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ABSTRACT

Katherine M. Daftari: Statistical Analysis of Self and Pairwise Interactions in Active Systems
(Under the direction of Katherine Newhall)

Active systems often demonstrate impressive group level behaviors which appear coordinated, but are

believed to arise only from individual-level interactions. To study the mathematics of these behavioral rules,

we reduce such large group dynamics to the simplest cases of self interaction and pairwise interactions. In

particular, we will only study passively gathered path data which is recorded without disrupting a system and

therefore avoids introducing possible behavior influencing factors. We analyze emergent behaviors in two

systems: transient self-trapping in a model of self-avoidant swimming droplets and leader-follower dynamics

in experimental golden shiner duos.

We compute several traditional path data analysis metrics including the mean square displacement and

two point correlation function of both positional and velocity data to find that they are insufficient to describe

the observed dynamics. To address this gap, we propose a use case for estimating the time delayed mutual

information of random variables derived from path data; we argue that confined systems are a good candidate

for our method since they are likely to reach a steady state. We adapt the sampling scheme of a k-nearest

neighbors mutual information estimation method to compute the time delayed self mutual information of

the path curvature of self-avoidant swimming droplets to study their self-interactions. We then use the same

protocol to estimate the time delayed pairwise mutual information between angular positions of experimental

golden shiner duos to study their pairwise interactions.

We find that the decay of the mutual information of the path curvature of self-avoidant swimming droplets

can be differentiated from other memoryless models with high path curvature. We also show that the decay

timescale of the mutual information relates to the strength of the self-avoidant memory response of these

droplets. In our experimental golden shiner path data, we find that peaks in the mutual information curves

of the angular positions recover the reaction time or signaling timescale between fish when they are in a

leader-follower configuration. Our method is entirely non-parametric and therefore very versatile; it should
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be applicable to any path-derived time series data that is either spatially confined or can be shown to sample

from a stationary distribution.
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CHAPTER 1

Introduction

1.1 Active Systems

Active systems are comprised of one or many individual living or nonliving units that consume or use

energy to produce mechanical work used for locomotion (movement). A particular feature of interest within

active systems of all types and scales is the emergence of collective behavior [77]. Such large and seemingly

coordinated group level behavior is a little understood phenomenon in which many independent individual

interactions create the appearance of intelligent group behavior. Shoaling [24, 43, 69], swarming [52, 9, 8],

flocking [4, 12], and herding [22] are all examples of emergent behavior in macroscale living systems which

have been studied extensively. These behaviors are believed to serve evolutionary purposes such as protection

from predators [43, 22] and more efficient foraging [22]. On the microscale, many types of bacteria have

been shown to respond to different environmental stimuli, such as local gradients in chemical concentrations,

[1, 73, 2], gravity [26, 13], or light [66, 29, 79].

New data gathering methodologies and computational methods have made active systems a rich and

continually evolving scientific field with many inventive synthetic/nonliving systems being inspired by these

biological active systems. When such systems exist at a microscale, we refer them as active particles, which

derive their motility from environmental energy consumption that is transformed into self-propulsion. These

self-propelled particles include (but are not limited to) autophoretic swimming droplets [74, 44, 35, 33, 30],

chemically propelled droplets [54, 36, 72, 34], and even light sensitive particles [61, 11, 50, 49]. (For a

comprehensive review of micro-scale active systems and current research developments, see Refs. [80, 17,

18].) Non-microscopic systems of autonomous robots or hexbugs have also been studied [28, 81, 16]. Across

critical parameter thresholds, these systems will often exhibit motility induced phase separation (MIPS),

wherein clusters of agents form a “solid-like” state surrounded by a “fluid-like” bath of motile individual

agents [3, 21, 71]. The regimes in which this behavior appears and the real forces or effective forces which

maintain such clusters is a topic of great interest within the soft matter community [37, 20, 19, 23].
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In all cases, the common theme of such emergent behaviors is the absence of any group-level coordination

or leadership. Exploration of this phenomenon has led to the development of computational models that

can be categorized into two main classes: continuum modeling and agent based modeling. By definition,

active systems are out-of-equilibrium since each agent continually dissipates energy into the environment,

and the system breaks time reversal symmetry. Therefore, the system is not relaxing towards an equilibrium

state. Despite this, continuum models have developed to explore the dynamics of the density of the ensemble

[67, 65, 59], and in certain cases, can be treated as an ideal gas [23]. In contrast, agent based models prescribe

mathematical rules by which each individual agent evolves in time. Often the model will include “interaction

rules” in which the position and state of an agent is informed by the position and state of surrounding agents

and/or evolving ensemble parameters [76]. Such deterministic rules are usually implemented with a stochastic

component (usually white noise) which mimics the observed apparent randomness often seen in nature.

1.2 Key Goals

Despite their importance, the exact behavioral rules of many active systems (especially living ones) at

the individual level are still poorly understood. To pursue this question, we reduce the problem to the most

fundamental case and investigate self and pairwise interactions using an agent-based modeling approach.

Specifically, we aim to characterize the physical pathways or mechanisms by which agents in two distinct

systems sense and respond to stimuli. In particular, we examine the temporal features of path data, which is a

common experimentally gathered data type since it can be passively gathered without disrupting the system.

The first system which we study is a theoretical model of microscale swimming droplets. This model

is physically inspired by experimental droplets which “swim” in a surfactant bath due to local surface

tension instabilities which create tiny microcurrents (Marangoni flows) that propel the droplets in a ballistic

fashion [74, 44, 35, 33, 30]. Such directional swimming droplets can be fabricated or “programmed” to

prefer different environmental chemical regimes. In particular, our droplets navigate a changing chemical

environment by seeking out the regions of lowest chemical density, and in doing so, they avoid moving

toward locations where they have already been. For this reason, we label them “self-avoidant.” (In biology,

this type of environment-mediated interaction is called stigmergy and has been seen in social insects such as

ants and termites [70].) As they move, the droplets sometimes trap themselves in their own chemical trails

and create unique spiral-like path features that we believe are an emergent effect of the memory. This path
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feature is not explicitly determined by model equations, rather, the spontaneous ordering in the curvature

arises unpredictably as a result of interactions at the smallest scale (thermal noise). We cannot predict which

paths will exhibit this feature, rather, we can merely let the system evolve and observe the outcome.

The second system we study is a biological living system of confined golden shiner pairs, which are

social organisms that are used frequently in behavioral experiments. In our experimental video data, we

observe that our golden shiner pairs appear to cycle through similar modes of behavior together, which is

highly suggestive of interaction or coordination between fishes. However, throughout the experiment, all

environmental factors remain constant, which suggests that the fish transition in and out of these apparent

coordinated motion states spontaneously. (The transitions are not preempted by any external stimuli.)

In Chapter 3, we develop an agent based model for a self-avoidant swimming droplet. We thoroughly

explore the path data using conventional tools and we find a parameter regime in which the self-avoidant

memory response causes transient self-trapping. We show that a commonly used memoryless model (active

Brownian particle model) cannot explain the exotic path features seen in the self-avoidant model. In Chapter

4, we use our novel approach for measuring nonlinear correlations in time series data, and show that

our approach can quantify different levels of memory expression between individual paths, and between

ensembles with average memory strength differences. In Chapter 5, we continue our novel approach and

apply it to experimental data of a living system and find that our results are in good agreement with a contrived

model. Using our metrics, we provide strong evidence that the signalling timescale between two individual

fishes can be non-parametrically estimated from only the path data. Our approach in both Chapters 4 and 5

will rely heavily on tools from information theory, specifically mutual information, which we introduce in

Chapter 2. Following this introduction, we present our mathematically rigorous methods for using a mutual

information estimator on time series data. In our methods we identify appropriate conditions for utilizing

mutual information on time series data and derive our method with careful treatment of ambient dynamical

correlations in time series data, which are overlooked in current literature.
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CHAPTER 2

Mathematical Methods: Information Theory

2.1 Information Theory

The foundations of modern information theory were developed in the early 20th century; the most

notable of the early contributors was Claude Shannon after whom the foundational concept of Shannon

entropy is named. In it infancy information theory was created to study and improve the transmission of

digital information; the primary applications were the telegraph and cryptography. Since then, information

theory has expanded in its use. The information, or self-information of a random variable was introduced by

Claude Shannon as alternative way of expressing the probability of a given event (like the odds of an event,

for example). The information, or surprisal, of a discrete random variable X with probability mass function

p(x) maps each possible event outcome to an associated information content [63]:

I(X) = log
1

p(x)
. (2.1)

High probability events have low information (they are unsurprising), and low probability events have high

information- a rare event will require a lot of information to encode. To communicate the average amount of

surprise in a given random variable X with probability mass function p(x), we use the Shannon entropy:

H(X) = −
∑
x∈X

p(x) log(p(x)). (2.2)

The base of the logarithm determines the units of H(X); base 2 has units of bits, base e uses units of nats.

Entropy is deeply related to information- the more information is needed to encode an outcome, the more

uncertainty or entropy the outcome contains. In [60], the Shannon entropy is characterized as the optimal

amount of information needed to encode independent draws from the random variable X .
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As an example, consider a Bernoulli trial, or a coin toss, where θ measures the probability of heads as

the outcome and the probability of tails is 1− θ. Then,

H(θ) = −
∑
X

p(x) log(p(x)) = − [(1− θ) log(1− θ) + θ log(θ)] ,

which is maximized when θ = 1
2 , also shown in Fig. 2.1. Thus, we have maximal entropy or uncertainty

when we have a fair coin, or when θ = 1
2 , and minimal predictive capability at the same place. Continuing

the coin toss example, the value of H(θ = 1
2) = − log2

(
1
2

)
= log2(2) = 1, meaning that it takes 1 bit

(in this example we use base 2 for the logarithm) of information to represent the outcome of the coin toss

where θ = 1
2 . Thus, we need maximal information to communicate the outcome of an experiment where

there is maximum entropy. When there is higher certainty about the outcome, such as when θ = 3
4 , there is

correspondingly lower entropy (H(θ = 3
4) < 1), because we need less information to “predict” the result.

Figure 2.1: For a single coin toss with probability θ of heads, the entropy is maximixed in a fair coin when
θ = 1

2 .

2.1.1 Mutual Information

Ultimately, the self-information and Shannon entropy tell us about the characteristics of a random variable

by itself, and we are interested in the relationships between two random variables. If a linear relationship can
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be assumed, we might use correlation to determine the relationship between two variables. Often, a linear

relationship cannot be assumed, therefore, we want to assess the strength of nonlinear correlations between

two random variables. Shannon offered a solution to this problem in [63], which was later called the mutual

information between X ∼ pX(x) and Y ∼ pY (y) with supports X and Y , respectively:

MI(X;Y ) =

∫
X

∫
Y
pX,Y (x, y) log

pX,Y (x, y)

pX(x)pY (y)
dxdy. (2.3)

MI(X;Y ) is formally the Kullback-Liebler divergence between the product of the marginal distributions,

pX(x) · pY (y) and the joint distribution, pX,Y (x, y). Intuitively, we can interpret the result as the “distance

from independence” because the integral is formally zero in the case where X and Y satisfy (pX,Y (x, y) =

pX(x)pY (y)) and is infinite in the case where pX(x) = pY (y). Mutual information ofO(1) between samples

is typically interpreted as a strong signal.

We illustrate the importance of including nonlinear corrleations using Anscombe’s Quartet, shown in

Fig. 2.2. This unique dataset, constructed by statistician Francis Anscombe, has nearly identical summary

statistics: mean, variance, correlation, and even linear fit up to 3 decimal places. However, the data shapes

are all quite different. We find that the mutual information, which measures all nonlinear correlations,

does a better job of distinguishing the three datasets. Dataset (X1;Y 1), which has a clearly nonlinear

(parabolic-like) shape has the highest mutual information, and dataset (X3;Y 3) has the lowest information.

The low value of MI(X3;Y 3) indicates that knowing the value of X3 gives us little information about the

value of Y 3. We see that Anscombe’s Quartet quartet clearly illustrates why assuming a linear relationship

between X and Y could misrepresent the true relationship between X and Y .

2.1.2 Estimating Mutual Information: KNN Methods

To compute the mutual information, we use method 1 detailed in [32], which uses a k-nearest neighbors

method to estimate the entropy of the underlying marginal densities of our random variables. The algorithm

is summarized in the following paragraph. Begin with a set {zi}, i = 1, . . . , N of independent, identically

distributed bivariate observations of some jointly distributed random variable Z(X,Y ) with joint density

µ(x, y). (Note that x and y can be multidimensional.) We choose a norm to calculate the kth nearest neighbor

to each point, zi. Kraskov uses the max norm: |zi − zj | = max{|xi − xj |, |yi − yj |} where zi is the ordered

pair (xi, yi) and zj is the ordered pair (xj , yj). To compute the max norm, for each (xi, yi) we select the
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Figure 2.2: An identical linear fit for four very different datasets illustrates why the assumption of a linear
relationship between datasets can fall short. We compute the mutual information numerically (using the
method detailed later in this section) for each dataset using a sample size of N = 6 and 50 repetitions. Low
amplitude white noise (with strength O(10−4) ) was added to X3 data in keeping with the suggestion in [32].

maximum of the x-subspace and y-subspace distances from all xj and yj , j ̸= i to xi and yi. These subspace

distances are denoted ϵx(i)/2 and ϵy(i)/2. For selected k, the max norm corresponding to zi is the kth

smallest element of the previous list, which we call ϵ(i)/2. (Observe that ϵ(i), ϵx(i), and ϵy(i) are all random

variables.) Following, we count the number of points xj (j ̸= i) where |xi − xj | < ϵ(i)/2; call this nx(i).

Similarly for y. Repeat this process for all {zi} resulting in two values, nx(i) and ny(i) for each zi. Finally,

we compute

I(1) = ψ(0)(k)− ⟨ψ(0)(nx + 1) + ψ(0)(ny + 1)⟩+ ψ(0)(N) (2.4)

where ⟨ψ(0)(nx + 1) + ψ(0)(ny + 1)⟩ = 1
N

∑N
i=0

[
ψ(0)(nx(i) + 1) + ψ(0)(ny(i) + 1)

]
and the digamma

function is the first logarithmic derivative of the gamma function: ψ(0)(t) = d
dt ln(Γ(t)). (It can be

approximated as ψ(0)(t) ∼ ln(t)− 1
2t .)
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It can be seen from Eq. 2.4 that higher values of nx and ny corresponding to greater subspace density

and therefore lower subspace entropy will decrease the value of I . Conversely, lower values of nx and ny

will increase the mutual information, I . This agrees with our intuition that “rare” outcomes which will be

associated to regions in the joint density domain with lower probability mass will contain greater information,

or they are more surprising.

Figure 2.3: Ten draws from a bivariate normal distribution with zero mean and unit variance. For the selected
data point (xi, yi) (red star), the nearest neighbor is indicated by a green triangle. A corresponding box
centered at (xi, yi) of side length ϵi is shown in blue. In the x-dimension, four neighbors are found (purple)
including the nearest neighbor (green). In the y-dimension, three neighbors are found (cyan) including the
nearest neighbor (green).

In Fig. 2.3, we show a random sample of N = 10 points from a bivariate Gaussian with mean zero

and unit variance. For the selected point (red star), we find the first nearest neighbor (green triangle),

corresponding to k = 1. The blue lines mark a box centered at the selected point of side length ϵ(i) where

the distance between the selected point and its nearest neighbor is ϵ(i)/2. In the x-dimension, there are

three points whose x-coordinate distances are strictly less than ϵ(i)/2, therefore nx(i) = 3. (Note that we

exclude the nearest neighbor since ϵx(i)/2 = ϵ(i) = 2 in this case. i.e., the x-coordinate distance between

points determined the box width.) In the y-dimension, there are three points whose y-coordinate distances are

strictly less than ϵ(i)/2, therefore ny(i) = 3.
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2.1.3 Mutual Information Examples

In Fig. 2.4 we show how the mutual information of a bivariate Gaussian with correlation coefficient ρ

changes as a function of sample size. The true mutual information between two Gaussian random variables

is known to be MI(X;Y ) = −1
2 log (1− ρ2) [32], which increases as ρ increases. (This corresponds to

our intuition that two Gaussians with high linear correlation coefficient ρ will also have high nonlinear

correlations and therefore high mutual information.) As the sample size increases we see that the mutual

information rapidly converges to the true value and the standard errors decrease, consistent with the same

finding presented in [32]. We note that when ρ = 0, the Gaussians are totally uncorrelated (formally

independent) and the true mutual information is exactly zero; we can use the standard errors of the curve

corresponding to ρ = 0 as an estimate of the amount of noise expected when using this estimator.

Figure 2.4: (a) Bivariate Gaussian samples with zero mean and unit variance (N = 200). (b) As we change
the correlation coefficient, ρ, in a bivariate normal distribution, the mutual information increases, as expected.
Each data point shows the average and standard errors of 30 repetitions. Dashed lines indicate the true mutual
information value of a bivariate Gaussian with correlation ρ: MI(X;Y ) = −1

2 log (1− ρ2) [32].
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2.1.4 Some Properties of Mutual Information

One of the most important properties of mutual information is that it is symmetric, thereforeMI(X;Y ) =

MI(Y ;X). Due to this symmetry, other information theoretic measures, such as transfer entropy [60] and

causation entropy [68] are sometimes preferred since they can estimate directional information flow between

agents under the correct conditions. However, such directional metrics require conditioning on the past

history of an agent, which can be difficult to do with experimental data. In our adaptations for time series

data (Section 2.3), we propose that the inclusion of a time delay into the mutual information calculation can

provide a statistically sound and computationally efficient workaround to this issue.

Another interesting property of the mutual information between two distributions X and Y is that

MI(X;Y ) =MI(X ′;Y ′) for X ′ = F (X) and Y ′ = G(Y ) where both F and G are smooth and invertible

maps [32]. (Note that entropy is not invariant to transformations [32]). We illustrate this fact in Fig. 2.5 where

we compute the mutual information between a multivariate Gaussian random variable and the transformation

F (·) = eµ+σ(·), making X ′ = eµ+σX , which is lognormally distributed. (Similarly for Y ).

Figure 2.5: For a bivariate Gaussian random variable with correlation coefficient ρ, the exact mutual infor-
mation can be computed as MI = −1

2 log (1− ρ2). We compare the mutual information of a multivariate
normally distributed random variable with a lognormally distributed random variable with randomly selected
means and changing variance. Consistent with Kraskov, we find that the mutual information does not change.
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2.2 Time Delayed Mutual Information of an Ensemble of Independent Agents Evolving in Time

To develop the tools for using mutual information to analyze time series data, we will first show how the

mutual information can be used to analyze a time evolving ensemble. Here, we show how to estimate the

nonlinear correlations between the state of an evolving system of N agents at time t and at future time t+ T .

First, consider an ensemble of N identical independent agents whose positions (or any other measurable

quantity) evolve according to an Ornstein-Uhlenbeck process. Then, the position of agent n follows the

stochastic differential equation:

dXn(t) = κ(θ −Xn(t))dt+ σdWn(t) (2.5)

where κ is the mean reversion coefficient to the asymptotic mean, θ. The parameter σ controls the strength of

the additive white noise which is modeled as increments of a Wiener process (W (t)). The Ornstein-Uhlenbeck

process is also known as a mean-reverting Gaussian walk; the particle experiences a tendency to walk back

towards the asymptotic mean θ and this tendency increases as the distance from θ increases. In this way,

the walker experiences an effective attracting force toward θ. While this is not exactly a confined system

since the walker could stray very far from θ (although with low probability), this mean reversion property has

important implications for the ensemble mutual information.

In our ensemble, the N trajectories are labeled {{X1(t)}, {X2(t)}, . . . , {XN (t)}}, where {Xn(t)}

represents a finite time series describing the temporal evolution of the position of agent n from time

t = t0 to time tF . We show sample trajectories of 5 Ornstein-Uhlenbeck walkers in Fig. 2.6. Since

each agent is identical and independent from all other agents, it is true that the selection of all agents’

positions at any particular time ti ∈ {t0, · · · , tF }, given by X(ti) = {X1(ti), X2(ti), . . . , XN (ti)}, is

a collection of N independent samples from the true distribution of positions of the ensemble at time

ti. Similarly, at any particular point after time ti, such as time ti + T , with T > 0, the set X(ti + T ) =

{X1(ti+T ), X2(ti+T ), . . . , XN (ti+T )} is also a collection ofN independent samples from the distribution

of positions of the ensemble at time ti + T . We illustrate this in Fig. 2.7 for t = 35s (magenta) and T = 4s

(green).

