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ABSTRACT 

Achal Pareshkumar Patel: Gene-Level Germline Investigation of Breast Cancer Subtypes and Mortality 
among Women of European and African Ancestry  

(Under the direction of Melissa Troester and Michael Love) 
 

Genome-wide investigations to date have uncovered over 210 germline variants associated with 

BC incidence, and only a handful of mostly non-replicable variants associated with BC mortality. There 

remain a few key gaps in knowledge across genetic investigations of BC incidence and mortality. First, 

BC is a heterogeneous disease, with subtype-specific outcomes. Understanding of the germline genetic 

underpinnings of BC subtypes is sparse among individuals of European and even sparser for individuals 

of African ancestry. It is also thought that integration of BC subtype (i.e., stratification by) into germline 

investigations of BC mortality may a key step towards bettering understanding on this front. In this 

dissertation work, we address these gaps in knowledge by leveraging a statistically efficient and highly 

interpretable framework for genetic association testing in Transcriptome-Wide Association Study (TWAS).  

In Aim 1 (Chapter 4) multi-tissue (normal breast, breast tumor), multi-ancestry TWAS-based 

germline-regulated gene expression (GReX) analysis of 396 BC-related genes in relation to BC subtype, 

we find 40 GReX-prioritized genes for BC subtype, including ten shared, and 34 and six unique to 

Luminal-like (LL) and Basal-like (BL) subtype, respectively (after Bayesian correction for potential test 

statistic inflation and at global False Discovery Rate (FDR) <0.05). Among individuals of African ancestry, 

we see suggestion of association (global FDR = 0.06 to 0.18) for five genes. By comparison, the largest 

genome-wide study to date among African ancestry individuals has reported no loci at or near genome-

wide significance.  

In Aim 2 (Chapter 5) ancestry and subtype specific GReX analysis of BC mortality, we find no 

associations at global FDR <0.05. However, we uncover potential differential germline-regulation of tumor 

expression across LL and BL subtypes, within each group of European and African ancestry individuals 

(321 loci across 37 genes for European ancestry, 23 loci across 4 genes for African ancestry). That, 
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along with our methodological work on correction of collider stratification bias represents a valuable 

platform for future work.  

The spectrum of findings across the two studies are important towards more targeted risk and 

prognosis stratification and potentially therapeutic efforts to reduce burden of BC outcomes.  
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CHAPTER 1. SPECIFIC AIMS 

Breast cancer (BC) poses a significant public health burden, both globally and within the United 

States (US). In the US, it is the second most common cancer among women, with an estimated 268,600 

invasive cases diagnosed in 2019, and also the second leading cause of cancer mortality with an 

estimated 41,760 deaths in 2019 1. As part of efforts to reduce public health burden of BC and BC 

outcomes, genome-wide investigations to date have uncovered over 210 common BC susceptibility 

variants, which explain roughly 20% of the twofold familial relative risk 2-6. There remain, however, several 

key gaps in knowledge across the spectrum of genetic investigations of BC incidence and mortality. 

First and foremost, BC is a heterogeneous disease, with multiple subtypes with distinct outcome 

trajectories. Recent GWAS of BC suggest that germline associations may differ across BC subtypes (and 

at times these subtype-specific associations can be masked at the level of BC vs. control investigations if 

effects are in opposite directions) 7,8. A more robust understanding of the germline genetic basis of BC 

subtypes can offer more targeted risk stratification and potentially even inform more targeted clinical 

efforts to reduce BC burden. This is especially true for diverse populations (e.g., individuals of African 

ancestry (AA)), who are vastly underrepresented in genetic investigations, despite, in the case of BC, 

standing among the most to benefit given the higher proportion of more aggressive BC subtypes and 

poorer mortality outcomes seen in this population group 1,9. In fact, in the largest investigation of BC 

among individuals of African ancestry to date, no loci have been identified at or even near genome-wide 

significance 10. To bridge these gaps in BC susceptibility research, in Aim 1 (Aim 1b), we propose a multi-

ancestry (European ancestry (EA), African ancestry) Transcriptome-Wide Association Study (TWAS) 

based analysis (i.e. germline-regulated gene expression (GReX) analysis). TWAS-based GReX analysis, 

as a gene based association test, offers increased statistical efficiency, enabling discovery at both GWAS 

loci and loci where small effects aggregate at gene level (these would be missed in even large scale 

GWAS) 11-13. GReX analysis offers the added benefit of increased interpretability, as GReX-prioritized 

genes can be subject to interrogation of biological plausibility and functional follow-up. Innovative aspects 
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of our GReX analysis in Aim 1 include evaluation of the two most pertinent tissue contexts (normal breast, 

breast tumor tissue) across multiple genotype-expression panels in construction of the predictive models 

of gene expression from germline variation underlying GWAS (Aim 1a). We additionally investigate 

different definitions of BC subtype, including etiologic subtype, which has been shown to capture greater 

etiologic heterogeneity compared to molecular subtype 14.  

Some of the challenges facing BC genetic etiologic research have implications for genetics of BC 

survivorship, a less developed research area (Aim 2). BC subtype is a well-established predictor of BC 

mortality, with markedly poorer mortality for more aggressive subtypes such as Basal-like 15. Genetic 

investigations to date for BC mortality have not been fruitful, yielding only a few, mostly non-replicable 

loci. More recently, a GReX analysis of BC mortality suggest a complex interplay between BC molecular 

subtype and ancestry in BC mortality 16. Specifically, in that GReX analysis of BC survival (in breast tumor 

tissue), race-specific predictive models uncovered no associations among White women (WW) and four 

associations among Black women (BW). Importantly, associations among BW appeared to be driven by 

very strong effect sizes within ER+ subtype. This suggests that BC biological (i.e. subtype) heterogeneity 

may be an important determinant of the relative lack of evidence on genetic underpinnings of BC 

mortality. Aim 2 of this dissertation will address this gap through a TWAS-based GReX analysis that 

leverages ancestry and subtype-specific predictive models.  

Aim 1: Conduct a Transcriptome-Wide Association Study based GReX analysis of BC molecular 

subtype and etiologic subtype in normal breast and breast tumor tissue, for individuals of European and 

African ancestry.  

Hypothesis: We hypothesize eQTLs/predictive models will differ by choice of breast tissue 

(normal, tumor) and that different putative causal genes will be identified by subtype and across subtype 

classification schemes (molecular, etiologic). We also hypothesize that eQTLs will differ across ancestries  

and that this will contribute to ancestry-specific differences in effect of putative causal genes. The 

approach will be: 

1a. Gene expression predictive models for a suite of 396 BC-related genes (using the Carolina 

Breast Cancer Study (CBCS) as anchoring data source) will be constructed using paired genotype and 

expression data. Two sets of predictive models will be in normal breast tissue (Genotype Tissue 
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Expression Consortium (GTEx): N = 337 EA, N = 47 AA; UNC Normal Breast Study (NBS): N = 93 EA, N 

= 37 AA). Two sets of predictive models will be in breast tumor tissue from the Carolina Breast Cancer 

Study (CBCS, N=571 EA, N=628 AA) and The Cancer Genome Atlas (TCGA, N=715 AA, 170 EA). 

Predictive models will be mutually validated by tissue type. Predictive models will then be compared 

across normal-breast and breast tumor tissue in terms of model performance (heritability, correlation 

between GReX and observed expression).  

1b. Tissue-specific (normal breast, breast tumor) predictive models will be used to impute gene 

expression in Breast Cancer Association Consortium (BCAC, N = 146,177 EA, N= 5,092 AA) for 

association testing with BC subtype (ER or PR/HER2 based; ER/TP53 based) in a case-control analysis.  

Aim 2: Conduct a transcriptome-wide association study based GReX-analysis of BC mortality 

(all-cause, BC-specific) using predictive models that integrate BC molecular subtype and ancestry 

Hypothesis: We hypothesize that increased resolution from integration of BC molecular subtype 

and ancestry will identify novel genetic loci for BC mortality. The approach will be:  

Predictive models based on ancestry and BC molecular subtype stratification will be constructed in tumor 

tissue (CBCS, N=358 AA-Luminal-like, N=224 AA-Basal like, N=410 EA-Luminal-like, N=116 EA-

TN/Basal-like). Predictive models will be used to impute gene expression in BCAC for association testing 

with BC mortality in case-only analyses (N= 89,992 across EA and AA).   
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CHAPTER 2. LITERATURE REVIEW AND RATIONALE 

2.1 Epidemiology of Breast Cancer Incidence and Mortality 

Breast cancer (BC) is the second most common cancer among women in the United States 

(U.S.), with an estimated 48,100 ductal carcinoma in situ (DCIS) and 268,600 invasive cases diagnosed 

in 2019 1. Incidence rates of BC across the U.S. population increased until 2000, declined between 2000 

and 2005, and have remained relatively stable since 17-20 Across racial/ethnic groups, White women (WW) 

have historically had the highest incidence rate (~130 cases per 100,000 individuals per year), although 

since 2012, incidence rate among Black women (BW) has been nearly equivalent to those among WW 

21,22.     

BC can be classified into molecular subtypes based on combination of estrogen (ER) and human 

epidermal growth factor 2 (HER2) receptor status (determined through immunohistochemistry) or into 

intrinsic subtypes through tumor gene expression 23. Molecular subtypes of BC determined through 

immunohistochemistry include Luminal A-like (Lum-A, ER+ or PR+, HER2-), Luminal B-like (LumB, ER+ 

or PR +, HER2+), HER2-enriched (HER2, ER and PR - , HER2+), TN/Basal-like (TN, ER-, PR-, HER2-) 

23. In the U.S., the distribution of BC molecular subtypes in the general population is as follows: LumA – 

68%; LumB – 10%; HER2 – 4%; TN/Basal-like – 10%; and 7% unknown 1,23. Across all-groups (i.e., 25-39 

years, 40-54 years, 55-69 years, and 70+ years), TN BC is more prevalent among BW compared to WW. 

For WW and BW, TN is more prevalent among younger age groups (i.e., most prevalent among women 

25-39 years)1,9.  

BC is the second leading cause of cancer mortality in the U.S. with an estimated 41,760 deaths in 

2019 1. There is significant disparity in BC mortality; BW have roughly 40% greater mortality rate 

compared to WW (28.4 per 100,000 individuals per year in BW compared to 20.3 per 100,000 individuals 

per year in WW)1. Mortality rate differences between WW and BW also differ by age-groups. Among 20-

29-year-old women, the mortality rate is 2.62 times that of WW in BW, while among 70-79-year-old 

women, the mortality rate is 1.11 times that of WW in BW1. Mortality rate differences for WW and BW 
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across age groups partly reflect differences in BC molecular subtype distribution for WW and BW across 

age groups as BC molecular is a strong prognostic factor for BC mortality1,23. 5-year relative survival for 

BC is 90.3% while the 5-year relative survival for BC molecular subtypes is as follows: LumA – 94.3%; 

LumB – 90.5%; HER2 – 84%; TN/basal-like – 76.9% 23. 

2.2 Genetic factors for BC Incidence  

Family History 

Early investigations of genetic factors in relation to BC were focused on family history and  

study designs that exploit different levels of shared genetic architecture across monozygotic and dizygotic 

twins. Women whose mothers or sisters have experienced BC are 2 times and 2.3 times as likely, 

respectively, to develop BC; women with both mothers and sisters that have experienced BC are 3.6 

times as likely to develop BC 24. An analysis leveraging the Generations Study, which is a cohort 

of~113,000 women from the UK general population, reported a 3.5-fold increase (95% CI: 2.56, 4.79) in 

BC risk comparing highest family history score (FHS) and lowest FSH groups, adjusted for established 

reproductive and lifestyle risk factors 25. The FHS used in Brewer et al. compared observed BC cases in 

the family in relation to expected based on population incidence rates by age and calendar period, which 

offered an improved account for family structure compared to conventional approach of enumerating 

cases across relatives 25. Furthermore, in one of the largest twin studies to date, including 80,309 

monozygotic twins and 123,382 dizygotic twins, the probability of developing BC was 28.1% (95% CI: 

23.9, 32.8) if a monozygotic twin sister had breast cancer26. The probability of developing BC was lower 

at 19.9% if a dizygotic twin sister had breast cancer26.  

Inherited mutations (rare variants) 

With the completion of the Human Genome Project and proliferation of genotyping technology 

and statistical methods for analysis of genetic data, focus in understanding of genetic architecture of BC 

risk shifted to genetic variants.  Inherited mutations (rare variants) in several genes have been implicated 

in BC risk, foremost of which are BRCA1 and BRCA2. BRCA1 and BRCA2 are involved in DNA repair 

and function as tumor suppressor genes in healthy cells 27,28. Women with mutation in these genes have 

a 70% chance of developing BC by age 80 29. It has been estimated that approximately 1 in 400 to 800 

individuals in the general population carry pathogenic BRCA variants 30-32.  
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Compared to the general population, women who develop BC at any age have a 2% chance (1 in 

50 women) of carrying pathogenic BRCA variants while women who develop BC at age 40 or lower have 

a 10% chance (1 in 10 women) of carrying pathogenic BRCA variants 33-35. Prevalence of BRCA1 

pathogenic variants among BC patients differs by racial/ethnic groups and is highest among Hispanics at 

3.5%, followed by 2.2 - 2.9 % in non-Ashkenazi WW and 1.4% in BW 36. Prevalence of BRCA2 

pathogenic variant among BC patients also varies by racial/ethnic groups and is highest among BW at 

2.6% and slightly lower among WW at 2.1% 36. Prevalence of BRCA pathogenic variants also differs by 

BC molecular subtype, and has been reported to be highest among TN BC. In a pooled analysis of 12 

studies (from the Triple Negative Breast Cancer Consortium) of TN BC patients unselected for family 

history of breast or ovarian cancer, 8.5% had BRCA1 pathogenic variants and 2.7% had BRCA2 

pathogenic variants 37.  

BRCA1 and BRCA2 are considered high penetrance genes; penetrance refers to proportion of 

individuals with pathogenic variants that demonstrate symptoms of the disease/disorder. Other high 

penetrance genes implicated in relation to BC risk are CDH1, PALB2, PTEN, STK11, and TP53 

38.Moderate penetrance genes associated with BC risk include ATM, BRIP1, CHEK2, FANCD2, and 

RAD51C 38. TP53 germline (inherited) mutations are relatively uncommon at an estimated 3% in the 

general population; TP53 mutations, by contrast, are found in approximately 30% of breast cancer 

patients 39,40. Within BC subtypes, TP53 mutations are most common among TN/basal-like BC 40. Many of 

aforementioned genes are involved in repair of damaged DNA and regulation of cell growth, including in 

the presence of DNA damage 34. A 2021 population-based case-control study of 48,826 cases and 

50,703 controls found the following BC associations for protein-truncating (pathogenic) variants for some 

of the aforementioned genes (Table 1) 3.  
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Table 2.1 Risk of breast cancer associated with pathogenic protein-truncating variants in select 
genes in population-based studies in the Breast Cancer Association Consortium  

Gene Odds Ratio (95% CI) P-value 

BRCA1 10.57 (8.02, 13.93) 1.1 x 10-62 

BRCA2 5.85 (4.85, 7.06) 2.2 x 10-75 

CDH1 0.86 (0.37, 1.98) 0.72 

PALB2 5.02 (3.73, 6.76) 1.6 x 10-26 

PTEN 2.25 (0.85, 6.00) 0.10 

STK11 1.60 (0.48, 5.28) 0.44 

TP53 3.06 (0.63, 14.91) 0.17 

ATM 2.10 (1.71, 2.57) 9.2 x 10-13 

BRIP1 1.11 (0.80, 1.53) 0.54 

CHEK2 2.54 (2.21, 2.91) 3.1 x 10-39 

FANCD2 - - 

RAD51C 1.93 (1.20, 3.11) 0.0070 

Adapted from Dorling et al. 2021.  

Genome wide studies of BC risk 

BC is a complex trait, meaning that it does not follow classical Mendelian inheritance patterns. 

This recognition, along with recognition that common variants (single nucleotide polymorphisms (SNPs)) 

with lower penetrance may explain a substantial portion of BC heritability has prompted numerous 

genome-wide association study (GWAS) over the years 38. By convention, variants with greater than 1% 

frequency in the population are termed SNPs while those with less than 1% are termed mutations 41. 

More generally, there is thought to be an inverse relationship between penetrance and variant frequency; 

common variants tend to have lower risk while rare variants (BRCA1 and BRCA2 mutations for instance) 

tend to have higher risk 38.  

The first GWAS of BC were conducted in East Asian and European populations. In a discovery 

sample of 3,027 Chinese women and a replication sample of 7,502 East Asian and 3,057 European 

women, Zheng et al. identified rs2046210 at 6q25.1, located upstream of the estrogen receptor alpha 

(ESR1) gene, as conferring increased risk of BC 42. Thomas et al. conducted a three-stage GWAS in 
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9,770 cases and 10,799 controls in the Cancer Genetic Markers of Susceptibility (CGEMS) initiative, 

where top SNP associations at each stage were prioritized for further association testing 43. Thomas et al. 

identified two loci at genome-wide significance, namely rs11249433 and rs999737, the latter localizing to 

the RAD51L1 gene that is involved in the homologous recombination DNA repair pathway 43. Thomas et 

al. further investigated heterogeneity in effect by ER status, finding that the association was stronger for 

rs11249433for ER+ compared to ER-, while the association for rs999737 was roughly similar across ER 

tumor types43.  

In 2013, Garcia-Closas et al. conducted the first GWAS specific to ER- BC in an effort to better 

understand the genetic susceptibility specific to this tumor type, which differs in its etiology and clinical 

prognosis compared to ER+ BC, as mentioned previously. In a meta-analysis of 3 GWAS of 4,193 ER- 

BC and 35,194 controls (and a replication sample of 47,969 women, all of European ancestry), Garcia-

Closas et al. identified four susceptibility loci, two of which localized to MDM4 and LGR6 genes 44. 

Importantly, all four susceptibility loci were associated with ER- but not ER+ BC, indicating potentially 

different genetic architecture of ER+ and ER- BC risk 44. 

Present understanding of the genetic architecture for BC risk is significantly better among women 

of European ancestry compared to women of African ancestry. Among women of European ancestry, the 

bulk of understanding stems from four GWAS studies from 2013, 2015, 2017, and 2020. Building on the 

27 loci that had been identified till 2013, Michailidou et al. performed a meta-analysis of 9 GWAS studies 

among women of European ancestry, and identified 29,807 SNPs for further genotyping in 45,290 cases 

and 41,880 controls in the Breast Cancer Association Consortium (BCAC) 6. These genotyped SNPs 

were part of a custom Illumina iSelect genotyping array (iCOGS – 200K variants), and the iCOGS based 

GWAS in BCAC identified 41 loci at genome-wide significance (P < 5 x 10-8) 6. Michailidou et al.’s work in 

2015 built upon the 2013 GWAS and leveraged genotype imputation (using the 1000 Genomes Project 

March 2012 release) to perform GWAS on 11 million SNPs 5. The 2015 work identified 15 novel 

susceptibility loci 5. In the 2017 GWAS, Michailidou et al. leveraged another custom genotyping array 

(OncoArray – 550K variants and 21 million imputed SNPs) and performed a GWAS in 61,282 cases and 

45,494 controls of European ancestry in BCAC, results of which were combined with the prior iCOGS 

analyses and 11 other BC GWAS using fixed-effect meta-analysis to yield 65 novel loci for BC risk 4. In 
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the OncoArray, 72K SNPs were targeted towards BC, including SNPs that showed evidence in prior 

GWAS (for overall or ER-specific BC), were potentially associated with BC survival, and were loci of 

interest from GWAS in other (e.g., Asian) populations 4.  

