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ABSTRACT

Katherine E. Slyman: Rate and Noise-Induced Tipping Working in Concert
(Under the direction of Christopher K.R.T. Jones)

Tipping is the rapid, and often irreversible, change in the state of a system5. Rate-induced tipping occurs

when a ramp parameter changes rapidly enough to cause the system to tip between co-existing, attracting

states, while noise-induced tipping occurs when there are random transitions between two attractors of the

underlying deterministic system. This work builds theory for tipping events in low-dimensional dynamical

systems with additive noise and time-dependent parameters, in which noise is not vanishingly small. The

central question is understanding what information can be extracted from the theory of large deviations

for noise levels outside the validity of the approach, where the guiding principles are geometric dynamical

systems methods and Monte Carlo simulations. Both tipping mechanisms are first considered within a model

of the oceanic carbon cycle, in which the key objective is understanding how the system tips from a stable

fixed point to a stable periodic orbit. While rate-induced tipping away from the fixed point is straightforward,

the noise-induced tipping is challenging due to a periodic orbit forming the basin boundary for tipping.

Noisy trajectories will tend to cycle around the periodic orbit as the noise vanishes, but as the noise becomes

slightly larger, the escaping paths become resistant to cycling. An interesting phenomena exposed is that

a subset of the unstable manifold of the fixed point in the Euler-Lagrange system, with Maslov index zero,

determines where the noisy trajectories escape. After considering tipping mechanisms individually, we

consider a one-dimensional differential equation with both additive noise and a ramp parameter. The addition

of noise to the system can cause it to tip well below the critical rate at which rate-induced tipping would

occur. We achieve this by finding a global minimizer of the Freidlin-Wentzell functional of large deviation

theory that represents the most probable path for tipping. This is realized as a heteroclinic connection for

the Euler-Lagrange system associated with the Freidlin-Wentzell action and it exists for all rates less than or

equal to the critical rate. This framework is extended to show the existence of a heteroclinic orbit for a fairly

general class of functions.
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CHAPTER 1

Introduction

The Intergovernmental Panel on Climate Change (IPCC)15 defines a tipping point as "a level of change

in system properties beyond which a system reorganises, often in a nonlinear manner, and does not return

to the initial state even if the drivers of the change are abated." For climate systems, tipping points refer to

critical thresholds when global or regional climate switch stable states15. However, keeping the definition of

tipping points free of specific applications, tipping points occur when a change to a parameter or variable

causes an abrupt change to the state of the system.

Tipping dynamics can best be understood in bistable systems, where qualitatively different stable states

coexist for a given set of parameters within the system26. For a system initialized near a stable state, as the

external conditions on the system change with time, we would expect that the stable state changes along with

it, though not drastically. This phenomenon is described as a moving stable state43. Often, the system is able

to adapt to changing external conditions and continuously track the moving stable state. If the system is able

to track the moving stable state, no tipping occurs in the system, but this is not always possible. Many systems

exhibit these multiple, alternative stable states where underlying dynamics, parameter values, or stochasticity

can cause the abrupt shift from one stable state to another, such that the system cannot continuously track

the stable state. So how should these transitions be classified? There are three main mechanisms for tipping

in dynamical systems: bifurcation-induced, rate-induced, and noise-induced6. They have been classified

according to whether they involve a bifurcation in the system (B-tipping), a parameter shift (R-tipping), or the

addition of random fluctuations (N-tipping). Unlike B-tipping, with R-tipping there is no bifurcation in the

system to explain the change of stability of a fixed point. B-tipping and R-tipping both occur in deterministic

systems, while N-tipping requires a stochastic component. A combination of different mechanisms can also

lead to tipping.

This dissertation focuses on the occurrence of a parameter shift (R-tipping), the addition of random

fluctuations (N-tipping), as well as their interplay.

1



1.1 The Main Problem

The main objectives of this work are to build and present a theory for understanding tipping events in

low-dimensional dynamical systems with additive noise and time-dependent parameters. The underlying

motivation is to understand the interplay of rate and noise-induced tipping, mainly, how the two mechanisms

can induce tipping together when individually it is impossible or unlikely. The guiding principles of this work

come from geometric dynamical systems methods along with numerical simulations for corroboration and

visualization. This approach implies we juggle between two points of view in these problems: the dynamical

systems perspective and the stochastic perspective.

Many of the applications we have interest in, and are motivated by, have nonvanishingly small noise

levels, leading to the central questions explored: to what extent does the Freidlin-Wentzell theory of large

deviations hold for small levels of noise, away from the limit, and what information can be extracted from this

theory when the levels of noise are seemingly outside the validity of the approach? The following elements

create the foundation for approaching this question.

