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ABSTRACT

Henry T. Corbett: The Evryscope Fast Transient Engine: Real-Time Discovery of
Rapidly-Evolving Transients with Evryscope and the Argus Optical Array

(Under the direction of Nicholas M. Law)

Modern synoptic sky surveys are typically designed to detect supernovae-like transients,

using a tiling strategy to identify objects that evolve on day-to-month timescales. Astro-

physical phenomena with sub-hour durations, ranging from galactic stellar flares to optical

flashes accompanying gamma-ray bursts, have largely escaped scrutiny. Due to their low

intrinsic rates and short durations, surveys for fast transients must simultaneously cover

significant fractions of the sky at sub-hour cadences, often by combining multiple telescopes.

The Evryscopes represent an extreme of this approach, combining 43 small telescopes to

image 38% of the entire sky every two minutes. To investigate bright and fast transients

with the Evryscopes, I developed the Evryscope Fast Transient Engine (EFTE), a real-time

transient detection and photometric analysis pipeline. EFTE uses a unique direct image

subtraction routine suited to continuously monitoring the transient sky at minute cadence.

Candidates are produced within two minutes for 98.5% of images, and are internally filtered

using VetNet, a machine learning algorithm trained to sort real astrophysical events from false

positives, both instrumental and astronomical, including millisecond-timescale reflections,

or “glints” from satellites and debris in Earth orbit. Glints are a dominating foreground for

astronomical surveys in the extreme time domain. I present the first measurements of the

glint rate, noting that it exceeds the combined rate of public alerts from all active all-sky,

fast-timescale transient searches, including neutrino, gravitational-wave, gamma-ray, and

radio observatories. I further report spectroscopic followup of two stellar flares identified

in real-time from the EFTE alert stream using glint-mitigation and science-driven selection
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metrics. These are the closest spectra relative to peak ever observed for flare stars outside

of dedicated starting campaigns on known active stars, and provide unique constraints on

the evolution of the flare continuum and temperature. Finally, EFTE is the software test

bed for the pipelines of the Argus Optical Array, an upcoming all-sky survey based on the

Evryscope concept scaled to the depths of the deepest operating sky surveys and a terabit

per second data rate. This work concludes with a description of the Argus prototype series

and pipelines, and an overview of fast transient science with the Array.
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CHAPTER 1: INTRODUCTION AND MOTIVATION

Section 1.1: The Rapidly Varying Sky

Astrophysical phenomena with ultra-short (sub-minute) durations have largely escaped

the scrutiny of modern synoptic sky surveys, which are typically optimized for supernovae-like

transients evolving on day-to-month timescales. Sensitivity to minute- and hour-timescale

events can be achieved through sub-surveys over fractional sky areas; however, these searches

typically use many-second exposures, confining the shortest events to single images.

For the fastest events, including prompt optical flashes from long gamma-ray bursts

(GRBs) (Fox et al. 2003; Cucchiara et al. 2011; Vestrand et al. 2014; Martin-Carrillo et al.

2014; Troja et al. 2017), shock breakout in young supernovae (Garnavich et al. 2016; Bersten

et al. 2018), and stellar flares (Howard & MacGregor 2022; Pietras et al. 2022; Aizawa et al.

2022), the duration of the event can be ≤ 1 hour, shorter than the base observing cadence of

conventional tiling surveys, such as the Zwicky Transient Facility (ZTF; Bellm et al. 2019),

Pan-STARRS (Kaiser et al. 2010), the Catalina Sky Survey (CSS; Larson et al. 2003) and

Catalina Real-Time Transient Survey (CRTS; Drake et al. 2009), SkyMapper (Keller et al.

2007), the Asteroid Terrestrial-impact Last Alert System (ATLAS; Tonry et al. 2018), the

All-Sky Automated Survey for Supernovae (ASAS-SN; Shappee et al. 2014), the Dark Energy

Survey (DES; Dark Energy Survey Collaboration et al. 2016), the Gravitational Wave Optical

Transient Observatory (GOTO; Dyer et al. 2018), and the Mobile Astronomical System of

Telescope-Robots (MASTER; Lipunov et al. 2004). Each of these surveys tile the sky on

timescales of days to maximize their likelihood of detecting supernova-like transients, which

evolve over the course of days and months. Figure 1.1 compares the instantaneous depth and
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survey speed of all active and planned sky surveys with rapid-transient detection capabilities

and all-sky footprints.

Figure 1.1 Operating and planned all-sky surveys with rapid transient detection capabilities.
The position of each survey is a function of mirror, étendue, cadence and survey design.
The shape and size of the points shows site location and étendue respectively. Where
telescopes operate multiple surveys, the plot shows the survey with the fastest rate of all-sky
coverage, and (where available in the literature) depths refer to dark-sky, 5σ-detection limiting
magnitudes. Adapted from Law et al. (2022c).

Faster events, occurring on minute-to-hour timescales, are detected in tiling surveys, but

with frequently under-sampled light curves. Tiling surveys are also not typically optimized

for minute-scale latency between detection and reporting, precluding spectroscopic follow-up

on timescales comparable to the lifetime of the transient. As a result, searches for short-

lived events typically require simultaneous coordinated observations of small sky regions for

spectroscopic confirmation and classification, as in the Deeper-Wider-Faster program (DWF;

Andreoni et al. 2020a). However, previous searches for fast transients in this regime, by the

DWF team (Andreoni et al. 2020a), as well as from PanSTARRS (Berger et al. 2013), iPTF
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(Ho et al. 2018), PTF (van Roestel et al. 2019), Tomo-e-Gozen (Richmond et al. 2020), and

the Organized Autotelescopes for Serendipitous Events Survey (OASES; Arimatsu et al. 2021)

have only produced upper-limits on the extragalactic event rate of fast transients, suggesting

that increased areal survey rates are necessary to observe any new populations of high-speed

transients.

While no extragalactic fast transients with sub-hour durations have been identified in

these un-targeted searches, many classes of exotic fast transients have been predicted, and

many examples of known galactic transients have been observed. Additionally, fast transients

are observed at other wavelengths, most notably in the radio, and the possibility to identify

optical counterparts to these signals commonly motivates continued efforts to explore this

section of the time domain.

1.1.1 Stellar Flares

Over the last few decades, the promise of M-dwarfs as hosts of habitable exoplanets has

been debated. M-dwarfs are extremely common, making up the majority of nearby stars

(Henry et al. 2006; Covey et al. 2008). Detection of Earth- and super-Earth-sized planets

around M-dwarfs is comparably easier than around higher-mass stars, due to their relative

sizes and transit depths. These facts, coupled with the estimate that over 10% of M-dwarfs

host rocky, habitable-zone planets (Dressing & Charbonneau 2013; 2015), appear to make

these stars ideal candidates in the search for exoplanetary life.

However, M-dwarfs are known to be extremely active and prone to frequent flares, which

make up the majority of galactic transients at minute-to-hour timescales (Kulkarni & Rau

2006). Flares are caused by reconnections in the stellar magnetic field, producing radiation

across the electromagnetic spectrum on timescales ranging from seconds to hours (Kowalski

et al. 2013; Allred et al. 2015). Radiation from the largest events, so-called superflares, reach

energies ≥ 1033 erg – orders of magnitude greater than the largest solar flares (Schaefer et al.

2000). Flares are responsible for much of the UV environment of rocky planets orbiting
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cool stars (Walkowicz et al. 2008), potentially eroding Earth-like atmospheres entirely (Loyd

et al. 2018; Howard et al. 2018a) or perhaps more commonly, high-energy particle fluence

accompanying large flares can deplete an Earth-like atmosphere’s ozone column depth by up

to 94% over time (Segura et al. 2010).

In either case, the depletion of an Earth-like atmosphere’s ozone layer leaves the planet’s

surface vulnerable to possible sterilization by UV radiation from more common, smaller flares

until the ozone column recovers (Loyd et al. 2018; Howard et al. 2018a; Tilley et al. 2019).

Nevertheless, it is possible that the excess UV flux provided by some periodic flaring could

balance out the otherwise tiny quiescent UV emission from the star, providing the necessary

UV radiation to support prebiotic chemistry (Ranjan et al. 2017; Rimmer et al. 2018).

Spectroscopic observations taken during the initial stages of a flare can reveal tempera-

ture and emission-line evolution during their most impulsive phases, which is valuable for

constraining both the fundamental flare physics and the potential impacts of flare activity on

exoplanet atmospheres. Although photometric observations can provide the initial detection

of a flare event and constrain flare rates, photometric observations alone have significant

limitations. Andreoni et al. (2020a) noted that the single-band light curves of flare stars

are indistinguishable from optical flashes associated with some gamma-ray bursts, such as

those in Cucchiara et al. (2011), emphasizing the need for spectroscopic confirmation of flare

candidates. All flares also exhibit spectral evolution over the lifetime of the flare, both in

temperature profile and relative contributions of line emission versus the stellar continuum

(Kowalski et al. 2013). Collectively, these effects can cause estimates of habitability–impacting

UV flux to vary by an order of magnitude or more, due solely to differences in the flare’s

assumed temperature or elapsed time between flare detection and spectroscopic follow-up.

Rapid spectroscopic observation immediately after flare detection is thus critical both for

confirming the event as a flare and for quantifying its effect on the local space weather

environment.
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1.1.2 Fast Radio Bursts and their Potential Optical Counterparts

Fast Radio Bursts (FRBs) are highly luminous (1042 erg/s), millisecond-timescale radio

transients observed primarily at extragalactic distances (Lorimer 2007, Thornton 2013). FRBs

are common across the sky, occurring at rates of O(103) per sky per day (Chawla et al. 2017;

Bhandari et al. 2018), with 635 unique sources recorded to-date. The majority of known

FRBs have been discovered in wide-field radio surveys, which generally have insufficient

localization precision to establish a host galaxy without followup using Very Long Baseline

Interferometry (VLBI). This is only possible for the 1-in-30 FRBs that appear to produce

repeated bursts. For the 23 known repeaters, precise VLBI localizations of their emitters

within their host galaxies has revealed a diversity of environments. While some FRBs are

clearly coincident with star-forming regions (Marcote et al. 2020; Fong et al. 2021; Piro et al.

2021; Ravi et al. 2022; Nimmo et al. 2022), others are significantly offset (Bassa et al. 2017;

Tendulkar et al. 2021; Xu et al. 2022), or even in host galaxies with a minimal SFR (Heintz

et al. 2020; Mannings et al. 2021; Bhandari et al. 2022), or globular clusters (Kirsten et al.

2022).

The characteristic timescales and luminosities of FRBs require a high-energy, but phys-

ically small, light emitting region, suggesting a compact-object origin, though the specific

progenitors and mechanisms remain an open question (see Platts et al. (2019) for an overview).

The recent detection (CHIME/FRB Collaboration et al. 2020; Bochenek et al. 2020) of a

bright, FRB-like burst (FRB 20200428A) from the galactic magnetar SGR 1935+2154 suggests

that magnetars are likely among the progenitors of fast radio bursts, and models involving a

neutron star or magnetar are currently favored. However, even with a settled progenitor, the

diversity of host environments and the statistical differentiation between the repeating and

non-repeating populations, Zhang et al. (2022) suggest that multiple mechanisms can exist,

potentially corresponding to each magnetar’s formation channel; CC SNe for regions with a

high SFR, binary merger or accretion-drive collapse for other sources.
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Magnetars may produce FRB-like coherent emission via reconnection directly in the

magnetosphere (Lyutikov 2021), analogous to flaring events on main sequence stars, or through

synchrotron maser emission from the forward shock between a flare and the surrounding

medium at large radii (Metzger et al. 2019). The latter scenario would additionally predict an

associated rapidly-fading optical afterglow powered by incoherent synchrotron radiation, with

detectability depending on the electron-positron pair density in the plasma wind (Metzger

et al. 2019; Beloborodov 2020). Multiple searches for optical emission have been conducted,

all focused on known repeating bursts (Petroff et al. 2015; Hardy et al. 2017; Tominaga et al.

2018; Niino et al. 2018; MAGIC Collaboration et al. 2018; Tingay 2020; Andreoni et al. 2020b;

Kilpatrick et al. 2021; Núñez et al. 2021; Niino et al. 2022; Tingay 2022), except for Xin

et al. (2021), which reports optical upper limits for the singular burst FRB 20181130B. One

plausible late-time counterpart has been recently discovered (AT 2022hur; Li et al. 2022), an

otherwise-unclassified optical transient spatially coincident with FRB 20180916B. However,

no prompt transient multi-wavelength counterpart to a fast radio burst has been discovered

to date.

1.1.3 Exotic Extragalactic Fast Transients

Other classes of short-duration transients have been predicted, including accretion of

planetary remnants onto the surfaces of white dwarfs (Di Stefano et al. 2015), and from

exotic scenarios originally linked to FRBs, like starquakes (Wang et al. 2018), the formation

of strange quark stars from magnetar collapse (Gupta & Saini 2018), or the explosion of a

primordial black hole (Barrau et al. 2014). Despite many years of searches (Sokołowski et al.

2010; Griffin 2012; Berger et al. 2013; Karpov et al. 2018; Andreoni et al. 2020a; Richmond

et al. 2020; Tingay 2020; Tingay & Joubert 2021; Arimatsu et al. 2021), no discoveries of

extragalactic fast optical transients (eFOTs) on sub-minute timescales have been claimed.

Two broad reasons for this lack of discoveries are likely: 1) areal event rates for eFOTs

are intrinsically low, requiring survey grasp in excess of current instrument capability, and
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2) near-field event rates from artificial Earth satellites (Maley 1987; 1991; Corbett et al.

2020; Nir et al. 2021; Karpov & Peloton 2022) and galactic M-Dwarf flares (Kulkarni & Rau

2006) are high, requiring a significant follow-up effort to separate any eFOTs from a dense

foreground of nearby sources. Figure 1.2 shows the upper limits determined by these surveys,

as well as the potential limits that could be established by the upcoming Argus Pathfinder

and Argus Optical Array surveys (described below and in Chapters 6 and 7) in the absence

of any eFOT detections.

Figure 1.2 Upper limits for the occurrence rate of fast optical transients as a function of
magnitude and characteristic timescale, including potential limits that could be established
by Argus Pathfinder and the Argus Optical Array.
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1.1.4 Orbital Debris and Reflections from Earth Satellites

The most common of rapid time domain signals detected from Earth are astronomical

in nature, but with the exception of a handful of space telescopes, completely unrelated

to astrophysics. Flashes of reflected sunlight from satellites in Earth orbit outnumber

astrophysical transients by orders of magnitude. Image contamination by Earth satellites

takes two forms: streaks, with uniform illumination over extended trajectories, and glints,

which appear as short-duration flashes (Corbett et al. 2020). These two morphologies are

frequently degenerate, and depend on the structure and orbit of the reflector. Streaks are

associated with fast-moving or slowly-rotating satellites, such as the Starlink constellation

discussed in McDowell (2020). Glints are associated with short rotation periods or high

altitudes, and are produced by chance alignments between an observer, the sun, and a

reflective rotating surface. The duration of a glint is the crossing time of the reflective

surface’s normal vector across the disk of the sun, less than a second for satellites with

minutes-long rotation periods (Schaefer et al. 1987). Short durations relative to their motion

on the sky and sharp contrast with their associated streaks have led to glints being mistaken

for astrophysical events (Schaefer et al. 1987; Maley 1987; 1991; Rast 1991; Shamir & Nemiroff

2006).

Karpov et al. (2016) presents time-resolved observations of satellite glints that reveal a

peak in the duration distribution at 0.4 seconds. Approximately half of the glints reported

in Karpov et al. (2016) were not coincident with the position of a satellite in the NORAD

database. Similarly, Tingay (2020) and Karpov & Peloton (2022) both note multiple candi-

dates with no or poorly-constrained association with tracked satellites based on their latest

two-line element parameters. Based on these observations, it is unlikely that glints will be

universally separable from a population of astrophysical transients based on ephemerides for

tracked satellites.

8



Section 1.2: Time-domain Survey Optimization and the Evryscopes

One common parametrization of the sensitivity of a telescope or survey to time domain

information is its grasp, defined as the volume of the universe which the telescope can observe

per unit time. Ofek & Ben-Ami (2020)1 define the grasp of an instrument as:

G ∝ ΩA
3/4
eff

σ−3/2t
3/4
E

tE + tD
, (1.1)

where Ω is the field of view (FOV), Aeff is the light-sensitive collecting area, σ is the size of

the point spread function (PSF), tE is the exposure time, and tD is the dead time between

exposures. An alternate approach to parametrize survey performance is étendue (G), a simple

geometric quantity relating the collecting area and field of view of a telescope:

G = Aeff × Ω. (1.2)

In both cases, the metric is most directly sensitive to two fundamental parameters of the

system: the telescope size, described by Aeff , and the fraction of the sky that can be observed

at once, Ω. While tiling surveys typically prioritize increasing Aeff to reap the non-linear

benefits of increasing volume, there is an alternate approach to survey design based on

building on Ω using arrays of smaller telescopes with modest depth but huge fields of view.

Designing a survey in this way limits the sensitivity to distant events like supernovae, but

maximizes the sensitivity of the system to rare and short-lived events like flares, prompt

counterparts to distant explosions, and, unfortunately, satellite reflections.

1.2.1 Overview of the Evryscope Survey

The Evryscopes are a pair of multiplexed wide-field survey telescopes, designed to maxi-

mize the FOV (Ω). The Evryscopes are located at Cerro Tololo Inter-American Observatory

1A similar metric, the volumetric survey speed, is defined in Bellm (2016).
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(CTIO) in Chile and Mount Laguna Observatory (MLO) in California. Figure 1.3 shows

the two instruments installed at their respective observatories. Each site consists of up to

twenty-seven 6.1 cm aperture camera units, arranged to observe the majority of the sky above

an airmass of ∼2 simultaneously. Collectively, the Evryscopes have a instantaneous field

of view of 16,512 sq. degrees (15,929 sq. degrees accounting for overlaps between adjacent

cameras) with a resolution of 13.2arcsec pixel−1 across a 1.24 gigapixel combined image plane.

The telescopes observe at a constant two-minute cadence with a 97% duty cycle, and collect

an average of 600 GiB of data per night. While the primary Evryscope survey has been

conducted in the Sloan g-band, Evryscope-North is also equipped with a Sloan r filter for

use in future surveys. All of the telescopes at each site are attached on a single mount, which

tracks the sky in two-hour increments.

Figure 1.3 Evryscope-North, installed at Mount Laguna Observatory, outside San Diego,
California, and Evryscope-South at Cerro Tololo Inter-American Observatory, Chile.

The instruments are fully robotic, operating autonomously based on a local weather

station. Evryscope-South has been in operation since May 2015, and Evryscope-North began

science operations in January 2019. For a full description of the instrument and Evryscope

science programs, see Ratzloff et al. (2019a) and Law et al. (2015). The instrument parameters

are summarized in Table 1.1.
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Table 1.1 System properties for the Evryscopes. For further information, see Ratzloff et al.
(2019a)

Property Evryscope-South Evryscope-North
Field of View (Deduplicated) 8520 sq. deg 7409 sq. deg
Field of View (Total) 8832 sq. deg 7680 sq. deg
Detector Size 662.4 MPix 576 MPix
Cadence 2 minutes
Aperture 6.1 cm
Pixel Scale 13.2 arcsec/pixel
Data Rate 165 Mbps (1.2 GiB/minute)

1.2.2 Observation Strategy

The Evryscopes utilize two distinct strategies for determining the two-hour-observing

fields that are observed over the course of the night:

1. Semi-random, with the eastern-most edge of the field placed 30 degrees above the

horizon to the east at the start of each 2-hour observation.

2. Fixed pointings, chosen from 48 overlapping regions, separated by 7.5 degrees in right

ascension.

In both scenarios, the duration of a single pointing is limited by the time it takes the westward

edge of the field to pass beneath an airmass of ∼2. This timescale (a “ratchet”) is typically on

the order of two hours. Each Evryscope tracks continuously at the sidereal rate. Minimal (few

arcminute) drift due to polar alignment is present over the course of a ratchet, but the visible

field between consecutive two-minute exposures is consistent, point-like, and unstreaked.

Semi-random pointings (currently used for Evryscope-South) are preferred for long-term

photometric performance, as diverse field positions allow sensor-plane effects to average out

over the duration of the survey. Because of the commercial-off-the-shelf optics used, individual

cameras exhibit up to 50% vignetting at the edge of the sensor field of view. Randomized

pointings also minimize the effects of camera-to-camera periodic noise, provide some resilience

against CCD sensor defects, and limit the prevalence of pathological coordinates that are

always located at the edge of a sensor and thus unduly affected by optical vignetting. The
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trade-off is that individual fields repeat only on timescales of months (cross camera) or years

(single camera), and only to few-degree precision.

Fixed-fields, by contrast, are used for Evryscope-North, and result in fields that repeat

with arc-minute precision on 1-3 day timescales. This repeatability is convenient for transient

searches, as it allows us to build up an archive of reference frames to use for image subtraction.

For fields above an airmass of 2, 76% are observed within two days of the previous visit,

and 97% are observed within a week. Because adjacent fields overlap by ∼ 95%, a given

sky region will appear in many different pointings, meaning that the field recurrence time is

independent of the observing cadence.

Section 1.3: The Argus Optical Array2

The Argus Optical Array is a new instrument, which expands the Evryscope design

concept and observing strategy to a larger collecting area while maintaining an equivalent FOV.

This concept is enabled by a revolution of capabilities in the amateur astronomy community.

In 2017, Celestron introduced the Rowe-Ackermann Schmidt Astrograph (RASA) line of

telescopes (Berry & the Celestron Engineering Team 2020), which match good image quality

across a wide field with low-cost mass production. List prices are only around $60,000 m2 of

glass, including all secondary optics and ancillary mounting components. Especially when

coupled with wide-field sensors, such as the new tens-of-MPix ultra-low-noise complementary

metal-oxide semiconductor (CMOS) detectors from Sony, arrays of these telescopes offer an

affordable route to building large-scale instruments. Multiplexed CMOS-based arrays are

capable of both high-speed operation with negligible (O(µs)) dead time (tD in Equation 1.1)

and a significant survey volume, leveraging minimal readout noise (1.7 e−) and high quantum

efficiency (> 94%) to increase depth by combining multiple images. The survey speed and

2Parts of this section are adapted from Law et al. (2022c). My contributions to this paper are
described in Section 1.6.

12



depth of Argus relative to all other current and planned synoptic sky surveys, both in single

images and deep stacks of many images, is shown in Figure 1.1.

While Evryscope is optimized to maximize simultaneous field of view, with an étendue of

48 m2 deg2, larger than almost all active and planned sky surveys, actual on-sky performance

and volumetric grasp of the Evryscope cannot match that of conventional surveys with

comparable étendue due to the coarse pixel scale (13arcsec pixel−1) and 6.1 cm aperture.

To optimize Argus for grasp, rather than étendue alone, a pixel scale comparable to the

typical atmospheric seeing limit (∼1arcsec) is required. Using currently-available sensors

and mass-produced optics, the most efficient approach requires O(1000) telescopes with

apertures accessible to the consumer market (typically 200-350 mm). This is two orders of

magnitude beyond the Evryscope scale, and reliable operation requires some modifications to

the Evryscope design concept to ensure stability and minimize maintenance. Rather than an

open fiberglass substrate within an otherwise conventional clam-shell observatory dome, the

Argus design is sealed to the outside. Each telescope is arranged in an inverted hemisphere

and observes the sky through a centrally-located window placed at a “pseudo-focal” point

where all of the individual telescope FOVs intersect. The enclosure is maintained at a constant

temperature with lab-like conditions with filtered climate-control at all times, minimizing

both the wear-and-tear of thermal cycling and the need to periodically clean optical surfaces.

A render of the design concept is show in Figure 1.4.

Despite the new pseudofocal design, the survey strategy follows the same approach used

by the Evryscopes: an all-sky (∼ 8000 square degree) FOV is multiplexed from the individual

telescopes, which are statically mounted to a structure which tracks the sky in fixed intervals,

or “ratchets.” For Argus, the length is correspondingly shorter (9 or 15 minutes, depending on

sensor orientation), due to the smaller crossing times for the individual camera fields of view.

At the end of the ratchet, the mount simply returns to the home position and begins again;

the only free parameters for the survey design are thus the imaging cadence and the filter

bandpass. Argus will perform two surveys, a 1-second cadence program for fast transients
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Figure 1.4 Conceptual overview of the Argus Array and its pseudofocal telescope arrangement.
The fixed enclosure is heavily-insulated, with an extension housing the near-line computing
and climate control systems. Heat generation within the enclosure is minimized by water
cooling all electronic components. Figure is reproduced from Law et al. (2022b).

down to g = 16.1, and a 30-second base cadence survey with a limiting magnitude of g = 19.3.

Due to the low readout noise of CMOS sensors, the Array can build up competitive depth by

combining hundreds or thousands of images, up to g = 24.0 per week. During both surveys,

Argus will use alternating filters so that each field will be observed in alternating bandpasses

over successive ratchets.

