios is seen with higher-field

strength 3.0-T MRI. Fibrous tissue displays low signal on T1 and high-signal on T2-weighted MRI,

whereas calcium is hypodense on both. Intraplaque hemorrhage causing high-intensity T1-signal and

cap rupture has been shown in relation to recently symptomatic carotid plaques.
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3.5.3 Intravascular Ultrasound Imaging

Intravascular Ultrasound (IVUS) can provide detailed information about coronary plaque com-

position in patients with atherosclerosis. An IVUS catheter, constructed from either an electronic

phased array or single-element design, generates sound waves in the frequency range from 20 to 60

MHz because of the high-speed oscillatory movement of a piezoelectronic transducer. Gray-scale

IVUS has limited ability to differentiate individual plaque components, but added spectral informa-

tion the backscattered signal, using virtual histology (VH)-IVUS, can be used to detect necrotic

core, dense calcium, fibrous, and fibrofatty plaque with sensitivities an specificities ranging from

72% to 99% [54]. However, because of increased noise and artifacts, image interpretation can be

difficult, in addition to limitations due to low spatial resolution to reliably and reproducibly detect

thin fibrous cap [55].

3.5.4 Ultrasound Elasticity Imaging

The fundamental basis for elasticity imaging of atherosclerosis is that different plaque components

have different mechanical properties and, therefore, exhibit distinguishable responses to mechanical

excitation.

Noninvasive Vascular Elastography (NIVE) [56] has been demonstrated for differentiating LRNC,

with sensitivity ranging from 77-100% and specificity ranging from 57-79%, in a clinical trial, with

interesting applications to HIV patients [57] and early vascular change detection in overweight and

obese children [58], however, it has not been shown to delineate independent plaque features [59].

Pulse wave imaging (PWI) has recently been implemented in human carotid arteries but presents

limitations due to turbulence, flow reversal and reflected waves around the plaque [60]. Supersonic

Imaging (SSI)-derived Young’s modulus values have been shown to be statistically lower in the carotid

plaques of patients with neurological symptoms versus those of asymptomatic patients. Similarly, in

patients undergoing CEA, mean SSI Young’s modulus was significantly lower in carotid plaques that

had "unstable" plaque characteristics (large LRNC and/or IPH) as compared to "stable" plaques

[61]. However, the quantitative values of modulus that are reported in the studies are unreliable

because they were not derived from the guided wave models. Amassed, these studies strongly support

that interrogating the mechanical properties of carotid plaque is a viable approach to differentiating

clinically relevant plaque features, and further development of ultrasound-based elasticity imaging

could fill the gap in improving stroke risk stratification.
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An alternative ultrasound-based approach to noninvasively exploiting the mechanical properties

of carotid plaque, has been developed by using Acoustic Radiation Force Impulse (ARFI) ultrasound.

In ARFI imaging, a short-duration (<100 µs), relative high-energy acoustic pulse generates near

the position of the imaging focus impulsive acoustic radiation force. The mechanical excitation is

sufficient in magnitude to displace tissue on the order of micrometers. The induced displacements

are tracked using conventional ultrasonic methods and used to discriminate tissues with different

mechanical properties. For example, stiffer tissues displace less than softer tissues in response to the

same ARFI magnitude. Importantly, ARFI imaging is safe for carotid plaque imaging. Previous

ARFI imaging studies conducted have shown that atherosclerotic plaque characterization by ARFI

is feasible. More specifically, previous ex vivo and in vivo studies involving spatially matched

histological validation of ARFI imaging results, demonstrated that high-risk plaque components can

be differentiated with average area under the receiver operating curve of 0.86.

3.6 Summary

This chapter described a number of vascular imaging techniques, and assessed their efficacy for

imaging atherosclerosis. Currently, the clinical standard is based on angiographic-type modalities.

However, novel MRI and IVUS-based methodologies have been proven efficient for predicting patient

risk. The improvements in atherosclerosis imaging have also led to an increase in the anatomical and

functional understanding of atherosclerosis pathology, which allows further development of novel

treatment and clinical management procedures. Unfortunately, many of the plaque characterization

modalities have significant drawbacks in terms of cost (for MRI) and patient safety (for IVUS and

CT), which may preclude them for being applied as routine screening tools. Advances to noninvasive

ultrasound using elastography, as will be described in the next chapter, have the potential to lead to

further advances in diagnosis and treatment of atherosclerosis, as well as allowing an easier access

for patients to be screened for plaque characterization.
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CHAPTER 4

ULTRASOUND ELASTICITY IMAGING

4.1 Introduction

Ultrasound elasticity imaging or elastography is an imaging technology sensitive to tissue stiffness,

and it was first proposed in 1995 [62]. For the past few decades, this technology has been further

developed and optimized to enable clinically-applied qualitative and quantitative assessments of tissue

stiffness. Elastography methods take advantage of the changed elasticity of soft tissues resulting

from specific pathological or physiological processes, i.e., many solid tumors are known to differ

mechanically from surrounding healthy tissues.

In this chapter, a brief background on ultrasound imaging is given first, followed by a brief

overview on ARF and different ARF-based imaging methods that are used for arterial imaging.

Finally, acoustic radiation force impulse (ARFI) imaging, a qualitative technique, is discussed, which

is the technological foundation for this dissertation.

4.2 Overview of Ultrasound Imaging

Ultrasound imaging, or sonography, is a non-ionizing technique that uses high frequency acoustic

waves (typically 3 MHz - 15 MHz) to make tomographic images of tissue structures. As ultrasound

waves travel through the body, they encounter interfaces between tissues and are partially reflected

back toward the ultrasound transducer. The proportion of the wave that is reflected versus transmitted

across the interface is related to the tissues acoustic impedance, which is given by the product of the

tissue density, and speed of sound.

As the sound waves propagate, they are attenuated, scattered, and reflected, producing echoes

from the various interfaces. The transducer receives the returned echoes, which are digitalized

and sent to the receive beamformer. Then, images are made by recording the ultrasonic echoes

and assigning grayscale values to their intensities. This mode of imaging is known as pulse/echo

ultrasound, and results in a one dimensional tomographic data set (amplitude vs. depth) referred to
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as a Radiofrequency (RF) line. RF data is then envelope-detected and log compressed to form an

amplitude line (A-line), which encodes the intensity of the echo at a given depth position.

To create two-dimensional images, successive A-lines are taken at various positions across the

tissue of interest and compounded together to create a brightness mode (B-mode) image. A-lines

can also be fired sequentially in the same location in a technique known as motion mode (M-mode),

which is used to track motion such as blood flow. Variations on M-mode sequencing underlie the flow

mapping techniques of pulsed, color, and power Doppler that are utilized to perform non-contrast

angiography-style imaging with ultrasound.

4.3 Ultrasound Elasticity Imaging

Unlike conventional B-mode ultrasound imaging that differentiates features with dissimilar

acoustic properties, elasticity imaging methods differentiate features with different mechanical

properties. Because malignancies and pathologies will exhibit different mechanical properties than

the surrounding tissue, elasticity imaging methods are being developed to examine tissue health and

monitor disease progression. To do this, these techniques have two phases: first, tissue is excited,

and second, the deformation response is monitored. The source of the excitation used to produce the

tissue deformation can be extrinsic, as in compressive elastography, or intrinsic, by using radiation

force.

4.3.1 Compression Elastography

In this technique, a handheld ultrasound probe is used to compress tissue while performing

real time imaging to measure the deformation. Displacements are monitored with speckle-tracking

algorithms by comparing pre-compression and post-compression images, and are used to determine

the strain field. By assuming the applied stress is uniform and the material is elastic, differences in

the measured strain are attributed to differences in the elasticity of the tissue.

Compression elastography has demonstrated promising clinical applications for evaluating thy-

roid, breast, liver, and prostate lesions. This technique can be performed in real-time clinically.

Unfortunately, tissue compression causes signal decorrelation, limiting the accuracy of displacement

estimates and the strain estimates formed from them. Elastography is also limited because the

deformation field decreases with depth, making it difficult to make measurements in deep tissue.

Furthermore, the applied pressure is caused by a free-hand technique making the measurements

operator dependent, which impacts reproducibility.
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4.3.2 Acoustic Radiation Force (ARF)

Radiation force is a phenomenon in wave motion where part of the energy of the travelling

wave is converted into momentum after experiencing absorption, scattering, or reflection. In 1902,

radiation force was found to be associated with acoustic waves by Lord Rayleigh [63]. Decades later,

in 1990, acoustic radiation force (ARF) was proposed to be utilized as an extrinsic excitation source

for elasticity-based medical imaging techniques [64].

Acoustic radiation force (ARF) is defined as a unidirectional body force generated from the

transfer of momentum from an acoustic wave to the propagating medium [65]. The transfer of

momentum occurs with energy-loss mechanisms such as absorption, scattering, and reflection,

therefore the derivation of acoustic radiation force cannot be directly obtained from the purely

elastic stress-strain relationships. Using the Navier-Stokes equation, ARF is approached using the

balance of linear momentum equation. In order to simplify the magnitude of ARF at an specific

spatial location, soft tissues can be approximated as linear, isotropic, elastic solids with the following

balance of linear momentum equation (adapted from [65]), defined as 4.1,

∇σ + f = ρa (4.1)

where ∇ is the divergence operator, σ is the Cauchy stress tensor, f represents an external

steady-state force, ρ is the material density, and a is an external force. When the perturbative

expansion of equation is used, the radiation force can be related to the change in momentum, so

that the second-order balance of linear momentum can be expressed as 4.2,

F = ∇p2 − µf∇2v2 (4.2)

F = ρ〈v1∇ · v1 + v1∇v1〉 (4.3)

where 〈〉 is the time-average quantity, p2 is the second order pressure term, and v1 and v2 are

the first and second order terms in the expansion of particle velocity. For the case of a plane wave,

4.3 can be reduced to 4.4 as,
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F = 2ρ〈v∇v〉 (4.4)

Further, taking into consideration that the solution for the attenuating wave equation, i.e., an

expression of the output particle velocities derived in [65] can be simplified to,

v(x, t) = jωA0e
−αx+j(ωt−kx) (4.5)

where v is the particle velocity, x and t refer to the particle’s position and time, ω is the angular

frequency, A0 is the initial wave amplitude, α is the frequency-dependent attenuation coefficient of

the material, and k is the wave number. Substituting 4.5 into 4.4, the magnitude of the presented

acoustic radiation force can be expressed as,

|F | = A2
0e

−2αxρα. (4.6)

Finally, the magnitude of the acoustic radiation force for any spatial location can be calculated

as,

|F | = 2αI

c
(4.7)

where F is the force per unit volume, c is the sound speed in ms−1, α is the absorption coefficient

of the tissue in Np m−1, and I is the temporal average intensity in Wcm−2at that spatial location.

The main limitation from the approximation in 4.7 is the underestimation from the true radiation

force magnitude in tissue due to the second order approximation. Specifically in tissue, an acoustic

wave with high amplitude and short duration experiences significant nonlinear distortion, which

results in the formation of harmonics and consequently, an increase in absorption. Additional studies

have modified the ARF equation approximation to include higher order terms [66, 67].

In conventional ultrasound imaging, the magnitude of the acoustic radiation force is relatively

small, producing negligible displacements in tissue (< 1 µm). To generate measurable displacements,

ARF methods use longer and/or higher intensity acoustic pulses than what is used for B-Mode

imaging. In practice, acoustic radiation force magnitudes on the order of dynes can produce

displacements in the range of 1-10 µm. The amount the tissue displaces and the time needed for the
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subsequent recovery are dependent upon the mechanical properties of the tissue, which is exploited in

the imaging techniques described in later sections. Peak ARF magnitudes in vivo are approximately

in the range from 1 to 10 µm. These magnitudes are within the FDA-regulated diagnostic ultrasound

limits for mechanical index (MI), thermal index (TI), and spatial peak temporal average intensity

(ISPTA). Studies using finite element method (FEM) models and experimental validation have shown

that ARF-based method heat tissue less than 1◦C, below the FDA limit of 6◦C [68, 69].

ARF-based imaging has been shown to be clinically useful in a variety of applications including

breast, gastrointestinal tract, liver, kidney, and prostate. Nightingale et al. developed the first

implementation of ARFI in vivo in the human abdomen, bicep, thyroid, and breast [70]. Specifically,

their results supported the clinical feasibility of a radiation remote palpation imaging system.

4.4 Vascular ARF-Based Imaging

One of the main benefits of using ARF-based imaging is the highly programmable focus and spatial

precision that non-ARF imaging techniques can’t achieve. Specifically for vascular applications,

resolution and precision are essential to properly characterizing artery wall composition and structure.

The primary ARF-based imaging techniques that have been developed for vascular imaging include

vibroacoustography, shear wave elasticity imaging, shear/lamb wave dispersion vibrometry, and

acoustic radiation force impulse imaging.

4.4.1 Vibroacoustography (VA)

Vibroacoustography is an ultrasound-based method to detect vascular calcifications [71].This

technique uses ARF produced by 2 intersecting ultrasound beams at slightly different frequencies to

induce a vibration (in the kHz range) of the tissue from a distance. A 2D image is generated from

the vibration-induced acoustic emission signal. This signal depends on the tissue stiffness and its

acoustic properties [72].

This technique was first implemented in a water bath, and achieved successful detection of

calcium deposits excised in ex vivo tissue, with X-ray validation [73]. Further, this technique was

also applied in vivo in porcine femoral arteries, producing high-resolution and speckle-free images.

Results from this study indicated that vibroacoustography-based measured calcium areas were

comparable in vivo and in vitro, and measurement of the artery’s diameter was also comparable

between vibroacoustography and conventional ultrasound [5]. Overall, sensitivity and specificity

for calcium detection was 100% and 86%, respectively [5], demonstrating potential for clinical
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implementations. Figure 4.1, adapted from [5], shows an example of a calcified arterial plaque (A)

photographed and imaged in vivo with (B) vibroacoustography and (C) X-ray.

The main advantages of this methodology are the lack of speckle present that allows better

contrast when identifying calcium, with similar contrast as X-ray but without any ionizing radiation.

Additionally, this technique was implemented in a clinical ultrasound scanner (GE HealthCare

Ultrasound Cardiology, Horton, Norway) for translation to a clinical setting [74]. A main limitation

of this technology is scan duration. When using a confocal transducer, the scanning duration was 7-8

minutes, whereas when using a linear array transducer, the duration was one minute. Additionally,

standing wave artifacts are another limitation, due to long ultrasound transmissions and acoustic

reverberation. A complete plaque characterization, specifically identifying other plaque components

different than calcium, is still an area for future work in refining the approach for estimating

viscoelastic properties of tissue [75].

Figure 4.1: Femoral calcified arterial calcified plaque. (A) photograph of the artery showing the
plaque calcification. (B) Vibroacoustographic, and (C) X-ray images of the excised specimen.
Reprinted from [5] (Copyright c© 2008 Wolters Kluwer Health Inc.)

4.4.2 Shear Wave Elasticity Imaging (SWEI)

Shear Wave Elasticity Imaging (SWEI) is a quantitative methodology where an ARF push is

applied to induce a shear wave [76]. As the shear wave propagates through the medium, it can

be tracked through time. The velocity by which it propagates is directly related to the medium

elasticity, and can be quantified to obtain its Young’s modulus [77]. The motivation for applying this

methodology to plaque imaging is SWEI’s capability to differentiate fatty from fibrotic tissue with
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high performance [78, 6]. A commercialized extension of SWEI based on using multiple ARF bursts

at different axial depths is supersonic shear imaging (SSI). This approach creates a constructively

interfering planar shear wave that propagates in a Mach-cone, and is tracked using plane wave

beamforming and coherent compounding to achieve framerates between 3 kHz and 5 kHz. Other

methods to produce shear waves have been developed to include an axial focus of two ultrasound

beams or spatially modulating ultrasound to produce shear waves [79, 80]. SWEI technology has

been implemented commercially by multiple ultrasound companies such as Siemens, Philips and GE.

SSI has been commercially implemented by Hologic Supersonic Imagine.

SWEI has been assessed in multiple clinical studies to characterize carotid plaque in patients,

having cohorts from 22 [81] to 199 [82]. SWEI has been assessed for understanding plaque vulnerability

with multiple ultrasound machines using different configurations, both in vivo and ex vivo [50].

Some studies have compared SWEI to echogenicity, as a reference standard, to assess plaque rupture

vulnerability [82, 83, 61]. However, a limitation of this assessment is that echogenicity has been

proven to be insufficient for a complete plaque characterization and is not a gold standard [84].

Additionally, studies have reported the feasibility of using SWEI in carotid arteries and found

statistically significant differences in elasticity in both the arterial wall and plaques. In carotid

artery plaques, stiffness values have been reported to be lower in plaques from symptomatic patients

compared to asymptomatic plaques [6]. Figure 4.2, adapted from [6], shows an example of a carotid

plaque SWEI elastogram with labels 1-4 indicating wall and labels P1 and P2 indicating plaque.

Overall, SWEI-derived elasticity values widely vary among studies, with additional variability on

each study, depending on the plaque characteristics. SWEI has also been applied in phantoms and

in a healthy volunteer [85], and has been shown to identify vulnerable plaques.

The main advantages of this methodology are quantitative elasticity measurements from the

previously cited studies correlate with computed tomography angiography and pulse wave velocity,

clinically. Aditionally, SWEI reproducibility was achieved with less operator dependence than

conventional ultrasound [83]. The main limitations of this methodology are that SWEI results are

affected by dispersion, specifically by viscosity changes through the plaque. Additionally, shear waves

generated have approximately 1-10 mm wavelength, therefore, internal reflections between plaque

components strongly affect shear wave propagation, affecting the overall elasticity results. This

problem is reduced with higher frequencies; however, higher frequencies also have higher attenuation.
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Finally, despite in vivo SWEI resolution being reported in the range between 0.3 - 1 mm2, studies

use regions of interests that encompass the whole plaque, without assessing plaque components

independently.

Figure 4.2: Example carotid artery in a patient with 30%-40% stenosis. The elastogram of the
internal carotid artery (ICA) and commom carotid artery (CCA) is shown. Six 2-mm circular regions
are shown, in the anterior (1) and posterior (3) ICA, anterior (2) and posterior (4) CCA, and inside
the plaque (P1 and P2). Reprinted from [6] (Copyright c© 2014 Springer Nature)

4.4.3 Shear/Lamb Wave Dispersion Vibrometry and Spectroscopy

Shear Wave Dispersion Ultrasound Vibrometry (SDUV) [86] and Lamb Wave Dispersion Vibrom-

etry (LDUV) [87] are ARF-based imaging approaches that measure mechanical wave propagation

to obtain viscoelastic tissue properties. SDUV generates multi-frequency wide-band harmonic

shearwaves using both an ARF push and external mechanical vibration to obtain a shear wave speed

dispersion curve, and further estimate tissue elasticity and viscosity. Different configurations of

SDUV are developed using combinations of ARF and external vibration sources [88].

SDUV’s methodology is based on using amplitude modulated ultrasound to generate a monochro-

matic shear wave and measure its phase velocity using a phase gradient method. With multiple

measurements, shear wave speed can be measured at multiple locations along the propagation path,

and a linear regression can be performed to robustly calculate the phase velocity. Using several

modulation frequencies, this technique was first implemented in phantoms using a bandwidth of 200

to 800 Hz [88]. An alternative to multiple measurements has been proposed through one acquisition

with significant energy in multiple frequency components in a single sequence [86]. For vascular

applications, SDUV has shown potential for characterizing viscoelasticity in walls of excised arteries,
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specifically indirectly measuring attenuation via characterizing the ratio between the decay rate and

frequency for an artery [89]. Additionally, SDUV was applied for measuring the Young’s modulus of

ex vivo porcine carotid arteries and customized tube phantoms with compressive mechanical testing

validation [7].

Figure 4.3: Example left and right excised porcine carotid arteries. (A) SDUV-generated shear wave
speed of the arteries from an initial pressure of 10 mmHg until 100 mmHg. (B) Yound’s moduli of
the arteries as a function of increased pressurization. Reprinted from [7] (Copyright c© 2009 IEEE)

The main advantages of this methodology are they provide estimation of both elastic and

viscoelastic properties, which has been reported to have potential for characterizing arteries clinically

[90]. The main disadvantages of this methodology are that multiple measurements are required while

varying the modulation frequency, in addition to the limited spatial and temporal resolution for

characterizing plaque composition and structure.

4.4.4 Acoustic Radiation Force Impulse (ARFI) Imaging

ARFI imaging is an imaging approach that employs an ARF push to qualitatively assess tissue

properties on the same axis where the push was delivered. In this approach, one-dimensional

axial displacements induced in the location of force application are considered to reflect relative

tissue mechanical properties. ARF-induced displacement profiles are conventionally calculated

using correlation-based time delay estimators [91]. Unbiased estimators, such as normalized cross-

correlation, Loupas [92] or Kasai [93] methods, are fundamentally limited by the Cramer-Rao Lower

29



Bound (CRLB) and biased estimators, such as the Bayesian speckle traking approach can surpass

the CRLB [94]. Parameters derived from displacement profiles have been used for characterizing

tissue property, these include the magnitude of displacement at a given time, Peak Displacement

(PD) magnitude, time to peak displacement, and the time to a specific percentage recovery from

peak displacement.