1. The Euler-Lagrange equations are derived from the minimization of the Freidlin-Wentzell action

functional, and then are recast as a Hamiltonian system.

2. The unstable and stable manifolds for the base and threshold states in this Hamiltonian system,

respectively, are found analytically and or computationally.

3. The heteroclinic orbits, that arise from the transverse intersections of these manifolds, are also found

analytically and or computationally.

4. Monte Carlo simulations are used as a way to gain insight into noisy behavior and to corroborate most

probable path results. This includes determination of convergence of the simulations for different

events. See Chapter 3.2 for further explanation.

Considerable insight can be gained from using both the dynamical systems and stochastic perspectives.

In Chapter 4, an oceanic carbon cycle model is explored in which the focus is on the escape from a fixed

point through an unstable periodic orbit, both due to a time-dependent parameter as well as noise, but as

separate phenomena. In the noisy system, in the small noise limit, realizations should cycle around the

unstable periodic orbit16. However, away from the limit, we see something quite different: the Monte Carlo

simulations show there is a specific region on the unstable periodic orbit where trajectories escape. The goal
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is to explain from the dynamical systems point of view why this different behavior occurs. We find two

heteroclinic orbits form the boundaries of these escaping trajectories. There exists a subset of the unstable

manifold of the stable fixed point that is comprised of local minimizers, and an interesting phenomena

discovered is that this subset of local minimizers is actually what determines where the noisy trajectories

escape. In Chapter 5, the main focus is a canonical problem where the system has both a time-dependent

component and a stochastic component. We study tipping between two saddle nodes in order to learn

to what extent rate and noise act in concert to enhance the likelihood of tipping. It is revealed that the

Freidlin-Wentzell theory still holds in regard to the dynamical structure for small noise strengths, namely that

the heteroclinic connection is the most probable path. The upshot of this work is that this most probable path

is unambiguous, as it has the least action value, and the Monte Carlo simulations center around this path. The

work finishes in Chapter 6 with generalizing the nonlinearity within the rate and noise canonical problem for

a fairly general class of functions.

1.2 Motivation

The primary motivation of this work relates to climate subsystems. The Earth’s climate is changing due

to steadily warming temperatures caused by rising levels of greenhouse gases15. There are parts of the Earth

system that have the potential for large, abrupt, and irreversible transitions in response to this warming that

could lead to cascading effects15. These changes can be characterized as tipping points15 and as presented by

Lenton 30 and Lenton et al. 31 , there are many such examples: Greenland ice sheet loss, break-off of Antarctic

ice-sheets, boreal forest dieback, and permafrost loss, to name a few. Given the magnitude of the impacts of

these phenomena, a comprehensive understanding of tipping phenomena is needed to predict, and attempt to

mitigate, these irreparable changes. There are other major reasons to care about climate change: it has played

a role in the collapse of human societies, it exacerbates infectious disease spread and spillover risk, and it

affects the severity of extreme weather events27.

The theoretical and computational tools used in these applications can be adapted to application in social

systems, as tipping points also exist in social systems, and promise to have equal significance. Examples of

tipping points in social systems include the disappearance of the gender gap in American higher education in

the 1970s2 and the rapidly increasing number of people in 2013 who signalled their support for same-sex

marriage3. Even the attempts to stop tipping within the above-mentioned climate subsystems are related

to tipping points in social change and human behavior, as practical solutions to climate change rely on the

collective action of individuals. There is unequivocal evidence that human activity is the principal cause
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for the Earth’s warming15, so stabilizing the climate system critically depends on activating contagious and

fast-spreading processes of social and technological change34. This corresponds to finding positive tipping

points in the changing attitudes about climate change. For example, this theory could be used to help tip

social norms about electric vehicle use or to promote the decarbonization of the power sector39.

As seen above, there can be either undesirable or desirable outcomes as a result of tipping within a system.

Desirable outcomes related to positive tipping points include the extinction of an infectious disease, the

eradication of an ecological pest, or the spread of changing climate opinions, while undesirable outcomes

would occur when climate subsystems fail or at the outbreak of an infectious disease. Due to the diversity

of important applications, understanding the mathematics of tipping promises to have significant impact on

many existing and reoccurring problems in our current society.

In recent years, there has been an increase in the use of stochastic systems to model a variety of important

phenomena, including climate, biological, ecological, and epidemiological systems; these applications are

directly related to our motivation. Within these stochastic models the main investigations include studying

how noise affects these phenomena on a variety of scales and determining if noise can induce rare transitions21.

The goal of understanding these phenomena demonstrate the demand for developing methods that quantify

the impacts of noise in these complex systems.

