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ABSTRACT

Weifang Liu: Deciphering association signals from genome-wide association studies
(Under the direction of Dr. Yun Li)

Over 90% of disease-associated variants detected from Genome-wide Association Studies

(GWAS) are in non-coding regions of the genome, making the interpretation of GWAS signals a

daunting challenge. Recent advances in genome-wide experimental assays like high-throughput

chromosome conformation capture (Hi-C) have greatly improved our understanding of chromatin

folding principles and revealed the structural basis of gene regulation and genome function. One

essential task in the analysis of chromatin interactome data is the identification of long-range

chromatin interactions. However, existing computational tools are all designed for analyzing in-

dividual cell types or samples, ignoring unbalanced sequencing depths and heterogeneity among

multiple samples. In my first dissertation project, I present MUNIn, a novel statistical framework

for identifying long-range chromatin interactions from multiple samples. MUNIn achieves lower

false positive rates for sample-specific interactions and enhanced statistical power for shared in-

teractions. Following MUNIn, I will briefly illustrate how I used chromatin conformation data

with functional genomics data to identify potential functional genes underlying GWAS signals for

cognitive impairment among children born extremely preterm.

In my second dissertation project, I propose SnapHiC-G, a new computational approach

based on a global background model to identify cell-type-specific long-range enhancer-promoter

interactions from single-cell HiC (scHi-C) data. SnapHiC-G outperforms existing methods de-

signed for both single-cell and bulk Hi-C data with higher sensitivity in identifying long-range

enhancer-promoter interactions. SnapHiC-G is a powerful tool for characterizing cell-type-

specific enhancer-promoter interactions in single cells from complex tissue samples and facil-

itating the interpretation of non-coding GWAS variants.

iii



In my third project, I explore the effect of using a more comprehensive LD reference panel

for LD score calculation and LD score regression (LDSC) estimates to control for false positives

in GWAS results. Results showed that more polygenic signals could be captured by including

more variants in the regression, and low-frequency variants exhibited less inflation compared

with common variants. Assessing the impact of using a more comprehensive LD reference panel

in LD score computation as well as LDSC estimates has important practical implications, and it

will guide the choices of the most appropriate LD scores to use and sets of variants to be included

in the analysis.
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CHAPTER 1: LITERATURE REVIEW

1.1 High-throughput chromosome conformation capture (Hi-C)

1.1.1 The three-dimensional (3D) genome organization

The human genome consists of approximately 3 billion nucleotides, which can form a „2-

meter-long polymer if stretched in 1D space. However, the average diameter of the nucleus in

human cells is only „6 µm. The five orders of magnitude compaction from 1D space to 3D space

results in highly complex chromatin spatial organization. A deep understanding of the principles

of chromatin folding holds great promise to reveal the structural basis of gene regulation and

genome function [1, 2, 3, 4, 5, 6].

Recent advances in imaging- and sequencing-based technologies have revealed chromatin

folding patterns at multiple scales. At the chromosome resolution, different chromosomes oc-

cupy distinct locations in the nucleus, termed chromosome territories (CTs) [7]. Transcriptionally

active regions are near the nuclear center, while transcriptionally inactive regions are near the nu-

clear periphery. Zooming in, each chromosome consists of mega-base (Mb) resolution A/B com-

partments [8] and sub-compartments [9] that are cell-type-specific and correspond to open and

closed chromatin [8, 10]. The compartments can be further divided into topologically associating

domains (TADs) [11, 12], which are self-interacting domains that are typically several hundred

kilobases to „1 Mb in size, dictating most chromatin interactions to be within the same TAD.

Finally, at the kilobase resolution, two types of chromatin loops have been discovered, mostly

inside of TADs. One type is structural loops mediated by the convergent CTCF motif pairs and

largely conserved among different cell types [9]. The other type is functional loops, which are

formed by enhancer-promoter interactions and exhibit high cell-type specificity [13, 14, 15].

Extensive studies have demonstrated that these 3D genome features are closely related to tran-
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scriptional regulation mechanisms, the determination of cell identity, and organism-level health

and disease outcomes [16, 17, 18].

1.1.2 High-throughput chromosome conformation capture (Hi-C)

Since the advent of Hi-C [8] and Hi-C-derived technologies [19, 20, 21], knowledge of

genome-wide chromatin spatial organization has been significantly advanced. Harnessing the

power of next-generation sequencing technologies, Hi-C has been widely applied to cultured cell

lines, purified cell types, and complex tissues [9, 2, 22], and has revealed the 3D genome fea-

tures described above. Hi-C is a sequencing-based approach that relies on proximity ligation to

quantify pairwise chromatin contact frequency among the cell population under study. The Hi-C

protocol involves first crosslinking the chromatin with formaldehyde such that spatially close

DNA segments are fixed. Cells are then lysed to allow for the release of nucleic materials. Next,

the chromatin is digested by a restriction enzyme that recognizes short DNA sequences (e.g.,

4bp or 6bp) and cuts the DNA into fragmented pieces. This step generates sticky ends of DNA

fragments which are then filled in with biotins. Those sticky ends are then ligated under dilute

conditions where ligation products between cross-linked DNA fragments are enriched. A Hi-C li-

brary can be constructed by purifying and shearing DNA and then selecting biotinylated junctions

with streptavidin beads. Finally, a catalog of genome-wide pairwise interacting fragments can be

obtained by massively parallel DNA sequencing.

Hi-C provides an unbiased view of the entire genome with high throughput and sequence

coverage. However, for high-resolution inference, Hi-C approaches require ultra-deep sequencing

depth, which can be cost-prohibitive. For example, we usually need several billion raw reads to

detect chromatin interactions at Kb resolution. Moreover, Hi-C requires a large amount of input

materials with a typical Hi-C bulk sample containing 105 „ 106 cells. Another key weakness of

Hi-C is that it does not directly measure the spatial distance between genomic loci of interest but

rather gauges the frequency of the loci coming in spatial proximity, which is an indirect measure
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of the 3D distance among sequencing reads. Therefore, computational tools are needed to infer

spatial relationships among genomic regions.

1.1.3 Hi-C Data processing workflow

A typical data processing workflow for Hi-C data involves (i) read alignment, (ii) quality

filtering, (iii) binning, and (iv) normalization. After these preprocessing steps, Hi-C data are

represented as a contact matrix where each entry represents the number of contacts observed

between a pair of genomic regions.

Read alignment Hi-C experiments generate chimeric read pairs lying far apart along the

linear genome that need to be aligned on the reference genome. Many Hi-C read alignment algo-

rithms have been proposed, including iterative mapping, split read alignment (BWA MEM), and

read clipping [23, 24, 25, 26, 27, 28].

Quality filtering Quality control is performed at both the read level and read-pair level to

filter out low-quality alignment. At the read level, standard filters similar to other sequencing-

based assays can be applied to the number of mismatches, mapping quality, and uniqueness of

mapped reads [29, 30]. Each read is then assigned to the nearest restriction site with a distance

that should agree with the molecular size after DNA shearing. At the read-pair level, strand and

distance filters can be applied to filter out de novo ligations products from the Hi-C protocol and

duplicated pairs from polymerase chain reaction (PCR) in the library preparation step.

Binning After filtering, contacts are aggregated into fixed-size genomic bins to construct a

contact matrix, where each entry represents the number of contacts observed between a pair of

genomic bins. The size of each bin, which is defined by the user, is referred to as the resolution.

A smaller bin size is helpful for discovering more refined chromatin features with the cost of

more severe sparsity and increased noises, while a larger bin size gives a coarser representation

of the 3D genome that might be sufficient for clustering and visualization purposes and detecting

features at a large scale.
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Normalization Hi-C data are subject to systematic biases including but not limited to sequencing-

dependent features, including GC content, mappability, and Hi-C-specific features such as effec-

tive fragment length. Several existing normalization methods for Hi-C data [31, 32, 24, 33, 34,

35] can be classified into explicit-factor correction, matrix balancing, and joint correction ap-

proaches.

1.1.4 Identifying significant chromatin loops and interactions with Hi-C data

As discussed previously, Hi-C is a sequencing-based method that can capture only relative

spatial relationships among sequencing reads instead of exact spatial positions of genomic loci.

Therefore, special computational tools are needed to reconstruct 3D conformation from a 2D

contact matrix. Recent advances in computational approaches have enabled the identification

of chromatin interactions and structures using genome-wide contacts generated by Hi-C. Many

computational tools have been developed for investigating chromatin structures from Hi-C con-

tact matrices [31, 33, 6]. This section briefly summarizes existing methods for the detection of

chromatin loops and interactions from Hi-C data.

Chromatin loops and interactions are contacts between regions that are far from each other

in the 1D genomic distance but close in 3D space [36]. Many methods exist to detect chromatin

loops or statistically significant/enriched chromatin interactions. They can be broadly grouped

into two classes, namely global background methods and local background methods. Global

background methods fit a global statistical model based on 1D genomic distance and assign p-

values to each bin pair in the contact matrix by comparing the observed count to the expected

under the global background. These methods include HiC-DC [37], HiC-DC+ [38], FitHiC [39],

FitHiC2 [40], HMRF [41], FastHiC [41], HiC-ACT [15]. Local background methods identify

peaks in the contact map that are local maxima with respect to their neighboring bin pairs. These

methods include HiCCUPs [9], cLoops [42], Significant Interaction Peak caller [43], and Mus-

tache [44]. Not surprisingly, global background methods tend to detect a much larger number

of chromatin interactions than local background methods, e.g., 105-106 versus „104 significant
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chromatin loops reported by the two categories of methods. Since there is no consensus or gold

standard method, investigators should choose the appropriate methods tailored to their research

questions [36].

1.1.5 From Hi-C to GWAS

GWAS has identified thousands of genetic variants associated with complex human diseases

and traits [45]. However, most of these GWAS variants (ą90%) reside in non-coding regions

producing no proteins, making the interpretation of these variants a daunting challenge [46, 47].

Prior studies observed significant enrichment of non-coding GWAS variants within cis-regulatory

elements (CREs, e.g., promoters, enhancers, silencers, and insulators), which play critical roles

in disease etiology by regulating the expression of target genes in a cell-type-specific manner [48,

49]. Instead of directly changing the protein-coding DNA sequences, these non-coding variants

may disrupt the functional roles of CREs, resulting in the dysregulation of relevant genes.

The comprehensive annotation of CREs is a substantial step forward in understanding non-

coding GWAS variants. However, many genes are not regulated merely by CREs in close one-

dimensional (1D) vicinity but also by those that form DNA loops with the promoter of their target

gene(s) from hundreds of kilobase (Kb) or further away [50, 51]. Advanced genomics technolo-

gies like chromosome conformation capture (3C), together with powerful computational methods,

have enabled the comprehensive characterization of regulatory DNA interactions and substan-

tially improved our understanding of the three-dimensional (3D) genome architecture. Charac-

terizing 3D chromatin structure has the potential to prioritize disease causal genes, particularly

those spatially close but distal in the 1D genomic distance from their CREs, and reveal mecha-

nistic insights underlying non-coding GWAS variants. One of the earliest and most renowned

examples was reported by Smemo et al. [52], where the authors elegantly elucidated molecu-

lar mechanisms underlying the noncoding obesity-associated GWAS variants at the FTO locus

with chromatin interactions identified from a Hi-C alike technology 4C-seq [53]. Specifically,

long-range chromatin interactions link FTO intronic variants to their target gene
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CHAPTER 2: MUNIN (MULTIPLE SAMPLE UNIFYING LONG-RANGE CHROMATIN IN-
TERACTION DETECTOR)

2.1 Introduction

Chromatin spatial organization plays a critical role in genome function associated with

many important biological processes, including transcription, DNA replication, and development

[54, 55]. Recently, the ENCODE and the NIH Roadmap Epigenomics projects have identified

millions of cis-regulatory elements (CREs; e.g., enhancers, silencers, and insulators) in mam-

malian genomes. Notably, the majority of genes are not regulated by CREs in one-dimensional

(1D) close vicinity. Instead, by forming three-dimensional (3D) long-range chromatin interac-

tions, CREs are able to regulate the expression of genes hundreds of kilobases (kb) away. A deep

understanding of chromatin interactome can shed light on gene regulation mechanisms and reveal

functionally causal genes underlying human complex diseases and traits. Comprehensive char-

acterization of chromatin interactome has become an active research area since the development

of Hi-C technology in 2009 [8]. Later on, Hi-C and other chromatin conformation capture (3C)-

derived technologies (e.g., capture Hi-C, ChIA-PET, PLAC-Seq, and HiChIP) have been widely

used and great strides have been made to link chromatin interactome to mechanisms of transcrip-

tional regulation and complex human diseases, including autoimmune diseases, neuropsychiatric

disorders and cancers [56, 57, 58].

Recent studies have shown that interactomes are highly dynamic across tissues, cell types,

cell lines, experimental conditions, environmental triggers, and/or biological samples [2]. Better

characterization of such interactomic dynamics will substantially advance our understanding

of transcription regulation across these conditions. To achieve this goal, one could use methods

developed for a single sample (for brevity, we use samples to denote multiple datasets across

tissues, cell types, cell lines, experimental conditions, etc). However, such uni-sample analysis
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would fail to borrow information across samples, thus losing information for shared features, as

well as resulting in false positives for sample-specific features. Presumably, as shown in eQTL

analysis, shared (among at least two cell types) features typically contribute to a considerable

proportion and increase with the number of cell types measured [59]. For delineating shared and

sample-specific features, Bayesian modeling has been shown repeatedly to boast the advantage

of adaptively borrowing information such that little power loss incurs for sample-specific fea-

tures while the power to detect shared features increases substantially, as demonstrated in many

genomic applications including gene expression, GWAS, ChIP-seq, population genetics, and

microbiome [60, 61, 62].

In this paper, we focus on the identification of statistically significant long-range chromatin

interactions (“peaks” for short) from Hi-C data generated from multiple samples. The primary

goal is the detection of both shared (i.e., shared by more than one sample) and sample-specific

peaks. Existing Hi-C peak calling methods, such as HiCCUPS [9], FitHiC/FitHiC2 [39] and

FastHiC [41], are all designed for calling peaks from a single sample. None of them is able to

account for unbalanced sequencing depths and heterogeneity among multiple samples in a unified

statistical framework. To fill in the methodological gap, we propose MUNIn (Multiple-sample

unifying long-range chromatin interaction detector) for multiple samples Hi-C peak calling

analysis. MUNIn adopts a hierarchical hidden Markov random field (H-HMRF) model, an exten-

sion of our previous HMRF peak caller [41]. Specifically, in MUNIn, the status of each interact-

ing chromatin loci pair (peak or background) depends not only on the status of loci pairs in its

neighborhood region but also on the status of the same loci pair in other closely related samples

(Figure 1). Compared to uni-sample analysis, the H-HMRF approach adopted by MUNIn has

the following three key advantages: (1) MUNIn can achieve lower false positive rates for the de-

tection of sample-specific peaks. (2) MUNIn can achieve high power for the detection of shared

peaks. (3) MUNIn can borrow information across all samples proportional to the corresponding

sequencing depths. We have conducted comprehensive simulation studies and real data analysis

to showcase the advantage of MUNIn over other Hi-C peak calling approaches.
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Figure 1. Statistical Schematics of MUNIn. In MUNIn, the chromatin interaction status
(illustrated with question marks) of each loci pair (i, j) in a sample depends on not only the status
of loci pairs in its neighborhood region (red blocks) but also the status of the same loci pair in
other samples. Specifically, we model sample dependency by α, where zijk, the status of the (i,
j)th pair in sample k, depends on the status of the same (i, j)th pair in the other K-1 samples,
given by the formula shown in the figure. Dependency on neighboring loci pairs is captured by
the hierarchical Ising prior. See Methods and Appendix A for details.

2.2 Materials and methods

2.2.1 Overview of statistical modeling of MUNIn

Let xijk and eijk represent the observed and expected chromatin contact frequency spanning

between bin i and bin j in sample k p1 ď i ă j ď N, 1 ď k ď Kq, respectively, where N is

the total number of bins, and K is the total number of samples. eijk is pre-calculated by FitHiC.

Briefly, FitHiC uses a non-parametric approach to estimate the empirical null distribution of con-

tact frequency (Appendix A). We assume that xijk follows a negative binomial (NB) distribution

with mean µijk and over-dispersion ϕk:

logpµijkq “ logpeijkq ` I pzijk “ 1q θk.