Initial applications of ARFI imaging for arterial plaque characterization include studies performed

ex vivo in human femoral and popliteal arteries [95]. These initial results and further in vivo porcine

model [96, 97] results showed that lipid necrotic areas had higher displacement than areas with

fibrosis and calcification. ARFI imaging was further assessed in terms of performace through a

blinded reader study for identifying ex vivo plaque components [98]. Results from this study indicated

ARFI peak displacement’s performance for identifying calcium (sensitivity: 96%, specificity: 85%),

lipid core (sensitivity: 80%, specificity: 86%), and fibrous cap (sensitivity: 86%, specificity: 82%).

ARFI imaging was then implemented in humans in vivo [99], and subsequently implemented in

patients undergoing carotid endarderectomy with matched histology [100] and carotid magnetic

resonance imaging [90].

In addition to previous studies, a blinded-reader clinical feasibility study for identifying plaque

components and measuring fibrous cap thickness assessed ARFI imaging in 25 patients (16 M, 9

F; 0 children; all caucasian) with clinical indication for CEA using a Sonoline Antares and VF7-3

transducer. Images were acquired the day of surgery prior to patient sedation by a registered

sonographer trained in ARFI and peripheral vascular imaging. The carotid bifurcation and internal

carotid artery (ICA) were imaged longitudinally, using electrocardiogram (ECG) gating to diastole.

The ARFI imaging focal depth was chosen based on the location of the plaque. From the acquired

raw RF data, parametric images of ARFI-induced peak displacement were rendered with color

scaling to [median ± 2 x median absolute difference], as described in [98].

After surgery, the extracted CEA specimens were labeled (proximal/distal relative to the heart)

by the surgeon, photographed, and then transferred to 10% neutral-buffered formalin. After fixation,

volumetric ex vivo µCT imaging was performed on the samples at 20-µm isotropic voxel resolution.

In the µCT, plaque volumes were segmented into two tissue types, calcifications and soft tissue.

Then, the µCT volume was rotated to match the internal/external carotid artery orientation from

in vivo transverse B-Mode images captured at the time of ARFI imaging. In this way, the location
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of the ultrasound imaging plane was located and used to guide histological sectioning. After ex

vivo imaging, samples were decalcified, and marked with tissue marking dye to indicate sample

orientation.

Then, the tissue was embedded in paraffin, sectioned, and stained with H&E and a combined

Masson’s elastin (CME) stain for collagen and elastin. Figure 4.4 shows an example of this processing

of the carotid B-Mode and ARFI peak displacement images with matching µCT and histologic

sections. Histology images were graded by a pathologist with experience in atherosclerosis using a

custom GUI. Similarly, the spatially-matched ARFI PD images were graded by six trained, blinded

readers (two neuroradiologists, an abdominal radiologist, a sonographer, an interventional cardiologist,

and a pathologist who did not read the histology images) using a custom GUI. The median AUCs

for each feature were as follows: lipid-rich necrotic core, 0.809; dense collagen, 0.696; intraplaque

hemorrhage, 0.639; calcium, 0.612. The median AUC for the combined metrics were 0.859 for

collagen/calcium and 0.887 for necrotic core/intraplaque hemorrhage. Performance was dependent

on reader specialization, with radiologists achieving the highest AUCs for detecting combinations

of collagen/calcium and necrotic core/intraplaque hemorrhage, in vivo in human carotid plaques.

Specifically, the results revealed that while PD effectively detected soft (median AUROC = 0.887)

and stiff (median AUROC = 0.859) plaque features, PD was not as successful at distinguishing

between different plaque components that exhibited similar PDs (median AUROCs < 0.65).

Additionally, readers were able to measure average FC thickness down to 0.49 mm with close

agreement to histologically measured thickness. Specifically, the reader with the closest agreement

with histology for FC thickness measurement achieved a coefficient of determination (R2) value of

0.64. Radiologists on average had a statistically significant positive bias (0.12 ± 0.30 mm; P =

0.037). These encouraging preliminary results support that ARFI is relevant to delineating human

carotid plaque features in vivo but suggest that further technology development is needed to improve

discrimination.

The main advantages of this methodology include higher spatial resolution compared to SWEI

and SDUV for characterizing plaque composition, with studies demonstrating in vivo feasibility for

differentiating grouped stiff from grouped soft carotid plaque components, in addition to real-time

implementation capabilities. The main limitations of this methodology are that ARFI imaging is a

qualitative measurement in comparison to SWEI and SDUV, which provide quantitative outputs.
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Figure 4.4: Example internal carotid artery from a symptomatic patient. (a) B-Mode image,
(b) ARFI peak displacement image, and (c) ARFI-based segmentation is showed with (d) match-
ing microcomputed tomography and histologic sections. Reprinted from [8] (Copyright c© 2017
ScienceDirect)

Additionally, similarly to SWEI and SDUV, clutter artifacts, caused by scattering from off-axis

tissue inhomogeneities, sound reverberation between tissue layers, and random acoustic noise, cause

displacement error and contrast reduction between different plaque components in ARFI-derived

images.

4.5 Summary

The fundamental basis for the application of elastography to characterize atherosclerosis is that

different plaque components have different mechanical properties and, therefore, exhibit distinguish-

able responses to mechanical excitation. Unlike compression elastography, ARFI ultrasound uses an

acoustic radiation impulse to displace small tissue volumes at a precise focal position. This technique

does not rely on the characteristics of propagating shear waves but only on displacements achieved

in the region of excitation. Previous ARFI clinical plaque characterization studies have shown that

trained radiologists achieved AUCs of 0.86 and 0.89 for detecting grouped collagen/calcium and

grouped necrotic core/intraplaque hemorrhage, respectively, in vivo in ARFI images of human carotid

plaques [8]. These encouraging preliminary results showed that ARFI PD allows differentiation of
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soft from stiff plaque areas and highlighted ARFI potential for delineating human carotid plaque

features in vivo. From these encouraging results, further ARFI imaging development to improve

differentiation between individual plaque components will be presented in the next chapters. In

summary, previous studies demonstrate the relevance of interrogating the mechanical properties

of carotid plaque as an approach to differentiating plaque features, and further development of

ultrasound-based elasticity imaging could improve stroke risk assessment.
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CHAPTER 5

ARFI DISPLACEMENT VARIANCE

5.1 Introduction

Given the background presented in the previous chapter, the lack of a low-cost, noninvasive

imaging method that reliably delineates carotid plaque structure and composition and is suitable for

widespread diagnostic application represents a major gap in improving stroke risk stratification. ARFI

ultrasound presented successful results for delineating stiff and soft areas of carotid atherosclerotic

plaques and motivated further advancement of ARFI technology to enhance carotid plaque imaging.

However, inability to distinguish between soft LRNC and IPH features impairs ARFI’s clinical

relevance to atherosclerosis imaging because LRNC has a lower hazard ratio (3.00) than IPH (4.59)

in regard to predicting subsequent stroke/transient ischemic attack. Thus, differentiating IPH from

LRNC could improve identification of patients in need of invasive interventions, such as a CEA, to

prevent stroke versus those that could safely be managed pharmaceutically [101]. Similarly, inability

to distinguish between stiff COL and CAL diminishes ARFI’s utility for atherosclerosis imaging

because diffuse COL deposition is generally considered stabilizing to plaques, while CAL deposits

may be stabilizing or destabilizing depending on their size and location. Thus, knowledge that a

stiff region in a carotid plaque is COL as opposed to CAL could improve stroke risk assessment and

facilitate medical management.

This chapter 1 presents a derivation and evaluation of ARF-based outcome parameters to

differentiate plaque components as an alternative to using ARFI PD. These parameters exploit

signal correlation and signal-to-noise ratio (SNR), which vary between plaque components according

1 c© 2019 IEEE. Portions reprinted with permision, from Torres, G., Czernuszewicz, T.J., Homeister, J.W., Caughey,
M.C., Huang, B.Y., Lee, E.R., Zamora, C.A., Farber, M.A., Marston, W.A., Huang, D.Y., Nichols, T.C., and
Gallippi G.M., "Delineation of human carotid plaque features in vivo by exploiting displacement variance," IEEE
transactions on ultrasonics, ferroelectrics, and frequency control, 66(3), pp.481-492.
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to displacement and echogenicity, respectively. Thus, relative to evaluating PD alone, evaluating

signal correlation could improve discrimination of plaque features by mechanical property. Further,

evaluating SNR enables discrimination of plaque features by echogenic property. In addition to

outright signal correlation and SNR, we evaluate if displacement estimation variance, which is a

function of both correlation and SNR, improves discrimination of plaque features. We hypothesize

that signal correlation and SNR can be exploited, outright or via displacement variance, to improve

discrimination of carotid plaque features relative to PD in transcutaneous ARFI imaging. This

evaluation is performed by deriving correlation, SNR, and displacement variance parameters from

the same ARFI data previously acquired in vivo from the carotid plaques of 25 patients undergoing

clinically indicated carotid endarterectomy [8].

5.2 Methods

As described above, all analyses were applied to previously collected in vivo human carotid plaque

data, the acquisition and nature of which have been described in detail previously [8] in Chapter

4.4.4. Briefly, 25 patients undergoing clinically-indicated CEA were recruited from The University of

North Carolina at Chapel Hill (UNC) Hospitals. The UNC IRB approved all procedures in this study.

Informed consent was given from each study participant (ClinicalTrials.gov No. NCT01581385).

From the 25 patients, 5 plaques met the exclusion criteria outlined in [8] and were not considered.

The examined plaques were imaged in vivo prior to surgery using a Siemens Acuson Antares

(Siemens Healthineers, Ultrasound Division, Issaquah, WA) and a VF7-3 linear array with Elec-

trocardiogram (ECG) gating to diastole, and the CEA specimens were collected following surgery

for histological validation of imaging results. The extracted plaque specimens were imaged with

volumetric micro-CT. Micro-CT volumes were segmented into calcium and soft tissue and were

aligned with morphology on the B-Mode frame (acquired simultaneously with ARFI data) to identify

the proper sectioning plane to achieve spatial alignment of ARFI and histology data. Sections were

stained with hematoxylin and eosin (H&E), Von Kossa (VK) for calcium, and Combined Masson’s

Elastin (CME) for collagen. Figure 5.1 provides a flow chart of this procedure from an example

carotid plaque in a 71-year-old symptomatic male. The histology images were read by a pathologist

experienced in atherosclerosis, who marked regions of COL, CAL, LRNC, and IPH. The reader is

referred to our prior publication for more detailed descriptions of the study population, ultrasound

data acquisition, and histological processing methods.
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Figure 5.1: Procedure for aligning histology and ARFI images. (1) Before CEA, in vivo B-Mode (and
matched ARFI) data are recorded from the plaque. (2) After CEA, a µCT volume of the extracted
specimen is rendered. (3) Using anatomy and morphology in the B-Mode image, an aligned plane is
located along the µCT volume. (4) This aligned µCT is used to identify the plane for sectioning the
specimen during histological processing such that the histology and ultrasound imaging planes are
aligned. (5) Finally, features identified by the pathologist on the spatially-aligned histology slides are
used as validation for parametric ultrasound image analysis. The depicted carotid plaque example is
from a 71-year-old symptomatic male.

5.2.1 Outcome Parameter Estimation

Outcome parameters were systematically generated, as indicated in Figure 5.2, for three input data

sources: 1) ARFI-induced displacement, 2) cross-correlation coefficient (CC), and 3) radio frequency

SNR. All three data sources were evaluated over ensemble time. ARFI-induced displacement and

CC were calculated using one-dimensional axial Normalized Cross-Correlation (NCC) with a kernel

length of 1.5λ [91]. Note that the selection of this kernel length is based on a previous study [37]

that evaluated the tradeoff between bias in plaque feature size estimates with large kernel sizes

and noise in displacement estimates with small kernel sizes. Radio frequency Signal-to-Noise Ratio

(SNR) was calculated as µ/σ, where µ represents the signal amplitude in each independent pixel per

frame, and σ represents the noise component, which was calculated as the average signal amplitude

in a 3x3 mm anechoic region inside the lumen of each carotid artery. The size of the noise region

was selected as the size of the largest anechoic region consistently recognizable in all of the carotid

images. The three sources of input data were each evaluated in terms of the nth time derivate (with

n = 0, 1, 2, and 3), the decadic logarithm of the nth time derivate, the temporal variance of the nth
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time derivate, and the decadic logarithm of the temporal variance of the nth time derivate.

Figure 5.2: Flow chart of the systematic parameter evaluation, where there is a base data set (ARFI
displacement, RF SNR, or CC) as an input, and 16 output parameters per base data set.

To understand the motivation for taking the time derivative, consider that this operation is a

high pass filter that accentuates variance in the input data source. When the input data source is

displacement, variance in the estimate, also known as "jitter", is predicted using the Cramer-Rao

lower bound [102] as,

σ ≥

√
3

2f3π2T (B3 + 12B)

[ 1

CC2

(
1 +

1

SNR2

)2
− 1
]

(5.1)

where f the center frequency, T is the tracking kernel size, and B is the bandwidth. If these three

parameters are maintained constant, jitter magnitude is primarily a function of CC and SNR. Thus,

by evaluating the time derivative(s) of displacement, signal components with different degrees of

decorrelation and/or SNR level may be differentiated. On the contrary, considering CC or SNR

alone differentiates signal components on the basis of only the single corresponding parameter. For
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all three input data sources, temporal (unbiased) variance was calculated as,

Vp(x, y, ti) =
1

k − 1

i+(k−1)∑
j=1

∣∣∣p(x, y, tj)− 1

k

i+(k−1)∑
l=i

p(x, y, tl)
∣∣∣2 (5.2)

where p is the input data source, x and y are the axial and lateral coordinates, respectively, and t is

time. The window length for the variance calculation, k, was five time samples (corresponding to 0.5

ms for the employed pulse repetition frequency of 10 kHz). Using these operations, a total of 16

output parameters were generated for each input data source, for a total of 16 output parameters

per input data source x 3 input data sources = 48 output parameters.

5.2.2 Image Rendering and Performance Analysis

For the in vivo human carotid plaque examples, parametric images of the 48 outcome parameters

were rendered by displaying the median parameter value over the last two milliseconds of ensemble

time for each pixel. For display and analysis purposes, all parametric images were normalized to the

median value within the plaque +/− two Median Absolute Deviation (MAD).

From the parametric images, plaque components (COL, CAL, LRNC and IPH) were segmented

using a semi-automatic k-means clustering method [103]. First, aligned histology and parametric

images were cropped to span the ultrasonically interrogated plaque region. Then, from the cropped

histology image, the centroids of the plaque features identified by the pathologist were calculated.

Next, by resizing the image using bicubic interpolation (MATLAB, Mathworks Inc, Natick, MA,

USA) , the number of lateral and axial pixels in the cropped histology image was matched to the

number of lateral and axial pixels in the cropped parametric image. Finally, the centroid positions

after resizing were input to the k-means algorithm as the starting locations for k regions to be

segmented in the parametric image, where k is the number of plaque component regions identified

by the pathologist.

For the segmented plaque features across all plaques, the values of each outcome parameter

were statistically compared between plaque features using pairwise Wilcoxon rank sum tests with

significance levels of 0.01 and 0.05. In addition, feature Contrast–to–Noise Ratio (CNR) was

computed as,

CNR =
|µf − µb|√
σ2f + σ2b

(5.3)
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where µ and σ are the mean and standard deviation within the segmented region, and the subscripts

f and b refer to the feature and background regions, respectively. For the purposes of this study, IPH

was a "feature" evaluated relative to LRNC "background", CAL was a "feature" evaluated relative to

COL "background", and grouped soft plaque elements (LRNC and IPH) were a "feature" evaluated

relative to grouped "stiff" plaque elements (CAL and COL) as the "background". Additionally,

CNR coefficient of variation (CV) was calculated as σCNR/µCNR.

5.3 Results

Figure 5.3: Parametric images of a carotid plaque from a 53-year-old symptomatic female. Base
parameter: ARFI displacement. V0 indicates variance calculation; log indicates decadic logarithm.

Figures 5.3, 5.4, and 5.5 show the 16 displacement-, SNR-, and CC-based parametric images,

respectively, of an American Heart Association Type VI plaque [33] in the carotid artery of a
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symptomatic 53-year-old female. In Figure 5.3, the time-derivative operation accentuates high-

frequency jitter in the ARFI displacement profiles. Then, the accentuated jitter content is exploited

using the variance calculation. The logarithmic representation of these results expands the dynamic

range and improves contrast. Note that the first time-derivative of displacement is referred to as

’velocity’, the second time-derivative as ’acceleration’, and the third time-derivative as ’jerk’. The

variance of the parameter is denoted ’Vo’, and the decadic log is denoted ’log’, such that log(VoA) is

the decadic log of the variance of the second time-derivative of displacement.

Figure 5.4: Parametric images of a carotid plaque from a 53-year-old symptomatic female. Base
parameter: SNR. dnSNR/dtn indicates the n-th time derivative; V0 indicates variance calculation;
log indicates decadic logarithm.

Figures 5.6, 5.7, and 5.8 show distributions of outcome parameter values by plaque feature for all

examined carotid plaques, as derived from ARFI displacement, SNR, and CC, respectively. Features
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Figure 5.5: Parametric images of a carotid plaque from a 53-year-old symptomatic female. Base
parameter: CC. dnCC/dtn indicates the n-th time derivative; V0 indicates variance calculation; log
indicates decadic logarithm.

with parameter distributions that statistically differ from each other (p < 0.01 or p < 0.05) are

indicated by a black bar and asterisk or blue bar and circle, respectively, below the graph. From

this analysis, the only parameter with statistically different distributions between CAL and COL,

between COL and LRNC, and between LRNC and IPH was log(VoA). This parameter achieved the

following normalized ranges for each component, expressed as median [Q1 Q3], where Q1 and Q3

are the 25th and 75th percentile values, respectively: IPH: 0.87 [0.76 1.00], LRNC: 0.56 [0.49 0.63],

COL: 0.31 [0.27 0.43], CAL: 0.06 [0.02 0.17].

Additionally, feature CNR by parameter is indicated in Tables 5.1, 5.2, and 5.3 for ARFI

displacement, SNR, and CC, respectively. The highest CNR value for each input data source is
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Figure 5.6: Normalized parameter value distributions by plaque feature for 20 carotid plaque
examples. Distributions that are statistically different with p < 0.01 are indicated with a black
asterisk, while distributions with p < 0.05 are indicated with a blue circle. Base parameter: ARFI
displacement. V0 indicates variance calculation; log indicates decadic logarithm.

shown in green, and the second highest is shown in yellow. CNR coefficient of variation is indicated

parenthetically. The three best performing parameters were log(VoA), log(SNR), and Vo dCC
dt . The

parameter log(VoA) yielded CNRs of 1.45 (0.61) for LRNC v. IPH, 2.30 (0.42) for COL v. CAL,

2.07 (0.49) for COL v. LRNC, and 3.09 (0.31) for soft v. stiff tissues. The parameter log(SNR)

achieved CNRs of 0.71 (0.75) for LRNC v. IPH, 1.35 (0.62) for COL v. CAL, 0.79 (0.73) for COL v.

LRNC, 1.52 (0.54) for soft v. stiff tissues. The parameter Vo dCC
dt yielded CNRs of 1.40 (0.67) for

LRNC v. IPH, 0.80 (0.89) for COL v. CAL, 0.73 (0.78) for COL v. LRNC, and 1.50 (0.61) for soft

v. stiff tissues. For comparison purposes, CNR values from ARFI PD were also calculated: 0.40

(0.78) for LRNC v. IPH, 0.77 (1.04) for COL v. CAL, 0.28 (0.89) for COL v. LRNC, and 1.92 (0.28)

for soft v. stiff tissues. From these results, the highest CNR for all plaque features was achieved by
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Figure 5.7: Normalized parameter value distributions by plaque feature for 20 carotid plaque
examples. Distributions that are statistically different with p < 0.01 are indicated with a black
asterisk, while distributions with p < 0.05 are indicated in blue. Base parameter: SNR. dnSNR/dtn

indicates the n-th time derivative; V0 indicates variance calculation; log indicates decadic logarithm.

log(VoA), followed by Vo dCC
dt for LRNC v. IPH, and log(SNR) for COL v. CAL. ARFI PD yielded

the second highest CNR for grouped soft v. stiff tissues.

Table 5.4 shows p-values for statistical comparisons between outcome parameter values in the

specified plaque features. The outcome parameters are those with the highest overall CNR for each

input data source, and PD is included for comparison purposes. The only parameter with statistically

different (p < 0.01) distributions between all the specified features is log(VoA). In contrast, ARFI

PD values in regions of LRNC and IPH were not statistically different, and neither were ARFI PD

values in regions of COL and CAL. The p-value describing the likelihood that grouped soft and

grouped stiff plaque features had ARFI PD values that were the same was 0.02. Consistent with

CNR results, log(SNR) values in regions of COL and CAL were statistically different (p < 0.01),
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Figure 5.8: Normalized parameter value distributions by plaque feature for 20 carotid plaque
examples. Distributions that are statistically different with p < 0.01 are indicated with a black
asterisk, while distributions with p < 0.05 are indicated in blue. Base parameter: CC. dnCC/dtn

indicates the n-th time derivative; V0 indicates variance calculation; log indicates decadic logarithm.

and Vo dCC
dt values statistically differed in regions of LRNC and IPH (p < 0.01).