In addition, within relevant models, there are many such parameters that could realistically be time-

dependent or have time-varying external conditions, emphasizing a second demand for synthesizing tech-

niques of rate-induced tipping with those of noise-induced tipping.

1.3 Historical Background

1.3.1 Rate-Induced Tipping

Of the three major tipping mechanisms, rate-induced tipping is the most recently analyzed. The first

paper in which rate-induced tipping was described and written about formally was by Ashwin et al. 6 , though

it was recognized as a new tipping mechanism in the work of Wieczorek et al. 42 . The context of the study of

rate-induced tipping has largely been for deterministic, continuous time systems of the form

ẋ = f (x,Λ(rt)), (1.1)

and determining the system’s sensitivity on the parameter shift Λ(rt). There has also been recent research on

rate-induced tipping in discrete-time maps28 as well as in some noisy systems36, 37.
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The definition and language of rate-induced tipping has continued to evolve over the last decade with the

aim of creating the most accurate and encompassing definition as possible. Initially, rate-induced tipping was

defined for when trajectories left a predetermined radius around a stable quasistatic equilibrium (QSE)6.

It progressed then to studying the behavior of a local pullback attractor, a trajectory xr(t) dependent on

the size of r such that lim
t→−∞

xr(t) is the QSE at the start of the parameter shift. If lim
t→∞

xr(t) converged to the

stable QSE at the end of the parameter shift, the solution was said to end-point track the stable QSE, as the

trajectory tracked the moving stable state from its initial to ending place. Otherwise it failed to end-point

track the stable QSE, and rate-induced tipping occurred5.

Most recently still, using the behavior of trajectories, rate-induced tipping occurs if a trajectory initialized

at a hyperbolic sink tends to a regular edge state, defined as a compact hyperbolic invariant set with one

unstable direction and orientable stable manifold lying on a basin boundary in the frozen time system43. We

will use the definition from Wieczorek et al. 43 , as seen in Chapter 2.1.

While the definition and language of rate-induced tipping have evolved, so have the methods to study

these nonautonomous systems. Initially, to deal with a nonautonomous system, the strategy was to rewrite it

as a first order autonomous system by creating a new function s = rt or s = t. The derivative of the function,

ṡ, added a first order equation to the system. More recently, a compactification technique was developed by

Wieczorek et al. 44 . This process turns the nonautonomous system into a higher dimensional first order system

by making a coordinate transform that allows ṡ to be a function of s. The resulting system has equililbria and

invariant sets, implying a dynamical systems perspective can be taken to study rate-induced tipping. This

technique turns the rate-induced tipping problem in the nonautonomous system into finding a heteroclinic

orbit in the autonomous compactified system.

1.3.2 Noise-Induced Tipping

Noise-induced tipping encompasses a range of phenomena, including transitions between metastable

states and bursting behavior. The study of noise-induced tipping has been governed by the Freidlin-Wentzell

theory of large deviations. This framework is fully presented in Freidlin and Wentzell’s monograph23,

Forgoston and Moore’s review article21, and for gradient systems in Berglund’s review article9.

This theory provides the basis to find the expected time of switching between coexisting stable states and

how to determine the most probable path of escape between these states, defining the most probable path as

the path that is most likely to occur among all possible paths21. This path will exhibit the highest probability

among all the paths connecting the initial and final states. Therefore, the most probable path can be thought
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of as the mode of a probability distribution of escaping paths. Using the theory of large deviations, the most

probable paths of escape should minimize the Freidlin-Wentzell functional. Computing minimizers of this

functional over all paths and all travel times provide an estimation for the optimal path, though it is often

approximated by finding critical points of the functional.

The theory of large deviations is rooted in the study of systems whose underlying deterministic dynamics

are gradient. In these gradient systems, it is straightforward to calculate the expected time to tip between stable

states of the corresponding deterministic system as well as the transition paths of maximal likelihood between

them. For non-gradient systems, Freidlin and Wentzell introduced the quasipotential as a way to quantify

these same stochastic dynamics. The quasipotential is calculated by solving the static Hamilton-Jacobi

equations33, though it is a numerically difficult task. Cameron 12 made significant headway as she developed

a numerical algorithm for the computation of quasipotentials based on the ordered upwind method: a method

used to approximate the solution of static Hamilton-Jacobi equations12. Even as numerical methods keep

developing, it remains a challenge to find the quasipotential.