Since we have two independent samples, we can compute the mutual information MI(X(ti);X(ti+T ))

which measures the strength of all nonlinear correlations between the positions of the ensemble at time ti and
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Figure 2.6: Sample trajectories of Ornstein-Uhlenbeck walkers.

Figure 2.7: Time delayed samples of 5 Ornstein-Uhlenbeck walkers from the ensemble in Fig. 2.6.

time ti + T . Since we can compute the mutual information MI(X(ti);X(ti + T )) for any ti, and in fact all

ti ∈ {t0, · · · , tF } (with ti + T ≤ tF ), we can compute the evolution of the mutual information from time t0

to tF for any time delay T . We show the time evolving mutual information of N = 100 Ornstein-Uhlenbeck

walkers for varying time delays T in Fig. 2.8. At small times t, we see that the mutual information is initially
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small. This is consistent with our trajectory data (sample shown in Fig. 2.6), where all of the walkers start

from the same initial position. Therefore, knowing the position of all walkers at time t0 only reduces the

uncertainty of knowing the positions at time t0 + T by a small amount, meaning that the shared mutual

information is small. At longer times t, the distribution of positions approaches a steady state and the mutual

information correspondingly fluctuates around a constant value for fixed T . In the case that the ensemble’s

positions are smoothly evolving in time, we expect then that the distributions of positions at time ti and time

ti + T are similar (for small enough T ) and therefore that MI(X(ti);X(ti + T )) decreases as T increases.

We see this is confirmed in Fig. 2.8; at larger values of T the mutual information decreases.

Figure 2.8: Time evolving ensemble mutual information of 100 Ornstein Uhlenbeck walkers.

2.3 Adaptations for a Single-Path Estimator

Suppose now that we want to estimate the time delayed mutual information on a smaller scale, between

a pair of agents, MI(Xn(t);Xm(t + T )), or the time delayed self mutual information of a single agent,

given by MI(Xn(t);Xn(t+ T ). We will introduce our adaptation using the case of the time delayed mutual

information of a single agent, which is the amount of nonlinear correlation between the position of agent Xn

at time ti and future time ti + T . Consider that both Xn(ti) and Xn(tj) are realizations of the continuous

stochastic process Xn, and therefore we expect that Xn(ti) and Xn(tj) will be correlated to some extent,

especially if ti and tj are very close in time. (The same is true of Xn(ti + T ) and Xn(tj + T ) ). We are

challenged to ensure that consecutive samples (Xn(ti), Xn(ti + T )) and (Xn(ti+1), Xn(ti+1 + T )) are

independent samples of the stochastic process Xn with respect to the time separation between pairs, which
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is ti+1 − ti.

To address this issue, consider a Gaussian walker on a line with position at time t distributed as

P (Xt) ∼ N (0, tσ2) = 1
σ
√
2πt
e
− 1

2

(
t

σ
√
t

)2

and which starts at X0 = 0. We will compute the exact mutual

information (nonlinear correlations) between the positions of the Gaussian walker at time ti and time tj

with j ≥ i to illustrate how the mutual information between two realizations of one stochastic process is

affected by the time separation between these realizations. Recall that the mutual information between

two variables X and Y is given by MI(X;Y ) =
∫ ∫

PX,Y (x, y) · log
(

PX,Y (x,y)
PX(x)PY (y)

)
dxdy. We know the

marginal densities P (Xti) ∼ N (0, tiσ
2) and P (Xtj ) ∼ N (0, tjσ

2) are both Gaussian, and it is known that

the mutual information between two Gaussians is MI(X,Y ) = −1
2 log (1− ρ2) where ρ = Cov(X,Y )

σXσY
[32].

Therefore, we can find the exact mutual information between Xti and Xtj if Cov(Xti , Xtj ) is known. In

discrete time, we can compute the Gaussian walker’s path using the rule Xt = Xt−1 + ϵt where {ϵtk} are a

series of independent identically distributed random variables:ϵt ∼ N (0, σ2). Since Xt−1 = Xt−2 + ϵt−1,

we find that Xt = Xt−2 + ϵt + ϵt−1. The recursive relation can be applied t − 1 times to rewrite Xt as

Xt = X0+ ϵt+ ϵt−1+ . . . ϵ2+ ϵ1. Thus, we can write our realizations asXti = X0+ ϵti + ϵti−1+ . . . ϵ2+ ϵ1

and Xtj = X0 + ϵtj + ϵtj−1 + . . .+ ϵti + . . . ϵ2 + ϵ1. From here, we compute

Cov(Xti , Xtj ) = Cov(X0 + ϵti + ϵti−1 + . . . ϵ2 + ϵ1, X0 + ϵtj + ϵtj−1 + . . .+ ϵti + . . . ϵ2 + ϵ1).

Since X0 = 0,

Cov(Xti , Xtj ) = Cov(ϵti + ϵti−1 + . . . ϵ2 + ϵ1, ϵtj + ϵtj−1 + . . .+ ϵti + . . . ϵ2 + ϵ1).

The covariance is distributive: Cov(U + V,W ) = Cov(U +W ) + Cov(U + V ), which we can apply:

Cov(Xti , Xtj ) =

ti∑
k=0

tj∑
ℓ=0

Cov(ϵtk , ϵtℓ).

Because {ϵtk} are i.i.d., we know that Cov(ϵk, ϵℓ) = 0 for k ̸= ℓ, which reduces our covariance calculation

to:

Cov(Xti , Xtj ) =

ti∑
k=0

Cov(ϵk, ϵk) =

ti∑
k=0

V ar(ϵk) =

ti∑
k=0

σ2 = tiσ
2.
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Thus, ρ = tiσ
2

σ
√
tiσ

√
tj

=
√

ti
tj

, and the resulting mutual information is given by:

MI(Xti , Xtj ) = −1

2
log
(
1− ti

tj

)
, j ≥ i.

As expected, the mutual information is infinite in the case where ti = tj , and decreases to zero in the limit as

tj → ∞ for fixed ti. This relationship is shown in Fig. 2.9.

Figure 2.9: For a Gaussian walker, the position at ti is correlated to the position at later time tj . The mutual
information MI(X(ti);X(tj)) decreases as the separation between ti and tj decreases. This decay takes
longer for larger ti since information is being added to the system at each step.

We find that even for a memoryless Gaussian walker, there is non zero mutual information and therefore

nonzero nonlinear correlations between Xti and Xtj . However, for tj sufficiently larger than ti, these

correlations decay exponentially to zero. We introduce a parameter W which we will enforce as the average

window of separation between consecutive sampled times ti and ti+1. Below, we sketch the algorithm for

this sampling procedure, in which the set of time separations {ti+1 − ti} = {Wi} is a random variable.

Realizations of this random variable, {Wi}, are iid with mean W , the true window size. We illustrate this

fact in Fig. 2.11.

We illustrate this sampling scheme in Fig. 2.12, where we take the path data of a single path Xn from the

ensemble (shown in Fig. 2.7). This path is then sampled at discrete times {ti} with average separation W and
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Figure 2.10: Using test data of length 100,000 we compute the average separation between samples W with
standard errors. (Each data point is the average of 10 repetitions, with standard errors that are smaller than
the marker size.) The true window W is shown in orange. In the second panel, we illustrate the sample
size N as a function of W . Although more samples usually yield more accurate estimates, the KNN mutual
information estimator has been shown to work well for small sample sizes. In [32], the smallest samplest
sizes considered are O(102). Despite lower sample sizes in our case, we find our results to be consistent,
although with higher standard errors.)

Figure 2.11: As W increases, the variance of the distribution of {Wi} increases, although the mean value
(true value W ) remains the same.

again at delayed times {ti + T} to generate the random sample: {(Xn(t0), Xn(t0 + T )), Xn(t1), Xn(t1 +

T )), . . . , Xn(tf ), Xn(tf + T )), }.

Proper choice of W will ensure that we sample on a timescale that removes (or suppresses) these

dynamical correlations. If W is too small, then the reported MI will include the effect of these dynamical

correlations and the reported mutual information might be artificially inflated. Since we expect that past and

future correlations decay as the time between them increases, overly large W will merely reflect that samples

that are very far apart in time do not influence one another. Thus, we want W to be large enough to overlook

dynamical correlations, but small enough to capture a signal. To justify the choice of W , we might naturally
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choose W to be the timescale on which the (linear) autocorrelation of Xn decays to zero. We will assess how

we might find sufficiently large W in a later section. We note here that T need not be constrained by W , as

demonstrated in the Fig. 2.12.

Figure 2.12: Using a single Ornstein-Uhlenbeck trajectory Xn(t) from t = 0 to t = 27, we select magenta
initial samples with times {ti}, which must be separated by windows Wi satisfying ⟨Wi⟩ ∼ W . The time
delay T = 1.5 is then used to select the time-delayed curvatures (green samples).

For the methods described above, we have focused on the time delayed self mutual information of a single

agent, Xn. The self mutual information framework will be used to investigate single path statistics of the

self-avoidant swimming droplets. To study the pairs of golden shiners, we can apply these same methods to

the time delayed mutual information between two agents, Xn and Xm, which is MI(Xn(t);Xm(t+ T )).

(In our case, we will only have two agents, so we can write this as MI(X(t), Y (t + T )). We can switch

which agent we sample on a time delay allowing us to study the differences between MI(Xn(t);Xm(t+T ))

and MI(Xn(t+ T );Xm(t)). Differences between these two values will allow us to use mutual information

to suggest directional information flow without conditioning on the past history of any variable, as is required

to compute transfer entropy or causation entropy.

2.3.1 Limitations and Advantages

Throughout our discussion of estimating the time delayed self mutual information (MI(Xn(t);Xn(t+

T ))) and time delayed mutual information between agents (MI(Xn(t);Xm(t + T ))), a fundamental as-

sumption is that the stochastic process described by Xn is sampling from a stationary distribution. In the

case of the Gaussian walker (whose position is not taken from a stationary distribution), more information is
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added to the system with each time step since each new position is formally dependent on all past positions.

This is reflected in Fig. 2.9, where the mutual information curves increase with increasing t. Therefore,

for sufficiently large t any fixed window size W would eventually become too small for the dynamical

correlations to decay. Thus we find that although the Gaussian walker nicely illustrates the effect of separating

consecutive samples by average window size W , our methodology would not work well for estimating the

time delayed self mutual information of the entire Gaussian walker path.

In the case of our unconfined swimming droplets, the positions will not sample the configuration space

well at long times. To work around this, in a later section we will introduce a new random variable that will

sample a bounded configuration space well at long times. In the case of the golden shiner pairs, both the

confined experimental domain (an annular tank) and the long experimental trajectories will contribute to the

data sampling the positional configuration space (all positions within the tank) well at long times.

A key advantage of the data we use in this work is its length. Our model generated swimming droplet

trajectories are substantially longer than tracked trajectories of experimental swimming droplets, and the

experimentally collected golden shiner path data is substantially longer than animal path data collected in the

wild. Additionally, unlike data collected in the wild, we allow our experimental golden shiners to equilibriate

in their environment before collecting data. Our method of using time series data to calculate time delayed

mutual information is also underexamined in the literature. As mentioned previously, transfer entropy and

causation entropy have been used to infer leader-follower dynamics from path data of animal pairs, but such

methods have significant drawbacks both computationally and in terms of the certainty [10], [58], [47], [45].
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CHAPTER 3

Exploration of a Model for Swimming Droplets

3.1 Introduction

A hallmark feature of microscale active systems is a ballistic movement, or “swimming” that when

interrupted by random and frequent directional changes gives rise to enhanced diffusion [11, 49, 53, 31]. The

biological advantage of enhanced diffusion is greater exploration of an area in a shorter period of time when

compared to passive diffusion. Consequently, biological effective diffusion and other single-particle emergent

behaviors such as micro-scale transport, bacterial motion, and cell migration patterns and their biomimetic

applications are research areas of great interest [80].

In parallel, complete understanding of these phenomena via mathematical modeling provides design

inspiration and permits cost-effective testing of novel systems; the most common model for active particles

is the active Brownian particle (ABP) model. ABP combines directed motion resulting from a velocity

dependent on the amount of available energy or “fuel” with a rotational diffusion dependent on a defined

persistence timescale, resulting in enhanced diffusion at time scales longer than the correlation time of the

rotational diffusion [31]. This model of competing ballistic and diffusive motion accurately predicts the

enhanced diffusion of many experimental systems, such as those found in Refs. [36, 72, 34, 11, 64, 18, 31].

We are interested in the additional effect of spatio-temporal memory observed in slowly-dissolving

autophoretic droplets [44, 35, 33, 30], in addition to the persistence memory seen in ABP. As these au-

tophoretic droplets interact with the surfactant suspension, the particular physics induces a self-avoidant

memory response. Above a critical surfactant concentration, the leaking oily solute from the droplets is

taken up into empty micelles. This creates local heterogeneities in the surfactant concentration, which induce

Marangoni stresses that cause the droplets to spontaneously swim in the direction of highest surfactant

concentration. This process continues as the droplets move, leaving behind a diffusing wake of solute-filled

micelles and thereby a trail of depleted surfactant concentration. It is precisely the fact that the diffusion of the

micelles and surfactant is slow relative to the velocity of the droplets that causes self-avoidant motion as the
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droplets encounter gradients of solute concentration at the droplets’ past locations that have not yet diffused

away. These past-history gradients induce Marangoni stresses that cause the droplets to move towards higher

surfactant concentrations and therefore away from their past locations.

Despite being too large for the effects of thermal noise to be visible, the ballistic motion of the autophoretic

experimental droplets is still punctuated by randomized directional changes, producing random-walk-like

behavior. Such changes in direction reflect a transition between a dipolar (swimming) and a quadrupolar

(stopped) hydrodynamic mode and the average frequency of these re-orientation events increases with Péclet

number, droplet size, and the viscosity of the surrounding suspension [30]. While this run-and-tumble-

like behavior produces an enhanced diffusion that is consistent with the ABP model for the experimental

parameters considered in [33], we seek an understanding of the additional self-avoidant memory effect at

play, particularly on the enhanced diffusion.

Motivated by the experimental system, we employ a model with a tunable memory response (which

we distinguish from directional persistence) that qualitatively captures the essential features of the droplets

and ignores the details of Marangoni stresses and hydrodynamic effects. In this model, the particle is a

mobile source of diffusing surfactant that descends its self-produced concentration gradient, resulting in

a sustained “swimming” state and self-avoidant memory tied to the diffusion timescale. To reproduce the

coarse-grained effect of the random reorientations after each switch from the quadrupolar hydrodynamic

mode of the experimental particles, we introduce thermal-like noise into the droplet’s equation of motion.

This results in enhanced diffusion that intuitively one might expect the encoded self-avoidant memory to

amplify as the particle evades its own past locations. However, we find the opposite: a suppression of

enhanced diffusion over that predicted by an ABP with the same velocity and orientational persistence. We

find evidence of transient self-caging as a possible explanation for this behavior.

In this chapter, we begin in Sec. 3.2 by presenting the mathematical details of this model for self-avoidant

swimming droplets. We investigate the memory effects of these model swimmers at long time scales by

comparing the mean square displacement (MSD) to that of ABPs with the same velocity and orientational

persistence in Sec. 3.3. To make these comparisons, we analytically derived an expression for the velocity in

our model and numerically compute its orientational persistence timescale. We find that the equivalent ABP

overestimates the enhanced diffusion of the model self-avoidant droplets, which we attribute to an unexpected

side-effect of self-avoidant memory: transient self-caging. In Sec. 3.4 we further investigate the parameter

space of the model, finding that with fixed noise strength, there is a limited regime of self-avoidant-memory
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strength within which enhanced diffusion is observable; the zero-memory limit of our model is not ABP. We

conclude the paper in Sec. 3.5.

3.2 A Model for Self-avoidant Memory

Motivated by the experimental system described previously, we propose a coupled model of a diffusion

partial differential equation (PDE) for the surfactant concentration c(x, t) and a stochastic differential equation

(SDE) for the particle’s location X(t). These equations are

∂tc(x, t) = D∆c(x, t) + αDR2δR(x−X(t)), (3.1a)

for x ∈ Ω ⊆ R2, t ≥ 0, and

dX(t) = −βR
(∫

Ω
δR(x−X(t))∇xc(x, t)dx

)
dt

+
√
σdW(t),

(3.1b)

with prescribed initial conditions (c(x, 0) = 0 and X(t) = 0 unless otherwise noted) and boundary conditions

(reflecting boundary conditions on ∂Ω unless otherwise noted).

Equation (3.1a) is a diffusion equation with diffusivity D and a source term at the particle’s current

location. The time evolution of the concentration field holds the temporally-decaying memory of the particle’s

spatial history. We note that the inclusion of diffusion on the source term differs from similar models for

chemoattractive forces [62, 25, 38]. Motivation for this decision and the resulting effects are discussed later

in this section.

In the source term with rate αD, we introduce a “size” R to the particle using the radially-symmetric

mollified delta function, δR(x−X(t)) = 1
2πR2 e

− |x−X(t)|2

2R2 . (For the treatment of the particle as a point source

with the Dirac delta function, see App. B.2; interestingly the particle does not swim.) As the droplet releases

oily solute from its membrane located at |x − X(t)| = R, this Gaussian emission pattern with standard

deviationR approximates the physical boundary of the particle while being more numerically and analytically

tractable and does not require imposing a moving boundary condition on the concentration field to exclude

the particle’s interior. Since the particle’s boundary does not physically exist in this model, Eq. (3.1a) also
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ignores the subtle effects the induced advection along the particle’s surface has on the concentration gradient,

as detailed in Ref. [44]. We also keep R fixed in time, thus we ignore depletion effects.

Equation (3.1b) is a modified Langevin equation for a Brownian particle in a force field in the strong

friction limit. We again mimic the size of the particle by convolving the gradient of the concentration field

with the mollified delta function. We define the particle’s response strength to the concentration gradient to

be βR.

As is conventional for an overdamped Langevin equation, W is a two-dimensional Weiner process scaled

by the noise strength
√
σ. Recall, the experimental particles are athermal; this noise is to reproduce the

stochasticity introduced by local fluctuations in the surfactant gradient that lead to re-orientations of the

experimental droplet’s swimming direction after each switch from a quadrupolar to bipolar mode. As the

frequency of these re-orientation events depends on Péclet number, droplet size, and the viscosity of the

surrounding suspension [30], the parameter σ would likely be linked to other model parameters like diffusion

D, droplet “size” R, and response to the concentration gradient β. As we wish to keep noise effects constant

to isolate the effects of self-avoidant memory in the present study, we ignore these possible dependencies in

this study.

The stated model in Eq. (3.1) articulates the explicit relationship between the evolving concentration field

and the particle trajectories. As the particle moves, its emissions induce changes in the local concentration

field and it leaves behind diffusing physical evidence of its trajectory. Thus, the historical information or

memory of the particle’s past locations is contained within the current state of the evolving concentration

field. The memory encoded in the concentration field allows each particle to “remember” where it has been

(hotspots in the concentration field) and avoid its past trajectory with response strength decreasing as the time

lag increases. Via integration of the whole gradient field at each time point, the particle becomes spatially

omniscient as it moves with dependence on the affecting forces from every spatial point on the domain.

In time, the particles are pseudo-omniscient as their ability to “see” into the past through interaction with

the concentration gradient diminishes exponentially in time. This unique behavior abolishes time-reversal

symmetry although the coupled configuration in Eq.(3.1) is Markovian since there is no explicit dependence

on the trajectory’s past steps.

To limit the number of parameters under investigation, we nondimensionalize Eq. (3.1). We choose R as

a natural length scale and non-dimensionalize c without any scaling for simplicity. Temporarily, we leave
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time scale T arbitrary. Under the scalings y = x
R , Y = X

R , τ = t
T , and B = W√

T
, we arrive at

∂tc(y, t) = µ∆c(y, t) + µϕ exp

[
−|y −Y(t)|2

2

]
, (3.2a)

for y ∈ Ω, t ≥ 0, and

dY(t) = −ν
(∫

Ω
exp

[
−|y −Y(t)|2

2

]
∇yc(y, t)dy

)
dt+

√
ϵdB(t) (3.2b)

where c, t and Ω are re-used for their non-dimensional versions for convenience. We have mapped the

dimensional parameters as follows: D → µ = DT
R2 , α→ ϕ = αR2

2π , β → ν = βT
2πR , and σ → ϵ = σT

R2 .

We note that a typical time scale for the diffusion equation is T = L2

D . Although traditional, this choice

would prevent us from seeing directly the effects of changing D, which encodes the memory timescale.