For the same Type VI plaque of Figures 5.3 - 5.5, Figure 5.9 illustrates B-Mode, PD, and log(VoA)

images. The images are shown with and without segmented plaque components to illustrate both

the raw imaging results and segmentation outputs. Histology is also shown, spatially-matched to

the ARFI imaging plane and stained with combined Masson’s elastin (CME), Haemotoxylin and

Eosin (H&E), and von Kossa (VK). Pathologist markings on the histology images indicate regions

of COL, CAL, LRNC and IPH. In the PD image, CAL deposits (which are readily apparent as

hyperechoic regions in the B-Mode image) exhibit similar PD as regions of COL. Further, PD

achieved in small regions of LRNC are not distinguishable from those measured in the surrounding

COL. Additionally, PDs in the region of IPH are high relative to the other plaque regions, but it
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Feature
Differentiation CNR

Displacement
(D) logD Vo(D) logVo(D) Velocity

(V) logV Vo(V) logVo(V)

LRNC v. IPH 0.90 (0.89) 0.91 (0.88) 1.12 (0.74) 0.88 (0.85) 0.77 (0.84) 0.82 (0.93) 1.13 (0.81) 1.14 (0.73)
COL v. CAL 0.76 (0.79) 0.77 (0.80) 1.54 (0.64) 0.74 (0.94) 0.88 (0.55) 0.88 (0.55) 2.12 (0.46) 0.93 (0.42)
COL v. LRNC 0.62 (1.14) 0.62 (1.16) 1.54 (0.63) 0.82 (0.92) 0.82 (0.56) 0.82 (0.56) 1.44 (0.65) 1.25 (0.49)
Soft v. Stiff 0.85 (0.84) 0.85 (0.84) 2.61 (0.37) 1.18 (0.40) 0.86 (0.62) 0.79 (0.80) 3.02 (0.32) 2.27 (0.35)

Acceleration
(A) logA Vo(A) logVo(A) Jerk (J) logJ Vo(J) logVo(J)

LRNC v. IPH 0.69 (0.91) 0.89 (0.80) 0.75 (0.70) 1.45 (0.61) 0.71 (1.15) 0.5 (1.22) 0.85 (0.71) 0.97 (0.85)
COL v. CAL 0.83 (0.87) 0.83 (0.87) 1.13 (0.55) 2.3 (0.42) 0.37 (1.57) 0.37 (1.57) 2.03 (0.48) 0.93 (0.74)
COL v. LRNC 0.91 (0.75) 0.91 (0.75) 0.85 (1.29) 2.07 (0.49) 0.61 (1.04) 0.61 (1.04) 1.25 (0.76) 1.03 (0.57)
Soft v. Stiff 0.80 (0.98) 0.69 (0.93) 1.75 (0.47) 3.09 (0.31) 0.79 (0.95) 0.78 (0.94) 2.24 (0.44) 2.28 (0.31)

Table 5.1: Plaque feature CNR for ARFI displacement-derived parameters. CNR coefficients of
variation are indicated between parentheses. V0 indicates variance calculation; log indicates decadic
logarithm.

Feature
Differentiation CNR

Displacement
(D) logD Vo(D) logVo(D) Velocity

(V) logV Vo(V) logVo(V)

LRNC v. IPH 0.7 (0.81) 0.71 (0.75) 0.41 (2.18) 0.60 (1.19) 0.54 (1.71) 0.53 (1.74) 0.51 (1.71) 0.59 (1.34)
COL v. CAL 1.29 (0.66) 1.35 (0.62) 1.00 (0.98) 0.76 (0.91) 0.5 (1.21) 0.49 (1.28) 0.56 (1.66) 0.66 (0.92)
COL v. LRNC 0.79 (0.74) 0.79 (0.73) 0.08 (12.27) 0.75 (0.85) 0.72 (1.15) 0.71 (1.17) 0.62 (1.39) 0.71 (0.97)
Soft v. Stiff 1.5 (0.55) 1.52 (0.54) 0.7 (1.29) 0.94 (0.76) 0.72 (1.04) 0.71 (1.08) 1.07 (0.90) 1.01 (0.66)

Acceleration
(A) logA Vo(A) logVo(A) Jerk (J) logJ Vo(J) logVo(J)

LRNC v. IPH 0.65 (1.15) 0.63 (1.20) 0.61 (1.38) 0.65 (0.81) 0.71 (0.97) 0.68 (1.04) 0.53 (1.45) 0.55 (1.08)
COL v. CAL 0.69 (0.96) 0.67 (1.04) 0.74 (1.30) 0.76 (0.77) 0.8 (1.04) 0.77 (1.10) 0.42 (2.33) 0.48 (1.10)
COL v. LRNC 0.65 (1.17) 0.64 (1.24) 0.79 (1.11) 0.67 (0.99) 0.72 (1.35) 0.7 (1.39) 0.52 (1.61) 0.46 (1.67)
Soft v. Stiff 0.89 (0.97) 0.89 (0.98) 0.7 (1.39) 1.09 (0.61) 0.69 (1.20) 0.67 (1.30) 0.54 (1.76) 0.5 (1.42)

Table 5.2: Plaque feature CNR for SNR-derived parameters. CNR coefficients of variation are
indicated between parentheses. dnSNR/dtn indicates the n-th time derivative; V0 indicates variance
calculation; log indicates decadic logarithm.

is difficult to determine if these high PDs indicate IPH or LRNC, resulting in underestimation of

IPH regions. In the log(VoA) images, CAL deposits have noticeably lower log(VoA) than any other

plaque features. Further, LRNC exhibits higher log(VoA) than COL. Finally, the regions of IPH

have the highest overall log(VoA). These results show that, by visual inspection, CAL is better

distinguished from COL and IPH is better distinguished from LRNC using log(VoA) than PD.

To further demonstrate the effectiveness of log(VoA) for delineating carotid plaque components,

Figures 5.10 and 5.11 show additional examples of B-Mode, PD, and log(VoA) images with spatially

matched histology. In Figure 5.10(b), CAL and LRNC exhibit PDs that are similar to those of

collagen, while IPH exhibits high PDs that could be mistaken for LRNC. In the log(VoA) image of

panel (c), CAL and LRNC are distinguishable from COL, and log(VoA) values in regions of IPH

are higher than those in LRNC. The segmented fibrous cap and IPH regions in the log(VoA) image
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Feature
Differentiation CNR

Displacement
(D) logD Vo(D) logVo(D) Velocity

(V) logV Vo(V) logVo(V)

LRNC v. IPH 0.94 (0.73) 0.98 (0.87) 1.14 (0.83) 0.97 (0.55) 1.05 (0.91) 1.15 (0.55) 1.4 (0.67) 1.28 (0.57)
COL v. CAL 0.52 (1.02) 0.55 (0.91) 0.72 (1.09) 0.73 (1.03) 0.64 (1.08) 0.78 (0.97) 0.8 (0.89) 0.79 (1.02)
COL v. LRNC 0.64 (0.90) 0.64 (0.87) 0.58 (0.63) 0.66 (1.03) 0.7 (1.03) 0.51 (1.22) 0.73 (0.78) 0.72 (1.01)
Soft v. Stiff 1.14 (0.67) 1.14 (0.68) 1.06 (0.92) 0.89 (0.74) 1.1 (0.81) 1.15 (0.58) 1.5 (0.61) 0.91 (0.78)

Acceleration
(A) logA Vo(A) logVo(A) Jerk (J) logJ Vo(J) logVo(J)

LRNC v. IPH 1.01 (0.75) 1.04 (0.71) 1.03 (0.91) 1.07 (0.61) 0.62 (1.04) 0.7 (1.10) 0.78 (1.24) 0.54 (1.29)
COL v. CAL 0.77 (0.84) 0.52 (1.20) 0.76 (0.89) 0.74 (0.70) 0.61 (1.38) 0.67 (1.25) 0.58 (1.69) 0.63 (0.83)
COL v. LRNC 0.62 (0.90) 0.69 (1.07) 0.72 (0.81) 0.69 (1.06) 0.7 (1.25) 0.65 (1.14) 0.48 (2.03) 0.64 (1.06)
Soft v. Stiff 0.74 (1.00) 0.69 (1.26) 1.05 (0.92) 1 (0.76) 0.59 (0.97) 0.71 (1.09) 0.89 (1.09) 0.86 (0.98)

Table 5.3: Plaque feature CNR for SNR-derived parameters. CNR coefficients of variation are
indicated between parentheses. dnSNR/dtn indicates the n-th time derivative; V0 indicates variance
calculation; log indicates decadic logarithm.

Feature
Differentiation CNR N

logVo(A) PD logSNR Vo(dCC/dt)
LRNC v. IPH <0.01 0.58 0.62 <0.01 14
COL v. CAL <0.01 0.19 <0.01 0.31 19
COL v. LRNC <0.01 1.02 0.11 0.53 18
Soft v. Stiff <0.01 0.02 0.05 0.03 20

Table 5.4: Statistical significance of the differences between LRNC and IPH, between COL and
CAL, and between grouped soft (LRNC/IPH) and stiff (COL/CAL) features for log(VoA), PD, CC,
and SNR derived optimal parameters. dnSNR/dtn indicates the n-th time derivative; V0 indicates
variance calculation; log indicates decadic logarithm.

more closely match the spatial distribution of these plaque components in the matched histology. In

Figure 5.11(b), high PD values are associated with a large region of CAL (black arrows), which is

inconsistent with the expected low displacement response of stiff CAL. These high PD values, which

arise from displacement profile distortions caused by wave reflections [104], erroneously indicate a

large, soft feature. While this large CAL region is mischaracterized as a soft feature in the PD image,

it is appropriately indicated as a region of low log(VoA) in panel (c), consistent with the expected

response of CAL. Other features, including regions of COL and LRNC are also delineated in the

log(VoA) image.

5.4 Discussion

The results presented in this chapter demonstrate that the outcome metric calculated as the

decadic logarithm of the variance of acceleration, or log(VoA), better discriminates carotid plaque

features that confer risk for stroke than ARFI PD. Further, the results suggest that by incorporating
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Figure 5.9: Carotid ARFI images with matched histology from a 53-year-old symptomatic female.
First and second columns show: B-mode, normalized ARFI PD image, and normalized ARFI
log(VoA) image, without (a, b, c) and with (d, e, f) component segmentations. Third columns show
histological results of (g) H&E, (h) CME and (i) VK stains, confirming the presence of CAL, COL,
LRNC, and IPH plaque features. Features are denoted by color as CAL (green), COL (purple),
LRNC (yellow), and IPH (red)

both CC and SNR, which are respectively related to the displacement and echogenicity of plaque

components, log(VoA) achieves improved delineation of plaque composition and structure over

analysis of CC or SNR alone.

Variations in CC may be caused by mechanical property differences among plaque components

that yield diverse viscoelastic recoveries after the ARFI excitation. For example, IPH scatterers may

exhibit no or very slow elastic recovery after the ARFI excitation. Thus, IPH scatterers may remain

in motion after scatterers in the other plaque components have recovered, resulting in less correlated

signal from regions of IPH than from other plaque regions. In regard to SNR, more highly echogenic

plaque features, such as CAL deposits, have lower jitter magnitude, and thereby lower log(VoA),

than plaque components that are less echogenic.

Plaque feature delineation performance by log(VoA) and by parameters derived from CC alone

and SNR alone is compared by analyzing CNR in Tables 5.1-5.3 and parametric value distributions in

Figures 6-8. As expected, CC-derived values in IPH are generally lower than those in LRNC, but CC

alone does not differentiate CAL from COL. Applying high-pass filtering by using the time-derivative

operation and calculating the variance (as is performed for log(VoA) calculation) subtly improves

separation of plaque features by COL, but LRNC and IPH are not differentiated by SNR alone.
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Figure 5.10: Carotid ARFI images with matched histology from a 59-year-old symptomatic male.
First and second columns show: B-mode, normalized ARFI PD image, and normalized ARFI
log(VoA) image, without (a, b, c) and with (d, e, f) component segmentations. Third columns show
histological results of (g) H&E, (h) CME and (i) VK stains, confirming the presence of CAL, COL,
LRNC, and IPH plaque features. Features are denoted by color as CAL (green), COL (purple),
LRNC (yellow), and IPH (red)

The potential for visually discriminating LRNC from IPH and COL from CAL using optimized

parameters derived by CC alone or SNR alone is explored in Figures 5.4 and 5.5. In Figure 5.4,

regions of high SNR in the normalized image correspond to focal calcium deposits, and in Figure

5.5, a region of low CC in the normalized image corresponds to IPH. While IPH is indicated in

the CC images, no other plaque features are readily discernible. Furthermore, while CAL deposits

are obvious in the SNR images, no other plaque features are apparent. Taken together, by visual

inspection and CNR comparison, the evaluated data suggest that by incorporating both CC and

SNR into a single metric, log(VoA) achieves more complete separation of plaque components than

either CC or SNR alone.

In this work, log(VoA) was calculated as the decadic log of the variance of the second time-

derivative of ARFI-induced displacement to exploit jitter magnitude. We note that other approaches

to isolating jitter in displacement estimates are also possible, including frequency-domain filtering

and mathematical calculations. Such alternative approaches are currently under investigation.

Previous studies have shown that ARFI is safe for carotid plaque imaging [36, 105]. Doherty

et al. [106] showed that the magnitude of von Mises stress associated with ARFI excitations in

arterial plaques (< 1.2 kPa) is two orders of magnitude lower than the average arterial pressure
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Figure 5.11: Carotid ARFI images with matched histology from a 57-year-old symptomatic male.
First and second columns show: B-mode, normalized ARFI PD image, and normalized ARFI
log(VoA) image, without (a, b, c) and with (d, e, f) component segmentations. Third columns show
histological results of (g) H&E, (h) CME and (i) VK stains, confirming the presence of CAL, COL,
LRNC, and IPH plaque features. Features are denoted by color as CAL (green), COL (purple),
LRNC (yellow), and IPH (red). Black arrows show PD misrepresentation of CAL due to artifacts
caused by plaque interaction with the proximal wall.

stresses associated with ruptured (545.3 kPa) and unruptured (192.5 kPa) arterial plaque [36, 105].

Additionally, results reported herein agree with other work that histologically validated in vivo,

noninvasive human carotid plaque component delineation by mechanical property. Like log(VoA),

CUSI detected lipid regions, which differentiated fibrous from (fibro)atheromatous plaques [107, 108].

A limitation in the presented study design is that the examined in vivo human carotid plaque

data were originally acquired for the purpose of evaluating ARFI PD. As a result, all acquisitions

were gated to diastole, and the tracking ensemble time was limited to 5 ms. Therefore, it was not

possible to thoroughly evaluate the impact of different degrees of arterial pressure/distention on

log(VoA), and times longer than 5 ms after the ARFI excitation could not be examined. Future

work will explore these variables.

A second limitation was the unequal number of plaque component examples, as indicated in Table

5.4, which impacted the pairwise Wilcoxon rank sum tests by diminishing the statistical power as the

number of components become more unequal. More instances of statistically significant differences in

parameter value and/or CNR may have been observed if the number of plaque component examples

was equal.
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Another limitation of this study is the impact of sample deformations on the spatial correlation

between histology and ARFI images. Even though the plaque specimens were removed en bloc

and immediately transferred to formalin solution, distortions still occurred. The primary causes of

distortion were surgical extraction, fixation, and lack of pressurization, the latter two of which caused

changes in tissue size. Despite these limitations, using µCT volumes of the extracted specimens

enabled alignment of histology and ARFI imaging planes. Finally, an important consideration

is the possibility of calcium deposits acting as local stress concentrators, which could confound

ARFI-derived results.

While this work suggests that opportunities for log(VoA) to improve stroke risk prediction by

delineating the structure and composition of carotid plaques are great, a potential challenge to

optimal clinical application could be spatial resolution. For example, Czernuszewicz and Gallippi

previously demonstrated in silico that fibrous cap thickness resolution by ARFI PD is 0.2 mm

[109]- the upper limit on the critical fibrous cap thickness for predicting rupture [110] - when a 12

MHz center frequency is used. While the contrast mechanisms in ARFI PD and log(VoA) images

differ, the prior work supports that higher center frequencies could improve feature size resolution

by log(VoA). However, increasing the center frequency will decrease jitter magnitude, which could

degrade log(VoA) feature discrimination if CC and SNR are rendered less impactful on the overall

jitter value. Increasing the center frequency will also reduce penetration depth. Czernuszewicz and

Gallippi further demonstrated that decreasing the displacement tracking kernel length improves

fibrous cap thickness resolution by ARFI PD. In log(VoA) estimation, decreasing the kernel length

will increase jitter magnitude and, like increasing center frequency, could disrupt the influence of CC

and SNR on the log(VoA) outcome parameter. Ultimately, identifying log(VoA) resolution limits

and determining the ideal combination of imaging parameters for in vivo carotid plaque feature

delineation will be important to realizing log(VoA)’s potential for improving stroke risk prediction

clinically.

5.5 Conclusion

This chapter demonstrates the potential of the decadic logarithm of the variance of acceleration,

or log(VoA), to improve in vivo carotid atherosclerotic plaque feature delineation relative to ARFI PD.

Across all examined in vivo human carotid plaques, log(VoA) values were statistically significantly

different between histologically confirmed regions of IPH and LRNC and between confirmed regions
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of COL and CAL, but this was not true for PD. Moreover, log(VoA) achieved higher CNR between

IPH and LRNC, between COL and CAL, and between COL and LRNC than PD. Finally, the

presented results demonstrate that although log(VoA) is influenced by both CC and SNR, evaluating

CC alone or SNR alone does not differentiate IPH, LRNC, COL, and CAL as well as log(VoA).

Overall, these results support that log(VoA) is capable of describing the composition and structure

of human carotid atherosclerotic plaque, in vivo, which is clinically useful for predicting stroke risk

and facilitating medical management. In the following chapter, this analysis will be extended to

the application of log(VoA) for fibrous cap thickness and component area measurement, through

semi-automatic segmentation, blinded-readers, and automatic classification algorithms.
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CHAPTER 6

ARFI DISPLACEMENT VARIANCE FOR FIBROUS CAP THICKNESS
AND COMPONENT AREA MEASUREMENT

6.1 Introduction

In the previous chapter, ARFI log(VoA) was demonstrated for differentiating carotid plaque

features with higher contrast performance than ARFI PD, cross-correlation coefficient, and SNR.

This chapter evaluates log(VoA) for measuring fibrous cap thickness and plaque component

areas from 20 previously scanned samples using semi-automatic segmentation and histology as the

gold standard. In [8], a likely cause of area measurement overestimation by ARFI PD assessment

is improper delineation of the boundaries between different components, such as the lumen and

the fibrous cap and between the fibrous cap and the underlying lipid-rich necrotic core (LRNC)

or intraplaque hemorrhage (IPH). Therefore, a method for improving differentiation of fibrous cap

boundaries could improve component area measurement to support more accurate carotid plaque

risk assessment.

In this chapter 1, the hypothesis that, relative to ARFI PD, ARFI log(VoA) achieves better

accuracy and precision of plaque component area and fibrous cap thickness measurement in human

carotid plaque, in vivo is tested using semi-automatic segmentation of ARFI data previously acquired

from patients undergoing clinically indicated carotid endarterectomy (CEA), with histological

validation from [8]. Results indicate improved performance by both groups of readers when using

log(VoA) for delineating CAL (AUC for PD: 0.631, VoA: 0.723), COL (AUC for PD: 0.581, VoA:

0.771), LRNC (AUC for PD: 0.715, VoA: 0.913), and IPH (AUC for PD: 0.589, VoA: 0.795),

independently. Additionally, through a Bland-Altman plot, area measurements were improved when

1 c© 2020 IEEE. Portions reprinted with permision, from Torres, G., Czernuszewicz, T.J., Homeister, J.W., Farber,
M.A., Caughey, M.C. and Gallippi, C.M., "Carotid Plaque Fibrous Cap Thickness Measurement by ARFI Variance
of Acceleration: In Vivo Human Results," IEEE Transactions on Medical Imaging, 39(12), pp.4383-4390.
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using log(VoA) compared to PD for CAL (CV for PD: 110%, VoA: 55%), LRNC (CV for PD: 45%,

VoA: 40%), and IPH (CV for PD: 120%, VoA: 36%), independently.

6.2 Methods

Patient recruitment and imaging protocol are described in detail on our prior work [8]. A total

of 25 patients undergoing clinically indicated CEA were recruited from UNC Hospitals. Inclusion

criteria included either asymptomatic carotid artery disease with >60% Doppler-indicated stenosis

and unresponsive to medical management or symptomatic carotid artery disease with a stenosis

suspected to be the source of emboli. All procedures were approved by the IRB, and informed

written consent was given from each study participant.

A Siemens Acuson Antares research imaging system (Siemens Healthcare, Ultrasound Division)

was used for in vivo imaging with a VF7-3 linear array transducer. After surgery, CEA specimens were

harvested, µCT imaged (Scanco 40, Scanco Medical AG, Bassersdorf, Switzerland), and processed

for spatially-matched histological validation. A more detailed description of the process for aligning

ARFI and histology data is contained in Czernuszewicz et al [8].

The histology subsections were read by a pathologist with expertise in atherosclerosis, who

hand-delineated fibrous caps using a custom graphical user interface (GUI) developed in Matlab

(Mathworks Inc., Natick, MA, USA) for the previous blinded-reader study [8]. In the parametric ARFI

image subsections, plaque components were segmented using a semiautomatic k-means clustering

method [111, 103], detailed in the previous chapter. Centroids from each fibrous cap were calculated

from the parametric images aligned with histology, and these centroids were input to the k-means

algorithm for segmenting k regions, where k is the number of fibrous cap areas identified by the

pathologist on each histology slide. [111].

Exclusion criteria were applied to the data collected from the 25 patients to ensure high-quality

and well-matched histology and ARFI data. First, plaque specimens that were damaged or fractured

during surgery were excluded. Second, plaques imaged with the lumen-plaque boundary outside the

axial range of ARFI imaging (spanning ± 5 mm from the focal depth) were excluded. Third, carotid

plaques without the presence of a fibrous cap in histology were excluded.