From the dynamical systems perspective, the quasipotential is related to the projection of an unstable

manifold in the Hamiltonian system derived from the Euler-Lagrange equations that come from the mini-

mization of the Freidlin-Wentzell action functional17. Using this framework, a dynamical systems approach

can be taken to the quasipotential and the most probable escape path. The advantage of this approach is that

in some ways, fixed points and invariant sets have more tangibility than the quasipotential. Also, as this work

is for lower-dimensional dynamical systems, implying it is feasible and easier to generate unstable manifolds

of base states than to generate the quasipotential.

To complement the first two approaches, as well as to aid in providing a full picture of the dynamics,

requires the use of numerical simulations. Monte Carlo simulations provide a useful tool in collecting noisy

realizations, which can be visualized to find where noisy trajectories escape or finding the expected time for

escape. To compute expectations and the most probable escape path, empirically, we use the Monte Carlo

method in which the event is simulated multiple times until it forms a converged distribution on which a

statistical analysis can be run. The difficulty of this approach stems from the fact that the tipping events of

interest are actually very unlikely to occur, and form a very small subset of the behaviors the system can

exhibit. One method to implement this strategy requires the use of importance sampling45. This technique is

necessary for smaller noise strengths because tipping occurs at a much lower frequency and more realizations

are needed to get converged data. Importance sampling biases realizations towards the rare event, speeding
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up the time needed to find converged sets of Monte Carlo simulations.

1.4 Challenges and Difficulties

While the Freidlin-Wentzell theory is a well-developed mathematical framework to understand alternative

stable states in stochastic systems, it does have a shortcoming. The theory was developed for vanishingly

small noise, also known as the small noise limit23. This is a serious issue for the motivating applications

since for many of these applications, the small to intermediate levels of noise are actually more realistic

and appropriate. For these larger levels of noise, the transient behavior of the underlying deterministic

system becomes relevant. As the larger noise tends to impact the system sooner, and not asymptotically, it

interacts with the transient dynamics. Underlying this work with the dynamical systems perspective of the

quasipotential gives insight into these transient dynamics.

Another challenge is that the complex systems mentioned thus far are not uniquely affected by only

one tipping mechanism. For instance, climate change is a rate-induced tipping problem but it is also a

noisy system. These two components are true for many relevant climate subsystems. Many conceptual

models of climate systems contain multiple mechanisms that can induce tipping, so there is a clear need

for mathematical approaches that combine techniques from both rate-induced and noise-induced tipping.

However, as mentioned earlier, there is not much theory related to systems with both additive noise and a

ramp parameter, except for the work of Ritchie and Sieber 36 , 37.
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CHAPTER 2

Background on Tipping Mechanisms

2.1 Rate-Induced Tipping

Rate-induced tipping occurs when a sufficiently quick change to the parameter of a system may cause the

system to move away from one attractor to another6. An analogy to illustrate this tipping mechanism relates

to the party trick of pulling a tablecloth out from underneath a set of dishes on a table. If the tablecloth is

pulled slowly, it carries all of the dishes with it. Alternatively, if the tablecloth is pulled quickly enough, the

dishes will remain on the table. There are two distinct outcomes in this situation. It is not how far one pulls

the tablecloth, but actually the speed at which the tablecloth is pulled, that determines this outcome. Likewise

with rate-induced tipping, the behavior of the solutions is not determined by how much a parameter changes,

but by how quickly it changes in time.

Following the work of Ashwin et al. 5 , 6 and Wieczorek et al. 43 , we lay out the framework needed to

describe rate-induced tipping more formally and also introduce notations used throughout this work.

Consider the autonomous differential equation

ẋ = f (x,λ ), (2.1)

where x ∈ Rn,λ ∈ Rm, f ∈ C2(Rm+n,Rn), t ∈ R, and ẋ is the derivative of x with respect to time, dx
dt . Now,

instead of a fixed λ , suppose that λ changes in time. We replace λ with an external input Λr(t) = Λ(rt) ∈

C2(R,Rm), r ∈ R> 0, and specifically assume that Λr is bi-asymptotically constant. This implies that Λr is a

parameter shift that satisfies

lim
t→−∞

Λr(t) = λ− ∈ Rm and lim
t→∞

Λr(t) = λ+ ∈ Rm,

where λ− is the past limit state and λ+ is the future limit state. In addition to assuming that Λr is bi-

asymptotically constant, assume that Λr is monotonically increasing, and that

λ− < Λr < λ+.
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These assumptions on Λr allow a gradual transition between λ− and λ+ in time, where the size of r, the rate

parameter, determines how quickly Λr transitions between λ− and λ+. While there are different types of

functions that fit this criteria, we use transformations on a hyperbolic tangent function as Λr. The external

input Λr is also called a ramp function or a ramp parameter.