Increasing diffusivity would contract time such that the past-history wake of the particle would adjust to

decay at the same rate. Thus, to observe the effects of this memory-encoding diffusivity, we choose to fix

the stochastic diffusivity ϵ = 0.752, thereby choosing T = 0.752R
2

σ . Keeping the value of
√
ϵ fixed at 3

4

was a convenient choice made to maintain balance between the stochastic effects, controlled by
√
ϵ, and the

deterministic effects of swimming as well as self-avoidant memory, controlled by ν and µ.

We can simplify the system by taking the Fourier transform and solving the PDE (3.2a) on an infinite

domain, Ω = R2, explicitly. Incorporating this solution into the SDE (3.2b) we arrive at the mathematically

equivalent system for the particle in an infinite domain

dY =
π

2
µνϕ

∫ t

0
exp

[
−|Y(t)−Y(s)|2
4(1 + µ(t− s))

]
· (1 + µ(t− s))−2(Y(t)−Y(s))dsdt+

√
ϵdB;

(3.3)

see App. B.1 for details. This non-Markovian SDE explicitly reveals the dependence on all the particle’s

previous locations via integration in time; the exponential kernel decays in both time and space, revealing

µ−1 to be the self-avoidant memory timescale. In this way the model contains a self-avoidant memory, one

of the key features of the experimental droplets, with controllable timescale µ−1. In addition to producing

a self-sustained swimming state, the form of this force also allows the droplets to hover above a bottom

plate with the addition of gravity to the model (see App. B.3 for details) in much the same way that the

experimental droplets do [44].
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The formulation of the model in Eq. (3.3) is convenient for simulation since it does not require solving

the PDE on a large domain to capture long-time dynamics. It additionally removes the integral in the SDE

over R2 and replaced it with an integral over t. We integrate Eq. (3.3) in time with the Euler-Maruyama

method while using Simpson’s rule to integrate the memory kernel at each step. This algorithm is a first order

method.

The limiting behavior of these two equivalent systems, Eq. (3.2) and (3.3), foreshadows their distinction

from the active Brownian model since it reveals that removing the distinguishing feature of memory by taking

D → ∞ will not reduce our model to ABP. The parameter D was added to the source term in Eq. (3.1a) to

achieve balance between the rate at which the oil diffuses and the rate at which the oil is expelled in this

limit. (If instead the source term remained constant relative to D, then it would effectively vanish in the

limit of D → ∞.) The nondimensional parameter µ therefore appears on the source term in Eq. (3.2a), and

∂tc(y, t) → ∞ as µ→ ∞. To leading order, the concentration field satisfies the Poisson equation

∆c(y) = −ϕ exp
[
−|y −Y(t)|2

2

]
µ→ ∞. (3.4)

The concentration field is now memory-less since it instantaneously equilibrates as the particle moves.

On an infinite domain, the solution to Eq. (3.4) will be radially symmetric around the particle’s location, and

therefore the integral in Eq. (3.2b) will always be zero. As a result, particles experience motility solely from

thermal fluctuations, namely simple Brownian motion.

Also noteworthy is the “full memory” limit of Eq. (3.2a) which is ∂tc→ 0 as µ→ 0. The concentration

field remains fixed at its initial conditions as the source term and the diffusion term vanish in this limit.

The particle experiences thermal fluctuations while responding to the concentration gradient of the fixed

concentration landscape, thereby statistically preferring concentration minima. The steady state (if one exists)

would be almost solely determined by the initial topography of c(y) and the relative size of ϵ. In fact, the

entire coupled system in Eq. (3.2) reduces to simple memoryless Brownian motion

dY =
√
ϵdB µ→ 0 (3.5)

in this limit, as the source term which encodes the memory vanishes. This is consistent with Eq. (3.3)

which also reduces to simple Brownian motion in the same limit µ→ 0 when it is assumed that the initial
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concentration field is constant. Therefore we focus our study on intermediate range of µ where the effects

of the noise, the swimming, and the memory are all observable. The limiting behaviors of our model as

described above can all be traced back to the addition of a second µ on the source term. As stated previously,

inclusion of a diffusive scaling on the source term was required to ensure that the source term remained in the

limit as D → ∞, in the hope that the model would revert to active Brownian motion with no self-avoidant

memory. In our results, we discuss the role of this diffusive scaling in generating previously unseen behaviors

in this class of models.

3.3 Comparative Analysis

Numerically simulated trajectories of the coupled model given by Eq. (3.2) are shown in Fig. 3.1. These

trajectories illustrate the main features of active matter: a swimming velocity with a slowly diffusing direction.

Increasing ν, and therefore the response to the concentration gradient causes the particle to swim faster,

shown in Fig. 3.1a, while increasing µ, and therefore shortening the timescale of the diffusion (decreasing the

memory), has a secondary effect on the velocity, but also causes the particles to turn faster, shown in Fig. 3.1b.

An increase in turning frequency was also observed experimentally in [33] as surfactant concentration was

increased, prompting a transition from ballistic motion to diffusion. (See Figure 2 in [33]. Recall the

Marangoni effect which causes the droplets to “search” for areas of higher surfactant concentrations, while

the droplets simultaneously modify the local concentration. )

We seek to look beyond the combined effects of swimming and random directional changes in producing

enhanced diffusion and understand the additional effects of self-avoidant memory. Specifically, we compare

our model to ABP given by the equations

dX = V cos(θ(t))dt+
√
ϵdWx (3.6a)

dY = V sin(θ(t))dt+
√
ϵdWy (3.6b)

dθ =
1√
τ
dWθ (3.6c)

where
√
ϵ is the strength of the additive noise in each spatial component (consistent with the model in Eq.

(3.3)), V is the swimming velocity, and τ is the persistence timescale of the rotational diffusion [33, 31, 42].
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These latter two parameters do not explicitly appear in our model; we will compute them and compare the

MSD of the two models to understand the effects of self-avoidant memory on enhanced diffusion.

In Sec. 3.3.1 we present an analytic equation that is numerically solved for the velocity of the swimming

solution to Eq. (3.3). This velocity is consistent with the intermediate ballistic regime of the MSD, computed

numerically for Eq. (3.3) and given by

E[X(t)2] = 4V 2τ2
[
2
(
e−

t
2τ − 1

)
+
t

τ

]
+ 2ϵt (3.7)

for Eq. (3.6). In Sec. 3.3.2 we determine τ by numerically computing the orientation correlation function

but find that the memory induced from modifying the environment causes a reduced effective diffusion as

compared to ABP with identical angular persistence.

3.3.1 Intermediate Time Scales: Ballistic Motion

Unlike active Brownian models, the proposed model has a non-explicit intrinsic velocity; directed motion

at this velocity may become observable at intermediate time scales under appropriate conditions for ν and µ.

To find an analytic form for the velocity, we seek a deterministic constant velocity (“steady state”) solution to

the combined model Eq. (3.3). Without loss of generality, suppose Y(t) = ⟨V t, 0⟩; thus V must solve

dY

dt
= V =

π

2
µνϕ

∫ t

−∞
exp

[
− |V t− V s|2
4(1 + µ(t− s))

]
· (1 + µ(t− s))−2(V t− V s)ds. (3.8)

Under the transformation z = µ(t− s), the constant velocity V therefore satisfies

1 =
π

2

ν

µ
ϕ

∫ ∞

0

z

(1 + z)2
exp

[
−
(
V

µ

)2 z2

4(1 + z)

]
dz. (3.9)

For each value of ν
µ , we solve for the value of V

µ that makes the above integral equal to 1 numerically in

Python with scipy. Under the change of variables x = 2
π arctan(z), we map the domain (0,∞) to (0, 1)

for ease of numerical integration. The resulting monotonically increasing dependence of Vµ on ν
µ is plotted as

the solid black line in Fig. 3.2b. Alternately, we can select µ and V and compute ν to satisfy Eq. (3.9).

We can directly compare this theory to ABP on the timescale at which ballistic motion is dominant. It is

evident from Fig. 3.2a that the ballistic portion of the simulated MSD aligns with the computed velocity from
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Figure 3.1: Numerical simulations of Eq. (3.2) were carried out using a forward-time centered-space finite
difference scheme for the PDE and the Euler-Maruyama method for integrating the SDE where the trapezoid
rule was used to compute the integral therein. (Caption continued on next page.)
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Figure 3.1: We confine X(t) to a box B = {x ∈ (−5, 5), y ∈ (−5, 5)} with insulating boundary conditions
such that ∂c(x,t)

∂t = 0 ∀x ∈ {∂B}. This has the effect of reflecting the particle back into the domain
when it reaches the boundary. The initial condition is c(x, 0) = 0. Note that these trajectories are visually
indistinguishable from active Brownian motion. (a) For ϕ = 1, µ = 5 and a noise level of

√
ϵ = 0.75, we

see the dominant effect of ν which is to increase the velocity. (b) For ϕ = 1, ν = 7, and a noise level of√
ϵ = 0.75, we see the effects of µ which primarily increases the turning frequency and has a secondary

effect on velocity.

Eq. (3.9). At such small times, the MSD of ABP asymptotically reduces to

E[X(t)2] ∼ V 2t2 + 2ϵt (3.10)

as t→ 0 (see App. B.4 for details.) Fitting V from the ballistic portion of the MSD of our particles is also in

good agreement with the theory, as shown in Fig. 3.2b.

We point out that the existence of an observable ballistic regime in the MSDs from our model requires a

sufficient swimming velocity V to dominate the additive noise. In the ABP model, this can be guaranteed

by changing the stated parameter V , whereas in our model, there must be consideration for the parameters

µ and ν due to the explicit functional relationship V = f(µ, ν) given by Eq. (3.9). To see this functional

relationship more clearly, the contours of constant velocity are plotted in Fig. 3.3a and the contours of constant

ν are plotted in Fig. 3.3c. These figures agree with the limits from Sec. 3.2 in that V = f(µ, ν) → 0 when

taking either µ→ 0 or µ→ ∞ with fixed ν, and the model system Eq. (3.2) or Eq. (3.3) reduces the particle

motion to simple Brownian motion. Furthermore, taking V → 0 in Eq. (3.8) results in a divergent integral;

for the integral to converge, either µ or ν in the prefactor must also go to zero. The result is no transition

to swimming at a small finite value of these parameters. Similarly, the integral also diverges as µ → ∞.

Figure 3.3c most clearly shows the relevant intermediate values of µ for which a significant velocity exists

and ABP-like motion with a ballistic regime is expected for the model system.

Figure 3.3a most clearly shows that for any given velocity, there exists a minimal (µ, ν) pair. If we

interpret this in the context of the coupled model given by Eq. (3.2), it suggests the existence of an optimal

response strength and diffusivity pairing which act on the particle to produce directed motion at a specific

speed. Moving off of this minimum illustrates the parameter couplings which must balance to keep the

particle moving at a given speed. For example, decreasing memory (increasing µ) allows the particle’s trail to

diffuse faster which weakens local gradients, and thus requires that the response strength to the weakened

gradient be increased (increasing ν).
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Figure 3.2: (a) Empirically computed MSDs of the model in comparison to benchmark pure ballistic motion.
Three distinct regions of the MSD are visible: classical diffusion, directed motion in alignment with the
benchmark ballistic lines, and enhanced diffusion where the MSD pulls away from the ballistic motion.
Dashed lines correspond to benchmark pure ballistic motion at velocities indicated in legend. Curves in
legend are ordered in their appearance in the figure, from top to bottom. (Caption continued on next page.)
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Figure 3.2: (b) Collapsed model velocity theory from solving Eq. (3.9) in comparison to fitted values extracted
from the ballistic regime of the MSD of the form V 2t2. (c) Model OCFs (noisy solid lines) with fitted τ
(solid smooth curves) with comparison to τ fitted from the enhanced diffusion regime of the MSD consistent
with ABP Eq. (3.11) (dashed smooth curves). In the legend are shown values of τ for each experiment
corresponding to parameters listed in the legend of (a). Legend is ordered as curves appear from top to bottom
in the figure. (d) Both fitted τ values from full ABP MSD (dashed) and OCF of our model (solid) as they
vary over µ. (e) Model MSD (solid) and ABP MSD Eq. 3.7 (dashed) under the same τ fitted to the model
OCF and theoretical V . Legend ordered by curves from top to bottom. (f) Signed difference between model
and ABP MSDs in panel (e). Legend ordered by curves from top to bottom.

3.3.2 Long Time Scales: Enhanced Diffusion

Figure 3.2a shows a departure of the MSD from ballistic motion at longer time scales. For ABP, this

departure happens at time scales t≫ τ for which the MSD (3.7) is asymptotic to

E[X(t)2] ∼ (4V 2τ + 2ϵ)t (3.11)

as t→ ∞. Particle reorientations that decorrelate with timescale τ enhance the diffusion term 2ϵt with the

term 4V 2τ .

To estimate τ from trajectories given by our model we first numerically compute the normalized

orientation correlation function (OCF) which measures the relative angle between consecutive movements. It

is given by

C(∆t) =

〈
v(t) · v(t+∆t)

|v(t)||v(t+∆t)|

〉
t

(3.12)

where v(t) = Y(t)−Y(t−∆t) is the directional displacement between times t and t−∆t (see App. B.5 for

details). This function computed for the trajectories is shown in Fig. 3.2c as the noisy solid lines. Note that

C(∆t) → 0 as ∆t→ 0 because the motion at such small timescales is dominated by the uncorrelated additive

noise. As ∆t increases ballistic motion starts to dominate which is reflected in the OCF that approaches

values near unity. The portion of C(∆t) displaying exponential decay, due to the transition to enhanced

diffusion at even longer ∆t, is fit by a single exponential given by C(∆t) = e−
∆t
2τ as is consistent with ABP

[33, 42]. These fits are shown by the smooth solid lines in Fig. 3.2c and the resulting values of τ as a function

of µ in Fig. 3.2d.

While the model OCF is well fit by an exponential decay, the long time asymptotics of the MSD given

by Eq. 3.11 in Fig. 3.2e (dashed lines) shows that ABP substantially overestimates the enhanced diffusion of
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Figure 3.3: Visualizations of the four dimensional parameter space of V from solving Eq. (3.9), τ from
fitting the model OCF, along with model parameters ν and µ. (a) and (b) depict constant velocity V contours,
while in (c) and (d) constant ν contours are shown. Panels (b) and (d) show sub-regions of panels (a) and
(c), respectively, with added individual points depicting values of τ given by the color bar. Note that large τ
values (greater than 15) are colored black.
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our model (solid lines). This overestimation is larger for the two larger values of µ that correspond to weaker

self-avoidant memory, as shown in Fig. 3.2f. Alternatively, using V from Eq. (3.9), τ is determined by fitting

the long time MSD to Eq. (3.11). These values of τ , plotted as the dashed lines in Fig. 3.2d, substantially

underestimate the decorrelation time scale of our model, also shown by the corresponding dashed lines of

exponential decay in Fig. 3.2c. Although the form of exponential decay of the orientational persistence is

consistent with ABP and quantifiable by τ , it alone is not enough to predict the enhanced diffusion of our

model. There are additional effects of self-avoidant memory beyond the persistence memory, which is the

only memory present in ABP.

At constant velocity, the effect of increasing self-avoidant memory (decreasing µ) is seen in Fig. 3.2a.

The MSDs with smaller µ in both cases depart from the ballistic regime earlier, and thus exhibit less enhanced

diffusion. This corresponds to Fig. 3.2d where for smaller µ the OCF decays more rapidly as measured

by a smaller value of τ . This is further illustrated in Fig. 3.3b, showing a decrease of τ with decreasing µ

along contours of constant velocity. For fixed µ, τ increases with decreasing ν (although velocity decreases).

Thus we see that one effect of self-avoidant memory as it is present in our model is to decrease orientational

persistence: swimmers with high memory experience weak orientational persistence and vice versa.

A more exotic effect of self-avoidant memory is shown by the trajectories in Fig. 3.4 and provides a

plausible explanation for the surprising fact that ABP overestimates the enhanced diffusion of the model. To

avoid crossing their own self history, paths turn back on themselves and continue turning inward, becoming

caged for a while before enough diffusion has occurred for them to leave this self-created trap. This transient

self-trapping perhaps explains the reduced enhanced diffusion as compared to ABP with equivalent orientation

persistence time. Self-trapping has been studied in autophoretic systems like that which we model, although

it has only been found in chemoattractant experimental systems [41, 75] and model systems [62, 25, 38] with

self-attracting memory. It will be interesting to find out whether self-avoidant experimental systems like that

in [44] show similar self-trapping.

3.4 Limiting Behavior

Since the relevant experimental systems are well described by ABP and we can explicitly tune memory in

our model, we anticipated that we could find a parameter regime (low memory, high µ) in which the enhanced

diffusion produced by our model was well described by ABP. However, as discussed at the end of Sec. 3.2, the
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Figure 3.4: With µ = 0.01 and V = 6, four sample paths are shown which illustrate the caging of enhanced
diffusion experienced due to high memory.

limiting behavior of systems (3.2) and (3.3) as µ→ ∞ is simple Brownian motion, indicating that enhanced

diffusion with low self-avoidant memory may not be possible. We revisit this limit with further simulations in

light of the emergent parameters V and τ , considering both ν → ∞ with V fixed as well as dynamic V with

ν fixed. Additionally, we investigate the high memory limit (µ → 0), and find it consistent with Eq. (3.5)

describing classical Brownian motion with (unfortunately) no further memory effects to investigate.

From Figs. 3.3a and b, we can consider the limit most likely to produce enhanced diffusion consistent

with ABP: removing the memory via the limit µ → ∞ while keeping the particle at constant velocity by

fixing V . Visually we observe that as µ→ ∞, the contours of V become flatter, reproducing the behavior

seen in Fig. 3.1 which shows that ballistic motion is sensitive to changes in the gradient response ν. Moreover,

remaining on one V contour requires ν → ∞ much slower than µ → ∞. To investigate the enhanced

diffusion in this limit, we look at τ in Fig. 3.3b. Following a V contour as µ→ ∞ results in an increase in τ

corresponding to longer orientational persistence (or less change in direction).

As a result of decreasing the self-avoidant memory timescale (µ → ∞ while maintaining a constant

velocity V ), we find that both the past history of the trajectory and the Brownian noise become less important

in influencing the future location of the trajectory. Furthermore, with the addition of an increased gradient

response by taking ν → ∞ (as required to keep the particle at constant V ), the deterministic gradient

response force in Eq. (3.2) dominates the Brownian noise, and consecutive steps become more correlated.

This increases the persistence time τ , and the trajectories approach purely ballistic motion with no enhanced

diffusion at observable finite times.
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Figs. 3.3a and b also allow for considering infinite memory (µ → 0), again with constant velocity. In

Fig. 3.3a, we see that the gradient response required (given by the size of ν) to keep the particle moving at

constant velocity V rapidly blows up to ∞. This is largely unsurprising as the prefactor on the deterministic

term in Eq. (3.3) contains the product µν; taking µ→ 0 while keeping this integral response factor relatively

constant would necessitate ν → ∞. Fig. 3.3b shows a corresponding decrease in τ , limiting towards pure

diffusion. Returning to Eq. (3.2a), as µ → 0 both the diffusion and the source term go to zero, thus the

concentration field would remain fixed in time. If this initial concentration field was constant, then the particle

would have no gradient to respond to and therefore only undergo pure Brownian motion in this infinite

memory regime, corresponding to τ = 0. This suggests that rather than trying to start at finite µ and witness

the effects of self-avoidant memory fade as µ → ∞, as this model was set up to do, future work should

perhaps remove µ from the source term in Eq. (3.2a) and start at µ = 0 to witness the effects of self-avoidant

memory fade as µ increases away from zero.

The limiting ballistic motion when taking both µ and ν to infinity is in contrast to the limiting Brownian

motion behavior of Eq. (3.3) as µ→ ∞ while keeping ν fixed. By following contours of ν in Fig. 3.3c, we

see that the velocity first increases with µ and then decreases, approaching zero velocity as µ→ ∞, which

is consistent with the trend shown in Fig. 3.1b. It is interesting to observe in Fig. 3.3d that τ appears to be

relatively static along the contours of ν. Note that these values of τ were mainly computed at points to the

left of the maximum velocity of the fixed ν contours. Figure 3.1b indicated that τ decreases with increasing

µ and fixed ν. When we also consider a decrease in velocity, the trajectories can be assumed to approach

Brownian motion.