After data exclusions, 14 fibrous caps were retained for comparison of fibrous cap thickness

measurement by ARFI PD and log(VoA) parameters. log(VoA) was calculated as the unbiased
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variance of the second time derivative through the total ensemble time per pixel:

V oA(x, y, ti) =
1

k − 1

i+(k−1)∑
j=1

∣∣∣Acc(x, y, tj)− µAcc(x, y, ti)∣∣∣2 (6.1)

where x and y are axial and lateral pixel coordinates, respectively, t is ensemble time, k is the total

number of ensemble time samples, Acc is acceleration, and µAcc is the mean of Acc.

ARFI PD and VoA outcomes were rendered into two-dimensional parametric images, with

VoA depicted as its decadic logarithm, denoted log(VoA), to increase dynamic range. For display

purposes, both PD and log(VoA) images were normalized to the mean value within the plaque ± two

median absolute deviations (MAD). The linear relationship between histology-derived fibrous cap

thickness measurements and imaging-derived thickness from PD and log(VoA) images were visually

assessed in scatterplots and tested by Pearson correlation. Bland-Altman analysis was performed to

evaluate the agreement between fibrous cap thicknesses derived from ARFI and histology. Finally,

the concordance correlation coefficient (CCC), a measure of both the precision and accuracy of

imaging-derived thickness compared to histology-derived thickness, was calculated for both ARFI

PD and ARFI log(VoA), with the CCC closest to 1 considered to be the most accurate and precise

measurement [112]. All statistical analyses were performed using Matlab (Mathworks Inc., Natick,

MA, USA).

6.3 Results

For a representative plaque from a 53 year-old symptomatic female, B-Mode, ARFI PD, and

ARFI log(VoA) images are shown in Figure 6.1, without (left column) and with (right column) the

automatically segmented fibrous cap regions shown in white. The fibrous cap thicknesses derived

from the segmented regions in PD and log(VoA) images were 0.93 and 0.90 mm, respectively, while

the thickness of the fibrous cap hand-delineated by the pathologist was 0.84 mm. For reference, the

plaque boundary hand-delineated from ARFI PD images by the best-performing reader in [8] is

shown in black.

Figure 6.2 shows another carotid plaque example from a symptomatic 45-year-old female. Again,

the automatically segmented fibrous caps are shown in white in the right column. These segmentations

yielded fibrous cap thickness measures of 0.99 and 0.90 mm for ARFI PD and log(VoA), respectively,

while the histology-derived thickness was 0.91 mm.
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Figure 6.1: Carotid plaque ARFI images with matched histology in a symptomatic 53-year-old
female. From top to bottom: B-mode (a, b), normalized ARFI PD image (c, d), and normalized
ARFI log(VoA) image, (e, f), and CME stains (g, h). In (b), (d), and (f), the plaque boundary
hand-delineated from ARFI PD images by the best performing reader in [25] is shown in black, and
the fibrous caps automatically segmented from PD and log(VoA) images are shown in white. In (h),
the fibrous cap outline hand-delineated by the pathologist is shown.

Figure 6.3 shows a third plaque example from a symptomatic 59-year-old male. In this case, the

fibrous cap thicknesses derived from automatic segmentation of PD and log(VoA) images were 1.40

and 1.35 mm, respectively, while the fibrous cap thickness measured from the spatially matched

histology was 1.26 mm.

Figure 6.4 illustrates median ARFI PD (a) and log(VoA) (b) fibrous cap thickness measurements

plotted versus the histological validation standard for the evaluated plaques. It can be observed that

median PD-derived fibrous cap thickness measurements correlated more weakly with the validation

standard than corresponding log(VoA) measures. The (R2, sum squared error (SSE)) values were

(0.79, 0.19) for PD and (0.97, 0.03) for log(VoA). The concordance correlation coefficient (CCC) was

0.62 for PD and 0.95 for log(VoA), which indicates more precision and agreement between log(VoA)

and histology than PD and histology. Additionally, the correlation between histology with PD was
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Figure 6.2: Carotid plaque ARFI images with matched histology in a symptomatic 45-year-old
female. From top to bottom: B-mode (a, b), normalized ARFI PD image (c, d), and normalized
ARFI log(VoA) image (e, f), and CME stains (g, h). In (b), (d), and (f), the plaque boundary
hand-delineated from ARFI PD images by the best performing reader in [25] is shown in black, and
the fibrous caps automatically segmented from PD and log(VoA) images are shown in white. In (h),
the fibrous cap outline hand-delineated by the pathologist is shown.

0.88 (95% CI: 0.38 to 0.90; P = 0.001), while the correlation with log(VoA) was stronger, at 0.98

(95% CI: 0.94 to 0.99, P<0.0001). In figure 6.5, Bland-Altman results indicate that the coefficient of

variation was 16% for PD-derived median fibrous cap thickness versus 6.3% for log(VoA)-derived

median fibrous cap thickness. The bias in PD-derived median fibrous cap thickness, 0.10 mm, was

statistically significant, while the 0.05 mm bias in log(VoA)-derived median fibrous cap thickness

was not statistically significant (p<0.05).

Figure 6.6 illustrates minimum (a) PD and (b) log(VoA) fibrous cap thickness measurements

plotted versus the histological validation standard. The (R2, SSE) values were (0.74, 0.22) for PD

and (0.95, 0.05) for log(VoA). The concordance correlation coefficient (CCC) was 0.61 for PD and

0.87 for log(VoA). Figure 6.7 shows Bland-Altman results for the minimum fibrous cap thickness

measurements. The coefficient of variation for minimum fibrous cap thickness measurement was 20%
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Figure 6.3: Carotid plaque ARFI images with matched histology in a symptomatic 59-year-old
male. From top to bottom: B-mode (a, b), normalized ARFI PD image (c, d), and normalized
ARFI log(VoA) image (e, f), and CME stains (g, h). In (b), (d), and (f), the plaque boundary
hand-delineated from ARFI PD images by the best performing reader in [25] is shown in black, and
the fibrous caps automatically segmented from PD and log(VoA) images are shown in white. In (h),
the fibrous cap outline hand-delineated by the pathologist is shown.

for PD versus 8.6% for log(VoA).

Figure 6.8 illustrates maximum (a) PD (a) and (b) log(VoA) fibrous cap thickness measurements

plotted versus the histological validation standard. For the maximum fibrous cap thickness measure-

ments, the (R2, SSE) values were (0.67, 0.35) for PD and (0.84, 0.23) for log(VoA). The concordance

correlation coefficient (CCC) was 0.55 for PD and 0.89 for log(VoA). Figure 6.9 shows Bland-Altman

results for maximum fibrous cap thickness measurements. The coefficient of variation for maximum

fibrous cap thickness measurement was 21% for PD versus 16% for log(VoA).

The axial locations of PD- and log(VoA)-derived lumen-cap and cap-LRNC boundaries were

compared. The median difference in PD - log(VoA) lumen-cap boundary position was -0.33 ± 0.21

mm. The median difference in PD - log(VoA) cap-LRNC boundary position was +0.21 ± 0.10 mm.

ARFI-derived component areas were also compared between ARFI PD and log(VoA). Figures
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Figure 6.4: Linear regressions of ARFI PD- (top) and log(VoA)- (bottom) derived median fibrous cap
thicknesses versus median histological standard over fourteen human carotid plaques, in vivo (black
lines). Median values per plaque are shown as circular scatters. R2: coefficient of determination.
SSE: Sum of squared error.

6.10, 6.11, and 6.12 show Bland-Altman plots comparing ARFI PD and log(VoA)-derived areas for

CAL, LRNC, and IPH. For measuring the area of calcium, PD achieves a Reproducibility Coefficient

(RPC) of 3.5 and a Coefficient of Variation (CV) of 110% whereas log(VoA) achieves a RPC of 1.1

and a CV of 55%. For measuring the area of lipid-rich necrotic core, PD achieves a RPC of 6.9 and

a CV of 45% whereas log(VoA) achieves a RPC of 4.7 and a CV of 40%. For measuring the area of

intraplaque hemorrhage, PD achieves a RPC of 29 and a CV of 120% whereas log(VoA) achieves a

RPC of 6.0 and a CV of 36%.
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Figure 6.5: Bland-Altman plots assessing the reproducibility of median plaque thickness results
derived from ARFI PD (top) and ARFI logVoA (bottom). RPC: Reproducibility coefficient, CV:
Coefficient of variation.

6.4 Discussion

In Figure 6.1, the boundary using the ARFI PD image yields a median fibrous cap thickness

measurement that is 10.71% larger than the histological validation standard, while the thickness

derived using log(VoA) is 7.14% larger. These data, suggesting that median fibrous cap thickness

measurement by log(VoA) is in better agreement with the histological validation standard than that

by PD, are consistent with the results observed in Figure 6.2 (relative to histology, 8.79% larger

median fibrous cap thickness by PD versus 1.10% larger by logVoA) and Figure 6.3 (relative to

histology, 11.11% larger median fibrous cap thickness by PD versus 7.14% larger by logVoA). Over

these plaques, median fibrous cap thickness measured by PD had an absolute difference of 0.10

± 0.26 mm compared to histology, whereas fibrous cap thickness measured by log(VoA) had an

absolute difference of 0.05 ± 0.09 mm compared to histology.
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Figure 6.6: Linear regressions of ARFI PD- (top) and log(VoA)- (bottom) derived minimum fibrous
cap thicknesses versus minimum histological standard over fourteen human carotid plaques, in
vivo (black lines). Median values per plaque are shown as circular scatters. R2: coefficient of
determination. SSE: Sum of squared error.

Figure 6.4 illustrates that, over all 14 examined plaques, median fibrous cap thickness measured

by log(VoA) is more strongly correlated (R2 = 0.97) with the histological validation standard

than that measured using PD (R2 = 0.79). Further, the CCC of 0.95 for log(VoA) versus 0.62

for PD suggests that ARFI log(VoA) enables more accurate and precise measurement of median

fibrous cap thickness than ARFI PD. Figure 6.5 also supports that median fibrous cap thickness

measurement is more accurate and precise by log(VoA) than by PD. While neither parameter’s bias

was statistically significant (p<0.05), log(VoA) bias was 0.05 mm versus 0.10 mm for PD. Similarly,

the (reproducibility coefficient (RPC) and coefficient of variation (CV)) were lower for log(VoA)

(0.10 and 6.3%) than for PD (0.26 and 16%) median fibrous cap thickness measurements.
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Figure 6.7: Bland-Altman plots assessing the reproducibility of minimum plaque thickness results
derived from ARFI PD (top) and ARFI logVoA (bottom). RPC: Reproducibility coefficient, CV:
Coefficient of variation.

While the accuracy and precision of median fibrous cap thickness measurement suggest general

utility, ability to measure minimum fibrous cap thickness indicates relevance to identify caps with

high rupture potential. In figures 6.6 and 6.7, minimum fibrous cap thickness measures were more

strongly correlated to the histological standard (R2 = 0.95 v. 0.74) and had lower error (SSE =

0.22 v. 0.05) when measured by log(VoA) versus PD. Moreover, log(VoA) measures of minimum

fibrous cap thickness had lower RPC and CV (0.12 and 8.6%) than PD measures (0.27 and 20%).

Interestingly, both log(VoA) and PD measures of minimum fibrous cap thickness had the same bias

(0.11), but neither bias was statistically significant (p<0.05). These results show that log(VoA)

enables more accurate and precise measures of minimum fibrous cap thickness than PD, suggesting

that rupture potential is better determined by log(VoA).

Like median and minimum, log(VoA) outperforms PD in terms of accuracy and precision of
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Figure 6.8: Linear regressions of ARFI PD- (top) and log(VoA)- (bottom) derived maximum fibrous
cap thicknesses versus maximum histological standard over fourteen human carotid plaques, in vivo
(black lines). R2: coefficient of determination. SSE: Sum of squares error.

maximum fibrous cap thickness measurement. Figure 6.8 shows that log(VoA) maximum fibrous cap

thickness measures are more strongly correlated to the histological standard (R2 = 0.84 v. 0.67) and

had lower error (SSE = 0.23 v. 0.35) than PD. Further, in figure 6.9, log(VoA) had greater precision

than PD (RPC = 0.29 v. 0.42; CV = 16% v. 21%). Finally, while both log(VoA) and PD measures

of maximum fibrous cap thickness had statistically significant bias (p>0.05), the log(VoA) bias was

-0.08 mm, while the PD bias was 0.08.

More accurate and precise median, minimum, and maximum fibrous cap thickness measurement

by log(VoA) versus PD is consistent with results previously reported by Torres et al. [111], which

showed that contrast-to-noise ratio (CNR) for differentiating collagen from LRNC was 3.3 times

greater by log(VoA) than by PD and that CNR for discriminating stiff from soft plaque features was
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Figure 6.9: Bland-Altman plots assessing the reproducibility of maximum plaque thickness results
derived from ARFI PD (top) and ARFI logVoA (bottom). RPC: Reproducibility coefficient, CV:
Coefficient of variation.

3.6 times greater. However, an unexpected outcome is that, for both log(VoA) and PD, maximum

fibrous cap thickness measurement performance was worse than median and minimum cap thickness

measurement performance. Specifically, maximum thickness measures were less correlated with

the histological standard (PD R2 = 0.67 for maximum v. 0.79 for median and 0.74 for minimum,

log(VoA) R2 = 0.84 for maximum v. 0.97 for median and 0.95 for minimum), had higher error

(PD SSE = 0.35 for maximum v. 0.19 for median and 0.22 for minimum, log(VoA) SSE = 0.23 for

maximum v. 0.03 for median and 0.05 for minimum), and had lower precision (PD RPC = 0.42 for

maximum v. 0.26 for median and 0.27 for minimum, log(VoA) RPC = 0.29 for maximum v. 0.10 for

median and 0.12 for minimum). The reasons for the observed poorer maximum fibrous cap thickness

performance are yet to be determined.

It is interesting to consider that, relative to PD, log(VoA) yielded thinner fibrous cap delineations
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Figure 6.10: Regression and Bland-Altman plots assessing the reproducibility of calcium area results
derived from ARFI PD (top) and ARFI logVoA (bottom). RPC: Reproducibility coefficient, CV:
Coefficient of variation.

on both the lumen-cap (median difference of -0.33 ± 0.21 mm) and cap-LRNC (median difference of

0.21 ± 0.10 mm) interfaces. These data suggest that log(VoA) improves discrimination of fibrous cap

from LRNC (which is consistent with results reported in [111]) and from luminal blood (which has

not been previously shown). Future studies are needed to more comprehensively evaluate log(VoA)’s

potential for discriminating plaque from blood under variable flow and clutter conditions.

Additionally, it is important to note that for all plaque components analysed, all area mea-

surements achieved higher correlation to histology using log(VoA) compared to PD. Specifically,

area measurements were improved when using log(VoA) compared to PD for CAL (CV for PD:

110%, VoA: 55%), LRNC (CV for PD: 45%, VoA: 40%), and IPH (CV for PD: 120%, VoA: 36%),

independently.
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Figure 6.11: Regression and Bland-Altman plots assessing the reproducibility of lipid-rich necrotic
core area results derived from ARFI PD (top) and ARFI logVoA (bottom). RPC: Reproducibility
coefficient, CV: Coefficient of variation.

Aspects of the study design may have influenced outcomes. First, component area measurement

performances by ARFI PD and log(VoA) were evaluated relative to histology-derived measurements,

which was considered to be a validation standard. However, inconsistency between areas in histology

and ARFI images could arise due to plaque stretching and/or compression during in vivo imaging

or due to sample shrinkage during histological processing. Plaque stretching and compression were

minimized by acquiring in vivo data with gating to diastole, and specimens that were evidently

warped were excluded from the study.

In addition, it is important to consider that the ARFI imaging focal depth could have impacted

fibrous cap thickness and component area measurement. In this study, the imaging focal depth

was determined by the position of the carotid plaque and ranged from 1.8 to 2.3 cm across the
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Figure 6.12: Regression and Bland-Altman plots assessing the reproducibility of intraplaque hemor-
rhage area results derived from ARFI PD (top) and ARFI logVoA (bottom). RPC: Reproducibility
coefficient, CV: Coefficient of variation.

examined plaques. Generally speaking, deeper focal depths experience lower radiation force magnitude

[113, 109], and therefore smaller displacements, which could reduce plaque component contrast in

PD and log(VoA) images. Further, tracking ARFI-induced displacements at deeper focal depths

results in lower SNR and higher jitter, to the potential detriment of component contrast by both PD

and log(VoA).

Along with focal depth, the implemented tracking center frequency (6.15 MHz) and normalized

axial cross-correlation displacement tracking kernel size (1.5λ) could have impacted fibrous cap

thickness measurement. Czernuszewicz et al. showed that for these values, the expected minimum

fibrous cap thickness measurement resolution is 0.2 mm [110], which is comparable to the thickness of

the thinnest fibrous cap included in this study. Notably, no caps thinner than 0.2 mm were contained
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in the available data set and, therefore, could not be evaluated. Using higher tracking center

frequencies and/or smaller displacement tracking kernel sizes could improve thickness resolution,

but at the potential cost of SNR and increases in jitter that impact fibrous cap contrast in PD and

log(VoA) images. Comparing in vivo ARFI fibrous cap thickness measurement across tracking center

frequencies and kernel sizes is work in progress.

Another factor impacting ARFI-based plaque area measurement is reverberation clutter, which

can be accentuated when calcium deposits are present in the plaque [8]. Clutter artifact corrupts

displacement estimation as well as signal correlation and SNR and therefore diminishes component

contrast in PD and log(VoA) images. Advanced clutter filters and harmonic imaging could suppress

clutter artifact and improve fibrous cap thickness and component area measurement [99, 95].

Finally, while the results reported herein suggest that in vivo, human carotid fibrous cap thickness

and component area measurement is better supported by log(VoA) than by PD imaging, and while

Bland Altman analyses and the CCC showed that performance improved when using log(VoA) in

comparison to PD, the work is pilot in nature. After exclusions, only twenty examples were included,

and larger studies are needed in the future to more comprehensively compare ARFI PD and log(VoA)

for fibrous cap thickness and component area measurement.

6.5 Conclusion

This chapter demonstrates the potential of ARFI log(VoA) for improving fibrous cap thickness

and component area measurement in comparison to ARFI PD. In fourteen human carotid plaques,

imaged in vivo, log(VoA)-derived fibrous cap thickness is more strongly correlated to true thickness,

has a higher CCC, and is less variable than PD-derived fibrous cap thickness. Further, in twenty

human carotid plaques, a blinded-reader study achieved better performance when delineating plaque

composition when using log(VoA) images than when using ARFI PD. Overall, these results suggest

that ARFI-based imaging, evaluating log(VoA) in particular, is relevant to delineating carotid plaque

structure and composition for vulnerable carotid plaque detection. In the following chapter, this

analysis will be extended to the application of log(VoA) in a blinded-reader study where a group of

six readers used this ARFI-derived parameter for identifying and delineating plaque composition

and structure.
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CHAPTER 7

BLINDED-READER PERFORMANCE OF ARFI LOG(VOA) PLAQUE
CHARACTERIZATION

7.1 Introduction

In the previous chapter, ARFI log(VoA) was demonstrated to achieve higher accuracy and

precision for fibrous cap thickness and component area measurement than ARFI PD. However,

results were derived using a semi-automatic segmentation method that used a priori knowledge of

true component location from histology to seed component area clusters. To evaluate the performance

of ARFI log(VoA) in a more clinically realistic scenario, one in which no a priori information about

plaque component types or locations is available, a statistical reader study was performed.

This chapter evaluates log(VoA) for delineating the structure and composition of human carotid

atherosclerotic plaque in vivo, as assessed by six blinded readers comprising three neuroradiologists,

one abdominal radiologist, one pathologist, and one sonographer [8]. Results suggest improved

reader performance using log(VoA) versus ARFI PD for delineating CAL, COL, LRNC, and IPH,

independently.

7.2 Methods

Analysis of log(VoA) in a blinded-reader study was performed to further investigate its per-

formance for improving discrimination between plaque features. Specifically, ARFI imaging was

performed using a Siemens S3000 scanner and a 9L4 linear array with fundamental tracking at

8.89 MHz and harmonic tracking at 8.0 MHz. Then, after using 1D normalized cross-correlation to

estimate ARFI-induced axial displacement profiles, both log(VoA) and PD were calculated. For all

methods, ARFI excitations were 300 cycles in duration. All tracking pulses were two cycles with a

F/1.5 focal configuration. ARFI imaging was performed in vivo in 21 patients with 50-99% stenotic

carotid artery plaque with clinical indication for CEA. A registered sonographer acquired data with

gating to diastole and systole with imaging directed at the plaque indicated for CEA.

Once in vivo ARFI data acquisition was completed, the plaque samples underwent volumetric
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µCT imaging. The µCT images were used to identify arterial shape and morphology and support fine

alignment of imaging and histology planes, as previously performed in [8]. With calcium recorded

on µCT images, the samples then were decalcified to prevent tearing during sectioning, and sections

were stained with H&E and CME. A pathologist with expertise in atherosclerosis identified and

delineated TRFC, CAL, COL, LRNC, and IPH in histology images, and the pathologist’s ratings

were used as the validation standard for ARFI performance, as performed previously [8]. Finally a

blinded-reader study was implemented to assess log(VoA) for identifying plaque components. The

readers included three neuroradiologists, one radiologist, one sonographer, and one pathologist (who

did not evaluate the histology).