Definition 2.1.1. Suppose Λr(t) is a bi-asymptotically constant external input, with future limit state λ+

and past limit state λ−. Suppose that for all t ∈ R, X(t) is a fixed point of (2.1) when λ = Λr(t) such that

(t,X(t)) is a connected curve, and when λ±,X(t) = X±. Then (t,X(t)) is a stable (unstable) path if X(t) is

an attracting (repelling) fixed point for all t. These paths can be referred to as paths of stable (unstable) fixed

points in the frozen time system.

Replacing λ with Λr(t) in (2.1) leads to

ẋ = f (x,Λr(t)), (2.2)

where x ∈ Rn,Λr(t) ∈ Rm, f ∈ C2(Rm+n,Rn), t ∈ R, and r ∈ R. Solution behaviors of (2.2) change for

different values of r. Let xr∗(x0) denote a solution to system (2.2) initialized at x = x0 with r = r∗. We define

rate-induced tipping using the definition of Wieczorek et al. 43 below.

Definition 2.1.2. Consider an nonautonomous system (2.2) with a bi-asymptotically constant external

input Λr(t), with future limit state λ+ and past limit state λ−. Suppose that when Λr = λ−, the system

has a hyperbolic sink e−, and when Λr = λ+, the system has a compact invariant set η+ that is not an

attractor. The system (2.2) undergoes rate-induced tipping from e− if there are rates 0 < r2 < r1 such that

limt→∞ xr1(e−)→ η+ and limt→∞ xr2(e−)↛ η+. The first value of r such that limt→∞ xr(e−)→ η+ is called

the critical rate and is denoted by rc.

Definition 2.1.3. Suppose that when Λr(t) = λ system (2.2) has a hyperbolic sink e−. The basin of attraction

for e− is defined as B(e−,λ ) = {x | limt→∞ x(t) = e−} .

Essentially, if r < rc, solutions will end-point track the path of fixed points in the frozen time system on

which they were initialized. When r = rc, the solution tips to the basin boundary of e−, and when r > rc,

the solution either tips to infinity or a different attractor, as it left the basin of attraction for e−. It is worth

mentioning that not all choices of Λr result in rate-induced tipping. There is theory to determine if a system

will or will not tip with a chosen Λr, and the conditions change based on the dimension of the system. The
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conditions for a system to undergo rate-induced tipping are the same for x ∈ Rn, for n ≥ 1. From the work of

Ashwin et al. 5 , and Kiers and Jones 29 , we have the following theorem.

Theorem 2.1.4. Suppose Λr gives rise to a stable path (t,X(t)) in (2.2) with x ∈ Rn, for n ≥ 1, and

X± = limt→∞ X(t). When Λr = λ−, assume the system has an attracting equilibrium X−. If there is a

Y+ , X+ such that Y+ is an attracting equilibrium of (2.1) for λ = λ+, and X− ∈ B(Y+,λ+), then there is

rate-induced tipping away from X− to Y+ for this Λr, for sufficiently large r > 0.

The goal is to use both geometric and analytical tools from dynamical systems to gain insights into the

mechanism of the rate-induced tipping. However, after introducing Λr, (2.2) is a nonautonomous system.

The system in (2.2) must be converted to an equivalent autonomous system in order to apply these tools.

There are two main approaches for converting (2.2) back into an autonomous equation. The standard

approach to investigate rate-induced tipping is to augment the system by introducing a new variable, s = t.

Making the corresponding substitutions and differentiating, results in the n+ 1-dimensional autonomous

system given by

ẋ = f (x,Λr(s)),

ṡ = 1.

While this method is well-suited for numerical computations, it does not have the underlying structure to

approach the problem from a dynamical systems perspective; there are no fixed points as ṡ will never equal

zero.

The alternative approach to convert the nonautonomous system (2.2) into an autonomous system is to

use compactification44. In this process, the invertibility of the time-dependent parameter is used to make

a coordinate transform and then the system is augmented into an autonomous n+1-dimensional extended

system. The compactified system will contain equilibria and compact invariant sets in the extended phase

space, such as unstable and stable manifolds, allowing us to use tools and methods from dynamical systems

to study the compactifed system. Solutions of (2.2) that remain bounded as t →±∞ become heteroclinic

connections in the compactified system44. Therefore, compactification transforms the rate-induced tipping

problem into a heteroclinic connection problem, allowing the analysis of nonautonomous rate-induced tipping

in finite phase space. From a big picture perspective, compactification ‘glues’ the dynamics at infinity onto a

finite phase space.