In summary, increasing µ to decrease the effects of memory either results in increasing τ (by fixing

V ) and therefore creating straighter trajectories that do not display enhanced diffusion in the MSD over

the timescale of the simulation, or in decreasing V to zero (by fixing ν) which results in a purely diffusive

MSD. The memory is responsible for both the ballistic motion measured by velocity V and the effective

rotational diffusion measured by orientational persistence time τ , so naturally follows that these effects are

both lost with increasing µ. If the concentration field diffuses infinitely fast by taking µ→ ∞ with ν fixed,

we lose deterministic motion since the gradient of the concentration field is always zero at the particle’s

center and radially isotropic around the particle, thus the net force acting on the particle is always zero. The

effective angular diffusion is lost when taking µ→ ∞ with V fixed because this requires large ν such that

the immediate deterministic forces overwhelm the noise and any past history, and so reduce the MSD to
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almost exclusively ballistic motion. Thus, incorporation of self-avoidant memory is not simply an addendum

to the active Brownian model that can be removed without consequence; by its complex interactions with the

enhanced diffusion we see that it makes for a categorically unique model.

3.5 Conclusions

We have analyzed the self-avoidant memory effects of a model coupling an active swimmer and an

environmental chemical field. Like the experimental system it was inspired by, it can exhibit ABP-like

behavior with the MSD having both a ballistic and a long-time enhanced diffusion regime. With an analytical

formula for the velocity, V , we faithfully reproduced the ballistic regime. The enhanced diffusion in our

model is a result of both angular persistence and the self-avoidant memory, whereas ABP only includes

orientational persistence. We found that numerically computing the orientation decorrelation (or persistence)

time, τ , enhanced diffusion predicted by ABP overestimates the enhanced diffusion in our model. Thus, our

proposed model did not faithfully capture the dynamics of the experimental system at long time scales in

the same way that ABP did. (Further investigation will be needed to determine if this difference is due to

parameter values, modeling choices like using thermal noise and the diffusive scaling to the source term, or the

absence of hydrodynamic effects.) Instead, we discovered that the self-avoidant memory in our model led to

transient self-trapping that suppressed the enhanced diffusion. This self-trapping has, to date, been suggested

to occur only in self-attracting experimental systems [41, 75] and computational models [62, 25, 38]. Further

investigation will be needed to determine if self-trapping is a unique feature of this model, or can occur in

other self-avoidant systems.

Through these investigations, we kept the noise parameter ϵ fixed, while changing the gradient response

parameter ν and the diffusion µ to find that both latter parameters control the implicit parameters V and τ .

With only two control parameters, we were unable to independently tune each timescale of behavior: the

velocity V , the memory timescale µ−1, and the angular persistence timescale τ . Taking µ→ ∞ to remove

memory effects, we either arrived at simple Brownian motion by fixing ν or purely ballistic motion by fixing

V and allowing ν → ∞; the memory is responsible for both the ballistic motion and the effective rotational

diffusion. Taking µ → 0, we again arrive at simple Brownian motion, having removed all self-avoidant

memory with our choice of scaling the source term in the concentration field by µ. We thereby identified

an intermediate regime of µ for which enhanced diffusion is present on a finite timescale, but at a lower
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magnitude than expected for ABP with equivalent angular persistence. This regime will be used in future

work to study self-avoidant memory effects in many-particle simulations, investigating motility induced phase

separation and associated dynamic pattern formation, which is commonly observed in active systems with

particles that are repulsive to one another.
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CHAPTER 4

Unpacking Emergent Behaviors of Self-Avoidant Swimming Droplets with Curvature Statistics

4.1 Introduction

In the previous chapter, we discovered discrepant displacement statistics between self-avoidant swimming

droplet paths and active Brownian paths (which are commonly used to model active systems) at long

timescales. We proposed that the reduced effective diffusion at long timescales found in [15] is produced by

extremely high curvature in the self-avoidant particle path data, which is due to high levels of self-interaction.

Despite trying to “get away from themselves”, self-avoidant particles may become trapped in their own trails,

and then continue turning inward to avoid crossing their past history with the result that they move smaller

distances on long timescales.

If this self-trapping occurs (and sometimes it does not), it manifests quantitatively as regions of high path

curvature. In path data, curvature occurs when the particle makes consecutive turns in the same direction.

To start, we considered the more general “average turning/reorientation timescale”, τ , in [15] to measure

when the average movement direction becomes decorrelated. In other words, τ can estimate how often a

particle turns in any direction, which is less specific than we find we need; decorrelated motion can be a

product of many changes in direction, but not necessarily consecutive changes in the same direction, as in

self-trapping. (Linearly correlated motion corresponds to “straight” path data.) In the ABP model, τ controls

the reorientation timescale directly since it is the rotational noise strength in equations (ABP model), whereas

in the self-avoidant model, τ can only be estimated by fitting the decay of linear correlations in orientations

within the path data, which is assumed to have the form e−
t
2τ [33]. Ultimately, it is our goal to estimate

correlations in curvature, rather than merely correlations in direction.

The results of this exercise are seen in Fig. 4.1. Despite matching τ fitted from the self-avoidant velocity

autocorrelation function (VCF, also called the orientation correlation function, or OCF) shown in Fig. 2.1c

and with the choice of τ = 2.3 in the ABP model for the paths in Fig. 2.1a, there is noticeably more curvature

in the self-avoidant paths. We argue that different turning motivations is the source of this difference. In
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the ABP model, curvature is a result of decorrelations in the direction, however, in our model, curvature

is also a result of self-trapping. When our particles reorient inward (randomly) the deterministic gradient

force overrides the effects of the random noise and the particle continues the inward spiral by then making

consecutive turns in the same direction. Since τ is constructed to control linear decorrelations in direction,

it works well to characterize the ABP paths. In contrast, it fails to adequately characterize the observed

self-trapping in our model paths since the self-trapping is not a product of decorrelations. In fact, self-trapping

(and resulting curvature) is a mesoscale emergent effect of self-avoidant memory, since it arises organically

as the system evolves, but is not a result of any individual model component. We conclude that a single

reorientation timescale which captures the decay of linear correlations between consecutive orientations is

not a good classifier of trajectories exhibiting curvature which arises from self-avoidant memory.

4.2 Calculating Curvature Directly

We determined previously the decay of linear correlations in direction measured by τ was insufficient to

describe self-trapping curvature since the curvature was not a product of random directional changes. In our

model, the true source of the curvature is the gradient forces experienced by the particle, which temporarily

override the directional changes that may be induced by the additive noise. In this section, we will estimate

the curvature of paths directly; this data will be the foundation for us to build a better tool for understanding

how the curvature can be used to quantify the emergence of a self-avoidant memory response. To estimate the

curvature, we borrow the multi-scale straightness index (MSSI), a tool from mathematical ecology that allows

us to choose what level of granularity we want to see in the trajectory data [55]. The MSSI is defined to be

the ratio of linear displacement to arc length for a coarse-grained path sample of frequency g in a moving

window of size w over the experimental time frame (see Fig. 4.2). MSSI values close to 1 indicate very

straight motion (low curvature) and values close to 0 indicate high curvature. In [55], this tool is used on

possum trajectory data to classify possum behavior as either foraging (high curvature) or traveling (straight).

Inspection of the trajectories in Fig. 4.1 shows that the self trapping occurs on an intermediate spatial

scale, therefore, we tune the MSSI to the mesoscale at which self-trapping occurs to capture the temporally

changing path curvature. We choose g to smooth out small-timescale diffusion and W on the ballistic

timescale, on the order of V . Fig. 4.3 shows that the average straightness of model paths with standard
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Figure 4.1: Similar turning times generate different curvature features in different models. (a) Self-avoidant
paths with average turning time τ =1.4 are highly tortuous. (b) ABP paths with the same theoretical turning
time τ =1.4. (c) Both models recover the same VCF statistics (fitted τ ), despite obviously different path
features, including differences in overall distance covered. To compute the instantaneous velocity from the
path data, we compute the displacement between positions which are N timesteps apart. We choose this
calculation timescale N to be the timescale over which the expected displacement is approximately 25 times
larger than the expected displacement due to the white noise alone: NV dt ≈ 25 · ϵ

√
dt. For dt = 0.00125,

ϵ =
√
0.75, and V = 6 we find that N = 102.
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Figure 4.2: Sampling scheme for noisy data. Linear displacement is computed between the endpoints of each
moving window of size w and arc length computed along the path sampled from w at frequency g.

Figure 4.3: Average MSSI values of self-avoidant paths changes with window size. For all self-avoidant
parameters (V and µ), the straightness decreases as the window size W increases (coarse-graining). The gold
line indicates the window size at which the MSSI is computed for the plots and calculations in the remainder
of the chapter. Window size w and granularity g are in units of nondimensional time.

errors for several parameter regimes. We see that the straightness decreases as a function of window size w.

Increasing w corresponds to increasing the spatial scale across which the curvature is estimated.

Our claim is that the curvature is an emergent mesoscale effect of the self-avoidant memory; more

specifically, we assert that randomly developing past curvatures build up and influence future curvatures.

To capture this evolution, we represent the MSSI in a time-dependent manner and construct a time-series

of MSSI values which functions as a time-evolving order parameter for the curvature on a path-by-path

basis. By considering individual trajectories we find that the MSSI captures the curvature well, as it varies

throughout the experiment. In Fig. 4.4 we have selected two paths with the same model parameters, but

which have very different path features. The one on the left is more similar to active Brownian motion (no
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memory) because it does not trap itself, and the one on the right exhibits the self-trapping which we believe

is an emergent feature of the self-avoidant memory. The curvature differences in both are reflected in the

values of the straightness index time series (to the right of each path).

One of the reasons why average turning timescale τ failed to adequately explain the curvature, was the

fact that τ was computed from the ensemble average VCF, which tended to average out the self-trapping

behavior, which occurs less frequently compared to more generic swimming-dominant trajectories. While

self-trapping was evident in some paths, the overall distribution of curvature shows that the parameter regime

we are working in produces straighter paths, on average. Wee see this in the histograms of Fig. 4.5, which

carry most of the empirical probability mass near 1, although the empirical cumulative density function in

Fig. 4.5 shows that true density of the straightness values of the self-avoidant paths do appear to have a

heavier tail compared to the active Brownian paths. We conclude that self-interaction which are associated to

high curvature (low straightness) occur much less freqeuently than generally ballistic motion, even though

these self-interaction events affect the ensemble statistics of the displacement data which we explored in

Chapter 3.

4.3 Using Mutual Information to Estimate Nonlinear Correlations in Path Curvature

In the previous section, we presented a direct way of quantifying curvature with the MSSI, but this

does not directly connect the curvature to the self-avoidant memory. We demonstrated that using the

decay timescale of linear correlations in the orientations of our model paths was insufficient to explain the

self-trapping, which is a complex effect of the self-avoidant memory and not merely caused by random

reorientations. We propose that this can be resolved by:

1. Using the curvature data itself rather a related approximation (τ ), and

2. Considering the temporal structure of nonlinear correlations, rather than linear ones.

We will use mutual information to capture nonlinear curvature correlations of a self-avoidant particle with its

own past history. Mutual information addresses the question: if we know the curvature of a single path at

past time t, how much information do we gain about the curvature at future time t+ T? (and vice versa). If

the answer is “a lot”, then we can say we have shown that the curvature at current times is a response to the

curvature at past times, and therefore, the curvature is capturing the self-avoidant response. We will show
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(a) active Brownian-like model path

(b) model path with self trapping

Figure 4.4: Using a moving window, we can compute the straightness of a path at each point in time. In doing
so, we can see that the straightness index captures the bendiness over time. We have selected two paths with
the same model parameters, but which have very different path features. The top path (a), is more similar to
active Brownian motion (no memory) because it does not trap itself, and the bottom path (b) exhibits the self
trapping which we believe is an emergent feature of the self-avoidant memory. The curvature differences in
both are reflected in the values of the straightness index time series (to the right of each path).
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Figure 4.5: The ensemble histogram of MSSI values over all times illustrates the heavy bias toward
“swimming-dominant” behaviors in the self-avoidant particles (the sharp peak near 1). (Self-avoidant
paths computed with V = 6 and µ = 0.01 and τ fit to 1.389. ABP paths have matching τ and V .) The
empirical cumulative density functions show that the self-avoidant paths have a slightly higher density at
lower straightness values.

that distributions of MSSI (curvature) of a single path at time t and time t+ T are nonlinearly correlated, as a

measure of self-interaction.

To compute the mutual information, we use the k-nearest neighbors algorithm described in section

2.1.2. In [32], the authors develop an unbiased statistical estimator for mutual information, which can be

used on bivariate data of the form Zk = {(Xk, Yk)}, with k = 1, . . . ,K. From Zk, we select a random

sample {(X1, Y1), (X2, Y2), . . . , (XN , YN )}, with N ≤ K, where this bivariate sample can be used under

the assumption that each (Xn, Yn), is an independent realization from a stationary distribution. Since each

path is generated independently, we have created an ensemble of independent agents whose straightness

time series data {S1, S2, . . . , SN} we estimate discretely throughout the experiment at times {t0, t1, . . . , tF }.

This ensemble is denoted as

S = {{(S1(t0), . . . , S1(tF ))}, {(S2(t0), . . . , S2(tF ))}, . . . , {(SN (t0), . . . , SN (tF ))}}.

Therefore if the true distribution of Sn(t) is stationary, then sampling the MSSI variable Sn(t) corresponding

to each of the N paths at some time ti with i ∈ [0, 1, . . . , F ] creates a random sample of N independent

realizations, {(S1(ti), S1(ti + T )), (S2(ti), S2(ti + T )), . . . , (SN (ti), SN (ti + T ))} for each time ti with

i ∈ [0, 1, . . . , F ].
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In the case of the Ornstein-Uhlenbeck walkers, it is known that at long times, the positions of each

walker sample from a stationary distribution. This is known because the evolution equation of an Ornstein-

Uhlenbeck walker is known. However, we compute MI(S(t);S(t+ T )), which is the mutual information of

the ensemble of straightness index values; the representative dynamics (and associated stochastic differential

equation) of the evolution of this random variable is unknown. Therefore, we provide qualitative evidence that

the true distribution of S(t) is stationary to justify considering the mutual information of an individual path’s

straightness index with itself, which is MI(Sn(t);Sn(t+ T )). First, we show in Fig. 4.6 that the ensemble

mean and variance ({S(t)} and V ar(S(t))) appears to be relatively constant as t changes; these constant

descriptive statistics suggest that the underlying distribution of S(t) is unchanging. Secondly, consider that

the Ornstein-Uhlenbeck walkers sample from a stationary distribution at long times t due to mean reverting

tendency of the walkers, which functions as an effective potential well that the walkers are exploring. The

effective potential well thereby reduces the effective support of the Ornstein-Uhlenbeck walkers. Similarly,

the support of our variable, S(t), is the closed interval [0, 1], and at long times, the ensemble is more likely to

reach a stationary distribution by thoroughly exploring this finite support.

Figure 4.6: Sample mean and variance of {S(t)} over t appear to be fluctuating around constant values. Time
averaged sample mean and variance are shown in red.

In Fig. 4.7, we illustrate a small ensemble of the straightness data of N = 5 agents. We illustrate

how we can construct a sample of independent realizations by taking each Sn(t = 5) (gold stars) and

Sn(t + T = 5 + 1.5) (cyan circles). This generates a random sample of the ensemble at times t = 5 and
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t + T = 6.5 from which the mutual information can be estimated as MI(S(5);S(6.5)). By applying the

estimator at each experimental time ti, we can leverage the independence of each path to report the “true

mutual information” of time-separated curvatures of the ensemble of N independent agents as it evolves

throughout the experimental time frame (as we did with the Ornstein-Uhlenbeck walkers). By varying the

time-delay T , we can assess whether looking back farther in time changes the mutual information of the

system.

Figure 4.7: For each path Sn, we take the data at some time ti, marked with an orange star, and a time-delayed
sample at time ti + T , marked with a cyan circle. For this illustration, we choose ti = 5 and T = 1.5. Since
each {Sn} is independent, the sample set {(S1(5), S1(6.5)), . . . , (S5(5), S5(6.5))} contains independent
realizations of the random variable S.

Unlike the Ornstein-Uhlenbeck walkers, whose mutual information gradually converges to a constant

value (Fig. 2.8), the self-aviodant straightness ensemble mutual information appears to be fluctuating around

a constant value throughout the entire experimental time frame, which we show in Fig. 4.8. This suggests

that the true time-delayed mutual information of the independent ensemble S is constant in time. We see that

the ensemble mutual information follows this trend for all time-delays T , but looking back farther in time

(which corresponds to increasing T ) lowers the mutual information until it is approximately zero. We have

shown that the ensemble curvature at time ti contains information about the ensemble curvature at future

time ti + T , and these nonlinear correlations decrease as T increases. Although we assumed (and presented

evidence for) stationarity of S(t), we do not have any information about the actual distribution of S(t) itself.
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Figure 4.8: The independent ensemble mutual information appears to fluctuate about a static mean throughout
the experimental time frame. Dark lines indicate a 20 second moving average.

4.4 Time Delayed Self Mutual Information of a Single Agent

We now implement our mutual information estimator pipeline to estimate the mutual information between

straightness data of a single path with itself at later times, which we denote as MI(Sn(t), Sn(t+T )). Recall

that both Sn(ti) and Sn(tj) are realizations of the continuous stochastic process Sn, and therefore we expect

that Sn(ti) and Sn(tj) will be correlated to some extent, especially if ti and tj are very close in time. (The

same is true of Sn(ti + T ) and Sn(tj + T ) ). As before in the ensemble case, we are challenged to ensure

that consecutive samples (Sn(ti), Sn(ti + T )) and (Sn(ti+1), Sn(ti+1 + T )) are independent samples of the

stochastic process Sn with respect to the time separation between pairs, which is ti+1 − ti.

We develop the solution to this problem which we developed in Chapter 2 by introducing a parameter

W which we will enforce as the average window of separation between consecutive sample times ti and

ti+1. In Fig. 4.9 we illustrate implementation of the separation window W using the straightness data

of a single path Sn from the ensemble (shown in Fig. 4.7). This path is then sampled at discrete times

{ti} with average separation W and again at delayed times {ti + T} to generate the random sample:

{(Sn(t0), Sn(t0 + T )), Sn(t1), Sn(t1 + T )), . . . , Sn(tf ), Sn(tf + T )), }. The randomly selected sample

times [t0, . . . , tf ] have the property that ⟨ti+1 − ti⟩i = ⟨Wi⟩i ≈W.

We want W to be large enough to overlook dynamical correlations, but small enough to capture a signal.

To justify the choice of W , we might naturally choose W to be the timescale on which the autocorrelation of

the MSSI time-series decays below some threshold value. In Fig. 4.10, we find that the linear correlations in
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Figure 4.9: Gold initial samples with times {ti} must be separated by windows Wi satisfying ⟨Wi⟩i ≈W .
The time delay T = 1 is then used to select the time-delayed curvatures (cyan samples).

the MSSI time-series are very long lived and oscillate, making this an unsuitable strategy. In practice, we

suggest that sufficiently large W is W such that the MI curve decays to zero.

Figure 4.10: The autocorrelation function of the straightness of path data has no useful information to aid in
proper choice of W .

4.5 Individual Path Analysis

Between individual paths, we aim to show that the mutual information can quantify, and then distinguish,

the visually observable differences in path features. In the top row of Fig. 4.11, we consider three paths

generated by the same model parameters (µ = 0.01 and V = 6) which are selected for their individual

characteristics. Path A appears the most similar to active Brownian motion, in which the high velocity V

produces a trajectory that has a substantial ballistic component. Path B has a similar ballistic tendency but is

shortly trapped once. Finally, path C is trapped substantially.

In the bottom row of Fig. 4.11, we show the mutual information decay curves for each path for window

sizes W = 1, 2, 4. For all window sizes, the time-delayed self mutual information MI(Sn(t);Sn(t+ T ))
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decreases as a function of the time delay T in what appears to be an exponential decay. Recall that our

particle model is designed to experience the influence of all past times as it moves to the next location. Since

the past-history dependent memory effect of our model is encoded as an exponentially decaying memory

kernel (see Eq. 3.3), we expect that more recent times will have a larger effect than locations farther in the

past. In Fig. 4.11, we confirm that the mutual information between curvatures follow this same pattern; as the

particle “looks back farther in time” and T increases, the curvatures become less correlated.

