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ABSTRACT

Haoran Zhang: Essays on the Economics of Telecommunications
(Under the direction of Fei Li and Jonathan W. Williams)

My dissertation consists of three chapters on the economics of telecommunications. Chapter 1

studies how COVID-19 pandemic changed people’s internet usage behavior by documenting both

short-term and persistent changes in internet engagement using a novel panel of high-frequency

household-level internet usage spanning 2020-2022. We find that Spring 2020 stay-at-home orders

led to a dramatic increase in residential internet traffic, driven in part by the use of collaboration

applications (e.g., Zoom), and other tools associated with access to the digital economy. We

document changes in intertemporal usage patterns, time spent online, and bit rates across traffic

categories. Finally, we compare behavioral changes in internet engagement by demographic

segment, and discuss implications for broadband labels and the digital divide. Chapter 2 uses

novel household-level data describing internet and TV usage, together with the timing of Kodi

software adoption, to quantify damages from media piracy. We find that adoption does not harm

paid over-the-top video providers. TV subscriptions decrease and internet-tier upgrades increase,

resulting in a 1% reduction in payments to multiple-system operators (MSOs). MSO profits decrease

if TV margins exceed 30%. These behavioral changes harm content providers reliant on MSOs for

distribution via reduced licensing and advertising revenues. Chapter 3 develops a model of demand

for mobile telecommunications with shared data allowances, and estimate it using individual-level

plan and usage decisions. Using the model estimates we measure the biases in preference estimates

that result from ignoring the strategic interaction between household members, and loss in consumer

welfare due to over-consumption early in billing cycles.
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CHAPTER 1: AN EMPIRICAL STUDY OF 2020-2022 BROADBAND DEMAND:
IMPLICATIONS FOR THE DIGITAL DIVIDE

1

1.1 Introduction

The COVID-19 pandemic has changed many aspects of daily life, including how and for what

purposes we use the internet. The use of and engagement with digital technologies surged with

the adoption of social distancing and stay-at-home orders to fight the spread of COVID-19, testing

the limits of global internet infrastructure, as more people used the internet than ever before.

There is reason to believe that some of the new behavioral changes associated with the pandemic

were short-term, reversing as restrictions on business operations and individual movement were

lifted. Other changes, however, such as the uptick in remote productivity by firms and school

by educational institutions, appear to be more lasting, leading to persistent changes in internet

demand. Emphasizing the role that the internet played during the pandemic, the results of a survey

conducted by the Pew Research Center suggest 90% of Americans believe the internet was essential

or important to them during the pandemic and 40% used technology in new ways.2

In this paper, we use a novel panel dataset, describing household-level3 internet engagement

over a 28-month period spanning 2020-2022, to measure contemporaneous changes in internet

usage as local policy restricted business operations and individual movements. The dataset contains

5-minute observations with details on the usage of 2,820 individual application and protocols (e.g.,

Facebook, Netflix, Zoom) for 8,579 unique households. Each observation contains download and

1Coauthored with Jacob Malone, CableLabs, j.malone@cablelabs.com and Zachary Nolan, Department of
Business Administration, University of Delaware, znolan@udel.edu

2https://www.pewresearch.org/internet/2021/09/01/the-internet-and-the-pandemic/
3In this paper, we refer to households, but in the panel we observe unique subscribers of the internet provider.
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upload information (i.e., quantities of bytes transferred during each 5-minute observation, which

can also be converted into 5-minute bitrates by application).

Stay-at-home (SaH) orders that closed local schools and businesses to in-person activity had a

significant impact on residential internet activity. In the markets that the sample was taken, local

SaH orders, which mostly restricted public gatherings and closed broad categories of businesses,

were implemented between March 15, 2020 and March 20, 2020. The single-day maximum of

internet usage was Thursday, March 26, 2020 just after SaH orders took effect. The average

household generated 11.5 gigabytes (GB) of internet traffic that day, which was 53% greater than

the 7.5 GB average observed on the same weekday three weeks prior, on March 5, 2020. Upstream

usage peaked on Thursday, April 2, 2020. The average household used 1.3 GB of upstream traffic

that day, an 86% increase over the 0.7 daily GB observed three weeks prior, on March 12, 2020.

Collaboration applications had the largest increase in usage between the first and last week of March

2020; downstream and upstream daily usage in GB increased for these applications by 233% and

210%, respectively.

Using expanded postal code demographic information, we document differential traffic growth

rates by demographic segment. The increase in total internet traffic following local SaH orders

was increasing in average household age and education level. Households in the top quartile of

education experienced a 63% higher growth rate over the period compared with households in the

bottom quartile of education. Households in the top quartile of average age experienced a 43%

higher growth rate over the period compared with households in the bottom quartile of average age.

Looking over a longer time horizon, average downstream monthly usage grew from 247 GB in

January 2020 to 340 GB in April 2022, a 37% increase. The growth of monthly upstream usage

over the same period was 71% (16 GB to 28 GB). After the initial demand surge in Spring 2020,

downstream and upstream traffic levels decreased and grew slower over the remaining months, with

in-sample monthly peaks, for both downstream and upstream monthly usage, occurring in January

2022 (350 GB and 29 GB, respectively). The average amount of time people spent online grew by

23% between January 2020 (10.8 hours daily) and April 2022 (13.3 hours daily).
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Increased Collaboration usage was persistent beyond the SaH orders in the spring of 2020.

Downstream Collaboration monthly usage increased by 310% (from 2.4 GB to 9.9 GB) between

2020 and 2022 and grew 285% (from 1.9 GB to 7.4 GB) in the upstream direction. Despite this

strong growth in monthly usage, Collaboration is not a “heavy” downstream application, since

online activities like OTT Video, Gaming, Social Media, Browsing, and Downloads account for

more monthly downstream usage, on average, in 2022. That said, Collaboration applications are a

plurality of monthly upstream usage accounting for 7.4 GB (26%) in 2022. Backup (downstream

growth of 153% and upstream growth of 184%) and Enterprise (downstream growth of 153% and

upstream growth of 95%) applications also had notable monthly usage growth between 2020 and

2022. Together with Collaboration applications, the growth of these three categories of applications

does suggest increased remote productivity at home has persisted beyond the early days of the

COVID-19 pandemic and could play a larger role in the forecasting and growth of residential

broadband usage.

We incorporate regional demographic information from the local census to document differ-

ences in internet usage by socioeconomic group. Total internet usage is increasing in education

attainment and decreasing in age. Application categories with strong demographic correlations

include Collaboration, the use of which is increasing in education attainment, and Gaming, OTT

Video, and Social Media, which decrease with age. Many of the differences in categorical usage

that are present throughout the sample grew when stay-at-home orders were first implemented.

In particular, households in census regions with the highest educational attainment experienced

significantly larger changes in overall internet usage and notably the Collaboration category, than

those households in regions with lower educational attainment.

Finally, we discuss the policy implications of our results, including discussions on minimum

broadband standards, broadband labeling, and initiatives targeted at expanding access to broadband

and reducing the “digital divide.” As the importance of internet access became more salient

during the early stages of the pandemic, several FCC policy initiatives emerged seeking to reduce

differences in access to internet across both geographic and socioeconomic lines. In particular,

3



the Emergency Broadband Benefit (replaced in 2022 by the Affordable Connectivity Program)

earmarked $3.2 billion in federal funding to subsidize internet access for lower-income households.

Additionally, to address the rural-urban divide in connectivity, the Rural Broadband Accountability

Plan updates guidelines through which broadband providers can receive incentives for expanding

the reach of their networks in areas with fewer economies of density than typical urban markets.

Our analysis relates to other studies on broadband access and utilization during the COVID-19

pandemic. Related papers in this area include Chiou and Tucker (2020), which finds that individuals

in high-income areas and those with access to high-quality broadband were more likely to comply

with stay-at-home directives, Bacher-Hicks et al. (2020), which finds that the intensity of web

search for remote school-related keywords was higher in areas with high-income and high-quality

broadband, and Barrero et al. (2021), which seeks to measure the economic value of universal access

to high-quality internet for work-from-home. Other studies which attempt to measure the digital

divide include Wedlake et al. (2021); Hampton et al. (2020); Bronzino et al. (2021); Fernandez et al.

(2018, 2019); Hollman et al. (2020); Strover (2018).

Additionally, our analysis relates to other studies of demand for residential broadband, which

have previously documented correlations between internet behaviors and demographic characteris-

tics (Malone et al., forthcoming), the incentives of broadband providers (McManus et al., 2022a),

and the implications of broadband plan characteristics for internet performance (Jordan, 2022; Clark

and Wedeman, 2022).

1.2 Data

The data used in this research were provided by a North American multiple-system operator (MSO).

This MSO offers data, video, and voice subscriptions to consumers over a hybrid-fiber coaxial (HFC)

network. The sample is a panel of subscriber-level network usage, plan choices, and demographics.

The period of observation spans January 1, 2020 through April 30, 2022.
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This sample was created by observing subscribers on a fixed set of service groups.4 A service

group on an HFC network is the first point of aggregation past the customer premise (i.e., “upstream”

from the customer, in the direction of the MSO’s core network). Service groups share a fixed amount

of capacity across all of its connected subscribers. A typical North American service group passes

200 to 400 homes, a subset of which takes service from the MSO. A service group’s shared capacity

is a function of the amount of spectrum and spectral efficiency used by the MSO. Service groups

commonly have a one-to-one relationship with a fiber node, which is a device that manages sent

and received data transmissions across fiber and coaxial cable.5 There are 21 unique service groups

spread across the MSO’s network footprint in this sample.

There are a total of 7,017 unique residential subscribers in the panel and an average of 3,209

subscribers monthly. As shown in Figure 1.1, the number of subscribers observed monthly is

stable over the period of observation, with mostly minor month-to-month fluctuations. The average

subscriber is observed for 13 of the 28 possible months.

1.2.1 Data Sources

There are three distinct pieces of the data from the MSO. A summary of each piece is described

below.

Subscriber Network Demand—Network demand is recorded in 5-minute observations by

application or protocol (e.g., Netflix, Zoom, HTTP). The level of detail of certain types of traffic

(i.e., application vs. protocol) is determined by how the data collection layer is configured. There

are a total of 2,821 unique applications. Table 1.1 describes how applications and protocols are

mapped to broader categories to make the research more tractable. This mapping was constructed

by the authors. Given the high-frequency nature of the usage data (i.e., 5-minute observations),

time spent on certain applications and/or categories can be estimated by the number of observations

4Other papers with similar level of detail on network utilization have primarily covered an operator’s entire
footprint in one or more markets (Malone et al., forthcoming; McManus et al., 2022a).

5This combination of fiber and coaxial cable gives this type of access network the name hybrid-fiber coax.
As HFC networks have evolved over time, fiber has been pushed closer to the customer premise and less
coaxial cable is used.
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Figure 1.1: Number of Unique Subscribers by Month, January 2020-April 2022

Notes: Count of unique subscribers observed in each year-month of
the sample. Includes all subscribers with positive usage in a given
month.

observed. Although estimating time this way is imprecise, since only a portion of a 5-minute

observation could be active by an application, it is a notable improvement over hourly or monthly

aggregations (Malone et al., forthcoming; McManus et al., 2022a; Nolan et al., 2022).

Table 1.1: Usage Categories

Category Example Applications

AR/VR Niantic, Oculus Rift
Backup Amazon Drive, Dropbox, OneDrive

Browsing HTTP, QUIC, SSL, Email
Collaboration FaceTime, Zoom, Slack, Microsoft Teams

Downloads Akamai, Microsoft Updates, Apple Software Updates, CDNs
ECommerce Amazon, iTunes, Walmart

Enterprise Adobe, GitHub, Office 365
Gaming Xbox Live, PlayStation Store downloads

News Apple News, BBC News, CNN, The Wall Street Journal
OTT Audio Apple Music, Spotify, SoundCloud
OTT Video Netflix, Peacock, YouTube

P2P/File Sharing BitTorrent, Usenet, FTP
Remote Access VPN apps, LogMeIn, TeamViewer

Smart Home Amazon Alexa, Apple Siri, Nest
Social Media FaceTime, Zoom, Slack, Microsoft Teams

Notes: List of internet usage categories with example applications and protocols.
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Figure 1.2: Average Download and Upload Speeds, January 2020-April 2022

Notes: Average download and upload plan speeds are computed
at the year-month level across all subscribers observed in a given
month.

Subscriber Plan Choices—Subscriber plan choices are recorded daily with information on the

plan’s advertised download and upload speeds, but not pricing. This MSO completed their roll-out

of 1 gigabit per second (Gbps) service in early 2020. Figure 1.2 summarizes the sample’s average

download and upload speeds. The average download speed increased by 61% between January

2020 and April 2022 (264 Mbps vs. 426 Mbps). Average upload speeds grew by 315% between

January 2020 and April 2022, from 13 Mbps to 54 Mbps, respectively.

Demographics—Demographic data is available for each subscriber in the sample at an expanded

postal code6 level of observation. This level of detail in the demographic data is the most granular

the MSO can observe. This research uses age, income, household size, and education statistics

on each postal code. Demographic data does not get updated frequently, so there is only one

observation per postal code. In Table 1.2, summary statistics on age, education, household size, and

income are reported for the 1,526 postal codes observed. The “average resident” of postal codes in

our sample is 40 years old, has 15 years of education, a household income of $86,034, and comes

from a household with 2.05 members. The median postal code is similar to the average postal code

6I.e., ZIP+4 in the United States or Local Delivery Unit in Canada.
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at 38 years old, 15 years of education, household income of $74,149, and 1.90 household members.

However, there is useful variation in all of these statistics that allow for differences in network

demand to be studied in greater detail. The minimum postal code age (22 years old) is 41% less

than the median and the maximum postal code (76 years old) is 99% greater. For income, the range

of values is even larger. The minimum postal code income ($13,635) is 82% less than the median

and the maximum ($2,200,649) is 2,868% greater. Education has the least amount of variation

across postal codes. The minimum years of education of 12.51 is only 16% less than the median

and the maximum of 16.87 years is 13% greater. Average household size ranges from 1.1 to 8.
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Table 1.2: Distribution of Demographic Variables

Min. 25th Pct. Median Mean 75th Pct. Max.

Age 22.20 36.10 38.20 40.05 43.40 75.90
Income $13,635 $58,771 $74,149 $86,034 $105,457 $2,200,649

Education 12.51 14.50 14.97 15.03 15.73 16.87
Household Size 1.10 1.50 1.90 2.05 2.50 8.00

Notes: This table reports summary statistics on the age, income, and education variables across
the 1,526 postal codes observed in the sample. Age and education are both measured in years.
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For the remainder of the section, summaries of these data sets are covered. Subscriber network

demand is broken out by volume (i.e., GB), time, and the network demands of different applications

(i.e., bitrates). The section concludes with network demand and utilization by demographics.

For the remainder of the section, summaries of these data sets are covered. Subscriber network

demand is broken out by volume (i.e., GB), time, and the network demands of different applications

(i.e., bitrates). The section concludes with network demand and utilization by demographics.

1.2.2 Summary of Subscriber Network Demand

When summarizing subscriber network demand, there are few different aspects worth covering.

The most common way to describe subscriber demand is reporting usage levels in GB. There are

historical reasons for describing usage in volumetric terms. First, measuring GBs is straightforward

for MSOs and does not need the storage and compute that higher-frequency measurements do.

Second, sending and receiving larger data is more costly because it uses more of network’s capacity,

which is scarce. Therefore, usage-based billing and usage summaries focus on how many GBs are

consumed by a subscriber.

However, subscriber demand can also be described by how much time is spent on different types

of applications. There is an opportunity cost of time, so what subscribers choose to do online is

suggestive of the value internet connectivity creates. The connection between these two perspectives

(time and volume) are application bitrates. Per unit of time, an application with a greater bitrate will

generate more data and be more demanding on the network by utilizing more of the shared capacity.

In this section, each of these three aspects of the sample is covered across all subscribers. These

summaries provide not only a characterization of internet usage over the 2020–2022 time period,

but also a basis for understanding how COVID-19 impacted residential broadband networks.

Average daily downstream usage across the entire 28-month sample was 9.41 GB. The distribu-

tion across subscribers is heavily right-skewed, with a 25th percentile of 3.01 GB, median of 7.10

GB, and 95th percentile of 26.15 GB. These statistics, along with category breakouts, are reported

in Table 1.3. On average, the top downstream applications by volume are OTT Video (5.08 GB),

10



Table 1.3: Distributions of Daily Downstream Usage (Gigabytes), 2020-2022

Category Mean Std. Dev. p5 p25 p50 p75 p95 N

OTT Video 5.08 5.30 0.05 1.28 3.60 7.09 15.09 7,017
Gaming 1.03 2.73 0.00 0.00 0.01 0.73 5.68 7,017

Social Media 0.84 1.66 0.00 0.08 0.40 1.01 2.70 7,017
Browsing 0.77 1.32 0.01 0.16 0.43 0.93 2.52 7,017

Other 0.44 0.90 0.01 0.08 0.21 0.48 1.52 7,017
Downloads 0.38 0.59 0.00 0.09 0.21 0.44 1.33 7,017

Collaboration 0.25 0.45 0.00 0.02 0.10 0.30 0.93 7,017
ECommerce 0.21 0.30 0.00 0.06 0.14 0.27 0.61 7,017

P2P/File Sharing 0.13 1.06 0.00 0.00 0.00 0.01 0.37 7,017
OTT Audio 0.08 0.16 0.00 0.00 0.02 0.10 0.34 7,017

Remote Access 0.08 0.52 0.00 0.00 0.00 0.00 0.27 7,017
Backup 0.06 0.23 0.00 0.00 0.01 0.05 0.25 7,017

Enterprise 0.05 0.24 0.00 0.00 0.01 0.03 0.17 7,017
News 0.01 0.10 0.00 0.00 0.00 0.01 0.03 7,017

AR/VR 0.00 0.03 0.00 0.00 0.00 0.00 0.00 7,017
Smart Home 0.00 0.02 0.00 0.00 0.00 0.00 0.00 7,017

Total 9.41 9.04 0.22 3.01 7.10 13.08 26.15 7,017

Notes: Distribution of subscriber-average daily downstream usage levels by application cate-
gory and overall, measured in gigabytes. Each point in the distribution is a subscriber average,
taken across all days in which the subscriber is observed.

Gaming (1.03 GB), Social Media (0.84 GB), and Browsing (0.77 GB). Each category’s usage is also

right-skewed. OTT Video and Browsing are the only categories with over 0.01 GB of downstream

usage for all percentiles reported in the table.

Average daily upstream usage was 0.73 GB over these two years, which is an order of magnitude

smaller than the downstream average. The distribution of daily upstream usage, described in

Table 1.4, is more right-skewed than downstream usage. The 95th percentile daily upstream value

(2.20 GB) is 5.8 times greater than the median (0.38 GB). The same ratio is 3.7 for daily downstream

usage.

The largest volume upstream categories are different than the top downstream applications.

Collaboration, P2P/File Sharing, and Backup are the top three daily upstream categories, none

of which are top three downstream categories. The top downstream applications are rank sixth

through eighth as upstream drivers. Upstream usage is also not dominated by a single category like
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Table 1.4: Distributions of Daily Upstream Usage (Gigabytes), 2020-2022

Category Mean Std. Dev. p5 p25 p50 p75 p95 N

Collaboration 0.17 0.40 0.00 0.01 0.05 0.18 0.64 7,017
P2P/File Sharing 0.10 1.11 0.00 0.00 0.00 0.00 0.13 7,017

Backup 0.09 0.25 0.00 0.00 0.02 0.09 0.38 7,017
Other 0.09 0.36 0.00 0.01 0.02 0.07 0.31 7,017

Browsing 0.08 0.40 0.00 0.01 0.03 0.07 0.25 7,017
OTT Video 0.07 0.16 0.00 0.02 0.04 0.08 0.20 7,017

Social Media 0.04 0.16 0.00 0.00 0.02 0.04 0.12 7,017
Gaming 0.03 0.16 0.00 0.00 0.00 0.01 0.11 7,017

Enterprise 0.02 0.07 0.00 0.00 0.00 0.01 0.07 7,017
Remote Access 0.02 0.17 0.00 0.00 0.00 0.00 0.05 7,017

Smart Home 0.01 0.25 0.00 0.00 0.00 0.00 0.00 7,017
ECommerce 0.01 0.02 0.00 0.00 0.01 0.01 0.03 7,017
Downloads 0.01 0.02 0.00 0.00 0.00 0.01 0.02 7,017
OTT Audio 0.00 0.00 0.00 0.00 0.00 0.00 0.01 7,017

News 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7,017
AR/VR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7,017

Total 0.73 1.60 0.01 0.14 0.38 0.81 2.20 7,017

Notes: Distribution of subscriber-average upstream downstream usage levels by application
category and overall, measured in gigabytes. Each point in the distribution is a subscriber
average, taken across all days in which the subscriber is observed.

downstream usage. Collaboration traffic accounts for 23% of the overall average, compared to OTT

Video being 54% of the overall downstream average.

As mentioned above, a complementary measure of internet engagement is time allocated to

different applications. The time spent online by a subscriber is estimated by counting the number of

5-minute observations with positive traffic. There are limitations to this approach. In particular, an

application may only be active for part of a 5-minute observation, which leads to overestimation. It

follows that the estimated bitrate may be underestimated, due to the same measurement error. This

issue is more relevant for “short-lived” applications (e.g., uploading a small file to Dropbox, which

may take seconds) compared to those with longer sessions (e.g., watching a video). Nevertheless,

relative comparisons across subscribers is still possible since this uniformly impacts the panel.

Estimated time spent online by category is reported in Table 1.5. The average household has

online activity occurring for 11.8 hours per day. Note that some traffic may be from background or
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network management traffic, so not all of this activity is created by active human engagement. The

distribution of time intensity has less variability than the usage distributions above. The coefficient

of variation of time intensity is 0.25, compared to 2.19 and 0.96 for daily upstream and downstream

gigabytes, respectively. The 95th percentile subscriber spent 21.4 hours online, 1.76 times the

median subscriber.

Browsing (7.0 hours), OTT Video (5.9 hours), Social Media (3.6 hours), and ECommerce

(2.2 hours) are the top four categories by average daily time engagement. While three of these

applications are in the top four applications of daily downstream usage, the differences between

them is notably smaller. For example, in Table 1.3, OTT Video’s daily downstream usage is 6.6

times larger that Browsing (5.08 GB vs. 0.77 GB); however, in Table 1.5, Browsing’s average daily

time is 17% more than OTT Video’s (7.0 hours vs. 5.9 hours). From the perspective of application

volume, one could conclude that OTT Video is the runaway most popular online activity, but a

complementary view of time engagement suggests that while video is one of the top applications

social media, shopping, and browsing are also common online.

Comparing application bitrates is one way to describe their different network demands. Higher

bitrate activities use more of the network’s capacity and a subscriber’s speed tier. However,

applications can also have latency or reliability needs, which are both harder to measure than

bitrates. How an application is developed and the activity itself determines the optimal mix of

bitrate, latency, and reliability. For example, downloading a new video game from a digital

marketplace (e.g., the PlayStation Store) benefits the most from a faster speed tier, due to the large

payload, has little need for low latency, and can be more resilient to a network dropout. However,

video calls may not benefit from faster speeds beyond what its video and audio encoders need, but

might prefer lower latency and greater reliability because it is a real-time application.

In Table 1.6 and Table 1.7, bitrate statistics by application are reported. These statistics are

calculated by looking at downstream and upstream traffic for only subscribers who use those

particular applications; this is why the number of observations varies by row. For each “active”
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Table 1.5: Distribution of Time Spent Online (Hours), 2020-2022

Category Mean Std. Dev. p5 p25 p50 p75 p95 N

Browsing 7.0 5.1 0.4 3.1 5.9 9.7 17.6 7,017
OTT Video 5.9 3.9 0.2 2.9 5.6 8.4 13.2 7,017

Other 4.9 3.7 0.3 2.2 4.1 6.9 12.3 7,017
Social Media 3.6 2.9 0.1 1.2 3.1 5.2 9.0 7,017
ECommerce 2.2 2.0 0.1 0.8 1.7 3.0 5.8 7,017

Collaboration 1.8 2.0 0.0 0.3 1.1 2.7 5.9 7,017
Backup 1.0 1.3 0.0 0.1 0.6 1.4 3.4 7,017

Downloads 1.0 0.9 0.0 0.4 0.8 1.3 2.6 7,017
Gaming 1.0 1.9 0.0 0.0 0.2 1.1 4.8 7,017

Enterprise 0.9 1.2 0.0 0.2 0.6 1.1 2.9 7,017
OTT Audio 0.7 1.4 0.0 0.0 0.2 0.8 2.6 7,017

P2P/File Sharing 0.4 1.4 0.0 0.0 0.0 0.2 1.3 7,017
News 0.3 0.5 0.0 0.0 0.1 0.4 1.2 7,017

Remote Access 0.3 1.1 0.0 0.0 0.0 0.0 1.6 7,017
Smart Home 0.2 1.2 0.0 0.0 0.1 0.1 0.4 7,017

AR/VR 0.1 1.0 0.0 0.0 0.0 0.0 0.0 7,017
Overall 11.8 5.9 0.9 7.7 12.1 16.2 21.4 7,017

Notes: Distribution of time spent by application category and overall, measured in hours.
Given that multiple application categories can be active within the same 5-minute observa-
tion, the category-specific means do not sum to the overall mean. Each point in the distri-
bution is a subscriber average, taken across all days in which the subscriber is observed.
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subscriber, an average bitrate is taken then aggregated for the table. Therefore, these tables permit

comparison of applications and the variability across subscribers.