Here zijk P t´1, 1u is the peak indicator for bin pair pi, jq, where zijk “ 1 indicates that

pi, jq is a peak in sample k and zijk “ ´1 if it is a background. θk is the signal-to-noise ra-
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tio in sample k. In other word, if pi, jq is a peak in sample k, xijk follows the NB distribution

NBpeijk ˚ exp tθku , ϕkq. If pi, jq is a background (i.e., non-peak) in sample k, xijk follows the NB

distribution NBpeijk, ϕkq.

Then, we use a Bayesian approach for statistical inference and assign priors for all parame-

ters (zijk, θk, ϕk). Specifically, we adopt a hierarchical Ising prior to simultaneously model spatial

dependency among zijk’s within the same sample (i.e., for zijk, borrowing information from

zi1j1k : t|i
1

´ i| ` |j
1

´ j| “ 1u), and the dependency across samples for the same pair (i.e.,

borrowing information from zijk1 with k1

P t1, . . . , k ´ 1, k ` 1, . . . , Ku). First of all, to model

spatial dependency of peak indicator within sample k, we assume that

p ptzijku1ďiăjďN |ψk, γkq “ C pγk, ψkq˚exp

$

&

%

γk
ÿ

1ďiăjďN

Ipzijk “ 1q ` ψk
ÿ

|i1 ´i|`|j1
´j|“1

zijk ˚ zi1j1k

,

.

-

,

where ψk ą 0 is the inverse temperature parameter modeling the level the spatial dependency

in sample k, γk models the peak proportion in sample k, and C pγk, ψkq is the normalization con-

stant. In addition, we model the heterogeneity of peak status for a given bin pair pi, jq among

multiple samples, where the vector zij¨ fi pzij1, zij2, . . . , zijKq can take 2K possible configura-

tions. We model them using a multinomial distribution

Multp1, αq fi Multp1, αt´1,´1,...,´1u, αt1,´1,...,´1u, . . . , αt1,1,...,1uq.

Here αt´1,´1,...,´1u is the probability that the pi, jqth pair is background in all K samples,

αt1,´1,...,´1u is the probability that the (i, j)th pair is a peak in the first sample, but a background

in all the other K ´ 1 samples, and similarly αt1,1,...,1u is the probability that the (i, j)th pair is a

peak in all K samples. Let nzij¨ represent the frequency of a specific configuration αzij¨ . The joint

distribution is given by

p
´

tzij¨u1ďiăjďN |α
¯

“
ź

zij¨Pt´1,1u
K

α
nzij¨
zij¨ .
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In this prior distribution, the peak probability of the pi, jqth pair in sample k depends on the

status of the same pi, jqth pair in the other K ´ 1 samples:

p pzijk|zij,´k, αq “
αtZij1,...,Zijk,...,ZijKu

αtZij1,...,Zijk,...,ZijKu ` αtZij1,...´Zijk,...,ZijKu

.

From the Bayes rule, we have the joint posterior distribution as

P pzijk, θk, ϕk, ψk, γk|xijk, eijkq 9P pxijk|eijk, zijk, θk, ϕkq ˚ P pzijk|ψk, γk, αq ˚ Prior pθkq ˚

Prior pϕkq ˚ Prior pψkq ˚ Prior pγkq .

We use uniform prior distributions for θk, ϕk, ψk, γk, which are initialized from estimates

from the uni-sample analysis in our implementation (Appendix A). One key computational

challenge is that in the proposed hierarchical Ising prior, the normalization constant involving ψk,

γk, and α is computationally prohibitive, since evaluating such a normalization constant requires

evaluating all 2K˚NpN´1q{2 possible configurations of the peak indicators tzijku. To address this

challenge, we adopt a pseudo-likelihood approach, using the product of marginal likelihood to

approximate the full joint likelihood. We have shown that such approximation leads to gains in

both statistical and computational efficiency in our previous work [41].

Let tz´i,´j,ku denote the set tzi1j1k|i
1

‰ i, j
1

‰ ju and tzij,´ku denote the set tzijk1 |k1 ‰ ku,

the posterior probability can be approximated by

p ptzijku|ψk, γk, αq 9
śK

k“1

ś

1ďiăjďN p pzijk|tz´i,´j,ku, ψk, γkq ˚ p pzijk|tzij,´ku, αq .

We use the Gibbs sampling algorithm to iteratively update each parameter. Details of statisti-

cal inference can be found in Appendix A.

2.2.2 Simulation framework

To benchmark the performance of MUNIn, we first performed simulation studies with three

samples, where each sample represents a cell type, considering two scenarios: 1) all three sam-

ples had the same sequencing depth, and 2) the sequencing depth in sample 3 was half of that
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in sample 1 and sample 2. Each simulated sample consisted of a 100 ˆ 100 contact matrix. To

control the level of sample dependency, we first simulated the peak status for one “hidden” sam-

ple using the Ising prior, where ψk was set to 0.2 and γk was set to t0, -0.02, -0.05, -0.2, -0.4u,

respectively. 10,000 Gibbs sampling steps were carried out to update the peak status. The level of

sample dependency is modeled by p0 “ P pzijk “ 0|zijk1 “ 0q and p1 “ P pzijk “ 1|zijk1 “ 1q.

The peak status of the three testing samples was simulated from the hidden sample following

three different sample-dependence levels p0 “ p1 “ 0.5, 0.8, or 0.9, where p0 “ p1 “ 0.5

indicates the peak status of three samples are independent, while p0 “ p1 “ 0.8or0.9 indicate

the peak indicators of three samples are of median and high correlation. To simulate Hi-C data

with an equal sequencing depth, we specified the expected contact frequency for the bin pair

pi, jq to be inversely proportional to the genomic distance between two interacting anchor bins,

following the same formula in each sample k (note the formula does not depend on k), where

eijk “ 40
j´i

p1 ă i ă j ă 100q, To simulate Hi-C data with different sequencing depths, we

defined the expected count for bin pair pi, jq in sample 3 as eij3 “ 20
j´i

p1 ă i ă j ă 100q. Next,

we simulated observed counts from a negative binomial distribution:

NB
´

eijkexp
!

θkpZijk`1q

2

)

, ϕk

¯

.

Here, the signal-to-noise ratio parameter θk and the over-dispersion parameter ϕk were set to

be 1.5 and 10, respectively.

Simulations under each scenario were performed 100 times with different random seeds. We

then applied both MUNIn and the uni-sample analysis using the single-sample HMRF model

(Appendix A) on simulated data of each scenario and compared to the ground truth. Performance

was evaluated by ROC curves using the pROC package [63], the overall percentage of error

in peak status zijk, power, and type I error for four types of peak status (i.e., shared, sample1-

specific, sample2-specific, and sample3-specific peaks), respectively.
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2.2.3 Performance evaluation

To evaluate the performance of MUNIn in real data, we first compared MUNIn to the uni-

sample analysis of two biological replicates of Hi-C data from human embryonic stem cells at

10kb resolution [64] (Table A1), where the peak status is expected to be highly similar. For each

biological replicate, both methods were implemented for peak calling within each topologically

associating domain (TAD) of chromosome 1, where TADs were directly obtained from the orig-

inal paper defined by the insulation score [64]. To measure the consistency between these two

replicates, we computed the Adjusted Rand Index (ARI) [65] for the peak status within each

TAD.

Additionally, we also analyzed Hi-C data from two different cell lines, GM12878 and IMR90

at 10kb resolution [9] (Table A1), again using both MUNIn and uni-sample analysis. Analy-

ses were performed with each TAD in all chromosomes. Since some TAD boundaries are dif-

ferent between GM12878 and IMR90, we first defined overlapping TAD regions as the TADs

shared between two two samples and only retained shared TADs spanning at least 200kb for the

downstream analysis. Sample dependency was inferred for each TAD based on results from the

uni-sample analysis. Since there is no ground truth for peaks, we selected significant chromatin

interactions (p-value ă 0.01 and raw interaction frequency ą 5) identified by promoter-capture

Hi-C (PC-HiC) [66] in GM12878 and IMR90 cell lines as the working truth (Table A1). Since

significant interactions identified from PC-HiC data are enriched of promoters, we filtered our

significant peaks to retain only bin pairs where at least one of the two bins overlaps with a pro-

moter region. Detailed evaluation framework can be found in Appendix A. We did additional

performance evaluation by running MUNIn by a sliding window approach instead of shared

TADs, and also performed peak calling on samples under different conditions from mouse embry-

onic stem cells for both wild-type (without CTCF depletion) and after CTCF deletion resolution

[67] (Table A1; Appendix A).
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2.3 Results

2.3.1 Simulation results

To evaluate the performance of MUNIn, we conduct simulation studies with three samples,

considering two scenarios: (1) all three samples have equal sequencing depth, and (2) the se-

quencing depth in sample 3 is half of that in sample 1 and 2. In both scenarios, MUNIn outper-

forms uni-sample analysis (Figures 2-3; Figures A1-A4). In the first scenario, when all three

samples are independent (p0 “ p1 “ 0.5), MUNIn achieves comparable results to the uni-sample

analysis, where the medians of the overall error rate (denoted as “%error”) in peak identification

of MUNIn range from 16.3 to 16.4% and those of uni-sample analysis range from 17.2 - 17.3%

(Figure 2a). With increased sample dependency, MUNIn achieves a lower %error than uni-

sample analysis. With a higher sample dependency, MUNIn reduces %error by approximately

30.3% on top of uni-sample results (11.9 - 12.0% for MUNIn and 17.0 - 17.2% for uni-sample

analysis) (Figure 2a). We then assessed the power and type I error for detecting shared and

sample-specific peaks by MUNIn and uni-sample analysis. When three samples are highly cor-

related, MUNIn has substantial power gain in shared peaks across samples than the uni-sample

analysis (85.9% vs. 54.1%; Figure 2c), at the cost of a mild increase in error rate (20.6% vs.

9.1%; Figure 2d). In addition, MUNIn reduces the type I error in calling sample-specific peaks

by 33.1 - 34.3% on top of uni-sample results (45.5 - 46.3% vs. 69.3 - 69.5%; Figure A1a), at

the cost of power loss (36.4 - 37.1% vs. 57.3 - 58.5%; Figure A1b). The ROC curves show that

MUNIn better detects shared peaks than uni-sample analysis (Figure 2b), and these two methods

performed comparably in sample-specific peaks (Figure A2).

Furthermore, when three samples have different sequencing depths, we observe consistent

patterns that MUNIn outperforms uni-sample analysis, especially for sample 3 with a shallower

sequencing depth (Figure 3; Figures A3-A4). Similar to scenario 1, the ROC curves show that

MUNIn exhibits better performance in shared peaks (Figure 3b). Consistently, MUNIn substan-

tially improves the power in calling shared peaks than the uni-sample analysis (84.0% vs 48.2%
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by MUNIn and uni-sample analysis, respectively) with a mild increase of type I error (22.7% vs

11.4%) (Figure 3c; Figure 3d). More importantly, MUNIn achieves 36.2% reduction of %error

for sample 3 with shallower sequencing depth on top of the uni-sample analysis results with high

sample dependence (15.7% vs 24.6%; Figure 3a). MUNIn also attains a lower type I error in

calling sample3-specific peaks (51.1% vs 74.4%) with a loss in power (26.7% vs 48.1%) (Figure

A3a; Figure A3b). These results indicate that MUNIn can accurately identify peaks in the shal-

lower sequenced sample by borrowing information from deeper sequenced samples. We further

evaluated the robustness and scalability of MUNIn using simulated data where we evaluated

results with non-zero γk’s and an increased sample size (Appendix A; Figure A5 and A6).

2.3.2 Real data analysis

To assess the performance of MUNIn in real data, we compare the consistency of peak status

between two replicates of human embryonic stem cells between MUNIn and the uni-sample anal-

ysis. Comparatively, ARI values of MUNIn are significantly higher than those of the uni-sample

analysis (Wilcoxon test, p-value ă 2.2e-16; Figure 4; Figure A7). Specifically, the median value

of ARI in MUNIn is 0.993, which shows a 48.9% improvement over the uni-sample analysis

(Figure A7), suggesting an improved consistency between two replicates by MUNIn.

We further compare the accuracy of peak calling in GM12878 and IMR90 cell lines between

MUNIn and the uni-sample analysis. In total, 439,412 and 432,394 shared peaks are detected

by MUNIn and uni-sample analysis, respectively, where 376,658 of them are shared by both

methods (85.7 and 87.1% of the shared peaks identified MUNIn and uni-sample analysis, respec-

tively) (Figure A8a). In addition, 217,400 and 82,614 GM12878 and IMR90-specific peaks are

identified by MUNIn, while 315,849 and 141,708 GM12878 and IMR90-specific peaks are de-

tected by uni-sample analysis. Among them, 77.5 and 75.7% of GM12878- and IMR90-specific

peaks called by MUNIn are also identified by the uni-sample analysis (Figure A8b and c). The

ROC curves show that MUNIn obtains more accurate results for both GM12878 and IMR90-

specific peaks (Figures 5a and d), while its performance in shared peaks is comparable to the
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Figure 2. Performance comparison between MUNIn and uni-sample analysis in the
simulation data where all three samples have equal sequencing depth. (a) The overall error
rate (denoted as “%error”) in peak identification in each sample using MUNIn and uni-sample
analysis. (b) ROC curves for shared peaks identified by MUNIn and uni-sample analysis. (c)
Power for the shared peaks identified using MUNIn and uni-sample analysis. (d) False positive
rate for the shared peaks identified by MUNIn and uni-sample analysis.
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Figure 3. Performance comparison between MUNIn and uni-sample analysis in the
simulation data where the sequencing depth in sample 3 is half of that in samples 1 and 2.
(a) The overall error rate (denoted as “%error”) in peak identification in each sample using
MUNIn and uni-sample analysis. (b) ROC curves for shared peaks identified by MUNIn and
uni-sample analysis. (c) Power for the shared peaks identified using MUNIn and uni-sample
analysis. (d) False positive rates for the shared peaks identified by MUNIn and uni-sample
analysis.
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uni-sample analysis (Figure A9). The area under the curve (AUC) for GM12878 and IMR90-

specific peaks of MUNIn increases by 3.0% and 4.5%, respectively (Figure 5a and d). One

example of a GM12878-specific peak exclusively identified by MUNIn is shown in Figure 5b

(Figure A10). One bin of this pair is overlapped with the promoter of the ZNF827 gene (tran-

scription start site (TSS) +/- 500 bp), while the other bin is overlapped with a known typical

enhancer in GM12878 cells (Figure A11) [13]. In addition, ZNF827 shows a higher gene ex-

pression in GM12878 cells than in IMR90 cells (Figure 5c), which further suggests the potential

role of this GM12878-specific peak in a cell-type-specific transcriptional regulation gene. Sim-

ilarly, the MUNIn-exclusively identified peak between bins chr4:95,000,000-95,010,000 and

chr4:95,170,000-95,180,000 is specific to IMR90, which is involved in the regulation of the F3

gene (Figure 5e; Figure A12). F3 encodes the tissue factor coagulation factor III and is usu-

ally expressed in the fibroblasts surrounding blood vessels. Consistently, we observed a higher

expression level of F3 in IMR90 cells than in GM12878 cells (Figure 5f). Additional real data

evaluation also showed the value of borrowing information across samples where we compared

MUNIn to uni-sample analysis and FitHiC (Appendix A; Figure A13-A17).
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Figure 4. Adjusted Rand Index (ARI). The consistency of peak calling by MUNIn and
uni-sample analysis between the two replicates of human embryonic stem cells. Each triangle
represents a TAD. The x- and y-axis: ARI of uni-sample analysis and MUNIn, respectively.

2.4 Discussion

In this study, we present MUNIn, a statistical framework to identify long-range chromatin

interactions for Hi-C data from multiple tissues, cell lines, or cell types. MUNIn extends previ-

ously developed methods HMRF peak caller and FastHiC to jointly model multiple samples and

explicitly account for the dependency across samples. It simultaneously accounts for both spatial

dependency within each sample and dependency across samples. By borrowing information in

both aspects, MUNIn can enhance the power of detecting shared peaks, and reduce the type I

error of detecting sample-specific peaks.

In our real data analysis, we ran MUNIn in shared TADs across samples instead of the whole

chromosomes. We realized that regions outside of TADs or TADs that are not shared across sam-

ples may contain sample-specific peaks, therefore we re-ran the analysis including those regions

by a sliding window approach (Figure A13; Appendix A). Our results suggested that includ-

ing those regions did not have a significant impact of the performance of MUNIn (Figure A13).