Argus is currently in development through a series of prototypes, including the nine-

telescope Argus Array Technology Demonstrator (A2TD; Chapter 6) and the 38-telescope

Argus Pathfinder, which was recently (2022 December) installed at the Pisgah Astronomical

Research Institute, a dark sky site in western North Carolina. Figure 1.5 shows Pathfinder

installed at the observatory. Table 1.2 lists the basic parameters of the Argus Optical Array

and the Argus prototype series.
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Table 1.2 System properties for the Argus Optical Array and Argus prototype series. Table
is reproduced from Law et al. (2022b).

Section 1.4: Pipelines for Transient Discovery in Data-Intensive Surveys

Multiplexed survey instruments like the Evryscopes and Argus Optical Array provide a

cost-effective way to explore unique sections of the transient sky; however, rapid cadence and

all-sky imaging with high-resolution sensors produce a significant data rate. The Evryscopes’

combined 1.24-gigapixel mosaic camera produces a 2.48 GiB image every two minutes and

a 5.4 Gbps peak throughput to maintain a 97% duty cycle. The increased resolution (2.3

gigapixel) and higher cadence (up to 1-second) of the Argus Array Pathfinder produces

correspondingly higher data rates, up to 464 Gbps and 180 TB of raw data per night. Scaling

to the full Argus Array, data rates are equivalent to ∼ 1% of all public IP traffic in 2021 (Cisco

2021). Performant software tools are required for economical science analysis using these

datasets. Even for science cases with less stringent latency requirements, analysis needing

more compute time per image than the effective observing cadence would fall unrecoverably

behind.
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Figure 1.5 Argus Pathfinder installed at the Pisgah Astronomical Research Institute in
Rosman, NC (front container). The second shipping container houses ArgusSpec (Galliher
et al. 2022b), a dedicated spectroscopic followup system, and a “service module” with
computing and climate control equipment.

In addition to these logistical concerns, data pipelines for transients searches often have

science requirements for minimal latency, so that candidate sources can be rapidly identified

for spectroscopic followup and classification. Examples of bespoke pipelines optimized for

minimal latency are presented in Perrett et al. (2010), Kumar et al. (2015), Cao et al. (2016),

Förster et al. (2016), and Andreoni et al. (2017). Such pipelines are often built around

difference image analysis, a method for isolating sources with variable flux by subtracting an

earlier reference image of the field, complicated by the need to match the seeing-limited point

spread functions (PSFs) of images from multiple epochs. Methods for subtracting images in

the presence of variable PSFs have historically included deconvolution with a matching kernel
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(Alard & Lupton 1998; Bramich 2008; Becker 2015), which can be computationally expensive

and numerically unstable. Recent developments in image subtraction include the statistically

optimal ZOGY method (Zackay et al. 2016), which requires a robust and static model of

the image PSF, and the Saccadic Fast Fourier Transform sFFT method (Hu et al. 2022), a

GPU-based technique that fits a spatially-varying PSF in a per-pixel δ-function basis.

Section 1.5: Outline of this Work

In the following chapters of this text, I will describe my efforts to detect, characterize,

and ultimately make discoveries in the rapid time domain sky using the Evryscopes and the

prototypes of the Argus Optical Array. The chapters are organized as follows.

In Chapter 2, I describe the Evryscope Fast Transient Engine (EFTE), a pipeline for

identifying candidate transient events in image data using a simplified image-differencing

algorithm. This algorithm was developed for the unique instrument parameter space of the

Evryscopes. While this algorithm produces competitive results with other source detection

algorithms, the significant advantage it provides is minimal execution time, enabling real-time

searches within the two-minute Evryscope cadence using only a single computer, located

on-site at each observatory.

Chapter 3, I present VetNet, a secondary pipeline which analyzes the candidates produced

by EFTE, using a combination of machine learning, technical metrics, and science-driven

filters to remove false positives from the stream of candidates and identify the “needle in a

needle stack” representing the astrophysical phenomena of interest.

Exploration of a previously unexplored parameter space of bright and fast transient

events also revealed a new parameter space of bright and fast contaminants to our data. In

Chapter 4, I present the first-ever quantitative measurements of the impact of millisecond-

scale reflections from satellites and debris in Earth orbit, and find that they are extremely

common, outnumbering astrophysical sources in the same brightness regime by orders of

magnitude.
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In Chapter 5, I describe a program to observe stellar flares detected by EFTE in

real time with time-series spectroscopy from the Southern Astrophysical Research (SOAR)

telescope. This program has produced the highest time- and spectral-resolution survey of

flare spectra from typical M-dwarfs (i.e., stars that are not notably active relative to the

M-dwarf population) ever assembled. In this chapter, I present initial results from this

program, characterizing the evolution of the spectral components of the flare and modelling

the characteristic temperature of their white-light continuum evolution.

In Chapter 6, I introduce the Argus Optical Array, a new, much larger system based

on the design concept of the Evryscopes (now with a parity inversion). I led the early

effort to prototype the physical hardware of the system, resulting in the construction of a

nine-telescope Argus Array Technology Demonstrator (A2TD), which was used for design

iteration of core systems and components for the instrument and collection of representative

data.

In Chapter 7, I present the Argus Hierarchical Data Processing System (HDPS), a

successor to the EFTE pipeline built with scalability to the cluster-scale compute necessary

for the 12 Tbps data production rate of Argus. HDPS was developed in parallel with the

hardware for Argus, and includes both real-time transient detection capabilities and the

control and operating system for the observatory itself.

Finally, in Chapter 8, I conclude with an overview of the capabilities of the Argus

Pathfinder and Argus Optical Array to search for rapid transients, as well as an overview of

other projects to which I have made significant contributions, but which lie outside of the

scope presented here.

Section 1.6: Additional Work and Contributions

Beyond the work enumerated in the following chapters, I have made significant contribu-

tions to the following publications as a coauthor. The bibliographic information, along with

my specific contributions to each, are listed below.

18



1. Howard, W. S., Tilley, M. A., Corbett, H., et al. 2018a, Astrophysical Journal Letters,

860, L30, “10.3847/2041-8213/aacaf3” – I assisted with the initial data validation,

photometry of the flare peak in Evryscope data, and analysis of the serendipitous,

simultaneous, and spectroscopic HARPS data.

2. Ratzloff, J. K., Law, N. M., Fors, O., et al. 2019a, Publications of the Astronomical

Society of the Pacific, 131, 075001, “10.1088/1538-3873/ab19d0” – I contributed to the

description of the Evryscope data analysis pipeline, and to characterization of on-sky

performance from coaddition.

3. Ratzloff, J. K., Law, N. M., Corbett, H. T., Fors, O., & del Ser, D. 2020a, Journal of Astro-

nomical Telescopes, Instruments, and Systems, 6, 018002, “10.1117/1.JATIS.6.1.018002”

– I contributed modelling of the Evryscope PSF as a function of position to illustrate

the effect of the robotic alignment system.

4. Glazier, A. L., Howard, W. S., Corbett, H., et al. 2020, The Astrophysical Journal, 900,

27, “10.3847/1538-4357/aba4a6” – I assisted with statistical analysis and developed a

tool to produce astrometric image cutouts from Evryscope images.

5. Wee, J., Blagorodnova, N., Penprase, B. E., et al. 2020, The Astrophysical Journal,

899, 162, “10.3847/1538-4357/aba3cc” – I contributed an analysis of the Evryscope

lightcurve of the nova and context for the Evryscope detections [previously reported in

Corbett et al. (2018)].

6. Law, N. M., Corbett, H., Galliher, N. W., et al. 2022c, Publications of the Astronomical

Society of the Pacific, 134, 035003, “10.1088/1538-3873/ac4811” – I contributed an

overview of the Argus Array pipeline and data products, and a description of the

multi-messenger and FRB science cases for Argus. I also wrote the appendix justifying

the choices of telescopes and cameras for the Array.
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Finally, data products from the Evryscope Fast Transient Engine (EFTE; Chapter 2) and

Evrypipe, an earlier iteration of the Evryscope pipeline which I developed in collaboration

with Octavi Fors, have proven useful for a variety of science cases. Papers resulting from the

products of the Evryscope pipelines which are unrelated to the fast transients science case,

or to which I have made only minor contributions, are listed below.

1. Tokovinin, A., Corbett, H., Fors, O., et al. 2018, The Astronomical Journal, 156, 120,

“10.3847/1538-3881/aad694”

2. Kosiarek, M. R., Crossfield, I. J. M., Hardegree-Ullman, K. K., et al. 2019, The

Astronomical Journal, 157, 97, “10.3847/1538-3881/aaf79c”

3. Howard, W. S., Corbett, H., Law, N. M., et al. 2019, The Astrophysical Journal, 881,

9, “10.3847/1538-4357/ab2767”

4. Howard, W. S., Corbett, H., Law, N. M., et al. 2020, The Astrophysical Journal, 895,

140, “10.3847/1538-4357/ab9081”
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CHAPTER 2: THE EVRYSCOPE FAST TRANSIENT ENGINE1

In this Chapter, I present the Evryscope Fast Transient Engine (EFTE), a real-time

discovery pipeline for the Evryscopes. The primary goal of EFTE is to provide a reliable

event stream with sufficiently minimal latency to enable multi-wavelength followup of events

with sub-hour durations. EFTE also provides useful general-purpose utilities for interacting

with and analyzing Evryscope data, including a quick-look photometry pipeline independent

of the general-purpose precision-photometry pipeline, a custom astrometric solver, and CCD

calibration functions. EFTE is mostly written in Python, with some compute-intensive

routines (stamp extraction and photometry) implemented in C and wrapped as Python

extensions using Cython (Behnel et al. 2011).

To fit within the existing network infrastructure at the observatories, EFTE is designed to

operate with minimal computational resources for data analysis; a single co-located compute

node supports each Evryscope site. Low resource requirements are particularly necessary

when looking towards next-generation sky surveys, such as the Argus Optical Array (Law et al.

2022b;c). The upcoming Argus Array Pathfinder instrument, consisting of thirty-eight 20 cm

telescopes, will produce up to 180 TiB of data per night at 1-second cadence and 6 TiB of

data per night at the base 30-second cadence; maximizing science returns from data-intensive

systems like Argus will require time- and cost-efficient algorithms and pipelines. For Argus,

all images must be reduced within the observing cadence to provide sufficiently low latency

for followup and to avoid a backlog of data, which can require runaway compute resources

for “catch-up.” Incoming Argus images are resampled to a pre-defined HEALPix (Górski &

1This chapter adapted from Corbett et al. (2023), published in the Astrophysical Journal Supplement
Series. The full bibliographic entry for the paper is as follows:
Corbett, H., Carney, J., Gonzalez, R., et al. 2023, The Astrophysical Journal Supplement Series,
265, 63, “10.3847/1538-4365/acbd41”
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Hivon 2011) grid using a custom GPU-based code. By parallelizing direct subtraction based

on the EFTE algorithm, the Argus pipelines are able to reduce each image into transient

candidates and compressed images in an average of of 925 ms. Corbett et al. (2022) presents

a full description of the Argus Array pipelines and data reduction strategy.

The Chapter is organized as follows. In Section 2.1, I outline the overall design and

implementation details of the pipeline. In Section 2.2, I describe the initial image calibration

and data quality controls for the pipeline. In Secion 2.3, I outline the process of locating

each image on sky and solving for the mapping between image and sky coordinates. In

Section 2.4, I formulate a direct image subtraction algorithm, suited to the unique science

requirements and data properties of the Evryscopes. In Section 2.5, I present an approach

to measuring the brightness of stars in Evryscope images using forced aperture photometry

with a spatially-varying zeropoint. In Section 2.6, I describe the in-database, high-speed

cross-matching system used to associate both transient candidates with previous detections

and with a variety of external reference catalogs. Finally, in Section 2.7, I characterize the

typical performance of the components of EFTE using a representative sample of on-sky data

from Evryscope.

Section 2.1: Pipeline Architecture

EFTE is a hierarchical + distributed system, with two analysis servers on-site at MLO

and CTIO streaming reduced data products back to a central PostgreSQL2 relational database

on campus at University of North Carolina at Chapel Hill (UNC-CH). The analysis servers

each have dual AMD EPYC processors (36 CPU cores for Evryscope-North, 48 for Evryscope-

South), and 512 GiB of RAM (384 GiB at Evryscope-North). The asymmetry between the

two sites is due to the additional four years of archival data from Evryscope-South. The

central database for reduced data products is hosted on a 36-core server with 24 TiB of flash

storage, located on-campus at UNC-CH. This server also hosts a backend application for

2http://www.postgresql.org/
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pipeline monitoring, associating EFTE transients with external alerts, and end-user reporting

via a Slack3-based web-interface.

In real-time operation, EFTE instances on each analysis server communicate with the

Evryscope data acquisition system via a TCP socket connection, receiving notifications for

each incoming image once it has been written to a shared network filesystem. EFTE maintains

a per-ratchet, in-memory database of recent images to be matched for image subtraction,

spawning subprocesses for all analysis tasks. Figure 2.1 shows the primary components of the

EFTE pipeline, from the moment that an image is written to disk to reporting candidates.

Section 2.2: Image Quality Monitor and CCD Calibration

Once an exposure is completed, the Evryscope observation daemon sends a TCP packet

to an EFTE instance running on the analysis server. Upon receipt of this notification, EFTE

will asynchronously record basic metadata including camera, timing, origin, and instrument

configuration to the central database located at UNC-CH. Before further reduction, the image

goes through a series of general quality assurance steps, including:

• verification of the file against the checksum recorded by the acquisition system

• instrument configuration checks for camera cooling, dome status, and exposure type

• autocorrelation-based checks for tracking errors and alignment failures

• sky-background measurement for saturation and linearity checks.

If these conditions are satisfied (as they are for 98% of images), the image is converted from

ADU to electron units and matched to dark and flat fields for CCD calibration.

Dark frames are regularly regenerated using frames taken at the beginning and ending of

each night. Cameras are cooled to a constant −20◦C during observing, but some few-percent

level drift in bias level is observed as a function of the camera external temperature. We

3https://slack.com/
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Figure 2.1 Data flow and layout of the EFTE pipelines. Operations (orange), and real-
time reduction (blue) components are independent for each observatory, while pipeline
monitoring (purple) and shared databases (green) collate data from both Evryscope-North
and Evryscope-South.

believe that this is caused by temperature gradients across the readout electronics, and make

a quadratic correction to the bias level as a function of the camera electronics temperature,

as measured by an on-board sensor in each camera. Additionally, a small (< 1%) linearity

correction is applied per pixel based on a cubic fit to pixel value vs. exposure time in lab

testing. The linearity correction was determined to be near-identical for all our sensors.

Because of the extreme single-camera field of view, twilight flats contain significant sky

gradient that the Evryscope is unable to compensate for through diverse pointings because
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of its fixed camera positions. Instead, we use photometric flats, calculated based on a 7th

order polynomial fit to the normalized flux offsets of reference stars relative to g-band catalog

photometry from the ATLAS All-Sky Stellar Reference Catalog (ATLAS-REFCAT2; Tonry

et al. 2018). These frames capture the average vignetting patterns of the individual cameras,

which can change sharply at the edge of the field. Photometric flat fields are stable at the 1%

level over months-long timescales due to focus stability of the Evryscope Robotilter alignment

system (Ratzloff et al. 2020a), and are regenerated only when the instruments are cleaned,

which typically requires replacing or removing the outer optical windows on each camera.

Bad pixels are replaced with the median of the surrounding 3× 3 pixel block and then

assigned an arbitrarily high uncertainty in the resulting noise image used for photometry and

source detection. Parts of each camera’s field of view, particularly those near the center of

the frame, will have undersampled PSFs. Simple bad-pixel masking (i.e., assigning pixels a

NaN or 0 value) will produce sharp artifacts in subsequent analysis requiring pixel resampling,

like the image subtraction described in Section 2.4.

Section 2.3: Astrometric Solutions

In parallel with the science-frame calibration steps, the EFTE pipeline produces an

astrometric solution for the image using a custom solver developed for the highly distorted

Evryscope focal plane. Evryscope astrometric solutions begin with an initial solve based on

the center 512×512 pixel region using a local install of astrometry.net (Lang et al. 2010).

This solution is only used to locate the center of the image. Sources in the image are then

cross-matched against the Tycho-2 catalog (Høg et al. 2000), and the offsets are used to

optimize a polynomial distortion solution to 5th order in each of x, y and radial position on

the sensor, plus cross terms. The solution is then verified against a subset of bright stars

from Gaia DR2 (Gaia Collaboration et al. 2018) based on crossmatch performance against

detections in an even grid of 15 different sensor regions using the following requirements:

1. > 80% recovery in at least 7 regions
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2. < 50% recovery in 0 regions

3. Uncertain recovery (due to source confusion or non-detections) in no more than 2

regions.

We selected Gaia DR2 for solution verification due to its reference epoch (J2015.5)

coinciding with the beginning of Evryscope observations. Typical RMS offsets from Gaia

DR2 positions are ∼ 4 arcseconds, or 0.3 pixels.

The complete solution is written into a world coordinate system (WCS) header using the

TPV convention for distortion polynomials (Calabretta et al. 2004). The TPV representation

is an extension to the standard tangential projection, including additional terms for a general

polynomial correction.4 Due to atmospheric refraction and tracking errors, the solution

must be recalculated per-image, but the solver is able to start with a pre-computed baseline

distortion solution, averaged over dozens of fields for each camera. We found that starting

with an averaged solution decreased the time required for the final optimization by a factor

of several on average.

This header is archived to network storage, and serialized and passed back into the

in-memory EFTE matching database, where it is associated with the camera and active field.

Finally, a footprint of the image, discretized as a GeoJSON (Butler et al. 2016) polygon, is

stored in the central database, where it is indexed using PostGIS5 extension to PostgreSQL,

which provides a variety of spatial object types. These footprints support a variety of

use-cases, and allow users to easily query for images containing a given target, or search for

images intersecting with arbitrary sky regions that can be represented as polygons, such as

probability skymaps for gravitational wave and GRB triggers.

4https://fits.gsfc.nasa.gov/registry/tpvwcs/tpv.html
5http://postgis.net/
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Section 2.4: Direct Image Subtraction

Like most optical transient surveys, EFTE isolates objects with changing flux by sub-

tracting each science image from an earlier reference frame of the same field from each image.

We optimize our subtraction algorithm for speed rather than statistical optimality, electing

for per-pixel operations requiring no additional intermediate data products beyond those

produced in the initial photometric pipeline. Due to the short (sub-hour) timescales of

interest and the dominance of instrumental optical effects on the system PSF, Evryscope

images do not require PSF-matching techniques addressed by standard difference-image

analysis routines, like HOTPANTS (Becker 2015) or ZOGY (Zackay et al. 2016). However,

EFTE was built for extensibility, and implementations of both HOTPANTS and ZOGY are

included in EFTE.

The resolution of Evryscope images is limited by the optical distortions from the camera

lenses and pixel scale, rather than atmospheric effects, under most practical observing

conditions. PSFs vary greatly across the image plane of each camera, as illustrated in

Figure 2.2; however, Evryscope image quality metrics have been measured to be repeatable

at the few-percent level over many-month timescales (Ratzloff et al. 2020a), creating highly

repeatable PSFs for each individual camera.

As a result, we adopt a straightforward algorithm for image subtraction in which the

reference and science images are aligned, matched in flux, and subtracted directly. The

difference of the two images is then weighted by a propagated uncertainty image to identify

significant changes in flux. This approach is valid only if the following conditions are satisfied

for the reference and science image couplet:

• Observed PSFs are dominated by telescope optics and pixel scale, and do not vary

significantly as a function of observing conditions on the timescale of the lag between

the images
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Figure 2.2 Median PSFs across a 6× 4 grid of sensor regions. PSF variability as a function
of chip position is evident; however, long-term measurements of Evryscope optical stability
(Ratzloff et al. 2020a) indicate that the PSF is repeatable in time despite aberrations.

• All sources have near-identical pixel coordinates in both images, offset by no more than

the PSF-coherence scale, which we define as the pixel distance over which spatial PSF

variation is less than thermal and atmospheric effects over a few-minute baseline, or to

a 1% maximum change in the normalized PSF. This scale is typically ∼ 10 arcminutes,

or ∼ 50 pixels at Evryscope pixel scale

• The global flux scaling between the two images is smooth

In the following subsections, we describe the process by which we match image couplets

for subtraction, and the custom method we use to subtract the images that is optimized for

the unique resolution and time domain covered by EFTE.
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2.4.1 Reference and Science Image Selection

The primary science targets for the EFTE survey are stellar flares, which have charac-

teristic optical rise-times of minutes. As a result, there is minimal benefit from producing

reference frames widely spaced in time from our science images to maximize sensitivity to

slowly varying objects. Instead, the image-matching daemon uses a sliding reference frame,

taken from the same pointing as the science image. The Evryscopes maintain a consistent

pointing over the course of a ratchet, with only few-arcminute drift even at the equator,

meaning that the PSF for a given star is essentially constant during each two-hour tracking

period, up to resampling effects caused by its sub-pixel position in the 13.2 arcsecond pixels.

Additionally, using a reference image from the same pointing means that the science and

reference frames are taken under near-identical sky conditions, minimizing the amount of

flux scaling necessary.

In the most aggressive case, we could simply subtract consecutive images to achieve

near-ideal consistency between the new and reference frames. However, immediate re-use

of science images as reference images limits the survey sensitivity to only transients with a

detectable change over the two-minute image interval, making confirmation images of highly

impulsive events unlikely. In practice, we enforce a short lag, ∆tD, between the reference and

science images. ∆tD is typically chosen to be 10 minutes. Over 10 minutes, field drift due to

polar alignment error is consistently less than 10 arcminutes (50 pixels). PSF variability over

50 pixels typically produces sub-percent subtraction artifacts, and image registration between

the two images can be done with simple transformations with minimal loss in astrometric

precision (see Section 2.7.2).

Image re-use effects are also evident at ∆tD = 10 minutes, but only after the potential

fourth confirmation image. Figure 2.3 shows this image-reuse effect on a real flare seen on-sky,

in which the same image is both the first science image and last reference image for the

transient. While the amplitude and rise time of this event enabled multiple detections up to
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Figure 2.3 EVRT-192099, a 5.5 magnitude flare from a star associated with the 1RXS
J174441.6-531551 in the ROSAT All-Sky Survey Bright Source Catalogue (Fresneau &
Osborn 2009; Voges et al. 1999). The reference frame from 2019 October 4 at 9:06 UT is
the science image from 8:58 UT, showing the sliding reference frame used by our direct
subtraction algorithm.

8 minutes after the initial detection, events with shorter rise-times or lower amplitudes may

only be detected in a single epoch.

Additionally, the sliding reference frame causes photometry in the unscaled difference

image (i.e., the numerator of equation 2.2) to be relative in time. Light curves of EFTE

candidates are computed using forced aperture photometry in the science images, as described

in Section 2.5.

Over the course of a ratchet beginning with images A, B, C, D, E and F, the pipeline

will perform the following subtractions: B-A, C-A, D-A, E-A, and F-B (continuing on to the

length of a ratchet, typically 60 images). The rise-time sensitivity of the pipeline increases as
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a function of the time delay ∆tD between the science image and the previous image from

the same pointing chosen as a reference image. ∆tD is in general a tunable parameter of

the pipeline which could be increased to trade the viability of the assumptions enumerated

above (and thus higher false positive/false negative alert rates) for increased sensitivity to

slower rise times. Given sufficient computing, multiple instances of EFTE can run in parallel,

enabling sensitivity to different science targets.

2.4.2 Image Registration

Because of the sliding reference frame selection, drift between the science and reference

images amounts to a maximum of a few pixels during real-time operations that must be

corrected. Additionally, small offsets can have significant effects on the sampled PSF. As

such, the images must be carefully aligned and resampled to match both in position and PSF.

For the first image in a ratchet, EFTE must wait for an astrometric solution. However,

the astrometric solution for subsequent images from each camera can be inferred by alignment

to the first image. The effects of image registration on astrometry performance are addressed

in Section 2.7.2. Bootstrapping the astrometric solution in this way reduces delays in the

real-time subtraction process due to the astrometric solver to once per ratchet, on the first

image. For image alignment and resampling, we use WCS-independent asterism-matching,

using the Python AstroAlign6 package (Beroiz et al. 2020) to calculate a rigid transformation

between the two images and perform quadratic resampling.

Alternately, in cases where a full WCS solution is available for both images (e.g., in

batch reductions not conducted in real-time) the reference and science image can be aligned

by resampling the images to a common grid using their WCS solutions using the Astropy-

affiliated package Reproject. This has the advantage of allowing for non-rigid transformations

and accounting for the effects of varying per-pixel sky area across the sensor plane. While

astrometric warping due to atmospheric diffraction is negligible for typical ∆tD values used for

6https://github.com/toros-astro/astroalign
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real-time reduction, WCS-based resampling is necessary for longer baselines and inter-night

comparisons for fixed fields.

2.4.3 Flux Scaling

Despite the minimal baseline between the reference and science image, we fit a multiplica-

tive flux scaling factor to the reference image to remove any discrepancies with respect to

the science image due to variations in transparency and sky brightness, which is particularly

important for observations during twilight conditions. Because each individual Evryscope

camera covers a large sky area, we allow the flux scaling factor to vary across the image based

on the results of forced aperture photometry.