Bitrates can vary by subscriber for a few reasons. First, some applications tend to scale with

plan speeds, so those on faster speed tiers, all else constant, will have greater bitrates. An example

of such an application is Downloads. Second, some subscribers prefer richer or more immersive

experiences in certain types of applications. For example, one subscriber may prefer high-definition

over standard-definition video, or prefer to use collaboration software with video enabled. Third,

subscribers may produce or consume files of different sizes, but otherwise are using the applications

like others. Examples would include using backup software to only capture Office documents,

where another subscriber may be uploading video files to the cloud, or some subscribers may choose

to purchase video, music, and games digitally where other subscribers do not.

The top bitrate applications, ranked by average subscriber bitrate, are OTT Video (1.6 Mbps),

Gaming (1.6 Mbps), Downloads (799 Kbps), and P2P/File Sharing (551 Kbps). Gaming traffic

has the heaviest 95th percentile subscriber at 7.3 Mbps. OTT Video and Downloads produce

greater bitrates more consistently than others. These two categories are the only ones with 5th

percentiles over 100 Kbps and median bitrates over 500 Kbps. They also have immense prevalence

online with over 98% of the subscribers in the panel using them. Smart Home (coefficient of

variation, 6.2), AR/VR (5.6), Remote Access (3.4), P2P/File Sharing (3.23), Enterprise (2.6) have

the most variability across subscribers, when measured by coefficients of variation. OTT Video (0.7),

Downloads (1.1), Collaboration (1.1), ECommerce (1.1), and Social Media (1.1) have the least.

Collaboration (191 Kbps), Backup (155 Kbps), P2P/File Sharing (93 Kbps), Remote Access (40

Kbps), and Enterprise (34 Kbps) are the top five upstream applications by bitrate. P2P/File Sharing

is the only application that intersects with the top five downstream applications. None of the statistics

included in Table 1.7 are above 1 Mbps, which is another constrast to the downstream bitrates.

Using the coefficient of variation again to measure variability, Remote Access (7.5), AR/VR (5.0),

P2P/File Sharing (4.7), Smart Home (4.6), and Browsing (3.7) have the most and Collaboration
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Table 1.6: Distribution of Active Downstream Bitrates (Kilobits per Second), 2020-2022

Category Mean Std. Dev. p5 p25 p50 p75 p95 N

OTT Video 1,632 1,079 265 824 1,416 2,227 3,691 6,939
Gaming 1,620 3,652 9 32 216 1,806 7,279 6,657

Downloads 799 871 134 371 589 937 2,080 6,944
P2P/File Sharing 551 1,778 6 25 100 330 2,331 6,429

Social Media 376 428 28 135 296 483 897 6,923
OTT Audio 296 546 19 72 167 325 945 6,755

Collaboration 270 299 19 98 196 347 755 6,888
ECommerce 235 266 52 124 189 277 528 6,933

Browsing 232 395 39 89 152 263 653 6,977
Remote Access 200 671 2 5 22 133 931 5,239

Other 162 243 32 67 109 183 425 6,984
AR/VR 145 815 5 17 17 34 483 2,035

Backup 140 293 10 35 66 133 517 6,789
Enterprise 88 227 6 18 39 82 279 6,922

News 66 165 8 17 34 67 195 6,775
Smart Home 5 31 0 1 1 4 13 6,038

Notes: This table reports statistics on the distribution of downstream bitrates observed by cat-
egory. Each subscriber’s average downstream bitrate for a particular application category is
calculated and then used to create the distributional statistics included. The number of sub-
scribers included in each row, the N column, represents the unique number of subscribers that
had traffic in that category. It follows that these bitrate numbers are conditional on positive
usage of that category.
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Table 1.7: Distribution of Active Upstream Bitrates (Kilobits per Second), 2020-2022

Category Mean Std. Dev. p5 p25 p50 p75 p95 N

Collaboration 191 261 1 38 109 239 662 6,888
Backup 155 264 4 33 90 189 487 6,789

P2P/File Sharing 93 440 0 0 2 14 438 6,429
Remote Access 40 301 0 2 5 25 129 5,239

Enterprise 34 71 1 5 15 36 122 6,922
Gaming 27 68 0 2 9 30 98 6,657

Other 26 69 2 6 12 25 85 6,984
Browsing 21 78 3 6 10 18 60 6,977

OTT Video 21 31 4 10 15 24 50 6,939
Social Media 19 50 2 7 12 19 50 6,923

Downloads 11 29 1 3 6 11 32 6,944
ECommerce 7 12 2 4 6 8 15 6,933
Smart Home 7 32 0 3 5 6 9 6,038

OTT Audio 4 14 0 1 3 5 10 6,755
AR/VR 1 5 0 0 0 1 5 2,035

News 1 2 0 0 1 1 4 6,775

Notes: This table reports statistics on the distribution of upstream bitrates observed
by category. Each subscriber’s average downstream bitrate for a particular application
category is calculated and then used to create the distributional statistics included. The
number of subscribers included in each row, the N column, represents the unique num-
ber of subscribers that had traffic in that category. It follows that these bitrate numbers
are conditional on positive usage of that category.

(1.4), OTT Video (1.5), Backup (1.7), ECommerce (1.7), and News (2.0) have the least. In general,

there is less variability in upstream subscriber bitrates than in downstream bitrates.

If the average downstream and upstream bitrates are compared in tables Table 1.6 and Table 1.7

are compared, Smart Home, Backup, Collaboration, and Remote Access have the most similar

bitrates. AR/VR, OTT Video, OTT Audio, Downloads, and News have the largest relative differences

in bitrates. For some of these applications, especially video applications, upstream demand is

light because its primary purpose is to send acknowledgement information to servers that confirms

successful data delivery. Not all protocols rely on this upstream traffic, but one of the most popular

(TCP) does.

In the tables above, individual application bitrates are covered, but subscribers do not use one

application at a time. Instead, some combination of applications is typically active. In Subfigure 1.3,
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cumulative density functions (CDFs) of median and maximum 5-minute downstream bitrates are

reported by speed tier.7 Distributions of upstream bitrates by tier are shown in Subfigure 1.4. In

these figures, the bitrates include all application traffic within a single 5-minute observation. As

other papers have shown, there is substantial heterogeneity in internet demand, which could describe

differences observed across tiers. For example, tier selection could be correlated with specific

subscriber types, where a “type” describes a different set of preferences of internet demand.

Median downstream bitrates are one to two orders of magnitude smaller than the maximums.

For each range of downstream tiers, the average median value (i.e., average of the CDF) is below 1

Mbps. Average median bitrates do increase from slower to faster bins (0.72 Mbps for 750+ Mbps

tiers vs. 0.40 Mbps for tiers below 50 Mbps). In general, median bitrates do increase across all

subscribers when moving to faster tiers, except the bottom half of subscribers in the 750+ Mbps bin

are lighter than those on slower tiers.

Despite what the light median bitrates might suggest, the maximum bitrates show subscribers

can more heavily utilize their speed tiers. Using subscribers on tiers below 50 Mbps and above 750

Mbps as points of reference, the average maximum bitrates are 21 Mbps and 252 Mbps, respectively,

a 1100% difference. In general, the top percentiles of each CDF provide evidence that some

subscribers can saturate their entire plan speed. For example, roughly 5% of subscribers on tiers

above 750 Mbps have averaged over 800 Mbps for at least 5 minutes.

There are a few aspects of the sample and the nature of in-home networks to note in the context

of this figure and interpreting the results shown. First, bitrate averages here are taken over 5 minutes

and miss any “bursting” by an application, which could occur in any 5-minute observation, not just

the maximum. For example, speed tests do not typically last 5 minutes, but will commonly saturate

a connection when active. Second, many household devices connect to the internet using Wi-Fi, not

wires. A wired Ethernet connection will produce the best speed performance, but for many types of

devices wired connections are rare (e.g., smartphones or tablets). The speed of Wi-Fi connections

depends on the antennas included in the device, which can generally only be upgraded through the

7A subscriber’s entire time series is used to calculate their median and maximum bitrates.
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purchase of a new device, the Wi-Fi generation supported by the router (e.g., Wi-Fi 5 vs. Wi-Fi 6),

and how optimally networking equipment is installed in the home. For example, this could result

in a specific device’s (e.g., a laptop) maximum possible bitrate to be below their plan speed, even

though the MSO is delivering that speed. For this reason, the FCC’s Measuring Broadband America

report only uses wired performance.

Figure 1.3: Active Downstream Bitrate Distributions by Plan Speed, 2020-2022

(a) Median 5-Minute Bitrate (b) Maximum 5-Minute Bitrate
Notes: These figures report bitrate distributions for downstream traffic. For each subscriber in the
sample, their entire 5-minute history in the data (by speed) tier is used to record their median and
maximum 5-minute average downstream bitrate. The CDFs in the figures are the distributions of
these median and maximum bitrate values across subscribers. If a subscriber spent time in two
different speed bins, they are included in each bin’s distribution.

Many of the takeaways from the downstream bitrates in Subfigure 1.3 hold for the upstream

bitrates in Subfigure 1.4. Median bitrates are again much lighter than the maximums, but there is

less differences between groups. Part of this because there is less difference between the slowest

and fastest upstream tiers offered than what is observed in downstream plan speeds. Subscribers on

the fastest upstream tiers (above 50 Mbps) have a median bitrate that is 64% greater than subscribers

on tiers below 5 Mbps (0.028 vs. 0.018 Mbps). Maximum bitrates between these two groups differs

by a factor of about 12 (35 Mbps vs. 3 Mbps).

To conclude this section, Figure 1.5 and Figure 1.6 summarize application concurrency, which

helps explain the aggregate bitrate distributions in the figures above. As shown, applications

have widely variable bitrates and how they typically stack together influences overall subscriber
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Figure 1.4: Active Upstream Bitrate Distributions by Plan Speed, 2020-2022

(a) Median 5-Minute Bitrate (b) Maximum 5-Minute Bitrate
Notes: These figures report bitrate distributions for upstream traffic. For each subscriber in the
sample, their entire 5-minute history in the data (by speed) tier is used to record their median and
maximum 5-minute average upstream bitrate. The CDFs in the figures are the distributions of
these median and maximum bitrate values across subscribers. If a subscriber spent time in two
different speed bins, they are included in each bin’s distribution.

bitrate demand. In the heatmap of Figure 1.5, the 5-minute observations of each category are used

(horizontal axis) to calculate the share other applications active at the same time (vertical axis). Each

cell is normalized using the rowwise mean (i.e., the average rate of that application category being

active overall). Red cells show applications that are more common when compared to these means,

the blues are combinations that are less common. The rowwise averages are shown in Figure 1.6.

Many of the relationships of which applications are active together are intuitive. For example,

Gaming traffic is commonly found when AR/VR is active (e.g., a gaming application); Browsing is

common when households are using Enterprise applications (e.g., likely work); OTT Video tends to

dominate its periods of activity across the board and the same for Browsing; Households are less

likely watch video and listen to music at the same time; When households are using Social Media,

they are more likely to be watching OTT Video; Since Remote Access includes VPN applications,

which redirects traffic, common applications like video, browsing, and social media are less common

because they cannot be classified.

In levels, Browsing and Other are the only categories active more than 50% of time. OTT

Video is close at 49%. Collaboration applications are active about 20% of time and activities like
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Figure 1.5: Rates of Category Concurrency, 2020-2022

Notes: This heatmap reports the rates of a categories being active concur-
rently. To interpret this heatmap, each column conditions on activity in
the category listed beneath the horizontal axis. The cell in a particular row
reports the percentage of observations for which that row’s category is also
active. For example, the bottom left corner of the heatmap is the percentage
of 5-minute observations in which AR/VR is active that Social Media is also
active. This heatmap was created at a monthly level and averaged across the
entire sample to produce the version shown in the figure.
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Figure 1.6: Average Rates of Category Concurrency (All Categories), 2020-2022

Notes: This barplot reports the row-wise averages of Figure 1.5 to highlight
which applications are active most frequently.

OTT Audio, Gaming, Enterprise, Backup, and Downloads are active closer to 10-15% of time. The

rankings of these applications closely match other rankings of daily time spent and downstream

usage.

1.2.3 Demographic Heterogeneity

Previous research has documented correlations between internet behaviors and demographic char-

acteristics (Malone et al., forthcoming). Although we are not able to match our usage records to

subscriber-level demographic information, we do observe demographics at the expanded postal

code level. Table 1.8 describes mean usage by traffic category across quartiles of four demographic

variables. Despite the aggregate level of demographic observation, several intuitive patterns emerge.

First, total internet usage is increasing in household size. Subscribers from postal codes in the 4th

quartile of household size have an 18% higher average daily level than subscribers from postal

codes in the 1st quartile of household size. Internet usage is decreasing in age; subscribers from 4th

quartile age postal codes generate 30% less internet traffic than subscribers from 1st quartile postal

codes.
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Table 1.8: Distribution of Daily Usage by Demographic Segment

Age Quartile Education Quartile

Category 1 2 3 4 1 2 3 4

AR/VR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Backup 0.16 0.21 0.19 0.16 0.14 0.14 0.21 0.22

Browsing 1.06 0.93 1.00 0.83 0.94 0.95 0.98 0.96
Collaboration 0.58 0.47 0.43 0.39 0.35 0.42 0.46 0.63

Downloads 0.49 0.41 0.47 0.38 0.45 0.45 0.44 0.41
ECommerce 0.28 0.25 0.28 0.22 0.25 0.22 0.26 0.28

Enterprise 0.08 0.10 0.07 0.06 0.06 0.05 0.09 0.11
Gaming 1.40 1.09 1.40 0.84 1.44 1.02 1.25 1.03

News 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01
Other 0.66 0.60 0.55 0.58 0.55 0.56 0.59 0.69

OTT Audio 0.10 0.10 0.10 0.08 0.08 0.08 0.11 0.11
OTT Video 7.05 5.65 5.90 4.65 6.02 5.21 5.74 6.30

P2P/File Sharing 0.24 0.34 0.20 0.25 0.22 0.20 0.31 0.28
Remote Access 0.10 0.14 0.09 0.10 0.08 0.08 0.11 0.15

Smart Home 0.03 0.00 0.01 0.01 0.01 0.01 0.03 0.00
Social Media 1.12 1.05 1.00 0.77 0.95 0.85 1.10 1.04

Total 13.36 11.34 11.69 9.31 11.55 10.24 11.69 12.23

Household Size Quartile Income Quartile

Category 1 2 3 4 1 2 3 4

AR/VR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Backup 0.19 0.19 0.15 0.17 0.16 0.15 0.20 0.19

Browsing 0.80 0.92 0.96 1.13 0.78 0.96 1.04 1.04
Collaboration 0.40 0.45 0.55 0.46 0.35 0.59 0.45 0.48

Downloads 0.35 0.42 0.45 0.54 0.37 0.43 0.46 0.49
ECommerce 0.24 0.24 0.27 0.28 0.21 0.26 0.27 0.29

Enterprise 0.08 0.08 0.07 0.07 0.06 0.08 0.08 0.08
Gaming 1.04 0.91 1.43 1.36 1.06 1.27 1.25 1.15

News 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02
Other 0.59 0.59 0.58 0.63 0.59 0.65 0.55 0.59

OTT Audio 0.09 0.10 0.09 0.10 0.08 0.09 0.11 0.10
OTT Video 5.16 5.63 6.33 6.15 5.07 6.69 6.07 5.43

P2P/File Sharing 0.29 0.32 0.20 0.21 0.31 0.16 0.34 0.21
Remote Access 0.14 0.11 0.07 0.10 0.12 0.09 0.11 0.10

Smart Home 0.00 0.00 0.01 0.04 0.00 0.00 0.02 0.03
Social Media 0.94 0.93 1.08 1.00 0.93 1.12 0.97 0.93

Total 10.34 10.88 12.24 12.24 10.11 12.56 11.93 11.12

Notes: Average subscriber-level daily usage across quartiles of the age, education, household
size, and income demographic variables.
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Decomposing total internet usage into categories, we see that larger categories such as OTT

Video and Browsing tend to mirror the directional trends of overall usage. For other categories,

in particular those associated with remote work and other aspects of engagement with the digital

economy, we see additional meaningful differences by demographic segment. The use of Collabora-

tion and Enterprise software increases substantially with education level, with the most-educated

areas generating more than 80% more Collaboration and Enterprise traffic than the least-educated

areas. Additionally, ECommerce traffic increases monotonically by income quartile, with the

highest-income quartile generating 38% more traffic than the lowest-income quartile. These four

demographic variables are certainly correlated.

Although usage levels differ meaningfully across demographic segments, we do not observe

systematic differences in take-up of high-speed internet tiers by the same segments. The average

download speed chosen by each of the 16 segments in Table 1.8 ranges from 311 Mbps to 373

Mbps, and the average upload speed ranges from 28 Mbps to 34 Mbps. It does not appear that plan

characteristics offered by this MSO vary systematically with regional demographic characteristics.

1.3 Impact of Spring 2020 Stay-at-Home Orders on Subscriber Behavior

In this section, we focus on the short-run impact of school and business closures on internet activity.

In each of the markets we observe, states of emergency were declared between March 15, 2020 and

March 20, 2020. These local orders cancelled classes in pre-K, primary, and secondary schools,

placed limits on the size of gatherings, and closed many businesses deemed non-essential.

Subfigure 1.7 shows the change in average daily internet traffic by day from February through

April of 2020. The time series of downstream traffic is fairly flat through the first week of March,

averaging 8.5 gigabytes per day during that period. Beginning in the second week of March, traffic

steadily increases as stay-at-home orders are implemented, before reaching a single-day peak of

11.5 gigabytes per household on Thursday, March 26, a 53% increase over the 7.5 gigabyte average

observed on the same day of the week three weeks prior.
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Figure 1.7: Aggregate Internet Traffic, February-April 2020
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Notes: Average downstream and upstream internet traffic by day (gray) with seven-day moving
average (black). State of local emergency declarations went into effect during the red shaded
time interval.

Upstream internet traffic, an important driver of which is the use of real-time audio and video

communication, saw a similarly strong increase in level. The average household used 0.65 gigabytes

per day of upstream traffic from the beginning of February through the first week of March. The

single day peak over the three month period shown in Subfigure 1.7 was 1.25 gigabytes per day

on Tuesday, April 2, an 86% increase over the 0.67 gigabyte average observed three weeks prior.

Both downstream and upstream traffic decreased slightly towards the end of April, but remained at

significantly elevated levels compared with their pre-SaH levels.

We next decompose the changes in aggregate internet traffic into categories. Table 1.9 shows

the levels of internet traffic by category during the first and last week of March. The largest category

by volume is OTT video, which accounts for about 70% of downstream internet traffic during

the pre-SaH period, and increased by 12% between the first and last week of March 2020. The

two categories with the largest percent increase were Collaboration (162% increase) and P2P/File

Sharing (102% increase). The largest applications by volume within the Collaboration category are

voice and video communication applications such as Skype, Zoom, and Microsoft Teams. These

applications have substantial bandwidth requirements both in the downstream and upstream (145%

increase directions. Other traffic categories with sizable initial levels and percent increases include
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Table 1.9: Average Download Daily Usage before and after SOLE(GBs)

Downstream Upstream

Category Pre Post % Diff Pre Post % Diff

OTT Video 4.84 5.44 12.54 0.07 0.08 24.71
Gaming 0.87 1.23 41.05 0.02 0.03 33.31

Browsing 0.70 0.96 36.23 0.07 0.11 58.23
Social Media 0.59 0.84 41.88 0.04 0.06 63.42

Downloads 0.31 0.37 18.36 0.00 0.00 9.69
ECommerce 0.27 0.32 19.27 0.01 0.02 90.70

Other 0.23 0.33 43.28 0.05 0.09 70.94
P2P/File Sharing 0.13 0.27 98.34 0.13 0.22 68.23

Collaboration 0.08 0.28 233.12 0.06 0.18 209.65
OTT Audio 0.07 0.10 43.29 0.00 0.00 36.47

Remote Access 0.06 0.11 81.53 0.08 0.09 6.84
Enterprise 0.05 0.04 -6.16 0.01 0.03 174.52

Backup 0.03 0.05 60.29 0.06 0.09 57.71
News 0.01 0.02 82.65 0.00 0.00 70.43

AR/VR 0.00 0.00 -28.99 0.00 0.00 33.27
Smart Home 0.00 0.00 6.02 0.02 0.02 -6.69

Total

Notes: Average daily usage in Feburary 2020 (Pre) and April 2020 (Post).

26



Figure 1.8: Impact of SaH on Usage by Demographic Segment
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Notes: Percent change in total internet usage between February and April
2020, by quartile of mean household age, education, size, and income.

web browsing, social media, and remote access (give examples). On the upstream side, the largest

change in both levels and percentage terms in the Collaboration category. The P2P/File Sharing

category is the largest by volume both before and after the start of the SaH, and also increases

substantially (68%). Other categories with largest percentage changes, but smaller levels include

Enterprise software (175%) and ECommerce (91%).

In Figure 1.8, we document differences in usage response following the SaH by demographic

segment. Usage increased following the SaH for all demographic segments, with the magnitude of

the increase monotonically increasing in age and education, and older, highly educated, and higher-

income segments associated with the largest percent changes. These differences are suggestive of

which demographics were most able to continue work and other aspects of daily life remotely after

widespread business closures.

As school and business closures changed the times of day that people were at home, the intraday

distribution of internet consumption shifted as well. Figure 1.9 shows the average internet traffic

levels by hour both before and after SaH declarations. In addition to an increase in overall level

between the two periods, we see the largest increases in traffic during typical workday hours. The

downstream traffic peak shifts one hour earlier, while the upstream intraday distribution shifts from

increasing through the day to approximately flat during the 12-9pm hours.
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Figure 1.9: Intraday Downstream and Upstream Traffic
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Notes: Average daily downstream traffic by hour of the day. Pre-SaH Order contains observations from
the last week of February 2020. Post-SaH Order contains observations from the first week of April
2020.

1.4 Persistent Changes in Subscriber Behavior between 2020 and 2022

This section discusses how demand has changed between 2020 and 2022 to cover the long-term

impact Covid-19 may have on residential internet traffic. In general, this section uses January and

February of 2020 as a baseline from before COVID-19 and the same months in 2022 as a more

recent point of comparison. The intent of using the same months in both years is to minimize the

impact of seasonality on the results. Many of the views and statistics in this section build on the

overall sample summaries and discussions provided earlier in section 1.2.

1.4.1 Monthly Trends

Average downstream monthly usage, shown in panel (a) of Subfigure 1.10, grew from 247 GB

in January 2020 to 340 GB in April 2022, a 37% increase. There is a sharp increase in average

downstream usage in the spring of 2020, during the early days of the COVID-19 pandemic, but this

sample also has similar increases in late 2020 and early 2021. Peak downstream monthly usage

occurred in January 2022 at 380 GB.

The increase in monthly upstream usage over this period of time was stronger than the growth

in downstream usage. Monthly upstream usage increased from 16 GB in January 2020 to 28 GB
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in April 2022, an increase of 71% (1.5 times greater than downstream monthly usage growth).

Average upstream monthly usage’s most notable increase is in spring 2020. After the spring of

2020, monthly upstream usage grew more slowly, although it also peaked in January 2022 at 31 GB.

A key observation of Subfigure 1.10 is that despite historic growth in monthly upstream demand,

the asymmetric nature of internet demand is unchanged. While upstream growth was stronger, it

was, on average, only 12 GB more a month, whereas monthly downstream usage increased by 93

GB over these two years. In 2020, average monthly downstream usage was 15.4 times greater than

upstream and decreased to only 12.1 in 2022.

Figure 1.10: Time Series of Monthly Usage (Gigabytes), January 2020-April 2022

(a) Downstream (b) Upstream
Notes: This figure presents average monthly usage in the downstream and upstream directions.
Each month’s value is calculated as the arithmetic average across the month’s subscribers,
including all traffic categories included in 1.1.