Additionally, we assessed MUNIn’s performance on the Hi-C datasets from mouse embryonic
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Figure 5. Performance comparison between MUNIn and uni-sample analysis in the Hi-C
data of GM12878 and IMR90 cell lines. (a) ROC for GM12878-specific peaks identified by
MUNIn and uni-sample analysis. (b) Heatmap showing one example of the GM12878-specific
peaks in GM12878 (left) and IMR90 (right) Hi-C data. One bin of this pair (highlighted in black)
is overlapped with the promoter of ZNF827 gene (transcription start site (TSS) +/- 500 bp), while
the other is overlapped with a known typical enhancer (chr4:146,975,287-146,985,319) in
GM12878 cells. The Gene model is obtained from the WashU epigenome browser
(PMID:31165883) (c) Gene expression profiles of ZNF827 in GM12878 and IMR90 cells. (d)
ROC for IMR90-specific peaks identified by MUNIn and uni-sample analysis. (e) Heatmap
showing one example of the IMR90-specific peaks in GM12878 (left) and IMR90 (right) Hi-C
data. One bin of this pair (highlighted in black) is overlapped with the promoter of the F3 gene,
while the other is overlapped with a known typical enhancer (chr1:227,980,777-227,982,835) in
IMR90 cells. Gene mode is obtained from the WashU epigenome browser. (f) Gene expression
profiles of F3 gene in GM12878 and IMR90 cell lines.
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stem cells for both wild-type (without CTCF depletion) and after CTCF deletion at 10kb resolu-

tion (Table A1). The results showed that MUNIn better captured the wild-type-specific pattern

in mESC Hi-C data than uni-sample analysis and FitHiC (Figure A14 and A15; Appendix A),

demonstrating the power of MUNIn to reveal peaks more powerfully and accurately by borrow-

ing information from another sample.

Taking the advantage of jointly modeling multiple samples, MUNIN can easily accommo-

date many more samples simultaneously. MUNIn shows a high computational efficiency that

MUNIn takes „36 minutes to perform peak calling in a 2MB TAD of 10kb resolution (Figure

A16 and A17; Appendix A). Moreover, MUNIn is able to handle multiple samples with differ-

ential levels of dependency, for example, when samples forming clusters where samples within

a cluster are more correlated than those across clusters. The MUNIn framework can be further

extended to accommodate time series chromatin conformation data, which will be explored in our

future work. Although MUNIn simultaneously models multiple samples, we note that the goal is

to detect chromatin interactions of various peak status configurations across samples, rather than

differential interactions. Theoretically, while the posterior probabilities of the peak status configu-

rations can inform differential interactions, it is not our objective here and can be a direction for

further exploration.

Results show the advantages of MUNIn over the uni-sample approach when analyzing data

from multiple samples. By adaptively borrowing information both within and across samples,

MUNIn can achieve improved power in detecting shared peaks, and reduced type I error in de-

tecting sample-specific peaks. MUNIn’s ability to reduce false positive sample-specific peak calls

due to imbalanced sequencing depths across samples is also appealing. Finally, MUNIn can more

effectively identify biologically relevant chromatin interactions with better sensitivity than the

uni-sample strategy. We anticipate that MUNIn will become a convenient and essential tool in the

analysis of multi-sample chromatin spatial organization data.
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CHAPTER 3: A GWAS TO STUDY COGNITIVE IMPAIRMENT AMONG PRETERM CHIL-
DREN

3.1 Introduction

Extreme prematurity (birthă28 weeks of gestation) remains one of the leading causes of

neonatal morbidity and mortality in the US [68]. Although survival rates for infants born ex-

tremely preterm have improved dramatically in recent decades, children born extremely preterm

remain at higher risk for cognitive impairment, with lower average general intelligence and ex-

ecutive function deficit [69, 70, 71, 72, 73] and 9-fold higher risk of severe cognitive impairment

compared to children born full-term [74, 75, 76, 77, 78, 79, 80].

Despite substantial research efforts to understand neurodevelopment outcomes, we know

remarkably little about genetic factors and molecular mechanisms influencing cognitive func-

tion in preterm children. Some genetic studies have evaluated genetic risk factors for neurode-

velopmental outcomes for preterm children or children with low birth weight [81, 82, 83, 84].

However, previous studies do not explain the pathways through which genetic variants or genes

might influence the risk of poor cognitive outcomes, and few genome-wide association studies

(GWAS) examined the genomic regions associated with cognitive function among children born

extremely preterm. Therefore, identifying genetic factors that are associated with children’s cog-

nitive function and understanding related mechanisms are necessary to develop earlier screening

assessments and effective precision interventions and understand why some preterm children of

the same gestational age do worse than others. To advance along these directions, we utilized

samples from the Extremely Low Gestational Age Newborns (ELGAN) cohort [85], the largest

US-based study of children born extremely preterm, to identify genetic factors associated with

cognitive impairment at age 10 years. Integrative analysis with brain expression quantitative trait
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loci (eQTL) and chromatin interactome data was performed to identify potential causal variants

and functional genes underlying the GWAS associations.

3.2 Methods

3.2.1 Study participants

ELGAN is a multicenter cohort study originally designed to identify exposures increasing

the risk of structural and functional neurologic disorders in children born extremely preterm [85].

We included 528 children in the ELGAN2 cohort born before the 28th week of gestation who had

genotype data available for analysis. Table B1 summarizes demographic information for study

participants (Appendix B).

3.2.2 Cognitive function at age 10 years

Cognitive function at age 10 years was assessed with Latent Profile Analysis (LPA) [86],

which empirically identifies subgroups of children who share similar profiles on a set of measures.

The LPA included 9 cognitive measures including verbal and nonverbal IQ and several measures

of executive function (EF). LPA classifies subjects who share a similar pattern of scores on the

measured variables while maximizing the difference in scoring patterns across distinct profiles

[87]. It assigns subjects to a finite number of profiles by identifying the most likely model that

describes the heterogeneity of data, which is known as finite mixture models. For our analysis,

we used a binary classification that grouped participants into two previously validated distinct

profile groups (LPAx) [86]: no or low cognitive impairment and moderate-to-severe cognitive

impairment.

3.2.3 Genome-wide association analysis

Quality control and genotype imputation are described in Appendix B. For the association

analysis, we used EPACTS 3.3.0 [88] for single variant association testing. To account for the re-
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latedness among samples, we used the EMMAX (Efficient Mixed Model Association eXpedited)

test [89], which is an efficient implementation of mixed model association accounting for sample

structure including population structure and hidden relatedness. Biallelic SNPs with MAFą2%

(did not account for relatedness) and Rsqą0.8 were included in the analysis. In total, 8,535,130

variants were included in the association analysis. For the 528 samples that had genotype and

covariates data available, we inferred the kinship matrix using EPACTS and the top 10 principal

components (PCs) from the genotype data using PLINK. We performed the association test on

the outcome LPAx, a binary outcome that classifies children into no or low cognitive impairment

and moderate-severe cognitive impairment groups. The covariates for the single variant associa-

tion analysis included gestational age, maternal education, maternal race, sex of the infant, and

top 10 PCs.

3.3 Results

3.3.1 Association analysis results

We conducted a GWAS on LPAx of 528 samples from the ELGAN2 cohort. We identified

two genome-wide significant loci from the 8,535,130 variants tested: STX18 and TEAD4, which

are located on chromosome 4 and chromosome 12, respectively (Figure 1). The index SNPs

are rs79453226 (MAF“0.036) and rs11829294 (MAF“0.145) at the STX18 and TEAD4 loci,

respectively. Table 1 shows genome-wide significant variants.

3.3.2 Functional annotations

To further investigate the two loci identified for potential mechanisms, we examined several

functional annotation metrics, including the CADD phred score [91] and the fathmm MKL score

[92]. We also looked at the Genehancer feature [93] and the genes predicted by Genehancer.

Table B2 shows functional annotations for variants that passed the genome-wide significant p-

value threshold (p-valueă5e-8) (Appendix B). We observed that variants rs9424366, rs79946490,
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Figure 1. Manhattan plot The Manhattan plot visualizes the association of SNPs along the
genome with the LPAx trait. The X-axis represents the genomic location and the y-axis
represents -log10(p-value). Each dot represents a SNP tested. SNPs above the red horizontal line,
which marks the 5ˆ10-8 are considered genome-wide significant. This plot was generated using
the R package karyoploteR [90]. NCBI build 38.

rs58545250, and rs17031018 were among the top 10% most deleterious in the human genome,

and variant rs16913588was predicted to be deleterious (with a fathmm MKL score of 0.97).

Several variants were assigned by Genehancer as falling into enhancer regions with target genes

TSPAN9, ITPR1, and CLIC4. These results provide evidence that some of the variants might

have deleterious effects that are relevant to neurocognitive development in preterm children and

suggest additional genes that might be functionally related.

3.3.3 Chromatin interactions

We examined chromatin conformation data for additional functional implications based on

physical contacts from Hi-C and alike technologies. Figure 2 shows virtual 4C plots generated

by HUGIn2 [13] for the top two loci in adult cortex and fetal cortex Hi-C data [58]. We examined

˘500kb regions around each locus and observed significant chromatin interactions between the

putative regulatory regions (harboring GWAS variant(s)) and promoters of likely causal or ef-

fector genes. Specifically, the variant rs79453226 at the STX18 locus was linked to the promoter

regions of several genes, including STX18 and NSG1 (Figure 2a), and the variant rs12322215(p-
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Table 1 Significant association results for LPAx. Ordered by significance. ˚: NCBI build 38

rsID Chr˚ Position˚ REF ALT P-value MAF Locus Effect size (s.e.)

rs79453226 chr4 4483114 G C 1.91e-08 0.036 STX18 (intron) 0.421 (0.074)

rs11829294 chr12 3014153 C T 2.40e-08 0.145 TEAD4 (intron) -0.231 (0.041)

rs10774094 chr12 3014630 C A 5.21e-08 0.160 TEAD4 (intron) -0.214 (0.039)

value“1.08e-07) in high LD with the lead SNP rs11829294 (LD r2=0.88) at the TEAD4 locus

was linked to a number of genes including TSPAN9 and PRMT8 (Figure 2b).

3.3.4 Overlapping with brain eQTL

Next, we investigated whether we could find any brain eQTL signals among the top variants.

We examined all variants with LD with variants that passed the suggestive p-value threshold (p-

value ă1e-6) using LD calculated from TOPMed European ancestry samples. Table B3 shows

variants overlapped with commonMind eQTL [94] with FDRă5% (Appendix B). Multiple brain

eQTLs for PRMT8 on chromosome 12 in LD with the index SNP rs11829294 were identified.

3.4 Discussion

Leveraging an LPA-derived phenotype and genetics data, we identified two genome-wide sig-

nificant loci in our genome-wide association analysis for LPAx (a data-derived cognitive impair-

ment outcome): TEAD4 (rs11829294, p-value“2.40e-8) and STX18 (rs79453226, p-value“1.91e-

8). We utilized chromatin conformation data from multiple human cell lines and primary tissues

to see whether there are significant chromatin interactions between the two genome-wide signifi-

cant loci and their neighboring regions. In the adult cortex and fetal cortex, we found that variant

rs12322215 (p-value“1.08e-07) in high LD with rs11829294 (r2“0.883) is linked to promoter

regions of a few genes including TSPAN9 and PRMT8 (Figure 2). Furthermore, the association

at the TEAD4 locus rs11829294 and a few other variants that showed suggestive significance

at the same locus were assigned by Genehancer as falling into the enhancer region of TSPAN9

(Table B2). We also observed TSPAN9 is highly expressed in both the adult cortex and fetal

cortex but not in the hippocampus, and we did not observe similar chromatin interactions in the
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hippocampus. These pieces of evidence suggest the potential regulatory role of rs11829294 and

its LD buddies on the TSPAN9 gene that could impact cognitive development among children

born extremely preterm.

We also performed an integrative analysis with brain eQTL to identify potential functional

genes underlying the genome-wide significant association. A few brain eQTL for PRMT8 were

found to be in high LD with rs11829294 (Table B3). Along with the evidence that variant rs12322215

is linked to the promoter region of PRMT8, we conclude that PRMT8 is another biologically plau-

sible gene regulated by eQTL at the TEAD4 locus that could have potential effects on cognitive

impairment among preterm children. For rs79453226, we found that it is linked to promoter re-

gions of STX18 and NSG1 (Figure 2). We did not find as much evidence for the STX18 locus

supporting the significant association as for the TEAD4 locus.

One limitation of our analysis is that our results may not be generalizable to children who

are not extremely premature. Another issue is the small sample size, although we were able to

impute most variants well, it limits the statistical power of the association analysis. The few

genome-wide significant single variant associations we found, and the non-statistically significant

heritability estimate also suggest the need for better-powered analyses (Appendix B). It is also

possible that variants included in our analyses are in low or moderate LD with true causal vari-

ants which are rare and cannot be well-imputed in the ELGAN2 cohort. While ELGAN2 is the

largest cohort with genotype and long-term cognitive assessment for extremely preterm children

currently available in the US, in the future we hope to study a larger population with longitudinal

data of cognitive function, to investigate whether there are genetic variants that interact with peri-

natal and neonatal immune factors to increase the risk for development of trajectories of impaired

cognitive function.
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Figure 2. Virtual 4C plots centered at (a) rs79453226 (b) rs12322215 in the adult cortex and
fetal cortex. The bin containing the anchor position is indicated as a thick grey vertical bar. On
the top is gene expression data with gene locations. Each gene is indicated by an arrow pointing
in the direction of transcription. The start site is indicated by the tail of the arrow. On the bottom
is the chromatin interaction Hi-C data that is plotted as a virtual 4C plot with the given anchor
position. The black line shows the observed counts, the red line shows the expected counts, and
the blue line shows the -log10(p-value). The range of the -log10(p-value) is plotted on the y-axis
on the right while the range of the count data is shown on the left. The x-axis is the genomic
location in Mb. NCBI build 37.
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CHAPTER 4: SNAPHiC-G: IDENTIFYING ENHANCER-PROMOTER INTERACTIONS
FROM SCHI-C DATA

4.1 Introduction

As discussed in Section 1.2, single-cell Hi-C and its derived co-assays, such as sc-methyl-Hi-

C and sn-m3c-seq, provide powerful tools to measure spatial proximity between cis-regulatory

elements and their target genes in individual cells. The recent work SnapHiC [95] and SnapHiC2

[96] perform data imputation by RWR first and then combine global and local background mod-

els to identify chromatin loops from single cells of the same cell type. While being the first and

only existing method to detect chromatin loops from scHi-C data, most SnapHiC-identified chro-

matin loops are CTCF-anchored structural loops due to the local background model, while the

sensitivity to identify enhancer-promoter interactions is relatively low. Currently, no method

exists for explicitly identifying enhancer-promoter interactions from scHi-C data.

To fill this gap, we propose SnapHiC-G, a new computational approach based solely on a

global background model to identify long-range enhancer-promoter interactions from scHi-C

data. We applied SnapHiC-G to re-analyze scHi-C datasets generated from mouse embryonic

stem cells (mESCs) and human brain cortical cells. We showed that SnapHiC-G outperformed

SnapHiC and existing methods designed for bulk Hi-C data, achieving higher sensitivity with

comparable precision in identifying long-range enhancer-promoter interactions.

4.2 Results

4.2.1 Overview of the SnapHiC-G algorithm

The SnapHiC-G algorithm consists of four components: (i) imputing chromatin contact prob-

abilities in every single cell, (ii) distance-stratified normalization of imputed contact probabilities,
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(iii) filtering candidate bin pairs, and (iv) identifying statistically significant long-range enhancer-

promoter interactions. Given single-cell contact matrices, SnapHiC-G first applies the RWR

algorithm to generate imputed contact probability matrices for every single cell using a sliding

window approach (Methods: SnapHiC-G algorithm). Next, the imputed contact probabilities are

converted into distance stratified Z-scores to account for the dependence between contact proba-

bility and the 1D genomic distance between two bins. To identify enhancer-promoter interactions,

SnapHiC-G filters bin pairs based on transcript start sites (TSS) and the available epigenetic an-

notations (e.g., H3K27ac ChIP-seq peaks or ATAC-seq peaks) to obtain a set of candidate bin

pairs that span between gene promoters and cis-regulatory regions (Methods: SnapHiC-G algo-

rithm). SnapHiC-G then defines enhancer-promoter interactions based on the global background

by applying the one-sample t-test for each tested bin pair across all single cells belonging to the

same cell type. Specifically, for each bin pair, the one-sided hypothesis test is conducted where

the null hypothesis states that the bin pairs average value of normalized contact probability across

all single cells equals zero. The alternative hypothesis states that the average normalized con-

tact probability is greater than zero. By default, bin pairs with FDRă0.1 and t-statisticsą3 are

identified as significant enhancer-promoter interactions (Methods: SnapHiC-G algorithm). In our

analysis, all scHi-C data are binned into 10Kb resolution unless stated otherwise.