The most recent (2020) GWAS in BCAC by Zhang et al. was motivated by observations of 

heterogeneity by tumor subtype. In this GWAS, Zhang et al. accounted for tumor heterogeneity (i.e., ER, 

progesterone receptor (PR), HER2) as well as tumor grade 2. Zhang et al. identified 32 new loci at 

genome-wide significance (P < 5 x 10-8) and several (15) of these loci demonstrated evidence of 

association with at least one tumor heterogeneity feature 2. Moreover, five loci showed associations in 

opposite directions for luminal and non-luminal subtypes, respectively, across the spectrum of BC GWAS 

signa. Follow-up analyses for these five loci uncovered that these loci contained cell-specific enhancers 

which differ between normal luminal and basal cells in mammary tissue. Zhang et al. also estimated the 

proportion of genetic variance explained by the set of 210 loci (178 previously identified + 32 novel in their 

study) compared to the genetic variance explained by all loci and found differences in this proportion by 

BC subtype 2. Together, the 210 variants explained approximately 18% of the twofold familial relative risk 

for invasive BC while the set of all variants (including imputed variants) explained twice that at 37.1% 2. 

Lastly, Zhang et al. estimated the genetic correlation between BC molecular subtypes through LD score 

regression (LDSR). In LDSR, relationships between linkage disequilibrium (LD) scores for a given variant 

and variant test-statistics (i.e., statistic computed in the study or summary statistics from external GWAS) 

are assessed, where LD score for a given variant is the sum of LD r2 for that variant with variants within 1 

cM 45. The considered subtypes were moderately to highly correlated. In particular, genetic correlation for 

LumA BC and TN BC was 0.46 (SE=0.05) while genetic correlation for TN BC and BC among carriers of 

BRCA1 was 0.83 (SE=0.08) 2. The pattern of genetic correlations across subtypes indicate shared 

genetic architecture for BC risk across subtypes but also point to subtype-specific genetic architectures 

for BC risk 2. Importantly, as with previous GWAS by Michailidou et al, this GWAS was limited to women 

of European ancestry. 

Parallel to the Zhang et al.’s work on identifying BC susceptibility loci while accounting for tumor 

heterogeneity, Ahearn et al. interrogated the relationship between known susceptibility variants and: 1) 

tumor markers (ER, PR, HER2, grade) that define BC subtype; 2) BC subtypes (LumA, LumB, HER2, 
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TN/Basal-like) 8. Ahearn et al.’s work is the most in-depth investigation of BC susceptibility variants in 

relation to tumor heterogeneity, and in particular BC molecular subtypes; it builds upon less systematic 

evidence from prior studies that demonstrate heterogeneity in effect of susceptibility variants by ER status 

8. Ahearn et al. developed a two-stage polytomous logistic regression that addressed several challenges 

involved in investigation of susceptibility variants in relation to BC molecular subtypes: (1) tumor 

heterogeneity marker (ER, PR, HER2) correlations; (2) missing data on tumor markers; (3) lower sample 

size among less common subtypes 8. Ahearn et al. reported that 85 of 173 known susceptibility variants 

were associated with at least one tumor heterogeneity (ER, PR, HER2, grade) feature (at false discovery 

rate (FDR) < 0.05). Combined with the 15 variants (among the 32 novel variants in Zhang et al.) that 

showed similar association with at least one tumor heterogeneity marker (ER, PR, HER2, grade), there is 

substantial evidence of etiologic heterogeneity for BC molecular subtypes across genome-wide significant 

susceptibility variants 2,8. More specifically, Ahearn et al. report that while most (N=83) of the 85 

susceptibility variants associated with at least tumor heterogeneity marker were associated with at least 

one luminal subtype, only 41 of the 85 were associated with at least one non-luminal subtype 8. Moreover, 

32 of these 85 susceptibility variants showing evidence of association with at least one tumor 

heterogeneity marker were associated with TN BC 8. Lastly, 10 of the 85 were associated with risk across 

all BC molecular subtypes, with differing magnitudes of effect 8. Given that BC is a heterogeneous 

disease where BC molecular subtypes have dramatically different therapeutic options and prognoses, 

understanding of genetic susceptibility across subtypes, especially in terms of genetic mechanisms (i.e., 

SNP -> gene expression -> trait) has clinical implications. 

As previously mentioned, there is comparatively limited understanding of genetic architecture of 

BC risk among women of African ancestry, in large part due to the smaller sample sizes of studies and 

consortia with genotype information. A 2013 study by Long et al. evaluated 67 SNPs that had been 

identified in relation to BC risk (at the time of study initiation) in 1,231 cases and 2,069 African-American 

controls recruited within the Southern Community Study (SCCS) and the Nashville Breast Health Study 

(NBHS) 46. Long et al. reported 7 of the67 evaluated SNPs were nominally significant (P <0.05) and 

demonstrated effect in the same direction as identified in women of European ancestry 46. In 2016, Huo et 

al. performed a two-stage GWAS, first identifying 18,376 SNPs in a meta-analysis of roughly 5,000 cases 
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and 5,000 controls before replication follow-up among 1,984 cases and 2,939 controls; Huo et al. strongly 

linked rs13074711 and rs10069690 with ER- BC and rs12998806 with ER+ BC 47. An interesting finding 

of this study was that all three variants were all highly heterogeneous with regards to ER status, 

suggesting that the genetic architecture of BC risk among women of African ancestry may have even 

more subtype-specificity compared to the genetic architecture of BC risk among women of European 

ancestry 47. In the largest genetic study (6,522 cases and 7,643 controls) among women of African 

ancestry to date, Feng et al. assessed 74 SNPs that had been identified among women of European 

ancestry, and reported 12 with nominally significant associations, all of which showed directional 

consistency in effect 48. In follow-up fine-mapping of susceptibility regions, Feng et al. also identified 

variants that better characterized the risk signal compared to the variants reported among women of 

European ancestry 48. The sum of these studies highlight the central limitation towards understanding of 

genetic architecture of BC risk among women of African ancestry, namely, that the restrictive sample 

sizes do not allow for robust genome-wide significance testing, limiting discovery of variants specific to 

BC risk and BC subtypes among women of African ancestry. 

Transcriptome Wide Association Study of BC risk  

The combination of family studies, studies involving rare variants (mutations), and especially 

GWAS of common variants (SNPs) have established that germline genetics play an essential role in BC 

risk. A key finding in GWAS studies of BC risk is that many susceptibility variants are located in non-

coding regions; moreover, these variants are not in LD with SNPs in coding regions 49. Studies show that 

many susceptibility variants are located in regulatory regions, wherein they are thought to drive risk of BC 

through regulatory influence on the expression of nearby and distal genes 50-56. While target genes for 

several BC susceptibility variants with hypothesized regulatory influence on gene expression have been 

identified, these approaches are limited in the sense that they can only identify target genes for variants 

that meet genome-wide significance in GWAS.  

Numerous studies have reported that regulatory variants can account for a large proportion of 

disease heritability that has not yet been uncovered through GWAS 57-59. Specifically, there may be 

numerous regulatory variants for a given gene; such variants individually may not necessarily meet 

genome-wide significance in GWAS but (small) effects from these variants can aggregate and influence 
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risk through genetic regulation of expression of local (<1 Mb) and distal genes. Discovery of expression 

quantitative trait loci (eQTLs) over the past several years have provided considerable support to this line 

of thought 54,60. An eQTL is a genomic locus that explains some portion of the variance in expression of 

nearby or distal genes 61. eQTLs can be classified as: 1) cis or trans, depending on whether they are 

thought to influence gene expression directly or indirectly; 2) local or distal, depending on genetic 

distance to the gene whose variance in expression they explain 61. The focus on uncovering mechanisms 

for variant and risk associations (in BC and other diseases) along with recognition that regulatory variants 

with small effect sizes may aggregate and be consequential towards disease heritability has prompted 

intense interest in Transcriptome-Wide Association Study (TWAS).  

TWAS is a gene-based association testing approach where the relationship between germline 

variation and gene expression is first determined; among genes that show sufficient heritability, the 

germline-regulated component of gene expression (GReX; i.e., the expression of the gene predicted 

through germline variation) can then be used as a variable in regression analyses of continuous or binary 

traits. TWAS offers several advantages to GWAS, namely: 1) as a gene-based association test, the 

multiple testing burden is greatly reduced, allowing greater statistical efficiency and power; 2) TWAS-

significance identifies potential mechanisms for the relationship between variants and disease risk (i.e., it 

identifies SNPs -> gene expression -> disease risk) that can be immediately subject to functional 

validation 13,62.  

There are two main frameworks for conducting TWAS: 1) PrediXcan; 2) FUSION 13,62. PrediXcan 

was developed by Gamazon et al. and in essence, the approach decomposes total gene expression into 

three compartments: 1) GReX; 2) environmental and other, perhaps epigenetic factors; 3) expression that 

is influenced by the trait/outcome of interest itself. PrediXcan isolates GReX through the following 

algorithm: 1) Datasets with paired genotype and reference transcriptome data (reference can be single 

tissue transcriptome; multiple references corresponding to multiple tissue are possible) are identified; 2) 

Additive models of gene expression in the reference transcriptome data based on germline variants are 

constructed, typically, through Elastic Net Regression. Weights (regression betas) corresponding to the 

effect of 0, 1, 2 dosages of the alternative allele on gene expression are stored at the gene-level; 3) In an 

external, usually considerably larger dataset with genotyping information, gene-level models can be used 
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to impute the GReX for that gene (for a given reference tissue); 4) Imputed GReX of genes can be tested 

against trait of interest 13. Several variants of PrediXcan exist. For example, PrediXcan can also be 

performed using summary statistics from GWAS in the absence of individual level genotype datasets for 

GReX imputation. Another variant of PrediXcan termed MultiXcan can combine information across 

prediction models of gene expression trained in multiple tissues (to take advantage of common and 

different eQTL structure across tissues), effectively mimicking a meta-analysis of effects across tissue 63. 

The conceptual framework for PrediXcan is as follows (Figure 1). 

Figure 2.1 Conceptual framework of PrediXcan, one of primary approaches for TWAS

  

Adapted from Gamazon et al. 2015.  
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Around the same time as Gamazon et al. proposed PrediXcan, Gusev et al. proposed an 

alternative TWAS approach – FUSION 62. As with PrediXcan, FUSION can be implemented using either 

individual level genotype data (for imputation) or summary statistics from variant –trait associations in 

GWAS. For both implementations, FUSION requires predictive models of gene expression based on 

germline variation, constructed in a single tissue or multiple tissues. Under the summary statistics 

approach in FUSION, associations between GReX and trait are indirectly estimated as a weighted linear 

combination of standardized variant-trait associations (Z-scores from GWAS); FUSION explicitly accounts 

for LD between variants used in the weighted burden test 62. A key difference between FUSION and 

PrediXcan is that under FUSION, several approaches (cis-eQTL, elastic net, best unbiased linear 

predictor (BLUP) or Bayesian linear mixed model (BSLMM)) are utilized to train predictive models of gene 

expression 62. For a given gene, a single model that perform best on heritability and cross-validation R2 

(GReX vs. total expression) is selected for downstream association analyses. Gusev et al. identify 

scenarios under which TWAS-significant genes can be identified using FUSION (Figure 2).  
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Figure 2.2 Scenarios under which genes can be identified as TWAS-significant (Gusev et al. 2016)

 

To date, there have been two notable TWAS of BC risk, both in women of European ancestry and 

in the BCAC. Wu et al.’s TWAS comprised 122,977 cases and 105,984 controls and they constructed 

predictive models of gene expression in breast mammary tissue using the Genotype Tissue Expression 

Consortium (GTEx, N=67 for breast mammary tissue transcriptome and genotype panel) 64. Among 8,597 

genes that showed sufficient cross-validation R2 (GReX versus total expression performance within GTEx 

and in external comparisons using The Cancer Genome Atlas (TCGA), Wu et al. identified 48 genes at 

transcriptome-wide significance (P < 5.82 x 10-6), including 14 genes at loci that had not yet been 

reported in BC GWAS, underscoring the power of TWAS (and TWAS based GReX association analysis) 

in identifying regulatory variants with small effects on gene expression that can aggregate to influence BC 

risk (such variants would miss discovery even under large scale GWAS). Wu et al. performed functional 

follow-up on 13 of the identified TWAS-significant genes, silencing them and assessing effects on cell 
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proliferation and/or colony-forming efficiency; 11 of the 13 silenced genes showed an effect consistent 

with that predicted by TWAS, highlighting TWAS’s ability to accurately identify putative causal genes 

under most scenarios of statistical significance 64. An important limitation to Wu et al.’s TWAS is the 

relatively sparse dataset (N=67 European ancestry) of breast mammary tissue transcriptome and 

genotypes for construction of predictive models of gene expression.  

Feng et al.’s TWAS comprised of the 122,977 cases and 105,974 controls in Wu et al. and also 

included 11 other GWAS that spanned 14,910 cases and 17,588 controls 65. As with Wu et al., Feng et al. 

constructed their predictive models using gene expression in breast mammary tissue (and corresponding 

genotype information) in 67 women of European ancestry in GTEx. After narrowing the candidate gene 

set to 901 genes based on sufficient heritability (nominal p <0.01) and cross-validation R2 of 0.01 (10% 

correlation between GReX and total gene expression), Feng et al. identified 30 TWAS-significant genes, 

including 4 not identified by Wu et al. Further, in ER (ER+ / ER-) specific TWAS, Feng et al. identified two 

genes, namely STXBP4 and HIST2H2BA, specific to ER+; these genes showed no associations with ER- 

BC 65. Although Feng et al. improved upon the work in Wu et al. by only testing genes with sufficient 

heritability, the study was limited by the same sample size (N=67 European ancestry) of the reference 

expression panel for predictive model construction. Importantly, both Wu et al. and Feng et al. were 

performed among individuals of European ancestry. To date, there have been no TWAS or TWAS-like 

gene based association analyses among individuals of African ancestry for BC. 

2.3 Genetic and Clinical Risk Factors for Breast Cancer Mortality  

Clinical and Healthcare Access Factors 

Tumor size and stage are strong prognostic factors for BC mortality 66,67. Women with larger  

tumors are more likely to be diagnosed later stage, more likely to have metastasized, and more likely to 

die within 5 years post diagnosis compared to women with smaller tumors 68. Women diagnosed at the 

localized stage have a 99% 5-year relative survival, and those diagnosed at regional and distant have 

86% and 28%, respectively 69. Tumor grade is also a prognostic factor; generally, poorly differentiated 

tumors (higher grade) tumors have worse prognosis compared to well differentiated (lower grade) tumors 

70. BC subtype is among the strongest prognostic factors. Compared to LumA, HR of 1.7 (1.0, 2.9) and 

1.4 (0.9, 2.1) have been reported for Basal-like BC for WW and BW, respectively 15. For HER2 compared 
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to LumA, HR of 1.4 (0.7, 2.9) and 1.8 (1.0, 3.1) have been reported for WW and BW, respectively 15. BC 

subtype is a strong predictor of treatment. For instance, LumA and LumB (ER+ BC) are primarily treated 

with endocrine therapy while chemotherapy alternatives are preferred for Basal-like and HER2 BC. For 

HER2 BC, immunotherapy with Herceptin complements chemotherapy 71. There appears to be a complex 

interplay between BC subtype, race, and BC mortality, where race (WW, BW) and BC subtype 

independently affect BC mortality, and race additionally affects subtype distribution (see 2.1) 15,72. Lastly, 

health-care access is an independent risk factor for BC mortality, where increased geographic distance to 

health-care services, increased travel time, and quality of health-care services are associated with poorer 

prognosis 73,74.  

Family history and mutations (inherited, somatic) 

Although family history is one of the strongest risk factors for BC, investigations of prognostic 

value of family have yield mixed conclusions. Some studies suggest family history is associated with 

higher mortality while other studies report association with lower mortality or lack of an association 75-78. 

Reasons for this heterogeneity in findings are unknown and may be an artifact of collider stratification 

bias, given that family history is a strong risk factor for BC, and conditioning on BC incidence in an 

analysis of family history and BC mortality induces confounding from factors related to BC incidence and 

mortality 79. BRCA1, BRCA2, and TP53 are strong prognostic factors. As previously mentioned, mutations 

in all three genes are found in higher frequencies among more aggressive subtypes such as HER2 and 

especially TN. Huszno et al. reported that the 10-year overall survival for BRCA mutation carriers was 

roughly20% lower compared to non BRCA mutation carriers; TP53 mutation carriers, on the other hand, 

have been reported to have both poorer and better survival compared to TP53 wild-type carriers, 

depending on treatment modalities 80,81.  

Genome-Wide Association Study of Breast Cancer Mortality 

Compared to BC incidence, there have been relatively fewer GWAS of BC mortality, and most of 

them report suggestive findings or findings that are not replicable 82-92. Among the two notable, Shu et al. 

identified two variants (rs3784099, rs9934948), the former localizing to RAD51L1 which is involved in 

DNA repair pathways; rs9934948 replicated in a sample of women of European ancestry from the Nurses’ 

Health Study 86. The largest GWAS of BC mortality to date among 96,661 women of European ancestry 
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in BCAC reported no associations between any variants and BC mortality risk at genome-wide 

significance; however, there was suggestion of association for one variant each for ER+ and ER- BC and 

these variants were located proximal to genes with biological relevance to BC outcomes 93.  

TWAS of BC mortality 

To date, there has only been one TWAS of BC mortality. Bhattacharya et al. assessed the 

relationship between GReX of 406-BC related genes (396 autosomal) in breast tumor tissue and BC 

mortality in the Carolina Breast Cancer Study (CBCS) 16. CBCS is comprised of an ancestrally diverse 

population, with roughly half being women of European ancestry and the other half being women of 

African ancestry. As such, Bhattacharya et al. structured their TWAS in this ancestrally diverse study 

population as a race-specific TWAS after finding that predictive models of tumor gene expression from 

germline variation were not transportable across race. Bhattacharya et al.’s work shows that in performing 

TWAS across ancestrally diverse populations, race (as a proxy for ancestry) stratification of predictive 

model training, imputation, and association testing may be necessary to draw correct inferences, 

especially in the absence of more robust methods for ancestry-specific TWAS, especially in ancestrally 

heterogeneous or admixed populations 16. In their TWAS, Bhattacharya et al. found associations for 4 

genes among BW and associations for 0 genes among WW. Interestingly, 3 of the 4 associations among 

BW were driven by strong effects in one BC subtype, offering indication that a TWAS of BC mortality 

where predictive models are trained on ancestry and BC subtype may offer significantly improved account 

of biological heterogeneity and potentially improved power for identification of putative causal genes for 

BC mortality 16.  Analogous to the observation in Bhattacharya et al, heterogeneity in effect of variants by 

subtype in the GWAS setting has been speculated as a possible reason for reduced power and failure to 

detect genome-wide significant variants 93.  

Summary 

 BC is a disease that impacts millions on individuals around the world and has a high mortality 

burden. In efforts to reduce public health burden of BC and BC outcomes, genome-wide investigations to 

date have greatly furthered our understanding of the germline genetic basis of BC; however, there remain 

a few key gaps in knowledge.  
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 BC is a heterogeneous disease, with multiple subtypes with distinct outcome trajectories. 