When the time series in Subfigure 1.10 are broken out by category, which is done in Table 1.10,

there are many changes in monthly usage worth highlighting. In monthly downstream usage,

OTT Video was the most popular application in both 2020 and 2022. However, Collaboration,

Backup, Enterprise, Downloads, and Social Media applications had notable growth over these two

years, growing at 310%, 153%, 153%, 96%, and 92%, respectively. These applications, especially

Collaboration, Backup, and Enterprise, are commonly associated with remote productivity (e.g.,

work and school at home). Despite such strong growth for these applications, OTT Video remains an

order of magnitude larger on the network. Even after growing by 310%, Collaboration applications

still comprise only 2.8% of downstream monthly usage in 2022.
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Table 1.10: Monthly Usage Statistics Comparison, 2020 and 2022

Downstream Upstream

Category 2020 2022 % Change 2020 2022 % Change

AR/VR 0.0 0.1 277% 0.0 0.0 176%
Backup 1.2 3.0 153% 1.4 3.9 184%

Browsing 18.1 24.3 34% 1.8 2.8 53%
Collaboration 2.4 9.9 310% 1.9 7.4 285%

Downloads 8.2 16.1 96% 0.1 0.2 79%
ECommerce 7.2 6.1 -15% 0.2 0.4 133%

Enterprise 0.9 2.3 153% 0.4 0.7 95%
Gaming 23.6 35.3 49% 0.5 1.2 158%

News 0.3 0.3 1% 0.0 0.0 38%
OTT Audio 1.9 3.1 57% 0.0 0.1 54%
OTT Video 152.0 199.3 31% 1.9 2.8 48%

Other 5.8 18.0 209% 1.2 3.6 190%
P2P/File Sharing 5.0 3.7 -26% 4.3 3.3 -24%

Remote Access 2.2 2.7 20% 0.5 0.4 -4%
Smart Home 0.0 0.0 -1% 0.7 0.3 -56%

Social Media 16.3 31.3 92% 1.2 1.0 -19%

Total 245.3 355.5 45% 16.1 28.1 75%

Notes: This table reports unconditional averages of monthly usage by application
category. Values are calculated over the subscriber-month observations in January and
February of 2020 and 2022, respectively. Since unconditional averages are reported,
the columns do sum to the values reported in the Total row.

Collaboration’s 285% growth is the strongest part of monthly upstream usage over these two

years. In 2020, Collaboraton applications were the number two driver of upstream usage, tied

with OTT Video and behind P2P/File Sharing. Now in 2022, Collaboration applications are the

plurality of monthly upstream usage at 26%, followed by Backup (14%) and P2P/File Sharing

(12%). In addition to Collaboration, many categories with strong downstream growth also had

strong upstream usage growth: Backup (184%), Downloads (79%), and Enterprise (95%). Gaming

(158%) and ECommerce (133%) are two categories with strong upstream growth that did not rank

at the top of downstream growth.

The amount of time active online per day grew by 23% between January 2020 and April 2022

(from 10.8 hours daily to 13.3 hours, respectively). The time series of this statistic is shown in
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Figure 1.11: Average Daily Activity by Month, January 2020-April 2022

Notes: This figure reports average daily activity in hours from
January 2020 through April 2022. Monthly averages are calculated
by taking the unique number of 5-minute observations, converting
to hours, then averaging over all subscribers observed in a month.

Figure 1.11. The sharp increase in daily time online in the Spring 2020 is the most notable change

of the time series and correlates closely with similar growth in downstream and upstream monthly

usage covered above. Peak daily time active was in April 2020 and January 2022, at roughly 14

hours. This concentration of growth in January 2020 (i.e., time online, downstream usage, and

upstream usage all peaked this month) is likely due to the Omicron wave of the pandemic. Since

the spring of 2020, time active online has been mostly flat with most months since Fall 2020

around 13 hours daily. The lighter growth in the amount of time spent online suggests that monthly

usage growth over the last couple of years has been driven more by bitrate changes, either through

increased concurrency or increasing application bitrates.

In Table 1.11, the amount of time spent on different types of applications is presented in two

ways. The first way, which comprises the left half of the table, is to calculate the average number of

5-minute observations by category per subscriber and to convert the result to hours per day. If a

5-minute observation has two types of applications active (e.g., OTT Video and Social Media) it will

count toward both applications; therefore, a total of these columns do not total to the values shown

in Figure 1.11. The second way is shown in the right half of the table. Here, the share of total time
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active by category is presented. That is, the values in left half of the table divided by the values in

Figure 1.11.

News (266%), AR/VR (147%), Backup (133%), and Collaboration (129%) had the strongest

growth in daily hours between 2020 and 2022. Backup and Collaboration’s growth again indicates

an increase in remote productivity at home, a pattern also seen in downstream and upstream monthly

usage changes. However, like with monthly downstream usage, these applications are smaller

drivers of overall demand. For example, the percentage of time Backup applications are active

doubled, but they are still active for only 12% of the time in 2022. Collaboration’s relative frequency

increased by 90%, but it is only active 13% of the time in 2022. Like with Backup and Collaboration,

Remote Access (99%) and Enterprise (61%) also had strong growth and are correlated with remote

productivity; these two categories, though, are active less frequently than Backup and Collaboration.

Browsing and OTT Video are the only applications active over 50% of the time in 2022. Both

types of applications were the top two drivers of time online in 2020 and 2022. Despite their already

heavy usage in 2020 (i.e., Browsing averaged 6.5 hours in 2020, OTT Video averaged 5.3 hours),

they still grew over the last two years. Browsing grew by 17% to 7.7 hours daily and OTT Video

grew 44% to 7.2 hours. Social Media had the third greatest average daily time active, in both 2020

(3.1 hours) and 2022 (4.1 hours). ECommerce (3.1 hours) and Collaboration (1.8 hours) round out

the top five applications.

Building on the discussion in section 1.2, Figure 1.12 is one way to summarize the different

perspectives on network demand that time (hours) and volume (GB) measures provide. For each

category, their overall share of both time and monthly downstream usage is calculated and plotted

as an ordered pair.8 The diagonal line represents an exact match in proportion between time and

usage. It follows that applications below the diagonal line have time shares that greater than usage

and vice versa for applications above the line.

Browsing, Social Media, and ECommerce all have time shares that are notably larger than what

their usage shares suggest. Each of these categories are active more than 20% of the time, but

8These values are calculated from Table 1.10 and Table 1.11.
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Table 1.11: Time Spent by Application Category, 2020-2022

Average Daily Hours Share of Time Active

Category 2020 2022 % Change 2020 2022 % Change

AR/VR 0.0 0.1 147% 0.0 0.01 106%
Backup 0.7 1.6 133% 0.06 0.12 94%

Browsing 6.5 7.7 17% 0.57 0.55 -2%
Collaboration 0.8 1.8 129% 0.07 0.13 90%

Downloads 0.8 1.1 30% 0.07 0.08 8%
ECommerce 1.6 3.1 86% 0.14 0.22 54%

Enterprise 0.7 1.1 61% 0.06 0.08 34%
Gaming 0.8 1.2 38% 0.07 0.08 15%

News 0.1 0.4 266% 0.01 0.03 205%
OTT Audio 0.6 0.8 51% 0.05 0.06 25%
OTT Video 5.3 7.7 44% 0.46 0.56 20%

Other 3.4 7.2 116% 0.29 0.52 80%
P2P/File Sharing 0.4 0.4 15% 0.03 0.03 -4%

Remote Access 0.2 0.4 99% 0.02 0.03 65%
Smart Home 0.2 0.3 51% 0.02 0.02 26%

Social Media 3.1 4.1 32% 0.27 0.30 10%

Notes: This table presents daily statistics of time spent on various online activities.
A 5-minute observation in the sample counts if there is any positive usage within
that observation. There is a filter at the system level that only includes observations
with a 3 Kbps average bitrate over the 5-minute period, either in the downstream
or upstream directions. For this reason, small background traffic could inflate time
estimates. These values should be interpreted as an upper bound. The share of time
that an application is active is calculated by taking the values from the left side of
the table and dividing by the monthly averages that are shown in Figure 1.11.
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Figure 1.12: Comparison of Time and Downstream Usage Shares, 2022

Notes: This figure compares the share of time active and overall downstream
monthly usage by category. These are category averages for January and Febru-
ary 2022. Values for this figure are derived from Table 1.10 and Table 1.11.

account for less than 10% of downstream monthly usage apiece. OTT Video is the only application

with a large time and usage share, indicated by its location on the diagonal line in the top right corner

of the figure. Gaming, like OTT Video, also has balanced shares between time and downstream

usage, although smaller at closer to 10%. Collaboration, Backup, Enterprise, and Downloads

makeup a small cluster of applications with time shares greater than their usage counterparts,

but still relatively small by both measures. As discussed in section 1.2, using time to compare

application engagement complements a usage-based ranking by suggesting the gap between the

top online application (i.e., OTT Video) and others is smaller than monthly usage indicates and that

Browsing is just as popular of an activity with subscribers.

Related to the views above on time and usage engagement by subscribers is the relative

popularity of an application, measured by the proportion of the sample with traffic over 25 megabytes,

which is reported or 2020 and 2022 in Table 1.12. Several categories are used by most subscribers

online. Backup, Browsing, Collaboration, Downloads, ECommerce, Enterprise, OTT Video, and

Social Media had shares greater than 90% in 2022. By contrast, AR/VR and Smart Home are by far

the least popular applications in this sample. Most categories had shares that remained constant, or
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Table 1.12: Subscriber Shares by Category, 2020-2022

Category 2020 2022 % Change

AR/VR 0.01 0.03 180%
Backup 0.88 0.92 4%

Browsing 0.99 0.98 -1%
Collaboration 0.78 0.91 16%

Downloads 0.97 0.98 0%
ECommerce 0.97 0.97 0%

Enterprise 0.88 0.93 5%
Gaming 0.63 0.63 0%

News 0.55 0.72 31%
OTT Audio 0.73 0.77 6%
OTT Video 0.99 0.98 -1%

Other 0.98 0.99 1%
P2P/File Sharing 0.49 0.39 -20%

Remote Access 0.18 0.27 48%
Smart Home 0.13 0.11 -15%

Social Media 0.95 0.95 0%

Notes: This table reports the share of subscribers that
have positive usage by application category. A sub-
scriber is considered a “user” of an application cate-
gory if they record greater than 25 MBs of usage in
the category during January or February in 2020 and
2022, respectively. The denominators are based on
the total number of unique subscribers observed dur-
ing these two months in each year, not over the entire
sample.

even dropped, over the two years. However, AR/VR saw 180% growth from 0.01% to 0.03% of the

sample. Remote Access (48%) and News (31%) also had notable growth.

In general, growth in downstream and upstream application bitrates was lighter than what

was observed in monthly usage and time online. For example, in Table 1.13, only one bitrate

(Enterprise’s downstream bitrate) exceeded 100% growth, where this threshold of growth was

common in the usage and time tables. Enterprise (125%), Collaboration (91%), Remote Access

(59%), Downloads (50%), and Social Media (49%) had the strongest growth in downstream bitrates.

OTT Video (1.7 Mbps), Gaming (1.7 Mbps), and Downloads (1.0 Mbps) are the only applications in

2022 with downstream bitrates over 1 Mbps. Applications associated with remote productivity have
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Table 1.13: Average Bitrates in Kilobits per Second by Application, 2020-2022

Downstream Upstream

Category 2020 2022 % Change 2020 2022 % Change

AR/VR 334 301 -10% 4 4 -4%
Backup 159 124 -22% 132 139 5%

Browsing 203 223 10% 18 22 20%
Collaboration 195 372 91% 166 281 69%

Downloads 691 1,036 50% 8 11 35%
ECommerce 313 151 -52% 7 9 30%

Enterprise 66 149 125% 32 40 22%
Gaming 1,250 1,680 34% 22 28 27%

News 99 47 -53% 2 1 -40%
OTT Audio 313 293 -7% 5 4 -16%
OTT Video 1,761 1,693 -4% 21 23 9%

Other 111 158 42% 17 27 61%
P2P/File Sharing 867 562 -35% 165 99 -40%

Remote Access 206 326 59% 36 50 39%
Smart Home 4 5 27% 10 8 -17%

Social Media 273 407 49% 26 13 -49%

Notes: This table reports average downstream and upstream bitrates by application cat-
egory. Values are calculated over the subscriber-month-category observations in Jan-
uary and February of 2020 and 2022, respectively. Only subscriber-month-category
observations with positive usage are included, so these are conditional averages.

notably lighter bitrate than these top applications. Collaboration’s 372 Kbps bitrate is 22% of OTT

Video’s; Enterprise (149 Kbps) is 8.8% and Backup (124 Kbps) is 7.3%.

Collaboration is the only application with over 50% growth in upstream bitrates, growing from

166 Kbps in 2020 to 281 Kbps in 2022 (69% growth). Backup (139 Kbps) also has an upstream

bitrate greater than 100 Kbps in 2022, but had much flatter growth at 5%. Other applications with

stronger upstream bitrate growth are Remote Access (39%), Downloads (35%), ECommerce (30%),

Gaming (27%), and Enterprise (22%). Except for Remote Access, the bitrates of these applications

are small and this growth has little impact on their network demands. For example, Gaming’s 27%

growth is only an additional 6 Kbps, on average.

In total, the biggest change in monthly subscriber demand between 2020 and 2022 is the growth

in remote productivity applications, which is intuitive given the pressures that the COVID-19
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pandemic placed on school and work arrangements over the last two years. Applications like

Collaboration, Backup, and Enterprise consistently had strong growth by any measure: downstream

usage, upstream usage, and time active. In 2022, each of these applications is now used by over 90%

of the subscribers in the sample. Interestingly, the growth of these applications did not change the

fundamentals of which applications generate the most usage or subscribers spend the most time on.

Browsing, OTT Video, and Social Media remain the most common online activities in 2022. Except

for certain aspects of Social Media traffic with distributed content creation (e.g., broadcasting on

Twitch), the growth of Collaboration suggests the needs of residential broadband connections is

more than just faster plan speeds. The real-time nature of video collaboration means consistent and

lower latency connections that are reliable is just as important, if not more so, than speed.

1.4.2 Time of Day Trends

In this section, changes in the timing of demand over the day are covered. Internet traffic typically

has a stable diurnal pattern with peaks occurring in the evening and the trough coming in the early

morning hours. Significant changes in the timing of usage could have implications for long-term

network planning and engineering.

In Subfigure 1.13, average hourly usage for both downstream and upstream demand is shown

for 2020, 2021, and 2022. The hourly downstream usage pattern over the day is similar across all

three years shown in the figure. For each year, hourly downstream usage is increasing for every

hour of the day, but the peak remains in the late evening and the trough is around 5 a.m. Peak hour

usage increased by 0.2 GB (33%) from 0.6 to 0.8 GB between 2020 and 2022.

In Table 1.14, daily downstream and upstream usage shares in the first quarter of year 2020-2022

are presented. Time of day is divided into five bins and each column in the table sums up to 1. For

the same year-quarter, upstream usage shares are larger than downstream usage shares in morning

hours, whereas downstream usage gain a larger share in evening hours. This evidence is consistent

with upstream traffic associated with work-related application categories like collaboration, remote

access and download, which relies heavily on broadband in morning hours. Downstream usage is
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Figure 1.13: Average Hourly Usage by Year, 2020-2022

(a) Downstream (b) Upstream
Notes: This figure presents average hourly usage in the downstream and upstream directions.
Averages are taken across all subscribers and traffic categories in Table 1.1. Data from the first
quarter of each year is used to control for seasonality.

Table 1.14: First Quarter Daily Usage Shares by Time of Day, 2020-2022

Downstream Usage Shares Upstream Usage Shares

Time of Day Q1 2020 Q1 2021 Q1 2022 Q1 2020 Q1 2021 Q1 2022

Morning (7am-10am) 0.11 0.12 0.12 0.13 0.14 0.14
Lunch (11am-1pm) 0.12 0.13 0.13 0.13 0.15 0.14

Afternoon (2pm-5pm) 0.19 0.2 0.2 0.19 0.2 0.2
Evening (6pm-11pm) 0.41 0.39 0.39 0.35 0.34 0.34

Night (12am-6am) 0.17 0.17 0.18 0.2 0.17 0.19

mainly involved with activities like OTT Video and social media, most of which are performed in

the evening. Both upstream and downstream usage shares in day time increase by 1% in Q1 2022

comparing to Q1 2020, presenting persistent increase in online activities.

In Figure 1.14, average proportion of time active by the same division of time of day in

Table 1.14 is presented. In each time bin of the day, user connections are more active if we compare

year 2022 with year 2020. Most of the growth comes from year 2020 to year 2021, whereas the

growth becomes much slower from 2021 to 2022. The largest growth happens in morning and lunch

hours.

Figure 1.14: Average Proportion of Time Active by Time of Day, 2020-2022
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1.5 Policy Discussion

Over the course of the COVID-19 pandemic, stay-at-home orders and other public health measures

were implemented to limit the spread of the virus. In the early days, these policies caused sudden

disruptions to business operations, public services, and school, due to people staying home. Social

distancing at home meant people were using their home internet connections for more than ever

before (e.g., school, work, telemedicine, and ecommerce). A Pew Research Center survey found

that 90% of Americans felt the internet was essential or important for them during the pandemic;

40% said they used technology in new ways.9 Data from The Internet & Television Association

(NCTA) shows, in March 2020, its members saw 28% growth in peak upstream utilization and 20%

growth in downstream peak utilization. A year later in March 2021, NCTA reported growth yearly

growth of 52% in upstream utilization and 26% in downstream utilization.10

Governments recognized this increased use of home internet and began new investment and

subsidization of broadband service. In the U.S., the Emergency Broadband Benefit, replaced in 2022

by the Affordable Connectivity Program, earmarked $3.2 billion in federal funding to subsidize

internet access for lower-income households. Additionally, to address the rural-urban divide in

connectivity, the Rural Broadband Accountability Plan updates guidelines through which broadband

providers can receive incentives for expanding the reach of their networks in areas with fewer

economies of density than typical urban markets. These actions to promote better access and

broader deployment of broadband networks were seen as efforts to bridge the “digital divide.”

The term digital divide predates COVID-19 and refers to the unequal distribution of access to the

internet, internet-connected devices, and digital literacy.

The sharp growth in residential demand has also made the definition of broadband a current

topic at the FCC. The FCC’s current broadband definition, set in 2015, sets minimum tier speeds at

25 Mbps for downloads and 3 Mbps for uploads. Recent proposals advocate for increasing these

minimum levels to 100 Mbps for downloads and 20 Mbps for uploads, with long-term goals of 1

9https://www.pewresearch.org/internet/2021/09/01/the-internet-and-the-pandemic/
10https://www.ncta.com/covid-19-overview
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Gbps for downloads and 500 Mbps for uploads.11 On the other hand, some have questioned the

need for large-scale speed increases, citing few practical use cases for the fastest connection speeds

currently available.12

The FCC also recently released an order requiring internet service providers to provide “labels”

on their plans to better inform consumers, promote competition, and provide transparency on pricing,

features, and network performance.13 The pricing information on these labels will include recurring

and one-time fees, penalties, usage allowances, and discounts. Operators will also be required to

provide “typical” realized download speeds, upload speeds, and latency for each offering.

This paper’s analysis of current residential internet demand trends provides several insights

relevant to these policy discussions. One consistent theme in the results is strong growth of applica-

tions correlated with remote productivity. Collaboration, backup, and enterprise applications, for

example, had comparatively large increases in both usage and time spent. While these applications

still account for a modest share of total usage and time online, they have quickly become ubiquitous,

with positive usage records across over 90% of household-months in the 2022 sample.

Compared to the most common applications online (OTT video, web browsing, and social

media) in 2022, collaboration applications are often real-time experiences, where different people

are using both audio and video feeds. Real-time applications have greater latency and reliability

demands of the network. For example, high latency can cause video and audio to stutter and dropouts

in a connection can lead to failed calls. In the case of OTT video, local caches on client devices help

minimize latency and reliability issues since content is being downloaded before the user views

it; real-time applications are unable to use such methods. Broadband is typically described by

download and upload speeds, but this new demand for real-time applications, especially given their

use for vital activities such as work and school, may lead to latency being a part of future broadband

11https://www.fcc.gov/document/chairwoman-rosenworcel-proposes-increase-minimum-broadband-speeds
12https://www.wsj.com/graphics/faster-internet-not-worth-it/
13https://www.fcc.gov/document/fcc-requires-broadband-providers-display-labels-help-consumers
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policy discussions (e.g., broadband definitions, access network technologies). The FCC’s inclusion

of “typical latency performance” on its broadband labels is a step in this direction.

Despite the strong growth in remote productivity applications, the biggest drivers of residential

subscriber demand remain unchanged. Web browsing, OTT video, and social media are the stand

out applications by both usage and time measures. OTT Video was 62% of monthly downstream

usage in 2020 and still accounted for 56% of monthly downstream usage in 2022. In both years,

web browsing and social media remain top downstream drivers. Over 95% of subscribers engage

with these applications monthly. Over half of the time they are online, subscribers are either web

browsing or watching OTT video; 30% of time is spent active on social media. This is to all to say

that remote productivity’s strong growth was to relatively light demand and not enough to unseat

the traditional drivers of network demand. Therefore, many aspects of network demand are like

they were before the pandemic.

The asymmetry of downstream and upstream bandwidth utilization is one key aspect of network

demand that remains unchanged in this sample. In 2020, the ratio of downstream monthly usage to

upstream monthly usage was 15.4 and in 2022 this fell to only 12.1. This asymmetry explains why

internet plans have evolved with higher downstream speed capacity over time and why the current

broadband definition by the FCC is 25 Mbps by 3 Mbps. In general, there is an order of magnitude

difference between downstream and upstream demand. In our sample, monthly downstream usage

in 2022 was 355.5 GB and upstream usage was only 28.1 GB.

The large difference in downstream and upstream demand is also observable in estimated

bitrates. The average median downstream bitrate in the sample is 0.58 Mbps.14 The average median

upstream bitrate is 0.02 Mbps, 29 times smaller. Compared to monthly usage totals, bitrates are

a better comparison to plan speeds because they capture instantaneous demand on a network’s

capacity. As shown in section 1.2, there tends to be a large difference between a subscriber’s median

and maximum bitrates. For reference, the average maximum 5-minute bitrate in this sample across

14Calculated as a the mean of subscriber-specific median bitrates.
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all tiers is 86 Mbps downstream and 11 Mbps upstream.15 Therefore, this sample does not provide

evidence that symmetric downstream-upstream speeds are an intuitive starting point for minimum

broadband definitions.

Application-specific bitrates also show little need for symmetric high-speed broadband plans.

Take for example the collaboration applications Zoom and Apple FaceTime. In April 2022, Zoom’s

median 5-minute downstream bitrate, across all subscribers, was 42 Kbps and the median upstream

bitrate was 51 Kbps. FaceTime’s median bitrates are notably higher at 547 Kbps and 47 Kbps,

respectively. By comparison, 99th percentile bitrates of these applications do suggest that the

current minimum upstream speed of 3 Mbps in the FCC definition might be limiting in some

circumstances. For Zoom, downstream and upstream 99th percentile bitrates were 2.8 Mbps and 2.1

Mbps, respectively. For FaceTime, 99th percentile bitrates were 4.1 Mbps for both downstream and

upstream traffic. Therefore, current proposals for increasing the FCC’s minimum upstream speed

may be warranted. Some MSO’s have already begun to increase their upstream speeds on their low

cost tiers. For example, Comcast’s Xfinity Internet Essentials program offers a starting tier of 50

Mbps by 10 Mbps.16

Finally, the demographic data in this sample provide insights into policy targeted at reducing

the digital divide. While we cannot speak to the gap in internet access, our results do address

the differences in level and composition of internet utilization across socioeconomic groups, and

how these differences have changed since the start of the pandemic. Overall, this sample suggests

that younger, more educated, and larger households have heavier monthly usage. Interestingly,

during the SAH orders of spring 2020, older, more educated, and wealthier areas had the strongest

increase in monthly usage. This heterogeneity in usage responses is suggestive of which types

of households were most easily able to adapt to in-person closures by adopting work-from-home,

remote schooling, and other methods of engaging with the digital economy. Finally, the only type

15The averages reported in this paragraph come from averaging over the data reported in the CDFs of
section 1.2.

16https://www.xfinity.com/support/articles/comcast-broadband-opportunity-program
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of remote productivity application that correlates with demographic characteristics is collaboration

applications, the use of which is positively correlated with younger and more educated households.

While this research cannot entirely disentangle the mechanisms that describe these differences

by demographics, the heterogeneous responses may be suggestive of differences in knowledge

of or ability to engage with new technology or access to different industries and jobs. Not all

professions are conducive to remote work. Therefore, digital literacy and training for access to

careers in professional services and other industries that are flexible to in-person or remote working

arrangements are worth studying.

1.6 Conclusion

This paper provides empirical facts describing internet engagement during the COVID-19 pandemic.

We document both short-term and persistent changes in internet engagement, including both the

the adoption and intensity of use of applications that support remote work and schooling. We

describe heterogeneous patterns in online behaviors across socioeconomic segments. Some groups,

particularly those with high levels of educational attainment, saw larger increases in internet

consumption following stay-at-home orders. These results suggest that not all households share the

same ease of participation in the digital economy. Changes in subscriber behavior over the last two

years are merely suggestive at this point of how network demand will be impacted in the long-term

by COVID-19. It remains to be seen how persistent recent shifts to remote operations will be.
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CHAPTER 2: THE IMPACT OF VIDEO PIRACY ON CONTENT PRODUCERS AND
DISTRIBUTORS

1

2.1 Introduction

Intellectual property (IP) protections play a vital role in maintaining incentives to innovate. These

protections include trademarks, copyrights, and patents, each of which grant a degree of market

power to innovators to encourage the development of new content and technology. However, in

some markets, IP protection enforcement can be difficult, leading to a deterioration of its intended

effects. These enforcement challenges are particularly acute in the rapidly-growing markets for

digital goods, in which replication and distribution are both low-cost and difficult to observe.