4.2.2 Benchmarking with mouse embryonic stem cells (mESCs)

We applied SnapHiC, SnapHiC-G, FitHiC2, FastHiC, HiC-ACT, and HiC-DC+ single-cell

Hi-C data generated from 742 mouse embryonic stem cells (mESCs) [27], where the latter four

are methods designed for bulk Hi-C data. We aggregated single-cell Hi-C data for all cells as a

pseudo-bulk Hi-C sample as input for bulk Hi-C methods (Methods: Identification of loops/in-

teractions using other Hi-C methods). To benchmark against other methods, a reference list of

significant interactions was constructed using HiCCUPS-identified loops from deeply sequenced

bulk Hi-C data [22] and MAPS-identified significant interactions from H3K4me3 PLAC-seq [97],

cohesion HiChIP [98], and H3K27ac HiChIP data [99]. We took the union of all reference inter-
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actions and kept only bin pairs with a genomic distance between 20Kb and 1Mb for evaluation.

The same filtering step implemented in SnapHiC-G was applied to outputs from other methods to

ensure a fair comparison.

When applying to the complete set of 742 mESCs, SnapHiC-G identified notably more sig-

nificant enhancer-promoter interactions than other methods and reached a genome-wide power

of 80%, recovering most of the 38,588 interactions in the reference list (Figure 1A; Table 1).

Due to extreme data sparsity, bulk Hi-C methods missed most reference interactions without

imputing single-cell contact probabilities. FitHiC2 performed the best among other methods, call-

ing 3,476 interactions with a genome-wide power of 16%. FastHiC identified more interactions

than FitHiC2 with a lower genome-wide power of 12%. As expected, SnapHiC identified few

enhancer-promoter interactions due to the local background model. Although already tailored

for sparse scHi-C data, SnapHiC performed similarly to HiC-ACT, a global background method.

HiC-DC+ identified the fewest interactions among all methods with the lowest genome-wide

power.

Since the number of input cells is critical in scHi-C data analysis, we assessed whether

SnapHiC-G could retain its performance with fewer cells. Among all 742 mESCs, 100 mESCs

were randomly selected, and the same performance evaluation of the six methods mentioned

above was repeated. As shown in Figure 1B and Table 1, all methods had reduced power with

100 mESCs, while SnapHiC-G was least affected by the number of cells and showed more signifi-

cant power gain over other methods compared with results from 742 cells. With only 100 mESCs,

SnapHiC-G retained a genome-wide power of 61%, while all the other methods had genome-

wide power below 10%. FastHiC still performed the best among others, with 3,576 significant

interactions identified, comparable to the complete data, but the genome-wide power reduced

almost by half to 7%. On the other hand, SnapHiC reached a 3% genome-wide power with 265

loops called; however, still more sensitive than other bulk Hi-C methods.

Due to the large number of significant interactions detected by SnapHiC-G, we evaluated the

precision of identified interactions across the six methods with the same reference list. To control
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Figure 1. Power curves with (a) 742 and (b) 100 mES cells. Interactions were ranked by
significance on the x-axis and power was evaluated with the corresponding number of top
interactions. The lower right-hand corner sub-figures are zoomed-in views of the top 10,000
interactions for each method.

for the number of bin pairs compared, we ranked identified interactions in each method by their

significance (i.e., p-value for HiC-ACT or FDR for FitHiC2, HiC-DC+, SnapHiC) or posterior

probability (FastHiC) and calculated precision for the top 1,000, 2,000, 5,000, and 10,000 inter-

actions. SnapHiC-G showed a comparable or better performance in terms of precision among

the most significant interactions, even with a much larger number of interactions called (Figure

2). For example, with 742 mESCs, SnapHiC-G attained a precision of 0.93 for the top 1,000 in-

teractions, which was comparable with HiC-DC+ (0.96) and FastHiC (0.96) and substantially

higher than HiC-ACT (0.73), FitHiC2 (0.73), and SnapHiC (0.72). With 100 mESCs, SnapHiC-G

had a precision of 0.60-0.76 for the top 1,000 to 10,000 interactions. We performed the same

evaluation with three cell types from human brain cortical cells (oligodendrocytes, microglia, and

L2/3 neurons) and had similar observations (Supplementary notes; Figure C3; Figure C4). Taken

together, we have shown that SnapHiC-G had much higher sensitivity than other methods while

maintaining precision among top enhancer-promoter interactions even with a small number of

cells.
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Figure 2. Precision bar plots with (a) 742 and (b) 100 mES cells. Results shown were for the
top 1,000, 2,000, 5,000, and 10,000 interactions ranked by significance. Some bars are missing
because the number exceeds the number of interactions called by that method.

Table 1 Genome-wide power and the number of interactions called for mESCs and three brain
cell types.

742 mESCs 100
mESCs

L2/3
neurons

Microglia Oligodendrocytes

Method # of interac-
tions

Sensitivity # of inter-
actions

Sensitivity # of inter-
actions

Sensitivity # of inter-
actions

Sensitivity # of inter-
actions

Sensitivity

HiCDC+ 582 0.050 59 0.007 4359 0.283 4321 0.245 9881 0.466

FastHiC 3988 0.116 3576 0.073 6585 0.207 7852 0.245 15583 0.492

HiC-ACT 1365 0.074 53 0.005 1471 0.159 1881 0.172 9166 0.575

FitHiC2 3476 0.160 67 0.005 4019 0.298 4834 0.310 18708 0.723

SnapHiC 1070 0.076 265 0.028 2918 0.203 1766 0.147 3605 0.242

SnapHiC-G 12147 0.213 8183 0.155 23680 0.322 16590 0.346 65389 0.587
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4.2.3 Enrichment of brain eQTL-TSS pairs in human cortical cells

To evaluate the functional characteristics of SnapHiC-G-identified enhancer-promoter in-

teractions, we re-analyzed single-nucleus methyl-3C-seq (sn-m3c-seq) data from 2,869 human

prefrontal cortical cells [100]. We collected eQTL data from various sources, including eQTL

data from brain cell types released from Netherlands Brain Bank (NBB), the MS UK Tissue Bank

(UKTB), and the Edinburgh Brain Bank (EBB) [101], the CommonMind Consortium brain eQTL

data [94], and GTEx consortium v7 liver eQTL data [102] as a control sample. For sn-m3c-seq

data, cell types were classified based on DNA methylome as described in the original study. We

applied SnapHiC-G to four major cell types (astrocytes [n=338], microglia [n=323], oligoden-

drocytes [n=1038], and L2/3 neurons [n=261]) separately, where single cells from the same cell

type were pooled (Figure 3A; Table 1; Table C1). We created control bin pairs to compute the en-

richment of SnapHiC-G-identified enhancer-promoter interactions as eQTL-TSS of eGene pairs

for each cell type. Specifically, we generated a pseudo bin pair for each significant enhancer-

promoter interaction by retaining the bin with the promoter as the center but flipping the other bin

to the opposite side of the center (Methods: Enrichment of eQTL-TSS pairs). We found that the

odds for a bin pair to be an eQTL-TSS pair were significantly higher for significant interactions

than pseudo bin pairs by overlapping with true eQTL-TSS bin pairs (Figure 3A). The wide confi-

dence intervals (CI) of the odds ratios (OR) calculated from the Bryois et al. data [101] were due

to a smaller sample size to detect eQTLs compared with the CommonMind brain eQTL data (192

versus 467 brain samples, respectively). The two sets of brain eQTL data were highly consistent

in terms of the order of enrichment for the four cell types, where oligodendrocytes showed the

strongest enrichment, followed by astrocytes and microglia, and L2/3 neurons the weakest. As

expected, SnapHiC-G-identified interactions were more enriched in brain eQTLs than in liver

eQTLs. For example, the odds ratio for eQTLs from Bryois et al., CommonMind brain, and Com-

monMind liver in astrocytes were 2.35 (95% CI: 1.66 - 3.36), 1.95 (95% CI: 1.92 - 1.98), and

1.42 (95% CI: 1.29 - 1.55), respectively. These results validated the functional importance of

SnapHiC-G-identified enhancer-promoter interactions in relevant cell types and tissues.
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4.2.4 Gene expression patterns of cell-type-specific enhancer-promoter interactions

To further access the biological relevance of SnapHiC-G-identified enhancer-promoter in-

teractions, we evaluated gene expression patterns in cell-type-specific interactions from the four

brain cell types. Cell-type-specific interactions were defined as exclusively present in only one

cell type, not including those shared by two or more cell types (Figure 3B). To avoid the impact

of the number of cells in each cell type, we down-sampled astrocytes, microglia, and oligodendro-

cytes to 261 cells each to match the number of L2/3 neuron cells and identified cell-type-specific

interactions with SnapHiC-G (Methods: Down-sampling of scHi-C data). Next, we selected

genes with promoters overlapping with cell-type-specific interactions and extracted gene expres-

sion levels from RNA sequencing data from corresponding cell types [103]. As shown in Figure

4A, gene expression levels were higher for the genes from cell-type-specific enhancer-promoter

interactions in the corresponding cell type. Moreover, after removing genes that overlapped with

enhancer-promoter interactions detected by SnapHiC, a substantial number (above 65%) of the

selected genes remained. We also observed increased expression of these genes in a cell-type-

specific manner (Figure 4B). These results add another line of evidence that predicted enhancer-

promoter interactions could provide valuable information in a cell-type-specific manner on top of

the eQTL enrichment analysis.

4.2.5 Assigning GWAS variants to putative target genes

With over 90% of GWAS variants associated with human complex diseases and traits resid-

ing in non-coding regions yet enriched in cis-regulatory elements (e.g., promoters, enhancers,

silencers, and insulators), enhancer-promoter interactions have the potential to prioritize disease-

relevant genes for non-coding variants, particularly those in close spatial proximity that are far

away in the 1D genomic distance with the promoter of their target genes. To assign putative tar-

get genes to non-coding GWAS variants based on predicted enhancer-promoter interactions in

brain cell types, we collected the latest GWAS summary statistics for eight neurodevelopmental

and neurodegenerative disorders: Alzheimer’s disease (AD) [105], attention deficit hyperactivity
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Figure 3. (A) Enrichment of SnapHiC-G-identified interactions for each brain cell type in
CommonMind and liver eQTL-TSS pairs. The squares denote point estimates for odds ratios
(ORs) and the error bars denote 95% confidence intervals for ORs. OR was defined as the odds of
SnapHiC-G-identified interactions overlapping with eQTL-TSS bin pairs to the odds of pseudo
bin pairs overlapping with eQTL-TSS bin pairs. B) UpSet plot for SnapHiC-G interactions.
Number of exact overlapped interactions between four cell types: astrocytes (Astro), microglia
(MG), oligodendrocytes (ODC), and L2/3 neurons (L2/3). The interactions were identified from
261 cells from each cell type. The UpSet figure is generated using the R package UpSetR [104].
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Figure 4. Cell-type-specific gene expression showing violin plots of RNA-seq expression
levels (log2(FPKM+1) value) for selected genes. (A) Genes overlapping with cell-type-specific
SnapHiC-G enhancer-promoter interactions. (B) Genes overlapping with cell-type-specific
SnapHiC-G enhancer-promoter interactions, and those overlapping with enhancer-promoter
interactions detected by SnapHiC were subsequently removed. P-values were calculated from
paired Wilcoxon signed-rank tests. Gene expression outliers for each cell type were removed for
visualization.
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disorder (ADHD) [106], autism spectrum disorders (ASD) [107], bipolar disorder (BP) [108],

schizophrenia (SCZ) [109], Parkinson’s disease (PD) [110], major depressive disorder (MDD)

[111], and neuroticism (NEU) [112], and two complex traits: educational attainment (EDU)

[113] and intelligence quotient (IQ) [114]. We again focused on cell-type-specific enhancer-

promoter interactions to predict target genes in a cell-type-specific manner using down-sampled

sn-m3c-seq data. Specifically, SnapHiC-G identified 137,418, 154,261, 157,181, and 236,802

enhancer-promoter interactions in astrocytes, microglia, oligodendrocytes, and L2/3 neurons,

respectively (Table 2). After excluding interactions shared among cell types, 14,440, 39,220,

23,853, and 65,819 cell-type-specific interactions were left correspondingly. To facilitate the

interpretation of the GWAS variants, we focused on non-coding GWAS variants that reside in an

active enhancer region in astrocytes, microglia, oligodendrocytes, or L2/3 neurons [115]. When

matching GWAS variants and SnapHiC-G results, for each cell-type-specific enhancer-promoter

interaction, we required that one bin contains GWAS variant(s) and the other bin overlaps with

a genes TSS, and we annotated this gene as the putative target gene. Furthermore, we required

that the corresponding gene is highly expressed (FPKM ą1) in this cell type and lowly expressed

(FPKM ď1) in the other three cell types. We found 35, 82, 7, and 98 matched enhancer-promoter

interactions (222 in total) for astrocytes, microglia, oligodendrocytes, and L2/3 neurons, respec-

tively, and resolved over 600 SNP-disease associations (Table 2). Moreover, the average number

of target genes for each variant was close to 1, much smaller than the number of nearby genes (+/-

1 Mb region), ranging from 25 to 83. For example, in astrocytes, the average number of target

genes and nearby genes per variant were 1.1 and 38.3, respectively. These results showed that we

could pinpoint target genes of non-coding variants in a cell-type-specific manner by integrating

SnapHiC-G-identified enhancer-promoter interactions with GWAS results.

4.2.6 Examples of cell-type-specific enhancer-promoter interactions

From the 222 matched cell-type-specific enhancer-promoter interactions mentioned in the

previous section, we were able to map a GWAS variant residing in an active enhancer with the
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Table 2 Summary of SnapHiC-G interactions for each brain cell type. SnapHiC-G interactions:
number of interactions identified from SnapHiC-G; cell type-specific interactions: number of
interactions identified only in this cell type and not in any other three cell types; matched
interactions: number of cell type-specific interactions with one bin containing the GWAS SNP
residing in an active enhancer while the other bin overlapping with a gene’s TSS and the
corresponding gene is highly expressed (FPKM ą 1) in this cell type and lowly expressed
(FPKM ă“ 1) in other three cell types; unique GWAS SNPs: number of unique SNPs contained
in the matched interactions; SNP-disease associations: number of GWAS disease-SNP
associations in the matched interactions; the average number of target genes per GWAS SNP:
average number of targeted genes for each GWAS SNP based on the matched interactions; the
average number of (+/- 1 Mb) genes per GWAS SNP: average number of nearby genes (within 1
Mb) for each GWAS SNP.

SnapHiC-G
Interactions

Cell-Type-
Specific
Interactions

Matched
interactions

Unique
GWAS
SNPs

SNP-Disease
Associations

Avg.# of
Target
Genes
per SNP

Avg.# of
+/- 1Mb
Genes
per SNP

Astrocyte 137,418 14,440 35 72 72 1.07 38.32
Microglia 154,261 39,220 82 279 288 1.03 82.86
Oligodendrocytes 157,181 23,853 7 22 39 1.00 46.91
L2/3 Neurons 236,802 65,819 98 181 202 1.02 24.61

promoter of a cell-type-specific gene (Table 2). Notably, most of these interactions were not iden-

tified by SnapHiC with the local background approach, as shown in Figure 4B. We demonstrate

how SnapHiC-G-identified enhancer-promoter interactions can elucidate functional genes of

GWAS loci in relevant cell types with a few examples.

The first example locates at a locus on chromosome 8, showing cell-type-specific interac-

tions in L2/3 neurons and astrocytes (Figure 5). Specifically, a SCZ-associated GWAS SNP

rs2565064 (chr8: 27,327,841) interacts with the promoter of PNOC in neurons, while another

SCZ-associated SNP rs28541694 (chr8: 27,462,008) interacts with the promoter of ZNF395 in as-

trocytes. In addition, ten AD-associated SNPs located in the chr8:27.4Mb-27.5Mb region are also

connected to the promoter region of ZNF395 in astrocytes, while none of the AD-associated

SNPs interact with the PNOC promoter. These two genes also showed consistent cell-type-

specific gene expression patterns, where PNOC was highly expressed in neurons (FPKM = 4.75

in neurons vs. ď 1 in the other three cell types) and ZNF395 was highly expressed in astrocytes

(FPKM = 2.26 in astrocytes vs. ď 1 in the other three cell types). Moreover, rs2565064 resides in
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a neuron-specific enhancer, and SNPs interacting with ZNF395 reside in an astrocyte-specific en-

hancer. These results indicated that PNOC was the putative target gene for SCZ-associated SNP

rs2565064 in neurons and ZNF395 was the putative target gene for both SCZ and AD-associated

SNPs in this 27.4Mb-27.5Mb region on chromosome 8. PNOC is primarily transcribed in the

brain and spinal cord in the central nervous system [116] and encodes the precursor for bioactive

neuropeptides that influence a broad range of physiological roles, including memory, learning,

and neuronal development, fear, anxiety, and sleep [117]. PNOC was also associated with PTSD,

whose transcriptome significantly correlated with SCZ [118]. On the other hand, ZNF395, a gene

involved in inflammation and cancer progression57, is upregulated in the SCZ network from the

integrative network analysis [119].