Evidence suggests that germline associations may differ across BC subtypes (and at times these 

subtype-specific associations can be masked at the level of BC vs. control investigations), which means 

that a more robust understanding of the germline genetic basis of BC subtypes can offer more targeted 

risk stratification and potentially even inform more targeted clinical efforts to reduce BC burden. This is 

especially true for individuals of African ancestry, who are vastly underrepresented in genetic 

investigations, despite being the population standing most to benefit given the higher proportion of more 

aggressive BC subtypes and poorer mortality outcomes seen in this population group.  

Leveraging biological heterogeneity in BC (i.e., subtypes) may also be key towards bridging 

another gap in knowledge in the etiology of BC outcomes, which is the large gap in number of genetic 

studies and findings between genetic studies of BC incidence versus mortality (again, thus far, limited to 

European ancestry populations).   

In this dissertation, we address some of these key gaps in knowledge, using a multitude of 

publicly available (Genotype Tissue Expression Project, The Cancer Genome Atlas) and protected data 

(Genotype Tissue Expression Project (genotype), The Cancer Genome Atlas (genotype), Carolina Breast 

Cancer Study, Normal Breast Study, Breast Cancer Association Consortium). As a point of emphasis, the 

Carolina Breast Cancer Study is among the largest sources of genetic data for diverse populations, and 

for the Breast Cancer Association Consortium, we worked to gain approval for use of individual level 

genotype data, when summary level data would have sufficed if our work was limited to individuals of 

European ancestry. Our work is a small step towards bridging the disparity in genetic investigations 

across European and African ancestries across BC outcomes, and it represents our best possible effort 

with available data.  
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CHAPTER 3. METHODS 
 

3.1 Data Sources 

Genotype-expression reference panels for predictive model construction 

Carolina Breast Cancer Study (CBCS) 

CBCS is a population-based study of North Carolina (NC) breast cancer patients enrolled over 3 

phases; study details have been previously described 94,95. Patients aged between 20 to 74 years were 

identified using rapid case ascertainment with the NC Central Cancer Registry. CBCS oversampled for 

self-identified Black and young women (ages 20-49) 95,96. Data on demographic and clinical factors (e.g., 

age, menopausal status, body mass index, hormone receptor status, tumor stage, study phase, mortality) 

were obtained through a combination of questionnaires and medical records.  

Genotypes in CBCS were assayed using a custom SNP array designed for the OncoArray 

Consortium (Illumina Infinium OncoArray) and imputed using the 1000 Genomes Project Phase 3 as a 

reference panel for two-step phasing and imputation (SHAPEIT2 and IMPUTEv2) 97-100. Genotype calling, 

quality control, and imputation was conducted by the DCEG Cancer Genomics Research Laboratory 101. 

For Aim 2, which only used CBCS data for predictive model construction, we used genotypes that had 

been imputed to the 1000 Genome Project Phase 3. For Aim 1, to ensure consistency in genotype 

imputation underlying predictive models constructed across various data sources, we imputed CBCS 

genotype data to the TOPMed reference panel 102. In TOPMed, phasing was performed using eagle and 

imputation using minimac4 103,104. For TOPMed imputed CBCS genotype data for Aim 1, we retained 

variants with high imputation quality (r2 > 0.8). Additionally, in further quality control of genotype data, we 

excluded variants significantly deviating from Hardy-Weinberg Equilibrium (at P < 1.0 x 10-8).  

Gene expression in CBCS from paraffin-embedded tumor blocks was assayed for a panel of  

396 autosomal BC-related genes (along with 11 housekeeping genes) using the NanoString nCounter 

platform; assays were performed at the Translational Genomics Laboratory at UNC-Chapel Hill 96,105. 

These 396 BC-related genes include genes part of the PAM50, TP53, E2, IGF, and EGFR signatures, 
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among others (Appendix 1). As part of the quality control process, samples with insufficient data quality 

were eliminated using NanoStringQCPro 106,107. Distributional differences between lanes were scaled with 

upper-quartile normalization 108, and two dimensions of unwanted technical and biological variation, 

estimated using the 11 housekeeping genes in RUVSeq, were removed 108,109. Final expression data was 

in log2.The sample sizes of matched (i.e., data available for both genotype and expression and covariates 

for the same individual) genotype-expression reference panels for Aim 1 were 571 EA, 628 AA women. 

Sample sizes of the reference panel for Aim 2 were 410 EA – LL, 116 EA – BL, 358 AA – LL, 224 AA – 

BL, where LL ((ER+ / PR+) and HER2-, (ER+ / PR+) and HER2+), (ER-, PR-, HER2+)) BL (ER-, PR-, 

HER2-) denote Luminal-like and Basal-like subtype, respectively.  

Normal Breast Study (NBS) 

NBS is a study of normal breast tissue and the breast cancer microenvironment, participants of 

which were women ≥ 18 years undergoing breast surgery between 2009 and 2013 110. The NBS included 

399 women with BC and 75 women without malignant disease, all of whom donated at least one 

histologically normal breast tissue specimen as determined by pathologists at UNC hospitals 110. 

Demographic, risk factor, and clinical data were collected through a combination of telephone interview 

and medical records 110. NBS data was used only for Aim 1 of this dissertation.  

Genotypes in NBS were assayed using the Illumina Infinium OncoArray. We excluded variants 

with a genotype call rate below 98%, and then imputed to the TOPMed reference panel 102. In TOPMed, 

phasing was performed using eagle and imputation using minimac4 103,104. From the TOPMed imputed 

data, we retained variants with high imputation quality (r2 > 0.8) and variants which were in Hardy 

Weinberg Equilibrium (at P < 1.0 x 10-8).  

Gene expression data in NBS was determined through microarray 110. Details regarding the 

assay are described elsewhere 110. Several quality control and processing steps were performed for NBS 

expression data gene expression data. NBS included individuals who provided multiple samples, 

including samples from tumor tissue in addition to histologically normal breast. Moreover, there were 

technical replicates for a given sample. We excluded samples with more than 30% missing data, 

averaged over technical replicates, and for a given individual chose the sample that corresponded to the 

most variation across the gene set. Missing data was imputed and 319 of the 396 CBCS genes were 
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available for further analysis. Final expression data was in log2. The sample size of the genotype-

expression reference panel for NBS was 93 EA and 37 AA.  

Genotype Tissue Expression Consortium (GTEx) 

 
GTEx is a collaborative effort started in 2010 with the objective of cataloging genetic effects on 

gene expression across a range of tissues 111. GTEx gene expression was obtained from non-diseased 

tissues from rapid autopsy111. The latest release of GTEx (v8) consists of 838 postmortem donors and 

17,382 expression samples (RNA-seq) from 52 tissues 111. Whole-genome sequencing was conducted for 

each donor to a median depth of 32x and roughly 43 million variants have been catalogued after quality 

control 111. Further details on quality control of the whole-genome sequence data and the RNA-seq data 

are available elsewhere 111.  

For breast mammary tissue, there were 396 individuals with both genotype and expression data 

(337 EA; 47 AA). Although GTEx assays the whole transcriptome with RNA-seq, we limited our analysis 

to 365 of the 396 autosomal BC-related genes from CBCS that were available in GTEx. TPM normalized 

RNA-seq data were obtained, and final expression data was in log2. GTEx data was only used for 

predictive model construction in Aim 1 of this dissertation. Access to controlled GTEx data was under 

dbGaP project # 28275. 

The Cancer Genome Atlas (TCGA) 

TCGA is a collaborative effort started in 2005 with the objective of characterizing the genomic 

epigenomic, and molecular changes associated with cancer 112. TCGA has genomic sequencing,  

expression, methylation, and copy number variation data on over 10,000 individuals across 30 plus 

cancers 112,113.  

 For BC, genotypes in TCGA were assayed using the Affymetrix 6.0 SNP array and RNA using 

Illumina RNA-seq platform. Further details on quality control of genotyping array and RNA-seq are 

available elsewhere 114,115. As with NBS genotype data, imputation was performed against the TOPMed 

reference panel 102. where phasing was performed using eagle and imputation using minimac4 103,104. 

From the TOPMed imputed data, we retained variants with high imputation quality (r2 > 0.8) and variants 

which were in Hardy Weinberg Equilibrium (at P < 1.0 x 10-8). TCGA RNA-seq level 3 normalized data 

(normalized using upper quartile normalization) were downloaded from the Broad Institute GDAC 
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Firehose via FireBrowse 116. While TCGA assays the whole transcriptome with RNA-seq, we limited our 

analysis to 378 of the 396 autosomal BC-related genes from CBCS that were available in TCGA. Final 

expression data was in log2 and there were 715 EA and 170 AA individuals with genotype and expression 

data available. TCGA data was used both for predictive model construction in Aim 1 of this dissertation 

and also for external validation of CBCS predictive models in Aim 2. Access to controlled TCGA data was 

under dbGaP project # 19922. 

Genotype panel for imputation and association testing 

Breast Cancer Association Consortium (BCAC) 

Breast Cancer Association Consortium is a consortium with the aim of bettering understanding of 

the inherited risk of BC. There are ~ 100 studies that comprise BCAC and member studies submit 

information on study subjects, including demographics, clinical factors, risk factors, and genetics, which is 

then harmonized under the BCAC umbrella. Individuals in the BCAC have been genotyped on two 

custom platforms – the Illumina iSelect (iCOGS, ~200K SNPs) and the Illumina Infinium OncoArray 

(~550K SNPs) 2. Imputation for both arrays was performed using the 1000 Genomes Project Phase 3 as 

a reference panel for two-step phasing and imputation (SHAPEIT2 and IMPUTEv2) 2. In the BCAC, there 

are 217,413 BC cases and controls with genotyping data across the iCOGS or OncoArray platforms. We 

secured approval for use of BCAC genotyping data through the BCAC data access coordinating 

committee (BCAC approved project ID: 716).  

3.2 Exposure  

Across Aim 1 and Aim 2 of this study, the exposure variable was germline-regulated gene  
 
expression (GReX). To construct GReX, we adopted techniques from FUSION and PrediXcan 12,13;  
 
specifically construction of GReX was a two-step process involving: 1) Construction of predictive models  
 
of gene expression from germline variants within 1 Mb of gene boundaries, followed by assessment of  
 
predictive accuracy by comparison of the sample size adjusted R2 between predicted and observed  
 
expression of a gene; genes with predictive accuracy R2 > 0.01 were selected for downstream GReX  
 
imputation and association testing with outcomes; 2) imputation (construction) of GReX involved a linear  
 
combination of a multiplication of SNP-gene weights from predictive models (step 1) and genotype  
 
dosages in BCAC (the imputation panel and also where association testing was subsequently performed).  
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The algorithm for predictive model training in Step 1, in more detail, is as follows: 
 

(a) Gene expressions were first residualized for important covariates: Five genotype principal  

 
components computed in the full data (i.e., both EA and AA), age, BMI (where available), sex (GTEx  
 
only), and menopausal status (where available) 
 
(b) For a given gene g, the predictive model was represented as 
 

                                                     Yg = Xgwg + g 

 

where Yg is the gene expression of gene g residualized on covariates, Xg. is the genotype matrix of cis- 
 
SNPs (i.e., SNPs within 1 Mb of gene start and end position), wg is the vector of effect sizes estimated,  
 

and g is random error with mean 0 and common variance for all genes 
 
(c) Estimation of wg was done using one of two approaches (Elastic Net Regression 117, Best Linear  
 
Unbiased Predictor 118) that yielded the best five-fold cross-validation R2. Prior to estimation, we pruned  
 
the genotype matrix for LD using a LD threshold of 0.5 to avoid redundancy in estimated weights. Owing  
 
to the small sample size of some reference panels (e.g., AA GTEx = 48 individuals, AA NBS = 37  
 
individuals), we applied a 0.05 minor allele frequency filter for these comparatively sparse reference  
 
panel. For all other reference panels, a 0.01 minor allele frequency was applied. For Aim 1, we  
 
constructed GReX (of genes with high predictive accuracy) for 8 reference panels across two ancestry  
 
groups and breast tissue types (two most pertinent tissue contexts for BC risk in normal mammary tissue  
 
and breast tumor tissue): GTEx –EA (n=337), GTEx – AA (n=47), NBS – EA (n=93), NBS – AA (n=37),  
 
CBCS – EA (n=571), CBCS – AA (n=628), TCGA – EA (n=715), TCGA – AA (n=170). For Aim 2, we  
 
constructed GReX for 4 reference panels (across ancestry and subtype groups) in CBCS: EA – LL  
 
(n=410), EA – BL (n=116), AA – LL (n=358), AA – BL (n=224).  
 
3.3 Outcome 

In Aim 1, the outcome of interest was breast cancer subtypes, defined two ways. Molecular 

subtype was defined as Lumina-like ((ER+ / PR+) and HER2-, (ER+ / PR+) and HER2+), (ER-, PR-, 

HER2+)) or Basal-like (ER-, PR-, HER2-). Molecular subtype was the primary outcome of interest in Aim 

1 GReX association analyses and association analyses for molecular subtype was carried out in 

individuals of European and African ancestry (see Table 4.1 for full details on the ancestry-specific 

sample sizes). Etiologic subtype was a secondary outcome of interest in supplementary Aim 1 GReX 



25 
 

association analyses. Etiology subtype was defined as ER- and TP53-, ER- and TP53+, ER+ and TP53-, 

and ER+ and TP53+. TP53 positivity was determined by a score of 2 or more on a 0-3 scale (where 0 

indicated no staining and 1 indicated less than 10% staining). Analyses for etiologic subtype were limited 

to individuals of European ancestry due to insufficient sample sizes (n=0) for such analyses among the 

African ancestry population (see Table 4.3 for full details on sample sizes). 

In Aim 2, the outcome of interest was BC mortality, and specifically both all-cause and BC-

specific mortality. Deaths were coded according to the 10th revision of the International Classification of 

Diseases (ICD-10-WHO). For BC-specific mortality, individuals who died of any cause other than BC were 

considered right censored. Detailed information on number of mortality events across the analytic sample 

are available in Figure 5.4 and Figure 5.5.  

3.4 Statistical Analysis  

 As mentioned in 3.2, GReX (exposure variable) was computed only for genes that showed a 

sample-size adjusted R2 of > 0.01 between observed and predicted expression. Although some gene-

based association testing studies further select genes based on heritability we found heritability 

estimation challenging and imprecise for some of our reference panels where n < 100 for the reference 

panel. We note here that most TWAS and TWAS based studies select genes for downstream analyses 

based on predictive accuracy alone 65,119-122.  

 In Aim 1, we performed multinomial logistic regression for GReX against molecular and etiologic 

subtype definitions (ref. control status). GReX imputation and association testing were aligned by 

ancestry, meaning that association analyses were performed among individuals of African ancestry for 

predictive models trained among individuals of African ancestry. Analyses were also conducted 

separately for the iCOGS and OncoArray sub-samples within each ancestry group and array specific 

effect estimates (corresponding to 1 standard deviation increase in GReX of a given gene) were pooled 

using fixed effects, inverse variance weighted meta-analysis, in line with other genomic investigations in 

BCAC data 4,7,64. We adjusted for age in the multinomial models; adjustment for genetic ancestry, age, 

and other relevant variables such as BMI, sex (GTEx), and menopausal status had already been 

performed at the level of predictive model construction. We employed bacon, a Bayesian approach to 

control for test statistic inflation, and then applied a global FDR threshold of 0.05 on the bacon corrected 
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p-values to determine statistical significance (statistically significant genes were termed GReX-prioritized 

genes) 123. We performed follow-up analyses where we assessed for: 1) genomic overlap among GReX-

prioritized genes (if overlap was present, we assessed GReX correlations and subsequent conditional 

analyses); 2) genomic overlap with established GWAS signal (for overall BC vs. controls as GWAS 

signals for BC subtype have not been established (i.e., determined as the putative causal signal); 3) 

PANTHER pathway overrepresentation analyses (for both subtype-specific GReX-prioritized genes as 

well as GReX prioritized genes by normal breast vs. breast tumor tissue). We note here that we 

performed mutual external validation of the predictive models used for association analyses in Aim 1, by 

ancestry and tissue type groupings (e.g., predictive models constructed in NBS (normal breast tissue) for 

EA were assessed in GTEx (normal breast tissue) EA individuals.  

 In Aim 2, we performed Cox Proportional Hazards Regression for GReX against time to all-cause 

and BC-specific mortality. Age was chosen as the time scale for the study due to different entry times into 

analysis across component BCAC studies (left truncation) and also because of variable follow-up lengths 

across studies. We allowed baseline hazards to vary by BCAC study in Cox models, both to adjust for 

potential confounding and also effect heterogeneity across BCAC studies. Adjustment for genetic 

ancestry, age, BMI, and menopausal status had already been performed at the level of predictive model 

construction. Effects were estimated for 1 standard deviation increase in GReX. In main GReX analyses, 

predictive models and imputation/association testing were aligned by ancestry and subtype, whereas in 

supplementary GReX analyses, predictive models and imputation/association testing were aligned by 

ancestry alone. Sample sizes across both the main approach and the approach in supplementary 

analyses are provided in Figures 5.4 and 5.5. As with Aim 1, analyses were conducted separately for the 

iCOGS and OncoArray sub-samples (within the European ancestry – Luminal-Like subtype strata of 

BCAC for example) and array specific effect estimates (corresponding to 1 standard deviation increase in 

GReX of a given gene) were pooled using fixed effects, inverse variance weighted meta-analysis. 

Significance was set at a global (all association tests performed for main GReX analyses, for example) 

FDR <0.05. For Aim 2, we also performed a slew of analyses to afford greater context to GReX analyses. 

We : 1) assessed ancestry and subtype-specific eQTLs; 2) conducted a formal heterogeneity test for 

differential germline-regulated tumor expression across subtypes, within each ancestry group; 3) 
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assessed portability of predictive models across subtype, within ancestry group; 4) performed external 

validation in TCGA for ancestry and subtype-specific predictive models. 
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CHAPTER 4: AIM1. EVIDENCE FOR GENE-LEVEL GERMLINE ASSOCIATIONS FOR BREAST 
CANCER MOLECULAR SUBTYPES AMONG WOMEN OF EUROPEAN AND AFRICAN ANCESTRY 

IN THE BREAST CANCER ASSOCIATION CONSORTIUM (BCAC) 
 
4.1 Introduction 

 Breast cancer (BC) is the second most common cancer among women in the United States 

(U.S.)  with an estimated 268,600 invasive cases diagnosed in 2019 1. BC is a heterogeneous disease, 

spanning multiple subtypes defined by either receptor status (Estrogen Receptor (ER) positivity, 

Progesterone Receptor (PR) positivity, HER2 positivity, TP53 positivity) or the PAM50 gene expression 

based classifier 124. Studies have shown marked differences in recurrence and mortality risk by BC 

subtype, making BC subtype one of the most critical prognostic markers for BC patients 15,125. In the most 

recent GWAS of BC among individuals of European ancestry (which reported 210 genome-wide 

significant loci), several identified loci showed heterogeneity in effect across BC subtypes (including some 

loci where direction of effect was reversed across subtypes); moreover, 15 of the 32 identified novel loci 

showed significant associations with subtype defining markers such as ER, PR, and HER2 2. This 

suggests that important subtype-specific associations may be masked in aggregation of association 

testing of BC cases overall vs. controls. Knowledge of overall- and subtype-specific germline 

underpinnings of BC can inform targeted public health initiatives towards mitigation, an especially 

important challenge in prevention of aggressive subtypes such as Basal-like (BL).  