The combined revenue generated by digital media markets (including gaming, video, music,

e-books, etc.) worldwide exceeds $330 billion annually, a figure expected to continue growing in

excess of 10% per year as broadband access increases and firms reach new customers and markets.

One of the largest segments of this market, accounting for nearly two-thirds of all residential internet

traffic, is over-the-top (OTT) video subscription services like Netflix, HBO Max, and Sling TV.2

Recent technological developments in this industry have made unlicensed access to subscription

and live video content simple, inexpensive, and difficult to detect, potentially eroding protections

granted to content producers. Specifically, Kodi streaming software, which facilitates both legal and

unlicensed access to content from OTT subscription services, became readily available on streaming

devices in the late-2010s. The emergence of Kodi also introduces a trade-off for multiple-service

1Coauthored with Zachary Nolan, Department of Business Administration, University of Delaware,
znolan@udel.edu and Jonathan W. Williams, Department of Economics, University of North Carolina
at Chapel Hill, jonwms@unc.edu

2https://www.statista.com/outlook/dmo/digital-media/worldwide##revenue
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operators (MSOs): although demand for paid video services may decrease with the availability of

unlicensed alternatives, the bandwidth requirements of piracy methods may increase the demand for

high-quality internet access. The potential for redistribution of surplus among content providers,

MSOs, and consumers has important implications for the incentives that govern content creation

and broadband network investment. In this paper, we use novel detailed panel data on households’

internet and video usage, and adoption timing of Kodi-ready streaming hardware, to quantify the

impact of piracy on content producers and MSOs.

In the late 2010s, open-source “Kodi” software was recognized as a means to overcome barriers

to media piracy even for technologically unsophisticated households.3 Soon after, entrepreneurs

began selling streaming media hardware pre-loaded with Kodi software at retailers like Amazon,

which facilitated illegal access to live and on-demand video programming. These devices offered

free or inexpensive access to programming after the fixed cost to obtain them, prompting a surge in

demand and numerous lawsuits from content producers (including Amazon, Disney, Netflix, NBC

Universal, and others) seeking damages for copyright infringement.4

In addition to the challenges of quantifying damages, IP protection enforcement for digital

media is difficult. In particular, internet-access providers, including MSOs that sell both live TV

and internet-access services, may not have the ability or incentive to mitigate piracy. On one hand,

Kodi boxes offer free (or very inexpensive) access to live TV programming that may be superior

(i.e., thousands of channels from across the globe) to the MSO’s TV service. On the other hand, a

household must have access to a high-speed internet connection to utilize these substitutes, making

high-quality internet access more valuable. Even if the former harm outweighs the latter benefit, it

is not clear that MSOs could easily mitigate piracy of copyrighted digital content. Specifically, the

technology (i.e., BitTorrent) that turns standard streaming hardware into a platform for piracy was an

original catalyst for implementation of strong Net Neutrality standards requiring the equal treatment

3Before Kodi, the most common method for media piracy was BitTorrent, a protocol enabling users to send,
receive, and locally store large files in a decentralized manner.

4https://www.forbes.com/sites/ianmorris/2018/04/29/netflix-and-amazon-join-the-battle-against-kodi-
pirates/?sh=1421080e213a
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of internet traffic. In 2008, when Comcast blocked BitTorrent from its network due to concerns over

harm from network congestion (and its use in piracy), the Federal Communications Commission

(FCC) ruled that this was a violation of Net Neutrality principles.5 Also, the Digital Millennium

Copyright Act (DMCA) prevents MSOs from directly benefiting from copyright infringements,

ruling out application-specific fees to extract a portion of the surplus associated with Kodi adoption.

Thus, MSOs could face regulatory scrutiny on multiple fronts for impeding traffic associated with

these activities.

The high-frequency panel data at the core of our empirical analysis help overcome challenges

with quantifying the damages to digital media content providers and measuring the incentives

of MSOs regarding piracy. Specifically, for about 10,000 households, we observe if and when

each household adopts Kodi technology, engagement with popular OTT subscription services, and

subscriptions and engagement with the MSO’s live TV and internet services. Our ability to observe

adoption relies on deep-packet inspection (DPI) software on the MSO’s network that can detect

traffic associated with specific applications and devices, including Kodi. At an hourly frequency, we

also observe internet usage for eleven broad categories including gaming, web browsing, and real-

time communication. For all traffic within the largest of these categories, real-time entertainment

(RTE), which accounts for nearly two-thirds of all traffic, we observe event-level usage information.

Each record in these more detailed data includes a unique household identifier, identity of the

application (e.g, Netflix), device utilized (e.g., Roku), and total bytes and duration (e.g., 1 gigabyte

used over 45 minutes). In addition to this DPI internet usage information, we observe set-top box

(STB) log files describing TV viewership on the MSO’s live TV service.

Directly observing the household-specific timing of Kodi adoption, along with subsequent

changes in engagement and subscriptions, offers an opportunity to quantify both harm to providers

of digital media and the MSO’s incentives to prevent or extract surplus associated with piracy.

Our household-level panel begins before pre-loaded Kodi devices became widely available, so for

most households we observe a period of several months both before and after adoption. However,

5https://www.cnet.com/news/fcc-formally-rules-comcasts-throttling-of-bittorrent-was-illegal/
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adoption is a choice, and those 9.5% of households that adopt exhibit behaviors different from other

households. Kodi-adopting households generate 11.38 gigabytes of internet traffic per day, nearly

65% more data than the 6.91 daily gigabytes generated by other households. Engagement with

some RTE services is also substantially higher for Kodi households: Twitch (371%), Hulu Live

(394%), and DirecTV Now (169%). To address these challenges and identify the effects of Kodi

adoption, we utilize the synthetic difference-in-differences (SDID) approach of Arkhangelsky et al.

(2021).6 In our application, the SDID method provides a household-specific expectation of the

usage and subscription behaviors that would have been realized in the absence of Kodi adoption

using a weighted average of other households with similar behaviors. Combining this estimate

of counterfactual behaviors with the realized behaviors allows us to identify the behavioral effect

of adoption on a household. We consider a variety of engagement and subscription outcomes to

quantify the impact of Kodi adoption on content producers and MSOs.

First, we examine the effect of Kodi adoption on MSO subscriptions and profitability. We find

that Kodi adopters’ expenditure on MSO services drops by about 1%. This is the net effect of video

expenditure (e.g., “cutting the cord”), a decrease of 3.1%, and internet service expenditure (e.g.,

tier upgrades), an increase of 0.9%. Consistent with an increase in demand for internet services, a

household’s total usage increases by 2.89 gigabytes per day (26%) following Kodi adoption. This is

primarily driven by increases in RTE and bulk transfers (e.g., encrypted traffic) of 1.72 and 0.62

gigabytes, respectively. Precipitous increases in network traffic could harm MSO profitability by

accelerating the schedule of fixed-cost network investments (e.g., node splits).

Consistent with the large increase in RTE traffic following Kodi adoption, we find traffic

associated with subscription video on demand (SVOD) services increases by 0.52 gigabytes per

day, the equivalent of up to 30 minutes of high-definition (1080p) video content on a typical

service. Netflix, YouTube, live TV (e.g., Sling TV), and social-media applications see positive and

significant increases in usage following Kodi adoption. We find no statistically significant effect on

6See Abadie et al. (2010) and Cunningham and Shah (2018) for early applications of synthetic control
methods.

47



the intensity of engagement with the MSO’s TV service overall or for any genre of channels. Thus,

Kodi adoption led to an increase in legal engagement with most sources of OTT content, and the

intensity of engagement with the MSO’s TV service was largely unchanged.

Together, our findings show that adoption of pre-loaded Kodi boxes by a household increases

engagement with most sources of content. These findings are consistent with Kodi making access

to various OTT video sources easier, and inconsistent with many allegations of harm to online

content providers. However, content producers that rely on the MSO for distribution do suffer harm

from lost advertising and licensing revenues due to the reduction in subscriptions to the MSO’s

TV service. As for harm to the MSO, the observed decrease in revenue corresponds to a decrease

in profits only if the margin associated with lost TV revenue is large enough to offset the margin

associated with increased internet revenue. If one assumes that internet service has zero marginal

cost, TV margins must be greater than 30% for Kodi adoption to result in a decrease in MSO

profits. This threshold moves down if accommodation of Kodi traffic requires additional network

investment. For smaller MSOs with less bargaining power to reduce TV content licensing fees, Kodi

adoption may actually increase profits. For large MSOs that are vertically integrated with content

providers (e.g., Comcast and NBC Universal), 30% margins are more plausible and therefore justify

the litigation alleging harm.7

Given the legal and regulatory limits on MSOs’ ability to block or price Kodi traffic, government

and private entities also took steps to limit distribution of Kodi boxes while litigation proceeded.

At the peak of Kodi adoption, some governments including the EU made the sale of pre-loaded

Kodi hardware illegal, leading to a number of arrests and fines.8 In cooperation with these efforts,

Google eliminated auto-completion for terms related to Kodi and altered their search algorithms

to de-prioritize such material.9 These coordinated efforts ultimately were successful in nearly

eliminating the market for pre-loaded Kodi boxes, an outcome which benefits MSOs with relatively

7One such suit alleging harm was recently settled: https://www.theverge.com/2022/3/1/22956219/kodi-
tvaddons-creator-fined-19-million-copyright-infringement-piracy

8https://www.theverge.com/2017/4/26/15433342/eu-court-of-justice-filmspeler-kodi-piracy-box-ruling
9https://www.theverge.com/2018/3/29/17176894/google-removes-kodi-search-autocomplete-anti-piracy
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large margins on TV service, and content producers that rely on MSOs for distribution. However, in

the short run, it harms OTT content providers that realize increased legal engagement following

Kodi adoption. Given the dissolution of the market, identifying longer-run changes in engagement

is no longer possible. However, over our 16-month panel of data, we find no evidence to suggest the

effects of Kodi change with the time since adoption.

Our research complements a rich literature on intellectual property and piracy, particularly for

digital goods. The theoretical effect of file-sharing technologies on copyright holders is ambiguous

because technologies that facilitate piracy may encourage legal sales through awareness and other

channels (Takeyama, 1997; Bakos and Brynjolfsson, 2000; Varian, 2000; Shapiro et al., 1998).

Oberholzer-Gee and Strumpf (2007) and Oberholzer-Gee and Strumpf (2016) find that Napster had

no effect on music sales, and Waldfogel (2012) finds no change in quality of music.10 Danaher

and Waldfogel (2012) and Leung (2015) find losses associated with piracy for movie box office

and music sales, respectively. Our findings show that Kodi adoption increased subscriptions and

engagement with many sources of OTT content, but likely harmed MSOs and content producers

that rely on MSOs for distribution.

We also contribute to a growing empirical literature focused on MSO incentives regarding

the treatment of new technologies on their networks. Numerous studies measure the determinants

of the value derived from internet access broadband (Prince and Greenstein, 2017; Goetz, 2019;

Tudon, 2021; Goolsbee and Klenow, 2006; Dutz et al., 2012; Rosston et al., 2013; Greenstein and

McDevitt, 2011a; Edell and Varaiya, 1999; Varian, 2002; Hitt and Tambe, 2007). Our analysis

shows that innovations like Kodi that increase demand for broadband can harm the MSO’s TV

service and overall revenue. McManus et al. (2022b) show that MSOs will embrace innovations

(OTT video in their setting) so long as they can capture some of the increase in surplus associated

with internet access. In our setting, where DMCA and regulatory uncertainty over net neutrality

limit the strategies available to MSOs, litigation became the obvious solution to limit adoption

10Other important early contributions to this literature include Peitz and Waelbroeck (2004), Rob and
Waldfogel (2006), Zentner (2006), and Rob and Waldfogel (2007).
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of the innovation. This contributes more empirical evidence related to the “net neutrality” debate

over MSO’s incentives regarding blocking, pricing, or throttling different sources of traffic.11 Our

high-frequency internet usage data are similar to those used by Nevo et al. (2016a), Malone et al.

(2021), and Malone et al. (2014), but we observe application-level data (e.g., Netflix) in addition to

engagement with the MSO’s TV service.

2.2 Data

Our data describe the characteristics and behaviors of 10,337 households, all of whom take up

service from a North American MSO.12 For each household, we observe internet and TV usage data

and billing records over a sixteen-month period spanning 2017-2018. In this section we describe the

four data sources that comprise our sample, document evidence of media piracy via Kodi software,

and describe behavioral changes that occur when a household adopts piracy technology.

2.2.1 Data sources

The first data source is a collection of usage reports from in-home internet connectivity hardware,

which contains an hourly aggregation of the quantity of internet traffic generated by each household.

These reports capture both upload and download traffic, measured in bytes. The hourly traffic

totals are also decomposed into categories including web browsing, email, gaming, and real-time

entertainment (RTE; applications and protocols that provide “on-demand” entertainment that is

consumed as it arrives, e.g., Netflix, YouTube, etc.). A list of categories with example applications

and protocols is provided in Table 2.1.

This aggregate information on internet usage is supplemented by high-frequency detail on all

activity within the RTE category, which accounts for approximately 63% of overall traffic in the

sample. This second data source is at the event level, and includes the time stamp, duration, size,

11Lee and Wu (2009) and Greenstein et al. (2016) provide excellent discussions of this literature.
12The demographics of households in the sample market are approximately representative of the U.S.

population.
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Table 2.1: Internet Traffic Categories

Category Description

Bulk Transfer Large file transfers (FTP, SFTP)
Cloud Cloud storage (Dropbox, Google Drive)
Email Service-provider and webmail e-mail services (Gmail,

SMTP, POP3)
Gaming Console and PC gaming (PlayStation, XBox)
Peer-to-Peer File-sharing applications (BitTorrent)
Real-Time Communication (RTC) Interactive video and voice communications (Skype, Zoom)
Real-Time Entertainment (RTE) Applications involving “on-demand” entertainment that is

consumed as it arrives (Netflix, Youtube, RTSP, Flash)
Social Media Social networking websites (Facebook, Twitter)
Tunnel Encrypted channels used for VPN and secure web transac-

tions (SSL, SSH)
Web Browsing Individual websites (HTTP)
Miscellaneous Uncategorized traffic

Notes: List of categories observed in the hourly internet traffic reports with descriptions and example applica-
tions or protocols.

and content provider associated with all consumption events within this category. Most applications

and content providers in the raw data are identified by a provider name (e.g., Netflix), but some

include only an IP address. We use a DNS lookup tool13 to identify the content provider associated

with each IP address. After filling in the unknown content providers, we can identify the source of

99.99% of traffic within the RTE category.

The third data source is set-top box data describing the channel and viewing duration of TV

tuning events at a one-minute frequency. This data source is available for the 67% of households

that subscribe to a TV plan in addition to internet access.

The final data source provides billing information and allows us to link together the three types

of usage data via a stable subscriber identifier. For each subscriber identifier, we have a record

of which services were chosen in addition to payments made to the ISP for these services. The

services available include TV plans (e.g., Basic TV, Expanded TV, HBO, etc.), internet service tiers

(differentiated by download speed), and home phone service. Nearly all households we observe

take up internet service, and 67% take up TV service.

13https://www.home.neustar/resources/tools/ip-geolocation-lookup-tool
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Figure 2.1: Number of Kodi Users

Notes: Cumulative number of active Kodi users. Sample time
frame is April 11, 2017 to August 31, 2018.

To combine the three usage data sources, each of which comes at a different level of observation,

we aggregate to the household-day level of observation. The consumption panels we use in the

analysis contain each household’s daily internet consumption by category, RTE consumption by

content provider, and TV consumption by network.

2.2.2 Identifying media piracy

We identify households that engage with media piracy software from the RTE data, which include a

record of engagement with Kodi software. Media piracy is not the sole-use case of Kodi software,

but the software facilitates access to unlicensed content via third-party add-ons. Kodi has become

closely associated with piracy due to the practice of bundling its software with media streaming

hardware and add-on software pre-configured to access unlicensed content, so-called “fully-loaded”

Kodi boxes.

When a subscriber initiates a video stream within the Kodi application, a new data flow

originates from a specific IP address that hosts unlicensed content. The Kodi traffic we observe
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comes from system refreshes and updates to the Kodi software and/or its add-ons.14 This means

our measure of piracy engagement is imperfect: although we have a good signal of the extensive

margin (adoption) or the technology, the exact volume of traffic passed through Kodi software is not

observable. A household in our sample is labeled a Kodi adopter if we ever observe traffic attributed

to the Kodi application. We also use adoption date to refer to the date on which the application was

first used.

During the sample, we observe about 1,000 households utilize Kodi software. Figure 2.1 depicts

this adoption over time. For a period of approximately 100 days at the beginning of the sample,

we observe no households engage with Kodi (omitted from the figure), but use of the application

grows quickly beginning in 2017. The overall penetration rate, approximately 9.5% of our sample,

is in line with an industry report from Sandvine which estimated that 8.8% of North American

households had a Kodi box during our sample period. Although we cannot be certain whether each

individual household utilizes Kodi for piracy, the same report determines that over two-thirds of

households with Kodi devices also have add-ons configured to access unlicensed content (Sandvine,

2017).

2.2.3 Descriptive statistics of usage

Internet and TV usage during the sample period is characterized by significant heterogeneity and

growth during the panel. Table 2.2 provides summary statistics on the distribution of internet and

TV usage across households. The average household in the sample generated 7.34 gigabytes per day

of total internet usage. The distribution of internet usage is highly skewed: the standard deviation is

13.18, the 25th percentile is 0.85, and the 75th percentile is 9.18 gigabytes per day. Heavy internet

use is driven by the use of streaming video entertainment, with RTE usage generating 63% of overall

usage. 67% of the households in the sample take up a TV subscription in addition to internet access.

14These updates are frequent. Kodi software developers released a new version of the application in early
2017, with monthly updates for the rest of the year. Also, each third-party add-on that facilitates access
to unlicensed content is a separate entity, managed by its own developer team which publishes its own
software updates.
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Engagement with TV is also highly heterogeneous, with the average TV household viewing 4.33

hours per day (standard deviation 6.14).

Table 2.2: Internet and TV Usage

Mean SD p25 p50 p75 Count

Internet Usage
All households 7.34 13.18 0.85 3.00 9.18 10,337
Non-Kodi adopters 6.91 12.67 0.79 2.74 8.53 9,357
Kodi adopters 11.38 16.67 2.00 6.53 15.13 980

RTE Usage
All households 4.66 8.92 0.15 1.23 5.80 10,337
Non-Kodi adopters 4.37 8.57 0.13 1.07 5.33 9,357
Kodi adopters 7.41 11.29 0.62 3.61 10.13 980

TV Usage
All households 4.33 6.14 0 1.92 6.63 6,922
Non-Kodi adopters 4.25 6.10 0 1.85 6.48 6,420
Kodi adopters 5.19 6.50 0 2.9 8.08 502

Notes: This table summarizes household-level average daily internet usage,
real-time entertainment (RTE) usage, and TV usage. Internet usage is measured
in gigabytes and TV usage is measured in hours. Statistics from each usage
distribution are provided for all households, households that utilize Kodi, and
households that do not utilize Kodi.

Internet usage is also characterized by significant growth during the sample period. Figure 2.2

depicts the growth in total usage over the course of the sample (height of the boundary between

shaded and unshaded regions) and the breakdown of total usage into categories (height of individual

shaded bands). Internet engagement grows significantly, from a household daily average of 5

gigabytes per day during the first month to nearly 9 gigabytes per day during the last month, an

annual growth rate of approximately 50%.

Although traffic as a whole grows rapidly, the composition of traffic is relatively stable during

the sample, with RTE making up the majority of traffic, followed by web browsing and bulk transfer

(large data transfers using FTP or its derivatives). Levels of each traffic category are documented in

Table 2.3, and more information on this grouping is provided in the data appendix.
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Figure 2.2: Internet Usage Growth and Composition

Notes: 30-day rolling average of internet usage (measured in
gigabytes) by traffic category. Band heights correspond to
the volume of traffic within the corresponding category. The
three smallest categories are combined with the Miscellaneous
category and labeled “Other”.

Table 2.3: Internet Usage by Category

All HHs Non-Kodi Kodi Difference (%)

Total 7.341 6.907 11.378 64.74
RTE 4.663 4.368 7.405 69.54
Web Browsing 0.867 0.827 1.235 49.25
Bulk Transfer 0.837 0.781 1.354 73.30
Cloud 0.210 0.205 0.259 26.59
Miscellaneous 0.201 0.197 0.237 20.26
RTC 0.119 0.110 0.204 86.29
Gaming 0.176 0.163 0.297 82.46
Social Media 0.139 0.135 0.180 33.87
Peer-to-Peer 0.061 0.056 0.112 100.37
Tunnel 0.046 0.044 0.067 52.44
Email 0.023 0.022 0.028 25.19

Average daily usage by internet traffic category for all households, house-
holds that do not adopt Kodi, and households that adopt Kodi. Difference
(%) is the percent difference between Kodi and Non-Kodi households. Us-
age is measured in gigabytes.
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Next, we describe the set of individually observable applications within the real-time enter-

tainment category. Table 2.4 provides summary statistics for the top 30 applications by total usage

volume. Approximately 40% of traffic in the real-time entertainment category is attributable to

engagement with Netflix, and another 19% is due to YouTube. Three of the five most-used applica-

tions are the largest subscription video on-demand services—Netflix, Amazon Video, Hulu—which

together account for 52% of all RTE traffic. These applications are followed by Sling TV, an

online live TV programming distributor offering a close substitute to the ISP’s TV product. Other

similar applications including DirecTV/AT&T TV Now, PlayStation Vue, and Hulu Live TV are

also observable. These high-volume applications exhibit large unconditional usage averages with

low overall penetration. The remaining applications in the RTE category include social media

(Facebook, Instagram, TikTok, Twitter), music streaming (iTunes, Pandora, musical.ly), individual

content providers (HBO, ESPN, Fox, MLB), and some unsorted traffic or traffic attributable to a

CDN (HTTP Live Streaming, CDN, Akamai). The final column in Table 2.4 includes the number

of households that ever engage with the application. In the case of subscription services like Netflix,

which 89% of households use at least once, this is likely an overestimate of the true penetration rate

of subscriptions due to the availability of free trials and other promotions. Many free applications

like YouTube and Facebook have nearly full penetration within the sample. The appendix contains

a table similar to Table 2.4 with applications ranked by penetration rate instead of volume.
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Table 2.4: Usage of Top 30 Real-Time Entertainment Applications

All HHs Non-Kodi Kodi Difference (%) Count

Netflix 1.95 1.858 2.748 47.96 8,808
YouTube 0.851 0.79 1.387 75.54 10,103
Amazon Prime Video 0.435 0.413 0.624 51.12 6,883
HTTP Live Streaming 0.237 0.221 0.372 68.1 10,034
Hulu 0.166 0.158 0.232 46.73 2,891
Facebook 0.131 0.127 0.247 95.03 10,016
Sling TV 0.104 0.102 0.118 15.2 934
Twitch 0.074 0.065 0.162 149.96 6,164
HBO 0.062 0.059 0.094 59.51 2,028
Apple 0.061 0.06 0.073 21.97 7,320
CDN 0.059 0.056 0.086 53.1 9,718
iTunes 0.056 0.056 0.056 -1.03 8,616
PlayStation Vue 0.047 0.045 0.068 50.81 205
Pandora 0.041 0.039 0.061 55.37 6,576
musical.ly 0.04 0.036 0.075 107.68 2,497
Akamai 0.039 0.036 0.061 67.15 9,764
DirecTV Now 0.038 0.034 0.088 158.66 326
Vudu 0.035 0.035 0.033 -5.63 861
ESPN 0.03 0.029 0.044 51.02 6,096
Instagram 0.02 0.019 0.083 341.2 2,849
MLB 0.018 0.016 0.032 99.53 2,191
Twitter 0.017 0.017 0.024 43.68 9,272
Amazon 0.016 0.016 0.019 21.2 9,738
Fox 0.016 0.017 0.013 -20.19 5,552
upLynk 0.014 0.013 0.016 20.99 7,977
DirecTV 0.013 0.012 0.023 97.85 1,332
Xbox 0.013 0.012 0.021 76.78 2,216
Dish Network 0.012 0.012 0.016 31.89 392
NBC 0.012 0.012 0.013 3.61 3,412
Microsoft 0.012 0.01 0.025 137.18 4,116

Notes: Unconditional average daily usage by application for all households, households that
do not adopt Kodi, and households that adopt Kodi. Difference (%) is the percent difference
between Kodi and non-Kodi households. Count is the number of households that ever engage
with the application. Usage is measured in gigabytes.