Next, we focused on a microglia-specific interaction between the promoter of ARPC1B,

which is highly expressed in microglia (FPKM = 7.12 in microglia vs. ď 1 in the other three cell

types), and an AD-GWAS locus located in an active enhancer on chromosome 7 at 99.7 Mb (Fig-

ure C1). Our results showed that ARPC1B was the predicted target gene for this AD-associated

GWAS variant rs1880949, consistent with prior findings that ARPC1B was active in microglia in

AD patients but not in healthy controls [120]. At the same locus, SnapHiC-G detected another

microglia-specific enhancer-promoter interaction between an active enhancer containing an EDU-

associated GWAS variant rs10241492 (chr7: 99,994,813) and the STAG3 genes promoter region.

Moreover, rs10241492 was identified as an eQTL for STAG3 from CommonMind in brain tissues

[113]. In addition, STAG3 was predicted to be the target gene for rs10241492 from a previous

GWAS study of EDU50. These results together showed that the STAG3 gene was potentially a tar-

get gene for rs10241492, specifically in microglia, consistent with findings in the original paper

by Lee et al. [113].

As a final example, Figure C2 illustrates enhancer-promoter interactions identified specifi-

cally in microglia and neurons on chromosome 10. One microglia-specific enhancer-promoter

interaction links a SCZ-associated GWAS locus in an active enhancer with SFXN2s promoter.

At the same time, SFXN2 is highly expressed only in microglia (FPKM = 4.41 in microglia vs.
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ď 1 in the other three cell types). While a previous study suggested that SFXN2 was a potential

SCZ risk gene because of linkage or pleiotropic effects [121], our results further indicated that

SFXN2 was the putative target gene for this particular SCZ-associated GWAS locus. Addition-

ally, multiple neuron-specific enhancer-promoter interactions connect SCZ-associated GWAS

loci to INA (FPKM = 46.21 in neurons vs. ď 1 in the other three cell types), suggesting this gene

is a potential novel target gene for this locus with the evidence that corresponding GWAS vari-

ants (rs11191557, rs11191558, rs11191559, rs10883832, rs12413046) in this locus were also

CommonMind eQTLs for INA.

Together, these examples showcase how SnapHiC-G-identified enhancer-promoter interac-

tions can aid the interpretation of non-coding GWAS variants and reveal underlying mechanistic

insights. Integrating with gene expression data and epigenetic annotations, SnapHiC-G was able

to decipher the critical roles of non-coding variants in disease etiology in relevant cell types.

4.2.7 Elucidating relevant cell types by heritability enrichment analysis

Next, we evaluated whether genetic heritability for complex diseases and traits was enriched

for SNPs within the anchors of SnapHiC-G-identified interactions in specific cell types. Using

the same set of GWAS summary statistics data together with two other complex traits: body

mass index (BMI) [122] and white blood cell count (WBC) [123], we performed stratified link-

age disequilibrium score regression (S-LDSC) analysis [124]. In brief, S-LDSC estimates the

proportion of SNP heritability from predefined SNP-level functional annotations using GWAS

summary statistics while accounting for linkage disequilibrium (LD) to identify functional cate-

gories enriched in SNP heritability and hence of functional relevance to the trait. In our case, the

functional categories correspond to enhancer-promoter interactions from SnapHiC-G results in

brain cell types, and our goal is to identify disease-relevant cell types for GWAS traits.

We first obtained SnapHiC-G-identified interactions from astrocytes, microglia, oligoden-

drocytes, and L2/3 neurons, all with 261 cells, to construct functional categories. As previously

described, SnapHiC-G requires at least one bin overlapping with a TSS to ensure that the algo-
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Figure 5. An illustrative example at the PNOC-ZNF395 locus on chromosome 8 with
neuron- and astrocyte-specific interactions. The top panel shows the gene track. The middle
panels show RNA-seq, H3K27ac, and ATAC-seq tracks for the four brain cell types. The bottom
panels show SCZ and AD GWAS SNPs, enhancer regions in astrocytes and neurons, and
cell-type-specific interactions identified by SnapHiC-G but not SnapHiC. Astrocyte-specific
interactions link the promoter region of ZNF395 (highlighted in grey) with a SCZ-associated
SNP rs28541694 and ten AD-associated SNPs located in the chr8:27.4Mb-27.5Mb locus
(highlighted in yellow); a neuron-specific interaction links the promoter region of PNOC
(highlighted in grey) with another SCZ-association SNP rs2565064 (highlighted in yellow). Both
genes highlighted showed cell-type-specific gene expression in corresponding cell types. The
anchors of these interactions also showed stronger H3K27ac ChIP-Seq and ATAC-seq signals in
matched cell types.
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rithm captures promoter-anchored interactions. Therefore, both bins may overlap with a TSS.

However, to distinguish bins that overlap with a TSS and those that do not overlap with a TSS,

we focused on the case where only one bin overlaps with a TSS. We focused on significant in-

teractions in the four brain cell types to partition the genome. We defined SnapHiC-G anchor

regions as the bins that overlap with TSS and SnapHiC-G target regions as the bins that do not

overlap with TSS for each cell type. GWAS SNPs were annotated based on whether they fall into

SnapHiC-G target regions for each cell type. Since the anchor regions all overlap with TSS, we

evaluated whether SNPs located in SnapHiC-G target regions were enriched in SNP heritability

in specific cell types.

Figure 6 shows SNP heritability enrichment results for GWAS variants from the twelve traits

analyzed, using SnapHiC-G target bins in four brain cell types as the functional categories. For

example, AD SNP heritability was most strongly and significantly enriched in microglia target

regions, which is consistent with the fact that the majority of AD GWAS risk loci are found close

to genes highly expressed in microglia, and that microglia play a vital role in the pathogenesis of

AD64. Notably, we observed two neuropsychiatric traits with high genetic correlation, namely

bipolar disorder and schizophrenia, had enrichment scores and significance in the same order,

where neuronal target regions were most strongly enriched, followed by astrocytes and oligo-

dendrocytes. In contrast, enrichment in microglia was much lower. The strong enrichment in

oligodendrocytes for Parkinsons disease, although not the most significant, was consistent with

the literature as well [125]. Results for white blood cell count showed that microglia were most

strongly enriched, in agreement with the crucial roles that white blood cells have in the immune

system.
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Figure 6. Heritability enrichment analysis results using LDSC. Cells were down-sampled to
match the number of cells in L2/3 neurons. Numbers in the figure represent the enrichment score
and colors represent the significance level in the -log10(p-value) scale. A higher enrichment
score represents stronger enrichment in the corresponding cell type. Abbreviations: Alzheimers
disease (AD), attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD),
schizophrenia (SCZ), bipolar disorder (BP), educational attainment (EDU), intelligent quotient
(IQ), body mass index (BMI), Parkinsons disease (PD), major depressive disorder (MDD),
neuroticism (NEU), white blood cell count (WBC).
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4.3 Conclusion and discussion

In this work, we developed SnapHiC-G, a computational pipeline to detect enhancer-promoter

interactions from scHi-C data based on the global background model. To our knowledge, a

method has yet to be proposed to address this task in scHi-C data. Our previous work, SnapHiC,

the first computational pipeline to detect chromatin loops in scHi-C data, utilizes a combination

of global and local background models to identify loop summits, therefore having limited power

to detect enhancer-promoter interactions. Other existing global background methods, such as

FitHiC2, HiC-DC+, FastHiC, and HiC-ACT, were designed for bulk Hi-C data and lacked the

power to analyze sparse scHi-C contact data. To overcome the data sparsity challenge in scHi-C

data, SnapHiC-G first applies the RWR algorithm to the observed raw contacts and then con-

structs a normalized contact probability matrix against the linear genomic distance. For each

candidate bin pair, SnapHiC-G applies a one-sample t-test to test whether its average normalized

contact frequency across single cells is significantly greater than zero (global background). Com-

bined with epigenetic annotations such as enhancer and promoter marks, SnapHiC-G enables

the profiling of cell-type-specific enhancer-promoter interactions by analyzing scHi-C data from

multiple cell types.

Data from mESCs and human brain cortical cells showed that SnapHiC-G identified more

significant interactions than existing global background-based methods designed for bulk Hi-C

data with notably higher sensitivity. This was mainly due to the RWR imputation step, which

significantly reduced the sparsity of the scHi-C data, especially when the number of cells was

low. Aggregating a small number of single cells can result in very sparse pseudo-bulk Hi-C data,

which may lead to poor performance of methods designed for bulk Hi-C. We evaluated the pre-

cision of top interactions identified by each method against a reference list of interactions and

showed that SnapHiC-G did not suffer from a higher false discovery rate compared with other

methods. The extra interactions called by SnapHiC-G may need further investigation, but we

were not able to perform a systematic evaluation due to the lack of a gold-standard dataset.
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Using GWAS summary statistics, we have also demonstrated the utility of enhancer-promoter

interactions identified from SnapHiC-G in human brain cell types in prioritizing functionally

relevant genes and cell types for complex human traits and diseases. SnapHiC-G can predict

putative target genes for GWAS variants and help elucidate functionally relevant cell types of

complex diseases.

For the human brain cell types, SnapHiC-G did not improve substantially over other methods

compared with mESCs, especially when we look at the most significant interactions for oligo-

dendrocytes (Figure C3; Figure C4). Several reasons can explain this. First, there was no gold-

standard data for evaluating cell-type-specific enhancer-promoter interactions. The reference

interaction lists inferred from H3K4me3 PLAC-seq data were suggestive rather than optimal,

meaning that the reference might miss many cell-type-specific enhancer-promoter interactions.

However, it was the best available data we could find. Second, SnapHiC-G-identified interactions

had much lower FDRs than other bulk Hi-C methods. For identified oligodendrocyte interactions,

the median of -log10(FDR) was 17.5 for SnapHiC-G, while the medians of other bulk Hi-C meth-

ods ranged from 1.7 to 7.5. The highly significant results of SnapHiC-G were due to both the

RWR imputation and its global background nature; therefore, it can be hard to distinguish among

identified interactions by ranking them by significance. Third, the number of cells for oligoden-

drocytes was relatively large (ą1,000). After aggregating the single cells to construct bulk Hi-C

data, it had a comparable sequencing depth to traditional bulk Hi-C data with 278 million intra-

chromosomal contacts ą20Kb. Consistent with SnapHiC, we observed a more significant power

gain from SnapHiC-G when the number of cells was relatively small, which was consistent for

other cell types.

SnapHiC-G performs the statistical test across all cells from the same cell type, which means

that signals from the input cells are aggregated, and the identified enhancer-promoter interactions

are still at the population level, similar to bulk Hi-C analysis. However, chromatin folding can be

highly variable and dynamic even among cells of similar identities, which is an exciting future

direction. As more scHi-C data become available, multimodal data integration is another promis-
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ing area of research to study the complexity and heterogeneity of chromatin interactions in single

cells and can provide new insights into the regulatory mechanisms that underlie gene expression

and cell differentiation. scHi-C data also has great potential for predicting structural variations in

cancer genomes, which is beyond the scope of this work.

In our analysis, cell-type-specific epigenetic data considerably narrowed down candidate

bin pairs. While such data aid the detection of cell-type-specific enhancer-promoter interactions,

when they are not available, users can input only the TSS files to define the promoter regions

and apply SnapHiC-G to identify promoter-interacting regions. With the rapid development of

new technologies and more data available, scHi-C can trigger the study of fundamental questions

about chromatin spatial organizations in individual cells during development, cancer cells, and

different organs. Being able to identify cell-type-specific enhancer-promoter interactions from

scHi-C data, SnapHiC-G results can be combined with the widely available GWAS results and

epigenetic data, and it has a great potential to facilitate the discovery of regulatory chromatin

interactions that are important for gene regulation in biologically relevant cell types.

4.4 Methods

4.4.1 SnapHiC-G algorithm

Step A. Imputation of contact probability using RWR with a sliding window approximation

We followed SnapHiC for imputing intra-chromosomal contact probability in every cell

using the RWR algorithm following scHiCluster [126]. Each autosome was divided into con-

secutive 10 Kb bins, and each bin pair was converted to a binary representation with values 1

representing nonzero contact and 0 representing no contact observed. An unweighted and undi-

rected graph modeled each chromosome by defining bins as the nodes and adjacent bin pairs or

bin pairs with nonzero contact as edges. The RWR method was then used with a restart probabil-

ity of 0.05 to estimate the likelihood of traveling between two nodes allowing for the imputation

of contact probability between all intra-chromosomal bin pairs. The random-walk step captures
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information from global network structures, while the restart step captures information from local

network structures. Following SnapHiC2, we adopted a sliding window approach when imputing

missing contacts to reduce computational costs. Specifically, instead of performing RWR over

the entire chromosome, we divided the original contact matrix into partially overlapping matrices

of size 2 Mb by 2 Mb along the diagonal line with overlapping areas of 1 Mb by 1 Mb. We then

performed RWR for all 10 Kb bin pairs within each 2 Mb by 2 Mb submatrix along the diagonal

to approximate contact probability. Only imputed contact probability in the middle rectangle

areas was kept to avoid artifacts near corners.

Step B. Normalization of contact probability using one-dimensional (1D) genomic distance

All bin pairs were stratified based on the genomic distance between two bins to account for

the dependency between imputed contact probability and 1D genomic distance. Let k“1,2,...,K

be the index of K input cells. For a bin pair (i, j) in cell k with a genomic distance of d, let Apkq

d

represent the strata including bin pairs in cell k with 1D genomic distance d. The normalized

contact probability (Z-score) zpkq

ij was calculated as zpkq

ij “ px
pkq

ij ´ µ
pkq

d q{σ
pkq

d , where xpkq

ij is the

contact probability between bin i and bin j in cell k, µpkq

d and σpkq

d are mean and standard deviation

of the contact probability of bin pairs in cell k within the strata Apkq

d .

Step C. Filtering the significant chromatin interactions

First, we define the AND bin pair as both sides overlapping with TSS and genes promoter

regions, determined from the users input file or +/-500bp of TSS. Next, we define the XOR

bin pair as only one side overlapping with TSS and genes promoter regions while the other

side overlaps with enhancer regions. Significant chromatin interactions categorized as AND

or XOR are the candidate SnapHiC-G enhancer-promoter interactions. Furthermore, candidate

enhancer-promoter interactions with low mappability score (ď0.8) or overlapping with the EN-

CODE blacklist regions (mm10: http://mitra.stanford.edu/kundaje/akundaje/

release/blacklists/mm10-mouse/mm10.blacklist.bed.gz; hg19: https:

//www.encodeproject.org/files/ENCFF001TDO/) were excluded. HiCNorm was

used to calculate each 10 kb bin’s sequence mappability [33].
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Step D. Detecting interaction candidates

For each bin pair (i, j), we applied a one-sample t-test across all K cells to evaluate whether

the contact probability is significantly higher than zero. We further converted one sample t-test

p-values into false discovery rates (FDRs), again stratified by 1D genomic distance. We defined

a bin pair as a significant chromatin interaction if its (1) average of z-scores across all input cells

ą 0, (2) the proportion of cells with a z-score ą1.96 (outlier cells) ą10%, (3) FDRă10%, and (4)

t-test statistic ą3.

4.4.2 The computational cost of SnapHiC-G

Adopting a similar parallel computing strategy, SnapHiC-G is highly efficient regarding

memory and computational time. We evaluated the computational cost of SnapHiC-G-specific

steps (Step C and Step D) with both mouse and human scHi-C data under different settings and

summarized the results in Table C2.

4.4.3 Processing scHi-C data

We used the same procedure as in SnapHiC to process the single-cell Hi-C data of mESCs

and the human prefrontal cortex sn-m3C-seq data. For mESCs, we aligned the raw read pairs

in fastq format to the mm10 genome, removed duplications, and then chose the top 742 cells

(ą150,000 contacts in each cell) for downstream analysis. For the human cortex, we used refer-

ence genome hg19 to process the data and then removed duplications. We chose the top 2,869

cells (ą150,000 contacts in each cell) for downstream analysis and conducted cell type annota-

tion as described in the original work.