First, we divide each image into 24 × 16 274-pixel square regions of equal pixel area,

and select several thousand bright stars from the ATLAS Refcat2. We then calculate the

sigma-clipped mean flux ratio between the science and reference images for stars in each of

the 384 image sectors, and interpolate this back to full resolution using cubic splines. Finally,

the flux-matched reference image Rm(x, y) is calculated from the original, calibrated reference

image R(x, y) and the spatially varying flux ratio F (x, y) as

Rm(x, y) = R(x, y) ∗ F (x, y). (2.1)

To calculate the uncertainty in the flux ratio, we calculate the standard deviation of

the flux ratios for reference stars in each region and then interpolate across the full field of

the image using cubic splines. The flux ratio uncertainty is propagated forward into the

noise characterization for the reference image. Figure 2.4 shows a typical low-resolution flux

ratio map for a pair of images with ∆tD = 10 minutes, showing an average 1.7% change in

transparency between the images with some internal structure. The magnitude of the scaling

is consistent with transparency changes due to airmass for a camera placed at the edge of
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the array. Small-scale structure, when present, tends to move smoothly between images and

is likely caused by high clouds.

Depending on the science program, flux scaling can be skipped during reduction to

minimize latency. For consecutive-image subtraction (∆tD = 2 minutes), we neglect flux

scaling effects, as the uncertainties in the flux scaling dominate the final noise budget for

the image, and the flux scaling is typically sub-percent under normal observing conditions.

The primary driver of these uncertainties is likely the sub-pixel response function (sPRF),

which is highly local on the Evryscope image sensors, causing the effect to not average out

beyond the 1-3% level when interpolating across the image plane. Instead, multiple, slightly

offset measurements of the sample star must be modeled simultaneously, as they are for the

precision photometry pipeline and in coaddition of multiple images of the same field. However,

we include the flux ratio for longer-baseline subtractions, where background variations can

dominate over systematics.

2.4.4 Error Analysis and the Detection Image

To identify significant changes in the difference image, we need a robust accounting of

the noise sources in each image. For each science and reference image, we model a spatially

varying background based on sigma-clipped and interpolated mesh using sep, a Python

implementation of the core routines from SExtractor (Bertin & Arnouts 1996; Barbary

2016). The standard deviation of the background sB is also measured at this step, based on

the sigma-clipped standard deviation. sB is treated as an empirical measure of the Gaussian

noise contributions to each image, including the readout noise and dark current uncertainty.

We note that this approach can overestimate the noise due to Poisson contributions from

unresolved background star light, and as a result, the detection significance in the direct

subtraction image will tend to be an underestimate, particularly in crowded fields (e.g., near

the galactic plane).
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Figure 2.4 (Top-Left) Map of the flux ratio between a science and reference image couplet,
and (Top-Right) the corresponding flux ratio error map. The flux ratio is measured based
on forced aperture photometry of several thousand reference stars, and is interpolated across
each full-resolution, single-camera image based on the observed flux ratio in an equally
spaced grid of 384 image sectors. (Bottom) Relative aperture flux residuals before and after
correcting with the interpolated flux ratio as a function of x- and y-position on the sensor.
The correction improves the flux match between images by < 1%, which is not significant for
short (∆tD = 2 minute) subtraction baselines. Increases in the flux offset at the edges of the
image are caused by aperture losses due to the variable Evryscope PSF.
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For a given combination of science image S(x, y) and flux-matched reference image

Rm(x, y), both in electron units, the detection image D(x, y) is defined as

D(x, y) =
S(x, y)−Rm(x, y)√
s2S(x, y) + s2R(x, y)

, (2.2)

where s2S and s2R are the total noise images for S and Rm, given by

sS(x, y) =
√

S(x, y) + s2BS(x, y), (2.3)

and

sR(x, y) = R(x, y)

√
R(x, y) + s2BR(x, y)

R2(x, y)
+

s2F (x, y)

F 2(x, y)
, (2.4)

where sBS(x, y) and sBR(x, y) are the measured background standard deviation maps of the

science and reference images, respectively, F (x, y) is the flux ratio between the two images,

and sF (x, y) is the spatially varying uncertainty in the flux ratio. D(x, y) image is the simple

difference in the two images, scaled by the combined per-pixel uncertainty. The detection

image has units of standard deviations. We again use sep to mask the detection image at

the desired threshold and identify sources.

Figure 2.5 shows an example of an image couplet in a crowded field, along with the

resulting direct subtraction image. We also include subtraction images produced using the

HOTPANTS and ZOGY algorithms (Becker 2015; Zackay et al. 2016). Direct subtraction

produces more false positives (488) than ZOGY (299 in Scorr) at the 3-σ threshold, but two

orders of magnitude fewer than HOTPANTS (12,258). While ZOGY is a computationally

efficient approach, direct subtraction is faster by a factor of ten, largely due to the requirement

to calculate a PSF model for ZOGY. Using the direct detection image, we can identify three

astronomical transients with the EFTE pipeline using the vetting procedures described in

Section 3.1.
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Figure 2.5 (Left) A 4◦ × 1◦ region near Proxima Centauri from a reference, science, and
subtraction images from EFTE, the High Order Transform of PSF and Template Subtraction
algorithm (HOTPANTS; Becker 2015), and the Zackay, Ofek, and Gal-Yam algorithm (ZOGY;
Zackay et al. 2016). For ZOGY, we include both the scaled Scorr image used for point source
detection and the proper difference image D. In the subtraction images, a faint satellite
streak (left), variable star (bottom left), and M-dwarf super flare (Howard et al. 2018a) (far
right) are successfully recovered. The EFTE direct subtraction produces 47% more 3-σ false
positive than ZOGY for this field and can be computed is 10× faster for this image size.
(Right) Cutouts from the left images showing the 1′ × 1′ region centered on Proxima Cen.
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Section 2.5: Photometric Zeropoints and Forced Photometry

To calibrate magnitudes for EFTE transient candidates to a standard photometric

system, we build a spatially varying photometric zeropoint based on a subset of the ATLAS

Refcat2, a composite catalog consisting of griz data from the AAVSO Photometric All-Sky

Survey (APASS; Henden et al. 2016), Pan-STARRS Data Release 1 (Flewelling et al. 2016),

Skymapper Data Release 1.1 (Wolf et al. 2018), Tycho-2 (Høg et al. 2000; Pickles & Depagne

2010), the Yale Bright Star Catalog (Hoffleit & Jaschek 1991), Gaia DR2 (Gaia Collaboration

et al. 2018), plus original data from the ATLAS Pathfinder survey. To ensure that stars used

for determining the zeropoint of the image are well-exposed, but not saturated, we select a

subset of the catalog between 10 < g′ < 12. We also exclude stars with colors redder than

g − r = 1.5 that might bias the photometry due to unconstrained chromatic aberrations

affecting the PSF. We calculate an instrumental magnitude for each of the reference stars

using a forced aperture at the catalog position in the background-subtracted and calibrated

science image, typically with an aperture radius of 3 pixels (40 arcseconds).

To model the variation in photometric zeropoint across the field of view, the science image

is divided into an 8×12 grid of square subframes, each of which subtends 4 square degrees and

contains O(100) reference stars. Within each subframe, we calculate the sigma-clipped median

offset between the instrumental magnitudes calculated via aperture photometry and the

catalog values. The offsets in each region are then smoothly interpolated over the rectangular

mesh of the full-sized using quintic splines to produce a spatially varying zeropoint z(x, y).

The resulting image has units of magnitudes and has as its values the photometric zeropoint

at each pixel, defined such that

mg = −2.5 log10 Faper − z(x, y), (2.5)

where Faper is the measured flux from aperture photometry.
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Finally, we calculate magnitudes for each candidate detected as described in Section 2.4.4,

based on their centroid positions in the detection image. Centroids are calculated for each

candidate by computing their value-weighted average position (“center of mass”). This process

uses a custom aperture photometry routine, implemented in Cython for the Evryscope

precision photometry pipeline (Ratzloff et al. 2019a), on the science image.

Section 2.6: Candidate Crossmatching and Source Association

EFTE candidates from both sites and their corresponding metadata are stored in a

relational database. On insert, candidates are associated with previous candidates at the

same position, which collectively form an “event,” via an insert trigger within the database. If

a candidate has no antecedent, a new event is created, and an additional trigger crossmatches

the new event’s position with a variety of externally produced reference catalogs. At time of

writing, these reference catalogs include the International Variable Star Index (VSX; Watson

et al. 2020), the Galaxy List for the Advanced Detector Era (GLADE; Dálya et al. 2018),

ATLAS Refcat2, and the ASAS-SN Catalog of Variable Stars (Jayasinghe et al. 2018). Stellar

sources are crossmatched with a radius of 26 arcseconds (corresponding to 2 Evryscope

pixels and the worst-case astrometric performance for EFTE detections - see Figure 2.9), and

galactic sources from GLADE are crossmatched with a 1 arcminute radius.

To accelerate the in-database crossmatching and candidate queries, all candidates, events,

and reference catalogs are indexed using the Quad Tree Cube (Q3C) pixelization scheme,7 a

PostgreSQL extension for efficient spherical crossmatching and radial queries (Koposov &

Bartunov 2006). Sky areas, such as the on-sky footprints of images or probability contour

regions for multi-messenger transient events, are indexed using PostGIS with a custom non-

geodetic projection. This projection does not include the WGS-84 (Kumar 1988) reference

ellipsoid, and represents the right ascension and declination in the standard barycentric

celestial reference system in all EFTE application code.

7See: https://ascl.net/1905.008 (Koposov & Bartunov 2019)
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Candidates can also be crossmatched against external triggers received by EFTE via

automated circulars from the NASA Gamma-ray Coordinates Network/Transient Astronomy

Network (GCN). Alerts are inserted in the central database by an automated ingest microser-

vice, where they are indexed by position either using Q3C for tightly localized triggers, or

as PostGIS polygons for events that are distributed as polygon skymaps, like LIGO/Virgo

skymaps (Abbott et al. 2009) or GRB alerts from the Fermi Gamma Burst Monitor (Fermi

GBM; Bhat et al. 2009).

Section 2.7: Pipeline Performance Evaluation

2.7.1 Photometric Solutions

To evaluate the performance of the photometric calibration using a smoothly varying

zeropoint, as described in Section 2.5, we compare single-epoch forced photometry from

3,217,215 catalog stars from the ATLAS Refcat2 across 500 randomly selected images from

the 2018 observation year. The images were required to pass the quality assurance metrics

described in Section 2.2, but were not otherwise filtered for sky or instrumental conditions.

Figure 2.6 gives the distribution of photometric offsets and offset RMS as a function of

magnitude in individual images. The resulting photometry is calibrated to the reference

catalog with an RMS offset of 0.05 magnitude between 8 < mg < 14.0, measured using 5

iterations of a 5-σ clip to remove outliers due to single-epoch failures.

These numbers likely represent an upper limit on photometric RMS for isolated and

dim events, as the distribution is dominated by source confusion beyond g′ = 14 (e.g., dim

catalog stars with a brighter star near or within the 6-pixel aperture), causing anomalously

bright and high-precision measurements of dim catalog sources. Sources brighter than g′ = 9

are occasionally saturated when they appear near the center of the image, though typically,

sources as bright as g′ = 8 are well-calibrated and linear. There is a noise floor around ∼ 5%

for single-epoch detections from Evryscope due to variation in the sub-pixel response across

the image plane. These effects are modeled in data products from the Evryscope precision
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Figure 2.6 Photometric calibration offsets between the ATLAS All-Sky Photometric Reference
Catalog and EFTE. Median RMS offset in the region 8 < mg < 14.5 is 0.06 magnitude.
Anomalously bright and high-precision measurements (upper right) are due to source confusion
and blending. Under-reporting of magnitudes due to saturation is evident for stars brighter
than g′ = 8.

photometry pipeline (Ratzloff et al. 2019a), but are prominent in raw single-epoch bright-star

photometry from EFTE.

Additional color and airmass terms can be applied to light curves of EFTE photometry

as needed, using the equation

gEV R = gPS + A+B(gPS − rPS) + k1X + k2X(gPS − rPS), (2.6)

where gEV R is the magnitude in Evryscope g-band, gPS and rPS are the PanSTARRS

magnitudes from the ATLAS reference catalog, X is the airmass of the star, and A, B, k1, k2

are fitted photometric conversion factors between the Evryscope and PanSTARRS bandpasses.

Based on fits to forced-aperture light curves using a robust estimator (Fischler & Bolles

1981), the average photometric conversion terms across all cameras are A = 0.037± 0.002,

B = −0.051± 0.004, k1 = 0.021± 0.002, and k2 = −0.051± 0.003. The light curves used to

fit these parameters were chosen from a random sample of 25,000 Northern Hemisphere stars,
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which we then filtered based on a quality metric which includes source variability relative to

nearby stars, saturation, and the shape of the aperture flux growth curve, leaving a cleaner

sample of 10,671 lightcurves with an average of 17,140 epochs.

Figure 2.7 shows the photometric offset as a function of g − r and g − i colors before

and after applying the calibration offset, as well as the resulting impact on the long-term

photometric accuracy of light curves. Application of the color and airmass correction brings

the RMS calibration accuracy of long-term light curves from 0.16 mags to 0.06 mags, in line

with the single-epoch measurements above.

Public EFTE data products, including both transient alerts and long-term photometric

light curves , do not include color and airmass terms. For light curves , calibration for

photometric precision, rather than accuracy, is prioritized. Evryscope light curves are first

decorrelated from subpixel PSF variations, and then detrended using a customized version of

the SysREM algorithm (Tamuz et al. 2005) to correct for systematics, ultimately producing

light curves that are self-consistent at the ≤20 mmag level at the bright end of Evryscope’s

operating range, as shown in Figure 2.8.

2.7.2 Astrometric Localization

The custom astrometry routines developed for the Evryscopes are capable of providing

1-2” (0.08-0.15 pixel) RMS astrometry over the field of view of the Evryscopes in single images;

however, astrometric localizations from EFTE also depend on the quality of the alignment

procedure used for real-time reduction, and must therefore be characterized separately. In

addition to the sub-pixel scatter induced by photon noise, EFTE localizations depend on

the consistency of the pointing between consecutive images and the accuracy of the rigid

transformation calculated to align each image with the previous image for which a WCS

solution is available.

We evaluated the quality of this alignment routine by performing source detection in

individual science images aligned to a previous target image in the same pointing. We
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Figure 2.7 (a), (b) Photometric offsets between Evryscope and PanSTARRS g-band as
a function of g − r before and after calibration with the color and airmass terms above,
respectively. Large offsets below the linear trend are caused by blended sources and low-
SNR detections that were not filtered based on the light curve quality metric described in
Section 2.7.1. (c), (d) Same as above, but with g − i colors in place of g − r to demonstrate
perfomance over a wider variety of colors. No calibration fits are made as a function of
i-band colors. (e), (f) Photometric calibration performance for many-epoch light curves as a
function of magnitude. The sigma-clipped RMS photometric offset decreases from 0.16 mags
to 0.06 mags for sources between 14.5 > mg > 8 with application of color terms.
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Figure 2.8 Measured RMS of 10,671 randomly selected, long-term Evryscope light curves.
Performance in the detrended lightcurves ranges from 20 mmag at the bright end to 20% for
dim sources. RMS for raw light curves is an average of the measured RMS in each pointing,
neglecting zerpoint offsets between ratchets.

chose target images with a typical ∆tD of 10 minutes, with samples of ∆tD < 10 minutes

representative of what would occur in the first few images in a ratchet.

The detected sources were then cross-matched with sources in the ATLAS Refcat2 (Tonry

et al. 2018). As in Section 2.7.1, 500 science images for testing were randomly selected from

the 2018 observing data set, across all weather and Moon conditions. Figure 2.9 shows a

histogram of the offsets between the catalog positions and the recovered positions in the

aligned science image with a re-used WCS solution. Astrometric performance was sub-pixel

for 99% of detected sources, with an RMS scatter less than 4 arcseconds between 8th and

14th magnitude. As for the photometry, precision is limited by saturation effects at the bright

end, and by source confusion for sources dimmer than 14.5. In all cases, the localization is

accurate to within 2 pixels.

2.7.3 Candidate Production Latency

To enable rapid followup, EFTE must produce candidates on timescales comparable to

the earliest and most impulsive phases of the astrophysical events of interest, ideally within
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Figure 2.9 (top) Astrometric localization performance for the EFTE pipeline, and the RMS
localization scatter as a function of magnitude (bottom). Performance is sub-pixel at the
99th percentile, with a typical RMS scatter of 7”, excepting stars brighter than 7th magnitude,
which are typically saturated, and dimmer than 14th magnitude, where source confusion
dominates in the source extraction.

the base cadence of the survey. For Evryscope, this means adding candidates to an actionable

event stream within two minutes of the end of each exposure. We consider the candidate

production latency as our figure of merit for speed, defined here as the time delay between the

shutter close time for the image and candidates being fully inserted into the central EFTE

database in Chapel Hill, with all automated vetting and in-database source association and

deduplication actions complete.

Figure 2.10 presents histograms of candidate production latency for both Evryscope-North

and Evryscope-South during early on-sky testing of EFTE between 25 November 2019 and 1

January 2020. Some variation is seen between Evryscope-North and Evryscope-South, which

we attribute to a combination of the difference in on-site compute hardware specifications,

camera counts, and varying network connectivity to each observatory.
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(a) (b)

Figure 2.10 Cumulative histogram (a) and distribution (b) of time delay between exposure
and insertion of vetted candidates into the remote database between 25 November 2019 and
1 January 2020. 98.5% of images are fully reduced into lists of transient candidates within
120 seconds, before the next image is complete.

Cumulatively between both sites, EFTE is able to meet the sub-cadence latency require-

ment for 98.5% of images.

2.7.4 Injection-Recovery Testing for Completeness

To estimate the expected completeness of the survey, we selected 800 images from the

2021 Evryscope-North data set at random and injected simulated sources using the routine

described in Section 3.1.8, and evaluated the recovery probability as a function of magnitude

using the routine described in Corbett et al. (2020). The ratio of variables (injected with a

minimum contrast of 0.25 mag) to transients without a counterpart in the reference image

was 1:6. In total, 960,000 transients were added to the images.

Figure 2.11 shows the fraction of simulated transients recovered from the test set, and

the corresponding recovery fraction from Corbett et al. (2020), which used an earlier version

of the VetNet model. We note that dropping the VetNet-RB score threshold to 0.0 has a

marginal effect on the dim end recovery curve, indicating that the decreased depth (50% at

mg = 14 instead of 50% at mg = 14.2) is a property of the slightly different image sample

rather than of the updated VetNet model. Sources brighter than mg = 13.2 are successfully
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Figure 2.11 Survey completeness as a function of magnitude for both the current EFTE with
a threshold VetNet real-bogus score of 0.5, and the previous version described in Corbett
et al. (2020). Completeness is measured on a synthetic sample of injected transient and
variable sources. Recovery probability for sources brighter than mg = 13.2 is 99.9%, and
rapidly falls to 50% at mg = 14. Shaded regions represent the 90% confidence intervals of
each curve, based on the percentiles of the per-image recovery functions.

recovered in all images.
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CHAPTER 3: VETNET: REAL-BOGUS FILTERING FOR THE EFTE EVENT
STREAM WITH CONVOLUTIONAL NEURAL NETWORKS1

Section 3.1: Automated Vetting

Despite the optical consistency of Evryscope images chosen for subtraction, the direct

subtraction process produces thousands of false positives per image. Observed sources of

false positives are plentiful from inside the CCD sensors out to Earth orbit, including:

• Cosmic ray muon tracks

• Compton recoil electrons from radionuclides in materials at the observatory

• Optical ghosts

• Registration and astrometric errors

• Persistent residual charge from bright stars remaining after cycling the detectors

• Flat-fielding errors

• Aircraft strobes

• Tumbling satellites and debris (Corbett et al. 2020)

• Noise artifacts from both photon and astrometric noise.

In total, the event rate from these sources can outnumber the real, on-sky rate of

astrophysical transients by orders of magnitude. Human candidate inspection remains

1This chapter adapted from Corbett et al. (2023), published in the Astrophysical Journal Supplement
Series. The full bibliographic entry for the paper is as follows:
Corbett, H., Carney, J., Gonzalez, R., et al. 2023, The Astrophysical Journal Supplement Series,
265, 63, “10.3847/1538-4365/acbd41”
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standard, but it is not scalable to surveys producing hundreds of thousands of candidates

per night. As a result, a reliable, efficient, and automated vetting system for candidates is a

core component in any transient survey producing an actionable event stream that can be

delegated to followup resources.

Some false-positive sources in the list above can be identified with simple filters: Bright

streaks from satellites involve thousands of pixels, and residual charge from bright stars can

be flagged based on previous astrometric solutions. Other classes of observed signals can

be difficult to identify from simple metrics in all scenarios. To account for this, we use a

combination of data cuts based on explicit filters and machine learning (ML) methods.

ML classifiers require large datasets of labelled examples to identify the complex latent

associations that form a model. In general, there are two options for producing these datasets;

simulation or human classification. Exclusively training on simulated data is risky; the

efficacy of the final model is dependent on how representative the simulations are of real data.

However, human classification is labor-intensive, and prohibitive at the level of producing

thousands or even millions of labelled examples across a representative sample of the survey.

As a result, we have adopted a compound approach, using both hand-labelled on-sky

data and simulated events produced via PSF injection. The simulated dataset was used

to train an intermediate decision tree model to pre-screen events for human labelling, and

to perform initial training of the deep learning model. The real, moderate-purity sample

produced by the intermediate model was then hand-classified by humans, producing a smaller,

but minimally-contaminated and representative data sample for training the final deep model.

3.1.1 Initial Candidate Filters

While ML techniques can be comprehensive, simple filters grounded in domain knowledge

can be both more efficient and more easily interpreted. Starting from an initial deep source

extraction (SNR > 3 in a minimum of 1 pixel) of the detection image D(x, y), we implement

three first-order quality cuts, removing candidates which meet any of the following conditions:
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1. Centroid within 15 pixels of the edge of the CCD

2. Ratio of negative-to-positive pixels within a 6-pixel circular aperture > 0.42

3. More than 750 pixels above the detection threshold

Detections near the edge of a CCD are typically caused by small amounts of mount drift

between the science and reference images. Large ratios of negative to positive pixels typically

indicate a photon or astrometric noise artifact. Extended events > 750 pixels are commonly

bright streaks, caused predominantly by aircraft and LEO satellites.

We apply an additional filter after the ML vetting described below; we reject any

candidates coming from a subtraction with more than 500 high-confidence candidates. These

failed subtractions rarely occur, and are caused by a doubled or streaked image due to wind

shake at the instrument, or a breakdown of the assumption of a slow and smoothly varying

sky background required for direct image subtraction, as described in Section 2.4.

With no additional vetting, these simple filters reduce the per-image candidate count to

O(102) using the baseline values stated above; however, these numbers are readily tunable to

the science case and corresponding false positive tolerance, either by modifying a configuration

file for the EFTE pipeline instance running at each observatory, or by filtering the database

queries used to regularly report candidates to end users. Candidates that pass the thresholds

for these filters at the pipeline-instance level are inserted into the central database, including

small 30× 30-pixel “postage stamp” cutouts around their detection positions.

3.1.2 Intermediate Random Forest Classifier

For the intermediate real-bogus model, we used the scikit-learn (Pedregosa et al. 2012)

implementation of the ExtraTrees classifier (Geurts et al. 2006), which is a variant of the

Random Forest classifier (Breiman 2001), trained exclusively on simulated transients generated

as described in Section 3.1.8. This is a decision tree method, reliant on pre-selected features

2We note that an earlier version of the pipeline, as presented in Chapter 4, used a less restrictive
value for the sign ratio (0.311).
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for both training and analysis. The final output of the tree is a score with a range between 0

and 1.0, analogous to the probability that a sample is real.

The training set was generated by processing each injection image (Section 3.1.8) using

the direct image subtraction algorithm described in Section 2.4. We identified all sources

with a greater than 3-sigma significance in at least a single pixel. Based on the histogram

of detection-injection separation distances, we use a threshold of 2.5 pixel for identifying

injections recoveries within the detection catalogs. From the injection images, the false-

positives outnumber recovered injections 9-to-1. While some on-sky background transients

are likely to exist in the injection images, we are assuming that this number is small relative

to the number of injections. We recover 2,118,592 injected transients, and randomly select an

additional 2,118,592 bogus detections to create a balanced training set. The additional bogus

candidates are held back for testing.

For each candidate, we consider 16 features, divided up into two primary categories:

• Photometric parameters, including both calibrated and instrumental magnitudes, the

background-subtracted aperture flux, the local background RMS, science image SNR,

and the local photometric zeropoint.

• Morphological values, including the windowed second-order moments and uncertainties,

ellipticity parameters, and the number of pixels subtended by the source.