Table 2.5 describes a breakdown of total TV viewership into categories, the largest of which are

Network TV (ABC, CBS, FOX, NBC), News channels, Kids’ channels, Daytime/Drama channels
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(Bravo, Hallmark, Lifetime, etc.), Movie channels, and Sports channels. The average household in

the sample watches 4.33 hours of TV per day.

Table 2.5: TV Viewing by Category

All HHs Non-Kodi Kodi Difference (%)

Total 4.328 4.246 5.193 22.29
Network TV 1.315 1.306 1.413 8.24
News 0.436 0.443 0.363 -18.10
Kids 0.390 0.364 0.664 82.12
Daytime/Drama 0.311 0.306 0.362 18.44
Sports 0.264 0.257 0.331 28.80
Movie 0.259 0.254 0.318 25.33
Education/Science 0.234 0.230 0.286 24.53
Lifestyle 0.230 0.227 0.270 19.13
Music/Reality 0.162 0.151 0.284 87.91
General Entertainment 0.129 0.126 0.159 26.74
Premium 0.071 0.067 0.115 70.93
Outdoor 0.065 0.065 0.065 0.57
Spanish 0.002 0.002 0.002 11.63
Other 0.459 0.449 0.560 24.61

Notes: Average daily viewing of TV channel groups for all households, households
that do not adopt Kodi, and households that adopt Kodi. Difference (%) is the
percent difference between Kodi and non-Kodi households. Viewing is measured
in hours.

2.2.4 Behavioral patterns among Kodi adopters

There is clear reason to believe household characteristics including content preferences, technologi-

cal abilities, and demographic characteristics may drive selection into Kodi adoption. We describe

behavioral differences between Kodi adopters and non-adopters and within-household changes that

occur once a household adopts piracy technology.

Kodi users on average generate 70% more total internet traffic, 75% more RTE traffic, and 20%

more TV traffic than other households (Table 2.2), suggesting more intense preferences for online

and media content among households which engage with piracy. Additionally, fewer Kodi adopters

(51%) than non-Kodi households (69%) are TV subscribers. While most large usage categories
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exhibit differences between Kodi adopters and non-adopters roughly proportional to the 70% total

level difference, adopters engage substantially more with online gaming and bulk file transfers

(Table 2.3).

Kodi users engage more heavily with Netflix (48% more), YouTube (76% more), Amazon Video

(51% more) and Hulu (47% more) than non-users (Table 2.9). They engage substantially more with

some applications, including Twitch (150% more), some online live TV providers (DirecTV Now,

159% more; PlayStation Vue 51% more), social media (Instagram, 341% more), and online sports

programming (MLB, 100% more; ESPN, 51% more). Kodi users who have TV subscriptions also

exhibit different TV preferences from other households, including at least 25% greater levels of

engagement with the Premium, Kids, Music/Reality, Movie, and Sports genres (Table 2.5).

In the three months after a household uses Kodi for the first time, we observe a 14% increase in

daily traffic relative to the preceding three months. During this period, RTE consumption increases

by 14% while TV viewership declines by 8%. These within-household differences suggest persistent

changes in media engagement following Kodi adoption. However, they are not interpretable as

causal effects, as they do not account for a host of factors including aggregate usage growth,

seasonality, and individual tastes that likely drive both Kodi adoption and media consumption

decisions.

2.3 Empirical Analysis

In this section, we document the impact of piracy technology adoption on consumer behavior and

firm revenues. The main empirical challenge in measuring these effects stems from the fact that

although the arrival of Kodi technology is exogenous, the decision to adopt the technology is likely

influenced by both household characteristics and seasonal factors. To account for this selection,

we use a synthetic difference-in-differences approach, leveraging the long panel of pre-adoption

observations to estimate household-specific counterfactual usage decisions. Throughout the section,

we refer to those households that ever use the Kodi application as Kodi adopters. We use adoption

date for the first date on which the application was used.
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2.3.1 Subscription Choice and Expenditure

We first analyze the impact of Kodi adoption on service provider revenues. To the extent that Kodi

technology is a substitute to the ISP’s TV service, we may observe a reduction in TV expenditures

due to TV subscription cancellations (cord-cutting) or downgrades to lower-revenue tiers of TV

service with fewer channels. On the other hand, if internet download speed is a complement to Kodi

usage (since faster speeds may be required to facilitate higher volumes of video streaming), internet

expenditures may increase due to tier upgrades.

Table 2.6: The Effect of Kodi Adoption on ISP Expenditures

TV Internet All Services

(1) (2) (3) (4) (5) (6)

Kodi Adopter -0.038∗∗∗ 0.041∗∗∗ -0.010
(0.009) (0.004) (0.007)

After Adoption -0.101∗∗∗ -0.032∗∗∗ 0.020∗∗∗ 0.009∗∗∗ -0.059∗∗∗ -0.010∗∗∗

(0.010) (0.005) (0.005) (0.003) (0.008) (0.003)
Constant 4.426∗∗∗ 4.400∗∗∗ 3.849∗∗∗ 3.863∗∗∗ 4.846∗∗∗ 4.815∗∗∗

(0.006) (0.002) (0.003) (0.001) (0.005) (0.001)

Household FE No Yes No Yes No Yes
Monthly Dummies Yes Yes Yes Yes Yes Yes
Observations 106,907 106,907 148,923 148,923 148,923 148,923

Notes: Results of OLS and household fixed-effect regressions of log monthly expenditures
on ISP subscriptions by category (TV service, internet service, all expenditures) on a Kodi
adoption indicator, household-level adoption indicator and monthly dummies.

To separate these two effect channels, we first regress log monthly expenditures on a Kodi

adoption indicator and monthly dummies. We estimate separate specifications for TV and internet

expenditures, in addition to the combination of expenditures on all ISP services. Table 2.6 reports

coefficient estimates. On average, prior to the adoption date, Kodi adopters with TV subscriptions

spend 3.7% less on TV than non-Kodi adopters with TV subscriptions. Also, Kodi adopters spend

4.2% more on internet service than non-adopters. Incorporating household fixed effects, we estimate

a further 3.1% reduction in monthly TV payments among TV subscribers and a 0.9% increase

in monthly internet payments among Kodi adopters after the adoption date. Pooling together

expenditures, the average monthly bill paid by Kodi adopters decreases by 1% after the adoption
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date. We note that although the net revenue change is negative, the two service types have different

profit margins, so the net effect on profit may not be negative (i.e., if the change in profit from the

3.2% revenue reduction among the 67% of households with TV does not exceed the profit increase

associated with the 0.9% increase in revenue from internet households).

Table 2.7: The Effect of Kodi Adoption on ISP Subscriptions

Add TV Drop TV Upgrade Internet

(1) (2) (3) (4) (5) (6)

Kodi Adopter 0.037∗∗ 0.034∗ 0.026∗∗ 0.024∗∗ 0.053∗∗∗ 0.051∗∗∗

(0.019) (0.018) (0.013) (0.012) (0.015) (0.014)
Constant 0.122∗∗∗ 0.096∗∗∗ 0.228∗∗∗

(0.006) (0.004) (0.004)

Observations 3,415 3,415 6,922 6,922 9,739 9,739

Notes: Results of household-level regressions describing changes in ISP subscrip-
tions between the beginning and end of the sample period. Dependent variables
indicate whether a given household took each action (new TV subscription, can-
celled TV subscription, upgraded internet tier). Odd-numbered columns contain
OLS coefficients; even-numbered columns contain Probit regression marginal ef-
fects. Specifications 1 and 2 contain households that start the sample with no TV
subscription. Columns 3 and 4 contain households that start the sample with a TV
subscription. Columns 5 and 6 contain all households except those that start the
sample on the highest internet service tier.

We also document the impact of Kodi adoption on consumer subscription decisions. We regress

household-level indicators of each type of subscription change (add TV, drop TV, upgrade internet

tier) on the Kodi adoption indicator. Table 2.7 reports these results. We find that Kodi adopters

add and cancel TV subscriptions, and that the number of cord-cuts exceeds the number of new TV

subscriptions.15. We also find that the previously documented increase in internet expenditures is

driven by an approximately 5% internet tier upgrade rate among Kodi adopters.

15Although the rate of new TV subscriptions among internet-only households is larger than the cord-cutting
rate among households with TV subscriptions, the number of households with TV subscriptions is more
than twice the number who do not.
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2.3.2 Media Engagement

2.3.2.1 Estimation Strategy

Our next goal is to understand whether observed changes in consumer behavior can be attributed

to Kodi adoption. The main empirical challenge is that while the arrival of streaming devices

outfitted with Kodi software is an exogenous introduction of new technology, the choice to adopt the

technology and the timing of the adoption choice are clearly endogenous. To correct for household-

level selection into the adopter group and any seasonal factors that contribute to adoption timing, we

use a generalization of the synthetic control method, the synthetic difference in differences (SDID)

approach of Arkhangelsky et al. (2021). The SDID method constructs a counterfactual estimate

of the behaviors that would have been realized in the absence of adoption. These counterfactual

estimates can then be used to estimate adoption treatment effects.

If we apply the traditional linear panel method, difference in differences, non-adopters cannot

reproduce the “correct” counterfactual outcome that adopters would have exhibited in the absence

of the event due to selection on adopter characteristics. To control for this selection, a synthetic

control group must be constructed from a weighted average of non-adopters that exhibit the same

pre-adoption behaviors as the adopters. The synthetic control group method developed by Abadie

et al. (2010) is to calculate optimal weights that minimize the pre-adoption distance—the residual

from using non-adopter observables to approximate adopter observables—and then to apply those

weights to the outcomes ex-post. The original synthetic control method is best suited to the case of

one treated unit, to which treatment is introduced at a fixed time. As we have multiple “treated”

units, each of which is exposed to the “treatment” at a different time, we follow the more robust

SDID method, a doubly-weighted synthetic control estimator with both household and time period

weights. This combination allows us to approximate the behaviors of Kodi adopters using non-

adopter behaviors during the pre-adoption period and weight time periods that most closely resemble

the post-adoption periods for which we impute the counterfactuals.
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The SDID estimator τ̂ sdid can be seen as a weighted least squares regression estimator with

household-specific and time-specific weights, where the regression model includes time and house-

hold fixed effects. With N total households, split between N1 Kodi adopters and N0 non-adopters,

and T time periods, split between T1 post-adoption time periods, and T0 pre-adoption time periods,

the model is formally defined as

(µ̂, α̂, β̂, τ̂ sdid) = arg minµ,α,β,τ

N∑
i=1

T∑
t=1

(Yit − µ− αi − βt −Witτ)
2ω̂iλ̂t

Here Yit is the outcome variable, total or categorical usage. Wit is a N × T treated block of 0 or 1,

with each Wit indicating whether household i has adopted Kodi at time t. The ωi and λt parameters

are unit and time weights. The ωi weights are chosen to make the weighted average of the controls

in the pre-treatment period approximate the corresponding value for the treated household, i.e.,∑
i ω̂iYit ≈ Ynt for all t ∈ {1, ..., T0} and n ∈ {N0 + 1, ..., N}. The λt weights are chosen such

that within a household, the weighted average outcomes across time periods approximate the target,

i.e.,
∑

t λ̂tYit ≈ Yis for all i ∈ {1, ..., N0 and s ∈ {T0 + 1, ..., T}. The terms inside the parentheses

form a two-way fixed effect model, incorporating both the unit and time weights of standard DID

models and the unit fixed effects and time weights of synthetic control models.

The main difference between our approach and the SDID estimator outlined in Arkhangelsky

et al. (2021) is our use of a household-specific (rather than common across all households) assign-

ment matrix. This deviation is motivated by the fact that households adopt Kodi at different times

throughout the sample period. The estimator we use to accommodate this staggered adoption is

effectively a weighted average of household-specific SDID estimators.

2.3.2.2 Results

We estimate the average effect of Kodi adoption on internet and TV usage using 90-day pre- and

post-adoption windows for each household. Our use of a long window to measure behavioral

changes is motivated by previous work, which establishes that changes in internet media usage can
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occur well before (or after) new services are adopted, and enabled by our long panel (Malone et al.,

Forthcoming). Also, a longer observation period allows us to smooth over substantial inter-day

variance in behaviors.

We report estimates using three approaches: standard difference-in-differences, synthetic

controls, and SDID. We find no clear time trend in the Kodi adoption month, and report regression

results without a treatment period indicator.

Table 2.8 reports the average effect of Kodi adoption on internet usage by traffic category and

overall. In each regression, the number of treated households is 328, and the treatment effect is

the difference between average usage in the 90 days preceding and the 90 days following Kodi

adoption.16 Total usage increases by 2.88 gigabytes per day (25% of the average Kodi adopter’s

baseline) after a household adopts Kodi technology, and usage increases in nearly all individual

traffic categories. The bulk of the increase comes from the RTE category, which sees a 1.72

gigabyte per day increase, followed by the Bulk Transfer category (0.62 gigabytes per day increase)

and Web Browsing category (0.48 gigabytes per day increase). The large increase in RTE traffic

(23% of the baseline Kodi adopter usage level) is not surprising given that the category makes

up the majority of total usage for the average household, and an even higher proportion for Kodi

users. Also, if households are adopting pirated video content to replace content they were already

consuming on TV, the increase in streaming video intensity may be a natural result of substituting

pre-existing consumption to the Kodi platform. The Bulk Transfer and Web browsing treatment

effects are 46% and 38% increases over the adopter baseline, respectively. It is likely that some

pirated media content accessed via Kodi is classified by the data processor as Bulk Transfer traffic.

Other categories with positive and statistically significant, yet smaller-magnitude, treatment effects

include Email, Real-time Communication, and Social Media.

We next look within the RTE traffic category and decompose video streaming traffic into

individual applications and sub-categories. In creating the decomposition, we attempt to balance

16The treatment effect estimates are robust to period length. The appendix contains additional regression
tables for alternative durations.
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Table 2.8: The Effect of Kodi Adoption on Internet Usage

SDID SC DID Count

2.88 2.88 3.02
Total

(0.513) (0.657) (0.523)
328

0.616 0.611 0.42
Bulk Transfer

(0.159) (0.16) (0.133)
328

0.007 0.007 0.008
Email

(0.002) (0.003) (0.002)
328

0.06 0.036 -0.035
Gaming

(0.053) (0.065) (0.049)
328

0.069 0.056 0.053
Miscellaneous

(0.039) (0.036) (0.039)
328

0.065 0.04 0.03
Cloud

(0.039) (0.039) (0.036)
328

-0.02 -0.031 -0.018
Peer-to-peer

(0.02) (0.011) (0.015)
328

0.079 0.072 0.075
RTC

(0.026) (0.045) (0.022)
328

1.724 1.725 1.95
RTE

(0.346) (0.484) (0.361)
328

0.044 0.037 0.035
Social Media

(0.01) (0.017) (0.009)
328

0.026 0.009 0.037
Tunnel

(0.034) (0.063) (0.035)
328

0.477 0.461 0.464
Web Browsing

(0.13) (0.151) (0.12)
328

Notes: Estimates of the average effect of Kodi adoption
on daily internet usage (measured in gigabytes) by cate-
gory using SDID, SC, and DID methods. Standard errors
computed using the jackknife estimator in parentheses.
We use a 90-day pre- and post-adoption period. Count is
the number of Kodi adopters used in each regression.
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granularity with sample size, as most individual applications have relatively few subscribers. We

estimate Kodi treatment effects for subscription video on demand (SVOD) services (Netflix, Amazon

Video, Hulu, etc.), live channels (streaming websites associated with individual television networks,

e.g., nbc.com, and bundles of live channels delivered via streaming, e.g., Sling TV, DirecTV Now,

etc.), YouTube, movie applications, gaming (primarily Twitch.tv), and social media streaming.

Table 2.9: The Effect of Kodi Adoption on Digital Media Engagement

SDID SC DID Count

0.523 0.523 0.554
SVOD

(0.209) (0.256) (0.201)
308

0.571 0.57 0.557
Netflix

(0.187) (0.236) (0.179)
277

0.097 0.07 0.061
Amazon Video

(0.132) (0.124) (0.138)
192

-0.008 -0.021 -0.034
Hulu

(0.213) (0.176) (0.208)
72

0.247 0.238 0.154
Live Channels

(0.102) (0.13) (0.096)
266

0.569 0.566 0.912
Youtube

(0.163) (0.291) (0.153)
328

0.032 0.002 0.036
Subscription/Free Movies

(0.022) (0.043) (0.022)
120

0.149 0.14 0.337

Notes: Estimates of the average effect of Kodi adoption on daily
engagement with media content providers (measured in gigabytes)
using SDID, SC, and DID methods. Standard errors computed us-
ing the jackknife estimator in parentheses. We use a 90-day pre-
and post-adoption period. Count is the number of Kodi adopters
used in each regression. Households must record at least 5 days of
positive usage of the content source to be included. SVOD includes
Netflix, Amazon Video, and Hulu. Live channels includes all TV
network affiliate websites (e.g., HBO, ESPN, etc.) and streaming
TV bundles (e.g., Sling TV, DirecTV Now, etc.). Subscription/Free
Movies includes on-demand movie streaming websites (e.g., Fan-
dango, Vudu, etc.).

The streaming application treatment effect estimates are presented in Table 2.9. We see a large

and significant increase in SVOD traffic, an increase of 0.52 gigabytes per day which is driven
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primarily by Netflix consumption. We do not observe a significant increase in the consumption of

other major SVOD applications including Amazon Video and Hulu. YouTube traffic also increases

substantially, with similar magnitude to the overall SVOD increase (0.57 gigabytes per day). We

observe a significant increase in usage of network channel streaming content, suggesting that

households may substitute viewership that would have otherwise happened on traditional TV to

streaming.

We next look at behavioral changes in TV viewership. Total TV consumption actually increases

on average in the 90 days surrounding Kodi adoption, though the effect is not significant. We group

individual channels by theme, with the categories explained in the appendix and results reported in

Table 2.10. Relatively few Kodi adopters subscribed to the MSO’s TV service even before adopting

Kodi software, so sample sizes for these regressions are relatively small. We see few significant

effects in the individual categories, suggesting there is not a clear effect of Kodi adoption on TV

consumption.

2.3.2.3 Placebo Evaluation

Our empirical environment differs from those studied in Arkhangelsky et al. (2021) along several

dimensions, most notably because household adoption of Kodi technology is staggered rather than in

a single time period. As such, each “treated” household has a variable adoption date and a variable

treatment period length. Our main empirical specifications use a 90-day usage panel both before

and after the adoption date. This relatively long pre- and post-adoption panel leads to better usage

estimates for each household, but a shorter panel duration would allow us to use more households,

since some adoption occurs either at the beginning or the end of our sample period. Since we

observe a limited number of Kodi adopters, and the sample size used in each model is directly

determined by these duration parameters, we evaluate the implications of these choices for our

results in a placebo study and robustness checks.

To check the robustness of our estimation procedure to sample size, treatment length, and

adoption date, we first compare the performance of the SDID, SC, and DID estimators under a
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Table 2.10: The Effect of Kodi Adoption on TV Viewership

SDID SC DID Count

0.156 0.171 -0.189
Total

(0.259) (0.375) (0.22)
125

0.015 -0.019 0.129
Premium

(0.248) (0.156) (0.221)
22

-0.014 -0.013 -0.045
Movie

(0.118) (0.137) (0.119)
92

-0.215 -0.242 -0.337
News

(0.205) (0.206) (0.233)
76

-0.037 -0.029 -0.063
Sports

(0.123) (0.149) (0.157)
79

0.214 0.241 -0.003
Kids

(0.2) (0.388) (0.205)
58

0.281 0.249 0.36
Music/Reality

(0.142) (0.175) (0.175)
77

0.359 0.378 0.465
Lifestyle

(0.252) (0.328) (0.253)
65

-0.117 -0.127 -0.226
Network TV

(0.118) (0.131) (0.133)
118

-0.231 -0.271 -0.194
Education/Science

(0.13) (0.165) (0.145)
70

0.197 0.193 0.07
Daytime/Drama

(0.24) (0.261) (0.228)
81

0.157 0.142 0.105
General Entertainment

(0.199) (0.248) (0.187)
64

Notes: Estimates of the average effect of Kodi adoption on daily
TV viewership (measured in hours) using SDID, SC, and DID
methods. Standard errors computed using the jackknife esti-
mator in parentheses. We use a 90-day pre- and post-adoption
period. Count is the number of Kodi adopters used in each re-
gression. Households must record at least 5 days of engagement
with the TV network category to be included.
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variety of sampling parameters. Specifically, for combinations of N1 (number of treated households)

and T = T0 = T1 (pre- and post-treatment duration), we randomly sample the full set of non-Kodi

adopters, randomly assign each of the N1 placebo treated households a treatment adoption date, and

attempt to estimate “counterfactual” total internet usage for each treated household. We compare

our model’s predictions to the true empirical outcomes and summarize the performance of the

estimators in terms of RMSE and bias in Table 2.11.

Table 2.11: Placebo Studies

SDID SC DID

N0 N1 T RMSE Bias RMSE Bias RMSE Bias

3000 50 60 1.031 -0.004 1.030 -0.010 1.116 -0.002
3000 100 60 0.765 -0.003 0.766 -0.009 0.825 0.000
3000 250 60 0.496 -0.010 0.496 -0.004 0.535 0.003
3000 500 60 0.367 -0.008 0.366 -0.002 0.393 0.002
3000 50 90 1.099 -0.009 1.094 -0.013 1.154 0.004
3000 100 90 0.794 -0.000 0.793 -0.007 0.838 0.001
3000 250 90 0.515 -0.003 0.515 -0.002 0.543 0.003
3000 500 90 0.378 -0.005 0.378 -0.004 0.399 0.001

Notes: Results of placebo simulations to predict total internet usage of Kodi non-
adopters. The number of “control” households (N0) is fixed at 3,000, while the
number of “treated” households (N1) and the duration of the prediction window
(T ) vary. Each treated household is randomly assigned a treatment start date dur-
ing the sample period. All RMSE and Bias results are based on 500 simulation
replications.

Broadly speaking, we find that all three estimators have strong performance under the sampling

parameters used for our main results, both in terms of bias and RMSE. Decreasing T from 90

to 60 does not negatively impact these measures of fit, though decreasing the number of treated

households does raise RMSE. Comparing the three estimators, it appears that SDID and SC perform

slightly better than DID, but the difference between the SDID and SC results appears negligible.

2.3.3 Discussion

The lawsuits brought by content providers and MSOs suggest that Kodi-ready streaming boxes

facilitated piracy and meaningfully impacted the profitability of content production and distribution.
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Yet, as has been the case with many past claims of damages due to piracy, there was no direct

empirical evidence to demonstrate economic harm. Our results provide insight into the trade-offs

that Kodi introduced, and whether the lawsuits were in the best interests of the filing parties.

For content producers, the incentive to sue depends on whether Kodi was primarily a facilitator

of piracy, or a platform to more conveniently and legally access and engage digital content. Our

findings are mixed, and suggest that adoption of Kodi devices led to both an increase in legal

engagement with content and an increase in traffic typically associated with piracy (i.e., the Bulk

Transfer traffic category). Specifically, we find a large increase in RTE traffic following adoption,

much of which is driven by prominent SVOD services like Netflix. The only category of traffic with

a negative point estimate was live TV streaming services like Hulu, but the effect was small and

statistically insignificant. Overall, this suggests that legal consumption of digital content over the

internet actually increased, even if it was accompanied by an increase in piracy. However, we also

find that consumption of digital content through TV services offered by MSOs is impacted on the

extensive margin, with Kodi adopters more likely to cut the cord. This disproportionately impacts

content producers that distribute mainly through MSO TV services via a reduction in advertising

and licensing revenues.

The impact on content producers is less clear in the longer term. While RTE traffic increased,

the statistically significant increase in bulk transfer traffic is likely due in part to engagement with

illegally acquired content. If this increase represents an exploration of piracy as a substitute for

legal access, it could diminish engagement in the future. The duration of our panel data limits our

ability to explore this completely, but we find no evidence of such an effect in the 90-day window

following adoption. Given the limits now placed on the distribution of pre-loaded Kodi boxes, it

may be difficult to ever observe whether the role of the technology shifted for households over time.

If the trend of cord-cutting after adoption were to continue, it would further the disproportionate

impact on content distributed through MSO’s TV service. This is likely to impact small content

producers with fewer resources that rely on the MSO as a platform for distribution. If variety is

highly valued by consumers, this could have negative consequences in the longer term.
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The trade-off for MSOs is complex but directly observed in our data. Although Kodi boxes

require internet access, and see improved performance with faster connection speeds, they also

serve as a low-cost alternative to the MSO’s TV service (i.e., either by facilitating piracy or legal

OTT video access). Thus, whether the technology is used for piracy, it increases demand for internet

services and decreases demand for TV service. We estimate both effects of Kodi adoption: changes

in the probability of internet tier upgrades and TV service cancellations. Whether the MSO is made

better or worse off depends on the relative margins of the two services. Internet service is largely a

fixed-cost service, and as such, upgrades to higher service tiers come with little to zero change in

cost given that a household is already connected. In contrast, TV service has substantial marginal

costs due to licensing fees paid to content producers for each subscribing customer.