4.4.4 Analyzing sn-m3C-seq data from the human cortex

We only analyzed data generated from the same cell type. For sn-m3C-seq data generated

from complex tissue samples of heterogeneous cell types, we used cell type annotations reported

by the original study.
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4.4.5 Down-sampling of scHi-C data

We randomly permuted 742 quality-controlled cells for the mESC scHi-C data to evaluate

with down-sampled data. We then performed down-sampling by selecting the first 100 and 300

cells from the pool of 742 cells. As for the astrocytes (338 cells), microglia (323 cells), and oligo-

dendrocytes (1,038 cells) from the human prefrontal cortex sn-m3C-seq data, we permuted the

cells and selected the first 261 cells from each cell type to match the number of L2/3 neurons.

4.4.6 Existing methods for bulk Hi-C data

Many methods, including FitHiC2, FastHiC, HiC-ACT, and HiC-DC+ have been developed

for identifying long-range chromatin interactions from bulk Hi-C data. Specifically, FitHiC2 is a

spline regression-based approach to identify intra-chromosomal chromatin interactions. FastHiC

is a Bayesian hidden Markov random field method, which models the spatial dependency struc-

ture in high-resolution Hi-C data, for detecting biologically meaningful chromatin interactions

(i.e. peak calling). HiC-ACT is an aggregated Cauchy test-based approach that combines p values

from other methods (e.g., FitHiC2) without knowing the underlying spatial dependency structure.

HiC-DC+ is a negative binomial regression-based method to predict chromatin interactions based

on genomic distance, GC content, and mappability features. These bulk Hi-C data-based methods

cannot handle the sparsity of the scHi-C data.

4.4.7 Identification of loops/interactions using other Hi-C methods

We identified chromatin loops/interactions with HiCCUPS, FastHiC, FitHiC2, HiC-ACT,

and HiC-DC+ from aggregated contact matrix and SnapHiC from the single-cell contact ma-

trix. To apply the methods developed for bulk Hi-C data, we generated pseudo bulk Hi-C data

by aggregating 10Kb resolution scHi-C contact matrices across single cells (i.e., sum up the con-

tacts). Then we applied FitHiC2, FastHiC, HiC-ACT, and HiC-DC+ to the pseudo bulk Hi-C data

with lenient significance thresholds to consider the sparsity of scHi-C data. We used the follow-

ing criteria for bulk Hi-C methods to detect significant interactions: FDR ă10% from FitHiC2;
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posterior probability ą0.9 from FastHiC; local neighborhood smoothed p-values ă 10´6 from

HiC-ACT; FDR ă 10% from HiC-DC+. For SnapHiC, we used FDR ă10% and t-statistics ą3 to

select significant interactions. We further required interactions within the 20Kb-1Mb 1D genomic

distance, with high mappability (ą0.8) and no overlapping with ENCODE blacklist regions for

standard quality control. To fairly compare with SnapHiC-G-identified interactions, we required

interactions to be ”AND” or ”XOR” as an additional filtering criterion. Note that the number of

interactions for SnapHiC was reduced compared with the original SnapHiC paper because of this

additional filtering criterion.

4.4.8 SnapHiC-G cell-type-specific interactions

The cell-type-specific enhancer-promoter interactions were a subset of the SnapHiC-G

enhancer-promoter interactions detected from down-sampled 261 cells in each of the four cell

types: astrocytes, oligodendrocytes, microglia, and L2/3 excitatory neurons. Specifically, an

enhancer-promoter interaction detected from a cell type was defined as a cell-type-specific

SnapHiC-G enhancer-promoter interaction if none of the other three cell types’ identified enhancer-

promoter interactions overlapped with it.

4.4.9 Enrichment of eQTL-TSS pairs

We evaluated whether SnapHiC-G-identified interactions are enriched in eQTL-TSS bin pairs

in brain cell types, CommonMind brain eQTL-TSS bin pairs, and GTEx consortium liver eQTL-

TSS bin pairs for all the cell types we considered. Specifically, for the eQTL-TSS bin pairs in

brain cell types, we used eQTLs with Bonferroni corrected p-value ă 0.05 within each cell type.

Because the eQTL data did not have results in L2/3 neurons, we used eQTL results of excitatory

neurons to compare with SnapHiC-G-identified bin pairs in L2/3 neurons. For each SnapHiC-

G-identified interaction, we constructed a matched pseudo bin pair as a control: if only one bin

contains the promoter, we kept the bin with the promoter as the center and flipped the other bin

to be on the opposite side of the center but with the same distance from the center; if both bins
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contain promoters, we randomly selected one bin with probability 0.5 and kept it as the center,

and then flipped the other bin to the other side of the center. Next, we removed the duplicates

between controls and SnapHiC-G-identified bin pairs. We constructed a two-by-two table for

the union of SnapHiC-G-identified interactions and pseudo bin pairs, categorizing each bin pair

by whether it is a SnapHiC-G-identified interaction or an eQTL-TSS bin pair. The p-value for

independence between these two features was calculated using a two-sided Fishers exact test.

4.4.10 Gene expression analysis at cell-type-specific interactions

The fragments per kilobase of transcript per million mapped reads (FPKM) values of each

protein-coding gene in human astrocytes, neurons, microglia, and oligodendrocytes were ac-

quired from Zhang et al. [103]. We used average FPKM values across biological replicates of the

same cell type to quantify cell-type-specific gene expression levels.

4.4.11 Selection of GWAS SNPs

First, we gathered significant (Pă5ˆ10´8) GWAS SNPs from ten brain-related traits, in-

cluding Alzheimer’s disease, attention deficit hyperactivity disorder, autism spectrum disorder,

bipolar disorder, educational attainment, intelligence quotient, neuroticism, Parkinson’s disease,

schizophrenia, major depressive disorder. Next, we took an overlap between these GWAS SNPs

and active enhancers of astrocytes, neurons, microglia, or oligodendrocytes and we had 9,764

SNP-trait associations (8,516 unique GWAS SNPs).
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CHAPTER 5: LD SCORE REGRESSION WITH MORE COMPREHENSIVE CATALOGS
OF LD SCORES

As discussed in Chapter 1, LDSC is a widely used statistical method to estimate the degree

of inflation in GWAS test statistics that can distinguish between inflation from true polygenic

signals and bias. Public LD scores are available for „1.3 million HapMap3 (HM3) variants for

European and East Asian samples from the 1000 Genomes Project (1000G) [127, 128]; how-

ever, these variants cove only a subset of common variants (there are „5-7 million variants

with MAFą0.05) and few low-frequency or rare variants (LFRV). In this chapter, we aim to

investigate how LDSC estimates change when including additional variants and using a more

comprehensive LD reference panel built from whole genome sequencing data from the NHLBI

Trans-Omics for Precision Medicine (TOPMed) Program [129].

5.1 Calculation of TOPMed LD scores

First, we computed LD scores using LD calculated from the TOPMed freeze 8 reference

panel using unrelated European samples (RFMix score ą 0.9, kinship score ă 2´5.5, n = 13,160

from MESA, BioMe, and WHI cohorts [130]). LD values were computed as the squared Pearson

correlation (r2) between pairs of variants on a phased haplotype basis. The LD score for variant i

was computed as LDSCi “
ř

r2ij for r2ij ą 1e´7 for all variants j within 1Mb of variant i.

5.2 GWAS summary statistics

We collected GWAS summary statistics for 36 phenotypes, including BMI, height, brain-

related traits and diseases, and 20 blood cell traits [131, 132, 110, 133, 134, 109, 135, 113, 122,

106, 107, 136, 137, 123]. All GWASes were conducted in European-ancestry individuals ex-

52



cept for blood cell traits being a trans-ethnic study including a small portion of individuals from

African American and East Asian ancestries.

5.3 Preliminary results

We ran LDSC with different LD reference panels and sets of variants included in the regres-

sion and performed multiple comparisons to evaluate their impact on the estimation of LD scores

and LDSC intercept. Specifically, we were interested in addressing the following questions: (i)

How does the choice of LD reference panel affect LD score estimation itself? (ii) What is the

effect of using LD scores calculated from different LD reference panels in LDSC intercept esti-

mation? (iii) Hoes does the choice of variants included in the regression affect LDSC intercept

estimation? (iv) Is there a difference in LDSC intercept estimation when we include common vs.

low-frequency and rare variants in the regression?

To address the first question, we compared LD scores calculated from 1000G and TOPMed

for HapMap3 variants. The 1000G LD scores are publicly available for HapMap3 variants where

378 European-ancestry individuals were included, and the TOPMed LD scores were computed

with 13,160 European-ancestry individuals as previously described. From Figure 1, we observed

that 1000G and TOPMed LD scores for HapMap3 variants are similar in general, especially

for variants with relatively low or moderate LD scores. For variants with high LD scores (e.g.,

ą400), the LD score estimation tends to be higher with the 1000G reference panel.

To investigate the effect of the LD reference panel in LDSC intercept estimation, we ran

LDSC with 1000G and TOPMed LD scores while including only HapMap3 variants („1.3 mil-

lion variants) in the regression and calculated regression weights accordingly following the orig-

inal LDSC method. Each variant was weighted by the reciprocal of its LD Score, counting LD

only with other SNPs included in the regression. Figure 2 shows LDSC intercept estimates with

LD scores calculated from 1000G and TOPMed were highly consistent for the 36 GWAS sum-

mary statistics, which was expected because of the similar LD scores calculated from two LD

reference panels.
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Figure 1. TOPMed vs 1000G LD scores (chr20). Comparision between TOPMed and 1000G
LD scores for HapMap3 variants. Each dot represents a variant. The red dashed line represents
the diagonal.

Figure 2. LDSC intercept estimates with 1000G and TOPMed LD scores(chr20). Only
HapMap3 variants were included in the regression. Each dot represents a GWAS. The red dashed
line represents the diagonal.
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Figure 3. LDSC intercept estimates with TOPMed LD scores for MAFě0.01 and HapMap3
variants (chr20). LD scores were calculated using the TOPMed reference panel. Different sets
of variants were included in the regression for comparison. Each dot represents a GWAS. The red
dashed line represents the diagonal.

Next, we compared LDSC intercept estimates when including HapMap3 variants vs. includ-

ing TOPMed variants with MAFą0.01 in the regression, using TOPMed LD scores. Results

showed that using TOPMed variants with MAFě0.01 gave smaller LDSC intercept estimates

for most traits than including only HapMap3 variants in the regression (Figure 3), suggesting a

non-negligible impact of including additional variants in LD scores on LDSC estimates.

Since HapMap3 covers only a subset of common variants in Europeans and few LFRV, we

further investigated the impact of including LFRV on LDSC intercept estimates. TOPMed SNPs

were partitioned by MAF with a 0.01 cutoff in Europeans, and then LDSC was run with variants

for the MAFă0.01 and MAFě0.01 sets separately. We focused on 20 blood cell traits that had a

large number of LFRV available in the GWAS summary statistics. From Figure 4, we can see that

using TOPMed LD scores with MAFă0.01 gave smaller estimates for most blood cell traits than

including only common variants.
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Figure 4. LDSC estimates with TOPMed LD scores with MAFă0.01 and MAFě0.01
variants (chr20). LD scores were calculated using the TOPMed reference panel. Common and
LFRV variants were included in the regression for comparison. Each dot represents a blood cell
trait. The red dashed line represents the diagonal.

5.4 Discussion

In GWAS, it is essential to adjust for the inflation in test statistics resulting from confounding

biases, such as population stratification and cryptic relatedness to false positives. On the other

hand, when including more common variants in the regression, LDSC intercepts decrease and

better account for polygenicity, avoiding missing potential GWAS signals by the overcorrection

of test statistics. In other words, true GWAS signals that might have been overcorrected and

missed after the LDSC intercept correction when using only HapMap3 variants can be rescued by

incorporating additional common variants in the regression.

Results suggest that LFRV have less inflation compared with common variants, which can

be explained by a couple of reasons. First, for rare variants, GWAS test statistics are skewed

towards the null because of the low discovery power. Second, as the number of LFRV is greater

than common variants, by including more variants, the model is able to capture more polygenic

signals. If low-frequency variants are indeed different from common variants, care needs to be
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taken when analyzing common and rare variants jointly. One option is to separate the two sets of

variants in the analysis to avoid overcorrection of LFRV variants and undercorrection of common

variants.

The authors of LDSC claimed that LD scores calculated from HapMap3 variants tended to

give LDSC intercepts that were closer to 1 in studies believed to have little confounding from

population stratification than LD scores calculated over all 1000G variants. One reason could be

that 1000G LD scores give too much weight to LFRV, and HapMap3 LD scores give more weight

to common variants. However, further analysis is needed to investigate which variant sets should

be included in LD score calculation and LD score regression. Other future directions include

conducting the analyses with the East Asian ancestry population, where public LD scores are

also available. Besides LDSC intercepts, it would be interesting to look at heritability and genetic

correlation estimates as well.

Finally, and perhaps most importantly, as the public LD scores are released for HapMap3

variants only, the LD scores we computed using TOPMed freeze 8 as the reference panel for both

common variants and LFRV will be a valuable resource for the research community to investigate

a broad range of important scientific questions.
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APPENDIX A: SUPPLEMENTARY MATERIALS FOR CHAPTER 2

Details of inferred expected contacts from FitHiC

FitHiC models the expected contact count conditioned on observed contact counts and the

genomic distance between interacting regions [39]. Specifically, all locus pairs with a non-zero

contact count are sorted with respect to increasing genomic distance between the two ends of the

pair and this sorted list is broken into b bins. Then, the total number of contact counts is divided

into the b bins using an equal occupancy binning strategy. Thus, all bins have an approximately

equal number of contacts. In each bin, the average genomic distance (x-axis) and contact proba-

bility (y-axis) are computed among all pairs (including possible pairs with zero contact counts)

in this bin. Then, FitHiC fits a cubic smoothing spline (third-degree polynomial) to these x and

y values (one per bin) to learn a continuous function that relates these two entities. The inferred

expected contact probabilities are further corrected through the bias values, which are computed

per locus/bin by the KR normalization method [138].

Details of statistical inference

Based on the Bayes rule, we have the joint posterior distribution as follows:

P ptzijku, tθku, tϕku, tψku, tγku|txijku, teijkuq 9P ptxijku|teijku, tzijku, tθku, tϕkuq ˚

Prior ptzijku|tψku, tγku, αq ˚ Prior ptθkuq ˚ Prior ptϕkuq ˚ Prior ptψkuq ˚ Prior ptγkuq .

Note that we used uniform prior distributions for θk, ϕk, ψk, γk, which were initialized from

estimates from uni-sample analysis in our implementation (see section below). Let NBpx|µ, ϕq

represent the probability mass function of negative binomial distribution with mean µ and over-

dispersion ϕ, then

P ptxijku|teijku, tzijku, tθku, tϕkuq “

K
ź

k“1

ź

1ďiăjďN

NB pxijk|eijk exptI pzijk “ 1q θku, ϕkq .

In addition, we use pseudo-likelihood approximation to calculate the hierarchical Ising prior

where the joint density is approximated by the product of conditional densities:
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P ptzijku|tψku, tγku, αq «
śK

k“1

ś

1ďiăjďN P
`

zijk|tz´pijkqu, ψk, γk, α
˘

.

Here

P
`

zijk|tz´pijkqu, ψk, γk, α
˘

9P pzijk|tz´i,´j,ku, ψk, γkq ˚ P pzijk|tzij,´ku, αq

9 exp

$

’

&

’

%

γkIpzijk “ 1q ` ψk ˚ zijk ˚
ÿ

|i
1
´i|`|j

1
´j|“1

zi1j1k

,

/

.

/

-

˚
αtZij1,...,Zijk,...,ZijKu

αtZij1,...,Zijk,...,ZijKu ` αtZij1,...,´Zijk,...,ZijKu

9 exp

$

&

%

γkIpzijk “ 1q ` ψk ˚ zijk ˚
ÿ

|i1 ´i|`|j1
´j|“1

zi1j1k

,

.

-

˚ αtzij1,...zijk,...,zijKu.

Where tz´pijkqu denotes the set tzi1j1k1 |i
1

‰ i, j
1

‰ j, k1 ‰ ku, tz´i,´j,ku denotes the set

tzi1j1k|i
1

‰ i, j
1

‰ ju, and tzij,´ku denotes the set tzijk1 |k1 ‰ ku.

Define A pzijkq “ exp
!