While GWAS offers a robust approach for investigation of the role of germline genetics in BC 

subtype etiology, two limitations to this approach are sample size requirement and often, lack of biological 

interpretability of findings. The sample size limitation, in particular, precludes investigations across 

ancestrally diverse populations, and in among particular subpopulations (to date, the largest GWAS 

among women of African ancestry has found no genome-wide significant loci 4), who have a 

disproportionately higher burden of more aggressive BC subtypes 15,126-128. Gene-based association 

testing approaches such as Transcriptome-Wide Association Study (TWAS) offer an alternative to GWAS 

that may overcome some of these limitations 12,13. By aggregating germline effects to the gene level, 
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TWAS allows for reduced multiple testing burden and improved statistical efficiency, allowing discovery at 

loci that might otherwise be missed in a GWAS. In other cases, TWAS can also contextualize GWAS 

findings by prioritizing genes that serve as a potential biological mechanism for variant to phenotype 

associations 119,120.  

In this study of the germline-regulated gene expression (GReX; TWAS methodology) of genes in 

relation to BC subtype across European and African ancestry individuals in the Breast Cancer 

Association Consortium (BCAC), we address many of the aforementioned gaps in knowledge. We 

leverage four genotype-expression panels across normal (Genotype Tissue Expression Project (GTEx), 

Normal Breast Study (NBS)) and breast tumor tissue (Carolina Breast Cancer Study (CBCS), The Cancer 

Genome Atlas (TCGA)) in an effort to capture the spectrum of potential germline effects across healthy 

and diseased mammary tissue. Across the four reference panels, which includes among the largest 

reference panels for diverse individuals in CBCS, we generate ancestry-predictive models of gene 

expression, which we then used for ancestry-aligned imputation and association testing in BCAC for 

molecular subtype (ER/PR/HER2 based; both ancestries) and etiologic subtype (ER/TP53 based; 

exploratory analyses among individuals of European ancestry only).  

4.2 Methods 

Study Population – Genotype and gene expression reference panels  

 In this study, we used four genotype and gene expression reference panels for construction of 

predictive models of gene expression from germline genetics; two reference panels (GTEx, NBS) were in 

normal/healthy breast tissue and the other two (CBCS, TCGA) were in breast tumor tissue. Details about 

the studies underlying the genotype and gene expression reference panels have been previously 

published 34,94,110-115,126.  

Genotypes across GTEx, NBS, CBCS, and TCGA were assayed using WGS, Illumina Infinium 

OncoArray, Illumina Infinium OncoArray, and Affymetrix 6.0 array, respectively. To ensure consistency 

across genotype imputation (with the exception of GTEx, which was WGS), we imputed NBS, CBCS, and 

TCGA genotype data to the TOPMed reference panel 102. Briefly, in TOPMed, phasing was performed 

using eagle and imputation using minimac4 103,104. For imputed genotype data, we retained variants with 

high imputation quality (r2 > 0.8) for predictive model construction. In further quality control of genotype 
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data, we excluded variants significantly deviating from Hardy-Weinberg Equilibrium (at P < 1.0 x 10-8) and 

also excluded variants with MAF <0.01 (for GTEx and NBS genotype data among BW, MAF inclusion 

threshold was increased to 0.05 due to limited sample sizes for downstream predictive model 

construction).  

Gene expression across GTEx, NBS, CBCS, and TCGA was assayed using RNA-seq, 

microarray, NanoString nCounter, and RNA-seq, respectively. For each expression panel, data obtained 

had either already been normalized and ascertained for quality control or normalization and quality control 

steps were performed, as appropriate. Downloaded GTEx and TCGA RNA-seq data had been normalized 

using the TPM and upper-quartile normalization, respectively 116. For CBCS, upper-quartile normalization 

was applied, and two further dimensions of unwarranted biological and technical variation were removed 

using RUV-seq 129,130. For NBS, data were normalized to sample over control. The sample sizes for the 

reference panels were as follows: GTEx (n=337 EA, 47 AA), NBS (n=93 EA, n=37 AA), CBCS (n=571 

EA, n=628 AA), and TCGA (n=715 EA, n=170 AA). For the 396 BC-related genes available in CBCS that 

were assessed in this gene-level germline investigation, 378, 365, and 319 of those 396 genes had 

expression data available across TCGA, GTEx, and NBS, respectively. While our use of CBCS data 

limited our investigation across other reference panels to the set of CBCS genes, CBCS offers among the 

largest resource of genotype-expression data for individuals of African ancestry (n=628 AA). At the same 

time an advantage of the test gene set of 396 was reduced multiple testing burden and increased 

biological plausibility and interpretability (all 396 genes are protein coding genes that have been 

implicated in key signatures such as PAM50, P53, IGF, and EGFR (Appendix 1).  

Study Population – Breast Cancer Association Consortium  

 Genetic association testing was performed in BCAC, which is a consortium comprising roughly 

100 studies; the consortium offers harmonized demographic, clinical, and genetic data. Individuals in 

BCAC have been genotyped on the Illumina iSelect (iCOGS) and Illumina Infinium OncoArray 

(OncoArray) platforms. Phasing and imputation across both genotyping arrays was performed using 

SHAPEIT2 and IMPUTEv2 with the 1000 Genomes Project (v3) as a reference panel 97,99,101,131,132. In this 

study, we examined only individuals of European and African ancestry in BCAC.  
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Construction of predictive models of gene expression from cis-germline variation                  

 In this study, GReX was the exposure of interest. For a given gene, GReX represents the portion 

of tumor expression explained by cis-germline variation (where cis-regions to gene span the 1 Megabase 

surrounding the gene’s start and end position). We constructed GReX using TWAS methodology, where 

we first trained predictive models of gene expression from cis-germline variation using Elastic Net 

Regression (EN) with five-fold cross validation and Best Linear Unbiased Predictor (BLUP) 12,13,129. The 

approach yielding the better predictive accuracy, defined as sample size adjusted squared correlation 

between predicted and observed expression was chosen as a given gene’s predictive model. We pruned 

variants prior to model training using PLINK v1.9 (pruning parameters: window size of 50 base pairs, 

window shift of 5, and LD threshold of 0.5) to avoid redundancy in the predictive model. Importantly, we 

constructed predictive models separately for individuals of European and African ancestry across the four 

reference panels (GTEx, NBS, CBCS, TCGA), in line with prior findings that predictive models of gene 

expression from germline variation have poor portability across ancestry groups in both breast tumor and 

healthy tissues 16,133. In predictive model construction (not, however, in GReX imputation and association 

testing) race was used as a proxy for genetic ancestry, in line with previous genetic investigations that 

leverage a TWAS methodology 16,119,120,133. Methods that allow construction of predictive models across 

the spectrum (continuous range) of genetic ancestry are not yet developed. Lastly, we residualized 

expression based on the first five principal components of the combined (i.e., across White plus Black 

individuals for each reference panel) genotype matrix, age, and other demographic factors (e.g., body 

mass index (BMI)), where available.  

The sample sizes for the genotype-expression reference panels for predictive model construction 

were as follows: GTEx (n=337 EA, 47 AA), NBS (n=93 EA, n=37 AA), CBCS (n=571 EA, n=628 AA), and 

TCGA (n=715 EA, n=170 AA). Importantly, for both ancestry groups, we constructed predictive models 

across normal breast and breast tumor tissue as we hypothesize these to be the two most relevant tissue 

types for investigation of germline effects on expression for BC (including BC subtypes)134,135. 

Additionally, we used two reference panels of the same ancestry and tissue type to enable aspects such 

as mutual external validation of predictive models, a feature lacking in most TWAS-based investigations. 

For downstream association testing, genes with sample size adjusted cross-validation squared correlation 
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(i.e., predictive accuracy) greater than 0.01 between observed and predicted expression were selected. In 

some studies, an additional filter based on gene expression heritability is applied for further selection 

16,119,133,136; however, estimation of heritability was difficult and imprecise across some of our reference 

samples (e.g., n=47 AA in GTEx, n=37 AA in NBS, and n=93 EA in NBS, and N=170 AA in TCGA). 

Notably, most TWAS and TWAS-based studies select genes for downstream analyses based on 

predictive accuracy alone 65,119-122.  

Mutual (external) validation of predictive models, by tissue type 

 A strength of this study is that we leveraged multiple expression panels across the two tissue 

types of interest (normal breast, breast tumor). This enabled us to determine the predictive accuracy of 

our models in the corresponding reference panel, by tissue type and ancestry group (i.e., predictive 

accuracy of EA GTEx predictive models against EA gene expression in NBS, predictive accuracy of EA 

CBCS predictive models against EA gene expression in TCGA etc.). Predictive accuracy, as example, for 

EA GTEx validation in NBS, was defined as squared correlation between predicted NBS expression using 

GTEx predictive model (SNP-gene weights) and NBS gene expression, for a given gene. For each of the 

eight reference panels, validation of predictive models was performed, aligned by ancestry and tissue 

type. For example, predictive models created in normal breast tissue (GTEx, NBS) for EA individuals 

were mutually validated (i.e., models created in GTEx validated in NBS and vice-versa). 

GReX imputation and association testing 

 Imputation of GReX (for genes with high predictive accuracy across reference panels) was 

performed in the Breast Cancer Association Consortium (BCAC). Ancestry and tissue-specific GReX of a 

given gene was imputed by multiplying the genotype dosage in BCAC with the SNP-gene expression 

weights from that gene’s ancestry and tissue-specific predictive model. Imputation was performed 

separately for the iCOGS and OncoArray genotyped samples in BCAC. Once GReX was imputed, we 

employed multinomial logistic regression to evaluate associations between 1 standard deviation increase 

in GReX and odds of breast cancer subtype (ref. controls). Main association analyses were for molecular 

subtype definition (Luminal-like (LL), Basal-like (BL)); we additionally performed exploratory analyses for 

etiologic subtype definition (ER-/TP53-, ER-/TP53+, ER+/TP53-, ER+/TP53+), which were limited to 

individuals of European ancestry due to sample size constraints. The rationale for investigation of 
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etiologic subtype definition as a secondary, exploratory analysis was that a prior study in CBCS found 

that etiologic subtype definition had higher etiologic heterogeneity compared to the traditional, molecular 

subtype definition14.  We note, however, that we were underpowered (for etiologic subtype definition) for 

both discovery of GReX-prioritized genes and a formal statistical comparison against findings for 

molecular subtype. The multinomial models were adjusted for age (adjustment for principal components 

of the genotype matrix had already been performed at the predictive model construction stage). As with 

GReX imputation, GReX association testing was conducted separately across the iCOGS and OncoArray 

genotyped samples; array specific estimates were then combined using fixed effects, inverse variance 

weighted meta-analysis. As TWAS-based GReX analyses can be prone to inflation of test statistics, we 

employed a Bayesian bias and inflation adjustment method (bacon) across the meta-analyzed effect 

estimates. We then adjusted for multiple testing using the Benjamini-Hochberg procedure. We defined 

genes passing a global (n = all association tests performed across ancestry and tissue type) false 

discovery rate (FDR) threshold of 0.05 as GReX-prioritized genes 123,137. In follow-up analyses to GReX-

prioritized genes, we assessed: 1) Genomic overlap between GReX-prioritized genes and established 

GWAS-significant variants for BC (established GWAS-significant variants for BC subtype definitions used 

in this study were not available); 2) PANTHER pathways statistical overrepresentation (through binomial 

test), comparing LL and BL specific GReX-prioritized genes, as well as normal breast and breast tumor 

identified GReX-prioritized genes 138.  

4.3 Results 

 Across the ancestry and tissue-specific reference panels, the following number of genes had high 

predictive accuracy and were chosen for further GReX association testing: GTEx – EA (n=129 genes), 

GTeX – AA (n=261 genes), NBS – EA (n=146 genes), NBS – AA (n=185 genes), CBCS – EA (n=86 

genes), CBCS – AA (n=65 genes), TCGA – EA (n=109 genes), and TCGA – AA (n=236 genes). The 

mean and interquartile range of the CV R2 for each ancestry, tissue-specific reference panel are provided 

in Table 4.1. The mean predictive accuracy was higher for predictive models constructed in normal breast 

tissue as opposed to tumor tissue, although some of this is likely due to overfitting among the 

comparatively smaller sample sizes of reference panels for normal breast versus tumor size, especially 

among AA individuals. In further assessment of model performance constructed across the same 
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ancestry group and tissue type, we found that the use of complementary data sources added value 

beyond the use of a singular data source, as seen in other TWAS based studies involving multiple 

reference panels 12,119. For instance, for models trained among European ancestry individuals in normal 

breast tissue, there were 82 genes with high predictive accuracy unique to GTEx and 99 unique to NBS; 

47 genes had high predictive accuracy across both reference panels, where we additionally observed a 

statistically significant correlation in the magnitude of predictive accuracy, despite differences in 

expression quantification method (RNA-seq vs. Microarray) (Pearson’s r = 0.46, p=0.001). A similar trend 

was observed for models trained among tumors from European ancestry individuals (Table 4.2). 

However, for models trained among African ancestry individuals, we did not observe a correlation in 

predictive accuracy among genes that were highly correlated, likely due to differences in expression 

quantification method and higher burden of somatic alterations (for models constructed in tumor tissue), 

which were not accounted for in predictive models 139. 

For molecular subtype association analyses, our analytic sample (after exclusions based on non-

invasive case status and missingness of tumor markers (ER, PR, and HER2)) comprised 146,177 EA 

(91,101 controls, 47,678 LL, 7,398 BL) and 5,092 AA (2,885 controls, 1,505 LL, 702 BL) individuals 

across iCOGS and OncoArray samples (Table 4.1). Analytic sample sizes for etiologic subtype 

association analyses among EA individuals are provided in Table 4.3.  

External Validation 

 We performed mutual external validation for the ancestry and tissue-specific predictive models 

(i.e., models constructed for EA in GTEx (normal breast) tissue were assessed against gene expression 

in NBS (normal breast) EA samples). We found moderate to good performance for our predictive models 

(Table 4.4). External predictive performance was higher for models constructed in normal breast tissue 

compared to tumor tissue (roughly ~ 50% of genes had high predictive accuracy (R2 > 0.01) in normal 

breast tissue compared to roughly ~45-46% of genes having the same in breast tumor tissue). External 

predictive accuracy between EA and AA models was comparable across tissue types, although external 

predictive performance was slightly better for EA compared to AA models (Table 4.4).  

Associations between ancestry, tissue-specific GReX and BC molecular subtype 
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 Across the ancestry and tissue reference panels, we observed 53 GReX – BC molecular subtype 

associations spanning 40 unique GReX-prioritized genes at global FDR <0.05 (Table 4.5, Figure 5.1). All 

53 of the GReX – BC molecular subtype associations were among EA individuals, although we did note 

suggestive associations (FDR <0.20) among AA individuals for several genes such as GPR44 (LL), 

AURKA (LL), PSPHL (BL), IL6 (LL), and CRYAB (BL) (Table 4.6) Of the 40 unique GReX-prioritized 

genes at global FDR <0.05, 34 were unique to LL and 6 unique to BL (Table 4.5, Figure 5.1). We noted 

10 GReX-prioritized genes (ABAT, DDR1, PDSS1, VAV3, ZG16B, SLC16A3, TUBA4A, C14orf45, 

FAM214A, and ZAP70) with a statistically significant association for both LL and BL subtype (e.g., DDR1: 

LL Z-statistic (6.61), BL Z-statistic (5.61) ; in all instances, the direction of effect for the subtypes was 

similar, although there were differences in magnitude of association (Table 4.5, Figure 5.1).  

Three GReX-prioritized genes (C4A, KCNN4, UGT2B7) were significant for the same subtype 

(LL) across different reference panels (Table 4.7). For C4A, the Z-statistics were 5.09 and 4.96 across 

GTEx and CBCS while for UGT2B7, the Z-statistics were -6.04 and -4.07 for GTEx and TCGA (Table 

4.7). Given that the biological function of a gene as it relates to conferring or mitigating risk to a subtype is 

expected to be consistent across reference panels (especially so for reference panels of the same tissue 

type), the consistency in signal for LL risk for C4A and UGT2B7, despite differences in expression assay, 

makes these two genes particular candidates for further functional follow-up. We do note, however, that 

for KCNN4, we observed effects in opposing directions across reference panels (Z-statistics for CBCS 

and NBS were 4.98 and -6.00, respectively). We followed up on this counter-intuitive finding by assessing 

the distribution of the GReX of the gene across the reference panels, finding that the IQR for KCNN4 

GReX was 4.62 x 10-7 and 7.86 x 10-8 across CBCS and NBS, respectively. By comparison, the IQR for 

C4A GReX was 0.23 and 0.21 across GTEx and CBCS while the IQR of UGT2B7 GReX was 0.28 and 

0.18 across GTEx and TCGA. It is possible that the lack of range for KCNN4 compared to that for C4A 

and UGT2B7 could have contributed to conflicting associations across reference panels. Therefore, as 

further context for GReX associations observed in this study, we provide GReX mean and IQR for all 

genes that were tested for an association across ancestry and tissue groups.   

We observed that 2 of our GReX-prioritized genes (C4A, HLA-DOB) were concentrated at a 

genomic locus; however; the GReX of these genes did not demonstrate significant correlation. For the 
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remainder of the GReX-prioritized genes, there was no genomic overlap (defined as one gene being 

within 1 Mb of another gene’s start or end site). In analyses of genomic overlap between established 

GWAS (for BC case vs. control) loci and GReX-prioritized genes, we found that 7 of the 40 GReX-

prioritized genes were within 1 Mb of an established GWAS loci; for 4 of these 7 GReX-prioritized genes 

(MUC1, CCNE1, HLA-DOB, and KCNN4 we found concordance in the direction of effect between 

proximal GWAS signal and GReX-prioritized genes) (Table 4.8). 3 of these genes (MUC1, CCNE1, and 

KCNN4) have been hypothesized as predicted target genes in prior BC GWAS 2,8. In PANTHER pathway 

overrepresentation analysis of LL and BL GReX-prioritized genes for the EA individuals, we found no 

significantly overrepresented pathways at FDR <0.05; however, we did observe that the P53 pathway 

was the most overrepresented (FDR = 0.12) among BL GReX-prioritized genes while this was not the 

case for LL GReX-prioritized genes (FDR for p53 pathway = 1.00). Similarly, we found that GReX-

prioritized genes among breast tumor tissue showed suggestion of overrepresentation for the P53 

pathway (FDR = 0.15), while this was not the case for GReX-prioritized genes among normal breast 

tissue. Lastly, we did not find any genes whose GReX was associated with etiologic subtypes at global 

FDR <0.05; moreover none of the genes showed suggestive associations (defined as FDR <0.2, largest 

association was for CDH3 in relation to ER-/TP53+ subtype, FDR = 0.24).  