The first step to compactify a system is to augment the system with y = Λr(t) as an additional dependent
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variable, where Λr is bi-asymptotically constant, as hypothesized above. Based on the assumptions of Λr(t),

y is invertible. Due to this invertibility of y, the differentiation and substitution results in the n+1 first order

system given by

ẋ = f (x,Λr(Λ
−1
r (y))) = f (x,y),

ẏ = Λ̇r(Λ
−1
r (y)),

(2.3)

where y ∈ (λ−,λ+). The second step is to make the y-interval closed by including the future and past limit

states of Λr : λ±. This process creates an autonomous compactified system that is defined on the extended

phase space.

To highlight these two methods for studying rate-induced tipping, we consider the system

ẋ =−(x−λ )(x−λ −1)(x−λ −2), (2.4)

where we replace λ with a time-changing parameter Λr(t) = 1+ tanh(rt). Notice that (2.4) has three fixed

points: x = λ ,λ + 1, and λ + 2, where x = λ ,λ + 2 are stable and x = λ + 1 is unstable. Approach 1 is

demonstrated in Example 2.1.5 and Approach 2 demonstrated in Example 2.1.6.

Example 2.1.5. (Approach 1)

Consider

ẋ =−(x−Λr(t))(x−Λr(t)−1)(x−Λr(t)−2). (2.5)

Solving ẋ = 0 in (2.5) implies that there are three branches of equilibria in the frozen time system, x =

Λr(t),x = 1+Λr(t), and x = 2+Λr(t), where as t →−∞,x → 0,1,2, and as t → ∞,x → 2,3,4. The two

branches of equilibria x = Λr(t) and x = 2+Λr(t) track the stable fixed points of (2.5) in the frozen time

system, while the branch x = 1+Λr(t) tracks the unstable fixed point of (2.5) in the frozen time system.

Using the first approach, we set s = t and augment (2.5) to become

ẋ =−(x−Λr(s))(x−Λr(s)−1)(x−Λr(s)−2),

ṡ = 1.
(2.6)

Initializing the system on the upper branch at x = 2,s =−10, there are different solution behaviors depending

on the size of r, as shown in Figure 2.1. Notice for r < rc, the system does not tip, but for r ≥ rc, the solution

curve tips to the unstable branch of x, or to the stable branch of x. The first time the solution curve tips to the
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unstable branch of x determines the value of rc.

Figure 2.1: Solutions (black) of (2.6) for varying values of r. The blue dashed curves track x = Λr(s) and
x = 2+Λr(s) in the frozen time system, and the red dashed curve tracks x = 1+Λr(s) in the frozen time
system.

Example 2.1.6. (Approach 2)

Consider

ẋ =−(x−Λ(rt))(x−Λ(rt)−1)(x−Λ(rt)−2). (2.7)

Using the second approach, we make the coordinate transform y = 1+ tanh(rt), resulting in the system given

by

ẋ =−(x− y)(x− y−1)(x− y−2),

ẏ = r sech2(tanh−1(y−1))

= r(1− (tanh(tanh−1(y−1)))2)

= r(1− (y−1)2).

(2.8)

Now, (2.8) is an autonomous first order system in which tools from dynamical systems can be used to study the

system. There are a total of six fixed points in the system given by (2.8), three when y = 0: (0,0),(1,0),(2,0),

and three when y = 2: (2,2),(3,2),(4,2), written in the form (x,y). Initializing the system at the fixed point

(2,0) corresponds to initializing on the upper branch in Example 2.1.5. For numerical purposes, initialize the

system at (2,10−8) instead, as otherwise it would take infinite time to leave the fixed point (2,0).

Just as in Example 2.1.5, there are different solution behaviors depending on the size of r, as shown in

Figure 2.2. Notice for r < rc, the system does not tip, but for r ≥ rc, the solution curve tips to the fixed point

(3,2) or (4,2), resulting in heteroclinic connections between the fixed points. When r = rc the solution curve

tips to (3,2), as this marks the solution tipping to the basin boundary.
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Figure 2.2: Solutions (black) of (2.8) for varying values of r. The blue dashed curves track the stable fixed
points x = y and x = 2+ y in the frozen time system, and the red dashed curve tracks the unstable fixed point
x = 1+ y in the frozen time system.

2.2 Noise-Induced Tipping

In a variety of dynamical systems modeling physical phenomena, noise plays an essential role. Noise in a

system can come from external forcing (additive noise) or from random internal dynamics (multiplicative

noise). Noise-induced tipping occurs when noisy fluctuations result in a system departing from a neighborhood

of an attractor6. It is well established that even small noise can result in large behavioral changes within the

system, despite the fact that occurrences are rare for weaker noise21.