γkIpzijk “ 1q ` ψk ˚ zijk ˚
ř

|i1 ´i|`|j1
´j|“1 zi1j1k

)

˚ αtzij1,...zijk,...,zijKu,

we have P
`

zijk|tz´pijkqu, ψk, γk, α
˘

“
Apzijkq

Apzijkq`Ap´zijkq
“ 1

1`Ap´zijkq{Apzijkq
. Taken together,

P
`

tzijku|tz´pijkqu, tψku, tγku, α
˘

“
śK

k“1

ś

1ďiăjďN
1

1`Ap´zijkq{Apzijkq
.
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The log of the joint posterior distribution is approximated as follows:

logP ptzijku, tθku, tϕku, tψku, tγku|txijku, teijku « Constant

`

K
ÿ

k“1

ÿ

1ďiăjďN

logNB

ˆ

xijk|eijk exp

"

zijk ` 1

2
θk

*

, ϕk

˙

` logP
`

tzijku|tz´pijkqu, tψku, tγku, α
˘

“ Constant `

K
ÿ

k“1

ÿ

1ďiăjďN

tlog Γ pxijk ` ϕkq ´ log Γ pϕkq

` xijk

ˆ

log eijk ` θk
zijk ` 1

2

˙

` ϕk log ϕk ´ pxijk ` ϕkq log

ˆ

eijk exp

"

θk
zijk ` 1

2

*

` ϕk

˙

´

K
ÿ

k“1

ÿ

1ďiăjďN

log

"

1 `
A p´zijkq

A pzijkq

*

In the equation above,

Ap´zijkq

Apzijkq
“

exp

#

´γkzijk´ψk˚zijk˚
ř

|i
1

´i|`|j
1

´j|“1
z
i
1
j

1
k

+

˚α
tzij1,...´zijk,...,zijKu

exp

#

γkzijk`ψk˚zijk˚
ř

|i
1

´i|`|j
1

´j|“1
z
i
1
j

1
k

+

˚α
tzij1,...zijk,...,zijKu

“ exp
!

´2γkzijk ´ 2ψk ˚ zijk ˚
ř

|i1 ´i|`|j1
´j|“1 zi1j1k

)

˚

α
tzij1,...´zijk,...,zijKu
α
tzij1,...zijk,...,zijKu

.

In the Gibbs sampler, the conditional distribution of zijk follows a Bernoulli distribution. We

have

logP pzijk “ 1|θk, ϕk, ψk, γk, xijk, eijkq “ xijkθk ´ pxijk ` ϕkq log peijk exp tθku ` ϕkq

´ log

#

1 ` exp
´

´2γk ´ 2ψk
ř

|i
1
´i|`|j

1
´j|“1

zi1j1k

¯ α
tzij1,...´1,...,zijKu
α
tzij1,...1,...,zijKu

+

;

logP pzijk “ ´1|θk, ϕk, ψk, γk, xijk, eijkq “ ´ pxijk ` ϕkq log peijk ` ϕkq

´ log

#

1 ` exp
´

2γk ` 2ψk
ř

|i
1
´i|`|j

1
´j|“1

zi1j1k

¯ α
tzij1,...1,...,zijKu

α
tzij1,...´1,...,zijKu

+

.
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Consider a special case where K “ 2, we hope to calculate the probability mass function for

P pzij1, zij2|tθku, tϕku, tψku, tγku, txijku, teijkuq. For a fixed pi, jq pair, we have

logP pzij1, zij2 |tz´pij1,ij2qu, tθku, tϕku, tψku, tγku, txijku, teijkuq

“ Constant `

2
ÿ

k“1

tlog Γ pxijk ` ϕkq ´ log Γ pϕkq

` xijk

ˆ

log eijk ` θk
zijk ` 1

2

˙

` ϕk log ϕk

´ pxijk ` ϕkq log

ˆ

eijk exp

"

θk
zijk ` 1

2

*

` ϕk

˙

+

´

2
ÿ

k“1

log

"

1 `
A p´zijkq

A pzijkq

*

and denote it as Bpzij1, zij2q.

Therefore,

P pzij1 “ 1, zij2 “ 1|tθku, tϕku, tψku, tγku, txijku, teijkuq9 exp tBp1, 1qu

Considering all 4 possibilities, we have

P pzij1 “ 1, zij2 “ 1|tθku, tϕku, tψku, tγku, txijku, teijkuq “

exptBp1,1qu

exptBp1,1qu`exptBp1,´1qu`exptBp´1,1qu`exptBp´1,´1qu

Similarly, we can calculate the conditional probabilities for the other three configurations for

zij1and zij2. We use the Gibbs sampler to update all the other parameters (θk, ϕk, ψk, γk). The

hyper-parameter α can be estimated from empirical data.

Implementation details of MUNIn and uni-sample analysis

Uni-sample analysis was implemented following Xu et al. [41], where the initial peak status

was randomly assigned. For MUNIn analysis, both peak status and parameters of each cell type,

i.e., (θk, ϕk, ψk, γk), were initialized according to results from uni-sample analysis. Specifically,

we searched within the range of +20% and -20% of estimates from uni-sample analysis for θk,

ϕk, ψk, γk, which was equivalent to uniform priors. The across-sample dependency parameter α

was estimated based on uni-sample inference. Then, the peak status and parameters were updated

following the procedures described above, and 10,000 Gibbs sampling steps were performed.
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Real data evaluation framework

To avoid false positive calls at a close distance, we further filtered the MUNIn-called peaks

by excluding the bin pairs less than 50 kb apart. ROC curve was applied to illustrate the perfor-

mance of MUNIn and uni-sample analysis, to help avoid the bias of unbalanced peak calling

number between the two methods. For the ROC curve, we excluded bin pairs with corresponding

posterior probabilities less than the 10th percentile, since including bin pairs with very low poste-

rior probabilities is not meaningful. We partitioned the TADs within each chromosome into three

categories (shared, GM-specific, and IMR-specific peaks) according to their prior probabilities

of four types of peak status (shared peaks, GM-specific peaks, IMR-specific peaks, and shared

backgrounds). If the prior probability is highest in shared peaks or cell-type-specific peaks, then

we assigned this TAD to the corresponding category. If the prior probability is highest in shared

backgrounds, then we assigned this TAD to the category where its prior probability is the second

highest. Each ROC curve was then plotted only including TADs in that category.

Additional performance evaluation

In this study, we further evaluated several other performance aspects of MUNIn. In our sim-

ulation, with loss of generality, we only considered the case that γk “ 0, where the proportion of

peak and background is the same. To assess the robustness of MUNIn to the simulation param-

eters, we simulated data with different γk values, -0.02, -0.05, -0.2, and -0.4. In all four scenar-

ios, we observed that MUNIn achieved a lower error rate in peak calling in all three simulated

samples than uni-sample analysis when there is moderate or high dependency among samples

(Figure A5). Our results demonstrated that MUNIn is robust to the simulation parameters.

In addition, we evaluated the scalability of MUNIn for a moderate sample size. We per-

formed a simulation study with five samples. For all five samples, the overall error rate for the

peaks identified by MUNIn is substantially lower than that of uni-sample analysis when there is

moderate or high dependency among samples (Figure A6).

To assess the robustness of MUNIn to the TAD boundaries, we re-ran the real data analysis

for Hi-C data from GM12878 and IMR90 cell lines [9] at 10kb resolution using a sliding window
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approach, instead of focusing on shared TADs. Specifically, we divided the genome into 1Mb

windows (core region) with 200kb flanking regions on each side of the window and applied both

MUNIn and uni-sample analysis to call interactions within each window. Similar to the results

focusing on shared TADs, we observed that MUNIn obtained more accurate results for both

GM12878 and IMR90-specific peaks (Figure 5a and d), while its performance in shared peaks

was comparable to uni-sample analysis (Figure A13).

We then examined the overlapping between the cell-type-specific interactions and promoters

and enhancers [139]. We identified 535,908 and 674,194 GM12878- and IMR90-specific inter-

actions genome-wide. 109,406 and 41,178 (20.4 and 6.1%) of them overlapped with promoter

regions, which are significantly higher than those of all bin pairs (p-value ă 2.2e-16 for both

samples). Similarly, 71,978 and 48,485 GM12878- and IMR90-specific interactions (13.4 and

7.2%) overlapped with enhancer regions, which are also significantly higher than the genome

background (p-value ă 2.2e-16 for both samples). These results indicate that the overlap between

the significant interactions and promotor/enhancer region is not a coincidence.

To further compare MUNIn with uni-sample analysis, we applied MUNIn and uni-sample

analysis on Hi-C datasets of mouse embryonic stem cells for both wild-type and after CTCF dele-

tion at 10kb resolution, and compared the peaks identified by uni-sample analysis and MUNIn

with those identified by HiCCUPS [9]. First, we overlapped bin pairs detected from uni-sample

analysis and MUNIn with the union of HiCCUPS loops from the wild-type and the CTCF-

depleted sample. Then, we looked at wild-type-specific peaks identified by uni-sample analysis

or by MUNIn among those overlapping bin pairs. A bin pair was called a wild-type-specific peak

in the uni-sample analysis if it was called a peak in the wild-type sample and called a background

in the CTCF-depleted sample. Similarly, a bin pair is called a wild-type-specific peak in Munin

if the configuration of being a peak in the wild-type sample while being a non-peak in the CTCF-

depleted sample has the highest posterior probability. We ran both methods on chromosome 1

and found that among the overlapping bin pairs, uni-sample analysis called 17 wild-type-specific

peaks, while MUNIn called 10 wild-type-specific peaks. We used HiCCUPS wild-type-specific
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loops as the ground truth and defined HiCCUPS wild-type-specific loops by first taking loops

called by HiCCUPS in the wild-type mESC sample, and then excluding those that were also

called loops in the CTCF-depleted mESC sample by HiCCUPS. The uni-sample analysis had one

false positive out of the 17 wild-type specific peaks, while all the ten wild-type-specific peaks

called by MUNIn were also identified by HiCCUPS. Figure A14 shows aggregate peaks plots for

wild-type-specific peaks identified by uni-sample analysis and MUNIn. We can see that MUNIn

better captured the wild-type-specific pattern in mESC Hi-C data.

We used the same mESC HiC data [67] to further compare MUNIn with FitHiC [39]. Specif-

ically, we performed FitHiC peak calling on the wild-type data (i.e., without CTCF depletion).

We performed MUNIn peak calling by jointly analyzing Hi-C data before and after CTCF de-

pletion (by inputting them as two samples into MUNIn) and focused only on peaks called in the

wild-type sample (regardless of the status in the sample after CTCF deletion). We therefore were

able to compare MUNIn and FitHiC peak calls in the wild-type sample. Specifically, we took

the same number of top peaks from each method and compared the percent overlapping with

HiCCUPS loops (treated as the truth). For MUNIn, we first identified peaks by their inferred

peak status, and then ranked them by the posterior probability of being a peak in the wild-type

sample from largest to smallest; for FitHiC, we ranked the peaks by their FitHiC p-values from

smallest to largest. We compared the top 1,000 to 5,000 peaks called by each method and found

that MUNIn had a higher number of overlaps with HiCCUPS loops than FitHiC (Figure A15).

We chose this example and focus on the wild-type sample because HiCCUPS on the previously

generated GM12878 wild-type data is believed to rather accurately reflect wild-type peaks. That

our MUNIn results showing better performance than FitHiC demonstrates the power of MUNIn

to more powerfully reveal peaks by borrowing information from another sample. In this case, it is

particularly interesting because our results suggest that we attain better power detecting wild-type

peaks in the wild-type sample even by borrowing information from the CTCF-depleted sample.

Finally, we estimated the computational time of MUNIn. Uni-sample analysis was first im-

plemented on four shared TADs of different sizes from GM12878 and IMR90 cell lines, which
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contain 50, 100, 150, and 200 bins, respectively, and then MUNIn was performed based on uni-

sample analysis results. The running time of uni-sample analysis and MUNIn was summed as the

total computational time of MUNIn. For each TAD, the procedure was executed 10 times. The

results showed that MUNIn takes „2 and 31 minutes to perform peak calling in a TAD consisting

of 50 and 200 bins, respectively (Figure A16). We also assess the computational time of MUNIn

at different resolutions. MUNIn was implemented on four 2 MB TADs of 10, 20, and 40 kb res-

olution ten times. The results showed that MUNIn takes only „5 minutes for a TAD of 40 kb

resolution, and „36 minutes for a TAD of 10 kb resolution (Figure A17).

Table A1 Major characteristics of the benchmarking datasets.

Dataset Cell type Data type GEO accession number/-
Download URLs

Reference

Simulations - Source codes https://github.com/yycunc/MUNIn
Dixon et al.
(2015)

Human embryonic
stem cells

Dilute Hi-C GSE52457 [64]

Rao et al.
(2014)

GM12878
IMR90

In situ Hi-C GSE63525 [9]

Jung et al.
(2019)

GM12878
IMR90

Promoter-capture
Hi-C

GSE86189 [66]

Kubo et al.
(2021)

Mouse embryonic stem
cells

In situ Hi-C GSE94452 [67]
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Figure A1. Performance comparison between MUNIn and uni-sample analysis in the
simulation data where all three samples have equal sequencing depth. (a) False positive rate
for the sample-specific peaks identified in each sample using MUNIn and uni-sample analysis.
(b) Power for the sample-specific peaks identified by MUNIn and uni-sample analysis.

Figure A2. ROC curves for MUNIn and uni-sample analysis in the simulation data where
all three samples have equal sequencing depth. ROC curves for (a) sample 1-, (b) 2-, and (c)
3-specific peaks identified by MUNIn and uni-sample analysis.
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Figure A3. Performance comparison between MUNIn and uni-sample analysis in the
simulation data where the three samples have different sequencing depths. (a) False positive
rates for the sample-specific peaks identified in each sample using MUNIn and uni-sample
analysis. (b) Power for the sample-specific peaks identified by MUNIn and uni-sample analysis.

Figure A4. ROC curves for MUNIn and uni-sample analysis in the simulation data where
all three samples have different sequencing depths. ROC curves for (a) sample 1-, (b) 2-, and
(c) 3-specific peaks identified by MUNIn and uni-sample analysis in the simulated data.
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Figure A5. The overall error rate (denoted as “%error”) in peak identification in each
sample of the simulations using different γk values. (a) γk “ 0.02, (b) γk “-0.05, (c) γk “

-0.2, and (d) γk “ -0.4.
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Figure A6. The overall error rate (denoted as “%error”) in peak identification. The overall
error rate for each of the five simulated samples was computed by performing MUNIn and
uni-sample analysis, respectively.

Figure A7. Adjusted Rand Index (ARI) for MUNIn and uni-sample analysis. The ARI shows
the level of consistency between the interactions detected in the two biological replicates of
human embryonic stem cells.
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Figure A8. Venn diagram of overlap between MUNIn and uni-sample analysis. The diagram
shows the overlap of the (a) shared, (b) GM12878-specific, and (c) IMR90-specific peaks
identified by MUNIN and uni-sample analysis.

Figure A9. ROC curves for shared peaks. ROC curve for the shared peaks detected in both
GM12878 and IMR90 using MUNIn and uni-sample analysis.
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Figure A10. Heatmap showing the GM12878-specific peaks in GM12878 (left) and IMR90
(right) Hi-C data. One bin of these pairs (highlighted in black) is overlapped with the promoter
of ZNF827 gene (transcription start site (TSS) +/- 500bp), while the others are overlapped with
known typical enhancers (chr4:146,975,287-146,985,319 and chr4:146,944,202-146,954,864) in
GM12878 cells. Gene model is obtained from WashU epigenome browser [140].

71



Figure A11. Virtual 4C plot showing one example of the GM12878-specific peaks in (a)
GM12878 and (b) IMR90 Hi-C data using HUGIn [13]. On the top of each panel, the genes
are colored according to their expression level (the deeper red, the higher the expression level)
with arrows indicating the direction of transcription and a vertical bar indicating the transcription
start site (TSS). On the bottom of each panel, the chromatin interaction from Hi-C data is shown
by a virtual 4C plot. The anchor bin overlapped with the promoter region of gene ZNF827 is
indicated as a thick grey vertical bar at the center. The bin overlapped with the GM12878-specific
enhancer region is highlighted in yellow. The black line shows the observed counts; the red line
shows the expected counts, and the blue line shows the -log10(p-value). The range of observed
and expected counts is shown on the left Y-axis, and the range of the -log10(p-value) is plotted on
the right Y-axis. The X-axis is the genomic location on chromosome 4.
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Figure A12. Virtual 4C plot showing one example of the IMR90-specific peaks in (a)
GM12878 and (b) IMR90 Hi-C data using HUGIn [13]. On the top of each panel, the genes
are colored according to their expression level (the deeper red, the higher the expression level)
with arrows indicating the direction of transcription and a vertical bar indicating the transcription
start site (TSS). On the bottom of each panel, the chromatin interaction from Hi-C data is shown
by a virtual 4C plot. The anchor bin overlapped with the promoter region of gene F3 is indicated
as a thick grey vertical bar at the center. The bin overlapped with the IMR90-specific enhancer
region is highlighted in yellow. The black line shows the observed counts; the red line shows the
expected counts, and the blue line shows the -log10(p-value). The range of observed and
expected counts is shown on the left Y-axis, and the range of the -log10(p-value) is plotted on the
right Y-axis. The X-axis is the genomic location on chromosome 1.
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Figure A13. ROC curves for MUNIn and uni-sample analysis in the simulation data where
all three samples have equal sequencing depth. ROC curves for (a) shared, (b)
GM12878-specific, and (c) IMR90-specific peaks identified by MUNIn and uni-sample analysis
using the sliding window approach.