7.3 Results

Tables 7.1 - 7.3 show Regression and Bland-Altman results for delineating calcium, collagen,

lipid-rich necrotic core, and intraplaque hemorrhage, respectively, for all readers participating in the

Part II trained blinded-reader study. Neuroradiologists are readers 2, 3 and 6.

Neuroradiologists averaged CVs of 29.7%, 39.7%, 28.3%, and 48% for delineating CAL, COL,

LRNC, and IPH, respectively. The other three readers averaged CVs of 33%, 43%, 25.7%, and

60% for delineating CAL, COL, LRNC, and IPH, respectively. In terms of bias, neuroradiologists

averaged 1.3, 0.22, 0.86, 0.43 mm for delineating CAL, COL, LRNC, and IPH, respectively, versus

the other readers who averaged 1.1, 0.44, 0.94, and 0.63 mm for delineating CAL, COL, LRNC, and

IPH, respectively.

CAL Regression Bland-Altman
Reader R2 SSE RPC CV Bias [mm]

1 0.80 120 5.8 42 0.89
2 0.90 68 4.3 32 1.30
3 0.90 57 3.4 26 1.40
4 0.86 79 4.0 31 1.30
5 0.93 41 3.4 26 0.96
6 0.88 77 4.0 31 1.20

Average (all readers) 0.88 73.67 4.15 31.33 1.18
Average (only NR) 0.86 88.33 4.70 35.00 1.13

Table 7.1: Calcium area measurement metrics from regression and Bland Altman analysis for all
trained blinded-to-histology readers. SSE = sum of squared errors, RPC = reproducibility coefficient,
CV = coefficient of variation, NR = Neuroradiologists.

Boxplots of AUC values achieved by the readers are shown in Figure 7.1-top for each of the

four plaque components evaluated in this study (CAL, COL, LRNC, IPH), as well as combined
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LRNC Regression Bland-Altman
Reader R2 SSE RPC CV Bias [mm]

1 0.86 90 5.4 27 0.43
2 0.91 74 4.6 26 0.36
3 0.88 78 4.7 29 1.30
4 0.85 120 5.2 29 1.40
5 0.90 60 3.9 21 1.00
6 0.90 100 5.3 30 0.91

Average (all readers) 0.88 87 4.85 27 0.90
Average (only NR) 0.89 88 5.10 27.67 0.57

Table 7.2: Lipid-rich necrotic core area measurement metrics from regression and Bland Altman anal-
ysis for all trained blinded-to-histology readers. SSE = sum of squared errors, RPC = reproducibility
coefficient, CV = coefficient of variation, NR = Neuroradiologists.

IPH Regression Bland-Altman
Reader R2 SSE RPC CV Bias [mm]

1 0.92 9.9 3.2 37 0.44
2 0.72 15 2.6 42 0.57
3 0.66 110 5.6 70 0.27
4 0.45 210 7.6 82 1.40
5 0.54 85 5.0 61 0.06
6 0.87 25 2.6 32 0.46

Average (all readers) 0.69 75.82 4.43 54 0.53
Average (only NR) 0.84 16.63 2.80 37 0.49

Table 7.3: Intraplaque hemorrhage area measurement metrics from regression and Bland Altman anal-
ysis for all trained blinded-to-histology readers. SSE = sum of squared errors, RPC = reproducibility
coefficient, CV = coefficient of variation, NR = Neuroradiologists.

categories (CAL/COL and LRNC/IPH). Figure 7.1 depicts the results for all six readers, and Figure

7.1-bottom shows the results for the neuroradiologists alone. When all readers were considered,

the average AUCs for each feature were as follows: LRNC, 0.79; COL, 0.76; IPH, 0.82; CAL, 0.77.

The median AUC for the combined categories were higher than both taken separately, with the

COL/CAL category reaching a average AUC of 0.88 and the LRNC/IPH category reaching a median

AUC of 0.87. When only the AUCs from the neuroradiologists were considered, the average AUCs

for each feature were as follows: LRNC, 0.78; COL, 0.74; IPH, 0.77; CAL, 0.74. The average AUC

for the combined metrics when only considering neuroradiologists were 0.91 for COL/CAL and 0.92

for LRNC/IPH. Compared to the results in [8] based on ARFI PD, readers’ average AUCs improved

by 16.56% for COL/CAL and 1.16% for LRNC/IPH, and significantly improved by 36.04% for CAL,

17.47% for COL, for 3.67% LRNC, and for 28.93% IPH.

The readers’ ROC analysis results for the independent plaque categories are shown in Table 7.4,
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including sensitivities and specificities for an operating point that maximizes their sum.

Reader CAL COL LRNC IPH
AUC Sens Spec AUC Sens Spec AUC Sens Spec AUC Sens Spec

1 0.79 0.72 0.72 0.83 0.77 0.77 0.84 0.78 0.78 0.91 0.85 0.85
2 0.70 0.65 0.75 0.62 0.58 0.63 0.71 0.69 0.62 0.71 0.75 0.65
3 0.81 0.75 0.71 0.75 0.68 0.68 0.86 0.81 0.74 0.82 0.74 0.74
4 0.76 0.69 0.69 0.62 0.66 0.51 0.70 0.68 0.61 0.92 0.89 0.81
5 0.82 0.74 0.74 0.91 0.88 0.79 0.87 0.94 0.73 0.78 0.71 0.71
6 0.72 0.76 0.66 0.85 0.84 0.71 0.77 0.63 0.63 0.77 0.81 0.69

Average (all readers) 0.77 0.72 0.71 0.76 0.74 0.68 0.79 0.76 0.69 0.82 0.79 0.74
Average (only NR) 0.74 0.71 0.71 0.77 0.73 0.70 0.77 0.70 0.68 0.80 0.80 0.73

Table 7.4: AUC, sensitivity and specificity achieved by all readers for plaque categories. NR =
Neuroradiologists.

7.4 Discussion

This chapter shows results that support the effectiveness of using log(VoA) for identifying

plaque components and measuring their corresponding areas in comparison to PD [8]. Specifically,

all blinded-readers that used log(VoA) achieved high correlation with histology when measuring

component areas, overall having an average R2 higher than 0.69, and an average bias lower than

1.18 mm.

For calcium, all readers on average achieved an R2 = 0.88, CV = 37, and a bias of 1.18 mm.

On average, neuroradiologists achieved R2 = 0.86, CV = 35, and a bias of 1.13 mm. These results

indicate that all readers performed comparably and neuroradiologists achieved lower bias but higher

variability than the overall readers.

For lipid-rich necrotic core, all readers on average achieved an R2 = 0.88, CV = 27, and a bias

of 0.90 mm. On average, neuroradiologists achieved R2 = 0.89, CV = 27, and a bias of 0.57 mm.

These results show comparable performance by all readers in terms of correlation with histology,

neuroradiologists achieved lower bias but comparable variability compared to the overall readers.

For intraplaque hemorrhage, all readers on average achieved an R2 = 0.69, CV = 54, and a

bias of 0.53 mm. On average, neuroradiologists achieved R2 = 0.84, CV = 37, and a bias of 0.49

mm. These results show higher performance by neuroradiologists in terms of higher correlation with

histology, lower variability and lower bias.

In terms of performance, on average readers had AUCs higher than 0.68 for identifying plaque

components independently. This represents an important improvement compared to [8] in which

readers achieved AUCs between 0.50 and 0.92 when identifying independent components. When
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comparing AUCs when all readers were considered, the median AUCs for each feature were as

follows: calcium, 0.775 (compared to 0.566 in [8]); lipid-rich necrotic core, 0.805 (compared to 0.762

in [8]); intraplaque hemorrhage, 0.80 (compared to 0.0.636 in [8]). When only the AUCs from the

neuroradiologists were considered, the median AUCs for each feature were as follows: calcium, 0.720

(compared to 0.612 in [8]); lipid-rich necrotic core, 0.770 (compared to 0.809 in [8]); intraplaque

hemorrhage, 0.770 (compared to 0.639 in [8]).

When further comparing performance with [8], readers’ average AUCs for grouped components

improved by 16.56% for COL/CAL and 1.16% for LRNC/IPH, and significantly improved for

independent components by 36.04% for CAL, 17.47% for COL, for 3.67% LRNC, and for 28.93%

IPH. These results highlight that log(VoA) improved all readers’ performance for delineating plaque

components compared to using PD.

Additionally, it is interesting to mention that in [8], neuroradiologists achieved significantly higher

performances than other readers, whereas in the present study, all readers achieved comparable high

performances for identifying independent plaque components, as visible in 7.1. In terms of bias,

neuroradiologists achieved lower bias when delineating component areas, but comparable variability

and correlation with histology.

Even though results are encouraging, reader-based delineation presents challenges in terms of

variability. User training is also required for higher performance, as it impacts the bias when

characterizing plaque composition. Plaque delineation independent of reader assessment reduces

these limitations and will be explored in the next chapter.

7.5 Conclusion

This study has demonstrated the potential for blinded readers to use log(VoA) for discriminating

plaque components independently. All readers achieved relatively high AUCs for distinguishing

individual plaque components, compared to a previous blinded reader study where delineation was

performed using ARFI PD. Additionally, the performance of log(VoA) for plaque characterization

was shown to be not highly correlated with reader specialization (with neuradiologists performing

not-significantly better than other readers). Given these encouraging preliminary results, the next

step to characterizing plaque structure and composition via ARFI will be to develop automatic

classification algorithms without reader variability.
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Figure 7.1: Performance for identifying calcium, collagen, lipid-rich necrotic core, and intraplaque
hemorrhage from (top) all readers, and (bottom) only neuroradiologists.
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CHAPTER 8

MACHINE LEARNING ALGORITHMS TO CLASSIFY PLAQUE
COMPONENTS

8.1 Introduction

Ultrasound technologies that aim to delineate plaque structure and composition include those

that interrogate speckle characteristics [114, 115, 116] and those that evaluate mechanical property

[81, 117, 118]. A new ultrasound-based approach to delineating plaque structure and composition

incorporates both speckle characteristics and mechanical property by evaluating the decadic log of

the Variance of Acceleration, or log(VoA), derived from Acoustic Radiation Force Impulse (ARFI)

imaging [96, 97]. In the previous chapter, the log(VoA) parameter differentiates plaque components

by exploiting differences in displacement estimation variance, often referred to as jitter [102], which

is impacted by variation in signal-to-noise ratio (SNR) and signal correlation. Echo-bright features

that remain highly correlated because they displace minimally in response to an ARFI excitation,

like calcium, yield low log(VoA). Conversely, echo-dim features that decorrelate because they displace

substantially in response to an ARFI excitation, like intraplaque hemorrhage, yield high log(VoA).

The log(VoA) parameter has been demonstrated to statistically differentiate intraplaque hemorrhage,

lipid-rich necrotic core, collagen, and calcium in vivo in the carotid plaques of patients undergoing

clinically-indicated carotid endarterectomy (CEA), with higher sensitivities and specificities for

differentiating between soft (intraplaque hemorrhage versus lipid-rich necrotic core) and between stiff

(collagen versus calcium) plaque components than achieved by evaluating ARFI peak displacement

(PD) [8]. Further, log(VoA) has been shown to improve the accuracy and precision of fibrous cap

thickness measurement in human carotid plaques in vivo relative to ARFI PD [111].

While evaluating ARFI log(VoA) has improved discrimination of carotid plaque components that

convey rupture risk relative to ARFI PD, greater performance gains may be possible by enhanced

evaluation of SNR, correlation, and displacement information. Further, a remaining impediment

to widespread clinical adoption of log(VoA) as a diagnostic standard is correct interpretation of

74



qualitative log(VoA) outcomes. The diagnostic relevance of ARFI plaque interrogation could be

improved by automated classification of plaque constituents, which may be possible by machine

learning models. Machine learning has previously been applied to differentiating tissue [119, 120, 121]

and, more specifically, to identifying carotid plaque features using echogenic [122, 123, 124] and

mechanical [117, 125] features. However, achieving semiautomatic differentiation of independent

plaque features with high sensitivity and specificity remains a challenge. In this chapter, two machine

learning-based automated classification schemes are herein described and compared to each other,

to log(VoA), and to peak displacement in terms of plaque feature contrast, fibrous cap thickness

measurement, and receiver operating characteristic analysis with spatially matched histological

validation in vivo in 25 patients undergoing clinically indicated CEA.

8.2 Methods

8.2.1 Patient Recruitment

Following the protocol described in 4.4 [8], 25 patients undergoing clinically indicated CEA were

recruited from UNC Hospitals. Inclusion criteria included asymptomatic carotid artery disease with

>60% Doppler-indicated stenosis and unresponsive to medical management or symptomatic carotid

artery disease with a stenosis suspected to be the source of emboli. All procedures were approved

by the University of North Carolina Chapel Hill Institutional Review Board, and written informed

consent was given from each study participant (ClinicalTrials.gov No. NCT01581385). From the

25 patients, a total of 26 plaques were collected, and after exclusions due to specimen damage or

fracture during surgery (N = 6), a total of 20 plaques were evaluated [8].

8.2.2 ARFI Imaging

A Siemens Acuson Antares imaging system equipped for research and VF7-3 linear array

transducer (Siemens Healthineers, Ultrasound Division, USA, Inc.) were used for in vivo imaging.

ARFI excitation pulses were 300-cycles at 4.21 MHz, tracking pulses were 2-cycles at 6.15 MHz, and

acquisitions were timed to diastole using electrocardiogram gating.

A registered sonographer acquired all imaging data before patient sedation on the same day of

surgery. The plaque to be removed by CEA was identified from prior ultrasound imaging sessions

archived in the patients’ medical record and was typically the plaque with the greatest stenosis.

Before completing the ARFI imaging session in which the artery was evaluated in the longitudinal
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plane, the transducer was rotated 90◦, and transverse B-modes and CINE loops of the carotid

bifurcation were obtained to aid in sample alignment. The time interval between imaging and

specimen extraction was approximately four hours.

8.2.3 Histology Processing

The extracted CEA specimens were fixed in 10% neutral-buffered formalin (48 hours) and then

imaged by µCT with a Scanco µCT 40 (Scanco Medical AG, Bassersdorf, Switzerland) at an isotropic

voxel resolution of 20 µm. The purpose of ex vivo micro-CT was twofold: 1) to identify and localize

calcifications in the samples so that the samples could be de-calcified prior to sectioning, and 2)

to orient the specimens before embedding in paraffin so that histology sections were aligned with

ARFI imaging planes [16]. Once sectioned, samples were stained with hematoxylin and eosin (H&E),

Von Kossa (VK), and combined Masson’s elastin (CME) stains. A pathologist with experience in

atherosclerosis examined and annotated the digitized histology slides to identify plaque features.

8.2.4 ARFI Data Processing

From the acquired radio frequency data, temporal profiles of SNR were calculated as µ/σ, where

µ represents the signal amplitude in each independent pixel per frame, and σ represents the noise

component, which was calculated as the average signal amplitude in a 3 x 3 mm2 anechoic region

inside the lumen of each carotid artery. The size of the noise region was selected as the size of

the largest anechoic region consistently recognizable in all of the carotid images. Additionally,

temporal profiles of correlation and displacement were calculated from the radio frequency data

using one-dimensional (axial) normalized cross correlation (NCC) with a 1.5λ (376-µm) kernel,

two-stage interpolation, and linear motion filtering [91]. From the displacement profiles, log(VoA)

was calculated as indicated in Equation 6.1.

Parametric log(VoA) images were rendered with normalization to ± two median absolute

deviations. Then, from these images, plaque components (collagen, calcium, lipid-rich necrotic core,

and intraplaque hemorrhage) were segmented using a semiautomatic k-means clustering method,

which we have previously described [8]. The method involved first cropping histology images to the

region that spans the ultrasonically interrogated plaque region. Then, the centroids of the plaque

features identified by the pathologist were identified. Next, histology images were resized so that the

numbers of lateral and axial pixels in the cropped histology image matched those of the log(VoA)

image. Finally, the histology-derived centroid positions in the log(VoA) image were input to the
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k-means algorithm as the starting locations for k regions to be segmented in the parametric image,

where k is the number of plaque component regions identified by the pathologist. This methodology

supported identification of independent pixels containing intraplaque hemorrhage, lipid-rich necrotic

core, collagen, or calcium.

8.2.5 Machine Learning Classifiers

After semiautomatic segmentation, in Part 1, a total of 31,756 pixels were identified as being

intraplaque hemorrhage, lipid-rich necrotic core, collagen, or calcium within the 20 retained carotid

plaques, and in Part 2, a total of 31,368 pixels were identified as being intraplaque hemorrhage,

lipid-rich necrotic core, collagen, or calcium within the 20 retained carotid plaques From this total,

pixels with overlapping plaque components as identified by the pathologist were excluded. Further, to

avoid edge affects, pixels located outside 80% of the histology-derived boundary were excluded. The

remaining pixels independently constituted a region of intraplaque hemorrhage, lipid-rich necrotic

core, collagen, or calcium. Tables 8.1 and 8.2 indicate the number of pixels that were considered

per plaque component per patient, with each pixel having spatial dimension of 354 µm x 19.25 µm

(lateral x axial), for Parts 1 and 2 of the clinical study.

Plaque Component Selected Samples Selected Samples per Patient
CAL 6533 325 ± 75
COL 8511 426 ± 74
LRNC 8182 347 ± 239
IPH 8530 370 ± 257
Total 31756 1468 ± 157

Table 8.1: Number of samples per plaque component per patient for Part I. Each sample has
corresponding temporal profiles of ARFI displacement, cross-correlation coefficient and SNR. Data
acquired with Siemens Antares, VF7-3 linear array.

Plaque Component Selected Samples Selected Samples per Patient
CAL 7482 304 ± 71
COL 8630 426 ± 60
LRNC 7958 389 ± 61
IPH 7298 354 ± 118
Total 31368 1473 ± 78

Table 8.2: Number of samples per plaque component per patient for Part II. Each sample has
corresponding temporal profiles of ARFI displacement, cross-correlation coefficient and SNR. Data
acquired with Siemens S3000, 9L4 linear array.

From each pixel, temporal profiles of ARFI-induced displacement, normalized cross-correlation
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coefficient (CC), and radio frequency signal to noise ratio (SNR) were calculated. These temporal

profiles were used in combinations of two or three to comprise the feature set for the machine learning

classifiers. Two classifiers were evaluated, the first a nonlinear radial basis function support vector

machine (SVM) with a Gaussian kernel function, and the second a linear Random Forests (RaF)

classifier. The classifiers were trained using 80% of the dataset per plaque component, and the

remaining 20% were used for validation. The machine learning algorithms were implemented in

MATLAB using the classification learner toolbox (Mathworks, Natick, MA). Five-fold cross-validation

was applied for testing precision, and hyperparameter tuning was developed via grid search.

The ML classifiers predicted, on a pixel-by-pixel basis, the likelihood that a given pixel represented

a region of intraplaque hemorrhage, lipid-rich necrotic core, collagen, or calcium. Output parametric

images were then rendered by first assigning to each plaque component a RGB color combination

(red for intraplaque hemorrhage, yellow for lipid-rich necrotic core, cyan for collagen, and blue for

calcium) and then displaying the likelihood-weighted color per pixel. In this manner, a pixel that

was classified as 50% likely to be intraplaque hemorrhage (with RGB color = [255 0 0]) and 50%

likely to be lipid-rich necrotic core (with RGB color = [255 255 0]) would be orange (with an output

RGB color = [255 128 0]), for example.

Figure 8.1: Schematic for generating automatic plaque feature segmentation with an ML algorithm.
The time profile inputs to the algorithm are ARFI displacement, cross-correlation coefficient and
SNR.

Figure 8.1 illustrates the process by which the SVM and RaF classifiers were implemented to

generate images of plaque composition and structure. Shown on the left are representative examples
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of the data comprising the machine learning feature set: temporal profiles of ARFI displacement,

ARFI CC, and SNR measured in a carotid plaque from a 65-year-old, asymptomatic male patient.

From these input data, the trained classifiers derived, on a pixel-by-pixel basis, the likelihood that

the corresponding pixel was intraplaque hemorrhage, lipid-rich necrotic core, collagen, or calcium.

From the derived likelihoods, parametric images of predicted plaque composition and structure were

prepared for evaluation.

8.2.6 Classifier Performance Analysis

Machine learning classifier performance was assessed in terms of identified component contrast-

to-noise ratio (CNR), receiver operating characteristics (ROC) analysis, and precision and bias of

fibrous cap thickness measurement from Bland-Altman analysis. CNR outputs were evaluated per

plaque and then reported as overall median CNR and CNR coefficient of variation.

The sensitivity and specificity of plaque component detection were determined by Youden’s index

as the values that maximized the area under the curve by ROC analysis, using the spatially matched

histology as the validation standard. Performance in terms of fibrous cap thickness measurement

was evaluated over 14 of the 20 retained plaques because four plaques did not contain a fibrous cap,

and two were excluded because the fibrous cap was located more than 5 mm away from the focal

depth. In these 14 examples, the minimum, maximum and average thicknesses of the fibrous caps

in parametric RaF and SVM likelihood images were compared using Bland-Altman analysis to the

corresponding minimum, maximum, and average thicknesses of the fibrous caps delineated by the

pathologist from histology images.

The evaluated performance metrics were compared across feature sets and machine learning

algorithms. Further, to benchmark machine learning outcomes against those previously achieved

using other ARFI data evaluation methods, CNR, AUC, and Bland-Altman metrics achieved by the

RaF and SVM classifiers were compared to those produced by semiautomatically segmented ARFI

log(VoA) and PD images [8]. Comparisons were performed using the Wilcoxon rank-sum test, with

p-values less than 0.05 indicating significance.