Although the overall decay structure is consistent across window sizes, we observe some differences. For

a window size of W = 1 (blue), the mutual information does not appear to decay convincingly to zero for

any path on the timescales we have considered. The decay curve for W = 1 appears to either decay to zero

on a time delay T greater than what we consider, or not at all. This suggests that the separation window W

is insufficient to suppress the dynamical correlations. The window size W = 2 is an improvement, and the

curves corresponding to W = 4 all appear to decay to zero within the time frame that we consider. (Ideally,

we might also test windows larger than W = 4, however, the length of our paths limits the number of samples

we can achieve with this separation. For a total path length of 60s, a window of W = 4 yields a maximum

of N = 15 samples. While the Kraskov algorithm is suitable for low sample sizes, we do not want to have

unnecessarily small N .) On this largest window size, W = 4, we notice that mutual information of the active

Brownian-like path curvature of path A appears to decay to zero more quickly than the self-interacting paths

B and C, suggesting a longer correlation that we associate to the presence of the self-trapping behavior which

we believe is an emergent effect of the self-avoidant memory.

To compare the decay curves of the individual paths quantitatively, we can fit a decaying exponential,

e−
t
α to the mutual information decay curve and use α as a measurement for the decay timescale of these

nonlinear correlations. We will fit the curves corresponding to the largest window size W = 4 to ensure that

they decay to zero. In Fig. 4.12 we plot the fitted curve e−
t
α (solid lines) over the mutual information data

(scatter points). Colors in the figure correspond to the path colors in Fig. 4.11. We find that the self-trapped

path (purple) has the longest decay timescale of approximately α ∼ 1.3. In contrast, the active Brownian-like

path (red) has a much smaller decay timescale of approximately α ∼ 0.72. (The “in between” blue path has a

correspondingly in between α).

Although each path is generated by using the same model parameters, it cannot be predetermined whether

a path will experience self-trapping or not. As the particles descend the gradients created by their own oil

expulsion, the path preference is to move ballistically (with noise) away from areas of high concentration.
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Figure 4.11: Three paths with different levels of self-interaction are shown (first column) with their corre-
sponding straightness index time series data (middle column) and mutual information decay curves (left
column). Mutual information decay curves with three window sizes, W = 1, 2, 4 are shown as a function of
the time delay, T . Reported values are the average of 20 repetitions with standard errors.

When the noise perturbs this motion such that the particle turns in on itself, the path preference changes

from ballistic to inwardly curving motion in an attempt to avoid the self-created gradient trap. (This process

continues until enough local gradient has built up to push the particle out of the trap and back into freer

space.) Therefore, randomly initiated curvature precedes periods of more predictable curvature. We interpret

the mutual information measurements of the curvature of a single particle as an indication of the strength

of the self-avoidant memory response experienced by that particular particle over varying timescales. In

doing so, we demonstrate that the more trapped paths have longer-lived correlations in the curvature, which

is indicative of higher levels of self interaction via the self-avoidant memory response. We have shown that

49



the mutual information decay timescale α can be used to statistically distinguish self-trapped paths from

non-trapped paths, all of which have the same input parameters.

Figure 4.12: The mutual information decay curves (data points) of individual paths are fitted with a decaying
exponential (solid lines). For more highly self-interacting paths (green), the decay timescale α is higher as
compared to more “active Brownian- like” paths (red). Colors correspond to paths featured in Fig. 4.11 and
reported mutual information values are the average of 60 repetition with standard errors.

4.6 Tuning Memory

We have discussed in the previous section that the self-avoidant memory response emerges more strongly

in some paths compared to others, and we argued that this was unpredictable behavior since the genesis of

self-trapping comes from the random noise (although the continuation of the self-trapping is a result of the

deterministic gradient response). To explore the effects of changing the effective memory of the system itself,

we recall the combined nondimensional form of our particle model:

dY =
π

2
µνϕ

[∫ t

0

(
e
− |Y(t)−Y(s)|2

4(1+µ(t−s)) (Y(t)−Y(s))(1 + µ(t− s))−2

)
ds

]
dt+

√
ϵdB. (4.1)

In this form, the integral term represents the particle mathematically “looking over all past times” to determine

its next location. By increasing the lower bound from zero to max(0, t−M) with M ≥ 0, we can artificially

restrict the amount of past history to affect the particle motion, and therefore reduce the effective memory
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with the following particle path model:

dY =
π

2
µνϕ

[∫ t

max(0,t−M)

(
e
− |Y(t)−Y(s)|2

4(1+µ(t−s)) (Y(t)−Y(s))(1 + µ(t− s))−2

)
ds

]
dt+

√
ϵdB. (4.2)

Since the combined model in Eq. 4.1 is a non-Markovian process in which the state (position) at time

t + δt depends on all past states via the integral term, implementation of effective memory timescale M

is merely limiting the number of past states that the particle has access to from [0, t] to [max(0, t−M), t].

(Unlike the combined model, the coupled model from Eq. 3.2 can be considered Markovian if the state

space is expanded from the current location of the particle to both the location and current concentration

field. Whereas implementing M in the combined system (Eq. 4.1) amounts to looking at fewer past states,

there is no equivalent state space restriction for the Markovian coupled system (Eq. 3.2), which introduces a

mathematical constraint to the implementation of effective memory timescale M in the coupled system.)

While the temporal effects of implementing effective memory timescale M are straightforward, the

spatial effects require more explanation. In a physical sense, artificially restricting the amount of past history

available for the particle to “see” by truncating the integral term in Eq. 4.1 to yield Eq. 4.2 is effectively

removing all oil in the concentration field before time t−M . The effect of this is similar to evaporation or

neutralization (which is possible experimentally), although both evaporation and neutralization are generally

processes which occur smoothly in time rather than some amount of oil “disappearing” instantaneously. From

the perspective of the particle, increasing the value of the diffusion coefficient µ has the effect widening

the tail of the particle’s trail, whereas implementing effective memory timescale M merely cuts off the tail

beyond max(0, t−M). Introducing neutralization would have the effect of retaining the width controlled by

µ, but the peak will decay more quickly as the local concentration near the particle depletes more rapidly.

We illustrate these differences in Fig. 4.13, which shows a sketch of the concentration profile width

emitted by a particle located at (0, 0) (black star) and travelling in a straight line along the x-axis under four

different conditions. (The real local concentration profile is a mollified delta function centered at the particle

location, therefore the particle does emit oil out in front of its own path. However, we reduce our sketch

to only include the particle’s “wake” for clarity.) In blue we show the decay profile with some diffusion

coefficient µ. In red, we show the effects of increasing µ- the faster diffusion both increases the decay rate

(sharpening the slope away from the peak) and simultaneously widens the wake as emitted oil diffuses more

rapidly into the environment. In cyan, the probable effects of neutralization can be seen in the faster decay
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profile, although the width of the “wake” remains the same since the diffusivity µ does not change. The

depiction of implementing the effective memory timescale M is shown in the green curves, which abruptly

end at the time t−M , which is the furthest past time that the particle has access to, as if the rest of the wake

had simply disappeared. Ultimately, changes in µ change the way that the trail diffuses in space behind the

particle; increasing µ spreads out the wake, thereby decreasing the concentration and reducing the memory

strength. Depletion or neutralization does not affect the trail width; it reduces the concentration and therefore

the memory by increasing the decay rate. Finally, truncation is not experimentally possible, but can be used

mathematically to approximate neutralization.

We will be unsurprised to learn that changing the effective memory of our particle will change the

velocity V . By assuming a steady state solution to Eq. 4.2 of the form Y = ⟨V t, 0⟩, we can compute an

expression which can be solved for the velocity, V :

1 =
π

2

ν

µ
ϕ

∫ µM

0

z

(1 + z)2
exp

[
−
(
V

µ

)2
z2

4(1 + z)

]
dz (4.3)

after making the substitution z = µ(t− s). We fix µ and ν to the values which we know will result in self

trapping, and solve for the corresponding V for selected values of M . In Fig. 4.14, we see how changing

the value of M affects the velocity V . We see that at very small values of M , the velocity is zero until a

threshold M is reached and the particle begins to swim. The exact threshold value of M can be found by

setting V = 0 in equation Eq. 4.3 and solving the following expression numerically for M :

1 =
π

2

ν

µ
ϕ

(
1

µM + 1
+ log (µM + 1)− 1

)
(4.4)

The trend in Fig. 4.14 coincides with our intuition that looking back farther in time (increasingM ) is changing

the effective gradient force experienced by the particle. Therefore, if M is small enough, the particle will not

experience enough effective gradient force to move ballistically. After reaching the critical M , the velocity

then rapidly converges to its true value of V = 6, corresponding to µ = 0.011 and ν = 998.5 (the parameters

used to generate the paths of interest).

In Fig. 4.15, we see the effects of increasing the effective memory M for a single path. In all instances in

the figure, the velocity V is beyond the swimming threshold depicted in Fig. 4.14. The full paths are shown in

blue, and the path corresponding to [t−M, t] is shown in gold for t = 60. As M increases, we note that the

52



Figure 4.13: Crossection of the concentration profile of a particle at (0, 0) at time t shown under four different
model conditions. In this artistic depiction, we suppose the particle is travelling through a free space with
zero ambient concentration, thus the peak is created solely by the particle. We also neglect to illustrate
the concentration “front” which would appear in front and on all sides of the particle as it travels- we only
illustrate the train.

path covers progressively less space. We attribute this to the increased amount of gradient force perpendicular

to the direction of motion as experienced by the particle. For increasing values of M , the gradient force of

the larger gold path sections will affect the particle’s motion, causing it to reorient more often. Thus, the path

with the smallest value of M appears “more ballistic” since it experiences mostly gradient forces parallel to

the current direction of motion.

We now will explore how changing the effective memory M affects the mutual information of the path

curvature S. For each value of M , we will compute a new ensemble of paths, where each ensemble has the
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Figure 4.14: At small values M corresponding to low or negligible effective memory, the particles have
effectively zero velocity. When M increases beyond a critical threshold (solved for numerically and labelled
in cyan), the particle experiences enough gradient force to move ballistically away from its past locations. As
M increases further, the velocity of the particle rapidly converges to the theoretical value of V = 6 satisfying
Eq.[original velocity equation] when µ = 0.011 and ν = 998.5, and ϕ = 1.

Figure 4.15: As the memory integral window size M increases, new path dynamics emerge. For a particle
starting at (0, 0) (green star), each panel shows a new path with progressively longer effective memory (larger
M ). Gold path sections show the length of path used corresponding to [t −M, t] for t = 60 (i.e, for the
particle’s next step at t = 60 + dt, how much past history the particle has access to). At low M the paths
still exhibit curvature, but at higher values of M the paths begin to self-trap. It is interesting to note that for
effective memory window M = 26.6s and M = 51.2s, the path dynamics are visually identical. For each
path realization, we use the same translational white noise at each timestep to ensure that the only variation
between paths occurs as a result of the changing integrand in Eq. 4.2 controlled by M .

same µ and ν and V . (We consider the ensemble because even by re-using the same random noise as we

did in Fig. 4.15, we produce totally different paths when we change M , therefore at most we can compare

how the average behavior of the ensemble changes.) For the straightness data of each ensemble {Sn}M
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we compute the ensemble average mutual information decay curve and extract the decay timescale α. We

track how the average mutual information decay timescale α changes with the memory tuning parameter

M in Fig. 4.16. As we might expect, looking back further in time (increasing the effective memory M )

correspondingly increases α, which is the strength of the nonlinear correlations between past and present

curvatures of the ensemble. Therefore, we conclude that changes in M directly affect the memory and this

change corresponds to average changes in the MI decay timescale α.

Figure 4.16: The mutual information decay curve of each path is computed and then fitted for the decay
exponent, α as a function of the memory truncation length, M . The average decay exponent α increases as
the effective memory M increases. Here, M is recorded as the fractional amount of past history that the
particle has access to relative to the path length. (Therefore, M = 1 is the full memory limit corresponding
to Eq. 4.1.) Left plot has standard axes, right plot shows the trend on semilog axes to expand the values near
zero.

4.7 Comparison Across Models

We showed previously that the mutual information of the path curvature in the ballistic-timescale regime

can be used to understand the self-avoidant memory response of active particles within the same model class.

A natural question that arises from this finding is whether or not the mutual information of path curvature can

distinguish particles from different model classes. To this end, we will compare the mutual information of the

curvature of our self-avoidant particles against two other models which can be tuned to have varying levels of

path curvature in the ballistic-timescale regime:

1. Self-avoidant particles: no explicit curvature source within the model equations,
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2. Active Brownian particles: no explicit source of curvature, but the relative straightness of paths may be

controlled by tuning τ (choosing large τ creates straighter paths),

3. Active chiral particles: explicit curvature controlled by ω.

We have discussed the equations of the active Brownian model at length in chapter 2. The active chiral model

can be viewed as an extension of the active Brownian model with an added deterministic parameter, ω, which

biases the random reorientations to trace out circular-looking paths with the following equations:

dX = V cos(θ(t))dt+
√
ϵdWx (4.5a)

dY = V sin(θ(t))dt+
√
ϵdWy (4.5b)

dθ = ω +
1√
τ
dWθ. (4.5c)

(Note that choosing ω = 0 will recover the active Brownian model.)

We show the path information, straightness index time series, and resulting fitted average model mutual

information decay curve in Fig. 4.17. For the self-avoidant sample path (blue), we have selected a path

which traps itself twice with our usual parameters µ = 0.01 and V = 6. For the active Brownian path

(green), we choose a comparable velocity to the self avoidant paths (V = 6), but choose τ = 1/5 to force

fast reorientations which will decrease the straightness of the path substantially. The active Brownian path

data shows that the active Brownian particle covers much less space than the self-avoidant particle, due to

these frequent changes in direction. The effect of frequent directional changes can be seen in the straightness

index time series of the active Brownian path as well- the straightness time series oscillates mostly between

0 and 0.6 in comparison to the self-avoidant path which oscillates between 0 and 1. In contrast, the chiral

particle has a consistent spiral path structure which generates a straightness time series that is the lowest at all

times and which never is higher than 0.5.

The bottom panel of Fig. 4.17 shows ensemble average time-delayed mutual decay curve of the straight-

ness data for N = 24 paths for each model. These curves are fitted to a decaying exponential e−
t
α . The

self-avoidant model has both larger and longer lasting nonlinear correlations over all time delays T , even

compared to a model with “many small curves” (active Brownian, for the parameters chosen) and also

compared to a model with many large curves (active chiral, for the parameters chosen). Thus, we find that the
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mutual information can distinguish “high curvature” at large and small scales (active Brownian and active

chiral) from curvature which arises from self-interactions.

Figure 4.17: Comparison of mutual information of curvature between three models with different curvature
sources. Overall time delays T , the average mutual information curve of the self-avoidant model takes
on higher values and a longer decay timescale when compared to the active Brownian model with fast
reorientations and compared to the active chiral model with long slow turns.

4.8 Conclusions

We have shown that the self-avoidant memory response of theoretical self-avoidant particles is not well

explained by conventional statistical methods for analyzing path data. Additionally, conventional active

particle models such as the active Brownian model are unable to reproduce the characteristic path features

that we observe in self-avoidant particle paths, specifically, self-trapping. In general, average reorientation
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time can be estimated by fitting the velocity autocorrelation function, but the observed self-traps are created

by consecutive reorientations in the same direction which produce path segments with high curvature. New

tools for understanding this were required.

Since existing methods do not suffice to adequately characterize the path dynamics which we observe, we

reimagine our path data as a straightness index which we find has temporally decaying nonlinear correlations

with itself. These correlations are revealed by computing the time-delayed self mutual information using

an empirical estimation scheme which must be adapted to accommodate dynamical correlations within

the time-series straightness data. We find that this method convincingly distinguishes different levels of

self-interaction between individual paths that are generated with the same model parameters: paths which

exhibit higher levels of self-interaction have higher and longer lasting nonlinear correlations in straightness

data.

For individual paths with different visual features suggesting different levels of self-avoidant memory

response, we showed that these differences can be distinguished using the mutual information of path

curvature. We continued by introducing an effective memory timescale M which functioned to control the

amount of past history “seen” by the particle at time t, which amounted to all past locations in the interval

[t−M, t]. By increasing the size of M and introducing longer memory into the path data we found that the

mutual information decay timescale α also increased, and therefore longer memory times induced longer

nonlinear correlations in the path curvature, on average. This provided additional evidence that the mutual

information decay was able to distinguish different levels of self-avoidant memory.

In our final section, we also investigated differences in the mutual information of path curvature between

different models. Specifically, we compared our self-avoidant model to the active Brownian model with fast

reorientations using small τ to produce many small areas of curvature and to the active chiral model with

slow turning rate ω to produce large and consistent spirals. In this comparison to two different manifestations

of curvature (“small” and “large”), we found again that the self-avoidant particles had both larger and longer

lasting nonlinear correlations in the curvature.

We conclude by restating our original hypothesis, which is that the self-traps created by the self-avoidant

memory response can be identified by regions of high curvature, and that this curvature is an emergent

feature of the memory. Using a KNN mutual information estimator adapted for time series data, we provided

evidence supporting our hypothesis by distinguishing both individual paths on the basis of their levels of

self-interaction and by distinguishing our model from other models with curvature.
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4.9 Future Work

In our study so far, we have considered the mutual information of the straightness index Sn(t) with itself

at future times, Sn(t+T ). We argued that the self-trapping is marked by curvature, which can be described as

repeated reorientations in the same direction, and that this curvature was the more important feature to consider,

rather than only changes in the direction of the particles (which reorientation timescale τ can quantify). In

future work, we may explore increasing the dimension of the the variable {Zi} by including the orientation,

Vn(t). Instead of consideringMI(Sn(t);Sn(t+T )), we may considerMI
(
(Sn(t), Vn(t)); (Sn(t+T ), Vn(t+

T ))
)
.

Other directions include a more detailed exploration of the parameter space of the self-avoidant model to

explore whether there exists a quantifiable parameter regime that can produce self-trapping. We also will

consider increasing the total number of paths studied for fixed parameter sets to generate better statistics and

investigate whether the true distribution of mutual information decay timescales α can be estimated.
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CHAPTER 5

Using Trajectory Data to Infer the Character of Social Interactions Between Golden Shiners

5.1 Introduction

It is useful to understand signaling and communication pathways between organisms, but the internal

cognitive state of non-human organisms can be difficult if not impossible to ascertain. What little information

we may be able to gain about an organism’s internal cognitive state may be even more difficult to interpret. To

this end, we propose a method for estimating the extent to which one golden shiner’s movements are related

to another’s using nonlinear statistical correlations within their collective movement data. Golden shiners

(Notemigonus crysoleucas) are gregarious organisms, meaning that they prefer to live in same-species groups

(shoals) and are highly sociable. These shoals function to protect juveniles, help defend against predators,

and increase foraging capability in the wild. In experimental settings, it has been shown that a minority of

individuals may influence the behavior of a shoal [57]. It has also been shown [39] that in golden shiner

shoals select “leader” individuals are usually positioned near the front of the group. A study performed by

[40] further quantifies that individuals may act as leaders consistently in an experimental setting. Various

theories have been posed to identify the morphological or metabolic conditions that are correlated with which

fish are leaders.

While some studies have found correlations within the movement data of animals who are observed

to engage in leader-follower-like behaviors [6], [51], [56], the literature is left wanting for quantitative

evidence that these observed “leader-follower” configurations and the associated correlations are not merely

coincidental. Consider runners racing in a 100m dash- the foremost runner, or “leader” is positionally

ahead of the rest of the racers, but the runners behind the race leader are all running independently to the

finish line. In our experiments, we remove all extraneous environmental factors and assume no relationship

between individuals; therefore we assume no correlated motion in any sense. Just as positionally “being in

front” does not mean there is a leader-follower relationship, it is also true that correlated motion could be

coincidental (i.e., correlation ̸= causation). To surmount the issue of coincidental correlations, sophisticated
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information theoretic sophisticated metrics such as transfer entropy have been developed to statistically

isolate directional interactions from other sources of correlation. While these metrics theoretically prove

that one agents movement decisions depend upon the motion of another agent, such metrics have two main

drawbacks. The first is that they require an assumption that correlated motion implies social interaction,

and the second drawback is that these metrics require conditioning on past states of the organism, which is

difficult to implement with experimental data. In our approach, we make no assumptions of social interaction

and compute both two-point linear and nonlinear correlation (mutual information) metrics to compare our

experimental trajectory data to a reduced toy model of with an explicit leader-follower relationship between

agents. The structure of the nonlinear correlations that we find using the time delayed mutual information

is in good agreement with this explicit leader-follower model. Since our findings are consistent with this

leader-follower interpretation, results suggest that leader-follower interactions are the dominant social force

that drives the observed coupled motion between golden shiners.

Figure 5.1: Golden shiner in a person’s hand, taken by Amy Schrank [46].

5.2 Experimental Methods

Our collaborators at the Cognitive Ecology and Behavioral Engineering Laboratory (BEL) of the U.S.