3.1.2.1 Hyperparameter Tuning for the Intermediate Model

To choose optimal hyperparameters for the ExtraTrees classifier, we performed a ran-

domized grid search. Additionally, we randomly select whether or not to bootstrap samples

for each tree on each iteration. We search across 10,000 iterations, each time training an

estimator with 5-fold cross-validation and evaluating its balanced accuracy, defined as the

average per-class recall. The selected parameters are given in table 3.1.
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Table 3.1 Grid search parameters for initial real-bogus ExtraTrees classifier.
Property Minimum Maximum Steps Selected
Estimators 200 1000 100 248
Tree Depth 10 110 100 67
Max. Features per Split 2 8 6 8
Min. Samples per Split 2 10 8 2
Min. Samples per Leaf 1 6 6 1

3.1.2.2 Intermediate Model Evaluation

The model is trained using the selected parameters from the grid search, and evaluated

using a variety of metrics. We evaluate and characterize the using both cross-validation

during training, and a dedicated test held back from training.

During training, we utilize K-Fold cross-validation with k = 5. This process entails

dividing the training set into five equal “folds”. For each of k iterations, we train the model

on four of the “folds”, reserving the fifth for validation testing. This produces five trained

models, which collectively utilize every sample in the training set as both training and testing

data, allowing us to characterize the variation in the final metrics as a function of small

inhomogeneities in the training and validation data. In cross-validation, we consider the

balanced accuracy score, which is the average accuracy on real and bogus examples, weighted

by the prevalence of each class. The mean accuracy in cross validation is 96.6%, with a

standard deviation of 0.4.

Because this model is primarily used to bootstrap an on-sky training set for the deep

learning model, it would ideally have high recall, defined as

Recall =
TruePositives

TruePositives+ FalseNegatives
. (3.1)

The precision of the model, defined as

Precision =
TruePositives

FalsePositives+ TruePositives
(3.2)
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Figure 3.1 Histograms of model scores for the intermediate ExtraTrees model, divided by
class.

can be relatively poor, as the results will be vetted by humans before inclusion. Over the test

set, the model achieves a near-1.0 precision for bogus events, and a precision of 0.79 for real

events. Correspondingly, the recall for bogus samples is 0.97, and 0.99 for real samples. This

model is effective at removing bogus samples while maintaining high recall for real samples,

at the cost of lower precision for real events. Figure 3.1 shows the score distributions for real

and bogus candidates within the test set. With a score threshold at the critical point of 0.6,

the model achieves a false positive rate (FPR) of ∼ 2% with a false negative rate (FNR) of

∼ 1%.

Figure 3.2 presents a histogram of the number of candidates in the test set as a function

of magnitude and score. The distributions are generally uniform as a function of magnitude,

with increased uncertainty at the dim end, consistent with the expected degeneracy between

dim events, which are likely to be above-threshold in only a single pixel, and common

contaminants, like hot pixels and cosmic ray or electron strikes.
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Figure 3.2 Histograms of model scores for the intermediate ExtraTrees model as a function
of magnitude. The vertical band of confusion of between 10th and 12th magnitude for real
sources likely represents increasing uncertainty for faint sources.

3.1.3 Real-Bogus Classification with Convolutional Neural Networks

For additional reduction of the EFTE false positive rate, we use an ML model based on

two-dimensional convolutional layers (LeCun et al. 1989) with weights conditioned directly

on image data. This model is a binary (“real/bogus” [RB]) classifier, which assigns each

candidate a score between 0 and 1, where a score of 1 indicates that the candidate is likely

real. RB classifiers have seen long-standing use in transient surveys, starting with the model

built by (Bailey et al. 2008) for the Nearby Supernova Factory (Aldering et al. 2002). Similar

approaches have been used for the Palomar Transient Factory (PTF; Law et al. 2009; Bloom

et al. 2008), the Intermediate Palomar Transient Factory (iPTF; Brink et al. 2013), the Dark

Energy Survey (Goldstein et al. 2015), and most recently, for ZTF (Mahabal et al. 2019;

Duev et al. 2019) and GOTO (Killestein et al. 2021).

Deep learning is a type of ML in which “deep” stacks of artificial neural network layers

(Mcculloch & Pitts 1943) are used to transform input data into latent-space encodings that

can be mapped to the desired output quantities. Convolutional Neural Networks (CNNs)

(LeCun & Bengio 1995) are a sub-class of artificial neural networks that build up a latent

space representation of pixel data using convolutions, which identify increasingly compressed

features of the input as the depth of the network increases, as opposed to requiring pre-
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selection of computed - and potentially sub-optimal - features to represent the data. CNNs

have found widespread use in astronomy for tasks including source detection and deblending

(Stoppa et al. 2022; Burke et al. 2019), in addition to transient real-bogus vetting (Makhlouf

et al. 2021; Förster et al. 2016; Duev et al. 2019; Killestein et al. 2021).

In this section, we describe VetNet, a CNN-based vetting algorithm trained to assign

real-bogus probabilities to EFTE candidates directly from 30×30 pixel cutouts from the

reference, science, and direct subtraction difference images.

3.1.4 Training Set and Data Labelling

Supervised ML classifiers require large datasets of labelled examples to identify the

complex latent associations during training. In general, there are two options for producing

these datasets: simulation or human classification. Exclusively training on simulated data is

risky because the efficacy of the final model is dependent on how representative the simulations

are of real data. However, human classification is labor-intensive, and prohibitive at the level

of producing thousands or even millions of labelled examples across a representative sample

of the survey.

As a result, we have adopted a compound approach, using both hand-labelled, on-sky

data and simulated events produced via spatially varying PSF injection. The simulated

dataset was used to train intermediate models to pre-screen events for human labelling,

including the prototype CNN used in Corbett et al. (2020). We manually classified the

on-sky, moderate-purity sample produced by the intermediate model to produce a smaller,

but minimally contaminated and representative, data sample for training the production

models.

3.1.5 Network Architecture

VetNet uses a sequential, VGGNet-like (Simonyan & Zisserman 2014) model with six

trainable layers; four convolutional, and two fully connected output layers. Each set of
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Figure 3.3 Architecture of VetNet, a convolutional real-bogus classifier used by EFTE. The
inputs to the network are a triplet of 30×30 pixel cutouts around the center of each candidate,
taken from the reference, science, and direct difference images. All trainable layers, save for
the final dense unit, use ReLU activation. Pairs of convolution layers are each followed by
max-pooling layers and 20% dropout for regularization. Network visualization generated with
Net2Vis (Bäuerle et al. 2021).

convolution layers is subject to 20% dropout to prevent overfitting, encouraging the model

to build a diverse set of representations of the data distribution. The dropout fraction at

each layer was determined using the HyperBand band algorithm (Li et al. 2018) with a

binary cross-entopy loss function. Further regularization is provided by a pooling layer, which

reduces the dimensionality of each convolution block output by a factor of four. Outputs of

each pooled layer are normalized and re-centered on zero using batch normalization (Ioffe &

Szegedy 2015) to improve training performance and model stability. All convolution layers use

3-pixel square kernels and ReLu activation (Agarap 2018), save for the final fully connected

node, which has a sigmoid activation function that produces an output value normalized

between 0 and 1. This output, the VetNet real-bogus (RB) score, can broadly be interpreted

as probability that a given candidate is real. Figure 3.3 depicts the architecture of the model,

including filter depths and the resulting dimensionality.

VetNet is implemented in Tensorflow (Abadi et al. 2015), using the high-level Keras API

(Chollet et al. 2015).

3.1.6 Dropout and Model Uncertainty

CNNs can have an arbitrarily large number of free parameters, and are accordingly able

to overfit training data. As a result, methods of regularizing the training process and the
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weights assigned to the convolutional filters are necessary to maximize performance on actual

data at inference time. Dropout (Srivastava et al. 2014) is one common technique, in which a

tunable fraction of outputs from a layer are chosen at random and set to zero, preventing

them from contributing to the final network outputs.

In addition to slowing overfitting, dropout also can be interpreted as an approximation

of Bayesian inference (Gal & Ghahramani 2015a). In this framework, each random sampling

of layer outputs can also be considered a sample from the distribution representing network

weights in a fully Bayesian network. Evaluating a given sample through these different

dropout-induced realizations of the network enables us to similarly approximate the posterior

distribution of the network output. The advantage of this approach, called Monte Carlo

(MC) Dropout, is that the output distribution includes the systematic uncertainty in the

network output due to model selection, distinct from the random uncertainty produced by

the variance of the training set (Gal & Ghahramani 2015b). To produce an output from

the network, each candidate is processed through multiple dropout-induced realizations of

the network, producing a distribution of resulting RB scores. We use the median of this

distribution as the RB probability for each source.

Interpretation of MC Dropout is unsettled in the literature (namely, whether it represents

a genuinely Bayesian approximation (Le Folgoc et al. 2021)). However, it can be used to

produce a number that scales with the degree of consensus within the network and amount

of support for a sample within the training set, and that can be interpreted as a confidence

metric. This is similar to the interpretation of the sigmoid activation of the network as a

whole as a real-bogus probability, despite not representing a normalized probability density

function. We adopt the entropy-based metric from Killestein et al. (2021) to quantify the

network confidence:

C = 1− 1

N

N∑
i=1

−pi log2 pi − (1− pi) log2 (1− pi), (3.3)
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Figure 3.4 Network accuracy vs. number of forward passes through the network for the
validation set. Performance converges at 10 samples. Error bars represent the standard
deviation of the results across 20 iterations.

where N is the number of samples from the posterior distribution and pi is the network output

for the ith sample. The metric C is the binary entropy of the Bernoulli process representing

real-bogus classification, averaged across posterior draws, and is bounded on the interval

[0, 1]. In Section 3.2, we demonstrate that C also matches the subjective confidence of human

vetting.

The number of forward passes used to approximate the network output posterior distribu-

tion is determined empirically from the validation set. Figure 3.4 shows the accuracy of the

classifier as a function of the number of forward passes through the network. The accuracy

of the median RB score converges after 10 inferences, which is consistent with the findings in

Killestein et al. (2021), despite the dropout rate here being two orders of magnitude higher.

3.1.7 Training Set and Data Augmentation

Two datasets were used to train the VetNet classifier; the 435,452 simulated candidate

dataset described in Section 3.1.8, and a human-annotated sample of on-sky detections

containing 31,092 candidates flagged as probably real by an earlier iteration of VetNet itself

(Corbett et al. 2020). Unlike the simulated dataset, the on-sky data is heavily class-imbalanced,
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with only 9.6% of examples (2,976) being human-labelled as real. To account for this class

imbalance, we randomly exclude 25,140 of the bogus samples from the on-sky dataset, noting

that the simulated dataset only contains simulated examples of the real class. Bogus examples

within the simulated data set are drawn from the same population as the bogus examples

in the on-sky dataset. Our approach for maximizing the return from this relatively small

sample of on-sky data is described in Section 3.1.9.

We divided the simulated and annotated on-sky datasets into training, validation, and

testing subsets using an 80:10:10 ratio. We used validation set for tuning the MC Dropout

fractions and the number of posterior draws, and for monitoring the training process.

To extend the effective size of the dataset, random flips and rotations are applied to

each batch of training samples. As noted by Killestein et al. (2021) and Dieleman et al.

(2015), rotations (other than in 90 degree increments) require interpolation and thus distort

the data from the pixel grid; however, in our use case, the data are previously resampled

with interpolation by the image alignment process (see Section 2.9). No data augmentation

is applied during validation or model evaluation, or for training during fine-tuning with

human-annotated data.

3.1.8 Simulated Data Generation

We generated a base training set by injecting simulated transients into 300 randomly

selected images across the first two years of full Evryscope science operation at each site.

Images were selected uniformly in time, meaning that moon phase, sky conditions, focus

changes due to temperature variations, and dust-accumulation on the instrument (leading to

measurable changes in the background level and limiting magnitude on few-month timescales)

are uniformly represented. Each image was calibrated as in the pipeline (see Section 2.4).

For each image, we generated a uniform sample of 5,000 positions within the image,

then deduplicated so that no position was within 50 pixels of any other position to avoid

overlapping transients, resulting in an average of 1,200 injections per image. While this
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does bias the initial training set against contemporaneous, spatially coincident events, this

is sufficiently rare that we neglect this scenario. Each injection was assigned a random

magnitude, drawn from a uniform distribution bounded between the typical saturation limit

of g∼ 7 and the 1.5σ detection limit at the injection position (determined by the photometric

zeropoint interpolation procedure described in Section 2.5).

A second round of injections was done to simulate transients with known visible progeni-

tors. From the catalog stars within each image, 500 stars minimally separated by 50 pixels

were selected as additional positions for injection. The variability amplitude was uniformly

sampled between 0.25 and 8 magnitudes. The upper limit is set by the maximum contrast

visible for a pre-detected star in an Evryscope image, i.e., a star at the dim-limit of the

survey that reaches the single-exposure saturation limit.

Evryscope PSFs are heavily impacted by optical aberrations, and exhibit a wide variety

of morphologies, both between cameras and across the field of view of individual cameras

(Ratzloff et al. 2020a), making common analytic profiles (Moffat, Gaussian, Lorentzian)

untenable. Further, the coarse pixel scale makes more complex linear models, such as the

ePSF (Anderson & King 2000) and those used by PSFEx (Bertin 2011) and PSFMachine

(Hedges et al. 2021), prone to poor fits due to aliasing and source confusion. We found that

the most robust method for simulating transients with morphologically plausible, point-like

profiles was to build a model PSF based on nearby, isolated stars. For each injection position,

up to 100 nearby stars having a distance less than 137 pixels and significance of 10σ above

the local noise are extracted with a 30×30 “postage stamp” window. Each stamp is then

multiplied by a smoothly varying (Hanning) window and normalized. The final PSF to be

flux scaled and added into the image is the median of the nearby stamp templates, weighted

by the relative normalized distance from the injection position and relative flux uncertainty of

the template star. Figure 3.5 shows examples of simulated PSFs using this technique across a

typical Evryscope focal plane for a range of magnitudes, alongside the resulting signal in a

direct subtraction image with a consecutive epoch.
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At the end of the transient injection process, the image is “de-calibrated” by adding back

in the expected dark current, bias, and background levels, and the image is converted back

into ADU units with pixel values beyond the range of an unsigned 16-bit integer truncated,

matching the histogram of the simulated images to the distribution expected for science

images.

To produce a simulation-augmented dataset, the transient-injected images are reduced

using the EFTE pipeline, and any candidates identified within 2 pixels of an injection location

are labelled as real, and all others as bogus. Despite the large number of injected sources, this

process produces an unbalanced dataset, with artifact detections outnumbering injections

at rates up to 1000-to-1. To balance the dataset, we randomly select a number of bogus

candidates equal to the number of recovered injections for inclusion in the final data set. This

results in a dataset with noisy labels due to both background transients (likely dominated

by short-duration reflections from Earth satellites (Corbett et al. 2020; Nir et al. 2021))

and candidates injected below the difference image threshold and recovered coincidentally.

From visual inspection of 10,000 injection candidates, uniformly sampled from both known-

injections and predicted artifacts, we estimate label contamination to affect ≤ 2.7% of the

candidates in the 435,452 candidate dataset. Deep convolutional models have been observed

in prior work to be robust to many times this level of label noise (Ghosh et al. 2016; Rolnick

et al. 2017).

3.1.9 Staged Training Methodology

A common approach for building specialized models with limited training data is to

utilize transfer learning, leveraging the pre-trained feature representations of existing models

built with massive related datasets. Rather than training an entire model from scratch, which

requires a large annotated dataset over the domain of interest, a pre-trained model can be

selectively “fine-tuned” over a representative dataset in a new domain. We adopt a similar

approach for making use of the considerable diversity of observing conditions and sky regions
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Figure 3.5 (Left) Examples of simulated transients with magnitudes g′ = 10, 11, 12, 13, 14, 15
at the center and edges of a typical mid-galactic latitude Evryscope image. PSFs at each
position are modeled as a normalized, aligned, and sigma-clipped combination of nearby
isolated stars, producing morphologically plausible, star-like injections. These simulations
are used for initial conditioning of our machine-learned vetting system. (Right) Difference
images for each subimage using a reference frame taken two minutes before the injected
science image.
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represented in the simulated dataset described in Section 3.1.7, while minimizing the risk of

optimizing for properties of the transient injection process (see Section 3.1.8) rather than

properties transferable to on-sky data.

Our training curriculum for VetNet was as follows:

1. Train the full model, including all convolutional and fully connected layers, on the

simulated dataset until convergence to create the synthetic base model

2. Freeze the weights on all convolution layers from the synthetic base, and re-train the

fully connected layers from scratch using on-sky data

3. Unfreeze the convolution layers, train at a minimal learning rate using on-sky data

until convergence to produce the final on-sky model.

We used the Adam optimizer (Kingma & Ba 2014) with a binary cross-entropy loss function

for all three stages. For the first two training stages, we start with a maximum learning rate

of 0.0003, slowed by a factor of two whenever the loss on the validation set plateaued for 10

epochs. Scheduling the learning rate in this way helps the network to converge to a local

minimum when near a global minimum and decreases the oscillation around the minimum of

the loss function. For the final fine-tuning of the entire model, we reduced the initial learning

rate to 0.00001 while maintaining the same scheduled rate decay.

The synthetic base model converges after ∼100 epochs, taking about 6.5 hours when

training on an Intel Xeon E5-2695v4 CPU. Fine-tuning with on-sky data converges after

∼150 epochs, but takes less than 10 minutes due to the smaller quantity of data.

In the final stage, we use a single-iteration of the semi-supervised relabelling routine

suggested by Killestein et al. (2021); samples in the training set which are classified differently

by the network than by human labelers are flipped to the model classification in cases where

the model confidence C is greater than the median. On review, these samples are generally

either difficult to classify by hand, with low-significance peaks relative to the surrounding

noise, areas of the sensor plane with pathological PSFs, or likely errors in the original labelling
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Figure 3.6 Misclassified training set samples re-labelled based on the entropy-based confidence
of VetNet predictions. Network reclassifications typically affect samples which are difficult
to classify manually. Samples (a) and (c) were initially classified as real by human vetters,
but were relabeled as bogus by the algorithm. Both have pathological PSFs likely caused by
interpolation artifacts from resampling near a cosmic ray, particle strike, or unmasked bad
pixel. Sample (b) is low-significance and off-center, but was manually classified as bogus
before being confidently relabelled as real by VetNet.

process. Figure 3.6 shows three representative examples that are re-labelled by VetNet during

this process. In total, less than 4.7% of samples are changed in the training set after updating

the labels. We note that this is comparable to the label noise in the synthetic dataset (2.7%).

Section 3.2: VetNet Model Evaluation

We evaluated the VetNet CNN model and the intermediate random forest using both

the held-back test set described in Section 3.1.7, and an injection-recovery program over a

sample of randomly selected images.
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3.2.1 On-Sky Test Set

Figure 3.6 shows postage stamp cutouts and classification histograms from the held-back

test set of on-sky transients, divided evenly between cases where VetNet classifications and

the human-assigned labels agreed and cases where they disagreed. In both categories, the

entropy-based confidence score scales with subjective appraisal of the candidates; candidates

(h), (k), (i), and (c) are faint borderline detections, assigned accordingly low confidence scores.

Candidate (g) is a linear particle collision. Notably, candidates (f) and (l) have anomalously

sharp PSFs that were both counted as real by human labellers, but were assigned bogus

scores by the network, suggesting that they are morphologically more similar to cosmics.

Even in cases where the labels are consistent, the confidence drops in areas with pathological

PSFs, as in example (b), but particularly in example (a).

Figure 3.7 shows the performance of the model on the on-sky test set. The magnitude-

integrated precision and recall at a VetNet score threshold of 0.5 are 95.4% and 94.4%

respectively, with a false positive rate of 5.1%. Depending on the science case and false-alarm

tolerance of follow-up resources, these numbers can be tuned using a combination of the

VetNet RB score and the C rating; for instance, a sub-percent FPR is measured above a RB

threshold of 0.7.

65



Reference Science Difference

0.0 0.2 0.4 0.6 0.8 1.0
VetNet Consensus Real-Bogus

0

1

2

3

De
ns

ity

50th Percentile
90% CI

Actual: Bogus  Predicted: Bogus  ℂ=0.08

Reference Science Difference

0.0 0.2 0.4 0.6 0.8 1.0
VetNet Consensus Real-Bogus

0

5

10
De

ns
ity

50th Percentile
90% CI

Actual: Real  Predicted: Real  ℂ=0.53

Reference Science Difference

0.0 0.2 0.4 0.6 0.8 1.0
VetNet Consensus Real-Bogus

0

1

2

3

De
ns

ity

50th Percentile
90% CI

Actual: Bogus  Predicted: Real  ℂ=0.04

(a) (b) (c)

Reference Science Difference

0.0 0.2 0.4 0.6 0.8 1.0
VetNet Consensus Real-Bogus

0

20

40

De
ns

ity

50th Percentile
90% CI

Actual: Real  Predicted: Real  ℂ=0.88

Reference Science Difference

0.0 0.2 0.4 0.6 0.8 1.0
VetNet Consensus Real-Bogus

0

5

10

De
ns

ity

50th Percentile
90% CI

Actual: Real  Predicted: Real  ℂ=0.62

Reference Science Difference

0.0 0.2 0.4 0.6 0.8 1.0
VetNet Consensus Real-Bogus

0

1

2
De

ns
ity

50th Percentile
90% CI

Actual: Real  Predicted: Bogus  ℂ=0.08

(d) (e) (f)

Reference Science Difference

0.0 0.2 0.4 0.6 0.8 1.0
VetNet Consensus Real-Bogus

0

10

20

30

De
ns

ity

50th Percentile
90% CI

Actual: Bogus  Predicted: Bogus  ℂ=0.90

Reference Science Difference

0.0 0.2 0.4 0.6 0.8 1.0
VetNet Consensus Real-Bogus

0

5

10

De
ns

ity

50th Percentile
90% CI

Actual: Bogus  Predicted: Real  ℂ=0.42

Reference Science Difference

0.0 0.2 0.4 0.6 0.8 1.0
VetNet Consensus Real-Bogus

0

2

4

6

De
ns

ity

50th Percentile
90% CI

Actual: Bogus  Predicted: Real  ℂ=0.22

(g) (h) (i)

66



Reference Science Difference

0.0 0.2 0.4 0.6 0.8 1.0
VetNet Consensus Real-Bogus

0

50

100

De
ns

ity

50th Percentile
90% CI

Actual: Real  Predicted: Real  ℂ=0.93

Reference Science Difference

0.0 0.2 0.4 0.6 0.8 1.0
VetNet Consensus Real-Bogus

0

2

4

6

De
ns

ity

50th Percentile
90% CI

Actual: Bogus  Predicted: Real  ℂ=0.40

Reference Science Difference

0.0 0.2 0.4 0.6 0.8 1.0
VetNet Consensus Real-Bogus

0

5

10

15

De
ns

ity

50th Percentile
90% CI

Actual: Real  Predicted: Bogus  ℂ=0.71

(j) (k) (l)

Figure 3.6 (continued from previous page) Sample on-sky candidates taken from the VetNet
test set. “Actual” and “Pred” values represent sky truth class determined by a human inspector
and the predicted class by the network, respectively. Histograms are an approximation of the
normalized Bayesian posterior distribution for the probability of the candidate representing a
real astrophysical event, quantified using the entropy-based C metric from Killestein et al.
(2021). In cases where the sky truth and the network prediction disagree, C is typically < 0.5,
or extenuating circumstances exist, such as the anomalous PSFs in panels (l) and (f), or the
potential human misclassifications in (h), (i), and (k).
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Figure 3.7 Performance of VetNet on the on-sky test set. (top) Precision and recall as a
function of the VetNet real-bogus score. At the RB = 0.5 threshold, the observed precision
and recall are 95.4% and 94.4% respectively. (middle) Entropy-based confidence scores for
false-positives and false-negatives as a function of VetNet real-bogus score threshold. Shaded
regions indicate score regions where no false positives or false negatives occur within the
on-sky test set. (bottom) ROC curve for VetNet. The area under the ROC curve (the
ROC-AUC metric) is 0.99, representing the probability that a random real candidate will
receive a higher real-bogus score than a random bogus candidate. No-skill line indicates the
expected performance curve for a random classifier.
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CHAPTER 4: ORBITAL FOREGROUNDS FOR ULTRA-SHORT DURATION
TRANSIENTS1

The event rate and sky distribution of glints has not received systematic study, and

the potential for these events to contaminate searches for ultra-short transients remains.

In this Chapter, I use single-image detections from the Evryscope Fast Transient Engine

(Section 4.1) to measure the on-sky event rates of satellite glints for the first time. I provide

estimates of the flash rate as a function of observed magnitude and sky position (Section 4.2).

I discuss the impact of this population on both current and upcoming observatory facilities,

and its implications for searches for ultra-short and multi-messenger transients, including the

hypothesized optical counterparts to Fast Radio Bursts (FRBs), in Section 4.3.