This work focuses on systems with additive noise: the system in (2.1) is modified to include the possibility

of random effects disturbing the system, but is restricted to the one-dimensional case (n = 1). Mathematically

this implies a stochastic process term is added to the differential equation. A formal way to write this is to

consider the stochastic differential equation (SDE) given by

dx = f (x,λ )dt +σdWt , (2.9)

where x ∈ R is a stochastic process parameterized by time, f is the deterministic piece of the system and is

often referred to as the drift, Wt is a standard Wiener process, and σ > 0 denotes the noise strength and often

referred to as the diffusion coefficient. The Wiener process, Wt , is a stochastic (meaning random) process

used to describe Brownian motion associated with additive Gaussian white noise. It is characterized by the

following properties.

1. W0 = 0, the process is initialized at 0.

2. The Brownian increment Wt+∆t −Wt is independent of the past, Ws, where 0 ≤ s ≤ t.

3. The Brownian increment, Wt+∆t −Wt , is normally distributed with mean zero and variance ∆t.
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4. Wt is continuous in t.

Notice that (2.9) is in a differential form. However, stochastic processes are continuous but not differentiable,

as illustrated in Figure 2.3(a). The SDE (2.9) is actually a shorthand notation for the integral equation

x(t) = x(0)+
∫ t

0
f (x,λ )ds+

∫ t

0
σdWs, (2.10)

where a solution to a stochastic differential equation is also a stochastic process. Refer to Figure 2.3 for

illustrations of both one and two-dimensional Wiener processes, corresponding to one and two-dimensional

Brownian motion.

(a) (b)

Figure 2.3: (a) A single realization of a one-dimensional Wiener process. Upon inspection, observe that the
process is continuous but not differentiable. (b) A single realization of a two-dimensional Wiener process.

With the addition of additive noise to the system, the system will exhibit noise-induced tipping, though

it becomes more of a question about timescales and the tipping path a trajectory takes. While this section

considers x ∈ R, we define a realization that exhibits noise-induced tipping for x ∈ Rn as the following.

Definition 2.2.1. Consider a stochastic differential equation as in (2.9), where x ∈ Rn. Suppose the drift

f (x,λ ) has at least one stable state e1. Let z(t) be an approximation to a sample drawn from the distribution

corresponding to the random variable solution of (2.9), called a realization. The realization z(t) exhibits

noise-induced tipping away from e1 if z(t) is not in the basin of attraction of e1 for some t > T for which z(t)

is defined, or if there is an escape to infinity from e1.

As earlier with rate-induced tipping, we show examples of noise-induced tipping. Since system (2.9) is a

one-dimensional system, both of these examples are gradient systems, where each example demonstrates

a different time series behavior. Deterministically, gradient systems are differential equations that have

the form ẋ = −∇V (x), with V a real valued function, and in the SDE formulation, is the drift component.
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Gradient systems have asymptotic formulae for the expected time to tip between two fixed points9 and the

most probable path for tipping between the two points can be explicitly calculated. From Berglund 9 , an

approximation for the expected time to tip between two minima x∗ and y∗, separated by a saddle z∗, is given

by

E[τ]≈Ce
2∆V
σ2 , (2.11)

where V is the associated potential function, ∆V gives the height of the potential barrier, and

C ≈ 2π√
V ′′(x∗)|V ′′(z∗)|

. (2.12)

This approximation for C can be found using Laplace’s method. The most probable path for tipping between

these points would just be the reversed time dynamics of the system.

Higher dimensional systems are unlikely to be gradient, and there is no reason for a system to be gradient

unless it was derived from a physical system with special constraints. One such example is if a specific form

of dissipation was underlying the system.

Example 2.2.2.

Consider the gradient, stochastic differential equation

dx =−∇V (x)dt +σdWt

=−∇(0.05x2(x2 −4))dt +σdWt

= (−0.2x3 +0.4x)dt +σdWt ,

(2.13)

where V is the associated potential function, as seen in Figure 2.4(a). The three fixed points of the deterministic

piece of the system are x = −
√

2, 0,
√

2. There are two attractors, x = ±
√

2, corresponding to the two

minimums of V (x), and one repeller, x = 0, corresponding to the local maximum of V (x).

Initializing the system at fixed point x =−
√

2 corresponds to initializing the system in the left well of the

potential function, illustrated by the red point in Figure 2.4(a). As time evolves, there are random fluctuations

acting on the particle, in which a fluctuation can be strong enough to have the particle ‘jump’ out of the left

well and into the right well of V (x), where the right well corresponds to the fixed point x =
√

2. See Figure

2.4(b) for a time series solution. Notice in the time series that the stochastic realization is actually tipping

back and forth between these two fixed points as time evolves.
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(a) (b)

Figure 2.4: (a) The potential function V (x) for the system in (2.13). We demonstrate a particle (red circle),
initialized at x =−

√
2 moving in the potential well under the influence of additive noise. (b) A stochastic

realization of the particle position over time with σ = 1.2.