4.4 Discussion 

 In this study, we leveraged TWAS methodology and performed a GReX analysis for BC subtypes 

across healthy and breast tumor tissue in the largest available sample of BC subtypes and controls in 

BCAC. To our knowledge, this is the first GReX analysis for a BC phenotype (in this case, BC subtype) 

among individuals of African ancestry, enabled by our use of non-publicly available reference panels with 

a large number of individuals with African ancestry . We initially employed a Bayesian bias and inflation 

adjustment method in bacon to correct for inflation of test statistic, following which, we employed a 

conservative correction for multiple comparisons with a global (all association tests performed across 

ancestry and tissue types) FDR threshold for GReX-prioritization of 0.05. Out of the 396 genes tested 

across multiple reference panels, global FDR <0.05, we found 53 GReX – BC molecular subtype 

associations spanning 40 unique GReX-prioritized genes, of which 34 genes were unique to LL, 6 unique 

to BL, and 10 common across LL and BL. All 40 GReX-prioritized genes were found among EA 
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individuals. For AA individuals, we found 5 suggestive associations (FDR <0.20, range 0.06 – 0.18). In 

assessment of genomic overlap between GReX-prioritized genes and GWAS signals (for BC), 7 of the 40 

GReX-prioritized genes overlapped with the GWAS signal, 4 (MUC1, CCNE1, HLA-DOB, and KCNN4) of 

which showed the same direction of association as the GReX signal; MUC1, CCNE1 and KCNN4 had 

previously been hypothesized to be target genes for the GWAS signals.  

 Identified effects of many of our GReX-prioritized genes are in line with literature, although we do 

note that the literature spans the effect of the total expression whereas our findings are particular to the 

germline-regulated portion of gene expression. Effects for one do not necessarily imply the same effect 

for the other 12,140. We first focused on GReX-prioritized genes that are shared across LL and BL 

subtypes, as we hypothesized these genes likely impact global carcinogenic processes that impart BC 

risk, irrespective of subtype. In this study, we find that increased germline-regulated expression of DDR1 

(discoidin domain receptor 1) is associated with increased risk of both LL (Z=6.61) and BL (Z=5.61) 

subtypes. DDR1 is a collagen receptor with tyrosine kinase activity that has been shown to instigate 

immune exclusion via collagen fiber alignment in the extra-cellular matrix (ECM) 141. In BL BC expression 

of DDR1 negatively correlates with intratumoral concentration of anti-tumor T cells; moreover, ablation of 

DDR1 in tumors has been shown to enhance intratumoral T cell penetration and destruction of tumor in 

mouse models 141. We find similar strong evidence for PDSS1 (Z = 4.45 LL, Z = 4.35 BL), knockdown of 

which among BL cells has been shown to inhibit BL cell migration, proliferation, and metastasis 142. 

PDSS1 has been shown as a key activator of CAMK2A and STAT3 in the PDSS1/CAMK2A/STAT3 

oncogenic signaling axis 142. Another study showed that silencing of ZG16B (Z = 4.34 LL, 4.29 BL) 

(PAUF; pancreatic adenocarcinoma upregulated factor) inhibited proliferation, and induced apoptosis and 

G0/G1 cell cycle arrest among colorectal cancers 143. None of DDR1, PDSS1, and ZG16B have been 

implicated as putative causal genes for BC or BC subtype in prior genetic investigations 120. 

We found four GReX-prioritized genes (MUC1, CCNE1, HLA-DOB, and KCNN4) with concordant 

effect direction and overlap with BC GWAS loci. Although MUC1, CCNE1, and KCNN4 were predicted 

target genes for the BC GWAS loci in prior investigations, this study adds to that existing knowledge by 

offering statistical evidence for these genes as a potential genetic mechanism (i.e., BC GWAS loci → 

Gene Expression -> BC (BC subtype)) for those BC GWAS loci. There is extensive support for MUC1 as 
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an oncogene across multiple tumors, including BC 144-146. Comparatively, evidence for CCNE1 and 

KCNN4 is sparse. Two GReX-prioritized genes (C4A, UGT2B7) were identified for LL risk across multiple 

reference panels. C4A encodes a protein in the complement pathway, and there is conflicting evidence  

(albeit more recent studies are in favor of a deleterious role) for C4A across disease phenotypes, 

including tumors, degenerative, and inflammatory disease 147,148. Studies indicate that higher levels of 

C4A interfere with normal metabolic processes/ insulin signaling and are associated with significantly 

increased risk of developing metabolic syndrome 149,150. UGT2B7 is a phase II metabolism protein that is 

involved in removal of potentially toxic xenobiotic as well as endogenous compounds, a function 

consistent with the significantly decreased risk of LL that we observed for increased GReX OF UGT2B7 

151.  

As one of the motivating factors behind this study was heterogeneity in effect across subtypes for 

certain GWAS variants, we additional assessed the direction and magnitude of effect across the 

corresponding subtype (i.e., the effect for BL subtype for a GReX-prioritized gene for LL subtype in a 

given reference panel) (Figure 4.2). Here we find that most GReX-prioritized genes have a similar 

direction of effect across subtypes, although there are often stark differences in magnitude (e.g., 

KNCMA1,HLA-DOB, DDIT4, LHPF etc.). For genes such as PPBP, however, we note differences in 

direction of effect. There are a few possible reasons for the lesser heterogeneity in subtype-specific 

estimates observed in our study compared to the BC GWAS. First, the BC GWAS spanned the human 

genome while we assess the GReX of a targeted panel of BC-related genes, and in particular, our panel 

emphasized genes with important roles in survivorship rather than etiology. Secondly, our outcome 

comparison groups were less granular (i.e., LL and BL subtype vs. controls) compared to the BC GWAS 

which assessed effects across the full spectrum of subtypes. Our choice of outcome groupings, as 

detailed in the Methods, was because our study assessed subtype-specific effects across ancestry 

groups (subtypes such as HER2 are sparse in the African ancestry population); moreover, we were 

specifically interested in the BL versus non BL (LL subtype) as BL is the most aggressive and most 

challenging BC subtype to treat. We considered the possibility that the differences in magnitude of 

subtype-specific effects may be an artifact of differences in sample size across LL and BL groups. While 

this is a possibility and potentially a reason behind observed differences in effect magnitude, we note that 
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the effect was higher for BL versus LL for several GReX-prioritized genes (e.g., EPCAM, CD84, CDKN3, 

CCNE1, CDKN1A, ZAP70), which suggests that differences in sample size alone are not responsible for 

differences in effect magnitude across subtypes.  

Although we did not find any GReX-prioritized genes at global FDR <0.05 for individuals of AA, 

we found several (5) that showed suggestion of an association (global FDR <0.20), namely AURKA, 

CRYAB, GPR44, IL6, and PSPHL. GPR44 and AURKA, in particular showed moderate evidence at 

global FDR of 0.06 and 0.11, respectively. For AURKA (Aurora kinase A), we observed increased risk (Z 

= 3.63, P = 2.8 x 10-4), consistent with AURKA’s involvement/ interaction with proteins in the KEGG 

pathway, many of which are in turn involved in oncogenic pathways 152. Here, we demonstrate the utility 

of gene-based association testing approaches in helping bridge some of the gaps in genetic findings 

across diverse ancestries. Despite a 30-fold difference in association analyses sample size (146,177 EA, 

5,092 AA) and lesser sample size of the reference panels across all data sources except CBCS, TWAS 

enabled findings with moderate evidence for further follow-up. In comparison, the most recent and largest 

GWAS (~ 20,000) among individuals of AA found no loci near genome-wide significance (largest hit P-

value = 5.2 x 10-4) 10.  

We note several limitations to our study. First, CBCS used a custom NanoString nCounter 

probeset for RNA expression quantification of BC-related genes, and therefore we were not able to 

analyze the whole transcriptome. However, this panel had high success rates and very few sample 

failures (<5%) and therefore allowed for expression quantification that was relatively free of selection bias 

due to sample drop out. Similarly in microarray based NBS expression data, we were not able to assay 

the whole transcriptome. This limited our investigation to 396 BC-related genes available in CBCS; 

however, we note that inclusion of CBCS and NBS data was pivotal towards the aims of this investigation 

for several reasons. The use of CBCS data was key towards building African ancestry specific models of 

breast tumor gene expression, as CBCS offers, to our knowledge, the largest available resource (in terms 

of sample size) of tumor transcriptomic data in this population; CBCS reference panel for AA was 628 

individuals, compared to 170 in TCGA, 47 in GTEx, and 37 in NBS. A second limitation is that like most 

GWAS analyses, CBCS lacked data on somatic alterations and epigenetic changes (something the 

TCGA offers), which could improve predictive model performance. Third, although both NBS and GTEx 
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offer expression data in histologically normal breast tissue, individuals in NBS were mostly individuals 

with tumors (donating histologically normal breast tissue adjacent to the cancer), while individuals in 

GTEx donated non-diseased tissue and were identified through rapid autopsy programs. However, our 

finding that P53 pathway genes were identified from tumor-based GReX and not normal-based suggests 

that some detection may be context dependent and using both tumor and normal to understand the range 

of pathway factors may have value. Fourth, although care was taken to ensure analytic consistency 

across the reference panels (e.g., we re-imputed CBCS, TCGA, and NBS data to the TOPMed panel), 

there were differences in expression quantification platforms (e.g., RNA-seq, microarray, NanoString) that 

make full comparability of findings across reference panels difficult. However, our normalization methods 

were standard for the field. Fifth, although our subtype categorization is aimed at elucidating differences 

in potential germline genetic basis of BL (most aggressive) versus LL subtypes (less aggressive), this 

classification is not fine-tuned enough for genes such as ERBB2, whose GReX we expect to be positively 

associated with HER2 subtype. However, since HER2 subtype was classed among the non-BL (LL) 

category along with LumA and LumB subtypes, this specific association can be masked by LumA and 

LumB specific-associations in estimation of the LL association. We note here that our choice of BL v LL 

comparison was in part, also motivated by lack of sample size for the rarer subtype categories (e.g., 

HER2) among AA individuals. Lastly, we note the lesser sample sizes we had for the GReX-analysis 

among AA compared to EA, both for predictive model construction (with the exception of CBCS) and for 

association testing in BCAC. This could lead to more uncertainty in the GReX and could contribute to the 

smaller number of hits in AA participants. Interpretations should be made with caution for the suggestive 

associations uncovered for AA, and we additionally caution against a direct, one to one comparison of 

findings across ancestry groups in light of the sample size discrepancies. However, these results also 

underscore the importance of increasing the size of reference gene expression data in AA ancestry. 

In conclusion, we find several genes whose germline-regulated expression across normal breast 

and breast tumor tissues are associated with risk of BC subtypes among EA individuals, and a few genes 

with suggestion of association with risk among AA individuals. For EA individuals, we demonstrate shared 

(i.e., gene associated with both LL and BL) as well as potentially divergent germline genetic basis for BC 

subtypes, which has relevance for more targeted risk stratification and potentially even targeted clinical 
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efforts to reduce burden of BC outcomes. Future studies should further this line of investigation across 

other etiologic tissue types (i.e., fibroblasts, adipose tissue, immune tissue etc.) and for the full spectrum 

of BC subtypes (LumA, LumB/HER2-, LumB, HER2, Basal). Our work also demonstrates potential utility 

of TWAS based approaches in helping bridge some of the gaps in genetic investigations across 

ancestries, serving as a framework for future investigations in this mold, and in doing so, elucidating the 

need for larger, diverse datasets such as the CBCS.  
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4.5 Tables and Figures 

Table 4.1 Number of genes tested for associations by reference panel and ancestry group, along 
with sample sizes for GReX association analyses (overall), and by genotyping array 

Reference 
Panel 

Ancestry 
Group  

n 
models 
tested 

Mean, 
IQR of 
CV R2 

iCOG
S 

OncoA
rray 

iCOG
S 

Cont. 
iCOG
S LL 

iCOG
S BL 

OncoA
rray 

Cont. 
OncoA
rray LL 

OncoA
rray 
BL 

GTeX EA 129 
0.031, 
0.015 53775 92402 37059 14105 2611 54042 33573 4787 

GTeX AA 261 
0.068, 
0.061 942 4150 817 122 3 2068 1383 699 

            

NBS EA 146 
0.048, 
0.038 53775 92402 37059 14105 2611 54042 33573 4787 

NBS AA 185 
0.097, 
0.096 942 4150 817 122 3 2068 1383 699 

            

CBCS EA 86 
0.019, 
0.008 53775 92402 37059 14105 2611 54042 33573 4787 

CBCS AA 65 
0.018, 
0.007 942 4150 817 122 3 2068 1383 699 

            

TCGA EA 109 
0.025, 
0.012 53775 92402 37059 14105 2611 54042 33573 4787 

TCGA AA 236 
0.031, 
0.023 942 4150 817 122 3 2068 1383 699 

Abbreviations: GTEx – Genotype Tissue Expression Project, NBS – Normal Breast Study, CBCS – 
Carolina Breast Cancer Study, TCGA – The Cancer Genome Atlas, EA – European ancestry, AA – 
African ancestry, IQR – Interquartile Range, CV – Cross Validation, LL – Luminal-like, BL – Basal-like, 
GReX – Germline-regulated gene expression 
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Table 4.2 Number of shared predictive models (i.e., models for genes with high predictive 
accuracy in a given reference panel) and corresponding correlation coefficients for predictive 
performance, by ancestry and tissue groups  

Ancestry 
Group  

Tissue 
Type 

Data  
1 

Data 
2 

Predictive 
Models 
Data 1 

Predictive 
Models 
Data 2 

n Shared 
Predictive 
Models  

Pearson's 
r (Shared) 

P-value 
Pearson's r 
for shared 
genes 

EA Normal GTEx NBS 129 146 47 0.46 0.0011 

AA Normal GTEx NBS 261 186 132 0.02 0.82 

         

EA Tumor CBCS TCGA 86 109 24 0.45 0.02 

AA Tumor CBCS TCGA 65 236 39 0.03 0.88 

Abbreviations: GTEx – Genotype Tissue Expression Project, NBS – Normal Breast Study, CBCS – 
Carolina Breast Cancer Study, TCGA – The Cancer Genome Atlas, EA – European ancestry, AA – 
African ancestry  
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Table 4.3 Sample sizes for GReX association analyses* for etiologic subtype 

Data Ancestry iCOGS 
iCOGS 

Controls 

iCOGS 
ERNeg/P53

Neg 

iCOGS 
ERNeg/P53

Pos 

iCOGS 
ERPos/P53

Neg 

iCOGS 
ERPos/P53

Pos 

GTeX EA 39392 37059 283 180 1702 168 

NBS EA 39392 37059 283 180 1702 168 

CBCS EA 39392 37059 283 180 1702 168 

TCGA EA 39392 37059 283 180 1702 168 
Abbreviations: GTEx – Genotype Tissue Expression Project, NBS – Normal Breast Study, CBCS – 
Carolina Breast Cancer Study, TCGA – The Cancer Genome Atlas, EA – European ancestry, GReX – 
Germline-regulated gene expression, ER – Estrogen Receptor 

* insufficient sample size for association analyses among African ancestry individuals and OncoArray 
samples 
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Table 4.4 Predictive performance of ancestry and tissue-specific models in external data (mutual 
external validation) 

Training  Imputation  N genes 
N genes with EVR2 > 

0.01 

GTEx - AA NBS - AA 156 79 

GTEx - EA NBS - EA 63 33 

    

NBS - AA  GTEx - AA 177 83 

NBS - EA GTEx - EA 141 74 

    

CBCS - AA TCGA - AA 57 28 

CBCS - EA TCGA - EA 74 35 

    

TCGA - AA CBCS - AA  233 99 

TCGA - EA CBCS - EA 107 50 

Abbreviations: GTEx – Genotype Tissue Expression Project, NBS – Normal Breast Study, CBCS – 
Carolina Breast Cancer Study, TCGA – The Cancer Genome Atlas, EA – European ancestry, EV – 
External Validation  
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Table 4.5 Effects and gene locations for GReX-prioritized genes 

Gene Chr Start* End* Z Data 
Ancestr

y 
Subtyp

e FDR 

ABAT Chr16 8,674,588 8,784,575 6.76886 GTEx EA LL 4.55E-05 

ABAT Chr16 8,674,588 8,784,575 6.143925 GTEx EA BL 0.00036 

ABCC8 Chr11 17,392,886 17,476,902 4.216681 GTEx EA LL 0.041593 
BLR1(CX
CR5) Chr11 118,883,767 118,897,799 4.341383 TCGA EA LL 0.033352 

C14orf45 Chr14 74,019,357 74,066,093 -4.88202 TCGA EA LL 0.008615 

C14orf45 Chr14 74,019,357 74,066,093 -4.07993 TCGA EA BL 0.048356 

C4A Chr6 31,982,719 31,984,691 5.093764 GTEx EA LL 0.006719 

C4A Chr6 31,982,719 31,984,691 4.959555 CBCS EA LL 0.008349 

CAPN9 Chr1 230,747,385 230,802,003 -5.21618 TCGA EA LL 0.003833 

CCNE1 Chr19 29,811,995 29,824,308 4.294771 CBCS EA BL 0.036147 

CD6 Chr11 60,971,642 61,013,563 -5.39181 CBCS EA LL 0.002461 

CD84 Chr1 160,541,095 160,579,516 4.881346 GTEx EA BL 0.009216 

CDKN1A Chr6 36,676,461 36,687,339 4.313248 CBCS EA BL 0.035087 

CDKN3 Chr14 54,396,956 54,420,216 -4.22423 NBS EA BL 0.036147 

CKS1B Chr1 154,974,643 154,979,249 -4.82194 CBCS EA LL 0.009216 

CYP7B1 Chr8 64,595,973 64,798,791 -4.2828 NBS EA LL 0.033352 

DDIT4 Chr10 72,273,920 72,276,039 5.285804 NBS EA LL 0.003833 

DDR1 Chr6 30,882,918 30,900,156 6.6148 GTEx EA LL 7.15E-05 

DDR1 Chr6 30,882,918 30,900,156 5.611111 GTEx EA BL 0.001448 

EPCAM Chr2 47,369,149 47,387,028 -4.53707 GTEx EA BL 0.020306 

ERBB2 Chr17 39,688,141 39,695,181 -4.90621 NBS EA LL 0.008349 

EVI2A Chr17 31,316,411 31,321,749 4.466954 NBS EA LL 0.028939 
FAM214A
/KIAA137
0 Chr15 52,289,121 52,417,620 -4.38271 TCGA EA BL 0.029128 
FAM214A
/KIAA137
0 Chr15 52,289,121 52,417,620 -4.19043 TCGA EA LL 0.039019 

FAM54A Chr6 136,231,031 136,250,311 -4.99748 NBS EA LL 0.007323 

HLA-DOB Chr6 32,812,764 32,817,048 -6.73291 GTEx EA LL 4.55E-05 

KCNMA1 Chr10 76,869,602 77,637,819 -7.16039 GTEx EA LL 1.72E-05 

KCNN4 Chr19 43,766,534 43,781,257 4.985563 CBCS EA LL 0.008349 

KCNN4 Chr19 43,766,534 43,781,257 -6.00395 NBS EA LL 0.00036 

KIFC1 Chr6 33,391,537 33,409,922 4.435902 TCGA EA LL 0.029128 

KRT8 Chr12 52,897,188 52,905,084 -4.14027 GTEx EA LL 0.042887 

LHFP Chr13 39,342,893 39,603,219 -4.81633 NBS EA BL 0.009216 

MUC1 Chr1 155,185,825 155,189,347 5.977081 GTEx EA LL 0.000416 

PDSS1 Chr10 26,697,667 26,746,797 4.453409 NBS EA LL 0.029128 

PDSS1 Chr10 26,697,667 26,746,797 4.35517 NBS EA BL 0.033352 

PPBP Chr4 73,986,440 73,988,190 4.373034 TCGA EA LL 0.03329 

SLC16A3 Chr17 82,228,407 82,239,499 -5.70213 CBCS EA LL 0.000898 

SLC16A3 Chr17 82,228,407 82,239,499 -4.86715 CBCS EA BL 0.008701 

SPINT2 Chr19 38,264,459 38,292,614 -6.00471 CBCS EA LL 0.00036 
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SYBU Chr8 109,574,177 109,580,537 4.820178 GTEx EA LL 0.010205 
TNFRSF1
7 Chr16 11,965,108 11,968,068 -5.27404 GTEx EA LL 0.003516 