Section 4.1: Observations and Survey

For this survey, we consider the earliest Evryscope data analyzed by EFTE in real-time,

including images collected between 2019 November 24 and 2020 April 16, and we have

made no cuts for weather. Images within 10 degrees of the moon are excluded by the data

quality monitor. The Evryscope system design and survey strategy are described in Ratzloff

et al. (2019a), Law et al. (2015), and in Section 1.2 of this work. EFTE is described and

characterized in Chapter 2 and Chapter 3.

1This chapter adapted from the following paper, published in The Astrophysical Journal Letters.
©The American Astronomical Society. Reproduced by permission of IOP Publishing. All rights
reserved. The full bibliographic entry for the published article is as follows:
Corbett, H., Law, N. M., Soto, A. V., et al. 2020, Astrophysical Journal Letters, 903, L27,
“10.3847/2041-8213/abbee5”
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Figure 4.1 (top) Example of a typical flash-producing trajectory seen by EFTE, followed
over a single Evryscope pointing. (bottom) Postage stamp cutouts of the reference, science,
and discovery images, demonstrating point-like morphology. Each cutout is 30×30 pixels
(6.6×6.6 arcminutes) in size.

4.1.1 Single-Epoch Flash Sample

We observed 3,372,044 high-probability candidates that passed our vetting criteria as

described in Section 4.1.2. Of these, we identify 1,415,722 candidates that do not appear

in multiple epochs as likely satellite flashes. This cut removes variable stars and persistent

artifacts from bright stars.

Single-epoch candidates tend to occur in tracks across the sky on timescales ranging from

sub-cadence to hours. Figure 4.1 shows a typical track observed by Evryscope, followed for 1

hour, along with typical 30×30 pixel (6.6×6.6 arcminute) subtraction stamps from the EFTE

pipeline. The timescale of the delay between flashes gives an angular speed of 10” second−1,

or roughly one Evryscope pixel per second. However, we do not observe any streaking at any

epoch, implying that the duration of each individual flash is much less than 1 second. This

is consistent with the population of fast optical flashes noted in Biryukov et al. (2015) and

Karpov et al. (2016), but observed in images integrated over minutes.
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4.1.2 Transient Detection with the Evryscopes

EFTE uses a simplified image-subtraction technique for candidate detection.2 Evryscope

focus and optics, and thus PSFs, are stable on month-to-year timescales (Ratzloff et al.

2020a), and atmospheric seeing is dominated by optical effects under all observing conditions

in each Evryscope’s 13.2” pixels. This stability means that image subtraction within a single

pointing does not require the PSF-matching techniques addressed by standard routines, such

as HOTPANTS (Becker 2015) or ZOGY (Zackay et al. 2016). Similarly, because we are

targeting the fastest-timescale events, we do not require widely-spaced reference frames;

instead, an earlier image from the same pointing is subtracted from each image, typically

with a ten-minute separation.

For each single-camera science image S(x, y) and reference image R(x, y), we calculate

a discovery image D(x, y) from the per-pixel change in signal-to-noise ratio. Both S(x, y)

and R(x, y) are calibrated, background-subtracted, and aligned images in electron units. We

measured image background levels using an interpolated and clipped mesh, as implemented

in sextractor (Bertin & Arnouts 1996). The discovery image D(x, y) is given by:

D(x, y) =
S(x, y)

sS(x, y)
− R(x, y)

sR(x, y)
, (4.1)

where sR(x, y) and sS(x, y) are noise images calculated for each image I(x, y) with measured

background noise s2B(x, y) as

sI(x, y) =
√

I(x, y) + s2B(x, y). (4.2)

While this technique is not statistically optimal, it is efficient (98.5% of images are reduced

in cadence) and produces stable artifacts that can be rejected via automated means. We

identified all sources where D(x, y) ≥ 3 in at least three contiguous pixels for automated

2This formulation of the direct subtraction algorithm is distinct from the current version, described
in Chapter 2. The two versions differ by a normalization term.
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vetting. We perform aperture photometry for all candidates using the science image, and

calibrated the results to the ATLAS All-Sky Stellar Reference Catalog (Tonry et al. 2018).

A typical single image subtraction using this method produces O(103) candidates. We

require the ratio of negative-to-positive pixels within a 5-pixel diameter to be less than 0.3 to

remove dipole artifacts from misalignments and Poisson noise peaks near bright stars, which

reduces the number of candidates to O(102). These are then processed with a convolutional

neural network (LeCun & Bengio 1995) trained on small cutouts from S(x, y), D(x, y), and

R(x, y) in both real and simulated data, reducing the final number of candidates to 6+13
−5 per

image when averaged over all weather conditions and cameras.

4.1.3 Survey Completeness

We characterized the completeness of the EFTE survey with injection-recovery testing.

The image sample contained 500 pairs with the same ten-minute separation used on-sky, and

was representative of all weather and instrument conditions contained in the survey. We

injected ∼1200 sources into each image (8.0 ≤ mg′ ≤ 16.75), using the normalized median of

nearby stars as the injection PSF. We processed each image pair as described in Section 4.1.2

twice, alternating which image in the pair was used as the science frame. We define a recovery

as a candidate detected within three pixels of an injection position, with the radius determined

by the 99th percentile of the nearest-neighbor distance between the vetted candidates and

their nearest injection position.

Figure 4.2 shows the measured completeness as a function of magnitude, along with

the 90% confidence interval (CI), which includes measurement uncertainty, variability with

observing conditions, and the vignetting effects. Completeness decreases at both the bright

and dim ends of the distribution. Saturation causes poorly-constrained centroids leading

to non-recovery at the bright end. The average 50% completeness limit of mg′ = 14.2 is

brighter than the Evryscope dark-sky, single-image limit of mg′ = 16 due to a combination
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Figure 4.2 Completeness vs. magnitude for the version of EFTE used for characterizing
the glint rate, averaged over all observing conditions and cameras. See Section 2.7.4 for a
characterization of the completeness in the current production version of the pipeline.

of including all sky conditions in our analysis and using reference images with similar noise

profiles to science images.

4.1.4 Candidate Reliability

Despite careful vetting, the median EFTE false positive rate (FPR) is ∼6,800 per hour. In

EFTE surveys for rapidly-evolving transients, further vetting is performed by crossmatching

with galaxy and stellar catalogs, or by association with gamma-ray and gravitational-wave

transient skymaps, combined with direct human interaction. Measuring an all-sky event

rate, however, requires knowing the fraction of real events in the sample. To measure this

fraction, we visually inspected 27,817 randomly selected single-epoch candidates that passed

our automated vetting as described in Section 4.1.2.
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Each candidate was assigned a binary classification, where a “real” classification corre-

sponds to a candidate that is morphologically consistent with an astrophysical transient. Of

the candidates classified, 2,823 were classified as real. From this, we estimate the real flash

fraction (RFF) in the vetted EFTE event stream to be 0.10± 0.03. Least-squares fits the to

RFF as a function of magnitude and solar elongation produced slopes not different from zero,

with and uncertainty set by the standard deviation of the residuals around the fit. Bogus

candidates included:

1. Subtraction artifacts from bright stars (50%).

2. Optical ghosts, distinguished based on non-PSF-like shapes and presence in the reference

frame (1%).

3. Aircraft strobes, distinguished based on nearby parallel streaks (3%).

4. Particle strikes (46%).

The final category includes both readily-identifiable cosmic-ray muon tracks and signals

caused by Compton recoil electrons from environmental radioisotopes, which can be PSF-like.

To constrain this population, we reduced a series of 120-second darks with EFTE and searched

for candidates meeting our vetting criteria. We place an upper limit on the base rate of

PSF-like particle strikes of ≤ 0.1 per image, or ∼ 300 sky−1 hour−1, which is small compared

to the all-sky orbital flash rate (Section 4.2.2).

Evryscope PSFs, and the resulting degree to which stellar sources are undersampled, are

variable across each individual camera’s FOV. At the center of the field, dim sources can

have a FWHM ≪ 1 pixel. To avoid distortion of these sources, we estimate the prevalence of

particle strikes in our candidate sample using the RFF, rather than directly removing them

from the images with standard cosmic-ray mitigation tools, such as LA-Cosmic (van Dokkum

2001).
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Section 4.2: Event Rates of Flash Events

We calculated event rates for candidates within discrete bins in observed magnitude in a

two-minute integration. Raw event rates for each magnitude bin r(mo) are given by:

r(mo) =
Fm

cifiNi

, (4.3)

where Fm and Ni are the number of candidates observed within the magnitude bin and the

number of images in the survey respectively, ci is the coverage per image, and fi is the fill

fraction of each image (i.e., the fraction of a single-single camera FOV that contributes to the

overlap-deduplicated Evryscope FOV). Per-image coverage is constant at ci = 12.348 deg2

hours. The fill fraction is determined by camera arrangement (fi = 0.965).

4.2.1 Monte Carlo Rate Correction

We used a Monte Carlo approach to model the effects of completeness and reliability as

a function of magnitude (Section 4.1.3). We modeled the per-magnitude completeness as a

bounded Johnson distribution (Johnson 1949) using maximum likelihood estimates for the

mean, standard deviation, skewness, and kurtosis from injection testing. We corrected for

the reliability of the event sample using the RFF described in Section 4.1.4, modeled per

magnitude bin as a normal distribution.

For each magnitude bin, we made 100,000 draws from the fitted completeness and

reliability distributions, each time calculating a corrected event rate as

Γ(mo)i =
rmoRi

Ci

, (4.4)

where C and R represent values drawn from the completeness and reliability distributions,

respectively. The reported mean rate is the 50th percentile of Γ(mo)i. The lower and upper

bounds of the 90% CI were taken to be the 5th and 95th percentile of Γ(mo)i.

75



4.2.2 Magnitude Distribution

As noted in Lyutikov & Lorimer (2016), flashes shorter than an image exposure time

(typically ≫ 1 second) will exhibit phase blurring, diluting their flux relative to the surrounding

stars by the ratio of the integration time to their intrinsic duration. For sub-second durations,

consistent with the example seen in Figure 4.1 and in Biryukov et al. (2015), the peak of the

flash light curve will be brighter than is observed in long integrations. In general, the peak

magnitude of the flash mP is given by

mP = −2.5 log10

(
Texp10

−0.4mo

τf

)
, (4.5)

where τf is the equivalent width of the light curve and Texp is the exposure time. We assume

a flash duration of 0.4 seconds, based on the mode of the distribution presented in Karpov

et al. (2016), when estimating the peak brightness from the observed magnitude.

Figure 4.3 shows the cumulative and normalized magnitude density distributions as a

function of observed and estimated peak brightness. The shaded regions represent the 90%

CI. For the cumulative distributions, the CI is bounded by the cumulative quadrature sum of

the per-bin CI limits. We extrapolate an all-sky event rate from the observed rates in three

regions: around the south celestial pole (SCP), within ten degrees of the equator, and across

all declinations. Both the all-sky and equatorial distributions peak at mo = 13, whereas the

polar distribution peaks at mo = 12.2, with a possible second peak near the saturation limit.

We measured integrated flash rates for mo < 14.25 of 1.0+0.27
−0.15 × 103, 4.0+1.40

−0.60 × 103, and

1.8+0.60
−0.28 × 103 sky−1 hour−1 in the SCP, equatorial, and averaged all-sky regions respectively.

Assuming that the observed population is dominated by satellite glints, we expect a higher

rate near the equator because equatorial orbits are confined to a narrow declination band.

The SCP region will only contain objects in polar orbits spanning the full declination range,

lowering the observed rate.
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Figure 4.3 Cumulative (left) and normalized (right) flash rate distributions as a function
of magnitude. We consider the event rate around the south celestial pole (SCP) (top),
averaged across the sky (center), and around the equator (bottom) as a function of both
observed magnitude in 120 second integrations and limiting peak magnitudes assuming a 0.4
second flash duration. Rates are corrected using the technique described in Section 4.2.1 to
account for survey completeness and contamination. Shaded region gives the 90% CI on each
distribution.
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Figure 4.4 Geometry of Earth’s shadow relative to the position of the solar antipode. The
angular size of the shadow depends on altitude, ranging from 9 degrees for a typical geosyn-
chronous orbit, to 50 degrees at the upper limit of low-Earth orbit. The color gradient
represents a kernel density estimation for the relative flash rate as a function of antipode
distance based on the visually-sorted sample from Section 4.1.4, and is reflected across the
Sun-Earth axis.

4.2.3 Solar Geometry Dependence

If the observed flashes are caused by reflections from satellites, none should be expected

from the region of the sky covered by Earth’s shadow. The solid angle subtended by the

shadow depends on satellite altitude, following the geometry illustrated in Figure 4.4. For

low-Earth orbit (LEO) altitudes (< 2, 000 km), the shadow covers a 50 degree radius around

the solar antipode. The angular size shrinks to a 14 degree radius for medium-Earth orbit

(MEO), or a 9 degree radius for geosynchronous orbit. We evaluated the distance between

each of the human-vetted candidates from Section 4.1.4 and the solar antipode. Shaded

regions depict the angular extent of Earth’s shadow for LEO, MEO, and geosynchronous

satellites.
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The prevalence of flashes decreases steadily with proximity to the shadow in the region

covered for LEO objects, before falling in the solid angle covered for MEO and higher orbits.

Approximately 34% of the flashes occurred within 50 degrees of the center of the shadow.

Few flashes occur within the region within Earth’s shadow for MEO and geosynchronous

orbits, with 3.5% within 14 degrees of the antipode and only 1.1% within 9 degrees, which

suggests that the majority of the flashes are generated by satellites in middle- and high-Earth

orbit. No Evryscope observations occur within ∼80 degrees of the sun.

Section 4.3: Implications for Fast Transient Searches

Earth satellites produce thousands of potential false alarms mimicking fast transients. One

option to mitigate this fog is to duplicate monitoring across a substantial (∼ 3 kilometer for

Evryscope-scale resolution) baseline, enabling parallax-based coincidence rejection. However,

this requires construction of multiple facilities. An alternative approach is to track glint-

producing objects directly in the event stream, using calculated orbit fits to reject candidates

that occur in tracks. This approach is currently in development for the EFTE event stream

(Vasquez Soto et al. 2023, in prep).

Degradation of the night sky by “megaconstellations" of LEO satellites is anticipated to

be a major environmental challenge for astronomy in the coming decade (McDowell 2020).

The construction of these constellations will increase the number of artificial satellites in orbit

by a factor of many, with a corresponding increase in the amount of reflected sunlight visible

in astronomical images. However, due to their high angular speeds and controlled rotation,

reflected light from satellites similar to Starlink is unlikely to produce PSF-like glints during

normal operations.

4.3.1 Visual Observers

The all-sky magnitude distribution in Figure 4.3 shows that the instantaneous peak

brightness of many flashes should be detectable to the unassisted human eye. For a typical
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suburban sky with limiting magnitude V ≈ 4, we predict a naked-eye-visible event rate of

340+150
−85 sky−1 hour−1 based on the all-sky averaged cumulative event rate of 1.8+0.60

−0.28 × 103

sky−1 hour−1 (mo < 14.25). At the darkest sky sites, with limiting magnitude V ≈ 6, this

rate increases to 740+200
−140 sky−1 hour−1. Within the equatorial region, the expected naked-eye

event rate increases to 840+390
−220 sky−1 hour−1 (V ≈ 4), or 1800+500

−350 sky−1 hour−1 (V ≈ 6),

based on the cumulative equatorial event rate of 4.0+1.40
−0.60 × 103 sky−1 hour−1.

The time resolution (Cornsweet 2014) and biochemical adaptation time (Dunn & Rieke

2006; Yeh et al. 1996) of the human eye are comparable to orbital flash durations. We expect

the naked-eye detectability of these flashes to vary strongly with observer ability.

4.3.2 Narrow-Field Imaging

The impact of orbital flashes on narrow-field imagers is negligible. For a 10×10 arcminute

FOV, we predict approximately 1.2 flashes per 1,000 hours of exposure time based on the

all-sky averaged event rate, or 2.7 flashes per 1,000 hours of exposure time based on the

equatorial region event rate. While these are relatively rare events, they could account for

occasional flashes that have been remarked on by amateur astronomers and some rejected

single-image detections in tiling sky surveys.

4.3.3 Multi-Messenger Coincidence Searches

The flash rate measured here also implies a high coincidence rate for multi-messenger

events. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is able to localize

FRBs to the nearest arcminute (The CHIME/FRB Collaboration et al. 2018), reducing the

expected flash count within the error radius to a likely-acceptable 3.8× 10−5 hour−1 based

on the all-sky averaged event rate. Wide-angle surveys like Evryscope can be expected to

have a false alarm rate (FAR) of 1 per 3 years for apparent FRB optical counterparts due to

orbital flashes. For FRBs localized to the equatorial region, the expected event rate and FAR

increase to 8.5× 10−5 hour−1 and 1 per 1.3 years, respectively.
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In contrast, gamma-ray bursts (GRBs) from the Fermi Gamma Burst Monitor (GBM)

have a median 90% localization area of 209 sq. degrees (Goldstein et al. 2020), leading to an

expected flash count of 9.1 hour−1 based on the all-sky averaged cumulative event rate. With

simultaneous coverage and physical constraints on the timescale of the bright early optical

component, the expected flash count drops to 0.15 minute−1. For GRB localizations within

the equatorial region, the rates increase to 20 hour−1, or 0.33 minute−1.

Events with larger localization regions or weakly-constrained early lightcurves, like

gravitational wave events from LIGO/Virgo, will be more heavily impacted. For a typical

1200 sq. degree sky map, the expected flash is 53 hour−1 assuming the all-sky averaged event

rate, or 120 hour−1 within the equatorial region. The resulting FAR will increase linearly

with both localization area and trigger rate.

4.3.4 Vera C. Rubin Observatory

We predict that point-like flashes will occur in images from Vera C. Rubin Observatory

at a rate of 6.4× 10−4 flashes per image (15 seconds of 3.5 sq. degrees), based on the all-sky

averaged event rate. Assuming O(1000) pointings, we expect Rubin to observe on the order

of 1.3 flashes per night from this population. In the worst case scenario of all pointings being

confined to the equatorial region, this rate increases to 1.4−3 flashes per image, or 2.8 flashes

per night. Due to the 15-second exposure time of Rubin, the average observed magnitude of

the flash distribution will be shifted to mg ∼ 10.7, 100× brighter than the g-band bright limit

of mg = 15.7 (LSST Science Collaboration et al. 2009). Our observed magnitude distribution

drops off at the faint end, but there is the potential for a second distribution to exist beyond

the Evryscope depth limit, as is seen for geosynchronous debris observed by the DebrisWatch

survey (Blake et al. 2020).

We estimate that a worst-case scenario 10 millisecond flash from a geosynchronous satellite

will produce a 0.15” streak, likely indistinguishable in Rubin’s 0.2” pixels. Longer-duration

flashes, like the 0.4 second events we have assumed here, would produce obvious 6” streaks.
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However, fully constraining the expected morphology of orbital flashes in Rubin data will

require modeling of their duration via orbital characteristics of the population.
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CHAPTER 5: EVOLUTION OF FLARE CONTINUUM TEMPERATURES
AND PROPERTIES FOR TWO STELLAR FLARES1

Stellar flares are impulsive and stochastic events observed when a star’s magnetic field

reconfigures, accelerating a beam of particles downwards into the atmosphere of the star,

heating the photosphere and producing a dramatic brightening across the electromagnetic

spectrum (Allred et al. 2015). Flares are rare on individual stars, with some notable exceptions

(e.g., AD Leonis), but are most often generated by common late-type stars, leading to frequent

detections in light curves from wide-field photometric surveys (Howard & MacGregor 2022;

Pietras et al. 2022; Aizawa et al. 2022).

Translating observed optical single-band light curves to the UV flux estimates necessary

for gauging impacts on planetary photochemistry (Segura et al. 2010; Loyd et al. 2018; Howard

et al. 2018b) and potential pre-biotic chemistry, (Ranjan et al. 2017; Rimmer et al. 2018) is

an uncertain process which often involves canonical scaling relations to a fixed blackbody

temperature of 9000 K (Osten & Wolk 2015). This scaling temperature is based on empirical

fits to the complex spectra of flares observed from highly active stars during spectroscopic

“staring” campaigns (Lacy et al. 1976; Osten et al. 2010; Hawley et al. 1995; García-Alvarez

et al. 2002), and particularly on The Great Flare of AD Leo (Hawley & Pettersen 1991).

However, flares have been observed to occur with a wide range of temperatures (Loyd et al.

2018; Froning et al. 2019; Howard et al. 2020), even within campaigns targeting only the

most active stars, with the events in the Kowalski et al. (2013) Flare Atlas ranging from

9,000 K to 14,000 K. The hottest flares observed can exceed 40,000 K (Robinson et al. 2005)

at peak, but such events are rare in staring campaigns, which are biased both towards the

1This chapter is adapted from a paper currently in preparation. Anticipated bibliographic information
is as follows: Corbett, H., Galliher, N., Gonzalez, R., Glazier, A., & Law, N. M. 2023, AAS Journals,
(in prep)
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most active stars and the more common low-energy regime of the power-law flare frequency

distribution (Candelaresi et al. 2014).

In Howard et al. (2020), we analyzed a sample of 42 superflares simultaneously observed

in light curves from both Evryscope and the Transiting Exoplanet Survey Satellite (TESS),

and found that flares in the dataset routinely exceeded 14,000 K (43%), and occasionally have

peak temperatures beyond 30,000 K (5%). Propagating these temperatures into the scaling

relations for UV flux predicts a 16× increase in integrated UV energy, with corresponding

10-100× increase in the atmospheric photo-dissociation rate. While the color-temperature

measurements in Howard et al. (2020) are broadly consistent with the population of measured

flare temperatures from active stars stars [including a recent observation of a 25,000 K flare

on AD Leo (Stelzer et al. 2022)], broadband temperature measurements are unable to isolate

thermal continuum emission from spectral line emission, which can represent up to 50% of

the flare flux in the decay phase (Hawley et al. 2007).

In this Chapter, I present initial results from a coordinated observing campaign to

perform real-time spectroscopic followup of EFTE stellar flare detections using the Goodman

High-Throughput Spectrograph (GHTS; Clemens et al. 2004) on the 4.1 meter Southern

Astrophysical Research (SOAR) telescope. This campaign contributes high-cadence mon-

itoring of the continuum and line contributions to the broadband flare flux, and enables

time-dependent measurements of the thermal flare continuum. In Section 5.1, we present two

flares discovered during the program and describe the low-latency spectroscopic observations.

In Section 5.2, I provide an overview of the Evryscope transient discovery pipeline and

describe the reduction of the SOAR data. In Section 5.3, I place constraints on the quiescent

properties of the stars based on their catalog photometry and ID spectroscopy with SOAR.

In Section 5.4, we constrain the bolometric energy release from the flares from their light

curves using template models. In Section 5.5, I discuss the observed evolution of the flare

continuum emission, and summarize and conclude in Section 5.6.
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Table 5.1. EFTE flare discovery coordinates, peak magnitudes, and timestamps for
detection and alert generation.

Flare Date First Detection Trigger Time NDet EVR Peak Mag
(UT) (UT) (UT) mg

EVRT-2509887 2019-12-05 03:45:25 03:48:48.285 6 10.3
EVRT-3586872 2020-02-15 05:40:57 05:45:33.53 3 12.7

Section 5.1: Observations

5.1.1 Detection of the Flares with Evryscope

EFTE produces a real-time event stream of candidate events, which can then be filtered

based on cross-matching with reference catalogs, number of detections, magnitude, and

various per-detection quality metrics. During the EFTE-SOAR program, we monitored the

event stream using a Slack2-based dashboard. To produce an alert to observers, events were

required to meet standard EFTE quality metrics, cross-match with a known catalog source,

and produce at least two detections during a ten minute time window, separated by at least

120 seconds. The minimum separation is required due to the size of overlap between adjacent

Evryscope cameras (312 deg2 for Evryscope-South, 271 deg2 for Evryscope-North) and the

event rate for satellite glints (Corbett et al. 2020), which can produce O(100) apparent

multi-epoch detections in images from adjacent cameras that also overlap in time. On average,

this resulted in 3-4 high-confidence candidate flares per night, one or two of which were

selected per night for spectroscopic followup. Table 5.1 lists the positions, detection times,

peak magnitudes, and the number of EFTE detections for the two flares selected from the

event stream for spectroscopic followup presented here.

2https://slack.com
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5.1.1.1 EVRT-2509887

EVRT-2509887 was first detected in an Evryscope-South image taken on 5 December

2019 at 3:45:25 UT, located at RA 21h49m30s Dec. -60◦57’43” with a g-band magnitude

of 10.6. EVRT-2509887 was located in an overlap between two cameras in the Evryscope

array, and a second detection was made 42 seconds later at 03:46:35 UT.3 The flare was

subsequently detected in five additional frames, at approximately one-minute cadence. The

bottom panels of Figure 5.1 show 30×30 arcminute cutouts around each of the Evryscope

detections. Normally, the second epoch would not be considered a confirmation image in this

circumstance, due to the frequency at of satellite glints within the overlap region; however,

this event was automatically cross-matched with a dim (g ∼ 20.754) and red (g − r = 2.686)

counterpart in the ATLAS reference catalog (Tonry et al. 2018) and was manually selected

by an observer in real-time due to the plausible cross-match with a likely late-type dwarf and

potentially extreme amplitude (∆m ∼ 10.15). The quiescent counterpart is likely 2MASS

J01271715-6057334. Photometry for this star across the Two Micron All-Sky Survey (Cutri

et al. 2003; 2MASS), Gaia (Gaia Collaboration et al. 2016; 2018; DR2), the ATLAS All-Sky

Stellar Reference Catalog (Tonry et al. 2018; ATLAS-REFCAT2), and AllWISE (Cutri et al.