8.3 Results

Figures 8.2-8.4 show parametric images depicting ARFI PD, log(VoA), and RaF and SVM

classifications for representative Type VI carotid plaques. Spatially matched B-Mode and histology

(with plaque components marked by the pathologist) are shown for reference.
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Figure 8.2: Type VI symptomatic carotid plaque with corresponding aligned histology. (a) B-
Mode), (b) ARFI peak displacement, (c) ARFI log(VoA), (d) Von Kossa histology stain with plaque
components delineated by pathologist, (e) ML random forest (RaF) likelihood map, (f) ML support
vector machine (SVM) likelihood map.

In Figure 8.2 the histology section spatially aligned with the imaging plane shows two large

calcium deposits (dark blue outlines) positioned posterior to regions of collagen (light blue outline),

intraplaque hemorrhage (red outline), and lipid-rich necrotic core (yellow outline). The parametric

ARFI PD image depicts large displacements in the position of the calcium deposits, which erroneously

suggest soft material (arrow 1). Importantly, the regions of intraplaque hemorrhage and lipid-rich

necrotic core anterior to the calcium deposits are not clearly indicated. In the parametric log(VoA)

image, low (dark blue) log(VoA) in the anterior region of the plaque (arrow 1) spatially correspond

to calcium deposits, below which a region of moderate (light blue) log(VoA) corresponds to collagen

(arrow 2). Finally, higher (yellow and red) log(VoA) measurements in the anterior plaque region

spatially correspond to lipid-rich necrotic core (arrow 3) and intraplaque hemorrhage (arrow 4).

Similar to the log(VoA) image, the parametric images of RaF and SVM classifications show a region

classified as calcium (dark blue, arrow 1) in the posterior portion of the plaque, which corresponds

to the position of calcium in the histology section. Notably, the assessed likelihood of calcium is

higher by the SMV classifier, as indicated by the darker shade of blue in the SVM image. Below the
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Figure 8.3: Type VI symptomatic carotid plaque with corresponding aligned histology. (a) B-
Mode), (b) ARFI peak displacement, (c) ARFI log(VoA), (d) Von Kossa histology stain with plaque
components delineated by pathologist, (e) ML random forest (RaF) likelihood map, (f) ML support
vector machine (SVM) likelihood map.

region classified as calcium is a region classified as collagen (light blue, arrow 2), which spatially

corresponds with collagen in the histology section. This collagen region is delineated comparably in

RaF and SVM likelihood images. Finally, in the anterior region of the plaque, the RaF classifier

identifies a region of lipid-rich necrotic core with high likelihood (as indicated by the bright yellow

color, arrow 3), while for the same region, the SVM classifier predicts mixed lipid-rich necrotic core

and intraplaque hemorrhage composition (as indicated by the red-orange-yellow coloring, arrow 3).

Figure 8.3 depicts the histology section spatially aligned with the imaging plane for a second type

VI plaque comprised of a large lipid-rich necrotic core (yellow outline), with a small fibrous cap (light

blue outline), two regions of intraplaque hemorrhage (red outlines), and a calcium deposit (dark

blue outline). The parametric ARFI PD image shows predominantly low displacement (blue) within

the plaque, suggesting collagen composition, with a region of high displacement (red) suggesting

lipid-rich necrotic core or intraplaque hemorrhage (arrow 1) in the position of the larger region of

intraplaque hemorrhage in the histology section. Notably, the large lipid-rich necrotic core is not

well indicated, and neither is the calcium deposit. In panel (c), the parametric log(VoA) image
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Figure 8.4: Type VI symptomatic carotid plaque with corresponding aligned histology. (a) B-
Mode), (b) ARFI peak displacement, (c) ARFI log(VoA), (d) Von Kossa histology stain with plaque
components delineated by pathologist, (e) ML random forest (RaF) likelihood map, (f) ML support
vector machine (SVM) likelihood map.

shows predominantly high log(VoA) values (yellow), suggesting lipid-rich necrotic core, intermixed

with higher (orange, red) log(VoA) values, suggesting intraplaque hemorrhage. The higher log(VoA)

values aggregate (arrow 1) in regions spatially corresponding to the two regions of intraplaque

hemorrhage in the histology section, but the higher values are also present throughout the plaque,

which falsely suggests diffuse intraplaque hemorrhage. A moderate (light blue) log(VoA) region

in the plaque shoulder (arrow 3) and a low (dark blue) log(VoA) region in the anterior region of

the plaque (arrow 2) spatially correspond to positions of fibrous cap and calcium in the histology,

respectively. The parametric images of RaF and SVM classifications appear quite similar to each

other: a region classified as lipid-rich necrotic core spans most of the plaque, consistent with the

histology section, with regions classified as intraplaque hemorrhage (red, arrows 1), collagen (fibrous

cap) (light blue, arrow 3), and calcium (dark blue, arrow 2) corresponding to the positions of such

in the histology section.

A third type VI plaque is shown in Figure 8.4 with histology showing a large region of combined

lipid-rich necrotic core and intraplaque hemorrhage (overlapping yellow and red outlines). Below
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this region is a fibrous cap (light blue outline), and two calcium deposits are in the left of the section

near the edge of the lateral imaging range. The parametric ARFI PD image shows high displacement

(red) on the left edge of the lateral ARFI field of view (arrow 2), falsely suggesting soft material in

the position of calcium deposits. Moderately high (yellow) displacements are visible in the center of

the plaque (from -5 to 2 mm laterally), where lipid-rich necrotic core and intraplaque hemorrhage

are located. However, the moderately-high displacements generally span the full axial range of

the plaque (13-17 mm axially) without clear indication of the fibrous cap anterior or the region

of diffuse collagen posterior to the region of lipid-rich necrotic core and intraplaque hemorrhage.

Low displacements (dark blue) span the axial range of the plaque from 3-4 mm laterally, which

falsely suggests calcium (arrow 1), followed by a high displacing (yellow) region on the right of the

lateral field of view that spatially corresponds to areas of lipid-rich necrotic core and intraplaque

hemorrhage. Unlike the ARFI PD image, the log(VoA) image shows a focal region of low (dark

blue) log(VoA) values (arrow 2) spatially corresponding to the position of calcium in the histology

section. A large region of high (yellow) log(VoA), intermixed with higher (orange, red) values spans

the majority of the plaque (arrow 1) in the location of the lipid-rich necrotic core and intraplaque

hemorrhage in the histology section. Lower (light blue) log(VoA) values are seen in the positions

of the fibrous cap (arrow 3) and diffuse collagen (arrow 4) anterior and posterior to the lipid-rich

necrotic core and intraplaque hemorrhage, respectively. The RaF and SVM classifications both show

a region on the left side of the plaque that is likely to be calcium (dark blue, arrow 2), but this region

is larger than the low log(VoA) region suggesting calcium. Both classifiers identify a large feature

spanning most of the lateral range of the plaque, but while the RaF classifier identifies this as being

predominantly lipid-rich necrotic core (yellow) with a few small regions of intraplaque hemorrhage

(arrow 1), the SVM classifier more correctly identifies the region as being roughly equally likely to

be both lipid-rich necrotic core and intraplaque hemorrhage (orange, arrow 1). Both RaF and SVM

classifiers correctly identify collagen (light blue) in the regions of the fibrous cap (arrow 3) posterior

and of the diffuse collagen (arrow 4) anterior to the region of lipid-rich necrotic core and intraplaque

hemorrhage.

Tables 8.3 and 8.4 depict receiver operating characteristic (ROC) metrics for detecting calcium,

diffuse collagen, fibrous cap, lipid-rich necrotic core, and intraplaque hemorrhage, from studies

Part 1 and 2, respectively. In Part 1, for detecting calcium, SVM achieved the highest AUC of
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Plaque Component Metric AUC Sensitivity Specificity

Calcium

ARFI PD SS 0.631 0.598 0.598
ARFI PD BR 0.650 0.600 0.600
ARFI Log(VoA) SS 0.723 0.669 0.668
RaF 0.839 0.806 0.773
SVM 0.915 0.799 0.822

Diffuse Collagen

ARFI PD SS 0.581 0.558 0.557
ARFI PD BR 0.810 0.750 0.750
ARFI Log(VoA) SS 0.771 0.707 0.706
RaF 0.775 0.668 0.65
SVM 0.802 0.733 0.663

Fibrous Cap

ARFI PD SS 0.792 0.888 0.618
ARFI PD BR 0.810 0.730 0.730
ARFI Log(VoA) SS 0.852 0.771 0.77
RaF 0.893 0.827 0.796
SVM 0.895 0.781 0.72

Lipid-rich Necrotic Core

ARFI PD SS 0.715 0.736 0.583
ARFI PD BR 0.910 0.840 0.840
ARFI Log(VoA) SS 0.913 0.839 0.838
RaF 0.897 0.761 0.805
SVM 0.915 0.902 0.855

Intraplaque Hemorrhage

ARFI PD SS 0.589 0.571 0.555
ARFI PD BR 0.700 0.600 0.600
ARFI Log(VoA) SS 0.795 0.734 0.733
RaF 0.885 0.808 0.767
SVM 0.928 0.819 0.821

Table 8.3: Part 1 Study - Performance metrics for detecting calcium, diffuse collagen, fibrous cap,
lipid-rich necrotic core, and intraplaque hemorrhage by ARFI PD, log(VoA), ML Random Forest
(RaF), and ML Support Vector Machine (SVM). SS = Semi-automatically Segmented, BR = Best
Reader.

0.95, followed by RaF (0.906), semiautomatically segmented ARFI log(VoA) (0.723), and, finally,

semiautomatically segmented ARFI PD (0.631). For detecting diffuse collagen, SVM also achieved

the highest AUC of 0.851, followed by RaF (0.813), ARFI log(VoA) (0.77), and, finally, ARFI PD

(0.581). For detecting fibrous cap, RaF achieved the highest AUC (0.911), followed by SVM (0.909),

ARFI log(VoA) (0.852), and ARFI PD (0.792). For detecting lipid-rich necrotic core, SVM achieved

the highest AUC of 0.963, followed by RaF (0.924), ARFI log(VoA) (0.913), and ARFI PD (0.715).

Finally, for detecting intraplaque hemorrhage, SVM also achieved the highest AUC of 0.945, followed

by RaF (0.931), ARFI log(VoA) (0.795), and ARFI PD (0.589).

For Part 1 , Figure 8.5 shows regression and Bland-Altman plots for ARFI PD-, log(VoA),
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Performance Metric AUC Sensitivity Specificity

Calcium

ARFI PD SS 0.608 0.684 0.623
ARFI log(VoA) BR 0.820 0.740 0.740
ARFI log(VoA) SS 0.830 0.767 0.750

RaF 0.895 0.914 0.836
SVM 0.904 0.946 0.941

Diffuse Collagen

ARFI PD SS 0.544 0.653 0.623
ARFI log(VoA) BR 0.850 0.710 0.710
ARFI log(VoA) SS 0.796 0.766 0.762

RaF 0.895 0.808 0.769
SVM 0.899 0.857 0.759

Fibrous Cap

ARFI PD SS 0.802 0.890 0.682
ARFI log(VoA) BR 0.910 0.880 0.790
ARFI log(VoA) SS 0.882 0.790 0.804

RaF 0.908 0.914 0.906
SVM 0.912 0.853 0.891

Lipid-rich Necrotic Core

ARFI PD SS 0.706 0.811 0.592
ARFI log(VoA) BR 0.860 0.810 0.740
ARFI log(VoA) SS 0.908 0.902 0.875

RaF 0.929 0.942 0.865
SVM 0.938 0.986 0.937

Intraplaque Hemorrhage

ARFI PD SS 0.600 0.602 0.563
ARFI log(VoA) BR 0.920 0.850 0.850
ARFI log(VoA) SS 0.772 0.756 0.740

RaF 0.928 0.935 0.862
SVM 0.930 0.877 0.871

Table 8.4: Part 2 Study - Performance metrics for detecting calcium, diffuse collagen, fibrous cap,
lipid-rich necrotic core, and intraplaque hemorrhage by ARFI PD, log(VoA), ML Random Forest
(RaF), and ML Support Vector Machine (SVM). SS = Semi-automatically Segmented, BR = Best
Reader.

RaF-, and SVM-derived average fibrous cap thickness. The R2 values were the highest for SVM

and RaF classifiers, followed by log(VoA) and then ARFI PD. Additionally, SVM achieved the

lowest reproducibility coefficient (9.5%), coefficient of variation (3.3%), and bias in fibrous cap

thickness measurement (Wilcoxon Ranksum test p< 0.01), although the RaF bias (0.04 mm) was

not statistically significant. The corresponding regression and Bland-Altman results for measuring

average, minimum, and maximum fibrous cap thicknesses are listed in Table 8.5.

For Part 2 , Table 8.6 shows regression and Bland-Altman results for ARFI PD-, log(VoA),

RaF-, and SVM-derived average fibrous cap thickness. The R2 values were the highest for SVM and

RaF classifiers, followed by log(VoA) and then ARFI PD. Additionally, SVM achieved the lowest
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Measurement Metric R RPC CV Bias [mm]

Average FC Thickness

ARFI PD SS 0.79 0.26 16.00% 0.1 (p = 0.01)
ARFI PD BR 0.89 0.12 9.10% 0.13 (p = 0.01)
ARFI Log(VoA) SS 0.97 0.10 6.30% 0.05 (p <0.01)
RaF 0.98 0.06 4.10% 0.04 (p <0.01)
SVM 0.98 0.05 3.80% 0.04 (p <0.01)

Minimum FC Thickness

ARFI PD SS 0.74 0.58 20.00% 0.11 (p = 0.01)
ARFI PD BR 0.75 0.58 20.00% 0.11 (p = 0.01)
ARFI Log(VoA) SS 0.95 0.28 8.60% 0.11 (p <0.01)
RaF 0.95 0.22 8.50% 0.09 (p <0.01)
SVM 0.93 0.21 10.10% 0.08 (p <0.01)

Maximum FC Thickness

ARFI PD SS 0.67 0.54 21% 0.08 (p = 0.16)
ARFI PD BR 0.70 0.50 23% 0.20 (p = 0.01)
ARFI Log(VoA) SS 0.84 0.24 16% 0.08 (p = 0.07)
RaF 0.84 0.25 18.20% 0.11 (p <0.01)
SVM 0.88 0.24 14% 0.12 (p <0.01)

Table 8.5: Part 1 Study - Fibrous cap thickness measurement metrics from regression and Bland
Altman analysis for average, minimum, and maximum thicknesses. RPC = reproducibility coefficient,
CV = coefficient of variation, SS = Semi-automatically Segmented, BR = Best Reader.

reproducibility coefficient (9.15%), coefficient of variation (3.99%), and bias in fibrous cap thickness

measurement (Wilcoxon Ranksum test p< 0.01), although the SVM and RaF bias (0.20 mm) was

not statistically significant. The corresponding regression and Bland-Altman results for measuring

average, minimum, and maximum fibrous cap thicknesses show similar trends as shown in Table 8.5.

8.4 Discussion

The in vivo human carotid plaque images shown in Figures 8.2-8.4 qualitatively demonstrate

that plaque features are delineated in a manner that is generally more accurate to component type

and more spatially precise by RaF and SVM classifiers than by log(VoA) or ARFI PD. Quantitative

evaluations of feature CNR, shown in Table 8.2, and AUC analyses of sensitivity and specificity of

feature detection, shown in Figure 8.5 and Table 8.3, further support the superior performance of

RaF and SVM classifiers relative to log(VoA) and ARFI PD.

Of interest is that using the three temporal profiles of SNR, correlation, and displacement as the

classifier feature set yielded higher performance than using any combination of two temporal profiles.

This result suggests that echogenicity (SNR) and mechanical property (correlation and displacement)

are complementary for discriminating plaque features. The complementarity of echogenicity and

mechanical property is consistent with prior work showing that log(VoA), which is influenced by

both SNR and correlation, better discriminates plaque components than ARFI PD alone, which
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Measurement Metric R RPC CV Bias [mm]

Average FC Thickness

ARFI PD SS 0.51 0.42 25% 0.14 (p = 0.02)
ARFI log(VoA) BR 0.94 0.18 25% 0.64 (p = 0.01)
ARFI log(VoA) SS 0.92 0.16 10% 0.06 (p = 0.01)
RaF 0.97 0.13 8% 0.03 (p = 0.07)
SVM 0.97 0.11 7% 0.00 (p = 0.82)

Minimum FC Thickness

ARFI PD SS 0.75 0.55 21.82% 0.21 (p <0.01)
ARFI log(VoA) BR 0.74 0.56 24.00% 0.71 (p <0.01)
ARFI log(VoA) SS 0.93 0.31 18.20% 0.22 (p = 0.01)
RaF 0.93 0.19 8.55% 0.39 (p <0.01)
SVM 0.94 0.18 8.57% 0.41 (p <0.01)

Maximum FC Thickness

ARFI PD SS 0.70 0.53 21.99% 0.18 (p = 0.05)
ARFI log(VoA) BR 0.80 0.27 26.00% 0.37 (p = 0.01)
ARFI log(VoA) SS 0.86 0.26 17.35% 0.07 (p = 0.06)
RaF 0.90 0.24 17.22% 0.15 (p <0.01)
SVM 0.91 0.23 17.28% 0.15 (p <0.01)

Table 8.6: Part 2 Study - Fibrous cap thickness measurement metrics from regression and Bland
Altman analysis for average, minimum, and maximum thicknesses. RPC = reproducibility coefficient,
CV = coefficient of variation, SS = Semi-automatically Segmented, BR = Best Reader.

predominantly reflects mechanical property.

Using temporal profiles of SNR, correlation, and displacement as the feature set, the two machine

learning classifiers generally perform comparably to each other except in regard to contrasting lipid-

rich-necrotic core and intraplaque hemorrhage. In this case, the SVM classifier achieved statistically

significantly higher CNR, which is clinically meaningful because intraplaque hemorrhage has a higher

hazard ratio for stroke (HR = 4.59) than lipid-rich necrotic core (HR = 3.00) [3]. This suggests that

the SVM classifier may be the more appropriate method for widespread clinical translation, but

further evaluation is needed to confirm this suggestion.

Apart from lipid-rich necrotic core and intraplaque hemorrhage, indicators of stroke risk include

fibrous cap thickness. In particular, average and minimum cap thicknesses are predictive of plaque

rupture potential [3, 34, 126]. These were more accurately and precisely measured by the machine

learning classifiers than by the best blinded-reader and semiautomatically segmented ARFI PD or

log(VoA), as shown in Table 8.3. Between the two classifiers, the SVM approach achieved slightly

lower average and minimum cap thickness measurement biases.

In addition to improving delineation of plaque components that convey rupture potential,

including fibrous cap thickness, the machine learning classifiers offer the important advantage of

automating component classification. While a user must interpret qualitative ARFI PD and log(VoA)

87



values to determine plaque feature type, with potential for misinterpretation errors, the machine

learning classifiers output predicted likelihood values. High likelihood predictions suggest strong

confidence in component type, while low likelihood values can suggest blended components (such as

the large region of combined lipid-rich necrotic core and intraplaque hemorrhage in the plaque of

Figure 8.4) or uncertainty in the model prediction. This highlights an important shortcoming to the

presented methods - inability to discriminate low likelihood reflecting blended components from low

likelihood reflecting model uncertainty due to poor data or other corrupting factors.

By the employed methods of performance analysis, low likelihood was considered to reflect

model uncertainty, which penalized classifiers that appropriately predicted low likelihood to reflect

blended components. More specifically, in this study, four of the 20 evaluated plaques contained

regions marked by the pathologist as being comprised of both lipid-rich necrotic core and intraplaque

hemorrhage. In these regions, the plaque component spanning the greatest percent area of the region

was considered as the single valid compositional element. Therefore, uncertainty between plaque

components in the RaF and SVM likelihood images (reflected as blended color) was considered

"incorrect" and resulted in reduced feature contrast and AUC. While the number of such cases in this

study was relatively small, future work involving larger data sets will consider blended composition

as a valid outcome and adjust performance metrics accordingly. Similarly, methods for discriminating

likelihoods indicating blended composition from model uncertainty will be developed.

An additional factor influencing outcomes is the method of implementing and validating the

machine learning classifiers. In regard to implementation, only RaF and SVM models were evaluated.