TRPM7 Chr15 50,557,156 50,582,469 4.182548 CBCS EA LL 0.043163 

TUBA4A Chr2 219,250,280 219,253,916 -6.23169 CBCS EA LL 0.000238 

TUBA4A Chr2 219,250,280 219,253,916 -4.91061 CBCS EA BL 0.008349 

UGT1A10 Chr2 233,636,478 233,771,615 4.402316 GTEx EA LL 0.031338 

UGT2B7 Chr4 69,096,476 69,112,987 -6.03938 GTEx EA LL 0.00036 

UGT2B7 Chr4 69,096,476 69,112,987 -4.06618 TCGA EA LL 0.049318 

VAV3 Chr1 107,571,161 107,678,009 -4.136 NBS EA BL 0.042887 

VAV3 Chr1 107,571,161 107,678,009 -7.08073 NBS EA LL 1.72E-05 

ZAP70 Chr2 97,713,569 97,739,860 5.997376 TCGA EA BL 0.000416 

ZAP70 Chr2 97,713,569 97,739,860 4.823936 TCGA EA LL 0.010205 

ZG16B Chr16 2,830,173 2,832,284 4.287282 NBS EA BL 0.036147 

ZG16B Chr16 2,830,173 2,832,284 4.340846 NBS EA LL 0.033352 

Abbreviations: GTEx – Genotype Tissue Expression Project, NBS – Normal Breast Study, CBCS – 
Carolina Breast Cancer Study, TCGA – The Cancer Genome Atlas, EA – European ancestry, AA – 
African ancestry  

* hg38 genomic build 
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Figure 4.1 Effects for GReX-prioritized genes for Luminal-like (LL) and Basal-like (BL) breast 
cancer subtypes, by reference panel (all GReX-prioritized genes found among individuals of 
European ancestry) 
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Table 4.6 Effects and gene locations for suggestive associations in GReX analysis among 
individuals of African ancestry  

Gene Chr Start* End* Ancestry Subtype Data Z FDR 

GPR44 11 60,850,924 60,855,971 AA LL TCGA -3.92 0.06 

AURKA 20 56,369,388 56,392,295 AA LL TCGA 3.63 0.11 

PSPHL 7 55,697,103 55,705,595 AA BL CBCS 3.39 0.16 

IL6 7 22,727,146 22,730,538 AA LL GTEx 3.33 0.17 

CRYAB 11 111,908,625 111,911,749 AA BL CBCS 3.31 0.18 
Abbreviations: GTEx – Genotype Tissue Expression Project, CBCS – Carolina Breast Cancer Study, 
TCGA – The Cancer Genome Atlas, GReX – Germline-regulated gene expression 

* hg38 genomic build 
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Table 4.7 Effect and GReX IQR for GReX-prioritized genes that were identified across multiple 
reference panels 

Gene Subtype Data Ancestry Z GReX IQR 

      

C4A LL GTEx EA 5.093764 0.232 

C4A LL CBCS EA 4.959555 0.209 

      

      

KCNN4 LL CBCS EA 4.985563 4.62E-07 

KCNN4 LL NBS EA -6.00395 7.86E-08 

      

      

UGT2B7 LL GTEx EA -6.03938 0.28 

UGT2B7 LL TCGA EA -4.06618 0.175 

Abbreviations: GTEx – Genotype Tissue Expression Project, NBS – Normal Breast Study, CBCS – 
Carolina Breast Cancer Study, TCGA – The Cancer Genome Atlas, EA – European ancestry, IQR – 
Interquartile Range, LL – Luminal-like 
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Table 4.8 Genomic overlap (+/- 1 Mb) between GWAS signal (BC cases vs. controls) and GReX-
prioritized genes 

Gene Chr 
GWAS 
pos* 

Gene 
start* 

Gene 
end Z Subtype Data Ancestry FDR 

CKS1B Chr1 
155,176,

305 
154,974,

643 
154,176,

305 -4.82 LL CBCS EA 0.00922 

MUC1 Chr1 
155,176,

305 
155,185,

825 
154,176,

305 5.98 LL GTEx EA 0.00042 

EVI2A Chr17 
30,903,5

02 
31,316,4

11 
29,903,5

02 4.47 LL NBS EA 0.02894 

CCNE1 Chr19 
29,786,8

22 
29,811,9

95 
28,786,8

22 4.29 BL CBCS EA 0.03615 

KCNN4 Chr19 
43,782,3

61 
43,766,5

34 
42,782,3

61 4.99 LL CBCS EA 0.00835 

KCNN4 Chr19 
43,782,3

61 
43,766,5

34 
42,782,3

61 -6.00 LL NBS EA 0.00036 
HLA-
DOB Chr6 

33,272,0
92 

32,812,7
64 

32,272,0
92 -6.73 LL GTEx EA 0.00005 

KIFC1 Chr6 
33,272,0

92 
33,391,5

37 
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92 4.44 LL TCGA EA 0.02913 

Abbreviations: GTEx – Genotype Tissue Expression Project, NBS – Normal Breast Study, CBCS – 
Carolina Breast Cancer Study, TCGA – The Cancer Genome Atlas, EA – European ancestry, LL – 
Lumina-like, BL – Basal-like, Mb – Megabase, BC – Breast Cancer 
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Figure 4.2 Effects for GReX-prioritized genes for Luminal-like (LL) and Basal-like (BL) breast 
cancer subtypes, by reference panel, where non-significant associations are also provided for 
each gene  
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CHAPTER 5: AIM2. ASSESSMENT OF GENE-LEVEL GERMLINE ASSOCIATIONS FOR BREAST 
CANCER MORTALITY AMONG EUROPEAN AND AFRICAN ANCESTRY INDIVIDUALS IN THE 

BREAST CANCER ASSOCIATION CONSORTIUM (BCAC) 
 

5.1 Introduction 

Breast cancer (BC) is the most common cancer among women in the world and in the United 

States, it is the second leading cause of cancer mortality with an estimated 44,130 deaths in 2021 153,154. 

Moreover, there is racial disparity in BC mortality, where African ancestry (AA) individuals have roughly 

40% greater mortality rate compared to European ancestry (EA) individuals 153. In contrast to breast 

cancer incidence where studies have uncovered a host of demographic, lifestyle, clinical, and genetic risk 

factors, identification of risk factors for BC mortality has been sparse; in particular, compared to the 210 

germline variants identified in relation to BC incidence, genome-wide association study (GWAS) to date 

have not identified more than a handful of suggestive associations, with replication of these associations 

proving particularly challenging 7,82-92. Importantly, only one of the prior genetic investigations of BC 

mortality has been among individuals of non-European ancestry due to limited sample size availability (for 

GWAS) for this population 16. Both the paucity and lack of replicability of findings among individuals of 

European ancestry as well as the lack of investigation of germline underpinnings of BC mortality among 

non-European ancestry individuals represents a critical gap in knowledge, as better understanding of 

potential genetic underpinnings of BC mortality across diverse populations has potential to inform clinical 

decision making and bridge racial disparities in BC.  

Given the need for larger sample sizes in traditional GWAS of BC mortality across diverse 

populations, gene-based association tests have emerged as an alternative with higher statistical 

efficiency 12,13. Bhattacharya et al. applied a Transcriptome-Wide Association Study (TWAS) approach 

and investigated a panel of 406 BC-related genes in relation to BC-specific mortality in the Carolina 

Breast Cancer Study (CBCS), uncovering four associations among AA and zero among EA individuals 16. 

Importantly, predictive models of tumor gene expression based on germline genetics underlying the 

association testing were found not to be transportable across ancestry 16. Moreover, a key finding was 
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that the associations among AA individuals appeared to be driven by associations within the Estrogen 

Receptor positive (ER+) strata of AA 16. These findings suggest that both population heterogeneity and 

tumor heterogeneity are important considerations for TWAS. BC is a heterogeneous disease with distinct 

subtypes and studies have highlighted that accounting for such biological heterogeneity in the 

assessment of germline genetic associations with BC mortality may elucidate subtype-specific 

associations that may otherwise be masked in aggregate (i.e., all BC cases) association testing 16,92. 

Another key limitation to previous genetic investigations (GWAS or TWAS-based) is that they do not 

correct for potential collider bias 155-157. Collider bias in the context of genetic studies of BC mortality 

occurs when genetic factors are associated with both incidence and mortality (Figure 5.1). Because 

studies of BC mortality are by design case-only analyses, this inherent conditioning on BC incidence 

induces an association between the genetic factor under study and other factors which affect both 

incidence and mortality, thereby confounding the association of interest between genetic factor under 

study and BC mortality (Figure 5.1).  

In this study, we address some key limitations of prior investigations. We adopt a TWAS 

approach to enable gene-based genetic investigations across individuals of Europeans and African 

ancestry. In our TWAS-based analyses of GReX (constructed under TWAS approach) of 396 BC-related 

genes in relation to BC mortality endpoints (all-cause, BC-specific), we construct predictive models of 

gene expression stratified by combinations of ancestry and subtype (i.e., among a sample of EA 

individuals, predictive models constructed separately for EA individuals with Luminal-like and Basal-like 

BC). Towards this end, we leverage among the largest resources for matched genotype-expression data 

in diverse populations in the CBCS (N = 526 EA, 582 AA) for predictive model construction and the 

largest breast cancer genetic data resource for association testing in the Breast Cancer Association 

Consortium (BCAC; N= 217,314 cases and controls). Moreover, we apply a robust method for collider 

bias correction called Slope-Hunter and present both “corrected” and Slope-Hunter naïve estimates 158 .  

5.2 Methods 

Study Population – Carolina Breast Cancer Study 

CBCS is a population-based study of North Carolina (NC) breast cancer patients, comprising of 

three study phases; study details have been described previously 94,95. Briefly, patients aged 20 to 74 



55 
 

were identified using rapid case ascertainment with the NC Central Cancer Registry; self-identified Black 

and young women (20-49 years) were oversampled 94,95. Variants in CBCS were assayed using the 

OncoArray custom SNP array and imputed using the 1000 Genomes Project (v3) as a reference panel in 

two-step phasing and imputation using SHAPEIT2 and IMPUTEv2 97,99,101,131,132. Genotype calling, 

imputation, and quality control were performed using the Division of Cancer Epidemiology and Genetic 

Cancer Genomics Research Laboratory. We removed variants with minor allele frequency <1% and 

deviation from Hardy-Weinberg equilibrium at 𝑃 < 10−8 159. Genotypes were intersected across the race 

and subtype combination samples (i.e., EA – LL, EA – BL, AA – LL, AA – BL) for a total of 5,158,798 

SNPs analyzed.  

Tumor gene expression of 396 BC-related autosomal genes plus 11 housekeeping genes was 

assayed using NanoString nCounter at the Translational Genomics Laboratory at UNC-Chapel Hill. These 

396 BC-related genes include genes that are part of the PAM50, TP53, E2, EGFR, and IGF signatures, 

among others (Appendix 1). QC was performed using NanonStringQCPro; distributional difference across 

lanes was scaled using upper-quartile normalization and two dimensions of unwanted technical and 

biological variation were removed using RUVSeq 129,130. The sample sizes (of matched genotype and 

expression) for downstream analyses were as follows: 410 (EA – LL), 116 (EA – BL), 358 (AA – LL), and 

224 (AA – BL). 

Study Population – Breast Cancer Association Consortium  

BCAC is aimed at bettering understanding of the inherited risk of BC and includes roughly 100 

studies, each of which has contributed demographic, clinical, and genetic data on study participants. 

Individuals in BCAC have been genotyped on the Illumina iSelect (iCOGS) and Illumina Infinium 

OncoArray (OncoArray) platforms. Phasing and imputation across both genotyping arrays was performed 

using SHAPEIT2 and IMPUTEv2 with the 1000 Genomes Project (v3) as a reference panel 97,99,101,131,132. 

In this study, we examined only individuals of European and African ancestry in BCAC.  

Assessment of race and subtype-specific expression quantitative trait loci (eQTL)  

To provide added context for downstream race and subtype-specific predictive models of gene 

expression from tumor germline variation, we performed two eQTL analyses using matrixeQTL160. First, 

we assessed eQTLs within strata defined by ancestry and subtype (i.e., eQTLs among EA-LL, EA-BL, 
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AA-LL, and AA-BL samples, respectively), mirroring the intended ancestry and subtype-stratification for 

downstream predictive models for GReX analysis. Ancestry strata in CBCS were defined based on self-

identified race; in CBCS data there is strong concordance between self-reported race and genetic 

ancestry (first principal component of combined genotype matrix) as well as concordance between race 

and genetic ancestry as they pertain to GReX and tumor gene expression 16,136. We emphasize that 

genetic ancestry exists along a continuum; however, in the absence of eQTL and TWAS approaches that 

allow consideration of the continuum of genetic ancestry, we chose stratification as the most practical 

solution for ancestry-specific analyses. Second, we assessed heterogeneity of eQTL effects across 

subtype through a Wald t-test on an interaction term for genotype dosage times subtype (ref. subtype : 

LL). The second eQTL analysis was performed separately for the two ancestry strata since a formal 

assessment of eQTL heterogeneity across ancestry groups is challenging due to differences in allele 

frequencies and linkage-disequilibrium (LD) patterns. We do not expect differences in allele frequencies 

and LD patterns across subtype samples of the same ancestry. To control for potential confounding of the 

genotype-gene expression relationship across both eQTL analyses, we adjusted for the first five principal 

components from the combined (EA, AA) genotype matrix, age, menopausal status, and body mass index 

(BMI).  

In follow-up analyses to the eQTL analyses, we first assessed concordance of eQTL effect 

direction across subtypes, within each ancestry strata, as a function of significance thresholding (i.e., at 

false discovery rate (FDR) threshold of 0.05, 0.10, and 0.50); the goal of this analysis was to examine the 

influence of potential differences in statistical power across subtypes in discovery of subtype-specific 

significant eQTLs (within each ancestry strata). In the second follow-up analysis, we compared, across 

ancestry, the minor allele frequency (MAF) of eQTLs that were found to be heterogeneous across 

subtypes within a given ancestry stratum (e.g., comparison of MAF across EA and AA for a loci that was 

found to be significant in formal eQTL heterogeneity assessment across subtypes among EA).  

Construction of race and subtype-specific predictive models of tumor gene expression from 
germline variation in CBCS and imputation (construction of GReX) in BCAC 
 

GReX was the exposure of interest in this study, and for a given gene, GReX represents the 

portion of tumor expression explained by cis-genetic variation (where cis-regions to gene span the 1 

Megabase surrounding the gene’s start and end position). To construct GReX, we adopted TWAS 
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methodology, where we first trained predictive models of tumor gene expression from cis-germline 

variation using Elastic Net Regression with five-fold cross validation (EN) and Best Linear Unbiased 

Predictor (BLUP) 12,13,16. To mitigate model redundancy, we pruned variants prior to model training using 

PLINK v1.9 with the following pruning parameters: window size of 50 base pairs, window shift of 5, and 

LD threshold of 0.5 161. We included the first five principal components of the full genotype matrix 

(N=1,108), as well as age, menopausal status, and body mass index as adjustment variables during 

predictive model construction. The approach yielding the better predictive accuracy, defined as 

McNemar’s R2 (sample-size adjusted R2) between observed and predicted expression, was selected as 

the gene’s predictive model. The predictive model for a gene contains SNP-gene expression weights 

corresponding to the magnitude and direction of the effect of a cis-variant on the gene’s tumor 

expression. 

Importantly, predictive models were constructed by strata corresponding to combinations of 

ancestry and subtype (i.e., EA – LL, EA – BL, AA – LL,  AA – BL) for two reasons. First, prior 

investigations show that predictive models of (tumor) gene expression are not generally transportable 

across ancestry 16,133. Second, we aimed to additionally investigate the role of breast cancer 

heterogeneity (i.e., subtypes) on relationships between germline variation and BC mortality 16. The 

sample sizes (of matched genotype and expression) underlying the predictive models were as follows: 

410 (EA – LL), 116 (EA – BL), 358 (AA – LL), and 224 (AA – BL). Genes with good predictive accuracy, 

defined as adjusted-R2 > 0.01 between observed and predicted expression, were selected for imputation 

and association testing. Some GReX (TWAS) analyses include further feature selection of genes for 

imputation (GReX construction) and association testing based on cis-h2; in line with these analyses we 

computed cis-h2 using GCTA 12,16,162 (Table 5.1). However, due to the relatively small sample size for 

computation of cis-h2 across the race and subtype strata, GCTA analyses yielded imprecise heritability 

estimates and cis-h2 was not used in addition to predictive accuracy to select genes for further imputation 

and association testing, as in some prior investigations 120,121. 

We imputed GReX into BCAC data and tested for associations between GReX and all-cause and 

BC-specific mortality. We aligned predictive models and imputation samples in BCAC based on: 1) 

combination of genetic ancestry and subtype (main analysis) (Figure 5.2); 2) genetic ancestry alone 
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(supplementary analysis) (Figure 5.3) 16. For the former, for example, imputation of GReX was performed 

among women of African ancestry and BL subtype in BCAC for predictive models constructed in the AA – 

BL stratum in CBCS. Ancestry and subtype-specific GReX was imputed by multiplying the genotype 

dosage in BCAC with the SNP-gene expression weights derived from the ancestry and subtype-specific 

predictive models, based on aforementioned alignment schemes between imputation panel and predictive 

models. Imputation was performed separately for the iCOGS and OncoArray genotyped samples in 

BCAC.   

Assessment of predictive model transportability across subtypes 

To assess whether predictive models are transportable across subtype, we used predictive 

models constructed in LL tumor tissue to impute expression in BL tumor samples; ancestry was held 

constant in this assessment of model portability (i.e., models trained in WW – LL samples were imputed 

into WW – BL samples  while models trained in AA – LL samples were imputed into AA – BL samples). In 

the imputation samples (AA – BL and AA – BL ), adjusted-R2 for predicted vs. observed expression were 

computed.  

External validation of race and subtype-specific models in The Cancer Genome Atlas (TCGA) 

We obtained TCGA genotype data using the Genomic Data Commons (GDC) legacy archive. 

Genotype files were merged across individuals and phasing and imputation were performed using eagle 

v2.4 and minimac4 at the TOPMed imputation server 102,104,163. RNA expression data were obtained using 

the Broad Institute’s GDAC Firehose via FireBrowse 116; RNA expression was quantified using RNA-seq 

and downloaded data were TCGA level-3 normalized. We further log2 transformed expression data. The 

sample sizes of the matched genotype-expression datasets by strata of race and subtype combinations 

were: 606 (EA – LL), 111 (EA – BL), 107 (AA – LL), and 65 (AA – BL). Of the 124, 248, 157, and 157 

well-predicted genes in CBCS across EA – LL, EA – BL, AA – LL, and AA – BL, respectively, we were 

able to impute GReX in TCGA and compute adjusted-R2 (observed vs. predicted) for 106, 214, 136, and 

143 genes respectively.  