2013) are presented in Table 5.2, along with estimated stellar parameters from StarHorse2

(Anders et al. 2022), which are derived from data in Gaia Early Data Release 3 (Gaia

Collaboration et al. 2021).

5.1.1.2 EVRT-3586872

EVRT-3586872 was first detected in an Evryscope-South image from 15 February 2020 at

05:40:57 UT with a g-band magnitude of 13.1. The candidate cross-matched with a red star

(g − r=1.2) in Tonry et al. (2018) and was previously identified as an ’NSINE’ variable in

Heinze et al. (2018), a type exhibiting irregular but broadly sinusoidal variability, consistent

with evolving spots on a rotating M-dwarf. An alert to observers including this catalog

3Cameras in the Evryscope are deliberately desynchronized in time to avoid readout bottlenecks.
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Figure 5.1 Light curves for EVRT-2509887 from Evryscope, ASAS-SN, and SOAR.

data was produced by EFTE at 5:45:33 UT, and observations with SOAR began at 5:55:48

UT. The top panel of Figure 5.2 shows the initial light curve from Evryscope and a g-band

equivalent light curve extracted from the flux-calibrated SOAR spectra.

5.1.2 Time-resolved Spectroscopy

During the nights set aside for EFTE-SOAR observations, we monitored the EFTE event

stream using the filters listed in Section 5.1.1. We selected the most likely flare events based
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Table 5.2 Catalog photometry for 2MASS J01271715-6057334, the likely quiescent counterpart
of EVRT-2509887.

Filter Magnitude Reference
g 20.754± 0.12 Tonry et al. (2018)
r 18.068± 0.11 -
i 16.329± 0.10 -
z 15.364± 0.10 -
J 13.381± 0.023 Cutri et al. (2003)
H 12.806± 0.026 -
K 12.423± 0.021 -
G 17.017231± 0.0012 Gaia Collaboration et al. (2022)

GBP 19.436512± 0.0488 -
GRP 15.614601± 0.0034 -
W1 12.27± 0.023 Cutri et al. (2013)
W2 12.056± 0.022 -
W3 11.659± 0.192 -

2MASS ID J01271715-6057334
EVRT EVRT-2509887

RA (d:m:s) 01:27:17.10 Gaia Collaboration et al. (2022)
Dec (hr:m:s) -60:57:33.55 -

Teff 2,663.35 K (Anders et al. 2019)
log g 5.084859 cm/ss –
Mass 0.120301 Msun –

Metalicity -0.004696 –
Distance 47.027 pc –

on the requirements described above, with a preference for sources that cross-matched with a

red (g − r ≥ 1.0) source from the ATLAS All-Sky Stellar Reference Catalog (Tonry et al.

2018). For selected candidates, we would rapidly relay the coordinates of the transient to

SOAR operators, manually align using the Goodman Acquisition Camera (GACAM), and

begin observing with the GHTS. Table 5.4 lists the spectra collected with SOAR.

Both EVRT-2509887 and EVRT-3586872 were observed using the 400 ln/mm grating

in the M1 configuration, providing spectral coverage between 300 nm and 400 nm. We

selected the 1.0 arcsec slit for EVRT-2509887 and the 1.2 arcsec slit for EVRT-3586872,

producing slit widths of 6.7Å and 8Å respectively along the spectral axis. The slit was

oriented at the parallactic angle for all observations. Spectral resolution was seeing limited at

≤6.7Å throughout. The choice of the Goodman blue camera or red camera was decided by
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Figure 5.2 Light curves for EVRT-3506872 from Evryscope and SOAR.

other ongoing science programs with which EFTE-SOAR nights were shared. Observations

with the blue camera were made with a reduced spectral ROI with 1×2 spatial-axis binning

and the 200 KHz, ATTN2 readout mode, which produces a read noise of 4.74 electrons RMS

and readout times of ∼ 7.2 seconds. Red camera observations used a reduced spectral ROI

with 2×2 in the 344 KHz ATTN 0 readout mode, which produces a 7.05 electron read noise

and a readout time of 6.1 seconds.

The median latency between the EFTE trigger and the first spectra in the SOAR

time series across the EFTE-SOAR program is 10m40s; however, latency is decided by a

combination of human vetting time and relative position of the flare to the current SOAR
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Table 5.3 Catalog photometry and physical parameters for stellar flare EVRT-3586872, an
early flare detection from EFTE.

Filter Magnitude Reference
g 16.916± 0.01 Tonry et al. (2018)
r 15.73± 0.011 –
i 14.275± 0.009 –
z 13.649± 0.010 –
J 12.093± 0.023 Cutri et al. (2003)
H 11.528± 0.026 -
K 11.245± 0.021 -
G 14.997908± 0.0012 Gaia Collaboration et al. (2022)

GBP 16.559830± 0.0488 -
GRP 13.784114± 0.0034 -
W1 11.114± 0.023 Cutri et al. (2013)
W2 10.914± 0.021 -
W3 10.727± 0.093 -

2MASS ID J08593584-2340201
EVRT EVRT-3586872

RA (d:m:s) 08:59:35.81 Gaia Collaboration et al. (2022)
Dec (hr:m:s) -23:40:20.71 -

Teff 3,255.66 K (Anders et al. 2022)
log g 4.902207 cm/ss –
Mass 0.3500 Msun –

Metalicity 0.001444 –
Distance 76.303 pc –

bore sight. For EVRT-2509887, we were able to begin time series observations after 8m02s,

and 10m14s for EVRT-2586872.

Exposure times for each target were chosen dynamically based on estimates of the SNR

of bright emission lines in the spectrum. For EVRT-2506887, we initially selected a relatively

long integration time of 60 seconds, anticipating a rapid decline in brightness. The SNR

remained high (≥ 50) 30 minutes post peak, so we elected to decrease the cadence 20 seconds.

We again adjusted the exposure time back to 60 seconds, and ultimately 600 seconds as the

SNR faded. In contrast, EVRT-3586872 was observed at a 120-second cadence throughout.
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Table 5.4. Summary of flare observations with Evryscope and SOAR.

Flare Cadence NSpec dTrigger Start End Camera Slit
(seconds) m:s (UT) (UT)

EVRT-2509887 60.0 33 08:02 03:56:50 04:56:23 Blue 1.0 arcsec
– 20.0 50 – 04:17:20 04:39:49 – –
– 600.0 2 – 04:57:59 05:08:17 – –

EVRT-3586872 120.0 76 10:14 05:55:48 08:37:59 Red 1.2 arcsec

5.1.3 Identification Spectra for EVRT-2509887

Given the dim (g = 20.75) candidate counterpart identified for EVRT-2509887, we re-

visited the target on 29 December 2019 to confirm an M-dwarf origin. We again observed the

target with the 400 ln/mm grating and the 1.0” slit, collecting 4× 1800 second exposures in the

M1 configuration (300 nm - 705 nm) and 3× 1200 second exposures in the M2 configuration

(500 nm - 905 nm).

Section 5.2: Data Reduction

5.2.1 Transient Detection with the Evryscopes

The Evryscopes are backed by a data reduction pipeline optimized for low-latency

detection of rapidly rising transients. The Evryscope Fast Transient Engine (EFTE) leverages

the optics-limited point spread functions (PSFs) and rapid observing cadence of the Evryscopes

to simplify the difference image analysis typically used by transient surveys to identify new

sources. Incoming images are simply normalized to their noise level, and subtracted from a

previous normalized image from the same pointing, separated in time by an average of 10

minutes. Because the reference and science images have similar noise profiles, the 3-σ limit

of EFTE is brighter than either individual image; the survey reaches ∼ 50% completeness

for g > 14, integrated over all observing conditions and moon phases (see Section 2.7.4 for a
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full characterization). Candidates are identified in the EFTE direct subtraction image and

high-probability candidates, as determined by the automated vetting system (see Chapter 3),

are passed through to human monitors via a web interface. Photometry for each candidate

is done in the science image, using a forced aperture at the position of the detection in the

subtraction image. The photometry is differentially corrected based on a spatially-varying

zeropoint, determined from a sigma-clipped offset from g-band data in the ATLAS Refcat2

(Tonry et al. 2018).

5.2.2 Reduction of SOAR Data

All data from SOAR were reduced with a custom, Python-based reduction pipeline.

Each image was bias-subtracted and overscan regions were trimmed. We used astroscrappy

(McCully et al. 2018), an optimized Python implementation of the L.A. Cosmic algorithm

(van Dokkum 2001), for cosmic ray rejection.

Directly after each time series, we collected HgAr calibration lamp spectra for wavelength

calibration. While bracketed lamp spectra during the course of the observations would better

account for deformation and shifting of the spectrum as a function of airmass, we elected to

maximize time on target, and instead apply a linear offset to the lamp wavelength solution

for each image, based on the position of the 5577Å atmospheric forbidden line of atomic

oxygen. After applying this offset, the centroids of the Hβ and Hα lines are stable to ±.8 Å,

which is sufficient for robust identification of spectral lines.

Due to the number of spectra collected, we use an automated extraction routine for

both the target and background sky spectra. For extraction of the spectrum within each

image, we bin by a factor of 10 in the spectral axis and then fit a linear extraction region

and gaussian FWHM to the binned pixel. The parameters of the extraction window and

profile are averaged across for each target, and interpolated across the range of the un-binned

2D data to produce a gaussian extraction window for the target. These windows are then

multiplied by each 2D image and summed in the spatial dimension to produce a 1D spectrum.
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To measure the background sky spectrum, we offset the gaussian extraction window by

±2.1 arcsec, ±3.0 arcsec, ±4.5 arcsec, and ±5.7 arcsec in the spatial (y) axis, and then extract

a 1D spectrum using the same procedure as for the target. The sky spectra were then aligned

using the peak of the 557.7 nm O2 line, and sigma-clipped to remove residual starlight. No

sources other than the target were detectable in the slit in any of the exposures.

Both sets of spectra were flux calibrated using spectrophotometric standard stars, CD-34

241 for EVRT-2509887 and EG-21 for EVRT-3586872. Observations of standard stars were

observed in the same setups used for the target spectra and reduced as described above. For

each standard, we retrieve a tabulated spectrum in flux units (Hamuy et al. 1992; 1994),

interpolate it to the grid of the observed spectra with Goodman, and then calculate a

wavelength-dependent flux ratio relating the e− per second to the catalog units of ergs cm−2

s−1Å−1 ×1016. To avoid distorting the flux calibration based on the instrumental line profile,

we mask prominent absorption lines with minima greater than 5% below the local continuum

level.

Section 5.3: Quiescent Properties of the Flares

Figure 5.4 shows the two flare candidates within the color-magnitude diagrams of nearby

stars from Gaia DR3 (Gaia Collaboration et al. 2022) and relative to the M/L-dwarf sample

presented in Kiman et al. (2019). EVRT-3586872 is centrally located on the single-star

main sequence, and, based on its position relative to the Kiman et al. (2019) population

and relatively cool Teff from StarHorse2 Anders et al. (2022), likely has an M4 spectral

type. The nature of the quiescent counterpart to EVRT-2509887 is less clear; the position

in the lower tail of the Gaia CMD is again consistent with a single star system, and the

position in the Kiman et al. (2019) plot suggests a slightly over-luminous M6. We compare

this classification with the identification spectrum from Section 5.1.3, and suggest that the

star is likely later on the main sequence and is perhaps an ultra-cool dwarf with spectral

type M8 or M9. The identification spectrum and template spectra from Kesseli et al. (2017)
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Figure 5.3 Identification spectrum for EVRT-2509887 compared to template spectra from
Kesseli et al. (2017).

are shown in Figure 5.3. The overall quiescent spectrum is broadly consistent with a late-M

dwarf. Based on the agreement between the observed and template spectra in the CaH and

VO features (near 7000 Å and 7500 Å, respectively), we favor a later M9 spectral type.

Section 5.4: Energetics of the Flare

We extend the flare light curves beyond the Evryscope limiting magnitude using synthetic

photometry derived from the flux-calibrated SOAR spectra (see Section 5.2.2). We calculate

synthetic late-time flare photometry from SOAR spectra with PyPhot (Fouesneau 2022),

using the AB-magnitude zeropoints and the gps, rps bandpasses. For a full discussion of

calibration between the Evryscope and PanSTARRs photometric bandpasses, please see

Section 5.1 in Corbett et al. (2023). The top panels of Figure 5.1 and Figure 5.2 show the

Evryscope light curves from EFTE along side the synthetic SOAR photometry.

Flare energies, and quantities required to calculate flare energies (such as a star’s quiescent

luminosity [L0]), are calculated following the procedures described in Section 2.5 of Howard

et al. (2019) and the references therein, with slight modifications. Since both flare light

curves contain only a few points pre-peak, we begin by fitting each light curve with a simple
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Figure 5.4 (a) Gaia CMD with the catalog magnitudes of EVRT-2509887 and EVRT-3586872
superimposed. (b) Flare stars relative to the Kiman et al. (2019) M/L-dwarf sample based
on their photometry at quiescence. The positions on both diagrams are consistent with that
the two stars are M-dwarfs on the single-star main sequence.

single-peaked flare model as described in Davenport et al. (2014). While the decay phases of

these light curves are complex and not well described by this simple model, they capture

the characteristic rising phase of the flares. For estimating the flare energy, we replace the

pre-peak light curve values with modeled values, giving us a better representation of the

rising-phase shape and start time of the flare. The light curve post-peak, during the complex

decay phase, is unaltered for the energy estimates.

For each of these composite light curves we compute the fractional flux, ∆F/F = |F−F0|
F0

.

Here, instead of using the median value of the light curve as the scaling factor, F0, we convert

the catalog magnitude to flux and use that as the baseline. We compute the equivalent

duration (ED) as the area under the curves using the trapezoidal rule. The flare energy in the

g bandpass is calculated as ED×L0 and the bolometric correction of fg = 0.19 from Howard

et al. (2019) is used to estimate bolometric energies. Both light curves, with associated

stellar properties and known uncertainties, are used in a Monte Carlo simulation over 10,000

iterations to determine flare energies and uncertainties. We find EVRT-2509887 and EVRT-
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3586872 have bolometric energies of 2.1+.4
−.3×1034 erg and 1.5+.2

−.2×1035 erg respectively, placing

both towards the high end of the range for stellar superflares (Candelaresi et al. 2014).

Section 5.5: Flare Continua and Blackbody Temperatures

Time series spectroscopy of both targets began during the initial decay phase of the flare

light curve; however, both events also exhibit a clear secondary peak in their g-band light

curves accompanied by an increasingly blue color index. In this section, we describe our

procedure for temperature measurement from the flare continua and present both temperature

curves for the entire decay phase and measurements of the blackbody temperatures during

the secondary peak. Both flares are poorly described by thermal emission alone. At the blue

end of the spectrum, thermal emission is dominated by Balmer continuum. Similarly, the

continuum beyond the Hβ line turns up, potentially indicating the presence of higher-order

hydrogen continua or diverse multi-region thermal signatures.

5.5.1 Monte Carlo Curve Fitting

To isolate flare emission for temperature modelling, we subtracted out a quiescent

spectrum from each spectrum in the SOAR flare series to produce differential spectra. For

EVRT-3586872, the g- and r-band flux had returned to nearly their catalog values at the end

of SOAR monitoring: g = 16.8 and r = 15.4, compared to g = 16.916 and r = 15.73 in Tonry

et al. (2018), so we used the final 120-second exposure in the time series to represent the

quiescent flux. The apparent color in the final spectrum (g− r = 1.43) is slightly redder than

the 1.19 catalog value, which may suggest a slight bias in the catalog values due to frequent

flaring. In contrast, EVRT-2509887 remained 1.84 magnitudes brighter than quiescent in

g-band, 87 minutes after the initial peak, precluding us from using the final time series

spectrum. Instead, we use the M1 configuration data described in Section 5.1.3, also used

for spectral typing. Synthetic photometry measured from the EVRT-2509887 identification

spectrum is offset from the quiescent g-band photometry listed in Table 5.2 by +0.53 mag;
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it is possible that this arises from an error in the SOAR flux calibration, but could also be

evidence of a previous flare biasing the catalog magnitudes.

For each of the differential spectra, we fit a physically scaled blackbody curve following

Hawley et al. (2003):

Fλ(t) = X(t)
R2

∗
d2

πBλ(T ), (5.1)

where X is the fill-fraction of the flaring region across the stellar disk, d is the distance to

the star, and Blambda is the Planck function:

Bλ(T ) =
2hν3/c2

e
hν
kT − 1

. (5.2)

The distances to EVRT-2509887 and EVRT-3586872 are not included in the Gaia DR3 (Gaia

Collaboration et al. 2022) main source list, so we instead use the estimated distances of

47.027 pc and 76.303 pc from StarHorse (Anders et al. 2019) and StarHorse2 (Anders

et al. 2022), respectively. Based on the radii reported for stars with similar spectral types

and temperatures in Parsons et al. (2018), we estimate the radii of EVRT-2509887 and

EVRT-3586872 to be 0.11 R⊙ and 0.27 R⊙.

We fit Eq. 5.1 to each differential spectrum using the continuum windows (BW1-BW6)

selected in Table 4 of Kowalski et al. (2013), which were selected to avoid prominent

spectral lines common during the flare impulsive and decay phases. The optical bandpass

primarily contains the Rayleigh-Jeans tail of the thermal spectrum, making temperature

measurement beyond 104 K from optical data inherently sensitive (Arcavi 2022). Beyond this,

the measurement is complicated by the potential for flux calibration errors; to account for

these errors and produce a robust estimate of the continuum temperature, we iteratively fit

each spectrum using all possible combinations of 5 out of the available 6 continuum windows.

For each set of windows, we fit the curve 100 times, each time replacing the flux values

with random variables drawn from a normal distribution set by the differential flux and the

propagated uncertainty due to read noise. We take the 50th percentile of the distribution of
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the best fit temperatures assign uncertainties based on the 16th and 84th percentiles of the

distribution. We use a simplex minimizer for the temperature fits Nelder & Mead (1965).

5.5.2 Temperature Evolution Curves

Figure 5.5 shows the temperature evolution and g-band synthetic light curves of the two

events over the SOAR time series based on the fitted blackbody radiation curves. EVRT-

3576872 exhibits a steep cooling trend at the beginning of the time series, before turning

up into a complex re-heating approximately 45 minutes after the flare peak, first rising to

11,500 K at +53.7 min min, then cooling by 1,000 K before peaking at t2 = 71.1 minutes

after the primary peak with a temperature of 13,300 K. The color index of the flare during

this period of reheating (see Figure 5.2) stalls at g − r = 0.61. The g-band light curve shows

only a modest 0.1 mag bump in amplitude, coincident in time to the initial +2,500 K rise

in temperature during the second peak. The second temperature peak in this complex flare

reaches 13,670 K, and is followed by a corresponding 0.56 mag amplitude peak in the light

curve 10 minutes later. The tertiary flare (t3 in panel (b) of Figure 5.5) is associated with a

short (< 6 minute) and low-amplitude (0.15 mag) drop in the g-band light curve, which may

be related to rapid changes in the characteristic continuum (see discussion in Section 5.8).

The temperature evolution of EVRT-2509887 is less clear, largely due to the decreased

SNR at 20-second cadence near the secondary peak; however, the overall trend is comparable.

A steady rise in temperature towards the secondary peak is accompanied by a small, symmetric

bump in the g-band light curve, with a lag between the peak temperature and the peak of the

light curve. For EVRT-2509887, the lag between the peaks is quite short at ∼ 1.5 minutes.

Due to the noise in the temperature measurements near the peak, this lag was measured

based on the gaussian centroid of the temperature and light curve within ±10 minutes of the

peak.
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Figure 5.5 Temperature evolution of EVRT-2509887 (a) and EVRT-3586872 (b) based on a
blackbody fit to continuum regions BW1-BW6 from Kowalski et al. (2013). Shaded region
denotes the 90% confidence interval determined using the MC fitting routine described in
Section 5.5.1.

5.5.3 Continuum Temperatures During Secondary Peak

To better constrain the temperatures near the secondary peaks, we average the differential

spectra around t2 for each flare. We resampled each differential spectrum to a shared

wavelength range using cubic splines, and selected range of times to represent the peak based

on the standard deviation of a Gaussian fit to temperature data. For EVRT-2509886, this

produces a 19.6 minute window, centered 33.4 minutes after the peak of the flare; EVRT-

3586972 evolves more slowly during the secondary peak, and the same procedure produces

a 43.2 minute window, centered 69.4 minutes after the flare. Figure 5.6 shows the average

spectra within these time windows, along with the best fit Planck curves over the continuum

regions, using the bootstrap procedure described above. We find best-fit temperatures of

12400+4100
−2100 K and 12100+300

−200 K for EVRT-2509887 and EVRT-3586872, respectively, within

the wavelength range 4000-5000 Å. Bluewards of this, the spectrum is dominated by the

Balmer continuum, as predicted by Allred et al. (2006) and previously observed for EQ Peg,

YZ CMi, EQ Peg A, EV Lac, AD Leo, GJ 1243, and GJ 674 (Kowalski et al. 2010; 2013;

Froning et al. 2019).
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Figure 5.6 Averaged differential spectra across a Gaussian time window centered on the
secondary peak of the flares. The inset panels show the distribution of blackbody fits during
the bootstrap procedure described in Section 5.1. The best-fit temperatures are 12, 400+4100

−2100

K and 12, 100+300
−200 K for EVRT-2509887 and EVRT-3586872, respectively. The continuum

emission is poorly described by a single blackbody, and both deviate from a thermal spectrum
at the end of the spectrum, due to Balmer continuum emission in the blue and “Conundruum”
in the red.

5.5.4 Non-Thermal Red Continuum

In addition to the Balmer continuum emission at wavelengths shorter than 3646Å, we

observe continuum emission to the red of the Hβ line which deviates from the expected

emission from a single isothermal blackbody source. Kowalski et al. (2013) also observed

this discrepancy in some flare spectra from their active star sample (calling it “Conundruum”

flux), and provide an overview of potential contributions, including emission from multiple

flaring regions, iron line blanketing similar to what is seen in active galaxies (Puetter et al.

1981), calibration issues, or contributions from higher-order Balmer continua (i.e., Paschen

(n = 3) or Brackett (n = 4) continua). They also note that the red continuum can be

present in the rising, peak, and decay phases of flare spectra. Red excess emission has also

been cited as a possible explanation for observed broadband color temperatures (Osten et al.

2016). In our observations, both the blue (Balmer continuum) flux and red continuum flux

track with the g-band light curve, with excess particularly visible during the secondary peak.
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Figure 5.7 Quiescent-flux subtracted spectra for EVRT-3586872 at +69 and +145 minutes
from flare peak. Near the secondary peak, Balmer continuum and “conundruum” flux,
potentially higher order hydrogen series, dominate the excess emission, decaying to a mostly
thermal spectrum at the end of observations. Shaded region indicates the window regions
used for calculating the relative contributions of non-thermal emission.

Figure 5.7 shows differential spectra for EVRT-3586872 at secondary peak and at the end of

the observations (near quiescence).

5.5.5 Relative Flux Contributions

To measure the relative flux contributions of the line emission and the balmer, red, and

thermal continua, we use the fitted blackbody curves and integrate the flux in each differential

spectrum within three sets of windows:

• Blueward of the Balmer jump at 3646Å
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Table 5.5 Continuum windows used for measurement of the red continuum contribution to
the flare energy budget.

Start (Å) End (Å)
4940 5011
5030 5160
5192 5257
5285 5859
5920 6490
6639 6668

• Within six windows around covering the red continuum region, but avoiding spectral

lines, listed in Table 5.5

• Around each spectral line, including the upturn in emission before the Balmer jump.

Figure 5.8 shows the per-epoch contributions of each of these components of the flare

spectrum, relative to their ratios at the first SOAR epoch (t0). For instance; at t2 on EVRT-

3586872, line emission makes up ∼ 30% more of the total observed flux than line emission in

the first spectrum. Up to their respective secondary flare peaks (t2), all four components

decay similarly in both EVRT-2509887 and EVRT-3586872, with nearly symmetric exchange

between the red vs. Balmer continuum and line vs. thermal emission. Beyond t2, the relative

components of EVRT-2509887 are difficult to interpret and likely noise dominated; however,

two clear transitions occur during the course of EVRT-3586872, just before each of the peaks

in the temperature curve.