Alternative classifier structures, including neural networks, may yield improved performance when

training and validation set sizes grow. In regard to validation, classifier performance was evaluated

using five-fold cross-validation. While this validation approach has been implemented extensively

in numerous other applications [124, 117, 125], the method is prone to low variance. In the future,

when more data is available, holdout and k-fold validation strategies will be implemented

8.5 Conclusion

This chapter demonstrates machine learning classifiers for fully-automated delineation of carotid

plaque components conferring stroke risk. In addition to automating classification of plaque features,

the machine learning classifiers yield higher feature contrast, improved sensitivity and specificity

of feature detection, and more accurate and precise fibrous cap thickness and independent plaque
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component area measurement than the best reader using ARFI PD or log(VoA) (presented in Chapter

7) and semi-automatic segmentation (presented in Chapter 6). Two classifiers were compared, RaF

and SVM, and while the classifiers generally performed comparably, the SVM classifier achieved

statistically higher contrast of intraplaque hemorrhage from lipid-rich necrotic core, suggesting that it

may be the more relevant classifier for routine clinical use. In the following chapter, further analysis

will be presented to improve classifier models, by using harmonic and high frequency tracking, and

data acquisitions at systole and diastole.
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Figure 8.5: Part 1 Study - Regression and Bland-Altman plots for ARFI peak displacement,
log(VoA), ML Random Forest (RaF), and ML Support Vector Machine (SVM) median FC thickness
measurement.
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Figure 8.6: Part 2 Study - Regression and Bland-Altman plots for ARFI peak displacement,
log(VoA), ML Random Forest (RaF), and ML Support Vector Machine (SVM) median FC thickness
measurement.
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CHAPTER 9

IMPROVING DELINEATION OF HUMAN CAROTID PLAQUE
FEATURES USING HARMONIC ARFI VARIANCE OF ACCELERATION,
COMBINATION OF ARFI EXCITATION POWERS, AND ACQUISITIONS

AT DIASTOLE AND SYSTOLE

9.1 Introduction

Previous chapters have shown that log(VoA), an ARFI outcome parameter derived as the decadic

log of the variance of the second-time derivative of displacement, differentiated LRNC, IPH, collagen

(COL), and calcium (CAL) [111] and supported more accurate measurement of fibrous cap thickness

than ARFI peak displacement (PD), using semi-automatic segmentation, via a blinded-reader study,

and using machine learning classifiers. The purpose of this chapter is to evaluate if automatic

performance for plaque feature delineation is improved by additional optimization methodologies

using harmonic imaging and multiple acquisitions at diastole and systole. Specifically, this chapter

will evaluate if incorporating additional information into the feature set of a machine learning

classifier further improves discrimination of human carotid atherosclerotic plaque features, in vivo.

The additional information consists of temporal profiles of displacement, CC, and SNR acquired

with a 0% power (no) ARFI excitation with gating to diastole and systole, using high frequency and

harmonic tracking.

Machine learning classifiers improve plaque feature detection, area and minimum fibrous cap

thickness measurement, and they do so in a fully automated way, but they have another potential

advantage. A machine learning model can be trained to take in more information than a human

reader readily can, so this chapter evaluates if more information about the plaque could further

improve carotid plaque feature detection and size measurement.

The basis for acquiring data at multiple gating points in the cardiac cycle is based on the potential

use of additional information to improve component detection. Typically, ARFI data collection is

gated to diastole; however, for this study, data collection were incorporated at diastole and at systole.

Further, data were acquired with and without the acoustic radiation force excitation. For each of
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these data collection methods, temporal profiles of displacement, signal correlation, and SNR were

included as the feature set to the support vector machine classifier, which, as in the previous study,

output the likelihood that each pixel was CAL, COL, LRNC and IPH.

The justification for using harmonic tracking is that it improves spatial resolution and reduces

clutter relative to imaging at the corresponding fundamental frequency. The finer spatial resolution

afforded by harmonic imaging could enable detection of smaller plaque features and/or more

precise boundary definition by log(VoA). Clutter, which is characterized as diffuse echoes overlaying

the signal of interest caused by sound reverberation between tissue layers, scattering from off-

axis tissue structures, ultrasound beam distortion, returning echoes from previously transmitted

pulses, and electronic noise [127], distorts displacement measurement variance, thereby impacting

log(VoA). Therefore, clutter reduction with harmonic imaging could improved discrimination of

plaque features by log(VoA), particularly in clutter-prone regions such as the lumen-plaque boundary

where fibrous caps reside. However, a potential disadvantage to harmonic tracking is that it yields

lower SNR compared to fundamental tracking at comparable frequencies. Similarly, additional

relevant information could be obtained by tracking at higher fundamental frequency for greater

spatial resolution, but at the cost of greater off-axis contributions.

9.2 Methods

9.2.1 Patient Recruitment

Following the methodology depicted in Chapter 6, a total of twenty patients undergoing clinically

indicated CEA were recruited from UNC Hospitals. Inclusion criteria included symptomatic 50-

99% Doppler-indicated stenotic plaque in the carotid artery. Patients with probable causes of

stroke unrelated to the surgical carotid plaque were excluded. All procedures were approved by

the institutional review board (IRB), and informed written consent was given from each study

participant. After imaging, spatially-matched histology derived from the extracted plaque specimens

was delineated by a trained pathologist and used as a validation standard.

9.2.2 High Frequency and Harmonic ARFI Imaging

ARFI imaging was performed in vivo using a Siemens S3000 scanner and a 9L4 transducer. ARF

excitations were centered at 4.0 MHz, with harmonic tracking by pulse inversion at 8.0 MHz. ARFI

tracking pulse sequences were also implemented at fundamental frequencies of 4 MHz and 8.89
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MHz for comparison. Ensembles (2 reference + 1 ARF + 43 tracking pulses) were acquired in 40

lateral positions evenly spaced across an 18 mm lateral field of view for 2D imaging. ARF-induced

displacements were measured using 1-D axial normalized cross-correlation (NCC) [111, 128].

9.2.3 Harmonic ARFI log(VoA) Analysis

ARFI variance of acceleration (VoA) was calculated from ARFI-induced displacement versus

time profiles as the unbiased variance of the second time derivative through ensemble time calculated

in 6.1. Then, the decadic log of VoA (log(VoA) was evaluated, from which contrast-to-noise ratio

(CNR) between plaque components was calculated in 5.3, where µ and σ are the median and standard

deviation log(VoA) within the plaque component region, segmented by a semi-automatic k-means

clustering method [128], and the subscripts a and b refer to the two features being compared, i.e.,

CAL and COL, or LRNC and IPH, or COL and LRNC, respectively.

Figure 9.1: Schematic of total inputs to the support vector machines (SVM) classifier and outputs
indicating plaque composition likelihood. ARFI D(t), CC(t), and SNR(t) indicate ARFI displacement,
cross-correlation coefficient, and signal-to-noise ratio temporal profiles.

9.2.4 ARFI Imaging Acquisitions at Diastole and Systole

ARFI pushes were implemented at 0 (no push, or ’NP’) and 70% (push, or ’P’) ARFI excitation

powers, and acquisitions were gated to diastole (D) and systole (S). These data sets are denoted as

DP (diastole with push), DNP (diastole with no push), and SNP (systole with no push). Figure 9.1

shows a schematic of the machine learning classifier, with inputs indicated that combine acquisitions

at systole and diastole, with and without push, acquired all for low frequency, high frequency, and

94



harmonic tracking [128].

9.2.5 Plaque Feature Classification and Analysis

The feature set of the support vector machine (SVM) classifier consisted of DP, DNP, and/or

SNP. Four output classes were defined: CAL, COL, LRNC, and IPH. The classifier was trained using

data acquired in plaque regions corresponding to each class, as validated by the spatially-matched

histology delineated by a pathologist. Classifier performance was evaluated by 5-fold cross-validation

using the histological gold-standard. 2D class likelihood maps were calculated as the compounded

likelihood per pixel assigned to an RGB value per class, i.e., IPH = [255 0 0] (red), LRNC = [255

255 0] (yellow), COL = [0 255 255] (light blue), and CAL = [0 0 255] (dark blue), with blended

colors (i.e. shades of green and orange) indicating predicted likelihoods between two classes.

9.3 Results

Figure 9.2 shows a type V plaque in a symptomatic male, represented in parametric images of

normalized log(VoA) acquired using (i) fundamental low frequency, (ii) fundamental high frequency,

and (iii) harmonic ARFI imaging. The green arrow shows better differentiation between the COL and

LRNC in the harmonic case compared to both log(VoA) images at ARFI fundamental frequencies,

which supports better discrimination of the fibrous cap. However, it can be observed that spatial

resolution is best when using fundamental high frequency ARFI tracking. Over all examined plaques,

all three acquisition methods statistically differentiated all four plaque components from each other

(Wilcoxon, P< 0.01).

CNR COL vs. CAL LRNC vs. IPH COL vs. LRNC
FL log(VoA) 1.35 ± 0.52 2.01 ± 0.29 1.95 ± 0.34
FH log(VoA) 2.88 ± 0.41 2.79 ± 0.32 1.52 ± 0.38

Harmonic log(VoA) 2.21 ± 0.33 2.58 ± 0.30 2.04 ± 0.38

Table 9.1: SVM-derived CNR results between plaque components for frequency low (FL), frequency
high (FH), and harmonic ARFI log(VoA), in 20 patients.

Table 9.1 shows that harmonic log(VoA) achieved the highest CNR between COL and LRNC,

consistent with the expectation that clutter reduction near the lumen-plaque boundary would improve

harmonic log(VoA) performance in this region. However, away from the lumen-plaque boundary,

fundamental high frequency log(VoA) achieved the highest CNR when differentiating between COL

and CAL, and between LRNC and IPH.

Table 9.2 shows a comparison of CNR values between plaque components for different classifier
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CNR COL vs. CAL LRNC vs. IPH COL vs. LRNC
Diastole w push (DP) 1.38 ± 0.21 1.44 ± 0.18 1.45 ± 0.20

Diastole w/o push (DNP) 1.10 ± 0.19 1.12 ± 0.19 1.02 ± 0.36
Systole w/o push (SNP) 1.50 ± 0.21 1.41 ± 0.31 1.27 ± 0.30

DP + DNP 1.98 ± 0.22 2.01 ± 0.34 2.14 ± 0.32
DP + SNP 2.38 ± 0.18 2.02 ± 0.18 2.03 ± 0.31
DNP + SNP 2.12 ± 0.30 2.13 ± 0.25 2.18 ± 0.29

DP + DNP + SNP 2.96 ± 0.21 3.08 ± 0.20 2.99 ± 0.22

Table 9.2: SVM-derived CNR results between plaque components for different model input combina-
tions in 20 patients. All aquisitions were acquired with tracking at FH (8.89 MHz).

input combinations. Combining DP, DNP, and SNR data acquisitions as the input feature set

resulted in the highest CNR for CAL vs COL, IPH vs LRNC, and COL vs LRNC. Figures 9.3 and

9.4 show two type V plaques in symptomatic patients, for the feature set (DP + DNP + SNP)

that yielded the highest CNRs. Both examples show high correlation between the automatic SVM

segmentation and the spatially matched histology.

Figures 9.3 and 9.4 show example type V plaques in symptomatic patients, predicted likelihood

maps for different combinations of gated acquisitions and spatially-matched histology delineated

by the pathologist. These results visually show improvement when combining multiple acquisitions

as inputs to the classifier algorithm, compared to a single acquisition input. Additionally, Tables

9.3 and 9.4 show performance metrics for detecting plaque components, and fibrous cap thickness

measurement, respectively, using different input combinations for feature classification.

9.4 Discussion

These results suggest that harmonic log(VoA) is relevant to detecting fibrous cap, which could

support more accurate measurement of fibrous cap thickness. This is a topic of ongoing investigation.

Results suggest that for detecting calcium, the combination of harmonic and high frequency tracking at

diastole with push achieved the highest AUC (0.921). For detecting diffuse collagen, the combination

of harmonic and high frequency tracking at diastole with push achieved the highest AUC (0.909).

For detecting fibrous cap, the combination of harmonic and high frequency tracking at diastole

with push achieved the highest AUC (0.916). For detecting lipid-rich necrotic core, both harmonic

at diastole with push and combination of harmonic and high frequency tracking at diastole with

push achieved the highest AUC (0.943). Finally for detecting intraplaque hemorrhage, both the

combination of harmonic and high frequency tracking at diastole with push, and the combination

of harmonic tracking acquired at diastole with and without push with systole achieved the highest
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AUC (0.942).

This study also presents limitations regarding the acquisition time and motion artifacts due to

the large addition of information acquired at different tracking frequencies for multiple acquisitions

during the cardiac cycle. Regarding the acquisition time, data acquired at systole without push

and diastole with and without push took a total time of approximately 2 minutes and 50 seconds.

During this time, the sonographer maintained the transducer positioned in a fixed location, however

movement could have been possible due to the patient breathing and difficult positioning. This long

acquisition time also limits the possibility of implementing this technique on a real time framework,

given that the update ratio depends on both acquisitions at systole and diastole. Regarding the

motion artifacts, motion due to blood flow and transducer motion generate spatial mismatch between

different acquisitions. This mismatch has potential of generating error in the machine learning model

because the training data will include neighboring pixels that should not correspond to specific

plaque components. This limitation can be mitigated by registration techniques and by reducing the

amount of acquisitions.

Future work will investigate if the combination of fundamental and harmonic ARFI imaging

improves log(VoA) performance, and combining these data as inputs to our machine learning

framework for automated plaque feature discrimination is also ongoing. Finally, this is an ongoing

study with active data collection. Additional performance analyses will be performed with a larger

number of carotid plaques.
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9.5 Conclusion

This chapter shows that discrimination of carotid plaque components is improved by including

high frequency and harmonic tracking, in addition to acquisitions at systole and diastole. Over all

examined plaques, combining ARFI data acquired at systole and diastole, with and without ARFI

excitations, as inputs to an SVM classifier achieved plaque feature CNRs that were statistically

higher (p<0.01, Wilcoxon) than those achieved using just one of these inputs. Specifically, harmonic

tracking improves contrast between COL and LRNC, and provides better AUC delineation of fibrous

cap than other tracking frequencies. Further, when both harmonic and high frequency tracking

are combined at diastole, the highest AUCs are obtained for differentiating CAL, COL, LRNC,

and IPH. These results suggest that combining tracking frequencies and gated acquisitions improve

characterization of human carotid plaque structure and composition, in vivo, however this approach

has tradeoffs of acquisition time and artifact generation to consider for further clinical development.
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Figure 9.2: Example type V plaque in a symptomatic male, arrows show collagen (green) and
intraplaque hemmorhage (red) on normalized log(VoA) images from ARFI acquisitions at (i) funda-
mental low frequency (FL), (ii) fundamental high frequency (FH), and (iii) harmonic (H) tracking.
(iv) Matched histology delineated by the pathologist.
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Figure 9.3: Example type V plaque in a symptomatic male, predicted likelihood maps for different
combinations of gated acquisitions and spatially-matched histology delineated by the pathologist.
The dashed vertical lines indicate the lateral span of ARFI imaging.

Figure 9.4: Example type V plaque in a symptomatic male, predicted likelihood maps for different
combinations of gated acquisitions and spatially-matched histology delineated by the pathologist.
The dashed vertical lines indicate the lateral span of ARFI imaging.
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Performance Metric AUC Sensitivity Specificity

Calcium

ARFI log(VoA) BR 0.820 0.740 0.740
SVM FH DP 0.904 0.935 0.941
SVM FL DP 0.825 0.750 0.750
SVM Harmonic DP 0.856 0.760 0.780
SVM (FH + Harmonic) DP 0.921 0.935 0.958
SVM (FH + Harmonic) DNP 0.888 0.911 0.943
SVM (FH + Harmonic) SNP 0.859 0.902 0.910
SVM FH (DP + DNP + SNP) 0.871 0.918 0.949
SVM FL (DP + DNP + SNP) 0.858 0.904 0.904
SVM Harmonic (DP + DNP + SNP) 0.862 0.908 0.926

Diffuse Collagen

ARFI log(VoA) BR 0.850 0.710 0.710
SVM FH DP 0.899 0.857 0.759
SVM FL DP 0.857 0.740 0.760
SVM Harmonic DP 0.865 0.752 0.781
SVM (FH + Harmonic) DP 0.909 0.915 0.905
SVM (FH + Harmonic) DNP 0.878 0.870 0.905
SVM (FH + Harmonic) SNP 0.890 0.871 0.902
SVM FH (DP + DNP + SNP) 0.891 0.846 0.851
SVM FL (DP + DNP + SNP) 0.832 0.850 0.901
SVM Harmonic (DP + DNP + SNP) 0.879 0.889 0.908

Fibrous Cap

ARFI log(VoA) BR 0.910 0.880 0.790
SVM FH DP 0.912 0.853 0.891
SVM FL DP 0.855 0.802 0.802
SVM Harmonic DP 0.912 0.880 0.820
SVM (FH + Harmonic) DP 0.916 0.926 0.870
SVM (FH + Harmonic) DNP 0.892 0.818 0.930
SVM (FH + Harmonic) SNP 0.860 0.849 0.905
SVM FH (DP + DNP + SNP) 0.902 0.914 0.916
SVM FL (DP + DNP + SNP) 0.860 0.873 0.878
SVM Harmonic (DP + DNP + SNP) 0.909 0.907 0.939

Lipid-rich Necrotic Core

ARFI log(VoA) BR 0.860 0.810 0.740
SVM FH DP 0.938 0.986 0.937
SVM FL DP 0.910 0.852 0.855
SVM Harmonic DP 0.943 0.880 0.875
SVM (FH + Harmonic) DP 0.943 0.981 0.942
SVM (FH + Harmonic) DNP 0.905 0.846 0.904
SVM (FH + Harmonic) SNP 0.903 0.908 0.913
SVM FH (DP + DNP + SNP) 0.871 0.895 0.915
SVM FL (DP + DNP + SNP) 0.896 0.908 0.908
SVM Harmonic (DP + DNP + SNP) 0.899 0.902 0.903

Intraplaque Hemorrhage

ARFI log(VoA) BR 0.920 0.850 0.850
SVM FH DP 0.930 0.877 0.871
SVM FL DP 0.905 0.801 0.802
SVM Harmonic DP 0.925 0.880 0.830
SVM (FH + Harmonic) DP 0.942 0.901 0.900
SVM (FH + Harmonic) DNP 0.872 0.909 0.905
SVM (FH + Harmonic) SNP 0.900 0.927 0.883
SVM FH (DP + DNP + SNP) 0.927 0.937 0.912
SVM FL (DP + DNP + SNP) 0.858 0.880 0.888
SVM Harmonic (DP + DNP + SNP) 0.942 0.923 0.960

Table 9.3: Performance metrics for detecting calcium, diffuse collagen, fibrous cap, lipid-rich necrotic
core, and intraplaque hemorrhage by Support Vector Machine (SVM) input combinations.
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Measurement Metric R RPC CV Bias [mm]

Average FC Thickness

ARFI log(VoA) BR 0.94 0.18 25.00 0.64
SVM FH DP 0.97 0.11 7.00 0
SVM FL DP 0.90 0.15 18.41 0.5
SVM Harmonic DP 0.98 0.10 10.21 0.22
SVM (FH + Harmonic) DP 0.91 0.21 10.58 0.26
SVM (FH + Harmonic) DNP 0.91 0.20 11.02 0.55
SVM (FH + Harmonic) SNP 0.90 0.20 15.25 0.45
SVM FH (DP + DNP + SNP) 0.98 0.11 7.01 0.2
SVM FL (DP + DNP + SNP) 0.93 0.23 8.10 0.26
SVM Harmonic (DP + DNP + SNP) 0.95 0.20 6.50 0.44

Minimum FC Thickness

ARFI log(VoA) BR 0.74 0.56 24.00 0.71
SVM FH DP 0.94 0.18 8.57 0.41
SVM FL DP 0.81 0.22 15.40 1.24
SVM Harmonic DP 0.95 0.20 10.11 0.40
SVM (FH + Harmonic) DP 0.90 0.19 12.54 0.23
SVM (FH + Harmonic) DNP 0.84 0.18 12.60 0.95
SVM (FH + Harmonic) SNP 0.82 0.18 15.95 1.08
SVM FH (DP + DNP + SNP) 0.85 0.17 10.56 0.36
SVM FL (DP + DNP + SNP) 0.80 0.20 16.64 0.48
SVM Harmonic (DP + DNP + SNP) 0.85 0.16 8.50 0.32

Maximum FC Thickness

ARFI log(VoA) BR 0.80 0.27 26.00 0.37
SVM FH DP 0.91 0.23 17.28 0.15
SVM FL DP 0.78 0.32 25.90 0.42
SVM Harmonic DP 0.93 0.22 18.20 0.16
SVM (FH + Harmonic) DP 0.82 0.25 15.56 0.12
SVM (FH + Harmonic) DNP 0.80 0.29 18.52 0.14
SVM (FH + Harmonic) SNP 0.75 0.28 18.60 0.22
SVM FH (DP + DNP + SNP) 0.88 0.20 14.02 0.12
SVM FL (DP + DNP + SNP) 0.80 0.28 18.98 0.25
SVM Harmonic (DP + DNP + SNP) 0.89 0.20 12.80 0.11

Table 9.4: Fibrous cap thickness measurement metrics from regression and Bland Altman analysis
by Support Vector Machine (SVM) input combinations. RPC = reproducibility coefficient, CV =
coefficient of variation.
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CHAPTER 10

CONCLUSIONS AND FUTURE WORK

10.1 Conclusions

The results presented in this dissertation support the hypothesis that enhanced noninvasive

ARFI ultrasound methods improve discrimination of CAL, COL, TRFC, LRNC, and IPH in human

carotid atherosclerotic plaques in vivo, relative to ARFI PD.

First, it was shown that the decadic logarithm of the variance of acceleration, or log(VoA),

improved in vivo carotid atherosclerotic plaque feature delineation relative to ARFI PD. Although

log(VoA) is influenced by both CC and SNR, evaluating CC alone or SNR alone did not differentiate

IPH, LRNC, COL, and CAL as well as log(VoA).

Second, it was demonstrated that ARFI log(VoA) improved fibrous cap thickness and component

area measurement in comparison to ARFI PD. In twenty human carotid plaques, trained blinded

readers achieved better performance when delineating plaque composition when using log(VoA)

images than when using ARFI PD. Overall, these results suggest that ARFI-based imaging, in

particular the log(VoA) parameter, is relevant to delineating carotid plaque structure and composition

for vulnerable carotid plaque detection.

Third, it was shown that machine learning classifiers not only automate, but also improve, the

sensitivity and specificity of plaque feature detection over trained blinded readers. Machine learning

classifiers enable incorporation of multiple ARFI data forms, which reduced variability and improved

sensitivity and specificity for identifying independent plaque components.