Figure A14. Aggregate peaks plots on mESC wild-type-specific peak loci identified by
MUNIn and uni-sample analysis. Observed contact counts are aggregated over the peak bin
pairs and their 7 x 7 neighbors. Each bin has a length of 10kb. The first row shows aggregate
counts for the wild-type sample and the second row shows aggregate counts for the
CTCF-depleted sample. For wild-type-specific peaks, we expect to see a peak pattern in the
wild-type sample but not in the CTCF-depleted sample.
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Figure A15. The number of peaks overlapped with HiCCUPS loops. The number of peaks
overlapped with HiCCUPS loops at the top 1000, 2000, 3000, 4000, and 5000 CTCF peaks called
by MUNIn and Fithic.

FigureA16. Running time of MUNIn. Four shared TADs of GM12878 and IMR90 cell lines,
which contain 50, 100, 150 and 200 10kb bins, respectively. For each TAD, uni-sample analysis
and MUNIn were executed 10 times. Running time (Y-axis) is in minutes (min). The computing
time is from running on a Linux-based computing cluster.
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Figure A17. Running time of MUNIn. For four shared TADs of GM12878 and IMR90 cell
lines at different resolutions, 10, 20, and 40kb. Running time (Y-axis) is in minutes (min). The
computing time is from running on a Linux-based computing cluster.
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APPENDIX B: SUPPLEMENTARY MATERIALS FOR CHAPTER 3

Study participants

A total of 1,506 infants born before the 28th week of gestation and 1,249 mothers were

enrolled during the years 2002-2004. Study participants were enrolled at 14 hospitals in the

United States to achieve a large enough sample size and generalizability. The enrollment and

consent procedures were approved by the individual institutional review boards. At the age of 10

years, 889 of the surviving children returned for follow-up (ELGAN2, 92% of the 966 who were

recruited for this phase of the ELGAN Study) and were assessed for cognition capacity, learning

abilities, and impairments in executive function [79].

Genotype data and quality control

Genomic DNA was isolated from umbilical cords and genotyping was performed using

Illumina 1 Million Quad (Illumina Inc, San Diego, California). This work was done as part of

the candidate gene analysis of severe intraventricular hemorrhage (IVH) in preterm born infants

[141], where infants with birth weights 500-1250g and severe grades IVH and neonates with

normal cranial ultrasounds were enrolled prospectively at 24 universities. A subset of ELGAN

participants were provided as additional samples along with samples from a few other studies in

the IVH study.

We performed variant level and sample level quality control (QC) on genotype data. For

variant level QC, we excluded variants with call rate ă 90% or minor allele frequency (MAF)

ă 1%. For sample level QC, we excluded samples with missing rate ą 10%. These resulted in

700,845 SNPs and 528 samples using plink v.1.90 [142] [143].

Genotype imputation

Starting with the quality controlled (QCed) genotype data, we used the Michigan imputation

server [144] for phasing and imputation using TOPMed freeze 5 [129] as the reference panel.

Specifically, Eagle [145] was used for phasing and Minimac4 [146] was used for imputation. We

performed strand matching by dropping ambiguous (i.e., A/T or C/G) SNPs and by flipping non-
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ambiguous SNPs that were initially in strand when compared to alleles in the + strand observed

in the TOPMed freeze 5 reference panel. Genotype data was lifted over to genome build hg38. In

total, we obtained „34 million well-imputed variants.

Functional annotations

CADD phred score measures the deleteriousness of variants and is computed as

´10 ˚ log 10prank{totalq.

A CADD phred score of ě10 indicates that the variant is predicted to be among the 10% most

deleterious variants in the human genome, a score of ě20 indicates among the 1% most delete-

rious. The fathmm MKL score predicts the functional consequences of variants where values

above 0.5 are generally considered deleterious, and values below 0.5 neutral or benign.

SNP-heritability estimation with GCTA

GCTA [147] [148] was used to estimate SNP-heritability for LPAx. We used well-imputed

SNPs (Rsqą0.8) with MAF ą 1%. Since there were many closely related individuals in our

sample, we utilized a method that can estimate pedigree-based and SNP-based heritability simul-

taneously in one model [148]. The main advantage of this method is that it allows us to estimate

SNP-based heritability without having to remove related individuals. A genetic relationship

matrix (GRM) was first derived using a total of 9,817,454 variants for 22 autosomes using all

528 samples. Another GRM was then made setting the first GRM off-diagonal elements that

were below 0.05 to 0. Heritability was estimated by REML (restricted maximum likelihood)

analysis with these two GRMs adjusting for covariates (sex, race, maternal education, gesta-

tional age) and the first 10 principal components. Using all 528 genotyped samples, the estimated

SNP-heritability of LPAx is 0.38 (s.e.“1.38) with a prespecified prevalence of 25%. The point

estimates of SNP heritability were moderate but were not significantly different from zero, likely

due to our relatively small sample size with closely related individuals.
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Table B1 Participant characteristics of the ELGAN2 subset and ELGAN2 cohort.

Variable name ELGAN2 subset (N“528) ELGAN2 (N“889)
n (% or SD) n (% or SD)

Infant sex
Male
Female

274 (51.9%)
254 (48.1%)

455 (51.2%)
434 (48.8%)

Cognitive impairment
No/Low
Moderate/Severe
Not reported

390 (73.9%)
138 (26.1%)
0

660 (74.2%)
214 (24.1%)
15 (1.7%)

Gestational age 26.1 (1.27) 26.1 (1.28)

Maternal education
ă“12 years
13-15 years
16+ years
Not reported

205 (38.8%)
119 (22.5%)
204 (38.6%)
0

355 (39.9%)
202 (22.7%)
306 (34.4%)
26 (2.9%)

Maternal Smoking
Yes
No
Not reported

128 (24.2%)
400 (75.8%)
0

215 (24.2%)
655 (73.7%)
19 (2.1%)

Race
White
Black
Other
Not reported

342 (64.8%)
133 (25.2%)
53 (10.0%)
0

554 (62.3%)
227 (25.5%)
98 (11.0%)
10 (1.1%)

Public insurance
Yes
No
Not reported

167 (31.6%)
361 (68.4%)
0

307 (34.5%)
568 (63.9%)
14 (1.6%)

Multiple births
Yes
No

189 (35.8%)
339 (64.2%)

313 (35.2%)
576 (64.8%)
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Figure B1. QQ plot. A quantile-quantile (Q-Q) plot is used to characterize the extent to which
the observed distribution of the test statistics follows the expected null distribution. This plot was
generated using the R package qqman [149].

Table B2 Epigenetic functional annotations for selected genome-wide significant and suggestive
variants.

rsID P-value CADD
phred

FATHMM-
MKL

Genehancer
feature

Genehancer
connected gene

Locus

rs11829294 2.40e-08 3.728 0.21 enhancer TSPAN9 TEAD4 (intron)
rs10774094 5.21e-08 0.805 0.10 enhancer TSPAN9 TEAD4 (intron)
rs16913588 2.05e-07 7.525 0.97 - - intergenic
rs58545250 2.14e-07 9.661 0.49 - - RP11-389O22.4 (down-

stream)
rs61114884 2.39e-07 3.602 0.15 enhancer TSPAN9 TEAD4 (intron)
rs17031018 5.27e-07 9.16 0.30 - - LRIG2 (intron)
rs79946490 6.64e-07 10.19 0.23 enhancer ITPR1 SUMF1 (intron)
rs11062457 7.44e-07 0.362 0.13 enhancer TSPAN9 TEAD4 (intron)
rs2286647 7.46e-07 0.16 0.07 enhancer TSPAN9 TEAD4 (intron)
rs143923810 7.73e-07 1.518 0.04 enhancer TSPAN9 TEAD4 (intron)
rs9424366 9.86e-07 13.82 0.13 enhancer CLIC4 NIPAL3 (downstream)

Table B3 Variants overlapped with commonMind eQTL˚: NCBI build 38.

rsID Gene Chr˚ Position˚ FDR Index SNP LD r2 with the index SNP

rs143923810 PRMT8 chr12 2988024 0.010 rs11829294 0.724
rs7302783 PRMT8 chr12 2989245 0.010 rs11829294 0.724
rs7302789 PRMT8 chr12 2989254 0.010 rs11829294 0.720
rs10082968 PRMT8 chr12 2990125 0.025 rs11829294 0.720
rs12322215 PRMT8 chr12 3001421 0.048 rs11829294 0.883
rs10128796 PRMT8 chr12 3003552 0.045 rs11829294 0.883
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Figure B2. Locus zoom plots for the two genome-wide significant loci. Colors represent
linkage disequilibrium r2 values calculated from TOPMed individuals with the lead SNP in each
plot. (a) Locus zoom plots with linkage disequilibrium r2 values calculated from TOPMed
European ancestry individuals. (b) Locus zoom plots with linkage disequilibrium r2 values
calculated from TOPMed African ancestry individuals. NCBI build 38.
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APPENDIX C: SUPPLEMENTARY MATERIALS FOR CHAPTER 4

Identification of SnapHiC-G chromatin enhancer-promoter interactions

SnapHiC-G was applied to 742 mESCs (and down-sampled to 100 and 300 mESCs) scHi-

C data and four cell types of the human prefrontal cortex sn-m3C-seq data to identify 10Kb

bin chromatin enhancer-promoter interactions on autosomal chromosomes with 20Kb to 1Mb

distance range. Bin pairs within 20 Kb were excluded from analyses.

Definition of overlapped enhancer-promoter interactions

We followed the same definition of overlapped loops as in SnapHiC. We define dim as the 1D

genomic distance between the center of bin i and the center of bin m, and we define the distance

between pi, jq and pm,nq as the maximum of dim and djn. For an enhancer-promoter interaction

pi, jq, if there exists an enhancer-promoter interaction pm,nq in set S such that the distance be-

tween pi, jq and pm,nq is within 20Kb, we define that the enhancer-promoter interaction pi, jq

overlaps with the set S.

Benchmarking with human brain cortical cells

To evaluate the performance of SnapHiC-G in human brain cortical cells, we tested SnapHiC,

FitHiC2, FastHiC, HiC-ACT, and HiC-DC+ along with SnapHiC-G on three cell types (oligoden-

drocytes, microglia, and L2/3 neurons) from 2,869 human brain cortical cells, each with more

than 150,000 contacts, from the Lee et al. study [100], where bulk H3K4me3 PLAC-Seq data

was available for reference (oligodendrocytes, microglia, and neurons) [115]. We applied each

method for the three brain cell types separately and pooled single cells from the same cell type

as the pseudo-bulk Hi-C data for bulk Hi-C methods. As shown in Figures C3-C4, SnapHiC-G

detected the largest number of significant interactions and achieved higher sensitivity than alter-

native methods for the analyses of all three brain cell types, where the power gain was more sub-

stantial for L2/3 neurons and microglia. Similar to mESCs, there was a large difference between

the number of significant interactions identified from different methods based on comparable

significance thresholds (Methods: Identification of loops/interactions using other Hi-C methods).
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For example, with 261 L2/3 neurons, the number of significant interactions ranged from 1,471

for HiC-ACT to 6,585 for FastHiC, while SnapHiC-G identified more than 20,000 significant

interactions (Table 1).

Difference between SnapHiC and SnapHiC-G

For each bin pair, SnapHiC-G applies the one-sample t-test to test whether its average nor-

malized contact frequency across single cells is significantly greater than zero (global back-

ground), while SnapHiC requires the average value to be positive and larger than the mean value

of its surrounding bin pairs (local background). As a result, SnapHiC-G called more interactions

than SnapHiC, with a significantly higher sensitivity for detecting enhancer-promoter interactions

with the same FDR cutoff.

The reduced sensitivity of SnapHiC can be explained by three reasons. First, gene promot-

ers can form wide-spread interaction clusters with multiple narrow typical enhancers or broad

super-enhancers, and enhancer-promoter interactions may not be located exactly at the summit

of such clusters. In addition, CTCF-anchored loops can bring enhancers to the proximity of

distal promoters to facilitate enhancer-promoter interaction, as suggested by the loop extrusion

model [150, 151]. Finally, enhancer-promoter interactions can be formed by the phase separation

mechanism, which is independent of CTCF binding. In all these three scenarios, applying a local

background model and selecting interaction summits will miss many of the enhancer-promoter in-

teractions. Another key distinction between SnapHiC-G and SnapHiC is using cell-type-specific

epigenetic data to narrow down candidate bin pairs. While such data greatly aid the detection of

cell-type-specific enhancer-promoter interactions, when they are not available, users can input

only the TSS files to define the promoter regions and apply SnapHiC-G to identify promoter-

interacting regions.
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Figure C1. An illustrative example at the APRC1B-STAG3 locus on chromosome 7 with a
microglia-specific interaction. The top panel shows the gene track. The middle panels show
RNA-seq, H3K27ac, and ATAC-seq tracks for the four brain cell types. The bottom panels show
AD and EDU GWAS SNPs, microglia enhancer regions, and two microglia-specific interactions
identified by SnapHiC-G but not SnapHiC. One microglia-specific interaction links the promoter
region of ARPC1B (highlighted in grey) with an AD-associated SNP rs1880949 (highlighted in
yellow); the other one links the promoter region of STAG3 (highlighted in grey) with an
EDU-association SNP rs10241492 (highlighted in yellow). Both genes highlighted showed
microglia-specific gene expression. The anchors of these interactions also showed stronger
H3K27ac ChIP-seq and ATAC-seq signals in microglia.
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Figure C2. An illustrative example at the SFXN2-INA locus on chromosome 10 with neuron-
and microglia-specific interactions. The top panel shows the gene track. The middle panels
show RNA-Seq, H3K27ac, and ATAC-seq tracks for the four brain cell types. The bottom panels
show SCZ GWAS SNPs, enhancer regions in microglia and neurons, and cell-type-specific
interactions identified by SnapHiC-G but not SnapHiC. A microglia-specific interaction links the
promoter region of SFXN2 (highlighted in grey) with a SCZ-associated SNP (highlighted in
yellow); multiple neuron-specific interactions link the promoter region of INA (highlighted in
grey) to SCZ-association loci (highlighted in yellow). Both genes highlighted showed
cell-type-specific gene expression in corresponding cell types. The anchors of these interactions
also showed stronger H3K27ac ChIP-seq and ATAC-seq signals in matched cell types.
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Figure C3. Power curves with (a) oligodendrocytes, (b) microglia, and (c) L2/3 neurons.
Interactions were ranked by significance on the x-axis, and power was evaluated with the
corresponding number of top interactions. Smaller figures in the lower right-hand corner are
zoomed-in views of the top 20,000 interactions from oligodendrocytes and the top 10,000
interactions from microglia and L2/3 neurons.

Figure C4. Precision barplots for three brain cell types. Precision bar plots with (a)
oligodendrocytes, (b) microglia, and (c) L2/3 neurons. Results shown were for the top 1,000,
2,000, 5,000, and 10,000 interactions ranked by significance. Some bars are missing because the
number exceeds the number of interactions called by that method.
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Table C1. Overlapped interactions in human brain cell types. (A) Four-by-four table of
two-way overlapped interactions. Element pi, jq (e.g. (1, 3)) is the number of the interactions
identified in the i-th (e.g., astrocytes) cell type that overlap with the interactions identified in the
j-th (e.g., oligodendrocytes) cell type. (B) Four-by-seven table of three-way overlapped
interactions. Element pi, jq (e.g., (1, 3)) is the number of the interactions identified in the i-th
(e.g., astrocytes) cell type that overlaps with the interactions identified in both cell types j (e.g.,
oligodendrocytes and L2/3 neurons). (C) The number of cell-type specific interactions. Column i
is the number of interactions that are identified in the i-th cell type that does not overlap with
interactions in any of the other cell types.
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Table C2. Running time and memory for SnapHiC-G step C and step D. All scHi-C data are
at 10 Kb resolution.
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