Approximately 20 minutes before t2 (+54 minutes from peak), the contribution from the

red continuum increases by 13% relative to t0, roughly aligned with an 8% decrease in Balmer

continuum emission and a slight increase in the g-band light curve and an upturn in the fitted

temperatures. This is consistent with the color index plotted in Figure 5.2, which remains

relatively flat with a slight increase following g-band. By +64 minutes, both red and Balmer

emission have returned to their t0 fractional levels, and finally invert as the temperature

increases toward t2. This leaves the Balmer continuum emission as the dominant source

at secondary peak, averaging 6% larger fractionally than at t0. Correspondingly, the red
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Figure 5.8 Relative flux contributions during the decay phase and secondary.

continuum decreases by 13%, with the balance going into line emission, which is dominated

by the pre-Balmer jump ramp. A similar pattern plays out in the lead up to t3; the red

continuum and the balmer continuum flip at +109 minutes, and then diverge with back to its

t0 fractional contribution. In this case, the red continuum never recovers, and the differential

spectra are dominated by the blackbody radiation with fading emission lines.

In both flares, the red continuum contributes up to 20% of the total optical flux, and will

effect color-temperature measurements made with broadband photometry. Even if the red

continuum is produced by a secondary, cooler region of the flare, considerable degeneracies

exist between the relative sizes of the emission regions and their temperatures. Attempting

to fit a single region will result in an artificially low temperature and corresponding UV

flux, similar to the known systematics caused by line emission distorting broadband color

temperatures.

Section 5.6: Summary and Conclusions

In this Chapter, we have presented time-series spectroscopy of two high-amplitude stellar

flares, EVRT-3586872 (∆mg = 4.2 mag) and EVRT-2509887 (∆mg = 10.5 mag), detected

by the Evryscope Fast Transient Engine (Corbett et al. 2023), a pipeline optimized for
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low-latency followup of rapidly evolving transients. The spectral time series from SOAR for

each flare begins ∼10 minutes after Evryscope-detected peak and covers a wavelength range

between 4000 Å and 7000Å. Based on catalog photometry for EVRT-3586872 and catalog

photometry combined with an R∼300 quiescent spectrum for EVRT-2509887, we identify the

host stars producing the flares to be an isolated M4 dwarf and a M9 ultra-cool dwarf.

Using a Monte Carlo fitting algorithm, we fit a blackbody temperature to the continuum

of each flare, revealing an initial descent from a hot (> 15, 000 K) peak and a complex

of secondary peaks with temperatures as high as 18,000 K for the M9 flare and 13,300 K

for the M4. In addition to the likely thermal emission, we observe a strong and variable

Balmer continuum, as well as a poorly-understood red continuum, potentially caused by a

second, cooler blackbody region or by higher-order Hydrogen continua. We find that the red

continuum makes up an increasingly large fraction of the flux during the decay phase of the

flare, but this trend reverses during the secondary peak. The pre-secondary peak increase in

the intensity of the red continuum could support the hypothesis that this “conundruum” flux

is driven by the n = 3 and n = 4 Paschen and Brackett continua.
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CHAPTER 6: RAPID PROTOTYPING OF CORE TECHNOLOGIES FOR
THE ARGUS OPTICAL ARRAY1

Section 6.1: Introduction: Overview of the Argus Optical Array

The Argus Optical Array will be a new type of deep synoptic survey instrument, leveraging

the economy of scale for small optical telescopes and low-noise CMOS image sensors to image

the entire sky above an airmass of ∼2 with arcsecond resolution. Relative to monolithic

survey instruments, this approach has previously been demonstrated to provide competitive

information grasp and survey speed per unit time and cost (Law et al. 2022c; Ofek &

Ben-Ami 2020) and is an evolution of previous array telescope designs using DSLR camera

lenses, including the Evryscopes (Law et al. 2015; Ratzloff et al. 2019a), SuperWASP

(Pollacco et al. 2006), HATNet,Bakos et al. (2004), and MASCARA (Talens et al. 2017)

To minimize maintenance requirements, arrays of telescopes (O(1000) for full-sky coverage)

can be mounted on a shared tracking mount assembly and housed in a climate-controlled

enclosure. This approach minimizes the number of moving parts overall, and constrains the

thermal environment for the optics, promoting long-term stability.

We are currently undertaking a phased prototyping process, evaluating hardware for an

eventual 900-telescope array which would provide comparable collecting area to a 5-meter

monolithic mirror telescope. By using a large array of 200-mm, commercially-available

telescopes, this collecting area can be spread out over an 8000 sq. degree field of view,

enabling simultaneous monitoring of O(107) stars and galaxies. The full survey description

1This chapter has been adapted from the proceedings of the Society of Photographic Instrumentation
Engineers Astronomical Telescopes + Instrumentation 2022. The citation for the published article
is as follows:
Corbett, H., Soto, A. V., Machia, L., et al. 2022b, in Ground-based and Airborne Telescopes IX,
ed. H. K. Marshall, J. Spyromilio, & T. Usuda, Vol. 12182, International Society for Optics and
Photonics (SPIE), 121824D, “10.1117/12.2629489”
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and science justification for the Argus Optical Array is given in Law et al. (2022c), and an

updated mechanical and optical design can be found in Law et al. (2022a). A full treatment

of the general utility of multiplexed array observatories relative to monolithic systems for

high-speed sky surveys can be found in Ofek & Ben-Ami (2020).

The first stage in this process, the 9-telescope Argus Array Technology Demonstrator

(A2TD) based on the design concept of the Evryscopes (Ratzloff et al. 2019a; Law et al.

2015), was completed in 2021. A2TD provides a lab-local test bed for rapid prototyping of

control systems, data management, and other enabling technologies for Argus Array array,

including a novel automated polar alignment and single-axis tracking drive (Vasquez Soto

et al. 2022), on-sky testing of climate control systems (Machia et al. 2022), and mechanical

and structural support(Gonzalez et al. 2022).

The second stage of development, Argus Pathfinder, contains 38 telescopes, enabling

it to survey the seasonal northern sky between declinations of −20◦ and 72◦ every night.

Pathfinder operates at 30-second cadence, with a 5− σ limit of mA = 19.6 in single images,

where mA is the magnitude in a wide passband ranging from 350 nm to the blue edge of the

Fraunhofer A line and the O2 telluric band at 750 nm. This depth is equivalent to mg = 19.1

or mr = 18.3 under dark sky conditions. Argus Pathfinder underwent an initial science

deployment to the Pisgah Astronomical Research Institute in Dec 2023, an educational center

and observatory in western North Carolina, and is currently in a commissioning phase.

At all stages of the prototype series, the Argus Array uses a unique observing strategy;

rather than building sky coverage by observing a sequence of tiles, Argus (like the predecessor

Evryscope system) tracks a large contiguous field of view in short intervals, “ratcheting”

through the accessible right ascension range each night. This approach builds up sky coverage

while minimizing the average airmass across the field of view. Each ratchet concludes with a

slew back to the next field position, defined by the pointing of the meridian of the array. Two

observing cadences will be used for Argus Pathfinder and for the full Argus Optical Array;
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a standard survey with either 30- or 60-second exposures, and a secondary fast survey at 1

second cadence.

Despite the design’s usage of commercial off-the-shelf optical components, building the

Argus Optical Array will require development and evaluation of several enabling technologies.

The primary technological readiness areas and their evaluation goals are:

1. Motion control systems: Sidereal tracking around the axis of Earth’s rotation with

negligible impact on the instrument PSF (i.e., less than atmospheric seeing).

2. Camera and telescope control systems: Scalability to hundreds of telescopes at up to

1-second cadence.

3. COTS 200 mm, f/2 telescopes: Usable image quality across a > 45-mm diameter image

circle

4. 35-mm format CMOS image sensors: Long-term stability and evaluation of noise

characteristics on sky.

5. Analysis Pipeline: Scalable operations and data product generation within the observing

cadence.

In this Chapter, we present the Argus Array Technology Demonstrator (A2TD), a 9-

telescope test bench for rapid development and testing of the core enabling technologies of

the Argus Optical Array. The system design for A2TD is illustrated in Figure 6.1. The

A2TD seeks to meet the needs of the Argus Array instrument team to iterate through designs

addressing the four technological readiness areas listed above within the following constraints:

1. Timescale: We targeted a 6-month process for on-sky operations, beginning May

2021.

2. Modularity: Flexibility for swapping out camera systems, operating with a partial

array, and upgrading components as new designs are available.
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Figure 6.1 The Argus Array Technology Demonstrator concept design with its major compo-
nents.

3. Size: The telescope array should be sufficiently large to be representative, while

fitting within an 8-foot commercially-available fiberglass dome during operations and a

standard box truck for transport.

4. Budget: Not including optical and camera hardware included in the NSF-funded

Argus Array, the A2TD budget was $18,000.

We initially planned the A2TD instrument to be a rapidly deployable proof-of-concept

observatory, intended for installation at a dark sky site in North Carolina; however, a project

retrospective several months into system design determined that the development of the

robotic observatory components necessary for a full deployment of the system would retire

no additional risks given the years-long performance of such systems to support the existing

Evryscope instruments built by our team. Further, our early experience with a maintenance

shutdown of the EvryArgus system (see Section 5.1 in Ref. 164), and the continuing unsure

nature of travel during the pandemic, incentivized us to convert the 400 kg A2TD instrument
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into a form that could be set up in a few hours at our local build facility in Chapel Hill,

NC to perform human-supervised on-sky testing, but not necessarily undergo a full robotic

deployment to a potentially unreachable remote site.

In Section 6.2, I describe the telescopes, cameras, and other optical components evaluated

on the A2TD. In Section 6.3, I provide an overview of the mechanical design of the system.

In Section 6.4, I outline the compute architecture used for the A2TD and the differences

between the test bed model and the architecture selected for the Argus Array Pathfinder. In

Section 6.5, I present a brief overview of the on-sky results from the A2TD system and its

components. In Section 6.6, I summarize the instrument design and status.

Section 6.2: Optical Design

The system optics for A2TD consist of nine independent telescopes, paired with back-

illuminated CMOS detectors, which observe through anti-reflective optical windows when the

instrument is in a weather-safe configuration.

6.2.1 Telescopes

The initial reference design and early on-sky testing used the f/2.0, 8-inch Rowe-

Ackermann Shmidt Astrograph (RASA) commercially available from Celestron2. These

telescopes are low-cost ($2079 USD at the time of writing), and provide excellent image

quality (RMS spot size ≤ 4.55µm with ≤ 10% vignetting) within their advertised 32-mm

corrected image circle; however, this range does not fully include 35-mm format sensors, like

those discussed in Section 6.2.3, which are necessary to meet our field-of-view requirements

with ∼1000 telescopes.3 For a full description of the RASA optical design, see Ref. 30. An

additional telescope, a custom design (the Argus-8 in Ref. 164) developed by Planewave

2https://www.celestron.com
3We note that an alternate design route exists, using smaller (4/3-inch) format sensors fully-
illuminated by the RASA8; however, to achieve all-sky coverage with these sensors requires 3-4× as
many telescopes.
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Instruments4 will be integrated into A2TD for on-sky testing leading up to the construction

of the Argus Pathfinder instrument. The Argus-8 provides a 33% improvement in pixel scale,

and produces a stable PSF across the full sensor plane.

6.2.2 Optical Window

Each telescope within the A2TD observes the sky through an independent optical window

when the dome enclosure is in place, as shown in the reference design in Figure 6.1. Though

the A2TD instrument is rarely operated in this configuration, we evaluated multiple options

for exterior-facing windows, including the indium-tin oxide coatings named in Figure 6.1.

However, conventionally specified optical glass is not typically suited for the demands of

exterior use, which can involve hail, regular rainfall, consistent wind loading, and daily

thermal cycling. Custom windows at the size and scale of the telescope apertures can cost

thousands of dollars per unit, which is not scalable for to the full Argus Optical Array. We

found anti-reflective architectural glass (Schott AMIRAN) to be the best match for our price

and performance needs, and measured no detectable changes in the PSF FWHM above a 5%

seeing-induced noise floor during on-sky testing. This includes measurements at a variety of

angles of incidence out to 35 degrees from normal, relevant for the pseudo-focal Argus Optical

Array design described in Law et al. (2022a), which requires only a single exterior-facing

window.

6.2.3 Camera Specifications and Evaluation

The A2TD instrument supports multiple camera manufacturers and models, primarily

the QHY600M from QHYCCD and both air-cooled and a custom, liquid-cooled variant of

the Atik Cameras Apx60 used in the Argus Pathfinder instrument. Both cameras use the 62

megapixel, Sony IMX455 back-illuminated CMOS sensor. This sensor provides 1.7 electron

readout noise, 0.004 electron per pixel per second dark current at -10 ◦C, and has a peak

4https://planewave.com
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quantum efficiency near 450 nm of ∼92%. The sensor is available in either a -K “industrial”

or a -C “consumer” variant; advertised differences include a ceramic LGA, fewer pixel defects,

and a higher MTBF for the industrial variant, at significantly higher cost. Both cameras will

undergo long-term evaluation within the controlled environment of the Argus Pathfinder.

Section 6.3: Mechanical Design

The details of the mechanical design of A2TD, Argus Pathfinder, and Argus Optical

Array can be found elsewhere in the Proceedings (Law et al. 2022a). In this section, we will

provide a general overview of the major components at the A2TD scale and their justification.

6.3.1 Hercules Mount Structure

The base of the A2TD system is the “Hercules” tube steel structure (see Figure 6.1),

encompassing all stationary structural components of the instrument. The Hercules structure

was designed to maximize transportability, and breaks down into six smaller components for

shipping or storage. The assembled base structure, with the telescope support structure and

tracking arms removed, will fit in a standard 12-foot trailer. The Hercules mount is described

in full in the Gonzalez et al. (2022).

6.3.2 Telescope Support Structure

The telescope support structure is a circular aluminum spoke platform that supports the

dynamic components of the instrument, and is pictured in Figure 6.2. The tubing is connected

to the axle of the Hercules mount via two pillow blocks, placed at the middle of the radius

along the axle. Telescope mounts, made of 3D-printed dovetails and aluminum extrusion, are

bolted to a plywood top secured to the tubing. The placement of the telescopes within A2TD

does not produce a contiguous field-of-view; instead, the telescopes are distributed in airmass

to produce data representative of an all-sky field of view. Additionally, modifying the system

to provide a continuous field of view in declination would require a much larger structure,
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ultimately driving costs higher and compromising our size envelope goal. An overview of

field of view packing techniques for array telescopes is provided elsewhere in the Proceedings

(Galliher et al. 2022a).

Figure 6.2 Telescope support platform, installed on the low-cost “Hercules” mount structure,
during lab integration testing.

We fit the platform with a fiberglass dome and per-telescope viewing windows, as pictured

in Figure 6.1. The dome is isolated from the platform and has an independent tracking drive

to minimize image quality effects of wind buffeting. The dome is weather-sealed for robotic

deployment using standard rubber gaskets around the windows, and a custom vinyl fabric

skirt which runs between the edge of the dome and the bottom of the tracking platform.

Because we determined that the robotic deployment of the A2TD was out of scope, the

system has been operated primarily without the dome installed.
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6.3.3 Tracking Drives

The tracking system for A2TD is a scaled-down variant of the tracking drive mechanism

for the reference design of the full Argus Optical Array as described in Ref. 164 and the

current pseudo-focus array design presented in Law et al. (2022a). The AT2D dome and

telescope platform track the sky independently using identical tracking drives, placed on

opposite sides of the instrument. The dome tracking drive will be repurposed as the primary

tracking drive for the Argus Pathfinder.

6.3.4 Polar Alignment

Precise tracking with a single-drive right-ascension instrument mount requires repeatable,

accurate (few arcminute) alignment with Earth’s rotation axis. For both A2TD and Argus

Pathfinder, portability and ease of deployment with minimal site preparation are design goals.

Differential settling of the ground underneath the instrument can shift the polar alignment

out of specification over time, and a semi-automated procedure for re-alignment, potentially

with no on-site support, is essential for recovery. To achieve this degree of pointing accuracy

and resilience for the ∼400 kg A2TD instrument, we developed automated polar alignment

system using a pair of linear actuators supporting the polar end of the instrument axle. This

system is described fully elsewhere in the Proceedings (Vasquez Soto et al. 2022).

Section 6.4: Control System Architecture

The underlying architecture for the A2TD control system is a modular set of asynchronous

HTTP web servers, implemented using FastAPI5, running on a cluster of 13 Raspberry Pi

4 single-board computers. Of these, nine are “ocular” nodes, responsible for control of a

single optical system, including a telescope, camera, and focuser. Three of the remaining

nodes export motion control APIs for dome tracking, telescope platform tracking, and polar

5https://github.com/tiangolo/fastapi
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alignment. The final node is used for orchestration, communicating with each of the ocular

and motion control nodes via their respective HTTP APIs. We also produced command-line

clients for each of the subsystems, so that they can be manually addressed for debugging,

and for subsystem testing independent of the full instrument. Figure 6.3 shows a single fully

assembled ocular node, including the Raspberry Pi computer.

Figure 6.3 A modular telescope and camera assembly, with an attached “ocular node” control
server (Raspberry Pi 4).

One notable issue with the Raspberry Pi-based architecture is scalability to the 1-second

cadence observing mode. Due to the limited compute performance and the single-lane PCIe

interface for the USB controllers on the single-board computers, readout times of several

seconds are typical. This has motivated an alternate architecture for Argus Pathfinder and

future project stages; rather than one node per camera, cameras are multiplexed into 48-
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telescope units which connect to a single x86 control and analysis server via high-speed PCIe

3.0 x16 interface cards. This configuration maintains the HTTP interface at the 48-telescope

sub-array level, while providing higher transfer speeds (>90% duty cycle at 1 second cadence)

and GPU-based data processing with no network latency. The hierarchical control and data

analysis pipeline for Argus is described in Corbett et al. (2022a).

Section 6.5: Overview of On-Sky Results

The A2TD and the standalone ocular node telescope assemblies have been used on-sky

to support rapid design iteration and risk retirement. In this section, we provide a summary

of the key findings and references to full results.

1. Optical Alignment: We developed a routine for tilt aligning camera and telescope

pairs, using bench test data of a near-field focus and shims. From on-sky testing, we

measure up to a 50% improvement in edge of field FWHM for the corrected Celestron

RASA-8s relative to pre-correction imaging.

2. Thermal Stability Testing: We installed an ocular node in a custom thermal

enclosure to measure variability in the optical PSF as a function of temperature and

constrain the stability necessary for the Argus Pathfinder and Argus Optical Array

enclosures. We measure < 10% differences in the PSF half flux diameter (HFD) for

temperature fluctuations of ±6 ◦C around the optimal focus. This process and the

climate control design for Argus Pathfinder are described in Machia et al. (2022).

3. Optical Window Testing: We observed no changes in the PSF HFD above a 5%

seeing-induced noise floor during on-sky testing through Schott AMIRAN architectural

glass. We have also measured this glass to provide no degradation of the Strehl ratio of

the PSF at up to 30-degree angle of incidence, and < 5% out to 55 degrees, beyond the

operating parameters of the Argus Pathfinder window.
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4. Polar Alignment: We have tested the automated polar alignment system described in

Section 6.3.4, and achieved a sub-10-arcminute alignment with the pole, corresponding

to a few-pixel drift over the course of a 15-minute ratchet and a negligible impact on

PSF stability in single images. For a full description, see Vasquez Soto et al. (2022).

5. Sidereal Tracking: We have demonstrated tracking at the sidereal rate with sub-pixel

RMS offsets over 15-minute pointings.

Section 6.6: Summary

In this Chapter, we have described the Argus Array Technology Demonstrator (A2TD),

a platform for rapid, iterative development of core technologies for the Argus Optical Array,

which is a new synoptic survey instrument able to observe the entire visible sky using

O(1000) small telescopes arranged with a contiguous 8000 square degree field of view. The

Argus Optical Array leverages newly available and cost-effective astrographic optics aimed

at the amateur market, along with high-efficiency, low-noise CMOS image sensors, but has

required the development of new technologies to minimize maintenance requirements for polar

alignment and sidereal tracking, and for observatory operations that scale to one thousand

optical systems and cameras. We addressed the needs of the development process for these

new enabling technologies by building the A2TD, a modular demonstrator system for rapid

iteration of motion control, optical, and software.
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CHAPTER 7: THE SKY AT ONE TERABIT PER SECOND: ARCHITEC-
TURE AND IMPLEMENTATION OF THE ARGUS ARRAY HIERARCHICAL

DATA PROCESSING SYSTEM1

With its 54.9 GPix combined mosaic imager, the Argus Optical Array will produce 4.3

PiB of raw data per night when observing in the 1-second cadence mode, and 145 TiB per

night at base cadence, numbers that are comparable to the entire data sets of the many

data-rich astronomical surveys currently operating. In both operating cadences, the dead

time between consecutive images is sub-millisecond, with images read out to an internal

camera buffer before transfer to a control computer over USB 3.0, requiring a many-gigabit

per second data transfer rate, up to a terabit (125 GiB) per second. The prototype Argus

Pathfinder system, containing 38 telescopes, will produce accordingly less data, but still up to

180 TiB per night at 1-second cadence, 24% more than the full Array at 30-second cadence.

Table 7.1 contains the system parameters of Argus Pathfinder and the Argus Optical Array

instruments, including properties of the dataset. To reduce this data into an event stream

of astrophysical transients, long-term lightcurves, and image data products requires both a

physical compute architecture capable of the necessary throughput and a performant software

pipeline.

In this Chapter, I introduce the Argus Hierarchical Data Production System (Argus-

HDPS), the unified control and analysis pipeline for the Argus Optical Array project. In

Sections 7.1 and 7.2, I describe the science and engineering requirements of the system. In

1This chapter has been adapted from the proceedings of the Society of Photographic Instrumentation
Engineers Astronomical Telescopes + Instrumentation 2022. The citation for the published article
is as follows:
Corbett, H., Soto, A. V., Machia, L., et al. 2022a, in Software and Cyberinfrastructure for Astronomy
VII, ed. J. Ibsen & G. Chiozzi, Vol. 12189, International Society for Optics and Photonics (SPIE),
1218910, “10.1117/12.2629533”
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Argus Pathfinder Argus Optical Array
Telescopes 38x 203 mm F/2.8 900 x 203 mm F/2.8

(1m-class equiv.) (5m-class equiv.)
Detectors 61 MPix sCMOS 61 MPix sCMOS

1.7e- RN 1.7e- RN
80 µs dead time 80 µs dead time

> 90% QE at 475 nm > 90% QE at 475 nm
Field of View 9 sq. deg per telescope 9 sq. deg per telescope

344 sq. deg instantaneous 7916 sq. deg instantaneous
Nightly Sky Coverage 19,370 sq. deg. 19,370 sq. deg.

(15 minutes per night) (2-10 hours per night)
Pixel Sampling 1.38 arcsec/pix 1.38 arcsec/pix

Site North America North America
Pisgah Astronomical Pisgah Astronomical
Research Institute Research Institute

Exposure Time 1 second high-speed 1-second high-speed
30-second base-cadence 30-second base-cadence

Wavelength Wide-band (350-750 nm) Wide-band (350-750 nm)
or alternating g’, r’

Pixel Count 2.3 GPix 54.9 GPix
Mosaic Image Size 4.7 GiB 110.1 GiB
Nightly Raw Data 180 TiB (high-speed) 4.3 PiB (high-speed)

6 TiB (base-cadence) 145 TiB (base-cadence)
Throughput 464 Gbps (high-speed) 11 Tbps (high-speed)

at 92% duty cycle 15.5 Gbps (base-cadence) 367 Gbps (base-cadence)

Table 7.1 Survey and dataset parameters for the Argus Pathfinder and Argus Optical Array
instruments. Data types assume 16-bit pixel data.

Section 7.3, I outline the data flow and physical compute hardware underlying Argus-HDPS.

In Section 7.4, I describe the algorithms and implementation status of the pipeline. Finally,

in Section 7.5, I summarize and present pipeline performance results on data from A2TD.

Section 7.1: Science Requirements and Data Products

Transient alerts and images are produced at multiple effective cadences, using coaddition

to perform deep searches for slow-rising transients at timescales out to 5 days. To minimize
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data backlog and support rapid community followup of transient events, HDPS must produce

alerts and reduced images within cadence for cadences less than 1 day; i.e., 30-second images

must be reduced and alerts generated within 30 seconds. As the data rate slows for longer,

multi-day coadds, sub-cadence latencies can be achieved using daytime operations.

Full-frame images from the full Argus Optical Array will be prohibitively large to store,

requiring up to 145 terabytes per night at 30-second cadence and 4.3 petabytes per night

at 1-second cadence. To support long-term retention of image data, HDPS must reduce

incoming images into pre-defined data products, including:

1. Images, segmented into 13.7×13.7 arcminute sky regions.

(a) Full-resolution segments (HEALPixGórski et al. (2005) NSIDE=256) at base

cadence, cached locally for at least 5 days

(b) Full-resolution segments, coadded at 15-minute to 5-day cadences

(c) Sparse full-resolution segments, containing transient detections and pre-selected

science targets

(d) Low-resolution segments with 10× reduced resolution (13.8 arcsec/pixel).