Army Corp of Engineer’s Engineering Research and Development Center (ERDC) in Vicksburg, Mississippi

performed the data collection and experimental management. Outside of experimentation, four hundred

juvenile golden shiners were housed in an indoor holding tank with fluorescent lights on a 12h light/dark

cycle. Fish were fed once daily ad libitum, after experimental individuals had been selected. To ensure a

sterile environment, water quality measurements were taken daily, including temperature, dissolved oxygen,
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pH, conductivity, and oxidation-reduction potential (ability of water to break down contaminants). Additional

weekly tests were performed to measure ammonia and nitrate content as well as carbonate hardness.

Two types of experimental conditions were tested: a control state and an agitated state, which was

implemented by enforcing two environmental conditions that have been shown to induce behavioral changes

in golden shiners. The first condition was a reduced water depth; the water depth level of the experimental

tank was reduced to half of the control depth (from 8cm to 4cm). Changes in water depth have been shown to

prompt fish to behave defensively by tightening the shoal formation to reduce individual risk from predators

[7], [27]. Golden shiners have been also been shown to prefer shaded regions which may be a strategic move

to minimize the ability of predators to see them [78], [5]. Accordingly, we increased the overhead ambient

light from 200 lux in the control setting to 230 lux in the agitated setting.

Experimental pairs were selected randomly and taken to the experimental tank in a separate temperature

controlled room. An aerial view of the annular tank setup is shown in Fig. 5.2. The inner diameter of the

tank measured 23.16 cm and the outer diameter measured 125.1 cm. Once (unfed) experimental pairs were

transferred to the tank, the fish were left undisturbed for 10 minutes to acclimate to the new environment.

After the acclimation period, video data was recorded using a Basler Boost Monochrome high resolution

camera for a period of 30 minutes and at a frame rate of 40 frames per second at a resolution of 2912 x 2750

pixels. The still images (frames) of the video data were converted into a continuous video format using the

ffmpeg library. Four replicate experiments were performed in the control setting, and five experiments were

performed in the agitated setting. At the conclusion of each 30 minute experiment, fish weights and lengths

were measured before euthanization.

The collected video data shows four distinct behaviors:

1. Smooth laps, in which both fish swim around the tank in generally smooth circles. Usually there is a

fairly obvious positional leader. Often characterized by high velocity.

2. Erratic laps, in which fish swim around the tank in irregular circles at varying speeds. May be

punctuated by short periods of localized meandering or stillness.

3. Localized meandering, in which fish remain close to each other and confined to a small area of tank

for a distinct period of time. Often one fish swims small circles around another.

4. Stillness, in which both fish are still.
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Trajectory segments corresponding to these behaviors are shown in Fig. 5.3. Note that different behaviors

in each panel are captured over varying lengths of time. Although the four main categorized behaviors are

distinct, the video data shows that both fish spend a majority of each experiment cycling through the different

modes together. For example, the fish may both swim smooth laps before both transitioning to localized

meandering. This coupling suggests a robust and consistent social interaction between fish. Furthermore,

we identify consistent asymmetries in the movement data of the three motion-driven states: during the

smooth lap and erratic lap state, one fish appears to be positioned ahead of the other consistently, and during

localized meandering, one fish appears to swim around the other, mostly still fish. These asymmetries indicate

that perhaps there is a substantial leader-follower element within the social interactions we observe in our

experimental data. We suppose that the smooth lap leader-follower state is the state with the highest level of

interaction between fish, followed by erratic laps, localized meandering, and stillness We aim to quantitatively

measure this leader-follower dynamic using mutual information derived only from the trajectory data, with

no other assumptions.

Figure 5.2: Still aerial image of the annular experimental tank, with two golden shiners present.
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(a) Smooth laps (b) Erratic laps

(c) Localized meandering (d) Stillness

Figure 5.3: (a) Smooth laps, over a time period of 10 s during experiment AS-2, (b) Erratic laps, over a
time period of 25 s during experiment AS-2, (c) Localized interaction, over a time period of 30 s during
experiment CS-5, (d) Stillness, over a time period of 20 s during experiment CS-5.
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5.3 Data Preparation and Examination

The captured video data was transcribed using the image tracking software TRex. TRex is an open

source platform which leverages computer vision and machine learning to identify and track moving entities

(Walter and Couzin, 2021 eLife). With TRex, the posture of each individual fish was transcribed into a

position time series featuring a centroid location and head location at each frame for each individual fish. We

removed small amounts of data where the image tracking software did not record positional data. We label

our agitated experiments as AS-1, AS-2, AS-3, AS-4, and AS-5, and the four control experiments as CS-2,

CS-3, CS-4, and CS-5.

After re-centering our data so that the origin of our coordinate system was the tank center, we transformed

the raw centroid and head location time series data several ways to calculate variables that better represented

the mathematics of our problem. From this centered data the angular position θi of each fish was computed

as the two argument inverse tangent function arctan2 which computes angle between a position vector and

the positive x-axis in radians. (The function arctan2 returns an unambiguous angle between [−π, π] by

accounting for the quadrant of the positional vector.) To compute the angular position, the centroid position

vector was used, meaning that the angular positions θi represent the angular position of the centroid of each

fish relative to the positive x-axis. The individual headings ψi were computed as the angle between the

postive x-axis and the positional vector from the centroid to the head of each fish also using arctan2. We

found camera errors in which the centroid and head locations were mismatched, resulting in consecutive

headings that varied by nearly 180◦. To address this, we filtered out consecutive headings which varied by

more than |π − 0.6|.

We also computed the velocities of the θ and ψ variables by taking the difference of consecutive elements

in radians, divided by the time difference: dθi
dt and dψi

dt . To ensure that we computed the minimum angle

between consecutive headings and angular positions, we solved for the angular difference w using the dot

product formulation between vectors u⃗ and v⃗, which is w = arccos u⃗·v⃗
|u⃗||v⃗| . (In this way, we assume the

smoothest time evolution of the θ and ψ variables.)

Additionally, a relative heading angle, which we call the alignment angleAij , was constructed to quantify

approximately how much fish i is oriented in the direction of the fish j. To do so, we compute the centroid

connecting vector, which is the vector pointing from the centroid of fish i to the centroid of fish j, and call

this vector Cij Then, Aij is computed to be the angular difference between Cij and ψi. Similarly, Aji is
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the difference between Cji and ψj . By construction, completely aligned (collinear) fish in a leader-follower

formation would have alignment angles of π for the leader and 0 for the follower. We demonstrate this

configuration in the schematic of Fig. 5.4.

We find that the alignment angle evolution throughout the experiment is useful for classifying the general

dynamics of each experiment. The data from agitated experiment AS-2 in Fig. 5.4 shows that between

the time period of approximately t ≈ 1100 and t ≈ 1350 there is a strong polarization of the alignment

angles with A10 trending very close to π and A01 trending close to 0. Video data confirms that during

this time period, the fish are swimming smooth laps at an increased angular velocity in a leader-follower

formation where fish1 is the leader. The “smoothness” of these laps can be verified by considering the low

variance of A01 and A10 during this time period. After t ≈ 1350, we see an abrupt switch in leadership, and

then a continued leader-follower state (although slightly less smooth) until about t ≈ 1500, where there is

another switch in leadership. In Fig. 5.6, we look at data from agitated experiment AS-3 and observe that the

alignment angles are mostly polarized throughout the entire experiment, with fish1 leading the majority of

the time. Overall, however, the velocities are lower when compared to the previously discussed segments of

experiment AS-2. This is reflected in the higher apparent noisiness of the data in Fig. 5.6 as compared to the

leader-follower segments shown in Fig. 5.5.

Although the conditions of the agitated experiments were similar, the fish behaviors were not. Fig. 5.7

shows data from agitated experiment AS-1, and we observe very little polarization and generally lower

velocities overall. Video data confirms that the fish spend significant time swimming in erratic laps, which is

reflected by the noisiness of the alignment data and weak polarization. Finally, in Fig. 5.8 we show data from

a control experiment during which there was very little motion. Video data confirms that the fish swim no

laps with each other and are either still or locally meandering.

5.4 Mutual Information Setup and Variable Selection

In the original presentation of the algorithm, the k-nearest neighbors MI estimation method was

presented for use with a static point cloud [32]. For position time series data, we proposed a modification

which considers the dynamical correlations that are present between points that are near in time. We discuss

this solution in Chapter 2: a modified sampling scheme where consecutive time samples at ti and ti+1 are

separated by a window W , where we suggest that W should be selected to be the minimum window size
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Figure 5.4: In panel 1, fish 0 and fish 1 are facing each other and have similar alignment angles. In panel 2,
fish 0 leads fish 1 and fish 0 has an angle close to π where fish 1 has an angle close to 0.

Figure 5.5: 15 sec moving window average of the alignment angle of both fish throughout the experimental
time frame of agitated experiment AS-2. Highly polarized time periods, such as the period between t ≈ 1100
and t ≈ 1350 correspond to a strong leader-follower dynamic and tend to coincide with higher velocities,
which is confirmed by video data.

beyond which MI decay curves decay to zero. As before, the time delay T which captures the time separation

between X(ti) and Y (ti+T ) is not constrained by W . Recall that we computed the time delayed self mutual

information for individual swimming droplets in Chapter 4, but in this chapter we compute the time delayed

mutual information between fish. Additionally, we observed in Chapter 4 that our method may only work for

confined systems in which the configurational distribution becomes stationary at long times. This appears to

be satisfied in our experimental setup since the experimental domain (annular tank) is spatially confined and

the experimental data is long enough such that the fish explore the configuration space of angular position

well at long times.
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Figure 5.6: 15 sec moving window average of the alignment angle of both fish throughout the experimental
time frame of agitated experiment AS-3. The experiment is highly polarized from start to finish, with fish1
dominating the leader-follower laps.

Figure 5.7: Moving window average of the alignment angle of both fish during agitated experiment AS-1. In
this experiment, the video data shows few instances of smooth leader-follower laps, which can further be
seen in the alignment angle data which is both noisy and not very polarized.

When computing the mutual information of various subsets of our prepared data, it was necessary to pick

appropriate random variables to analyze. Early investigations of variables including the rectangular positions,

radial position, angular position, heading, and associated velocities yielded insignificant values for non-

angular variables and the velocity data. Fig. 5.9 shows the mutual information of each variable pair amongst

angular positions, heading, and alignment angles, or θi, ψi, and Aij , respectively. Each reported mutual

information is the average of 48 repetitions using the maximum number of samples available with the given
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Figure 5.8: Moving window average of the alignment angle of both fish throughout the experimental time
frame of control experiment CS-5. In this experiment, the video data shows very reduced motion overall,
demonstrated by the generally low angular movement velocity.

window W and time delay T . We see that same-variable, same-fish pairs, shown on the diagonals, give the

highest mutual information, which is sensible since a variable should be correlated with itself at later times if it

evolves as a continuous stochastic process. However, these pairs MI(θi(t); θi(t+T )),MI(ψi(t);ψi(t+T )),

and MI(Aij(t);Aij(t + T )) do not convey information about relationships between fish, so we discount

these in our analysis. Overall, the same-variable mixed-fish pairs (θi; θj) and (ψi;ψj) give the next highest

information over all time lags T for fixed window size W . Interestingly, the alignment angle mutual

informations were lower than the heading angle and angular position variables in general, despite being very

useful in summarizing the behaviors in each experiment as shown in Fig. 5.5 ,Fig. 5.6, Fig. 5.7, and Fig. 5.8.

We also found that mixed variable pairings, such as MI(θi(t);ψj(t+ T )) could yield substantial values, but

chose to focus only on same-variable, mixed-fish pairings for interpretability. In particular, we focus the rest

of the analysis on MI(θi(t); θj(t+ T )).

5.5 Reduced Model

We restate our hypothesis that the primary driver of social interactions between golden shiners has a

substantial leader-follower component. To test this hypothesis explicitly, we propose a toy model to represent

the evolution of the angular position θ of a noisy leader-follower pairing. Agents in our model will evolve in

a consistent leader-follower configuration and there will be no other interaction rules; therefore, agreement

between our experimental findings and this toy model will provide strong evidence supporting our hypothesis.
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Figure 5.9: Mutual information of selected angular variable pairings of angular position, heading, and
alignment angle from experiment AS-2 with a window size of W = 10. Each matrix represents all mutual
information pairs MI(X(t);Y (t + T )) for a specific time delay T . We explore the asymmetries in the
off-diagonals and their implications about fish behavior throughout the rest of this chapter.

We evolve the angular velocity (dθL(t)) of the leader using a drift diffusion process, with the following

rule to update the angular position θL[t] at each time t:

θL[t] = θL[t− 1] + V∆t+∆WL[t] (5.1)

where Wt is a Wiener process and ∆WL[t] ∼ N(0, σ2∆t). To enforce a leader-follower configuration, we

evolve the angular position of the follower by placing it at the leader’s position at time t− T ∗ and adding
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noise:

θF [t] = θL[t− T ∗] + ∆WF [t], T ∗ > 0. (5.2)

The white noise of our follower is modeled by a Wiener process Wt with ∆WF [t] ∼ N(0, σ2∆t) as well.

Here, T ∗ is the interaction timescale between the follower and the leader; it takes exactly T ∗ seconds for the

leader to observe the leader’s position and react by updating its own position to that same location (plus noise).

We stochastically switch the roles of leader and follower using a rate parameter, α, which is the probability of

a leadership switch at each time step. Therefore, the evolution of the angular position θi follows the dynamics

of either θL or θF with transitions between the two states governed by the rate parameter α. We use this

model to understand what the mutual information structure of a leader-follower pair should look like with

signaling timescale T ∗, and absent any other behaviors. Our parameter choices for this model are derived

from the experimental data of AS-2. We choose the model velocity to be the average of the distribution of the

velocities of both fish0 and fish1, which is V = ⟨{Vθ0 ∪ Vθ1}⟩, where Vθ0 and Vθ1 are the sets of all angular

velocities of fish0 and fish1 throughout the experiment, respectively. Similarly, we choose our noise strength

to be standard deviation of this empirical velocity distribution, which is σ = SD{Vθ0 ∪ Vθ1}. For trajectories

evolved for N time steps, we choose the expected number of switches to be 15 = α ·N . We enforce periodic

boundary conditions on the interval [0, 2π]. A sample trajectory segment is shown in Fig. 5.10.

Figure 5.10: Angular position evolution of a toy leader-follower pair swimming in circles for a time period
of 200 s, with velocity V = 0.37 and noise strength σ = 0.215. Cyan lines indicate leadership transitions.
Leader dark red or blue, follower is light red or blue.

We generated a model trajectory of length N = 72000 and ∆t = 1/40 for each signaling timescale

T ∗ value, which was between 0.05 s and 45 s. From these trajectories, we then computed the time-delayed
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mutual information between model fish in the same manner as the swimming droplets in Chapter 4. However,

unlike before, where we were measuring the self time delayed mutual information of a swimming droplet’s

curvature with its own past history (MI(Sn(ti);Sn(ti + T ))), here we estimate the time delayed mutual

information of positional data between fish. Specifically, we are interested in whether there are quantifiable

asymmetries in two mutual information values: MI(θ0(ti); θ1(ti+T )), which represents the case of θ0 as the

leader (since θ1 is sampled later in time), and MI(θ0(ti+T ); θ1(ti)) which represents θ1 as the leader (since

θ0 is sampled later in time). Since we have assumed that our system is in a steady state, and since the mutual

information measures nonlinear correlations between a sample from two presumably stationary distributions

of angular positional data, we assume that MI(θ0(ti + T ); θ1(ti)) =MI(θ0(ti); θ1(ti − T )). Therefore, we

compute MI(θ0(ti); θ1(ti + T )) across T values in [−45, 45]s. To suppress dynamical correlations between

consecutive samples of the same variable (such as between θ0(ti) and θ0(ti+1) and between time delayed

samples θ1(ti + T ) and θ1(ti+1 + T )), we selected a fixed window size W which was the average time

separation between consecutive samples: ti+1 − ti. Each data point (y-value) reports the mean and standard

error of 48 repetitions where the positional data is sampled with replacement. Separate curves are shown for

each fixed value of the separation window, W .

Fig. 5.11 and Fig. 5.12 show the decay structure of the mutual information computed when sampling

the angular position θ0 of fish0 first, corresponding to MI(θ0(ti); θ1(ti + T )) on the positive T -axis, and

subsequently on the negative T -axis we show the mutual information computed when sampling the angular

position θ1 of fish1 first, or MI(θ0(ti); θ1(ti − T )). In Fig. 5.11, the true signaling timescale can be seen at

T ∗ = 1 = |T |s, and in Fig. 5.12 the true signaling timescale is T ∗ = 5 = |T |s. In both figures, we note that

the maximum mutual information value for both model fish occurs at exactly |T | = T ∗ (vertical cyan lines),

following a steep decay to zero. This trend is consistent across window sizes. The robust peak at exactly T ∗

shows that there is maximal mutual information (nonlinear correlations) between our leader-follower pairing

at the true signaling timescale. This provides strong evidence, that, absent any other interactions, the mutual

information can recover the true signaling timescale of a leader-follower pairing, which is the location of the

maximal mutual information value.

Besides the peak location, the peak heights of the mutual information curves are also interpretable within

the leader-follower framework of our model. The peak heights tend to decrease as T ∗ increases, which is

expected since the model fish will remain positionally closer throughout the experiment for smaller values of

T ∗ and therefore their motion will be more correlated, yielding higher mutual information values. Recall
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Eq. 5.1, in which the random variable θL is a gaussian random walk with drift, and each realization θL(t)

a sum of gaussian random variables. As we found in Chapter 2, the movement of a gaussian walker adds

information to the system at each time step. Therefore, θL(t− T ∗) contains less information than θL(t) and

this difference increases as T ∗ increases. Since θF (t) depends explicitly on θL(t − T ∗) (see Eq. 5.2), the

information in θF (t) is less than θL(t), and this discrepancy also increases as T ∗ increases. Thus, the peak

heights, which report MI(θ0(t); θ1(t+ T ∗)) and MI(θ0(t); θ1(t− T ∗)), should decrease as T ∗ increases.

For a given experiment with fixed T ∗, we also find that the relative peak heights reflect which fish led more

often. In Fig. 5.11, fish0 leads approximately 60 percent of the time, which is reflected in a higher mutual

information value of about 2.2 bits at T = T ∗ = 1 vs 1.75 nats at T = −T ∗ = −1. In Fig. 5.12, the

leadership proportion is more evenly split between fish0 and fish1 (approximately 50 percent of the time for

each), which results in very similar peak heights near approximately 1.5 nats.

Finally, we are able to suggest an interpretation for the decay structure of our mutual information curves

as a function of T ∗. As the time delay |T | increases away from T ∗ in both directions, the mutual information

decreases rapidly (possibly exponentially). We observe that for smaller values of T ∗, the decay appears to

take longer to reach zero which reflects longer lasting nonlinear correlations (although higher values of T ∗ are

decaying from a higher maximum value). This is again expected since smaller values of T ∗ indicate that our

model fish are positionally closer than larger values of T ∗ over all times during the experiment. Therefore, for

T ∗
a ≤ T ∗

b we expect that the true values of both MI(θ0(t); θ1(t+ T ))
∣∣
T ∗
a
≥ MI(θ0(t); θ1(t+ T ))

∣∣
T ∗
b

and

MI(θ0(t+ T ); θ1(t))
∣∣
T ∗
a
≥MI(θ0(t+ T ); θ1(t))

∣∣
T ∗
b

. We show evidence supporting our claim in Fig. 5.16,

which shows how the average maximum mutual information value decays noisily as a function of T ∗.

To contextualize our mutual information findings, we also consider the temporal structure of the two point

linear correlations in Fig. 5.13 and Fig. 5.14, which are plotted in the same manner/axes as the previous mutual

informations. The correlations show decaying oscillations, which we can fit to the form e−t/τ · cos (ωt).

Fig. 5.15 shows that the oscillation frequency ω recovers the average lap time of the model fish. However,

it is not obvious how the identity of the dominant leader fish might be extracted from this data. In the

mutual information of Fig. 5.11 we saw a dramatic difference in peak heights which corresponded to the

leadership proportions of each fish, but this difference is not visible in the linear correlations shown in

Fig. 5.13 Additionally for larger values of T ∗, (such as |T | = T ∗ = 5 in Fig. 5.14) we find it difficult to

distinguish any “peak” or maximum value at |T | = T ∗ = 5 from the oscillations. We note that mutual
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Figure 5.11: When we select |T | = T ∗ = 1, we see that the mutual information peaks at |T | = T ∗ = 1, then
decays slowly to zero. The asymmetry in this peak reflects an asymmetry in the leadership proportions of
fish0 and fish1. In this example, fish0 leads 60 percent of the time, and fish1 leads about 40 percent of the
time.