This makes it possible to calculate a threshold margin on TV services that would make Kodi

adoption harmful for MSOs. Specifically, we find that Kodi adopters spend $1.84 less on TV per

month and $0.57 more on internet per month. If we assume that $0.57 revenue change is fully

realized as profit, i.e., tier upgrades have zero marginal cost, then the MSO is better off if the margin

on TV is less than $0.57
$1.84

, or 31%. For many smaller MSOs, 31% margins for TV service are unlikely

because of the relative negotiating power of large content producers (e.g., Disney). For MSOs with

larger numbers of subscribers these margins are plausible, especially for vertically-integrated MSOs

like Comcast and AT&T that receive a portion of their content at zero marginal cost. Therefore, we

would expect the majority of any potential harm to be realized by larger vertically-integrated MSOs

that also experience lost licensing revenue due to cord-cuts. Limitations on application-specific

pricing to mitigate Kodi adoption or profit from it, due to concerns regarding net neutrality regulation

and DMCA consequences, left litigation as the only practical strategy for MSOs to reduce these

losses. The complementary actions taken by government and other private entities like Google

to limit Kodi adoption while the lawsuits were decided were helpful in reducing harm that could

impact investment in broadband networks.
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2.4 Conclusion

Many industries rely on IP and copyright law to encourage innovation and investment. In the case

of digital goods, for which replication is low-cost and unlicensed access is difficult to detect, these

protections are challenging to enforce. Our unique panel data reveal the timing of adoption of

Kodi-ready streaming boxes for a large set of households, and provide detailed records of media

consumption before and after adoption. Our empirical findings identify multiple parties which gain

from or are harmed by media piracy.

In the short run, consumers who adopted Kodi obviously benefited from low-cost access to

content. Also, many large SVOD services including Netflix appear to have benefited from Kodi

adoption in spite of their support of lawsuits alleging damages. MSOs with low TV margins relative

to internet margins benefitted from increased demand for internet services, while larger MSOs with

higher TV margins, and content producers that rely on the MSO for distribution, were harmed by

reduced demand for TV. In the long run, the directions and magnitudes of these effects are less

clear because the market for Kodi-ready streaming boxes collapsed quickly after litigation and other

efforts. The length of our panel provides some evidence that the short-run effects have at least some

stability over time.

There remains considerable opportunity for complementary future research. As new technolo-

gies facilitating illegal access to digital goods emerge, similar difficulties will continue with regard

to detection and quantification of damages. MSOs can play an important role in both aspects, and

future research can help guide the evolution of policy while balancing consumer privacy concerns.

As McManus et al. (2022b) demonstrate for the case of OTT video, it is important to monitor MSO

incentives regarding the neutrality of network content and how they evolve with emerging new

technologies. Empirical studies documenting these incentives going forward will be important

contributions to ongoing policy discussions.
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CHAPTER 3: MEASURING THE IMPLICATIONS OF COMMON RESOURCES ON
DEMAND: EVIDENCE FROM TELECOMMUNICATIONS

1

3.1 Introduction

In many settings of economic literature, economic agent’s actions reflect not only preferences but

strategic considerations. This arises in game settings with multiple agents’ interdependence in

decision making. If you observe people’s contributions, and try to infer their preferences for the

public good, people always tend to under-contribute relative to what they might do in isolation

because they rely on other people to contribute. This is the so-called free-rider problem. Not

accounting for the strategic interaction results in misleading estimates of preference and elasticity

for public good.

We propose a similar but flipped framework for telecommunication industry, which plays

an extremely important role in how people access entertainment and information today. When

members in a mobile family plan use data, they may over-consume when someone else is bearing

the cost. Our proposed research seeks to address the challenge by measuring the biases in preference

estimates that result from ignoring the strategic interaction between household members, and loss

in consumer welfare due to over-consumption early in billing cycles.

The telecommunication industry has experienced substantial consolidation since 2010s. The

recent merge of TWC and Charter into Spectrum, and T-Mobile’s acquirement of Sprint suggest

that the industry is growing more concentrated than ever, and the consolidation may permit telecom

1Coauthored with Fei Li, Department of Economics, University of North Carolina at Chapel Hill,
lifei@email.unc.edu, Katja Seim, Department of Economics, Yale University, katja.seim@yale.edu and
Jonathan W. Williams, Department of Economics, University of North Carolina at Chapel Hill, jon-
wms@unc.edu
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firms to act on incentives to exercise that market power to their advantage. Beyond charging higher

prices, they could also block and throttle media content to consumers for their own interest. Market

consolidation has therefore attracted attention from antitrust perspective, and important regulation

and competition policy questions have been raised. These questions requires an understanding

of consumers’ demand for telecommunication services to protect consumers from the potential

harms of the industry evolution. Additionally, Internet service providers (ISPs) nowadays offer their

own features and services that allow for family and parental controls (the primary account holder

can monitor family’s internet access or assign data allowances). It is important to find a way to

evaluating these plan features as well.

We obtained high-frequency mobile usage data from an anonymous North American ISP which

operates mobile service. The data help with challenges of separating individual usage within the

household. Specifically, we observe the number of people within the household, each member’s

ability to meet demand with the mobile plan allowances, and their preference for online ability. The

dataset contains three months of daily data usage with plan features like base price, usage allowance,

overage fee, extra device fee and billing cycle reset date of roughly 13,033 households. About

50% of households have more than one device per account, and there is strong optimal selection

effect into plans as accounts with larger-allowance plans use more data. Meanwhile, multiple-line

accounts use on average 30% more data than single-line accounts, for the same plan.

Using the data, we follow Nevo et al. (2016b) to examine household mobile data demand

services, in consideration of how members’ preferences determine consumption behavior, how

family members’ preferences and strategic decisions affect each other and how a family makes plan

choice. We first seek evidence of dynamics in usage via response to possibility of overages (i.e.,

agents are forward looking). We examine within-month fluctuations in usage in relation to allowance

and after allowance resets. Households present forward-looking usage patterns since they tend to

use less and be more cautious when they approach the end of their billing cycle/allowance used.

Multiple-member households respond less than single-member households due to internalization of

overage.
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The challenge in mobile services is due to the fact that shared data allowances result in

dependence in individual-specific usage data within a household. Instead of simply summing up

family members’ usage and treat them as one person, we need to view them separately to understand

their behavior and decision-making process. For example, parents in a family care more about

overusing data than their children, since they need to pay the bill. They consume data taking account

of everybody’s usage unlike their children, who enjoys internet browsing and gaming carelessly

as their parents are bearing the cost. To accurately measure demand in this scenario, we build a

model for a household with multiple members that considers of the common usage allowance (i.e.,

free-rider problem). In the model, N-member household consumes mobile data given choice of

plan. In the first stage, they choose a standard three-part tariff plan to maximize household expected

utility. In the second stage, they play a finite horizon consumption game in each billing cycle, and

we solve for Markov perfect equilibria.

We empirically estimate the model and apply fixed-grid methodology of Ackerberg (2009),

which is flexible in the parametric structure of the model and computationally simpler by reducing

the number of times the model must be solved. We first generate a grid of household types, solve

the model for different types and compute and store choice probabilities and usage distribution.

Then the likelihood of the usage of each household in the data generated by each type in the model

is computed, along with household-specific posterior across types calculated. We aggregate across

households to calculate each type’s population weight.

Our next step is to use estimates to conduct counterfactual like policy evaluation and optimal

plan design that internalize these special features. The broader topic of our research is market

definition in telecommunication industry. After we gain a complete understanding of mobile

demand, we plan to identify substitutability between wireline and mobile services, and build a

model of household choice over mobile and wireline plans and usage.

Literature. Our research belongs to the growing literature in the economics of telecommuni-

cations. On the wireline side, past economic research studies subscriber behavior on residential

broadband networks to formulate firms’ entry and investment decisions. See, e.g., Prince and
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Greenstein (2017); Tudon (2021); Goolsbee and Klenow (2006); Wilson (2021); Dutz et al. (2012);

Rosston et al. (2013); Edell and Varaiya (1999); Varian (2002), and Hitt and Tambe (2007). Wireline

demand model and bargaining model combine and serve for merger analysis in antitrust cases

(Goetz, 2016). Economic value of broadband internet is estimated by quantifying revenue generated

from consumers’ internet usage (Greenstein and McDevitt, 2011b). Nevo et al. (2016b) establish a

dynamic demand decision model to evaluate usage-based pricing and ISPs’ investment in fiber-optic

networks. The framework is then used to quantify trade-offs faced by multi-service providers

(McManus et al., 2020). The novelty of our paper is to investigate and quantify the empirical

implications of multiple agents’ dynamic strategic interaction within households. That is, agents

tend to exceed the single-decision maker benchmark for consumption, particularly during the early

days of each billing cycle. Over-consumption also appears in Grubb (2015) which is driven by the

consumer’s overconfidence,and overconfidence costs are measured in respect to bill-shock alert

regulations. In contrast, we consider a full rational dynamic model where overconsumption is driven

by the standard dynamic free-rider effect.

We estimate a dynamic game. One of the key challenges in studying dynamic games is

the computational burden in estimating the model parameters due to the complexity of players’

interaction histories, especially when there are multiple equilibria. A large body of literature has

developed around this topic, including Ackerberg (2009); Fox et al. (2011); Fox and Gandhi (2016);

Doraszelski and Judd (2019, 2012), and Bajari et al. (2007). Following Abbring and Campbell

(2010) and Doraszelski and Judd (2019), we assume agents more sequentially according to a random

order in each period, which maintains the (intertemporal) strategic interaction among agents but

eliminates the equilibrium multiplicity. Then we adopt Ackerberg (2009)’s method for reducing the

computational burden associated with simulating dynamic models.

The paper contributes to literature of dynamic free-rider effect by proposing a tractable demand

model that adapts for pooling/share in a family, through which we get accurate measure of con-

sumers’ sensitivity and willingness to pay for mobile plan characteristics. Literature in this area

dates back to Cournot-Nash game of the great fish war in Levhari and Mirman (1980). More recent
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development is in the form of dynamic voluntary contribution games to public good/projects (see,

e.g., Admati and Perry (1991); Marx and Matthews (2000); Yildirim (2006); Georgiadis (2015)),

public pollution (Battaglini and Harstad, 2016), and free-riding in collaboration (Bonatti and Hörner,

2011).

Finally, our research is also related to papers about intra-household decision making and

collective consumption models (Cherchye et al., 2009) and household finance areas. Gomes et al.

(2021) present an overview of the rapidly expanding literature on household financial decisions.

Theory and empirical work is developed to prove efficiency of intra-household decisions (Browning

and Chiappori, 1998) or discuss family finance decisions with limited commitment (Addoum et al.,

2016).

3.2 Data

3.2.1 Sources and Sampling

The data come from a North American ISP which operates mobile services. It includes three months

of subscriber-level daily mobile internet usage and plan information in early 2020, just before the

pandemic. Mobile internet usage data has information on the daily usage of each Media Access

Control(MAC) address under each account, which we use as the usage of each member in each

household, as MAC address is the unique identifier of a device to mobile network, and it is rarely

the case when one person in a household operates more than one device. Mobile plan information is

daily billing record at account level: plan price (base price which covers usage up until allowance

and price per extra device added to the plan), plan usage allowance in gigabytes, overage price for

overage plans(price per extra gigabytes when allowance is reached) and billing cycle(bill due date).

The length of a billing cycle is a natural month, but accounts are assigned with various bill due

date(day 1, 5, 10, 15, 20, 25 in a month) based on when customers open the account. In addition,

we observe city information at daily account level which helps us identify if households live in rural

or urban areas.
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Our ISP provides a separate report of wireline usage for the same period and in the same data

structure. Wireline and mobile usage of households which use both services from our ISP can be

linked via account number and date. Therefore we observe wireline usage of part of the mobile

users, which inspires our next steps into investigating telecom market definition and customers’

substitution patterns.

The original data is usage report from the ISP, which provides a daily aggregation of usage

associated with account number, MAC address, date and billing cycle, measured in bytes. Several

data cleaning and imputation steps are performed before analysis. We first remove questionable

accounts with no plan or no city information or with more than 6 devices. Then plan information

in the account-date panel is balanced through removing instances of two plans per day due to

plan switch, collapsing plan info, filling plan info at account-MAC level and interpolating within

account-MAC time series. Plan name, type, price, allowance, and speed are parsed out and checked

to match product details on the ISP’s website.

From raw data, we create descriptive variables like days into billing cycle, bill cycle number,

rural/urban indicator, and number of MAC addresses per account for further analysis. Daily usage

is converted to gigabytes corresponding to plan allowance. Only cities with number of subscribers

larger than 500 are kept.

Our ISP offers ten types of mobile plans for varied accounts, including limited and unlimited

plans, family and business plans, providing flexible options of usage allowance and price. We only

focus on the type of plan with the standard three-part tariff pricing and family sharing features. The

standard three-part tariff plan includes base price that covers a certain level of usage allowance,

and expensive overage fee placed per extra gigabyte beyond allowance. Plans with higher base

prices allows larger usage cap. Overage fee paid once total usage passes allowance is much higher

comparing to base price. We focus on markets where overage plans take up more than 90% of

mobile plans. 13 overage plans with various combinations of allowance level and base price are

available in the plan menu offered by our ISP, and they share common features like speed, overage
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price, price per extra device and bill due dates. Most accounts choose the first 6 plans, ranking by

usage allowance.

Usage and plan info are further organized and additional variables are created for overage plans

for descriptive and reduced form analysis. We use usage and billing info to calculate cumulative

usage per device/account within a billing cycle, total usage per device/account for that billing cycle,

proportion of allowance used until day t on that billing cycle per account, and total proportion used

per account for that billing cycle. Accounts missing usage for the first few days of a billing cycle

are removed as their cumulative usage are missing for that billing cycle. At last, missing usage

within time series of account-device is filled with zero.

3.2.2 Descriptive statistics

The final sample consists of 13,033 accounts in total for overage plans in major markets. Overage

plans allow accounts to add devices (MAC addresses) at will. Table 3.1 shows the number of

accounts across different number of members (devices) per account. The sample persists variation

in number of devices across accounts. Half of the accounts are multiple-line accounts, and most

multiple-line accounts are with 2 phone lines, corresponding to the distribution of household size in

the United States.

Table 3.1: Number of Accounts, January-March 2020

Number of accounts Percent(%)

Number of members per account
1 6581 50.5%
2 4824 37.0%
3 1115 8.6%
4 383 2.9%
5 99 0.8%
6 31 0.2%

Total 13033

Notes: This table describes the number of accounts by the number of members
per account. The final sample consists of 13033 accounts in total. About 50% of
households have more than one line per account.
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Table 3.2 provides summary statistics on distribution of usage per billing cycle (length of a

natural month) per member (device) by number of members per account. The average individual in

the sample consumes about 1.5 gigabytes per day of total mobile internet usage. This usage level is

highly skewed to the right across number of devices per account given standard errors and quantile

range. And no obvious correlation exists between number of devices and average individual monthly

usage. An individual from either 1-person or 3-person household generates similar gigabytes of

usage.

Table 3.2: Usage per billing cycle per member by number of members per account (GBs)

Mean Std. p25 p50 p75 N(anum)

1 1.40 2.10 0.20 0.67 1.82 6581
2 1.32 1.99 0.20 0.64 1.64 4824
3 1.58 2.20 0.24 0.81 2.03 1115
4 1.65 2.30 0.27 0.83 2.06 383
5 1.64 2.30 0.25 0.80 2.00 99
6 1.35 1.62 0.33 0.76 1.71 31

Total 13033

Notes: Notes: mobile usage at a billing cycle-account level of
the single-member mobile accounts by the number of mem-
bers per account. Average individual level usage is similar
across number of lines per account.

Table 3.3 and 3.4 describe distribution of mobile usage by plans. There are 13 plans in total

varied in allowance level and base price, and we present descriptive statistics for the first 6 overage

plans as less than 10% of accounts choose rest of the plans. Overage plans with larger index are

more expensive and provide larger usage allowance, same for overage plans.
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Table 3.3: Usage per billing cycle per account by plans (GBs)

Mean Std. p25 p50 p75 N(anum)

Overage 1 0.29 0.30 0.06 0.19 0.41 703
Overage 2 0.88 0.89 0.18 0.57 1.33 1088
Overage 3 1.14 1.23 0.20 0.67 1.69 3588
Overage 4 2.28 2.03 0.62 1.71 3.62 674
Overage 5 3.27 2.84 0.88 2.39 5.31 213
Overage 6 4.94 4.30 1.41 3.78 8.03 183

Notes: This table describes mobile usage at a billing cycle-account
level of the single-member mobile accounts by plans. We have 6581
single-member accounts in total. Overage plans with larger index
are more expensive and provide larger usage allowance. Accounts
with heavier usage select into plans with larger allowance.

Table 3.3 presents distribution of usage per billing cycle per account, for 6 plans and only

single-member accounts. The most popular plan is Overage 3, where 54.5% of single-member

accounts choose it. Large allowance plans are less likely to be chosen comparing to small allowance

plans, which is reasonable given the smallest allowance is closest to average monthly individual

usage in Table 3.2, and all accounts are single members. There is substantial heterogeneity in usage

consumption and plan selection. Lightest users consume 0.29 gigabytes and 0.88 gigabytes per

month, while heavier users consume 4.94 gigabytes per month on average. Usage remains well

below the allowance for all plans. Heavier usage accounts choose more expensive plans with higher

caps, showing strong optimal selection effect into plans.
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Table 3.4: Usage per billing cycle per account by plans (GBs)

Mean Std. p25 p50 p75 N(anum)

Overage 1 0.43 0.35 0.15 0.33 0.61 168
Overage 2 1.21 0.98 0.42 0.94 1.85 569
Overage 3 1.65 1.30 0.60 1.32 2.42 2436
Overage 4 2.96 1.97 1.34 2.68 4.30 1195
Overage 5 4.18 2.62 2.03 3.81 6.02 730
Overage 6 6.15 3.64 3.13 5.92 8.77 842

Notes: This table describes mobile usage at a billing cycle-account
level of the multiple-member mobile accounts by plans. We have
6451 multiple-member accounts in total, with more than half of
them being two-member accounts. Overage plans with larger index
are more expensive and provide larger usage allowance. Similar to
single-member accounts, accounts with heavier usage select into
plans with larger allowance. Multiple-line accounts use on average
30% more data than single-line accounts, for the same plan.

Table 3.4 presents same statistics as in Table 3.3, for multiple-line users. Popularity for small

allowance plans is not so obvious as for single-line users, as households with multiple members

share usage. Multiple-line accounts persist the same heterogeneity in usage consumption across

plans and plan selection effect. Usage remains well below the allowance for all plans, but slightly

exceeds half of the allowance. If we compare rows in Table 3.3 and 3.4, single-line accounts use

less data than multiple-line accounts, even if they choose the same plan. It could be due to strategic

competition for shared allowance in multiple members’ decision-making process within an account.
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Table 3.5: Proportion overused per billing cycle per account by plans (GBs)

Mean Std. p25 p50 p75 N(anum)

Overage 1 0.16 0.14 0.05 0.12 0.26 35
Overage 2 0.15 0.12 0.05 0.12 0.23 54
Overage 3 0.16 0.12 0.06 0.12 0.24 191
Overage 4 0.15 0.12 0.05 0.13 0.22 54
Overage 5 0.13 0.11 0.05 0.10 0.19 24
Overage 6 0.19 0.13 1.41 0.08 0.16 19

Notes: This table describes proportion overused out of allowance at
a billing cycle-account level of single-member mobile accounts who
overuse data by plans. Overage plans with larger index are more
expensive and provide larger usage allowance. We have 377 out of
6581 single-member accounts overusing data. Accounts of plans
with different allowances reach similar out of allowance proportion.

Table 3.6: Proportion overused per billing cycle per account by plans (GBs)

Mean Std. p25 p50 p75 N(anum)

Overage 1 0.16 0.10 0.08 0.14 0.22 21
Overage 2 0.14 0.11 0.05 0.11 0.22 39
Overage 3 0.15 0.12 0.05 0.11 0.22 209
Overage 4 0.13 0.11 0.04 0.10 0.20 128
Overage 5 0.12 0.10 0.03 0.09 0.17 82
Overage 6 0.11 0.10 0.03 0.08 0.16 66

Notes: This table describes proportion overused out of allowance at
a billing cycle-account level of multiple-member mobile accounts
who overuse data by plans. Overage plans with larger index are more
expensive and provide larger usage allowance. We have 545 out of
6451 multiple-member accounts overusing data. Accounts of plans
with larger allowances reach smaller out of allowance proportion.

Table 3.5 and 3.6 describe the fraction of allowance overused conditional on going over the

allowance by plans. The probability of overage is small given the high amount of overage fees.

We observe higher probability for multiple-member accounts as we have 545 out of 6451 multiple-

member accounts overusing data, comparing to 77 out of 6581 single-member accounts overusing

data. Additionally, multiple-member accounts with smaller-allowance plans overuse more data.
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Using the sample described above, We seek reduced-form evidence for dynamic patterns in

consumers’ usage behavior through out the billing cycle, for multiple-line and single-line households

separately.

3.2.3 Evidence of dynamics

We explore reduced-form evidence of consumers’ forward-looking behaviors in these dynamics

across household members for mobile. Our ISP allows consumers to track their usage through

logging into their website or app. They also sent email and text alerts when data used is more than

80% of allowance. Therefore, a consumer is assumed to be well aware of his or her cumulative

usage. The dynamic patterns we would like to explore here is whether consumers respond to the

price variation introduced by past usage within a billing cycle, and across billing cycles. For heaviest

and lightest users, we expect their daily usage not to fluctuate so much through out the billing cycles,

while users in between should make usage decisions taking account of: 1. how much data is left in

their plan 2. how many days are left in the plan. Across months, a forward-looking subscriber’s

usage behavior varies on proportion of allowance used at the end of a month/billing cycle. As the

allowance is always refreshed at the beginning of the next billing cycle, one may decrease usage if

he or she is approaching the allowance, and responds in the opposite way if he or she is well below

the allowance.

We use a K-nearest Neighbours Regression(KNN) approach to account for required features.

It is a non-parametric method that estimates the correlation between independent variables and

continuous outcome variable by weighted averaging the observations in the same neighborhood.

Neighborhood is set using similarity of independent variables. The algorithm for KNN is:

1. First, the covariates distance between the predicted point and each training point is calculated.

2. The closest k data points are selected (based on the distance) and set as neighborhood for the

predicted point.

3. Weighted average of the data points is the final prediction for the new point.
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Using KNN algorithm, we test within month dynamics by running regression model of day t

usage, on t and proportion of usage allowance used up until day t. we analyze dynamic behaviors

for accounts in major cities with overage plans. Households with few observations or many zeros are

assumed to be traveling or gone during the billing cycle, and we drop them for robust approximation.

We also pull out households using more than 50% of their total allowance. Daily usage is mean-

differed before used as outcome variable: we calculate average daily usage for each individual

during the entire sampled period, and then difference this average level from usage on each day t.

This way we directly observe usage change relative to one’s average consumption level for each

point in the covariate space. Predicted points are defined in a grid space of covariates (days into the

billing cycle and proportion of allowance used). We eliminate first 18 days as users usually respond

significantly after they pass half of their billing cycle.

Figure 3.1 and 3.2 present mobile dynamics of overage plans for households with single/multiple

members. We plot surface and draw contour of two-dimensional grid space of proportion used and

days into billing cycle on x and y axis, and predict mean-differed usage on z axis in Figure 3.1. The

patterns in the figure are consistent with forward-looking behavior. At the first few days into the

half of the billing cycle, if users are well below their allowance, they use above average. If users

are approaching their allowance, they drop their usage. Then there is a clear path moving from

the bottom-right to upper-left corner in the grid pace: as users moving into the end of their billing

cycle, they also move closer to their allowance level, and thus they become cautious in consumption

and gradually decrease their usage. We also observe patterns of users who maintain well below

allowance: their mean-differed usage is around zero for rest of the days in the billing cycle, with

probably a little jump at the very end.

We also plot mean-differed usage to proportion of allowance used on day 29 of the billing cycle

in Figure 3.2. Here the same pattern appears: users who consume less than half of their allowance

use more than average, while users near the cap adjust usage dramatically. There is a sharp decrease

at 80% of proportion used, precisely when users receive text and email alerts. Another thing to

note is multiple-member households preserve smoother curve and respond less than single-member
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Figure 3.1: Mobile dynamics

Notes: 30-day rolling average of internet usage Notes: This figure shows mobile
dynamics of overage plans for all households.

households, which is reasonable given how households should internalize the effect of passing over

the allowance.