2. Transient alerts, distributed via community brokers

(a) From single images, at both 1- and 30-second cadence

(b) In deep coadds, up to 5 days

3. Photometric light curves

(a) Transient sources: from image subtraction, sequentially released via alerts

(b) Detrended long-term lightcurves for an input catalog of O(107) sources

Reduced image data from Argus, including deep coadds, sparse full-resolution images

covering science targets, and low-resolution 13.8-arcsecond per pixel images of the entire sky,

will be stored long-term and made available publicly."
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The production of long-term photometric light curves, containing tens of trillions of

photometric measurements across a five year survey, is a unique challenge among the Argus

Optical Array data products. Removing systematics from the lightcurves inherently depends

on long-term trends in time, and for this reason, we elect to produce precision lightcurves

in periodic data releases, rather than within the observing cadence. Per-epoch photometry,

however, will be produced in real time, using the pipelines we have developed for the

Evryscopes (Ratzloff et al. 2019a). Calibrated and detrended lightcurves for pre-selected

science targets will be generated and released on a schedule.

Section 7.2: Engineering Goals

Analysis and control pipelines are a long-term investment in the project, and scalability in

software instrumentation will enable rapid iteration of the physical instrument and continuity

towards the full Argus Optical Array. In addition to the science-driven goals above, we are

developing Argus-HDPS with the following engineering goals:

1. Scalability and adaptability from the prototype stage to the 900-telescope Argus Optical

Array

2. Integration between the control system and analysis system to minimize latency and

intermediate storage requirements

3. Maintainability of the codebase, using standard version control,2 dependency manage-

ment,3 and automated testing4 tools

4. Reliability for long-term operation and production of a stable dataset, including

hardware-in-the-loop testing of cameras and focusers

Particularly at the current stage, adaptability to a heterogeneous instrument has been

essential to enable rapid prototyping while navigating the supply chain constraints early in

2https://git-scm.com
3https://python-poetry.org
4https://pytest.org
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the prototyping process, and will remain an important feature of HDPS to support long-

term evaluation of telescopes and cameras with Argus Pathfinder. Between the A2TD and

Pathfinder instruments, Argus-HDPS includes support for two camera manufacturers (Atik

Cameras5 and QHYCCD6), five camera models, and two telescopes with associated focusing

hardware (the Celestron7 RASA-8 and a custom Astrograph from Planewave Instruments8)

Section 7.3: System Architecture

To meet the science and engineering goals of the Argus Optical Array, while coping with

data rates into the terabit-per-second regime, we use a converged data collection and analysis

pattern, in which images are reduced into data products within the observing cadence. In

Figure 7.1, we present a flowchart of the basic components of Argus-HDPS, including the

core processes and data products.

Integration between hardware control and data analysis systems is essential for reliable

data caching and storage management, and for latency optimization at the fastest cadence.

HDPS uses a modular software architecture for hardware control, based on a stable contract

between core system components (optical and mechanical control, weather and instrument

state monitoring, and pipeline instances), defined using HTTP APIs.

7.3.1 Camera Control

Each camera is directly connected to a camera command (CC) compute node capable

of reducing its data in real time. We have developed Argus-HDPS wrappers for the vendor-

supplied camera SDKs from Atik Cameras and QHYCCD, which abstract the basic functions

of the cameras to a standard, shared Python API. Each CC node communicates with state

machine processes exporting this API using an internal socket server. To minimize latency,

5https://www.atik-cameras.com
6https://www.qhyccd.com
7https://www.celestron.com
8https://planewave.com
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Figure 7.1 Pipeline components, processes, and data products for the Argus Optical Array.
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camera control processes copy the image data, along with corresponding metadata, directly

into a shared memory object store (Apache Plasma9), from which images are written to disk

on a rolling basis. Cameras attached to each CC node can be controlled collectively using an

asynchronous HTTP API by the instrument control system. The control system can control

an arbitrary number of CC nodes (19 for the full Argus Optical Array).

7.3.2 Compute Nodes

CC nodes are standard many-core x86 rack-mounted servers, co-located with the in-

strument. Individual cameras connect to the CC nodes via USB 3.0 and high-density PCIe

expansion cards. CC nodes will each be equipped with a GPU for image analysis. GPU

requirements are primarily driven by memory size and bandwidth; in addition to the images

themselves, each camera has a corresponding set of calibration frames (darks, flats, bad pixel

masks, plus intermediate background and noise maps) and reference frames, which must also

be transferred to the GPU at the start of each ratchet. Each compute node is also equipped

with ∼50 TiB of local storage for temporary caching of full-frame data at 30-second cadence,

and enough RAM to cache data at 1-second cadence for up to one minute.

Section 7.4: Pipeline Implementation

Once each full-frame image has been recorded in the in-memory object cache, analysis is

delegated to analysis processes. Each analysis process pre-allocates the relevant reference and

calibration frames on the CC node’s GPU resources at the start of each pointing. CMOS

image calibration, source detection, and resampling to the HEALPix grid are done directly

on the GPU, and source catalogs are transferred to system memory for cross-matching

and astrometric fitting on the CPU. In the current implementation, image subtraction and

coaddition are also done on the CPU.

9https://arrow.apache.org
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7.4.1 Image Management

The highest-data-rate components of Argus-HDPS are those which interface with with

the full-resolution 61-MPix images from the cameras. These images are both unwieldy to

access, with 122 MB file sizes that incur a disk read penalty on the order of the exposure

time, and require external indexing via a database to be searchable in space or time. To

support these standard usage patterns, we have developed a hierarchical, equal-area storage

system for Argus Array data, inspired by, but distinct from, the Hierarchical Progressive

Survey (HiPS) format described in Fernique et al. (2017).

In the full-frame images, we perform standard image calibrations (dark subtraction, flat

fielding, masking of bad pixels) and fit an astrometric solution using a custom high-speed

solver. The ArgusSolve astrometry algorithm is based on the quadrilateral hashing (Lang

et al. 2010) and the fitting (Ofek 2019). Combined with an optimized implementation in

Python, a one-directional mapping from celestial to pixel-plane coordinates for full-frame

images can be produced in ∼ 100 milliseconds. A full WCSLIB-compatible FITS header

(Calabretta 2011) can optionally be generated for the full-frame image in ∼ 5 s.

7.4.1.1 Image Segmentation

Each full-frame image is reprojected into equal-sky-area tiles (based on the HEALPix

(Górski et al. 2005) pixelization scheme with NSIDE=256), providing 786,432 potential

13.7×13.7 arcminute sky regions across the celestial sphere, of which 58.6% will be observable

by a Northern Hemisphere Argus Optical Array. The resulting segment images are stored in a

structured tree of directories, grouped based on membership of each segment in the hierarchy

of HEALPix tiles with NSIDE=4,16,64. Grouping the directories in this way is done to

minimize the number of files per directory. Within each directory, images are stored per-night

as multi-extension cubes in a FITS-like format modified to support 16-bit floating point data.

Given a time and sky position, this scheme allows the path for a given spatial/temporal
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image tile to be uniquely determined without an external index, while maintaining a number

of files on disk that is manageable with standard filesystems.

7.4.1.2 Sparse Image Segments

Each set of image segments for a single full-frame image is approximately the same size

as the original data; however, each image tile can be further partitioned and selectively

compressed. We have developed a “stamping” procedure, in which “minipix” segments of

each image tile (at a higher HEALPix level, corresponding to NSIDE=16384) not containing

science targets (either those detected in image subtractions or pre-cataloged by the science

team) are set to zero and the resulting image compressed. To minimize the impacts on

serendipitous science cases, full resolution images at base cadence will be cached at least up

to the longest coaddition epoch (5 days), and low resolution maps, at a pixel scale of 13.8

arcsec per pixel, will be saved for the whole sky. The compressed sparse and low-resolution

segment images combined take up ∼ 5% the storage space of the full-resolution segments.

7.4.1.3 Deep Coaddition in Sky Segments

Because the full-resolution image tiles are pre-aligned to a fixed HEALPix grid, coaddition

is greatly simplified. Coaddition on Argus sky tiles is optimized for point-source detection

using a per-image matched filter, which is the statistically optimal method for background-

limited images (Zackay & Ofek 2017). Figure 7.2 shows a deep coadd of a set of 30× 30-second

exposures, made using the algorithm described in Zackay & Ofek (2017). These images

were collected from a site local to our UNC-Chapel Hill lab, so the achievable depth is not

representative of median performance at a dark-sky site; however, the 5-σ limiting magnitudes

of mg = 17.8 at 30s and mg = 19.8 at 15 minutes are reproducible from the same calculation

we use to predict dark sky performance, given typical sky brightness for a moderately-dark

suburb (mV ∼ 19 per sq. arcsec). We reduced the images in Figure 7.2 using the Argus-HDPS

GPU/CPU pipeline, including image segmentation, reprojection, and astrometry.
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Figure 7.2 A 15-minute coadd of data from a Celestron RASA8 node of A2TD. Full-frame
images from each sensor are reprojected into HEALPix segments, which are then used for
further analysis tasks (photometry, image subtraction, and coaddition.)

7.4.2 Transient Alerts

Argus Pathfinder will produce transient candidates at a rate of approximately one

million per night, and the full Argus Optical Array could meet or exceed the alert rate

of the Rubin Observatory. Transient detection is performed using image subtraction in

the reprojected HEALPix image segments, leveraging long-term coadds as reference frames.

We have implemented two different algorithms for image subtraction in Argus-HDPS, and

both will undergo long-term on-sky evaluation with Argus Pathfinder; the ZOGY algorithm

described in Ref. 273 for image subtraction at base cadence and in deep coadds at 15-minute

cadence or greater, and the direct image subtraction method we previously developed for

the low-latency transient discovery pipeline for the Evryscopes (Corbett et al. 2020; Corbett

et al. 2023), for real-time operation in 1-second cadence data. Figure 7.3 shows an image

segment with a simulated transient source, a reference image, and subtraction images made

using both subtraction algorithms.

In collaboration with the Arizona-NOIRLab Temporal Analysis and Response to Events

System (Saha et al. 2014; Matheson et al. 2021; ANTARES;), we are prototyping a public

transient alert system for low-latency release of candidates from the Argus Optical Array. To
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Figure 7.3 Per-tile image subtraction near an injected transient source with a 5-σ peak
significance, using both the high-speed direct subtraction algorithm of Ref. 61, and the
ZOGY(Zackay et al. 2016) algorithm.

maximize utility and ease of use for the community, we are adopting the evolving community

standard of streaming serialized alert packets via Apache Kafka.10.

7.4.3 Light Curves

Full evaluation of the expected precision of lightcurves from the Argus Optical Array will

be made using data from Argus Pathfinder; however, initial results from A2TD nodes indicate

that sub-percent performance may be achievable, at least on short timescales. Figure 7.4

shows the RMS vs magnitude for 900 stars during a single 15-minute ratchet at 30-second

cadence, before and after three iterations of detrending using the sysrem algorithm (Tamuz

et al. 2005), which achieves ∼ 7 mmag performance at the bright end.

Section 7.5: Pipeline Performance and Summary

We are developing Argus-HDPS, an integrated instrument control and data analysis

system for the Argus Optical Array, which uses asynchronous HTTP connections to orchestrate

observation and analysis tasks across multiple control servers that pair optical/camera control

with edge GPU computing capabilities for minimal latency. For current prototyping stages, all

analysis will be completed on a single x86 server; scaling to a full 900-telescope system can be

10https://kafka.apache.org/
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Figure 7.4 Photometric RMS vs. Magnitude for 900 stars across a single 15-minute pointing
of A2TD at 30-second cadence.

accomplished linearly with the addition of 19 additional control servers. This system enables

a low-latency sharing of instrument state with an O(1000) camera array, and allows for

images to enter the analysis pipeline within 100 ms of camera readout. We have demonstrated

real-time image data product generation, using a custom high-speed astrometric solver and

GPU-based reprojection of sensor-plane data to produce equal-area image segments, which

are then coadded and subtracted for transient detection at both single-image cadence and in

deep coadds. Public data release of imaging and transient alert data from the Argus Optical

Array is planned, and will be publicly prototyped after a commissioning period.

Table 7.2 presents the average compute time for the image segmentation and analysis

pipeline stages, measured using a representative 36-core test server and an Nvidia RTX 3090
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Ti GPU. Source detection, astrometry, and segmentation to the HEALPix grid are completed

in an average of only 27 milliseconds on the GPU, which can be shared sequentially by many

cameras to generate image data products in real time, even at 1-second cadence. CPU-based

image subtraction is possible within cadence by parallelizing the direct subtraction at the

segment level; however, a GPU implementation is in development.

Table 7.2 Average timing results for key processing steps in Argus-HDPS.

GPU Timing
61-MPix image copy to GPU 16 ms

Calibration < 1 ms
Median-filtered background map 1.7 ms

Source detection 6.1 ms
Image segmentation and resampling to HEALPix grid 3.2 ms

CPU Timing (single-threaded)
Source de-duplication 7.5 ms
Astrometric solution 190 ms (95 ms with caching)

(95 ms with caching)
Writing to modified FITS 475 ms

Compressed image generation 300 ms (batch reduction)
Direct image subtraction 20 ms per tile
ZOGY image subtraction 1400 ms per tile
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CHAPTER 8: CONCLUSIONS

Section 8.1: EFTE and VetNet

In Chapters 2 and 3, we presented the Evryscope Fast Transient Engine (EFTE), the

real-time transient discovery pipeline for the Evryscopes. The pipeline is a fully custom

data analysis tool, suited to the unique parameter space inhabited by the Evryscopes and

capable of identifying transient candidates in real-time, with alerts available for each image

within the two-minute cadence of the Evryscopes for 98.5% of images. To accomplish this,

we reduce the complex image subtraction process adopted by seeing-limited surveys to a

simple direct subtraction of near-consecutive images. Astrometric performance for transient

alerts is sub-pixel at the 99th percentile, and photometric performance is within 0.06 mag

RMS of the ATLAS-RefCat2 catalog for reference stars within the 8 < mg < 14.5 sensitivity

range of the survey. Using a convolutional real-bogus classifier, we are able to recover 99.9%

of sources brighter than mg = 13.2 with a false positive rate of 5.1%.

While EFTE is specifically adapted to Evryscope data, the infrastructure, algorithms,

and ML models were developed to enable portability to instruments with similar survey

strategies, such as the NASA Transiting Exoplanet Survey Satellite (TESS; Ricker et al. 2014),

or with stringent data throughput and reduction latency requirements. Core algorithms

from EFTE have been adapted for usage in the pipeline of the Argus Optical Array, a

5-meter class multiplexed 55 GPix synoptic survey instrument currently in development (Law

et al. 2022c;b). Argus will observe a field of view equivalent to Evryscope in alternating 1-

and 30-second cadences, which produce up to 4.3 PiB and 145 TiB of raw data per night,

respectively. To support this data rate, Argus data will be reduced in real time, producing

low-latency transient alerts, photometry, and calibrated image data for distribution and
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storage. In Corbett et al. (2022a), we describe the Argus pipeline and data products, and

demonstrate the direct subtraction algorithm described in Section 2.4 on the Argus Array

Technology Demonstrator (Corbett et al. 2022b). The VetNet model described in Section 3.1

was optimized for direct image subtraction and Evryscope data; however, the framework for

performing this optimization and for staged model training using both on-sky and simulated

data was similarly portable to Argus.

A public alert stream from EFTE is in development, based on the evolving community

standard, in use for the Zwicky Alert Distribution System (Patterson et al. 2019) and

planned for the Rubin Observatory’s Legacy Survey of Space and Time (LSST)1, of serialized

alert packets distributed via Apache Kafka (Kreps et al. 2011). Alerts will be available

via the Arizona-NOIRLab Temporal Analysis and Response to Events System (ANTARES;

Matheson et al. 2021). Details of the alert distribution system and alert schema contents will

be addressed in future work.

Section 8.2: Orbital Foregrounds for Fast Astronomical Transients

Unlike the population of astrophysical transients, the population of objects in Earth orbit

is rapidly evolving on human timescales. Since the beginning of the work undertaken here,

the number of satellites in orbit has increased by more than a factor of two,2, with the vast

majority coming from a single commercial launch provider. Concerns about the impacts of

satellites on ground-based astronomy are common, and in many cases, well-founded. For

the upcoming Vera C. Rubin Observatory in particular, the cross-talk induced within the

camera by bright streaks is an open problem under investigation (Tyson et al. 2020), and

perhaps an unavoidable one (Alina Hu et al. 2022). The implications on the growing number

of satellite constellations on the population of satellite glints described in Chapter 4, however,

is somewhat less clear. In collaboration with Rubin scientists, I recreated the 2020 analysis

1https://dmtn-093.lsst.io
2https://www.ucsusa.org/resources/satellite-database
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to measure the glint rate using a sample of Evryscope-North data from 2022 and updated

versions of EFTE and VetNet. Figure 8.1 shows the integrated all-sky event rate for both 2020

and 2022. I found that the glint rate was broadly consistent with the earlier measurement

from the 2020 dataset, though the ∼ 30% increase at the 50th percentile for dimmer targets

is suggestive.

Figure 8.1 Rate of satellite glints as a function of magnitude as measured by Evryscope, both
in 2020 as presented in Corbett et al. (2020) and updated based on the 2022 Evryscope-North
dataset. Results are broadly consistent between the two years, despite the factor of two
increase in the number of artificial Earth satellites.

Section 8.3: Prospects for Fast Duration Transient Searches with Argus Pathfinder

The upcoming Argus Optical Array, and the now-operating Argus Pathfinder, have the

potential to systematically explore the sub-minute time domain. In this section, I will discuss

the sensitivity of the nominal Argus survey, both specifically for optical counterparts to fast

radio bursts (FRBs), and more generally for fast transients of any origin.
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8.3.1 Searches for Optical Counterparts to FRBs

A multiwavelength discovery of an FRB counterpart would provide transformative

constraints on the progenitor(s) and emission mechanism. A variety of models predicting

optical emission have been proposed in the literature, ranging from a shared mechanism

with the FRB on ms-timescales to long-lasting (seconds-to-minutes) afterglows (Yi et al.

2014). Assuming that at least some of the cosmological FRBs have a magnetar origin, like

FRB 20200428A (Bochenek et al. 2020; Mereghetti et al. 2020; CHIME/FRB Collaboration

et al. 2020), corresponding optical flashes generated by synchrotron emission are possible,

particularly for repeaters, where blast wave collisions at the boundary between the stellar

wind and the hot, slow tail. Beloborodov (2020) estimates that resulting luminosity could

exceed that of a type Ia supernova, releasing up to 1044 ergs on 1-second timescales, detectable

by Pathfinder out to z=0.05 at 1-second cadence. The inverse Compton scattering model

discussed in Yang et al. (2019), predicts dimmer emission on ms-timescales, and while

Pathfinder is not as sensitive as larger instruments like Rubin, the flux dilution factor (the

ratio of the exposure time to the emission timescale) enables competitive flux sensitivity for

millisecond-timescale flashes. For a 1 ms event, Argus Pathfinder will have a limiting flux of

0.9 Jy, compared to 0.01 Jy for Rubin and 0.5 Jy for Tomo-e Gozen (Sako et al. 2018), all

computed using the scaling relations for the AB magnitudes from Lyutikov & Lorimer (2016);

however, the areal survey rate (product of instantaneous FoV and exposure time) of Argus

Pathfinder is 1100x that of an idealized Rubin survey, and comparable to that of Tomo-e

Gozen, a dedicated high-speed survey instrument (Sako et al. 2018).

During a hypothetical Pathfinder survey at the Evryscope-North site (MLO), we could

adopt a pointing strategy that places one of the three right ascension columns 3.2 degrees to

the west of the local meridian towards the CHORD field of view to provide simultaneous

monitoring of ∼ 20% of all CHORD-detected FRBs, enabling the largest ever systematic

search for simultaneous optical counterparts to both repeating and non-repeating FRBs

with comparable optical/radio flux sensitivities. While the optical candidates will include
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foreground contaminants like glints from artificial Earth satellites (Corbett et al. 2020; Nir

et al. 2021; Karpov & Peloton 2022), the coincidence probability within a conservative 1 arcsec

optical localization region and a satellite reflection is O(10−7), even when extrapolating to

10x the current rate of satellite debris signals to account for the rapidly increasing utilization

of orbital space. Beyond this, the pre-burst monitoring of the field will allow us to resolve

track-like event sequences from isolated, potentially astrophysical, candidates.

8.3.2 Exotic Extragalactic Fast Transients

Beyond FRBs, Argus will be sensitive to a variety of other classes of fast optical transients,

independent of external triggers from multi-wavelength or multi-messenger observatories.

These events include known, but uncommon, events like prompt optical flashes from gamma-

ray bursts (Fox et al. 2003; Cucchiara et al. 2011; Vestrand et al. 2014; Martin-Carrillo et al.

2014; Troja et al. 2017), shockwave breakout from young supernovae (Garnavich et al. 2016;

Bersten et al. 2018; Vallely et al. 2021), and stellar superflares (Kulkarni & Rau 2006; Howard

et al. 2018a).

Due to the dense time sampling and huge control time of Argus Pathfinder’s high-speed

survey, we will be able to place the most stringent limits for the rate of dim, second-timescale

extragalactic transients, reaching four orders of magnitude beyond the closest comparable

limits (Richmond et al. 2020) for 1-second duration transients. Pathfinder will also be able

to constrain the population of O(10s) duration transients, pushing limits 8.5 magnitudes

deeper than previously probed by Pi of the Sky (Sokołowski et al. 2010) and filling in the

intermediate parameter space between the 1-second cadence Argus Pathfinder survey and the

deep, minute-cadence observations reported by the Deeper-Wider-Faster program (Andreoni

et al. 2020a) using the Dark Energy Camera (Flaugher et al. 2015).

To assess the potential impact of the Pathfinder survey on the search for exotic high-speed

transients, we can consider the potential upper limits that it could produce in a nominal

3-year survey with a 70/30 split between 30-second and 1-second cadence operating modes
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based on the expected control time for these events (Zwicky 1938), representing the amount

of time that the event would be detectable by the survey, should they occur. While number

of discoveries would be a preferable metric, at this time, the population is unconstrained, so

upper limits provide a reasonable basis for comparison between experiments and surveys.

Richmond et al. (2020) calculated a 95% confidence-level areal rate (λ) limit of 1.46 events

deg−2 day−1 with a limiting magnitude of V=15.6 using the Tomo-e Gozen instrument (Sako

et al. 2018). Comparatively, the Pathfinder 1s-cadence survey could place limits as low as

0.00017 deg−2d ay−1, with a limiting magnitude equivalent to g = 16.1, slightly deeper than

Tomo-e Gozen. In the 30s-cadence base survey, Pathfinder will provide similarly competitive

event rates for eFOTS on O(10s) timescales, filling in the unknown region between the bright

(V ∼ 11) all-sky limits from Pi of the Sky (λ ≤ 5 × 10−5 deg−2 day−1, Sokołowski et al.

(2010)) and the deep (g 23.7), narrow-field limits from Deeper-Wider-Faster (λ ≤ 1.625 deg−2

day−1, Andreoni et al. (2020a)). Over a 3-year survey, Pathfinder will establish limits for

events on similar timescales at intermediate depth (g ∼ 19.1) with an areal rate sensitivity of

0.0018 events deg−2 day−1. The full Argus Optical Array, running the same 3-year survey as

Pathfinder, would be able to establish limits of 4.3× 106 events deg−2 day−1 and 4.8× 105

events deg−2 day−1, based on the 30- and 1-second cadence operating modes, respectively.

Figure 1.2 shows the prospective upper limits for the Argus Pathfinder and Argus Optical

Array in the context of established limits from the literature.

Section 8.4: Closing Thoughts

The apparatus for a conclusive census of the phenomenology of the night sky on days-to-

weeks timescales is in place, with a key pivot being the first light of the Rubin Observatory’s

Legacy Survey of Space and Time – currently anticipated for the third quarter of 2024.

However, the parameter space of bright and fast-evolving phenomena, and even more so,

dim and fast-evolving phenomena, remains enigmatic and technically difficult. Among the

windows to the universe through which we are currently able to peer, optical astronomy
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is perhaps the farthest behind in this respect. The IceCube Neutrino Observatory can

localize events from trajectories across half of the sky within its square kilometer of detector

with a precision of 3 ns (IceCube Collaboration et al. 2017). LIGO records even more

exacting time precision across the entire sky (Abbott et al. 2009), and both operating (The

CHIME/FRB Collaboration et al. 2018) and upcoming (Vanderlinde et al. 2019) radio

observatories with massively-multiplexed fields of view can cover hundreds of square degrees

with ms-scale sampling. Multiple gamma-ray telescopes now monitor large fractions of the

sky near-constantly (Gehrels et al. 2004; Bhat et al. 2009).

In contrast, optical astronomy is primarily conducted target by target, field by field.

Though digitized, the conventional image-based approaches are similar in form-factor to

historical photographic emulsions on glass plates. Such approaches are a difficult fit for this

high-speed time domain and parameter space of uncommon events. It is my sincere hope

that the techniques and approaches described here, developed for the relatively conventional

wide-field Evryscope and Argus cameras, will help guide future efforts to both detect and

discover what strange flashes we may find.
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