Finally, automatic plaque delineation was shown to be improved by including high frequency and

harmonic tracking as well as acquisitions at systole and diastole. Over all examined plaques, combi-

nations of different acquisitions as inputs to an SVM classifier achieved plaque feature differentiation

performances that were statistically higher than those achieved with one acquisition type.
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10.2 Future Work

Future work will include more patients to determine if ARFI-derived carotid plaque structure

and composition is related to symptoms such as amaurosis fugax, transient ischemic attack or

stroke. Due to the small number of patients enrolled in this study, it was difficult to assess the

differences between plaques from symptomatic and asymptomatic patients. Improving the sensitivity

of noninvasive imaging to dangerous asymptomatic atherosclerosis is regarded as a relevant challenge

in the medical community due to evidence suggesting CEA may not be the best intervention strategy

for asymptomatic disease. Therefore, future ARFI studies should assess asymptomatic patients to

determine what additional information can be provided by this approach.

Additionally, with more available patient data, further algorithm testing strategies including

holdout and k-fold validation could be implemented. Alternative classifier structures, including

neural networks, may yield improved performance when training and validation set sizes grow.

Finally, the next step to establishing ARFI as a clinically relevant tool for assessing carotid

plaque will likely be prospective clinical trials that correlate ARFI-derived plaque signatures to

future ischemic events. While it was necessary to utilize CEA patients in this dissertation to validate

ARFI’s capability of detecting plaque features, these patients represent an ideal scenario for imaging

because plaques in these patients are usually highly advanced and features are large. For ARFI to

make a broader impact on clinical care, it must be effective in asymptomatic patients and patients

with much lower stenosis levels than were imaged in this CEA study.

While there are still challenges for establishing ARFI imaging as a clinical tool for stroke risk

prediction, the research presented in this dissertation suggests that ARFI-based imaging is efficacious

for characterizing plaque structure and composition, thereby identifying plaque components that

confer risk for stroke. Potential for extension to other peripheral arteries is relevant for future work.
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APPENDIX A

CEA PATIENT CHARACTERISTICS

A.1 Summary

The studies reported in this dissertation encompass different patient characteristics that may

give rise to differences in the clinical outcome. Therefore, it is paramount to evaluate the inclusion

of different patient groups in these studies and the possible effect size variation generated in the

outcomes.

Appendix 1 assessed differences in the 2 study cohorts assessed in the present dissertation. CEA

Study Part I encompasses 20 carotid samples obtained (after exclusions) from 25 CEA patients

scanned between 2012 and 2014. CEA Study Part II encompasses 20 carotid samples obtained (after

exclusions) from 21 CEA patients scanned between 2019 and 2021.

Here, plaque component areas measured from histology, considered as the ground truth in this

study, are calculated for calcium, lipid-rich necrotic core, fibrous cap, and intraplaque hemorrhage.

Differences in age and gender are shown below and do not indicate significant differences (Wilcoxon,

p < 0.05) between cohorts.

A.2 CEA Study Part I

A.2.1 Age

Patient stratification by age is shown in Figure A.1.

Figure A.1: Component areas for calcium, lipid-rich necrotic core, fibrous cap, and intraplaque
hemorrhage. 0 = Age < 60 years old, 1 = Age > 60 years old.
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A.2.2 Gender

Patient stratification by gender is shown in Figure A.2.

Figure A.2: Component areas for calcium, lipid-rich necrotic core, fibrous cap, and intraplaque
hemorrhage. 0 = Male, 1 = Female

A.3 CEA Study Part II

A.3.1 Age

Patient stratification by age is shown in Figure A.3.

Figure A.3: Component areas for calcium, lipid-rich necrotic core, fibrous cap, and intraplaque
hemorrhage. 0 = Age < 60 years old, 1 = Age > 60 years old.

A.3.2 Gender

Patient stratification by gender is shown in Figure A.4.
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Figure A.4: Component areas for calcium, lipid-rich necrotic core, fibrous cap, and intraplaque
hemorrhage. 0 = Male, 1 = Female
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APPENDIX B

DIFFERENTIATING MALIGNANT FROM BENIGN BREAST MASSES
USING VISR-ASSESSED MECHANICAL ANISOTROPY

B.1 Introduction

In this appendix, in vivo Viscoelastic Response (VisR) ultrasound was implemented to assess

the diagnostic relevance of mechanical anisotropy compared against biopsy findings. VisR relative

elasticity (RE), relative viscosity (RV), and peak displacement (PD) were measured for each transducer

orientation, and fit to a sinusoid by least-squares minimization. The ratio of the maximum to the

minimum parameter value was calculated to reflect the degree of anisotropy (DoA). DoAs by PD, RE,

and RV were statistically significantly greater in background than in lesion for all malignant cases

but statistically significantly smaller in background than in lesion for all benign cases (Wilcoxon,

p < 0.05). Additionally, differences between lesion and background integrated over angle by RE,

RV and PD were statistically significantly different (Wilcoxon, p < 0.05) for malignant and benign

lesions across all examined patients. These results suggest that VisR-derived mechanical anisotropy

assessment could be diagnostically relevant for discriminating malignant from benign breast lesions.

B.2 Background

The main objective of breast cancer screening is to detect early-stage cancer, or precancerous

lesions, at a time before symptoms emerge and when treatment is likely to be successful. Screening is

beneficial when it averts progression of disease, but adverse effects to patients may result downstream

from false positives. The current screening standard in the US is digital mammography, with

sensitivity reported in the range of 0.40 to 0.85 [129], and a positive predictive value of 0.31 [130].

Sensitivity is improved by augmenting mammography with MRI and B-Mode ultrasound, but false

positive rates also increase [131].

In addition to the previous clinical standards, studies have also shown that mechanical properties

of breast tissue can be used for cancer detection, with both elasticity [132, 133, 134, 135] [4-7] and

viscosity [136, 137, 138] demonstrated for discriminating malignant from benign lesions. Clinical

studies have shown that the combination of B-Mode and compression elastography have higher

performance (sensitivity: 0.87, specificity: 0.90), than B-Mode alone (sensitivity 0.80, specificity:

0.88) and compression elastography alone (sensitivity: 0.80, specificity: 0.81) [139, 140, 141]. These
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methods, however, are affected by the anisotropic behavior of breast tissue that is not captured

when only performing a single 2D acquisition.

In particular to this study, tissue anisotropy in breast tumors has been shown to correlate with

core biopsy result and tumor grade, with large cancers significantly more anisotropic than small

cancers [142]. Previous studies have acquired strain and shear wave speed data at both radial and

anti-radial locations relative to the lesion and shown correlation with malignancy [142, 143, 144].

However, a major shortcoming of these studies is the lack of alignment with the tissue’s dominant

direction of elasticity or viscosity, which may result in anisotropy measures that do not reflect the

tissue’s true degree of mechanical anisotropy. Further, while both MRI and ultrasound can be used

to measure these biomarkers, ultrasound’s cost effectiveness and ease of implementation render it an

efficient platform to pursue.

Our research group has been developing a new ultrasound-based breast-screening tool to augment

mammography, VisR imaging. In our previous study [145] in 9 women with BIRADS-4 or -5

breast lesions, VisR-derived mechanical DoA was greater in the surrounding tissue background

than in the lesion for all malignant cases but smaller in the background than in the lesion for all

benign cases. These results suggested that lesion-to-background DoA assessment by VisR could be

diagnostically relevant to discriminating malignant from benign breast lesions. In this study, we

expand our assessment to 37 women and systematically evaluate the diagnostic relevance of VisR

anisotropy-derived parameters.

B.3 Methods

B.3.1 Patient Recruitment

This study imaged 37 breast lesions (10 malignant, 27 benign) with BIRADS-4 or -5 ratings

after standard screening imaging in vivo in women. Research subjects were recruited and imaging in

the Breast Imaging Division of the University of North Carolina Hospitals, with IRB approval and

signed consent.

After imaging, the evaluated lesions underwent clinically indicated biopsy with histological

evaluation for identification of malignancy status. Exclusion criteria for this study included the

following: 1) Incomplete data acquisition (N = 3), 2) No presence of mass (N = 2), 3) inconclusive

histological evaluation (N = 2). After exclusions, this study analyzed 30 breast lesions (9 malignant,
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21 benign), from these cohort we also further assess lesions identified as fibroadenomas (N = 9) vs

carcinomas (N = 9).

B.3.2 Viscoelastic Response (VisR) imaging

Raw RF data were acquired using a Siemens S3000 Helix research system using a 9L4 transducer.

To the transducer, a gyroscope was attached to guide manual rotation for data acquisitions at 0◦,

30◦, 60◦, and 90◦ concentric orientations (Figure B.1).

Figure B.1: Schematic of experimental setup: (a) 9L4 transducer attached to a gyroscope that
is rotated from an initial 0◦ position to 30◦, 60◦, and 90◦ concentric locations. (b) A real-time
gyroscope feedback allows concentric rotation and positioning of the transducer.

VisR ensembles consisted of two reference pulses, two acoustic radiation force (ARF) impulses,

and 43 tracking lines. The two ARF impulses were each 300 cycles (71 µs) in duration. The center

frequency and focal configuration of the ARF impulses were 4.21 MHz and F/1.5, respectively. The

impulses were separated by 8 tracking pulses (tARF = 0.70 ms) and followed by 43 additional

tracking pulses (3.74 ms). The tracking and reference pulses were conventional two-cycle A-lines

at a center frequency of 6.15 MHz and pulse repetition frequency of 11.5 kHz. An F/1.5 focal

configuration on transmit and dynamic focusing and aperture growth on receive were used for the

reference and tracking pulses. VisR ensembles (reference + ARF + tracking pulses) were acquired

in 40 lateral positions evenly spaced across a 2-cm lateral field of view for 2D imaging.

VisR displacements were measured using one dimensional axial NCC [91]. The obtained dis-

placement profiles were then fit to the mass-spring-damper (MSD) model using a custom C++
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implementation of the Nelder-Mead non-linear least-squares minimization [146, 147]. VisR depth

correction was applied to VisR relative elasticity and relative viscosity parameters, and VisR elasticity

correction was applied to VisR relative viscosity results following the method in [148].

B.3.3 Anisotropy Calculation

Figure B.2 includes a flowchart of the present methodology. B-Mode, VisR peak displacement

(PD), relative elasticity (RE), and relative viscosity (RV) were measured in the lesion and also in

the background surrounding tissue, for each transducer orientation. These values were assessed for

malignancy differentiation through the median values from all acquisition angles (Wilcoxon-Ranksum

test). Additionally, these parametric values were fit to a sinusoid by least-squares minimization, with

extrapolation to 360◦. Degree of anisotropy (DoA) was calculated as the ratio of the interpolated

maximum to minimum parameter values. Finally, lesion DoA (LDoA), and surrounding tissue DoA

(SDoA) were also assessed and combined as log(LDoA/SDoA) for each parameter and compared

between malignant and benign masses.

Assessment was performed first using a statistical Wilcoxon-Ranksum test to identify signifi-

cancy when differentiating benign vs. malignant masses. When combining LDoA and SDoA into

log(LDoA/SDoA), a performance analysis was implemented to assess the sensitivity and specificity

of malignancy detection using the Younden’s index as the values that maximized the area under the

curve (AUC) by calculating the receiver operating characteristic (ROC) curves, using the pathology

outcomes as the validation standard.

B.4 Results

For a representative invasive ductal carcinoma from an 80-year-old female, B-Mode images are

shown in Figure B.3(a), acquired at 0◦, 30◦, 60◦, and 90◦ concentric transducer rotations. Regions

of interest are indicated for the lesion (blue) and its background surrounding tissue (yellow) for each

position. VisR peak displacement values derived from the segmented regions are shown in Figure

B.3(b), where a sinusoid by least-squares minimization, with extrapolation to 360◦ is also shown in

black for both regions. Table B.1 depicts the median and standard deviation values calculated from

all four concentric transducer rotations for all patients. P-values indicate that B-Mode and VisR PD,

RE, and RV independent parametric amplitudes don’t provide statistically significant differentiation

between benign vs. malignant masses, and fibroadenomas vs. carcinomas.

Figure B.4 shows two breast mass examples from an 80-year-old female with an invasive ductal
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Figure B.2: Flow chart of the parameter evaluation, starting with RF VisR data acquisition and
finishing on the evaluation of log(LDoa/SDoA).

carcinoma, and a 50-year-old female with a fibroadenoma. From top row to bottom row, B-Mode,

VisR PD, RE, and RV are calculated for the lesion and its surrounding tissue. DoA is also calculated

per parameter for the lesion (LDoA) and its surrounding tissue (SDoA), as the ratio of the maximum

to minimum parametric sinusoidal fitted values. DoAs calculated from the segmented regions

in B-Mode indicated isotropic behavior for both carcinoma (LDoA = 1.02, SDoA = 1.02), and

fibroadenoma (LDoA = 1.04, SDoA = 1.08). DoA values derived from all VisR parameters indicate

anisotropic behavior in both lesion and surrounding media. For VisR PD, in the carcinoma the

lesion has a lower DoA than the surrounding tissue (LDoA = 1.20, SDoA = 1.95), whereas in the

fibroadenoma, the lesion has a higher DoA than the surrounding tissue (LDoA = 1.71, SDoA =

1.54). For VisR RE, in the carcinoma the lesion also has a lower DoA than the surrounding tissue

(LDoA = 1.23, SDoA = 1.67), whereas in the fibroadenoma, the lesion has a higher DoA than the
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Figure B.3: (a) B-Mode images acquired at 0◦, 30◦, 60◦, and 90◦ concentric rotations indicating
mass (blue) and surrounding tissue (yellow). (b) VisR peak displacement calculated on each location
with a sinusoidal fit extrapolated to 360◦.

Benign Malignant p-value Fibroadenoma Carcinoma p-value(N = 21) (N = 9) (N = 9) (N= 9)
B-Mode 3.706 (0.255) 3.284 (0.237) 0.556 3.843 (0.235) 3.363 (0.225) 0.601
VisR PD 3.184 (1.67) 2.879 (0.713) 0.186 3.993 (2.246) 2.577 (0.522) 0.164
VisR RE 53.191 (8.923) 78.45 (35.975) 0.113 64.574 (12.009) 82.693 (34.584) 0.199
VisR RV 78.416 (17.426) 91.719 (37.522) 0.208 76.005 (16.625) 86.477 (35.037) 0.193

Table B.1: B-Mode, VisR peak displacement, relative elasticity, and relative viscosity amplitudes for
both lesion and its surrounding tissue from (a) benign vs. malignant masses, and (b) fibroadenomas
vs. carcinomas, p-value from Wilcoxon-Ranksum test.

surrounding tissue (LDoA = 2.96, SDoA = 2.91). Finally for VisR RV, the previous trend repeats

where in the carcinoma the lesion has a lower DoA than the surrounding tissue (LDoA = 1.68, SDoA

= 1.94), whereas in the fibroadenoma, the lesion has a higher DoA than the surrounding tissue

(LDoA = 2.91, SDoA = 1.76).

Figure B.5 illustrates the median LDoA (blue) and SDoA (yellow) values per mass for all patients

(N = 30), from top row to bottom row, derived from B-Mode, VisR PD, RE, and RV. It can be

observed that B-Mode results are on average 1, indicating isotropy in B-Mode property. Additionally,

for all VisR derived parameters, in malignant cases LDoA is lower than SDoA, whereas in benign

cases LDoA is higher than SDoA. Figure 6 combines LDoA and SDoA in a logarithmic ratio to further
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Figure B.4: Example invasive ductal carcinoma (left) and fibroadenoma (right) BIRADS-5 masses.
Lesion and surrounding tissue parameters are calculated from B-Mode, VisR peak displacement,
relative elasticity, and relative viscosity. Degree of Anisotropy is calculated from both lesion and
surrounding tissue as the ratio of the interpolated maximum to minimum parameter values.

merge mechanical anisotropy behaviors in both lesion and its surrounding tissue. Figure B.6(a)

illustrates malignant vs. benign values for B-Mode, VisR PD, RE, and RV-derived log(LDoA/SDoA),

with statistical significance (Wilcoxon, p < 0.01) achieved only for VisR PD, RE, and RV. Figure

B.6(b) illustrates carcinoma vs. fibroadenoma values for B-Mode, VisR PD, RE, and RV-derived

log(LDoA/SDoA), with statistical significance (Wilcoxon, p < 0.01) achieved also only for VisR PD,

RE, and RV.

Malignant vs. Benign Carcinoma vs. Fibroadenoma
B-Mode VisR PD VisR RE VisR RV B-Mode VisR PD VisR RE VisR RV

AUC 0.6 0.93 0.96 0.97 0.54 0.92 0.98 0.96
Sensitivity 0.33 1 0.95 0.95 0.33 1 0.89 1
Specificity 0.89 0.78 0.89 0.89 0.88 0.75 1 0.88

Table B.2: Performance metrics of log(LDoA/SDoA) calculated from B-Mode, VisR peak displace-
ment (PD), relative elasticity (RE), and relative viscosity (RV), comparing malignant vs. benign
masses, and carcinomas vs. fibroadenomas.

Table B.2 reports ROC curve results for detecting (a) malignant vs. benign masses, and (b)
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carcinomas vs. fibroadenomas, with performance outcomes of AUC, sensitivity and specificity. For

differentiating malignant vs. benign masses, VisR RE and RV achieved the highest AUCs of 0.96

and 0.97, respectively, followed by VisR PD (0.93), and finally B-Mode (0.60). For differentiating

carcinomas vs. fibroadenomas, VisR RE and RV achieved the highest AUCs of 0.98 and 0.96,

respectively, followed by VisR PD (0.92), and B-Mode (0.54).

B.5 Discussion

The in vivo breast lesion and surrounding tissue images shown in Figures B.3 and B.4 quan-

titatively demonstrate that breast tissue presents a mechanically anisotropic behavior that can

be characterized by the proposed method of concentric transducer rotations with a sinusoidal fit.

Quantitative evaluations of parameter amplitudes without considering angle effects, shown in Table

B.1, and AUC analyses of sensitivity and specificity of log(LDoA/SDoA), shown in Table B.2, further

support the superior performance of the combination of lesion and surrounding tissue DoA relative

to angle-independent B-Mode and VisR amplitudes.

Of interest is that using two regions of interest in tissue, i.e., lesion and its surrounding tissue,

yielded higher performance than using the lesion region independently, where no statistically

significant difference was found between malignant and benign masses. These results suggest that

mechanical anisotropy both in the lesions and its surrounding tissue are complementary for identifying

malignancy. The complementarity of the lesion and surrounding tissue behavior is consistent with

prior MRI work showing that biological malignancy changes in structure and composition are not

only present in the mass but also in the neighboring tissue.

Using VisR-derived log(LDoA/SDoA) ratios of PD, RE, and RV for parametric differentiation

between malignant vs. benign masses generally perform comparably to each other via AUC analysis.

In the case of comparing carcinomas vs. fibroadenomas, VisR-derived log(LDoA/SDoA) ratios

maintain a similar performance, with AUC > 0.91, sensitivity > 0.88, and specificity > 0.74. This

suggests that elasticity and viscosity-derived anisotropy from lesion and surrounding tissue is relevant

for identifying carcinomas in particular to fibroadenomas, but a bigger cohort study is needed to

confirm this suggestion.

In addition to improving detection of malignant vs. benign breast masses, the present methodology

offers the important advantage of characterizing anisotropic behavior. While previous studies

characterized anisotropy by acquiring images at two perpendicular locations, being radial and
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anti-radial planes, or long/short axis, our methodology relies on four concentric data acquisitions

guided by a gyroscope, followed by a sinusoidal fit extrapolated to 360. This approach allows identify

the true degree of mechanical anisotropy, reducing bias from transducer positioning and tissue

heterogeneities.

A limitation of this pilot study is the cohort size that disabled further data comparison between

malignant and benign mass subtypes, and only enabled comparison between fibroadenomas and

carcinomas. Future work involving larger data sets will consider benign subcategories such as necrosis,

galactocele, and sclerosing adenosis, and malignant subcategories such as ductal carcinoma in situ

and lobular carcinoma in situ, inflammatory, and triple negative breast cancer.

An additional factor influencing outcomes is the method of implementing the concentric acquisi-

tions. While the sonographer was trained in breast ultrasound imaging, rotation of the transducer in

a non-planar surface increased difficulty when maintaining a concentric rotation. Bias was reduced

by using a real-time gyroscope feedback, but positioning error was still present. In the future,

application of this technique using a 2D matrix array transducer for 3D volume acquisitions will

minimize positioning bias.

B.6 Conclusion

This work demonstrates the potential of the VisR-derived degree of anisotropy to improve in vivo

breast mass differentiation relative to conventional imaging. These results suggest that VisR-derived

lesion-to-background mechanical anisotropy assessment is relevant to differentiating malignant from

benign lesions in women with BIRADS-4 or -5 masses, in vivo.
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Figure B.5: Degree of anisotropy values (DoA) for both lesion (LDoA) and surrounding tissue (SDoA)
for B-Mode, VisR peak displacement, relative elasticity, and relative viscosity for all malignant and
benign masses (N = 30).
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Figure B.6: (a) Malignant vs. benign mass comparison of log(LDoa/SDoA) calculated from B-Mode
VisR peak displacement, relative elasticity, and relative viscosity. (b) Carcinoma vs. fibroadenoma
mass comparison of log(LDoa/SDoA) calculated from B-Mode VisR peak displacement, relative
elasticity, and relative viscosity.
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