3.3 Model

We model households’ problems in two stages. A household first chooses a plan with a rational

expectation about the household members’ future consumption of content. Second, given the chosen

plan, household members play a finite horizon consumption game in each billing cycle, and we

solve for Markov perfect equilibria. In what follows, we solve the problem backwardly. In section

3.3.1, we set up the consumption game for a given household and a chosen plan. Section 3.3.2

characterizes the unique Markov equilibrium strategy. In section 3.3.3, we model a family’s plan

choice.
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Figure 3.2: Mobile dynamics on 29th billing day

Notes: This figure shows usage to proportion used on the 29th day. Multiple-member
households (red line) respond less than single-member households (black line).
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3.3.1 Modeling Consumption within a Billing Cycle

Members of each household consume internet content and a numeraire good. To consume content,

a household chooses a plan. A plan specifies three terms {S̄, p, F} where (i) S̄ represents the usage

allowance per billing cycle, (ii) F represents a fixed fee of the plan, which pays for all usage up

to the allowance, and (iii) p corresponds to the linear per-unit overage price within a billing cycle.

Suppose that a household has chosen a plan. Let I be the set of agents in the household, and |I| ∈ N

denote the size of the household. We model household members’ consumption within each billing

cycle as a T -period dynamic game among |I| agents, where T is the number of periods in each

billing cycle.

In each period t = 1, 2, ..., T within a billing cycle, exactly one agent is selected to consume

content with equal probability. Formally, let the random variable ℓt indicates the identify of the

consumer who is selected to consume at time t according to independent and identical uniform

distribution, and so

Pr(ℓt = i) =
1

|I|
,∀i ∈ I,∀t ∈ {1, 2, ..., T}.

This random alternating-move assumption avoids the well-known multiplicity in (dynamic) contri-

bution/consumption games when agents move simultaneously (see, e.g., Bergstrom et al. (1986)

and Marx and Matthews (2000))2 .

Preference. We focus on a quasi-linear setting. Suppose that agent i is selected to consume at time

t = 1, 2, ..., T ; i.e., ℓt = i. His utility from consuming content cit is

ui(cit, νit) = νit
1

1− ρi
c1−ρi
it − cit. (3.1)

The first term of the right-hand side (RHS) of equation (3.1) captures the agent’s gross utility from

usage. The parameter ρi ∈ (0, 1) specifies the curvature of the agent’s utility function, which

2This assumption has been widely used in the literature of dynamic oligopoly competition (Maskin and Tirole,
1988) and dynamic contribution (Admati and Perry, 1991). See recent applications in industrial organization
by Abbring and Campbell (2010) and Doraszelski and Judd (2019).
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allows a wide range preferences from log (ρi → 1) to linear (ρi → 0). A time-varying shock

scales the (marginal) utility from usage consumption, νit, which captures the randomness of agent

i’s consumption. We assume that νit is an independently and identically draw over time from an

exponential distribution with parameter λi for each agent i. The second term of the RHS of (3.1)

captures the non-monetary cost of usage consumption. The assumption implies that each agent has

a satiation point absent overage charges. Differentiating the agent’s utility with respect to cit yields

the marginal utility of consumption,

νitc
−ρi
it − 1,

which is decreasing in cit, reaches 0 at cit = νρi
it , and goes to infinity as cit → 0 for any positive νit.

This explains why agents with unlimited plans consume a finite amount of usage and allows us to

focus on interior solutions.

Agents dislike monetary cost as it reduces their consumption of the numberer good. We assume

that agent i internalizes ωi fraction of the household’s monetary expenditure on usage consumption

only, where ωi ∈ [0, 1], and ∑
i∈I

ωi = 1.

The vector {ωi} varies across households, and it is the central element to generate heterogenous

dynamic free-rider effect in our model. In total, agent i’s flow payoff at time t is


ui(cit, νit) + ωipmin{0, St − cit} if ℓt = i

ωipmin{0, St − cjt} if ℓt = j ̸= i

, (3.2)

given a consumption profile ct = {cjt}j∈I , a realization of νt = {νit}i, where St corresponds to the

remaining usage allowance. Each agent maximizes his expected payoff until period T and does not

discount the future. In sum, in the consumption game within each billing period, the preference

profile of a household is summarized by a parameter vector

θ = {ρi, ωi, λi}i∈I , (3.3)
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and for the content consumption game, the relevant parameters of the chosen plan are {S̄, p}. Both

θ and {S̄, p} are common knowledge among agents.

Strategy and equilibrium. The public history until the beginning of period t records the past

consumers’ identities and their consumption, denoted by ht = {ℓτ , {ciτ}i∈I}tτ=1. A strategy of

agent i at time t specifies his consumption conditional on the public history ht and the realization

of his shock νt when he is selected to consume (ℓt = i). Given a public history ht, the remaining

usage allowance is given by

St = max
{
S̄ −

t−1∑
τ=1

cℓτ τ , 0
}
, (3.4)

where S̄ is the usage allowance specified by the plan, and
∑t−1

τ=1 cℓτ τ is the household cumulative

usage consumption in the first t − 1 periods. Whenever the remaining allowance reaches 0, its

evolution is frozen until the end of the current billing cycle.

An agent’s strategy is Markov if it depends on the public history only through the calendar

time and the remaining allowance. Specifically, a Markov strategy ci(t, S, ν) ∈ R+ specifies his

consumption, when agent i is selected to consume, conditional on (t, S) and the realization of his

taste shock ν. A Markov strategy profile {c∗i }i∈I is a Markov perfect equilibrium (MPE) if no agent

has the incentive to deviate given any state (t, S) and any realization of his taste shock ν, and the

law of motion of the remaining allowance {S} can be written as a recursive form

S ′ = max
{
S − cℓ(t, S, ν), 0

}
, (3.5)

where ℓ is the identity of the current period’s consumer and S ′ denotes the next period remaining

allowance.
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3.3.2 Equilibrium Consumption Dynamics

Given the current state (t, S, ℓ = i, νi), agent i’s Markov equilibrium strategy c∗i (·) must be a best

response to his opponents’ Markov equilibrium strategy profile c∗−i(·); i.e.,

c∗i (t, S, ν) ∈ argmax
c≥0

{
ui(c, ν) + ωipmin{0, S − c}+ Vit+1

(
max{S − c, 0}

)}
, (3.6)

where the flow payoff has been specified in (3.2), and Vit(·) is agent i’s continuation value prior to

the selection of the consumer’s identity in period t. Agent i’s Bellman equation is

Vit(St) =
1

|I|
E
{
ui

(
c∗i (t, S, νi), νi

)
+
∑
j∈I

[
ωipmin{S − c∗j(t, S, νj), 0}+ Vit+1(S

′)
]}

, (3.7)

for any t = 1, ..., T and any S ∈ [0, S̄], where the expectation is taken over the identity of period

t’s consumer and the realization of their taste shock ν = {νj}j∈I , and the next period’s remaining

allowance is

S ′ = max{S − c∗ℓ(t, S, νℓ), 0},

given equation (3.5) and the Markov strategy profile c∗. To understand Bellman equation (3.7), we

explain the RHS of the equation term by term. With probability 1/|I|, agent i is selected to consume,

and the realization of his taste shock is νi. Following the equilibrium strategy, his consumption

is c∗i (t, S, νi) and his receives a payoff ui(c
∗
i (t, S, νi)) from the consumption. No matter which

consumer is selected to consume, if the consumption of the selected agent, say j, is greater than

the current allowance; i.e., S < c∗j(t, S, νj) when ℓ = j, agent i will incur a cost from the overage,

which is ωip
∑

j∈I min{S − c∗j(t, S, νj), 0}/I. Given the next period’s remaining allowance S ′,

agent i’s continuation value is Vit+1(S
′). We impose a terminal condition

ViT+1(S) = 0,∀i ∈ I, S ∈ R+.
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at the end of the dynamic game for a billing cycle. Notice that what matters for our specification is

that the termination value Vi(T + 1, S) is a constant in S for each agent. It captures the idea that no

remaining usage allowance from the current billing cycle can be carried forward to the next one.

In the reminder of this subsection, we further characterize the MPE in greater details. We begin

with a state where the remaining allowance is 0. In this case, if agent i is selected to consume at

time t, his optimal consumption solves

max
c≥0

ui(c, νi)− ωipc+ Vit+1(0).

Because the continuation value is independent of the current period consumption, the agent acts

myopically, and we have

c∗i (t, 0, νi) =
( νi
1 + ωip

)1/ρi
,∀t = 1, 2, ..., T. (3.8)

Agent i’s usage consumption increases in the taste shock νi and decreases in the marginal cost of

overage internalized by the agent ωip. It is easy to see that the equilibrium consumption exhibits the

standard free-rider effect whenever the agent does not fully internalize the household’s marginal

cost of overage; i.e., ωi < 1. With the expression of the equilibrium consumption, we can also

compute agent i’s value function in closed form. Specifically, at time t < T , agent i’s Bellman

equation is

Vit(0) =
1

|I|

[
Eui

(
c∗i (t, 0, νit), νit

)
− ωip

∑
j∈I

E[c∗j(t, 0, νjt)]
]
+ Vit+1(0).

where c∗i (t, 0, νit) is given by (3.8). Intuitively, with probability 1/|I|, agent i is selected to

consume and receives payoff E
[
ui

(
c∗i (t, 0, νit), νit

)]
from the usage consumption and a disutility

E[c∗i (t, 0, νit)] for overage. With probability (|I| − 1)/|I|, other consumers are selected to consume

and agent i incurs a cost only for other agents’ overage E[c∗j(t, 0, νjt)]. Evidently, the flow payoff is
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independent of the calendar time t, so a recursive argument implies that

Vit(0) =
2

|I|

{
Eui

(( νi
1 + ωip

)1/ρi
, νit

)
− ωip

∑
j∈I

E
[( νj

1 + ωip

)1/ρj]}
+ Vit+2(0) = · · ·

=
T − t+ 1

|I|

{
Eui

(( νi
1 + ωip

)1/ρi
, νit

)
− ωip

∑
j∈I

E
[( νj

1 + ωip

)1/ρj]}
= (T − t+ 1)ViT (0),∀t < T.

That is, if there is no remaining usage allowance, agent i’s continuation value at time t, is equal

to the number of remaining periods T − t+ 1 multiplied by ViT (0), his value function in the last

period of the billing cycle. This is intuitive. When usage allowance is gone, agents no longer have

inter-temporal consideration, so they simply repeated the same stage game until the end.

Now, suppose that there is still some usage allowance S > 0 in the terminal period T , and

agent i is selected to consume (ℓ = i) and his taste shock is νi. To obtain agent i’s usage demand,

differentiating his flow payoff ui(c, νi) + ωipmin{0, S − c} with respect to c yields the first-order

condition (FOC) for optimal consumption:

νic
−ρi − 1− χ{c>S}ωip = 0, (3.9)

where χA ∈ {0, 1} is an indicator function, which takes value 1 if and only if event A is true.

In the left-hand side (LHS) of (3.9), term νic
−ρi − 1 corresponds to the agent’s marginal utility

of consumption; while term χ{c>S}ωip corresponds to the agent’s marginal cost of consumption,

which is positive if and only if his consumption is greater than the remaining allowance S. The

discontinuity of the marginal cost implies that agent i’s demand is

c∗i (T, S, νi) =


ν
1/ρi
it if νi ≤ ν∗

i (S)

S if ν∗
i (S) < νi ≤ ν∗∗

i (S)(
νi

1+ωip

)1/ρi
if νi > ν∗∗

i (S)

. (3.10)
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Figure 3.3: Agent’s usage demand 1

c

1

1 + ωip

S

νc−ρi

ν′c−ρi

ν′′c−ρi

ν

S

ν∗i (S) ν∗∗i (S)

c∗i (T, S, ν)

Notes: The left panel plots agent i’s usage demand under taste shock ν, ν ′, ν ′′ where ν ′′ > ν ′ > ν.
The right panel plots agent i’s demand ci(T, S, ·) as a function of his realized taste shock.

where

ν∗
i (S) = Sρi < ν∗∗

i (S) = Sρi(1 + ωip),∀S > 0, ωip > 0.

Intuitively, when νi is small, the agent finds it optimal to consume up to his satiation point (marginal

benefit being zero). As νi becomes larger, the satiation point increases until it reaches S when

νi = ν∗
i (S). Due to the discontinuous jump of the marginal cost, the usage consumption is flat in

νi ∈ [ν∗
i (S), ν

∗∗
i (S)], and increases thereafter. See Figure 3.3 for a visualization on the relationship

between the optimal usage consumption and taste shock.

The value function of agent i prior to the selection of the consumer identify in the terminal

period is then

ViT (S) =
1

|I|

{
E
[
ui(c

∗
i (T, S, νi), νi)

]
+ ωip

∑
j∈I

Emin{S − c∗j(T, 0, νj), 0}
}
, (3.11)

where c∗ is given by (3.10). With probability 1/|I|, agent i is selected to consume and receives

an equilibrium payoff E[ui(c
∗
i (T, S, νi), νi)] from the usage consumption and a disutility of per

unit of overage if c∗i (T, 0, νi) > S. With probability (|I| − 1)/|I|, other consumers j ̸= i
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are selected to consume and agent i incurs a cost only if the selected consumer’s consumption

c∗j(T, 0, νj) > S. Simple algebra reveals that ViT (·) is increasing and concave. The intuition is also

standard. Increasing allowance lowers agents marginal cost of consumption, so ViT (·) increases.

Also, the marginal impact of increasing allowance is diminishing as S becomes larger. This is

because when S is large, the the probability that the household will have overage is small, and the

marginal effect of further increasing S will be limited.

For any period t < T , suppose that the remaining allowance S > 0, and agent i is selected

to consume and his taste shock realization is νi. Agent i’s optimal usage consumption c∗i (t, S, νi)

solves

max
c≥0

ui(c, νi) + ωipmin{0, S − c}+ Vit+1(min{S − c, 0}).

The FOC is

νitc
−ρi − 1− I{c>S}ωip− (1− I{c>S})V

′
it+1(S − c) = 0, (3.12)

which differs from (3.9) in the last term of the LHS. The new term captures the impact of the current

period consumption on the remaining allowance on the agent’s continuation payoff. The marginal

cost of usage consumption is 
ωip if c > S

V ′
it+1(S − c) if c ≤ S

.

In words, if the usage consumption is above the remaining allowance, the marginal cost is simply a

fraction of the linear price of the overage that is internalized by agent i; if the usage consumption is

below the remaining allowance, the marginal cost is the reduction of future allowance, captured by

the derivative of the continuation value, V ′
it+1(S − c). Notice that V ′

it+1(0) = ωip. Let xi(ν, S) be

the solution to
ν

xρi
= 1 + V ′

it+1(S − x),
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Figure 3.4: Agent’s usage demand 2

c

1

1 + ωip

S

νc−ρi

ν′c−ρi

ν′c−ρi

Notes: Agent i’s usage demand under taste shock ν and ν ′ where ν ′ > ν.

for ν ≤ ν∗∗
i (S) = Sρi(1 + ωip). Agent i’s demand is

c∗i (t, S, νi) =


xi(νit, S) if νit ≤ ν∗∗

i (S)(
νi

1+ωip

)1/ρi
if νi > ν∗∗

i (S)

. (3.13)

See Figure 3.4 for a visualization on the relationship between the optimal usage consumption and

taste shock. If νi is less (or greater) than the threshold ν∗∗
i (S), agent i’s satiation consumption is

less (or greater) than S. Unlike in the terminal period, the marginal cost of consumption has no

jump around ν∗∗
i (S) due to the consumption’s impact on the continuation play. Therefore, agent i’s

equilibrium usage consumption is strictly increasing in νi everywhere. The value function of agent

i prior to the selection of the consumer identify in at time t with remaining allowance S > 0 can be

recursively computed using (3.7) and (3.13). Then, agent i’s value for the plan in each billing cycle

is Vi1(S̄).

3.3.3 Plan Choice

A household collectively chooses plan to maximize their expected surplus with a rational expectation

about the equilibrium outcome in each billing cycle. Each plan is indexed by k ∈ N, which specifies

the usage allowance S̄k, the fixed fee F k, and the overage linear price pk. We allow households to
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choose no plan at all, which is indexed by k = 0. Let K denote the set of plans. A household selects

plan k ∈ K to maximize the household’s expected surplus. A household’s surplus from plan k ̸= 0

is given by

Wk =
∑
i∈I

Vi1(S̄
k|pk),

where Vi1(S̄
k|pk) is the value function of agent i ∈ I at the beginning of each billing cycle when the

linear price for overage is pk. If the family chooses no plan at all (k = 0), the surplus is normalized

to W 0 = 0. The plan choice by household type h is given by

k∗ = argmax
k∈K

{Wk − F k + ϵk},

where W0 = F 0 = 0, ϵk is an i.i.d. draw from an extreme value distribution for all k ∈ K.

3.4 Estimation

We estimate the model in 3.3 using the data discussed in 3.2. Like Malone et al. (2021) and

McManus et al. (2020), we apply the fixed-grid methodology of Ackerberg (2009), Fox et al. (2011),

and Fox and Gandhi (2016). This approach takes advantage of the parametric structure of the model,

makes limited assumptions on the distribution of household-specific preference heterogeneity, and

limits computation by reducing the number of times the model must be solved.

The model describes a household with preferences given by a vector θ = {ρi, ωi, λi}i∈I such

that
∑

i∈I ωi = 1. Our approach solves the model for a large number of different values of this

vector, and stores the policy functions for each candidate type (i.e., distribution of state-dependent

usage and plan-choice probabilities for every household member). We then compute the likelihood

that a household’s observed actions were generated by each of the candidate types. These likelihood

values along with an assumed prior over the candidate types yields a posterior distribution for each

household. We then aggregate the household-specific posteriors to estimate the distribution of types.

In the remainder of the section, we discuss our approach for solving the model, details of estimation,

and sources identifying variation in our data.
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3.4.1 Model Solution and Estimation

Recall that household member i’s Bellman equation is

Vit(S) = 1
|I|E

{
ui

(
c∗i (t, S, νi), νi

)
+ ωip

∑
j∈I min{S − c∗j(t, S, νj), 0}

]
+ Vit+1(S

′)
}
,

for t = 1, ..., T . The solution yields optimal policies for each household member, c∗i (t, S, νi), which

maximize expected utility for any remaining allowance (S) given a a realizations of νi. The expected

value of beginning period t in state S prior to a realization of νi equals Vit(S), where the expectation

is taken over the distribution of νi and weighted by the probability of having the opportunity to

move ( 1
|I|). This formulation preserves strategic interaction among household members because

each member must take expectations over the possibility that other members’ moves impact the

remaining allowance. Yet, in any given time period only one member moves, which makes the

complexity of finding the optimal policies similar to a single-agent problem while also eliminating

the possibility of multiple equilibria.

We solve a discretized version of the model using backward recursion, letting S take on 5,000

discrete evenly spaced values. We set the number of periods T equal to 120, which corresponds

to 4 total decisions per day (d = 1, ..., 30) for a household during a 30-day month. Beginning in

the last period, we solve for optimal optimal usage ci(T, S, v) for each household member using

the closed-form solution in equation 10 for R = 500 draws of νi from each household member’s

exponential distribution with mean λi. The resulting distribution of usage, appropriately weighted

by the probability a household is selected (i.e., 1
I ), is then used to calculate expected utility in the

last period ViT (S) for i = 1, ..., I and each value of S as in equation 11. To calculate Vit(S) and

the distribution of optimal usage at each state in non-terminal periods (t = 1, ..., T − 1), we use

equation 12 and the same R draws of νi.

The solution to the model yields a Markov process that we use to simulate two parts of a

likelihood function for each candidate type (θr). First, we use forward simulation to calculate a joint

density of household-member’s usage for each day during the billing period. We denote the joint
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density of usage on plan k with remaining allowance St as Pc(c1, c2|St, k; θr). Second, we calculate

the probability that a candidate type chooses plan k as

Pd(d
∗ = k; θr) =

exp

(
W k(θr)− F k

)
1 +

∑
m exp

(
Wm(θr)− Fm

) .

Together, these allow us to calculate the likelihood that type r generated h’s observed plan choice

and usage sequence for each household member as

Lh(θr) = Pd(dh; θr)
T∏
t=1

Pc(c1ht, c2ht|St, dh; θr).

Applying Bayes’ rule with the assumption of a flat prior across the candidate types implies the

probability that household h is of type r equals

ωhr =
Lh(θr)

R∑
m=1

Lh(θm)

.

We then aggregate across the household-specific posteriors to get population weights for each of the

candidate types as ωr =
1
N

∑N
h=1 ωhr for r = 1, . . . , R.

3.4.2 Results

We estimate the weight for 10,000 household types. The estimated weights present heterogeneity

within and across households. Using the estimated weights, we plot kernel density of household

type parameters with bounded support. Figure 3.5 shows the marginal probability densities of three

parameters in a two-member household. Consumers have evenly distributed estimated utility risk

preference ρ within boundary [0.7, 0.975]. They have asymmetric bearing of overage cost in the

sense that one of the member pays most of the overage fee. The long-tail distribution of ν indicates
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the majority of consumers have a relatively low level of uncertainty, and the density tapers off

gradually when the level increases.

Figure 3.5: Marginal Density of Household Type Parameters

(a) ρ1 (b) ρ2

(c) ω1 (d) ω2

(e) ν1 (f) ν2
Notes: Marginal density of household household type parameters {ρi, ωi, λi}i∈I from likelihood
estimation.
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We also explore the covariation of same type parameters within a household. Figure 3.6 shows

joint density of household type parameters {ρ1, ρ2}, {ω1, ω2}, {ν1, ν2} from likelihood estimation.

Joint distribution of risk preferences have probability mass at low value of rho1 and middle/high

values of rho2, but do not suggest clear correlations between parameters. Joint distribution of

overage portions surge on both ends, consistent with asymmetric bearing of overage cost in Figure

3.5. The joint distribution of ν also indicates most consumers have joint low values of uncertainty.

Finally, we explore the covariation of different type parameters of each family member. Figure

3.7 and Figure 3.8 shows joint density of member 1 and member 2’s type parameters {ρ, ω}, {ρ, ν},

{ω, ν} from likelihood estimation. Joint distributions of risk preference, overage portion and utility

shock have probability mass at certain values, which are consistent with marginal density, but do

not suggest clear correlations between parameters as well.

We also present distribution of weights of household types in Figure 3.9. We first rank posterior

weights for each household in the data to get top 1, 2, 3 and 5 household types. Then for each top

tier, we sum and plot the CDF of weights across all households. More than 50% of top 1 weighted

type weights are larger than 0.9, and more than 90% of sum of top 5 type weights are larger than

0.9. This means the weights are concentrated on the few types that ranked highest.

3.4.3 Counterfactuals

We run counterfactual analyses of an alternative setup of consumption plan within a billing cycle.

Consumption is fully internalized by all members in the household, as if made by a planner. We

implement the set up by keeping high-ranked weighted household types that make up 99% of total

weights. Then we set the portion of overage fee to be 1 (ω1 = ω2 = 1), resolve the model and

estimate the parameters of the model using the structural estimates described in the previous section.

Table 3.7 shows thec omparison of average usage, average overage fee, average fixed fee, consumer

welfare and total welfare (the sum of average overage fee, average fixed fee and consumer welfare)

of the estimated preferences and counterfactuals. We see that usage and welfare are larger under
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Figure 3.6: Joint Density of Household Type Parameters

(a) (ρ1, ρ2) (b) (ρ1, ρ2)

(c) (ω1, ω2) (d) (ω1, ω2)

(e) (ν1, ν2) (f) (ν1, ν2)

Notes: Joint density of household household type parameters {ρ1, ρ2}, {ω1, ω2}, {ν1, ν2} from
likelihood estimation.
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Figure 3.7: Cross Joint Density of Household Type Parameters: member 1

(a) (ρ1, ω1) (b) (ρ1, ω1)

(c) (ρ1, ν1) (d) (ρ1, ν1)

(e) (ω1, ν1) (f) (ω1, ν1)

Notes: Cross joint density of household household type parameters {ρ1, ω1}, {ρ1, ν1}, {ω1, ν1}
from likelihood estimation.
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Figure 3.8: Cross Joint Density of Household Type Parameters: member 2

(a) (ρ2, ω2) (b) (ρ2, ω2)

(c) (ρ2, ν2) (d) (ρ2, ν2)

(e) (ω2, ν2) (f) (ω2, ν2)

Notes: Cross joint density of household household type parameters {ρ2, ω2}, {ρ2, ν2}, {ω2, ν2}
from likelihood estimation.
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Figure 3.9: Distribution of Top-weighted Household Types

Notes: This figure shows CDF of weights of top 1, 2, 3 and 5 household types.
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our assumed preferences, which means consumption is under-estimated if we ignore free-rider issue

and assume fully internalization.

Table 3.7: Counterfactual Analysis

(ω̂1, ω̂2) (ω1 = 1, ω2 = 1)

Average Usage 2.47 1.31
Average Overage Fee 1.35 0.17
Average Fixed Fee 27.06 21.46
Consumer Welfare 36.19 19.50
Total Welfare 64.60 41.13

Notes: This table shows average usage, average overage
fee, average fixed fee, consumer welfare and total welfare
(the sum of average overage fee, average fixed fee and
consumer welfare) from estimation results and conterfac-
tual analysis, where top 99% weighted household types
are kept with fully internalization of data over-usage.