Association testing between GReX and BC mortality (all-cause, BC-specific) in BCAC 

We estimated associations between race and subtype-specific GReX of genes and BC mortality 

(all-cause, BC-specific) using Cox Proportional Hazards Regression. Association testing was carried out 
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separately for iCOGS and OncoArray genotyped samples in BCAC 89. We used age as the time scale, 

where time of entry into the study corresponded to the age at BC diagnosis and time at study exit was the 

age at last follow-up, where last follow-up was either mortality or censoring event. We opted to use age 

as the time scale to mitigate potential bias by left truncation (as component studies in BCAC have 

variable study periods and lengths of follow-up) 164; age as time scale also enables confounding control 

for age in assessment of GReX – mortality associations. We additionally allowed distinct baseline 

hazards per BCAC study in our Cox Proportional Hazards models to both control for potential 

confounding by and to incorporate potential heterogeneity across BCAC studies.  

Effect estimates (log hazard ratio (HR)) for one standard deviation increase in GReX and 

corresponding standard errors for iCOGS and OncoArray samples were pooled using fixed-effects, 

inverse variance weighted meta-analysis. We adjusted the nominal significance level for multiple 

comparisons using the Benjamini-Hochberg (BH) procedure, where statistical significance was set at false 

discovery rate (FDR) <0.05 across all association tests performed (N=1,362 across ancestry – subtype 

and mortality combinations).  

A major concern in case-only analyses, as previously mentioned, is collider bias, where the 

exposure of interest (GReX in this study) is associated with incidence and mortality 155-157. Unlike prior 

investigations (either GWAS or TWAS) of germline genetics in relation to BC mortality, we explicitly 

corrected for potential collider bias, using Slope-Hunter 158. Briefly, Slope-Hunter uses model-based 

clustering and identifies exposures (in this study, GReX of genes) that affect only BC incidence (but not 

BC mortality); this set of GReX of genes is then used to compute an adjustment factor for the “raw” effect 

estimates 158. Slope-Hunter correction requires effect estimates for GReX of genes in relation to both BC 

incidence and mortality 158. To generate the effect estimates for BC incidence, we imputed GReX across 

the set of cases and controls in BCAC using our ancestry and subtype-specific models, followed by 

association testing between the GReX and case versus control status using logistic regression. 

The sample sizes, including mean ages, for main and supplementary GReX association 

analyses, respectively after exclusions based on case invasiveness status, metastatic status, and missing 

data on confounding and follow-up variables are provided in Figure 5.4 and Figure 5.5. We note that in 

the main GReX analysis, the mean age across the ancestry and subtype specific cohorts for the 
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endpoints were generally in line with population based studies of breast cancer patients such as 

Surveillance, Epidemiology, and End Results (SEER) and the CBCS 126,165,166.  

5.3 Results 

Assessment of race and subtype-specific expression quantitative trait loci (eQTL) 

Among EA individuals, we found 715 and 0 significant SNPs (eSNPs) across 17 and 0 genes 

(eGenes) for LL and BL subtypes, respectively, at Benjamini-Hochberg FDR threshold of 0.05 (Figure 

5.6A). Among AA individuals, we found 229 and 49 eSNPs across 15 and 3 eGenes, respectively (Figure 

5.6B). In formal assessment of eQTL heterogeneity across subtype (within ancestry strata), we found 321 

SNPs across 37 genes with significantly different germline regulation of tumor expression by subtype 

among EA individuals (Figure 5.7A). Among AA individuals, we found 23 SNPs across 4 genes with 

significantly different germline regulation of tumor expression by subtype (Figure 5.7B). In follow-up 

analyses, we found that the level of concordance in eQTL effect direction across subtypes was not 

sensitive to eQTL significance thresholding (FDR thresholds of 0.05, 0.10, and 0.50) in both EA and AA 

individuals (Figure 5.8, Figure 5.9). In additional follow-up analyses, we found that the MAF differed 

across EA and AA samples for subtype-heterogeneity eSNPs discovered among EA or AA samples 

(Figure 5.10).  

Overlap in genes with good predictive accuracy across race and subtype strata 

For the 396 BC-related genes, we were able to build predictive models with good predictive 

accuracy (adjusted-R2 of >0.01 for observed and predicted expression) for 124, 248, 157, and 157 genes 

for EA – LL, EA – BL, AA – LL, and AA – BL, respectively (Figure 5.11). For WW, 24 genes were well-

predicted across both LL and BL samples, while among BW, only 8 genes were well-predicted across 

both LL and BL samples (Figure 5.11). 18 genes were well-predicted across all of EA – LL, EA – BL, AA – 

LL, and AA – BL samples, including genes such as AURKA, EGFR, PSPHL, and GPR160.  

Assessment of predictive model transportability across subtype and external validation of models 
in TCGA 
 

In prior investigations in CBCS, predictive models of tumor gene expression constructed among 

EA individuals were not transportable to AA individuals 16. In this study, in addition to assessment of 

eQTL heterogeneity by subtype, we further assessed whether predictive models of tumor gene 

expression constructed for a given subtype are transportable to another subtype, within ancestry strata. 
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We found that predictive accuracy was roughly 3 fold and 5 fold higher, for EA and AA, respectively, 

when there was alignment between training and imputation sample (i.e., EA models trained in LL were 

used to impute in the LL sample, as opposed to BL sample) (Figure 5.12A). 

We also assessed external validity of our ancestry and subtype-specific models in TCGA. In 

CBCS, the mean (standard deviation) cross-validation R2 of well-predicted genes was 0.021 (0.020), 

0.043 (0.030), 0.020 (0.013), and 0.025 (0.0140) for EA – LL, EA – BL, AA – LL, and AA – BL, 

respectively (Figure 5.12B). By comparison, the adjusted-R2 in TCGA was 0.001 (0.003), 0.005 (0.015), 

0.006 (0.014), and 0.007 (0.016) for EA – LL, EA – BL, EA – LL, and EA – BL, respectively (Figure 

5.12B). ). While the mean adjusted-R2 in TCGA may be low, we can also examine performance with 

regards to number of genes with adjusted-R2 above the 0.01 threshold. Here, we found that predictive 

models constructed in EA – BL, AA – LL, and AA – BL samples showed sufficiently strong performance in 

TCGA, with 32, 30, and 26 genes showing predictive accuracy of >0.01 in TCGA (Table 5.2). Predictive 

performance was poor in the EA – LL sample, with only 2 genes showing predictive accuracy of >0.01 

(Table 5.2). Stratification by subtype (e.g., EA – BL) may improve model performance among WW, as in 

prior CBCS investigations, only 7 of the 151 cis-heritable genes (out of 416) among EA individuals 

showed predictive accuracy of > 0.01 16.  

Associations between GReX and BC mortality (all-cause, BC-specific) 

At global FDR <0.05 across all association tests performed (N=1,362 across race – subtype and 

mortality combinations), we found no statistically significant associations with either all-cause or BC-

specific mortality in either the main (predictive models and GReX imputation sample aligned on genetic 

ancestry and subtype) or supplementary (predictive models and GReX imputation sample aligned on 

genetic ancestry) GReX analysis (Table 5.3). In the main GReX analysis, we observed a suggestive 

association for PTGER3 among the EA – BL sample for all-cause mortality (FDR = 0.14, corresponding 

HR [95% CI] : 0.88 [0.82, 0.94]) (Table 5.3). The next four nominally-significant genes with the highest 

significance level included CRYBB2 (AA – BL; BC-specific), ZEB2 (EA – BL, BC-specific), RAD17 (EA – 

LL; all-cause), and RAB25 (AA – BL; all-cause); the corresponding HR [95% CI] for these genes were 

1.97 [1.26, 3.07], 0.88 [0.81, 0.96], 0.95 [0.92, 0.99], and 1.37 [1.10, 1.71], respectively (Table 5.3).  
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5.4 Discussion 

In this study, we leveraged a large resource of matched genotype-expression data (N = 526 EA, 

N=582 AA) to perform a GReX analysis (for a panel of 396 BC-related genes) of BC mortality (all-cause, 

BC-specific) in the largest available data resource of BC cases in the BCAC. Across the spectrum of 

eQTL and predictive model transportability analyses to contextualize our GReX analyses, we found: 1) 

extensive heterogeneity in germline regulation of tumor expression across subtypes, within ancestry 

strata (e.g., 321 eSNPs across 37 eGenes among EA); 2) predictive models of tumor gene expression 

from germline variation are not transportable across subtype. Both insights demonstrate the need for 

consideration of biological heterogeneity (e.g., subtype) in future genetic investigations of BC 

progression. Moreover, our results on differential germline regulation of tumor expression are pertinent to 

further explorations of the genetic basis of treatment resistance based on tumor gene expression 

patterns. In GReX analyses, our findings of no statistically significant associations at a conservative 

global FDR < 0.05 are mostly in line with existing GWAS of BC survival, although we do note a 

suggestive association (FDR = 0.14) for PTGER3. Importantly, in our GReX analyses, we demonstrate 

the need for formal collider bias correction, as doing so can correct naïve (biased) estimates that are, in 

some cases, even contrary to a gene’s known biological function/role within BC progression and mortality. 

As previously mentioned, we found a suggestive association for PTGER3 among EA – BL 

patients (FDR = 0.14), where increased PTGER3 germline-regulated expression was associated with 

reduced all-cause mortality (Table 5.3). This finding is in line with a prior study which indicated 

significantly improved overall and progression free survival with increased PTGER3 expression among 

breast cancer individuals 167. Our finding of no statistically significant associations at global FDR <0.05 is 

in line with many prior investigations of germline variation in relation to BC mortality 82-92. Across the 

previous germline investigations of BC mortality across mostly individuals of European ancestry, a total of 

five loci have been reported at or near genome-wide significance  82-92; a common limitation to these 

investigations is that findings are not replicable across studies. In fact, the most recent GWAS in the 

PATHWAYS study was not able to replicate any of the previously identified at or near genome-wide 

significance loci 92. One likely explanation for such spurious and non-replicable associations is collider 

bias, as we, for example, observed in supplementary GReX analysis for CCNA2 in relation to all-cause 
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mortality among AA individuals (non SH FDR p-value = 0.17). CCNA2 belongs to the highly conserved 

cyclin family and plays a critical role in cell cycle control at the G1/S and G2/M transitions 168,169; CCNA2 

expression has been implicated with poor mortality outcomes among BC patients 168,169, whereas in our 

analyses without correction for potential collider bias, we initially observed a confounded protective effect 

with increased CCNA2 GReX among AA – LL imputation sample. This underscores the need for collider 

bias correction in genetic investigations of BC mortality, and interpretation with caution for already 

reported associations. Presently, Slope-Hunter and Dudbridge et al. represent the most recent and ‘most 

robust’ approaches towards collider bias correction, although between the two, we chose to use Slope-

Hunter because it offers better type I error rate at comparable power 158,170. Other approaches such as 

inverse-probability weighting (IPW) of cases based on risk factors should also be considered in future 

investigations 155.  

An interesting suggestion in the most recent GWAS of BC mortality in the PATHWAYS study is 

that the sheer magnitude of treatment heterogeneity may overwhelm (modest) genetic associations 92. In 

that study, there was one variant identified at genome-wide significance, but this association was 

statistically significant only among individuals with Par-4 dependent chemotherapy 92. We lacked the level 

of granular information on treatment in BCAC that the PATHWAYS study offers to perform similar follow-

up analyses. We note that this study did not correct for collider bias, which remains a concern in stratified 

analyses by treatment as treatment is determined by BC subtype (incidence) (Figure 5.1). Nevertheless, 

future studies should explore the possibility of treatment-specific germline genetic effects on BC mortality 

while correcting for collider bias through approaches such as Slope-Hunter or IPW.  

A novel aspect of this study is that we account for potential biological heterogeneity in germline 

associations with BC mortality by constructing subtype-specific (within each ancestry strata) predictive 

models of tumor gene expression from germline variation. In eQTL heterogeneity analyses across 

subtypes (within each ancestry strata), we found extensive evidence (321 SNPs across 37 genes) of 

differential germline regulation across subtypes among EA individuals and modest evidence (23 SNPs 

across 4 genes) of the same among AA individuals. Beyond this current investigation of germline 

associations for BC mortality, our findings of differential germline regulation of tumor gene expression 

across subtypes in EA and AA populations has clinical implications. As example, we find that among AA 
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individuals, the presence of the reference (minor allele) versus the alternative allele for rs4656930 is 

associated with significantly higher expression of KLHDC9 for BL subtype compared to LL subtype 

(Figure 5.7B). Expression of KLHDC9 has been shown to be associated with decreased sensitivity to 

paclitaxel, a commonly used chemotherapeutic agent among triple negative breast cancer (TNBC; 

molecular subtype TNBC is closely related to PAM50 based BL subtype) 171,172. Therefore, a higher 

germline regulated expression of KLHDC9 for BL subtype among AA individuals may point to germline 

contribution towards treatment resistance in the AA-BL population that warrants further investigation. In 

this mold, our reporting on differential regulation of BC-related genes across subtypes for EA and AA 

individuals may be beneficial towards efforts to understand genetic underpinnings of BC treatment 

resistance.  

There are a few limitations to this study. First, CBCS used a NanoString nCounter probeset for 

RNA expression quantification of BC-related genes, and therefore we were not able to analyze the whole 

transcriptome. However, the use of CBCS data was key towards building ancestry and subtype-specific 

models of tumor gene expression underlying our GReX analyses of BC mortality, as CBCS contains one 

of the largest tumor transcriptomic datasets for AA. Second, CBCS lacks data on somatic alternations in 

the genome; inclusion of these elements in predictive mode construction could enhance model 

performance. Third, we were not able to stratify predictive models beyond LL and BL, because the 

sample sizes of matched genotype-expression data for subtypes such as Her2-like were below a 100, 

which is a challenging sample size for predictive model construction in tumor tissue.  

In conclusion, we find no significant associations at global FDR <0.05 between the GReX of a 

panel of BC-related genes and BC mortality (all-cause, BC-specific), in line with many prior investigations 

of germline variation in relation to BC mortality. We demonstrate how collider bias can potentially 

confound findings via comparison of collider-bias naïve and collider bias corrected analyses, and 

demonstrate both differential germline regulation of tumor gene expression across subtypes (within 

ancestry strata) and the lack of transportability of predictive models of tumor gene expression across 

subtypes (within ancestry strata), a finding which underscores the need for larger and more racially and 

biologically diverse cohorts for future investigations.  
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5.5 Tables and Figures 

Figure 5.1 Directed acyclic graph (DAG) demonstrating potential for collider bias in germline genetic 
investigations of breast cancer mortality 
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Table 5.1 Tumor gene expression heritability for race and subtype sample combinations, 
computed using GCTA 

 Mean(SD) of cis-h2 

EA - LL 0.004 (0.036) 

EA - BL 0.018 (0.14) 

AA - LL 0.007 (0.05) 

AA - BL 0.009 (0.08) 

Abbreviations: GCTA – Genome-Wide Complex Trait Analysis, SD – Standard Deviation, EA – European 
ancestry, AA – African ancestry, LL – Luminal-like, BL – Basal-like  
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Figure 5.2 Study schematic A) In the Carolina Breast Cancer Study (CBCS), we leveraged 
Transcriptome-Wide Association Study (TWAS) methodology and trained ancestry and subtype-
specific predictive models of tumor gene expression from cis-germline variation (defined as <1 
Megabase to gene start and end sites). B) We integrated CBCS predictive models with genotypes 
from the Breast Cancer Association Consortium (BCAC), and performed imputation and 
association testing for breast cancer mortality in BCAC. Imputation and association testing were 
aligned with predictive models based on genetic ancestry and subtype 
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Figure 5.3 Study schematic for supplementary GReX analysis. Imputation and association testing 
in BCAC were aligned with predictive models from CBCS based on genetic ancestry alone (in 
CBCS, race served as proxy for genetic ancestry) 
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Figure 5.4 Flow diagram indicating sample sizes for main GReX analysis based on 
inclusion/exclusion criteria 

 

Abbreviations: EA – European ancestry, AA – African ancestry, LL – Luminal-like, BL – Basal-like  
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Figure 5.5 Flow diagram indicating sample sizes for supplementary GReX analysis based on 

inclusion/exclusion criteria 

 

Abbreviations: EA – European ancestry, AA – African ancestry, LL – Luminal-like, BL – Basal-like  
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Figure 5.6 T-statistic for significant expression quantitative trait loci (eQTL) genes (top eQTL per 
gene shown) across Luminal-like (LL) and Basal-like (BL) samples among European ancestry 
individuals (EA); B) T-statistic for significant expression quantitative trait loci (eQTL) genes (top 
eQTL per gene shown) across Luminal-like (LL) and Basal-like (BL) samples among African 
ancestry individuals (AA). Across A and B), darkgreen, red, and blue denote significance among 
LL, BL, and both samples, respectively 
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Figure 5.7 Manhattan plot indicating top eQTL for genes with significantly different germline-

regulated expression across Luminal-like (LL) and Basal-like (BL) samples among European 
ancestry (EA) individuals (top panel); Manhattan plot indicating top eQTL for genes with 
significantly different germline-regulated expression across Luminal-like (LL) and Basal-like (BL) 
samples among African ancestry (AA) individuals (bottom panel). FDR denotes the false discovery 
rate (all genes shown had FDR <0.05 in EA and AA-specific, analyses, respectively) 
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Figure 5.8 Concordance in eQTL effect direction across Luminal-like (LL) and Basal-like (BL) 
samples for LL significant SNPs, compared across varying significance (false discovery rate 
(FDR)) thresholds of 0.05, 0.10, and 0.50. Analysis conducted among individuals of European 
ancestry (EA) 
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Figure 5.9 Concordance in eQTL effect direction across Luminal-like (LL) and Basal-like (BL) 
samples for LL significant SNPs, compared across varying significance (false discovery rate 
(FDR)) thresholds of 0.05, 0.10, and 0.50. Analysis conducted among individuals of African 
ancestry (AA) 
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Figure 5.10 A) Comparison of minor allele frequency (MAF) of EA significant eQTL (for 
heterogeneous effect on tumor expression across subtypes) across EA and AA samples. B) 
Comparison of minor allele frequency (MAF) of AA significant eQTL (for heterogeneous effect on 
tumor expression across subtypes) across EA and AA samples 

 

Abbreviations: EA – European ancestry, AA – African ancestry, LL – Luminal-like, BL – Basal-like, MAF – 
Minor Allele Frequency  

 

 

 

 

 

 

 

 

 

 



77 
 

Figure 5.11 UpSet plot of intersections between well-predicted genes (defined as adjusted-R2 > 
0.01 between observed and predicted expression) for ancestry and subtype strata investigated in 
this study.  Well-predicted genes per ancestry and subtype strata were selected for association 
testing with breast cancer mortality 

 

Abbreviations: EA – European ancestry, AA – African ancestry, LL – Luminal-like, BL – Basal-like  
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Figure 5.12 A) Assessment of predictive model transportability across subtypes, per ancestry 
stratum. ‘Training: Imputation Match’ denotes that models were trained and imputed in the same 
sample (Models trained in European ancestry – Luminal-like sample were imputed in European 
ancestry – Luminal-like sample while models trained in African ancestry – Luminal-like sample 
were imputed in African ancestry – Luminal-like sample). Mismatch denotes that models were 
trained in Luminal-like samples but imputed in Basal-like samples. Predictive accuracy (adjusted-
R2 between observed and predicted (imputed) expression) were compared across matched and 
mismatched imputations to determine model transportability. B) External validation of Carolina 
Breast Cancer Study (CBCS) trained predictive models in The Cancer Genome Atlas (TCGA) data. 
Imputation was performed in TCGA data using CBCS trained models, and predictive accuracy in 
TCGA was compared to predictive accuracy in CBCS 