Figure 5.12: Similarly, selection of |T | = T ∗ = 5 shows a double peak at |T | = T ∗ = 5, although the peak
heights are lower in both cases. Additionally, the proportion of leadership is evenly split between fish, which
can be seen in the matching peak heights.

information decay does not appear to oscillate, and therefore is more likely able to represent the actual

nonlinear decay dynamics without being affected by the annular experimental setup.
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Figure 5.13: When we select |T | = T ∗ = 1, we see that the correlation may at |T | = T ∗ = 1, followed by
slowly decaying oscillations. Reported correlations are the average of 48 repetitions with standard errors.

Figure 5.14: Similarly, selection of |T | = T ∗ = 5 shows what may be a peak at |T | = T ∗ = 5, but is difficult
to distinguish from the oscillatory peaks.

We have asserted that the peak location in the mutual information curves reveals the true signaling

timescale T ∗ and that the relative peak heights differences between MI(θ0(t); θ1(t+T )) reveal which model

fish has lead for a greater proportion of the experiment. In Fig. 5.16 and Fig. 5.17, we show the mutual

information and correlation values at exactly |T | = T ∗, which amounts to selecting the mutual information
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Figure 5.15: Average lap times for model fish as a function of T ∗. The expected lap time (green) is 2π
V = 17 s.

(By construction, the velocity V in our model is an angular velocity.) Dashed lines represent the average lap
time counted from path data where L0 and L1 are the number of laps that model fish0 and model fish1 have
completed, respectively. Solid lines connect the average value of fitting 2π

ωi
correlation curves corresponding

to W ∈ [5, 10, 20, 40]. As T ∗ increases, the exponential component of the correlation function diminishes
and the fits often do not converge, therefore some values are missing.

and correlation coincident with the cyan indicator lines for each experiment with unique T ∗. We see that the

mutual information appears to noisily decay exponentially with T ∗, and the curves shift closer toward zero as

the sampling window W increases, which confirms our intuition that samples which are further separated in

time (larger W ) are less correlated. (As W increases, sample pairs are further separated, and as T ∗ increases,

the fish are temporally, and thus spatially, more separated.) The linear correlations decay in magnitude, but

oscillate rapidly as a function of T ∗, suggesting that the signal given by the correlation curve height at T ∗ is

possibly just reflecting the annular tank structure. These correlation curves do not reveal the leader-follower

dynamic betwween model fish, and it suggests that the linear correlations are always polluted by the tank

structure.
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5.6 Experimental Data Analysis

We now compute the mutual information over increasing T and various window sizes W for our

experimental data, in the same manner as we did for our model generated data. Throughout our analysis,

we analyze mutual information of the experimental data through the comparative lens of the previously

analyzed model, since the model mutual information shows a clearly interpretable leader-follower dynamic.

In Fig. 5.18, we assess the mutual information of experiment AS-3 in which the fish swim laps for most of the

experiment (as seen in the alignment angles of Fig. 5.6). For window sizes W ∈ [5, 10, 20, 40], the mutual

information of experiment AS-3 decays exponentially to zero as the time lag T increases in either direction,

for all values of W . The largest experimental mutual information values of AS-3 are near 2.25 nats, which is

similar to the largest values in Fig. 5.11 corresponding to a true signaling timescale T ∗ = 1s between model

fish.

As before, we also compute the linear correlations, shown in Fig. 5.19. We see that the correlations

also are high at small values of T , with oscillations that decay as |T | increases, which is similar to the

model. In the model, the oscillations are much larger and decay more slowly, which we attribute to the fact

that the model fish swim only smooth laps, whereas the behavior of the experimental fish vary throughout

the experiment. We find that the structure of the linear correlations either obscures or cannot report the

leader-follower dynamic which the video data revealed, and we continue to explore whether the mutual

information and the captured nonlinear correlations are able to better explain the observed system dynamics.

In particular, we hope to match the experimental mutual information curve features to those found in our

model, since our model could be interpreted in the context of the enforced leader-follower dynamic.

In particular, we hope to find a maximum or peak in our experimental mutual information. In the model,

we observed a mutual information peak at the exact signaling timescale, T ∗, however, there is not an obvious

peak structure in the experimental mutual information of Fig. 5.18. To investigate further, we increase the

density of mutual information calculations at |T | values near zero; that is, we compute the mutual information

as we increase |T | by a single frame (0.025 seconds) until |T | = 2s. We consider experiment AS-3, which

shows the most consistent leader-follower state in the alignment data (Fig. 5.6 and video data). This higher

granularity of computed mutual information of AS-3 is shown in Fig. 5.20, where there is an obvious peak on

the negative T axis. This visual asymmetry is consistent with the information presented in Fig. 5.6 where we

see that fish1 leads for nearly the entire experiment. In the case that the fish swim mostly smooth laps (as vs

77



other behaviors such as stillness, localized interaction, or possibly even erratic laps), we believe that the trend

of the experimental mutual information is consistent with our model findings, indicating that the dominant

leader fish will see overall higher mutual information compared to the follower. In our model, we are further

able to state the exact timescale of the leader-follower interaction, which is T ∗, and also is the exact location

of the mutual information peak. We would like to estimate the value of T ∗ from our experimental mutual

information data as well. To avoid assuming a peak where there is none (as in the positive T axis of Fig. 5.20

corresponding to fish0), we will non-parametrically smooth our data using locally estimated scatter plot

smoothing, or LOESS [14].

LOESS is a locally weighted regression procedure which uses least squares to minimize the error

between scatter plot points and a polynomial fit (therefore, it is non-parametric). LOESS takes in the

scatterplot data {xi, yi}, as well as a parameter f , which determines the fraction of data centered about each

(xi, yi) which will be used to perform the weighted regression. In Fig. 5.21 we show several LOESS fits of

MI(θ0(t); θ1(t+ T )) with T < 0 for AS-3, which we visually know has a strong peak favoring fish1 from

the data in Fig. 5.20. We see that for small f , the fit follows the noisiness of the data, but becomes smoother

as f is increased. For each fit, we can extract the location of the maximum value, which is also reported in

the legend. Even for f as large as 1/2 of the data, a max value at T = −0.575s is still reported, which is

substantial evidence that there is a peak in the mutual information on the negative T -axis for AS-3.

In Fig. C.19, we can see more explicitly how varying f changes the peak location for experiment AS-3.

Each individual plot shows the peak location |T | as a function of data fraction f for a given window size

W . For W = 5, we see a large stratification between the peak locations of fish1 (blue) and fish0 (red) up

until approximately f = 0.5. Beyond f = 0.5, the location of the peak of fish1 drops to |T | = 0.025s. The

value of T ∗ that we estimate is bounded below by the frame rate, which is 1/40 = 0.025s. We interpret this

as strong evidence that the true signaling timescale of fish1 in AS-3 is T ∗ ≤ 0.575 s, which is the largest

reported value of T for which a peak is detected as shown in Fig. C.19. Similarly, this evidence shows that

the peak value of fish0 is T ∗ ≤ 0.025. This coincides with Fig. 5.20, where we can see that there appears to

be no peak, and the data decays noisily from its maximum value that occurs at the smallest reported timescale

T = 0.025s.

In our model, T ∗ represents the time elapsed between leader fish’s positional update, and follower fish’s

positional update to the leader’s exact past position, plus noise. Agreement between the model and our

experimental findings suggests that our estimates for T ∗ report the amount of time needed for the signal
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(leader positional update) to be transmitted, received, interpreted, and reacted to by the follower, making T ∗

the reaction time of the fish. Therefore, experimentally estimated signaling timescales at T ∗ ∈ [0.025, 0.575]s

are similar to human reaction times [48].

5.7 Experimental Summary Analysis

In Fig. 5.23 and Fig. 5.24, we illustrate the decay structure of the mutual information and linear

correlations, respectively, for all experiments over a sampling window size of W = 10 s. For experiments in

which the fish are moving for most of the experimental time frame (AS-1, AS-2, AS-3, AS-4, AS-5, CS-3,

CS-4), we find that the mutual information follows an apparent exponential decay as T increases. We note

that for experiments where there is little to no movement (CS-2 and CS-5) the curves do not appear to decay

within the time delays considered (up until |T | = 45s). Although those experimental data report long-lasting

correlations (slowly decaying mutual information), this is misleading since observation of the system shows

little to no coordinated movement of fish. Therefore, although the correlations are high, they are trivial. Since

there is little motion, the fish positions are consistently similar, which would make consecutive positions

almost perfectly correlated for long time periods.

The correlation decay curves of these experiments decay as well, either in an exponential fashion or in

an oscillating fashion. For experiments in which there was mostly lap behavior (AS-2, AS-3, AS-5, CS-3,

and CS-4), the correlation function can be fitted to the form e−t/τ cos (ωt) with lap frequency ω where

2π
ω is approximately the average lap speed. These results are tabulated in Table 5.1 where Li is the total

number of laps swum by fish i counted throughout the experiment and ωi is the average fitted frequency of

correlation curves over W ∈ [5, 10, 20, 40]. In control experiments CS-3 and CS-4 the fish swim laps, but at

a slower pace than the agitated experiments AS-2, AS-3, and AS-5, which is reflected in lower oscillation

frequencies in the control experiments. Like the model correlations, the oscillations of these experimental

correlations merely report back the average lap speed of the fish. As in the case with the mutual information,

the correlations of CS-2 and CS-5 are trivially high, and do not oscillate since the experimental fish are mostly

immobile throughout these experiments. For this reason, we do not include them in Table 5.1.
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Experimental Average Lap Times
Experiment L0

N ·dt
2π
ω0

abs diff L1
N ·dt

2π
ω1

abs diff
AS-2 17.72 15.79 1.93 17.90 15.76 2.14
AS-3 20.81 23.63 2.82 21.06 25.91 4.85
AS-5 17.97 17.17 0.8 17.24 16.27 0.97
CS-3 20.68 21.63 0.95 20.21 21.54 1.33
CS-4 22.51 22.85 0.34 23.71 22.30 1.41

Table 5.1: Experimentally estimated average lap times.

5.8 Second Model

Analysis of the experimental data failed to explain why our experimental mutual information curves had

softer peaks than those generated by model data. One possible explanation is that the model only evolved the

angular position of the fish, without any radial movement, whereas the experimental fish evolved in both the

radial and angular coordinates. We propose a modified model in which the leader dynamics are unchanged

from the previous iteration, but we increase the follower noise, yielding the following rules. For the leader, as

before:

θL[t+ 1] = θL[t] + V∆t+∆WL[t] (5.3)

where Wt is a Wiener process and ∆WL[t] ∼ N(0, σ2∆t). We evolve the angular position of the follower

by placing it at the leader’s position at time t− T ∗ and adding noise which we scale by a factor s:

θF [t+ 1] = θL[t− T ∗] + s ·∆WF [t], T ∗ > 0 (5.4)

where Wt is a Wiener process and ∆WF [t] ∼ N(0, σ2∆t) as well. As before, the angular position of model

fish θi follows the dynamics of either θL or θF and transitions between these two states are governed by the

rate parameter α.

We aim to use this modified model to generate mutual information decay curves with “softer” peaks which

would be more similar to the experimental data. In Fig. 5.25, we can see that the peaks at |T | = T ∗ = 0.25

are difficult to see visually when s reaches only 2. Beyond s = 2 the peak at |T | = T ∗ = 0.25 is nearly

indistinguishable. To successfully obscure the peak for larger values of T ∗, we find that we need larger noise

scalings. In Fig. 5.26 and Fig. 5.27 where |T | = T ∗ = 0.5 and |T | = T ∗ = 1 respectively, we find that a

scaling of at least s = 5 is necessary to make the peaks less visible. While it appears that increasing the
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follower noise will make the peaks less visible, it also has the secondary effect of lowering the overall curve

height as compared to the experimental data. In general, the experimental data has higher maximum values

for very small |T | compared to the model mutual informations with scaled noise. Therefore, we conclude

that further modifications or additions the model would be necessary to better reproduce the trends seen in

the experimental data.

5.9 Conclusions

We collected experimental trajectory data of pairs of golden shiners in an annular tank under two different

experimental conditions (control and agitated). Our goal was to characterize the nature of interactions between

the fish. From video data, we found four major recurring behaviors and observed that the fish often cycled

through the same behavioral modes together. Positional asymmetries in these behavioral modes (one fish

positioned in front of the other) suggested a robust leader-follower dynamic. To characterize this dynamic, we

created a toy model that only contained leader-follower behavior in the model fish, and found that structure

of the time delayed mutual information between model fish recovered the signaling timescale parameter

T ∗ from the model. This signaling timescale T ∗ revealed itself as the location of a sharp peak (and local

maximum) in the mutual information curves.

Informed by our model, we estimated the time delayed mutual information between experimental fish

positions and found that peaks were difficult to find in the experimental mutual information curves. Using

a non-parametric data smoothing technique (LOESS), we were able to recover estimated peak locations in

several experiments; in particular experiments where we observed a strong and long lasting leader-follower

dynamic in the video data. These estimates for the signaling timescale T ∗ were similar to human reaction

times.

We found that by increasing the noise of the follower in the model, we were able to produce model

generated mutual information curves with softer peaks that were more similar to those of the experimental

data. This led us to suggest that the radial motion of the experimental fish, which is not considered in our

model, could be causing the experimental mutual information signal to be noisier than the model. Finally,

the two point correlation curves of both the model and experimental data revealed little about the dynamics;

the only recoverable information from the correlation data was the average lap time, which was found by

estimating the frequency of the oscillations within the correlation data.
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5.10 Future Work

In continuation of our work, we propose the application of our analysis methods to new experiments.

First, we propose to replace one fish with a “dummy” decoy leader fish that would only swim laps in the

annular tank. The intended effect of this would be to try eliminate non leader-follower behaviors so that

the experimental data would be more similar to the model generated data. We also propose to modify the

experimental setup by reducing the width of our annular tank to reduce the radial motion of the fish, enabling

us to better test our hypothesis that the radial motion of our experimental fish weakens the signal of the leader

follower dynamic in the angular data. Finally, we also propose to apply our metric pairwise to larger groups

to investigate whether leader-follower dynamics can be identified in more complicated circumstances and if

so, how their characterization differs from the pairwise case.
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Figure 5.16: In this plot we show how the mutual information computed at the true time lag T ∗ varies as T ∗

increases. We see that the mutual information is highest for small T ∗, and appears to decrease as T ∗ increases.
The values reported are the average of MI(θ0(t); θ1(t+ T ∗)) and MI(θ0(t); θ1(t− T ∗)) . Although there
appears to be noise, the overall trend is decreasing.

Figure 5.17: Similarly, we compute how the correlation at the true time lag T ∗ changes as T ∗ increases. The
values reported are the average of C(θ0(t); θ1(t+ T ∗)) and C(θ0(t); θ1(t− T ∗)) . Interestingly, despite the
fact that we are considering only the correlations at the true timescale of signal transfer, the maximum value
of the correlations continue to oscillate in a fashion that does not appear to be merely noise, as in the case of
the mutual informations.
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Figure 5.18: Mutual information decay for various window sizes W ∈ [5, 10, 20, 40] for AS-3.

Figure 5.19: Temporal correlation plots for various window sizes W ∈ [5, 10, 20, 40] for AS-3.
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Figure 5.20: Mutual information decay for W = 5 with more granularity in the reported mutual information
of AS-3 for smaller values of T .

Figure 5.21: Varying the data fraction f changes the smoothness of the LOESS fit of the mutual information
decay MI(θ0(t); θ1(t− T )) corresponding to the negative T axis in Fig. 5.20. Larger data fractions f return
smoother fits, whereas smaller fractions follow the noisiness of the data more closely.
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Figure 5.22: Varying the data fraction f changes the location of the maximum mutual information value,
which we believe reflects the true signaling timescale (T ∗) of the experiment. Similarly, choice of separation
window W changes the approximate peak location.

(a) Agitated MI Data

(b) Control MI Data

Figure 5.23: For a window size of W = 10, mutual information decay of the θ variables of each experiment
is shown. Left plots show the mutual information zoomed in on the T axis with higher granularity.
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(a) Agitated Correlation Data

(b) Control Correlation Data

Figure 5.24: For a window size of W = 10, correlation decay of the θ variables of each experiment is shown.
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Figure 5.25: Scaling the noise by a factor of 2 or more effectively makes the peak at |T | = T ∗ = 0.25
disappear.

Figure 5.26: Scaling the noise by a factor of 5 or more effectively makes the peak at |T | = T ∗ = 0.5
disappear.
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Figure 5.27: Scaling the noise by a factor of 10 or more effectively makes the peak at |T | = T ∗ = 1 disappear.
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CHAPTER 6

Conclusions

In this dissertation, we have explored some of the challenges that can arise when trying to understand

the self and pairwise interactions in active systems using only passively gathered path data. We found that

under the right conditions, the suite of current methods for analyzing interactions using path data could be

improved by including the time delayed mutual information. In particular, the condition that we proposed

was most important for this approach is that distribution from which the time series data is derived should be

stationary. We argued that spatial confinement was more likely to produce a system that reached a stationary

state and provided evidence that this was satisfied in the two systems we studied. Within this framework, we

successfully estimated the time delayed mutual information from the time series data using the approach in

[32] and showed that we could measure key features about our systems.

The first system that we studied was a microscale theoretical model of self avoidant swimming droplets

in which the “interaction rules” were mathematically defined within the model equations. In Chapter 3, we

showed the importance of using the correct model to represent the system dynamics; we found that our

self-avoidant swimming droplets sometimes engaged in transient, but unpredictable self-trapping, which

could not be explained by a simplified model (active Brownian motion). These unique behaviors within our

model were revealed by discrepancies within regular path data analysis tools, including the mean square

displacement and the velocity correlation function. We identified that the path feature associated to the

emergent transient self-trapping was periods of high curvature as the particle path became spiral-like during

self-trapping.

In Chapter 4, we rigorously analyzed the statistics of this path feature (curvature). First, we used

the multi-scale straightness index from [55] as an order parameter to track the curvature throughout the

experiment. This order parameter was itself a random variable which we called S(t) which has finite support

on the interval [0, 1]. Unlike the positional data X(t) which explored an infinite domain in our model, the

finite support of S(t) made the distribution of S(t) at long times far more likely to be stationary (unlike X(t)).

We argued that the assumption of stationary was satisfied based on the relatively constant mean and variance
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of the ensemble. Using the self time-delayed mutual information on the curvature data S(t), we found that

the mutual information decayed exponentially as a function of the time delay. The rate of this exponential

decay was able to detect differences in the memory expression of individual paths (shown in Fig. 4.11, across

variations in the memory strength of our model at the ensemble level (Fig. 4.16), and between our model and

two other models with deterministic sources of curvature (Fig. 4.17).

The second system that we studied in Chapter 5 was a macroscale active system of experimental golden

shiner pairs in which the exact interaction rules were unknown; we accompanied this experiment with

a reduced model in which the exact interaction rules were known. The experiments were carried out in

a controlled environment in which all extraneous environmental factors were removed; this allowed us

to gather data that was significantly longer than what is gathered in the wild and it removed possible

confounding environmental factors. The golden shiner pairs exhibited observable behavioral symmetry as

they cycled through similar behavioral modes together. There was notable positional asymmetry within these

behavioral modes- one fish was in front of the other in an apparent leader-follower configuration. Unlike the

swimming droplets, we were able to use the path data in our mutual information calculation since the confined

experimental setup made reduced the support of the positional random variables θ0(t) and θ1(t) to the finite

interval, [−π, π]. Therefore, at the long time scales which we had access to, the positional distributions of

θ0(t) and θ1(t) were likely stationary. By comparing our experimental results with our theoretical model of a

leader-follower pair, we estimated the signaling time scale (or reaction time), T ∗, of the fish when they were

in a leader-follower configuration as the peak or maximum value locations of the mutual information decay

curves (reference Fig. 5.11 with Fig. 5.20 and Fig. 5.21). The extraction of the signaling timescale T ∗ from

the experimental mutual information in agreement with our theoretical model is significant since it shows

that the follower fish not passively or coincidentally following a nearby fish, but it is actively altering its own

trajectory in response to the leader on the timescale T ∗. Therefore, rather than justifying our interpretation

with observations from biology, we show mathematically that there exists a leader-follower component to the

social behavior of golden shiners.