3.5 Conclusion

Interdependence of individuals and private economic agents exploiting scarce and rival common

resources for their own rational, self-interested purposes, leading to free-rider issue. Not accounting

for this factor results in misleading inference of preference and elasticity for goods and services (e.g.,

health insurance for families, telecommunications services, etc). In the telecom industry, household

members share data allowances in a mobile family plan, leading to interdependence: Individuals

may over-consume because they only pay a share of overage costs (e.g., children and parents).

Our research models and empirically studies how plans with shared component impact demand

and welfare to measure extent of free-rider problem, understand welfare trade-offs from plans

with shared allowances, and derive implications for regulation and policy. We find that accounts

with larger-allowance plans use more data, multiple-line accounts use on average more data than

single-line accounts. Households present forward-looking usage patterns since they tend to use

less and be more cautious when they approach the end of their billing cycle/allowance used. The
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estimation and counterfactual exercises suggest that usage and welfare are underestimated under

full internalization with no consideration of free-riding issues.

Importance of mobile telecommunications industry makes accurate demand inference crucial

to understand implications of regulation and policy directed at the industry. After household joint

decisions in mobile demand side is completely understood, we seek to define telecom market using

estimates of substitution patterns for future research. Ignoring consumer’s option to use wireline

connection when he or she runs out of mobile data or vice versa, also leads to overestimation of

elasticity, and mismeasured evaluation of potential harms in antitrust cases. We aim to identify

substitutability between wireline and mobile services, and build a model of household choice over

mobile and wireline plans and usage. The results of future research will provide insights to policy

targeting pricing, competition and antitrust issues like net neutrality concerns in the industry.
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APPENDIX A: APPENDIX

A.1 Chapter 2

A.1.1 Robustness Checks

We replicate our three main results tables using a shorter usage panel of 60 days before and after

adoption rather than the 90-day panel used in the main text. This change results in no meaningful

differences in estimated coefficients or standard errors. The results tables are included below.
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Table A.1: Bucket DID Estimates, 60 Days Before and After, No Time Control

SDID SC DID

2.732 2.732 2.58
Total

(0.506) (0.649) (0.507)
0.537 0.527 0.361

Bulk Transfer
(0.151) (0.18) (0.143)
0.006 0.006 0.007

Email
(0.002) (0.003) (0.002)
0.064 0.037 -0.051

Gaming
(0.058) (0.067) (0.058)
0.056 0.041 0.021

Miscellaneous
(0.033) (0.027) (0.036)

0.04 0.012 0.002
Cloud

(0.031) (0.032) (0.025)
-0.021 -0.037 -0.019

Peer-to-peer
(0.031) (0.013) (0.015)
0.074 0.065 0.063

RTC
(0.024) (0.044) (0.021)
1.711 1.71 1.743

RTE
(0.343) (0.473) (0.35)
0.032 0.026 0.025

Social Media
(0.009) (0.018) (0.009)
0.061 0.054 0.053

Tunnel
(0.043) (0.063) (0.041)

0.39 0.367 0.374
Web Browsing

(0.119) (0.153) (0.102)

Notes: This table shows 60-day synthetic diff-
in-diff, synthetic control and diff-in-diff results
for bucket data. A jackknife estimate of stan-
dard errors is in the parenthesis. Number of
Kodi units: 328 Threshold: > 30days.
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Table A.2: RTE DID Estimates, 60 Days Before and After, No Time Control

SDID SC DID

0.444 0.444 0.355
SVOD

(0.214) (0.256) (0.2)
0.52 0.52 0.337

Netflix
(0.194) (0.237) (0.181)
0.134 0.112 0.105

Amazon Video
(0.151) (0.142) (0.161)
-0.216 -0.222 -0.005

Hulu
(0.25) (0.209) (0.237)
0.338 0.328 0.321

Live Channels
(0.141) (0.188) (0.126)

0.67 0.651 0.838
Youtube

(0.168) (0.295) (0.158)
0.065 0.038 0.064

Subscription/Free Movies
(0.044) (0.074) (0.043)
0.119 0.118 0.368

Notes: This table shows 60-day synthetic diff-in-diff, syn-
thetic control and diff-in-diff results for rte data. A jack-
knife estimate of standard errors is in the parenthesis.
Threshold: > 5days.

A.2 Chapter 3

Notes for the model

• A data plan k ∈ K specifies {S̄k, pk, F k} where

– S̄k: the amount of free data usage (stock) in each billing cycle (T periods)

– F k: the fee of the plan

– p: the linear per-unit price for over-usage within each billing cycle.

• A family h ∈ H collectively chooses a data plan to maximize the weighted sum of family

members’ values. Let’s use |h| to denote the size of family h, and i = 1, ..., |h| to denote

agents (family members).
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Table A.3: TV Network Treatment Effects

SDID SC DID

0.209 0.21 -0.11
Total

(0.265) (0.411) (0.23)
-0.04 -0.053 0.127

Premium
(0.253) (0.161) (0.2)
-0.011 -0.013 -0.049

Movie
(0.126) (0.11) (0.123)
-0.168 -0.204 -0.224

News
(0.169) (0.2) (0.208)
0.014 0.018 -0.027

Sports
(0.154) (0.166) (0.17)
0.153 0.148 -0.038

Kids
(0.222) (0.399) (0.207)
0.427 0.413 0.567

MusicReality
(0.155) (0.219) (0.174)

0.33 0.307 0.393
Lifestyle

(0.257) (0.345) (0.261)
-0.088 -0.089 -0.183

NetworkTV
(0.132) (0.145) (0.142)
-0.244 -0.278 -0.225

EducationScience
(0.153) (0.194) (0.184)

0.15 0.162 0.038
DaytimeDrama

(0.262) (0.261) (0.25)
0.07 0.081 0.004

GeneralEntertainment
(0.183) (0.251) (0.133)

Notes: This table shows 60-day synthetic diff-in-diff,
synthetic control and diff-in-diff results for TV view-
ing data. A jackknife estimate of standard errors is in
the parenthesis. Threshold: > 30days.
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• Suppose that a family h has chosen plan k. Then we can define a finite horizon dynamic game

played by |h| agents within each billing cycle.

• Each billing cycle has T periods. Let’s use t to denote the number of remaining (consumption)

periods within the current billing cycle, so

– t = 1 is the last period,

– t = 2 is the penultimate period, ..., and

– t = T is the first period.

At each t, exactly one agent is selected to consume by nature, and others do not, and the

identity of the consumer, denoted by ℓ(t), is chosen according to a uniform distribution, so

agent i will be selected with probability 1/|h|.

• We assume that agents have identical flow utility function which depends on his i.i.d drawn

taste shock ν and data consumption c.

u(c, ν, θ) = ν
1

1− θ
c1−θ − c

where ν follows some distribution indexed by i, h, t. There seems no reason to make it so

general. For now, assume ν is i.i.d. across agents, families, and time. Denote the CDF to be

G, the PDF is g > 0,∀ν, and the support is [ν, ν̄].

• In each family h and a data plan with linear over-usage price p, we assume that agent i’s flow

payoff in each period t is


u(ci, ν) + ωihpmin{0, S − ci} if ℓ(t) = i

ωihpmin{0, S − cj} if ℓ(t) = j ̸= i

for profile c1, c2, ..., c|h|, and remaining free data stock S. In words, agent i gets positive

payoff only in his turn of consumption. If the current period consumption c > S by some
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agents, agent i’s disutility is ωih proportion of the extra spending on the data S − c where

ωih ∈ [0, 1] is agent i’s proportion of family’s remaining income in the current billing cycle

such that
|h|∑
i=1

ωih = 1

which is family specific and is a random draw from a distribution Φ ∈ ∆|h|−1.

• Given a sequence of consumer {ℓ(t)}Tt=1, a sequence of realized ν and a consumption path

cℓ(t)h,t for each t and ℓ(t) within a billing cycle, and a data plan S̄k, pk, F k, agent i’s payoff is

V k
ih =

∑
ℓ(t)=i

u(cih,t)− ωihp
k max

{∑
ℓ(t)

T∑
t=1

cℓ(t)h,t − S̄k, 0
}

and we look for Markov perfect equilibrium for the dynamic consumption game within each

billing cycle.

• We assume the family makes the plan choice collectively through a negotiation. The family’s

plan choice is made to maximize

|h|∑
i=1

λih

(
EV k

ih − ωihF
k
)
+ αϵhk

where EV k
ih is the expected Markov equilibrium payoff agent i receives in each billing cycle,

α ̸= 0, and λih captures the bargaining power distribution within the family. When ϵhk is

absent, the negotiation pushes the plan choice to the family’s Pareto frontier with weight λih.

We assume each family h randomly draws {λih} vector from a distribution depending on the

family size |h|.

A.2.1 Cooperative Consumption Plan within a Billing Cycle

• Suppose that a family has chosen a plan k, and within each billing cycle, the family’s

consumption is made by a planner. To save notations, we skip the superscript k when solving
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the within billing cycle problem. Given a plan, what is relevant for the dynamic consumption

problem within each billing cycle is

– the amount of initial free data S, and

– the linear price for over-usage p.

This is essentially a simple version of Nevo, Turner, Williams (2016). We use it as a

benchmark.

• When family h has remaining data stock S at time t ≥ 1, and ℓ(t) = i, the planner’s flow

payoff is

uih(c, ν) + pmin{0, S − c}.

because the planner fully internalize the family’s extra spending on on data over-usage:

( |h|∑
i=1

ωih

)
pmin{0, S − c} = pmin{0, S − c}.

Here, agents are ex ante symmetric; i.e., ν is i.i.d., and

uih(·) = ujh(·) = u(·),

so there is really no point to distinguish who gets the turn to consume.1

• At time t, the planner will make the following choice

c∗t (ν, S) ∈ argmax
{
u(c, ν) + pmin{0, S − c}+ Ut−1(max{S − c, 0})

}
(A.1)

1If we assume νi follows different distributions, or uih ̸= ujh, then we have to take expectation over the
agent who is selected to consume at t.
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where the flow utility include agent ℓ(t)’s consumption utility, family’s payment to over-usage

data if c > S, and the family’s continuation value at time t takes the following form

Ut(S) =Eν

[
u(c∗t (ν, S), ν) + pmin{0, S − c∗t (ν, S)}

+ Ut−1

(
max{S − c∗t (ν, S), 0}

)]
. (A.2)

• When S = 0, there is no free data left, then the optimal consumption c∗t (ν, 0) solves

(ν − p)c− c2

2

or

c∗t (ν, 0) =


0 if ν < p

ν − p if ν ≥ p

(A.3)

for each agent i, and agent ℓ(t)’s utility is

u(c∗t (ν, 0), ν) =
(max{0, ν − p})2

2

We can also solve that

U1(0) = Eν

[
u(c∗t (ν, 0), ν)

]
=

∫ ν̄

p

[(ν − p)2

2

]
dG(ν)

and for each t > 1, we can solve the value function recursively,

Ut(0) = Eν

[
u(c∗t , ν)

]
+ Ut−1(0)

= tU1(0) = t

∫ ν̄

p

[(ν − p)2

2

]
dG(ν).

in closed form.
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• When S > 0, t = 1, the last period marginal benefit is

MB(ν, c) = ν − c

but the marginal cost of consumption is

MC(c) =


0 if c < S

p if c ≥ S

In words, if c < S, the data is free, and so there is no cost; otherwise, the marginal cost is the

linear price p. The optimal consumption equalizes MC and MB, so

c∗(ν, 1, S) =


ν if ν ≤ S

S if ν ∈ (S, S + p]

ν − p if ν > S + p

Notice that the consumption is flat for an interval of ν as the marginal cost jumps at c = S.

When ν ∈ (S, S + p), the consumption is S, and 0 free data stock will be left for the last

period. So the expected payoff is

U1(S) =

∫ S

ν

ν2

2
dG(ν) +

∫ S+p

S

S
(
ν − S

2

)
dG(ν) +

∫ ν̄

S+p

(ν − p)2

2
dG(ν)

That is, increasing the remaining free data stock benefits the family, but the marginal effect

should be smaller than p. This is because there is a non-negative probability that the family

will not use all the remaining data in the next and also the last period.
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• When S > 0, t = 2, the marginal benefit of consumption is still MB(ν, c) = ν − c, but the

marginal cost is

MC(c) =


U ′
1(S − c) if c ≤ S

p if c > S

In words, if c ≤ S, the marginal cost is the negative effect of reducing the last period stock; if

c > S, the marginal cost is p. Define c̃2(ν, S) ∈ [0, S] be the solution to

c = ν − U ′
1(S − c).

If there is no solution, set c̃2(ν, S) = S. The optimal consumption at t = 2 is

c∗2(ν, S) =


c̃2(ν, S) if ν ≤ S + p

ν − p if ν > S + p

In words, if ν ≤ S + p, the optimal consumption c∗2(ν, S) ≤ S (there is a positive mass of

ν causing consumption being exactly S), and so there is no extra cost at data over-usage at

time 2; if ν > S + p, the optimal consumption c∗2(ν, S) > S and there is extra cost at data

over-usage. The value function is

U2(S) =

∫
ν<S+p

[u(c∗2(ν, S)) + U1(S − c∗2(ν, S))]dG(ν)

+

∫
ν≥S+p

[u(c∗2(ν, S)) + p[c∗2(ν, S)− S] + U1(0)]dG(ν)

• Using an induction argument, for S > 0, t > 2, we can define c̃t(ν, S) ∈ [0, S] be the solution

to

c = ν − U ′
t−1(S − c).
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We need to verify whether U ′
t−1(·) ≤ p. If there is no solution, set c̃t(ν, S) = S. The optimal

consumption at t is

c∗t (ν, S) =


c̃t(ν, S) if ν ≤ S + p

ν − p if ν > S + p

and the value function is

Ut(S) =

∫
ν<S+p

[u(c∗t (ν, S)) + Ut−1(S − c∗t (ν, S))]dG(ν)

+

∫
ν≥S+p

[u(c∗t (ν, S)) + p[c∗t (ν, S)− S] + Ut−1(0)]dG(ν)

• The solution gives us the family’s per-person average consumption at time

Eν [c
∗
t (ν, S)]. (A.4)

• For each data plan k ∈ K with (S̄k, pk, F k), we can compute the family’s expected value

within each billing cycle

Uk
T (S̄

k)

If the family makes consumption decision cooperatively, the plan choice should be dh solving

max
k∈K

{
Uk
T (S̄

k)− F k + αϵhk

}

where α ̸= 0 is a parameter. Then family h’s choice d∗h will take the standard form of choice

probability

Pr(d∗h = k) =
exp[

Uk
T (S̄k)−Fk

α
]∑

k′∈K

{
exp[

Uk′
T (S̄k′ )−Fk′

α
]
} .
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A.2.2 Non-Cooperative Consumption Plan within a Billing Cycle

• Now we assume agents in family h play a non-cooperative dynamic game within each billing

cycle for a given data plan with (S̄, p).

• We solve for a Markov perfect equilibrium (MPE) with state variable (t, S). Consider a

Markov strategy profile,

{cih,t(ν, S)}i∈{1,...,|h|},ν∈[ν,ν̄],t∈{1,...,T},S∈[0,S̄]

where cih,t(ν, S) represents agent i’s consumption policy (if he is selected) when the reaming

time within the current billing cycle is t and the remaining free data usage is S.

• A Markov strategy profile is a MPE if it is optimal for agent i to follow cih,t(·) given that

others follow cjh,t(·) for j ̸= i after any history. Formally, for any ν, t ∈ {1, ...T}, S ∈ [0, S̄],

we must have

cih,t(ν, S) ∈ argmax
c≥0

{
u(c, ν) + pωih min{0, S − c}︸ ︷︷ ︸

flow payoff

+E
[
Vih,t−1

(
max{S − c, 0}

)]︸ ︷︷ ︸
continuation payoff

}
(A.5)

where the ex ante continuation value of agent i takes the following form

Vih,t(S)

=
1

|h|
Eν

{
u(cih,t(ν, S), ν) + pωih min{0, S − cih,t(ν, S)}+ Vih,t−1

(
max{S − cih,t(ν, S), 0}

)}
+

1

|h|
∑
j ̸=i

Eν

[
pωihmin{0, S − cjh,t(ν, S)}+ Vih,t−1(max{S − cjh,t(ν, S), 0})

]
. (A.6)

Let us discuss the Bellman equation term by term.

119



– W.p. 1/|h|, agent i will be selected to consume, and his taste ν is randomly drawn,

so we take expectation over ν. He will consume cih,t(ν, S) and have future free data

max{S − cih,t(ν, S), 0}.

* If cih,t(ν, S) ≤ S, the consumption has no flow cost in the current period.

* If cih,t(ν, S) > S, the family has zero free data from the next consumption period

until the end of the current billing cycle, and the family needs to pay p[cih,t(ν, S)−S]

for the current period over-usage, and agent i will only internalize ωih share of

these spending.

* Agent i’s continuation value in the next period becomes Vih,t−1(S
′) where the next

period free data stock S ′ = max{0, S − cih,t(ν, S)}.

– With probability 1/|h|, agent j ̸= i will be selected to consume. His consumption does

not benefit agent i, but if cjh,t(ν, S)− S > 0, agent i receives a disutility from the extra

spending, ωihp[cih,t(ν, S)− S]. Agent j’s consumption will also make the next period

free data stock to be S ′ = max{0, S − cih,t(ν, S)}, which affects agent i’s continuation

value.

• Using backward induction, let’s solve the problem in the “pseudo-absorbing state”; i.e.,

S = 0, t ≥ 1. In this case, if agent i is chosen to consume,

cih,t(ν, 0) ∈ argmax
c≥0

{
(ν − pωih)c−

c2

2
+ E[Vih,t−1(0)]

}

The current period consumption does not affect the transition of state variables, and we can

solve cih,t(ν, 0) in closed form:

cih,t(ν, 0) = max{ν − pωih, 0} (A.7)

Comparing it with (A.3) reveals the static free-rider effect. When agent i’s marginal cost

is only a proportion ωih ∈ [0, 1] of the family’s, he consumes more, so the equilibrium
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consumption is greater

cih,t(ν, 0) > c∗t (ν, 0), ∀ν, t, h, i.

Formula (A.7) also has useful empirical implications for identification: after S hits zero,

1. agents no longer act strategically, and the remaining period effect disappear,

2. the expected consumption is constant for each agent:

Eν [cih,t(ν, 0)] = E(ν)− pωih

which only depends on (E(ν), p, ωih). We can compare these expected consumption

across agents i = 1, ..., |h| to recover ωih because

|h|∑
i=1

Eν(ci) = |h|E(v)− p
∑
i

ωih = |h|E(v)− p

With the observations of the family size |h|, the data price p and total average consump-

tion
∑|h|

i=1 Eν(ci), we can recover E(ν), then for any pair i ̸= j, we have

Eν [ci]− E(ν)
Eν [cj]− E(ν)

=
ωih

ωjh

and we also know
∑|h|

i=1 ωih = 1, so we can even recover {ωih} for each family non-

parametrically!

Plugging (A.7) into agent i’s utility and get

u(cih,t(ν, 0)) =
(max{ν − pωih, 0})2

2
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So we can solve agents’ value functions in closed form: in the last consumption period t = 1,

Vih,1(0) =
1

n

∫
ν≥pωih

(ν − pωih)
2

2
dG(ν)︸ ︷︷ ︸

utility gain if agent i consumes

− 1

n
pωih

∑
j ̸=i

[ ∫
ν≥pωjh

[ν − pωjh]dG(ν)
]

︸ ︷︷ ︸
cost if agent j consumes

and for any t > 1, because the problem is stationary, we have

Vih,t(0) = tVih,1(0).

• Now, suppose S > 0, t = 1 and it is agent i’s turn to consume. The marginal benefit of

consumption is still

ν − c

and MC(c) is 0 if c ≤ S and ωihp otherwise. Hence,

cih,1(ν, S) =


ν if ν ≤ S

S if ν ∈ (S, S + ωihp]

ν − ωihp if ν > S + ωihp

Agent i’s expected payoff is

Vih,1(S) =
1

|h|

[ ∫ S

ν

ν2

2
dG(ν) +

∫ S+ωihp

S

S
(
ν − S

2

)
dG(ν) +

∫ ν̄

S+ωihp

(ν − ωihp)
2

2
dG(ν)

]
−ωihp

|h|
∑
j ̸=i

[ ∫ ν̄

S+ωjhp

(ν − ωjhp− S)dG(ν)
]

In words, w.p. 1/|h|, agent i consumes, and his consumption can be c ≤ S (first two cases)

or S > c (last case). W.p. 1/|h|, agent j consumes, and agent i receives a disutility only if

cjh,t > S.
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• Now suppose S > 0, t = 2 and it is agent i’s turn to consume. The marginal benefit is still

ν − c and MC(c) is

MC(c) =


V ′
ih,1(S) if c ≤ S

ωihp if c > S

where V ′
ih,1(S) is the value function’s partial derivative w.r.t. S. In words, if c ≤ S, the

marginal cost is the negative effect of reducing the next period stock; if c > S, the marginal

cost is ωihp. Let c̃ih,2(ν, S) ∈ [0, S] be the solution to

ν − c = V ′
ih,1(S − c)

if there is no solution, set c̃ih,2(ν, S) = S. Then the equilibrium consumption policy must

satisfy

cih,2(ν, S) =


c̃ih,2(ν, S) if ν ≤ S + ωihp

ν − ωihp if ν > S + ωihp

We should have the dynamic free-rider effect in Bonatti and Horner (2011). In period t = 2,

agent i has small marginal cost because not only he receives a proportion of the extra spending,

but also because if he keeps S ′ > 0 for the next period, he may not have the chance to consume

in the future. W.p. (|h| − 1)/|h|, it is someone else’s turn. Our model is a bit different,

because agent j’s consumption may also generate disutility to agent i if cj > S ′, so agent i

still has some incentive to keep some S ′ for the next period to prevent cj > S ′.

• Agent i’s expected payoff is

Vih,2(S) =
1

|h|

[ ∫ S+ωihp

ν

[u(cih,2(ν, S)) + Vih,1(S − cih,2(ν, S))]dG(ν)

+

∫
ν>S+ωihp

[u(cih,2(ν, S))− ωihp[cih,2(ν, S)− S] + Vih,1(0)]dG(ν)
]

−ωihp

|h|
∑
j ̸=i

[ ∫ ν̄

S+ωjhp

[cjh,2(ν, S)− S]dG(ν)
]
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We can compute V ′
ih,2(·) for each i.

• Using an induction argument, for S > 0, t > 2, we can define c̃ih,t(ν, S) ∈ [0, S] be the

solution to

c = ν − V ′
ih,t−1(S − c).

We need to verify if V ′
ih,t−1(·) < ωihp. If the equation has no solution, set c̃ih,t(ν, S) = S.

The optimal consumption at t for agent i is

cih,t(ν, S) =


c̃ih,t(ν, S) if ν ≤ S + ωihp

ν − ωihp if ν > S + ωihp

Agent i’s expected payoff is

Vih,t(S) =
1

|h|

[ ∫ S+ωihp

ν

[u(cih,t(ν, S)) + Vih,t−1(S − cih,t(ν, S))]dG(ν)

+

∫
ν>S+ωihp

[u(cih,t(ν, S))− ωihp[cih,t(ν, S)− S] + Vih,t−1(0)]dG(ν)
]

−ωihp

|h|
∑
j ̸=i

[ ∫ ν̄

S+ωjhp

[cjh,t(ν, S)− S]dG(ν)
]

We can also compute V ′
ih,t(·) for each i.

• The solution gives us each family member i’s average consumption at time with remaining

free data stock S,

Eν [cih,t(ν, S)], (A.8)

which will be used to fit the data. We can compare the person-average consumption

1

|h|

|h|∑
i=1

Eν [cih,t(ν, S)] (A.9)

with the cooperative solution in (A.4)

124



• For each data plan k ∈ K with (S̄k, pk, F k), we can compute each family member i’s

expected equilibrium value within each billing cycle V k
ih,T (S̄

k). The data plan choice is made

to maximize

max
k∈K

{ |h|∑
i=1

λih[V
k
ih,T (S̄

k)− ωihF
k] + αϵhk

}
where α ̸= 0 is a parameter (adjust utility shock into dollar), and λih is family specific random

coefficient measuring each member’s bargaining power (maybe
∑

i λih = 1?). Then family

h’s choice dh will take the standard form of choice probability

Pr(dh = k) =
exp[

Uk
T (S̄k)−Fk

α
]∑

k′∈K

{
exp[

Uk′
T (S̄k′ )−Fk′

α
]
} .

where ϵhk follows the standard distribution, then family h’s choice dh will take the standard

form of choice probability

Pr(dh = k) =
exp

[∑|h|
i=1

[
λih[V

k
ih(T,S

k)−ωihF
k]
]

α

]
∑

k′

{
exp

[∑|h|
i=1

[
λih[V

k′
ih (T,Sk′ )−ωihFk′ ]

]
α

]}
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