 

Abbreviations: EA – European ancestry, AA – African ancestry, LL – Luminal-like, BL – Basal-like  
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Table 5.2 Number of genes meeting various adjusted-R2 (observed vs. predicted expression) 
cutoffs in TCGA data, for imputation performed using CBCS trained models (only CBCS models 
with good predictive accuracy tested) 

 

Genes 
Imputed 0.01 0.0025 0.0001 

EA - LL 106 2 14 36 

AA - LL 136 30 36 41 

AA - BL 143 26 34 37 

EA - BL 214 32 57 66 

Abbreviations: EA – European ancestry, AA – African ancestry, LL – Luminal-like, BL – Basal-like, CBCS 
– Carolina Breast Cancer Study, TCGA – The Cancer Genome Atlas  
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Table 5.3. Five most nominally significant associations between germline-regulated gene 
expression (GReX; constructed across race-subtype strata) and breast cancer (BC) 
mortality endpoints (all-cause, BC-specific) – Main (predictive models in CBCS and 
imputation in BCAC aligned on ancestry and subtype) GReX analysis 

Gene Chr 
Start
* End 

Ancestry-
Subtype  Endpoint 

SH 
HR^ 

SH 
LCI 

SH 
UCI 

SH p-
val 

SH 
FDR 

nonS
H HR 

non
SH 
LCI 

non
SH 
UCI 

nonS
H p-
val 

non
SH 
FDR 

Inciden
ce p-val 

PTGER3 1 
7.13E

+07 
7.15E

+07 EA - BL All Cause 0.88 0.82 0.94 
9.97E-

05 0.14 0.89 0.84 0.95 
2.60E

-04 0.18 
7.36E-

02 

CRYBB2 22 
2.56E

+07 
2.56E

+07 AA - BL 
BC-
specific 1.97 1.26 3.07 

2.76E-
03 0.93 1.80 1.24 2.61 

1.95E
-03 0.46 

4.50E-
01 

ZEB2 2 
1.45E

+08 
1.45E

+08 EA - BL 
BC-
specific 0.88 0.81 0.96 

2.78E-
03 0.93 0.88 0.81 0.95 

2.04E
-03 0.46 

9.66E-
01 

RAD17 5 
6.87E

+07 
6.87E

+07 EA - LL All Cause 0.95 0.92 0.99 
4.09E-

03 0.93 0.98 0.95 1.00 
1.02E

-01 0.93 
1.67E-

04 

RAB25 1 
1.56E

+08 
1.56E

+08 AA - BL All Cause 1.37 1.10 1.71 
4.68E-

03 0.93 1.44 1.18 1.75 
2.63E

-04 0.18 
1.46E-

01 

Abbreviations: EA – European ancestry, AA – African ancestry, LL – Luminal-like, BL – Basal-like, CBCS 
– Carolina Breast Cancer Study, GReX – Germline-regulated gene expression, BCAC – Breast Cancer 
Association Consortium 

*Start and end genomic coordinates for gene are build 37 

^ HR – Hazard Ratio, from fixed effect, inverse-variance weighted Cox Proportional Hazards Regression 
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CHAPTER 6. DISCUSSION 

6.1 Summary of findings 

In Aim 1 of this dissertation, we assessed germline-regulated gene expression (GReX) for genes 

in relation to BC subtype for individuals of European and African ancestries. In doing so, we leveraged 

patterns of germline-regulation of gene expression across the two most relevant tissue contexts (normal 

breast, breast tumor) for BC (and by extension, BC subtypes). We find 53 GReX-subtype associations 

after Bayesian correction for potential test inflation bias 123 and a conservative global FDR <0.05, which 

spans 40 unique GReX-prioritized genes. All 40 GReX-prioritized genes were among EA individuals, 

though we do find suggestive associations for 5 genes among AA individuals (FDR = 0.06 – 0.18). Of the 

40 GReX-prioritized genes for EA individuals, 10 were significant for both subtypes (LL, BL), 34 were 

unique to LL, and 6 unique to BL. We identify 7 genes with genomic overlap with established GWAS 

signal (for BC vs. controls), and of these, 4 genes (MUC1, CCNE1, HLA-DOB, and KCNN4) show 

concordance in effect direction with GWAS effect at the genomic locus 2, making these 4 genes prime 

candidates as mediators of previously identified GWAS signals. We find moderate to strong literature 

support for many of our GReX-prioritized genes (e.g., DDR1, PDSS1, MUC1, AURKA) in terms of the 

direction of effect and known aspects of that gene’s biological function and/or relation to BC disease 

phenotypes 141,142,144-146,152. This work marks an important contribution, both from the standpoint of 

findings we uncover and also in terms of the interpretability (i.e., gene level) of those findings, towards the 

understanding of the germline etiology of BC subtypes.  

In Aim 2 of this dissertation, we leveraged biological heterogeneity (i.e., subtype) within the 

context of ancestry-specific germline investigation of BC mortality (all-cause, BC-specific). This work built 

off long standing conjecture that accounting for biological heterogeneity may be key towards better 

understanding of the germline basis of BC mortality. Compared to all previous genetic investigations of 

BC mortality 82-92, we included a formal correction for potential collider bias, an important and increasingly 

recognized bias that impacts studies of mortality (due to inherent conditioning on case-only status in 
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mortality analyses) 79,155-158. In this work we find differences in germline-regulation of tumor gene 

expression across subtypes, within ancestry groups (321 loci across 37 genes among EA, 23 loci across 

4 genes among AA). However, despite accounting for biological heterogeneity and additional rigor for 

collider bias correction, we did not find any associations for BC mortality at a conservative, multiple-

testing correction threshold (PTGER3 had a suggestive association among EA – BL sample for all-cause 

mortality at FDR = 0.14), which is in line with previous genetic investigations 82-92 of BC mortality 

(although these studies did not correct for collider bias). Our findings suggest that future work should turn 

towards account for granular treatment information (importantly, treatment is a descendent of a collider in 

causal frameworks, therefore accounting for treatment should always first include correction for potential 

collider bias), as treatment effects may overwhelm more modest genetic contributions towards survival 92.  

6.2 Limitations and Strengths 

 We note several limitations across the two studies performed as part of this dissertation. Across 

both study aims, a key data source (in relation to our focus on cross-ancestry analyses) for construction 

of predictive models of breast tumor gene expression from germline variation was the CBCS. In Aim 1, 

CBCS was used to construct predictive models for European and African ancestries, respectively, while in 

Aim 2, CBCS was used to construct ancestry and subtype-specific predictive models (i.e., AA – LL, AA – 

BL etc.). CBCS is the ideal data source for construction of such predictive models because it offers 

matched genotype – gene expression data on a large number of AA individuals (n = 628 AA, n = 571 EA 

in CBCS). In comparison, matched genotype-expression data for other data sources such as TCGA and 

GTEx is 170 and 47, respectively, for AA individuals. While CBCS offers unique analytic opportunities, it 

also poses some limitations.  First, CBCS used a custom NanoString nCounter probeset for RNA 

expression quantification of BC-related genes, and therefore we were not able to analyze the whole 

transcriptome. We were limited to analysis of 396 BC-related genes (and by extension, however many of 

these 396 were available across other reference panels to ensure comparability). While this is a limitation, 

it also reduces multiple testing burden and raises biological plausibility of findings, as the 396 genes have 

all been implicated in key BC pathways (Appendix 1) and are protein coding genes.  

 A key limitation in Aim 1 is that although our subtype categorization is aimed at uncovering  

differences in potential germline genetic underpinning along a key demarcation in BC (BL (most 
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aggressive) versus LL (less aggressive)), this classification may not be fine-tuned enough for certain 

genes (e.g., HER2). We emphasize that our choice of BL v LL comparison was in part, also motivated by 

lack of sample size for the fine-tuned subtype categories (e.g., HER2) among AA individuals. Therefore, 

as sample sizes for more fine-tuned classifications become available across ancestry groups, cross-

ancestry analysis focus should shift along these more granular subtype classifications.  

 Third, although we took care ensure analytic consistency across the reference panels (e.g., we 

re-imputed CBCS, TCGA, and NBS data to the TOPMed panel to mitigate differences in genotyping 

quality), there were differences in expression quantification platforms (e.g., RNA-seq, microarray, 

NanoString) that make full comparability of findings across reference panels challenging.  

 Finally, although we leveraged among the largest available genetic resources for AA individuals, 

we note the lesser sample sizes we had for the GReX-analysis among AA compared to EA, both for 

predictive model construction for Aim 1 (with the exception of CBCS) and for association testing in BCAC 

(for both Aims). As such, interpretations of ancestry-specific findings along both aims should be made 

with caution. More progress to increase sample sizes of genetic data resources for diverse populations is 

needed, especially for publicly available data resources such as the GTEx and TCGA.    

 There are several strengths to this dissertation work. In terms of innovation, this is the first study 

to systematically evaluate germline-genetic basis for BC subtypes across individuals of European and 

African ancestry. As a gene-level, TWAS-based analysis with reduced multiple testing burden, we were 

able to prioritize potential causal genes for BC subtype at loci where there might be aggregation of small 

effects (which would be missed under GWAS), and in conjunction, we prioritized several genes which 

overlap with known GWAS loci (for BC), offering insight into a potential genetic mechanism for those loci 

(notably, most GWAS signals are found in regulatory regions and an immediate genetic mechanism for 

these loci is lacking 11,62,102,173).  Since our analyses were gene level, there is also increased 

interpretability of findings, as prioritized genes can be subject to functional follow-up testing/experiments. 

We employ conservative assessment of GReX signals (i.e., where applicable correction for test statistic 

inflation through a Bayesian approach called bacon and a global FDR threshold of 0.05 on bacon 

corrected test statistics 123). We also performed external validation for all predictive models constructed 

across the two aims, a feature absent from many TWAS-based analyses 119. In Aim 2, ours is the first 
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study to formally correct for potential collider stratification bias, which is an important and increasingly 

recognized bias that impacts studies of mortality 79,155-158. Lastly, our work leverages among the largest 

available data resources for individuals of African ancestry, which is a small step towards bridging the gap 

in genetic investigations across diverse populations.  

6.3 Future directions 

 Our work here provides a platform for a multitude of ideas for future investigations. In Aim 1, we 

analyzed what we hypothesized to be the two most important tissue contexts (normal breast, breast 

tumor) for understanding of the germline genetic basis (as mediated through gene expression) for BC 

subtypes. Other tissue contexts that may be of etiologic relevance include adipose tissue, fibroblasts, and 

immune tissue, all cell types found within bulk tumor tissue and some with direct relevance to BC etiology 

174-176. Additionally, assessment of more granular subtype definitions (LumA, LumB/HER2-, LumB, HER2, 

Basal) might reveal further shared and potentially divergent germline etiologies for these subtypes. In 

fact, in another study, we have performed a MOSTWAS177 (a multiomic extension TWAS where we 

include tissue-specific distal regulatory variants) of granular BC subtypes across etiologic tissue (albeit for 

individuals of European ancestry only due to limited availability of multiomic data for individuals of non-

European ancestry). Presently, the limited sample sizes of genotype-expression (and multiomic) data for 

non-European ancestry individuals in publicly available data resources such as GTEx and TCGA 

represents a major public health gap. Along with larger sample sizes, more biologically rich (e.g., breast 

tumor, tumor-adjacent, and normal tissue) data has the potential to facilitate discovery of potentially 

differential and disease-continuum specific germline-regulation of gene expression pathways relevant to 

breast carcinogenesis. Lastly, our findings for Aim 2 point towards increased emphasis on treatment as 

part of the analytic framework, and as part of inclusion of treatment within the analytic framework, careful 

correction for potential collider bias (as treatment in BC mortality causal frameworks is a descendant of a 

collider (BC)).  
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APPENDIX 1. THE 396 BREAST-CANCER RELATED GENES ANALYZED 
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TMEM158 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

VIM 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 

RAD50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 

MRPL19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

PSMC4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

SF3A1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

VEGFA 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 

TNIK 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ERBB2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

BRCA1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 

ACTB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

RPLP0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

TCEAL1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

TRIP13 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

AURKA 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CCNE1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CDC20 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NDC80 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NUF2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

RRM2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

TMEM45B 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GRB7 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

BAG1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

BCL2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

BIRC5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CCNB1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ESR1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

MMP11 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

PGR 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CEP55 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

PTTG1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

UBE2C 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

MKI67 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

MYBL2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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TYMS 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

MSH3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 

STK38 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

AXL 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

CAV1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

CD24 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

CLDN4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

DSP 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

EMP3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

ESRP1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

EVI2A 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

F11R 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

FBN1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

GNG11 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

GRHL2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

JUP 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

KRT19 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

KRT8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

LEPRE1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

LHFP 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

MPP1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

NT5E 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

PVRL3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

RAB25 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

SH2B3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

SPINT1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

SPINT2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

ZEB1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

EPCAM 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 

ADM 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

ANGPTL4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

DDIT4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

FABP5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

FLVCR2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

GAL 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

NDRG1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

PLOD1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

PNP 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

RRAGD 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

SLC16A3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

UCHL1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
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ERBB4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ULK1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

DDR1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

DAPK1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

KIT 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

CRMP1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

GSTP1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

ADHFE1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

AMH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

AMHR2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

CLDN3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

CLDN7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

CRYAB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

ERBB3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

MET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

PIK3CA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

PTEN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

RAD17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

RB1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

APH1B 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ATAD2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

BTG2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CCNA2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CCND1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CDC25B 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CDC25C 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CDCA7L 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CDK1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CDKN1A 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CDKN3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CKS1B 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

DDB2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

FAM198B 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

FAM214A/KIAA13
70 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

FNBP1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

FOXM1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GGH 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

KIAA0040 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

KIF23 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

KIFC1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

LOC400043 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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MAD2L1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

MAP2K4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

MCM3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

MIS18A/C21orf45 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NCAPH2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NEO1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NPEPPS 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NUDT1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

POLD1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

PREP 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

RFC4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

RNF103 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

TOP2A 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

TUBA4A 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GATA3 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

ACTR3B 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ANLN 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

BLVRA 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CDC6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CDH3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CXXC5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

EXO1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

FOXA1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

FOXC1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GPR160 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

KIF2C 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

KRT14 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

KRT17 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

KRT5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

MAPT 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

MDM2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

MELK 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

MIA 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

MLPH 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

MYC 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NAT1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ORC6L 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

UBE2T 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

EGFR 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

FGFR4 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

PHGDH 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
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SFRP1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

CENPF 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SLC39A6 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ACOX2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

CRYBB2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

FAM177A1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

GSTT2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

MUC1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

PSPH 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

PSPHL 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

SQLE 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

TRPC1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

ABAT 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

ABCC8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

AR 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

AURKB 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

BUB1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

C10orf116 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

C16orf45 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

C1orf106 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

C4A 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

CCDC103 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

CCNB2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

CDC45 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

CDCA5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

CDCA8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

CELSR1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

CENPA 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

CENPN 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

CYP4B1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

DEPDC1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

DLGAP5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

FAM54A 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

FAM64A 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

GTSE1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

HJURP 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

HPN 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

IDO1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

IGF2BP3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

KDM4B 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

KLHDC9 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
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LRG1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

MMP1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

MND1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

NCAPG 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

NTN4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

NXNL2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

PDZK1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

PLK1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

PTPRT 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

RAD54L 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

RBM24 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

RSPH1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

SCGB1D2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

SEC14L2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

SEMA3B 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

SHCBP1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

STC2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

SYT1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

TRAT1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

XCL1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

ZG16B 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

LRP8 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 

RAI2 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 

TWIEST2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

ZEB2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

ALDH1A1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

CD10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

FOXC2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

OCLN 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

ACADSB 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

ADCY1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

APBB2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

BTG3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

C11orf75 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

C14orf45 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

CXCR4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

ELOVL2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

EZH2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

FAM63A 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

FLJ20152 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

FMO5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
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FSCN1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

IFRD1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

IRS1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

ITGB5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

LRRC50 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

MAGED2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

NXPH4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

PCSK6 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

PFKP 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

PINK1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

PTGER3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

REPS2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

RNASE4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

RPS6KB2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

SLC1A2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

SLC7A5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

XBP1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

TPX2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

UGT1A10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

VAV3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

WDR12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

BMP2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

CYP19A1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

CYP27A1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

CYP7B1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

IL12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

IL1B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

IL6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

LOX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

NR1H3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

PGE3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

PTGS2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

SERPINB5(MASPI
N) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

TBC1D9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

TRPM7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

ABCB1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

CYP2D6 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

CYP3A4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

CYP3A5 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

SULT1E1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

SULT2A1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
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UGT1A4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

UGT1A8 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

UGT2B7 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

FANCA 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 

CDCA7 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 

REEP6 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 

MYB 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 

SCUBE2 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 

CTSL2 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 

SYBU 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 

ACTG1P3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

BOP1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

C8orf33 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

CACNB3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

CALCP 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

CMC2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

DNM2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

ECE2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

FBXL6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

GALT 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

GUCA1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

HGH1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

KLHL7 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

MRPS17 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

NCS1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

NLN 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

PGAM5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

PTDSS1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

PUF60 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

SDCBP 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

SLC52A2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

SNRPD1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

WDR19 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

CDH1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 

MMP2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 

MMP3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 

SNAI1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 

SNAI2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 

SOX10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 

TWIST1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 

FN1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 
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TMSB15B 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

AKR7L 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

AQP5 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

C1QTNF3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

C2orf27A 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

C4orf31 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

C9orf98 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

CAPN13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

CASKIN1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

CMYA5 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

DOCK3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

DTX3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

EFHD1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

F7 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

FMNL2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

FUT8 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

GCNT2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

HRC 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

INPP4B 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

ISLR2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

KCNMA1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

KCNN4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

KIF3A 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

MAGI2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

MARVELD2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

PKIB 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

PRRG2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

PRRT2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

PVRL2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

RIMS4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

SHROOM3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

SKAP1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

CLTC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

HPRT1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

PGK1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

TUBB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

GFRA1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 

CAPN9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

IGF2BP2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

IL6ST 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

MCM10 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
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PDSS1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

S100A8 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

NME5 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 

TFF3 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 

TNFRSF17 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 

BLK 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

CCL7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

CCR3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

CD19 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

CD28 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

CD3E 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

CD3G 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

CD4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

CD6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

CD84 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

CD8A 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

CD96 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

CXCL13 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

CXCL5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

CYBB 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

FCRL2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

FOXP3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

FPRL1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

GPR44 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

GZMM 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

HLA-DOB 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

ICOS 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

IL2RB 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

IL5RA 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

IL8RA 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

IL8RB 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

KIAA0125 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

LAG-3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

LCK 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

LILRB2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

MAF 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

MS4A1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

MSR1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

NFKB1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

PDCD1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

PD-L1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
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PPBP 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

PRF1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

SH2D1A 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

SIRPG 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

TIM-3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

TRAF1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

ZAP70 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

CD2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

CD68 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

GAPDH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

GUSB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
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