In this work, we leveraged long data sets (golden shiners) and our ability to generate path data for an

ensemble of agents (swimming droplets) to understand more fully the appropriate uses and conditions for

using mutual information on time series data. A especially notable feature of our work is the mathematically

rigorous treatment of dynamical correlations within time series data, which are overlooked in the current

literature. We showed that under the right circumstances, our approach is able to capture time-dependent
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nonlinear dynamics without conditioning on the past history of random variables (as is required for other

information theoretic metrics that are designed to detect causality, including transfer entropy and causation

entropy). Furthermore, we were able to accomplish this non-parametrically; the methods we developed are

versatile and could be applied to any time series data that is known to sample from a stationary distribution or

is likely to sample from a stationary distribution at long times due to either confinement or finite support.

Given our results, there are promising future directions for the method that we have introduced, including

the inclusion of other random variables into the mutual information calculation and motivation for different

experiments.
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APPENDIX A: SAMPLING SCHEME AND MUTUAL INFORMATION ESTIMATION
CODE

A.1 Time Delayed Sampling Scheme

Input data must be a pandas dataframe with uniquely labeled column headers. Time must also be

included as a column and it must be labeled as ’t’.

1 def sample_independent_windows(input_data, T_start, T_end, W,

2 Timelag):

3

4 # shape and label of final data

5 num_cols = np.shape(input_data)[1]

6 headers = [*list(input_data.columns)]

7

8 # find times corresponding to all windows/intervals

9 Int_start_times = np.linspace(T_start,T_end - W,

10 int((T_end-T_start)/W )) # start, end, number of windows

11

12 # make structure to record samples

13 initial_sample = np.ones((len(Int_start_times), num_cols))*np.NaN

14 lagged_sample = np.ones((len(Int_start_times), num_cols))*np.NaN

15

16 # go through all partitions

17 for i in range(0,len(Int_start_times)):

18

19 # pick out time slice and reindex so df.sample() works

20 partition = input_data[(input_data['t'] > Int_start_times[i])

21 & (input_data['t'] < (Int_start_times[i]

22 + int(W) ))].reset_index(drop=True)

23
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24 # take sample if partition is not empty

25 if(len(partition )>0):

26

27 #---take initial sample

28 sample_initial = partition.sample(n = 1, replace = False,

29 random_state = None)

30

31 # ---take timelagged sample

32 # start t

33 start = float(sample_initial['t'])

34

35 # identify end time of interval

36 target = float(sample_initial['t']) + Timelag

37

38 later_partition = input_data[(input_data['t'] >= start)

39 & (input_data['t'] <= target )].reset_index(drop=True)

40

41 #take the last item from later partition

42 new_data = later_partition.iloc[ -1 ]

43

44 initial_sample[i,:] = np.array([np.ravel(sample_initial)])

45 lagged_sample[i,:] = np.array([np.ravel(new_data)])

46

47 else:

48 i = i+1

49

50 initial_sample = pd.DataFrame(data=initial_sample,

51 columns=headers).dropna() #, index=sample.index)

52 lagged_sample = pd.DataFrame(data=lagged_sample,
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53 columns=headers).dropna()#, index=sample.index)

54

55 # check to see if lagged dataframe didn't have enough rows

56 # available at the end

57 if(len(initial_sample) - len(lagged_sample) != 0):

58 # find how many extra rows

59 mismatch = len(initial_sample)- len(lagged_sample)

60

61 # drop extra rows

62 initial_sample.drop(initial_sample.tail(mismatch).index,

63 inplace=True)

64

65 return(initial_sample, lagged_sample)

66

A.2 KNN Estimator for Mutual Information

As noted in [32], the distance function used to compute the max will vary depending on the data type. In

the code below, the data inputs are arrays of samples from the variable X and the variable Y . However, if X

and Y were angles, a modified distance function would need to be used to ensure that the minimum angle

between X and Y is used. (This is discussed in Chpater 5.)

1 def compute_MI(X, Y):

2

3 # ---- find nearest neighbor -----

4 L = len(X)

5 ni_X = []

6 ni_Y = []

7 for i in range(0, L):

8

9 # compute subspace dist between ref point and every other point
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10 d = []

11 dist = np.zeros((L,2))

12 for j in range(0,L):

13 temp_x = np.abs(X[i]- X[j])

14

15 temp_y = np.abs(Y[i]- Y[j])

16

17 d.append(max(temp_x,temp_y))

18

19 dist[j,:] = [temp_x, temp_y]

20

21 d = np.sort(d)

22

23 # record distance to nearest neighbor

24 ei = d[1]

25

26 dist_x = dist[:,0]

27 dist_y = dist[:,1]

28

29 # count neighbors in subspaces

30 num_X = len(dist_x[(0 < dist_x) & (dist_x < ei)])

31 num_Y = len(dist_y[(0 < dist_y) & (dist_y < ei)])

32

33 ni_X = np.append(ni_X,num_X)

34 ni_Y = np.append(ni_Y,num_Y)

35

36 nx = ni_X + 1

37 ny = ni_Y + 1

38
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39 I = digamma(K-1) - np.mean(digamma(nx) + digamma(ny)) + digamma(L)

40

41 return(I)
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APPENDIX B: ADDITIONAL CALCULATIONS FOR SWIMMING DROPLET MODEL

B.1 Solving the Diffusion Equation to Combine and Nondimensionalize the Coupled System

Consider the dimensional, 2D system given in Eq. (3.1). Taking the Fourier Transform of Eq. (3.1a) we

arrive at the ODE

ĉt +D|k|2ĉ = αDR2

2π
exp

[
−R

2

2
|k|2 + i(k ·X(t))

]
. (B.1)

We compute the integrating factor of Eq. (B.1) which is I = e
∫
D|k|2dt = eDt|k|

2

. From this Eq. (B.1) can be

rewritten as
d

dt

(
eDt|k|

2
ĉ
)
=
αDR2

2π
eDt|k|

2
e

[
−R2

2
|k|2+i(k·X(t))

]
. (B.2)

Integrating both sides of Eq. (B.2) gives the solution to Eq. (B.1)

ĉ =
αDR2

2π

∫ t

0
e−D(t−s)|k|2e

[
−R2

2
|k|2+i(k·X(s))

]
ds. (B.3)

Taking the inverse Fourier Transform of Eq. (B.3) yields the solution, c(x, t), to Eq. (3.1a), which is

c =
αDR2

2π

∫ t

0
(R2 + 2D(t− s))−1 · e−

|x−X(s)|2

2(R2+2D(t−s))ds. (B.4)

We can incorporate the solution to Eq. (3.1a), which is Eq. (B.4), into Eq. (3.1b) by taking the gradient, ∇c,

which is

∇c = −αDR
2

2π

∫ t

0
(R2 + 2D(t− s))−2(x−X(s)) · e−

|x−X(s)|2

2(R2+2D(t−s))ds. (B.5)

The SDE path evolution Eq. (3.1b) then becomes

dX =
αDβR

(2π)2

[∫ t

0
(R2 + 2D(t− s))−2

(∫
R2

(x−X(s)) · e−
|x−X(s)|2

2(R2+2D(t−s))
− |x−X(t)|2

2R2 dx

)
ds

]
dt+

√
σdW.

(B.6)

Evaluation of the spatial integral over R2 reduces Eq. (B.6) to

dX =
αDβR3

23π

[∫ t

0

(
(X(t)−X(s))e

− |X(t)−X(s)|2

4(R2+D(t−s)) (R2 +D(t− s))−2

)
ds

]
dt+

√
σdW. (B.7)

By nondimensionalizing under the scalings Y = X
R , τ = t

T , and B = W√
T

, Eq. (B.7) becomes

98



RdY =
αDβR3

23π

[∫ τ

0

(
e
− |RY(τ)−RY(ζ)|2

4(R2+DT (τ−ζ)) (RY(τ)−RY(ζ))(R2 +DT (τ − ζ))−2

)
Tdζ

]
Tdτ+

√
σTdB.

(B.8)

The SDE path evolution given by Eq. (B.8) then simplifies to

dY =
αDβR3T 2

23π

[∫ τ

0

(
e
− |RY(τ)−RY(ζ)|2

4(R2+DT (τ−ζ)) (Y(τ)−Y(ζ))(R2 +DT (τ − ζ))−2

)
dζ

]
dτ +

√
σT

R
dB

(B.9)

Incorporating the nondimensional parameters D → µ = DT
R2 , α → ϕ = αR2

2π , β → ν = βT
2πR , and

σ → ϵ = σT
R2 and exchanging s for ζ and t for τ for notational convenience we have the nondimensional SDE

path evolution equation

dY =
π

2
µνϕ

[∫ t

0

(
e
− |Y(t)−Y(s)|2

4(1+µ(t−s)) (Y(t)−Y(s))(1 + µ(t− s))−2

)
ds

]
dt+

√
ϵdB (B.10)

in agreement with Eq. (3.3).

B.2 Computation of the Velocity Integral Formulation Using a Dirac Delta Function

To assess the case in which the particle is considered a point source, we substitute the mollified delta

function, δR(x−X(t)) = 1
2πR2 e

− |x−X(t)|2

2R2 , in Eq. (3.2) for a Dirac delta function,

∂c

∂t
= D∆c+ αDδ2(x−X(t)) (B.11a)

dX(t) = −βR
(∫

Ω
δ2(x−X(t))∇cdx

)
dt+

√
σdW. (B.11b)

Here, δ2(x−X(t)) is a 2-dimensional Dirac delta function centered at X(t). The R2 in the source term of

the original PDE given by Eq. (3.1a) is no longer necessary. Accordingly, the units of α are [α] = c and the

units of β remain [β] = L
cT . Nondimensionalizing Eq. (B.11) with the scalings y = x

R , Y = X
R , τ = t

T , and

B = W√
T

and where µ = DT
R2 , ϕ = α

2π , ν = βT
R2π and ϵ = σT

R2 we arrive at the new system

∂c

∂t
= µ∆c+ 2πµϕδ2(y −Y(t)) (B.12a)
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dY(t) = −2πν

(∫
Ω
δ2(y −Y(t))∇cdy

)
dt+

√
ϵdB (B.12b)

where c, t and Ω are re-used for their non-dimensional versions for convenience.

As in the case with the sized particle, we take the Fourier Transform of the Eq. (B.12a) to arrive at the

ODE

ĉt + µ|k|2ĉ = µϕeik·Y(t). (B.13)

We compute the integrating factor of Eq. (B.13) which is I = e
∫
µ|k|2dt = eµt|k|

2

. From this, Eq. (B.13) can

be rewritten as
d

dt

(
ĉ · eµt|k|2

)
= µϕeik·Y(t) · eµt|k|2 . (B.14)

Integrating both sides of Eq. (B.14) gives

ĉ = µϕ

∫ t

0
e−µ(t−s)|k|

2+ik·Y(s)ds. (B.15)

We take the inverse Fourier Transform of Eq. (B.15) to find the solution to Eq. (B.12a), which is

c = µϕ

∫ t

0
(2µ(t− s))−1 e

− |y−Y(s)|2
4(µ(t−s)) ds. (B.16)

We incorporate the solution to Eq. (B.12a) into Eq. (B.12b) by computing the gradient ∇c of Eq. (B.16),

which is

∇c = −µϕ
∫ t

0

(y −Y(s))

(2µ(t− s))2
exp

[
−|y −Y(s)|2

4(µ(t− s))

]
ds. (B.17)

Eq. B.12b then becomes

dY(t) = νµϕ
π

2

∫ t

0
(µ(t− s))−2

∫
Ω
δ2(y −Y(t))(y −Y(s)) exp

[
−|y −Y(s)|2

4(µ(t− s))

]
dydsdt+

√
ϵdB.

(B.18)

Evaluation of the spatial integral over R2 reduces Eq. (B.18) to

dY(t) = νµϕ
π

2

∫ t

0
(µ(t− s))−2(Y(t)−Y(s)) exp

[
−|Y(t)−Y(s)|2

4(µ(t− s))

]
dsdt+

√
ϵdB. (B.19)

Now, suppose that: Y(t) = ⟨V t, 0⟩. This simplifies Eq. (B.19) to
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dY(t)

dt
= V = νµϕ

π

2

∫ t

−∞
(µ(t− s))−2(V t− V s) exp

[
−|V t− V s)|2

4(µ(t− s))

]
ds. (B.20)

By making the change of variables given by z = µ(t − s) and ds = − 1
µdz, we see that Eq. (B.20) is

considerably reduced to

V = νµϕ
π

2

∫ ∞

0
z−1V

µ
exp

[
−
(
V

µ

)2 z

4

]
dz. (B.21)

After some further simplification we arrive at the following expression,

1 =
π

2

ν

µ
ϕ

∫ ∞

0

1

z
exp

[
−
(
V

µ

)2 z

4

]
1

µ
dz. (B.22)

This integral on the right hand side is not pointwise convergent for finite V and thus indicates that when we

consider the particle to be a point source with the self-avoidant memory that we have defined, the particle

does not swim.

B.3 Computation of the Hover Height Integral Formulation

This calculation is included for completeness, since this work is reproduced from [15]. In [15],

the calculation was not completed by the author of this dissertation. To show that the presented model

also reproduces the experimentally-observed hovering of the droplets above the bottom place, we set the

second component of the position Y in the direction perpendicular to the bottom plate, and add a constant

non-dimensional gravitational force fg. We then seek a steady state solution of the form Y = (0, h) for non-

dimensional hover height h of the droplet’s center with reflecting boundary condition for the concentration

field at y = (x1, 0) with x1 ∈ R. Using the model formulation in Eq. (3.3) we can account for this boundary

condition using the standard trick of placing an image particle at Y∗ = (x1,−x2). The resulting equation for

the position Y including the image particle Y∗ and the gravitational force is

dY =
π

2
µνϕ

∫ t

0
exp

[
−|Y(t)−Y(s)|2
4(1 + µ(t− s))

]
(1 + µ(t− s))−2(Y(t)−Y(s))dsdt

+
π

2
µνϕ

∫ t

0
exp

[
−|Y(t)−Y∗(s)|2

4(1 + µ(t− s))

]
(1 + µ(t− s))−2(Y(t)−Y∗(s))dsdt− (0, fg) +

√
ϵdB.

(B.23)
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Figure B.1: Solutions to Eq. (B.25) for the hover-height h of the droplet’s center above the bottom plate as
a function of fg/πνϕ. Beyond a critical value of fg/πνϕ (corresponding to h ≈ 1) the droplets no longer
hover but sit on the bottom plate.

Isolating the second component, and looking for solutions Y = (0, h) and Y∗ = (0,−h) for all time, with

no noise (ϵ = 0) we arrive at

fg = πµνϕ

∫ t

−∞
exp

[
− h2

(1 + µ(t− s))

]
(1 + µ(t− s))−2hds. (B.24)

Under the change of variables z = µ(t− s), the above is equivalent to

fg = πνϕ

∫ ∞

0
exp

[
− h2

1 + z

]
h

(1 + z)2
dz (B.25)

which is independent of the memory timescale µ−1 as one might intuitively expect.

Numerically-determined solutions to Eq. (B.25) as a function of fg/πνϕ are shown in Fig. B.1. Beyond

a critical value of this parameter grouping, the droplets would no longer hover and rather fall to the bottom.

Note this occurs at about h = 1 which is the non-dimensional radius R; the unstable solutions are within the

fictitious boundary of the droplets. A qualitative comparison to the experimental results of Fig. 3 in Ref. [44]

reveals two similar trends. First, increased SDS concentration yields a higher hover height. In our model, this

roughly corresponds to a stronger response to the concentration gradient, or the parameter ν. Increasing ν

similarly increases the hover height. Second, increased radius of the particles decreased the hover height.

In our model, this roughly corresponds to increasing the non-dimensional gravitational force fg which too

decreases the hover height.

102



B.4 Computing the Small Time Asymptotics of the Active Brownian MSD

Recall the MSD given for the active Brownian particle (ABP) model with translational noise and

rotational diffusion given in Eq. (3.6):

E[X(t)2] = 4V 2τ2
[
2
(
e−

t
2τ − 1

)
+
t

τ

]
+ 2ϵt (B.26)

Starting from the MSD in Eq. (3.7) for the ABP model, we rewrite the exponential as an infinite series to

arrive at

E[X(t)2] = 4V 2τ2

[
2

( ∞∑
n=0

1

n!

(
− t

2τ

)n
− 1

)
+
t

τ

]
+ 2ϵt. (B.27)

This is asymptotic to

E[X(t)2] ≈ 4V 2τ2
[
2

((
1− t

2τ
+

t2

8τ2

)
− 1

)
+
t

τ

]
+ 2ϵt (B.28)

as t→ 0 by just retaining a few leading order terms.

In the small time scale regime where tn ≫ tn+1, we see that

E[X(t)2] ≈ V 2t2 + 2ϵt (B.29)

we obtain Eq. (3.10). This expression is dominated by the diffusion-generated term 2ϵt at the smallest time

scales (where t≫ t2) and dominated by the directed motion term V 2t2 when t2 becomes sufficiently larger

than t.

Returning to Eq. (3.7) in the large timescale regime where t≫ τ , we see that

e−
t
2τ → 0

and therefore

E[X(t)2] ≈ (4V 2τ + 2ϵ)t

as given by Eq. (3.11). This expression contains the amount of enhanced diffusion, 4V 2τ2.
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B.5 Computing MSD and OCF from Position Time Series Generated by the Model

Absent a closed form expression for the mean square displacement of our model, we compute the

empirical MSD from the position time series of length N + 1 given by X(t): {X(0), . . . ,X(N)}. To avoid

introducing any correlations into the increment averages, we use non-overlapping increments. To achieve

statistical accuracy, we then average over many simulated trajectories. We denote the integer lag time as

∆L indicating the displacement traveled by the particle between observations j and j +∆L and given by

X(j +∆L)−X(j). The total number of non-overlapping increments of length ∆L in a time series of length

N + 1 is k = ⌊
(
N+1
∆L

)
⌋. (In the event that the index lag length ∆L does not evenly divide the number of

increments N + 1, we remove the extra data from the beginning of the time.) Thus, the empirical formula for

the mean square displacement over the lag time ∆L of a single particle is given by

∆L2 =
1

k − 1

k∑
i=1

(X(N − (i− 1) ·∆L)−X(N − i ·∆L))2. (B.30)

As shown in Fig. B.2, successive increases in ∆L result in a sampling process which coarse grains the

position time series.

Using the same partitioning process described above and shown in Fig. B.2 we can compute the non-

overlapping displacements and find the cosine between consecutive pairs. The resulting time average of these

computed cosines gives the orientation correlation function, for which the formula is given in Eq. (3.12).
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Figure B.2: Position time series of a sample trajectory with coarse grained lag times of 10 increments. Panel
(a) includes entire trajectory and panel (b) is the inset identified with the dashed square.
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APPENDIX C: SUPPLEMENTAL FIGURES TO GOLDEN SHINER BEHAVIORAL ANAL-
YSIS

C.1 Supplemental Figures to Experimental Golden Shiner Behavioral Analysis

Figure C.1: Alignment data of AS-1.

Figure C.2: Alignment data of AS-2.
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Figure C.3: Alignment data of AS-3.

Figure C.4: Alignment data of AS-4.
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Figure C.5: Alignment data of AS-5.

Figure C.6: Alignment data of CS-2.
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Figure C.7: Alignment data of CS-3.

Figure C.8: Alignment data of CS-4.
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Figure C.9: Alignment data of CS-5.

Figure C.10: Mutual information of AS-1.
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Figure C.11: Mutual information of AS-2.

Figure C.12: Mutual information of AS-3.

Figure C.13: Mutual information of AS-4.

111



Figure C.14: Mutual information of AS-5. Note different axes in left hand figure compared to other agitated
experimental mutual information plots.

Figure C.15: Mutual information of CS-2.
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Figure C.16: Mutual information of CS-3.

Figure C.17: Mutual information of CS-3.

Figure C.18: Mutual information of CS-5.
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(a) AS-1 LOESS fitted peak locations

(b) AS-2 LOESS fitted peak locations

(c) AS-3 LOESS fitted peak locations

(d) AS-4 LOESS fitted peak locations

(e) AS-5 LOESS fitted peak locations

Figure C.19: Varying the data fraction f changes the location of the maximum mutual information value,
which we believe reflects the true signaling timescale (T ∗) of the experiment. Similarly, choice of separation
window W changes the approximate peak location.
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(a) CS-2 LOESS fitted peak locations

(b) CS-3 LOESS fitted peak locations

(c) CS-4 LOESS fitted peak locations

(d) CS-5 LOESS fitted peak locations

Figure C.20: Varying the data fraction f changes the location of the maximum mutual information value,
which we believe reflects the true signaling timescale (T ∗) of the experiment. Similarly, choice of separation
window W changes the approximate peak location.
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