Example 2.2.3.

Consider the gradient, stochastic differential equation

dx =−∇V (x)dt +σdWt

=−∇

(
1
4

x4 − 1
3

x3 − 1
2

x2
)

dt +σdWt

= (−x+ x3 + x2)dt +σdWt ,

(2.14)

where V is the associated potential function, as seen in Figure 2.5(a). The three fixed points of the deterministic

piece of the system are x = 1±
√

5
2 and x = 0. There are two attractors, x = 1±

√
5

2 , corresponding to the two

minimums of V (x), and one repeller, x = 0, corresponding to the local maximum of V (x).

Initializing the system at fixed point x = 1−
√

5
2 corresponds to initializing the system in the upper well

of the potential function, illustrated by the red point in Figure 2.5(a). As time evolves, there are random

fluctuations acting on the particle, in which a fluctuation can be strong enough to have the particle ‘jump’ out

of the upper well and into the lower well, where the lower well corresponds to the fixed point x = 1+
√

5
2 . See

Figure 2.5(b) for a time series solution.

Note that while it is possible to tip back to the other fixed point, it is extremely rare. This would require

the particle to ‘jump’ out of the lower well and into the upper well, which requires a very strong fluctuation.

Calculating the expected time to tip in this case, using the formula in (2.11), we find it is on the order of

O(10000).
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(a) (b)

Figure 2.5: (a) The potential function V (x) for the system in (2.14). We demonstrate a particle (red circle),
initialized at x = 1−

√
5

2 moving in the potential well under the influence of additive noise. (b) A stochastic
realization of the particle position over time with σ = 0.5.

2.3 Rate-Induced vs. Noise-Induced Tipping

We conclude the background on rate and noise-induced tipping by comparing and contrasting the two

mechanisms. Figure 2.6 demonstrates these two tipping mechanisms schematically, in terms of a potential

function, and is referred to below.

Noise-induced tipping occurs when a noisy fluctuation is strong enough to push the particle out of the

minimum and to some local maximum, where it can then fall to another minimum. Rate-induced tipping

occurs when an external input varies too fast compared to the response rate of the system, resulting in a shift

of the landscape and the deviation of a particle from its initialized stable state41. This starts the tracking of a

different stable state.

For both tipping mechanisms, tipping occurs when a solution trajectory of the respective system crosses

the threshold boundary (the boundary of the basin of attraction of the starting stable state). In a rate-induced

tipping problem, the threshold boundary is associated with regular edge states, as defined in Chapter 1.3.1. In

a noise-induced tipping problem, the threshold boundary is the local maximum separating two minima9.
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Figure 2.6: Schematics for noise and rate-induced tipping in terms of a potential function and initializing
with a particle at a minimum.
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CHAPTER 3

Methods for Stochastic Differential Equations

The theory of large deviations is utilized to find the most probable escape path and the expected time of

escape. While these attributes are straight-forward to study in one-dimensional systems, they are harder to

implement in higher dimensional systems. The framework for studying the effects of additive noise on the

dynamics of a two-dimensional system is introduced, as well as how to find the most probable tipping path

when tipping between two states.

The most probable path between two states should minimize the Freidlin-Wentzell action functional.

Minimizing this functional works nicely if the initial and final states are both inside the basin boundary of the

initial state, and neither are fixed points. If the paths involve fixed points, or cross basin boundaries, then

there are complications. These situations occur when considering noise-induced tipping and are the focus of

this work.

The minimization of the functional leads to the derivation of the Euler-Lagrange equations. The Euler-

Lagrange equations for the extrema of the Freidlin-Wentzell function can be written as a Hamiltonian

system, and these equations provide an underlying geometric context for the initial and threshold states.

This framework can be exploited by finding unstable and stable manifolds of these states respectively. The

intersections of these manifolds are heteroclinic orbits, which can then be used to find the most probable

path of tipping or to isolate a subset of the unstable manifold. However, it is not enough to consider just the

analytical perspective; numerical simulations are needed to corroborate the results.

Recall from Chapter 1.3.2 that the most probable path between two states can be thought of as the mode

of the probability distribution of escape paths. It is helpful, and almost a necessity, to simulate large amounts

of noisy realizations of the stochastic systems, and determine if and when they are meaningful. This chapter

elaborates on techniques for numerically simulating stochastic differential equations as well as describing the

process of finding converged sets of noisy realizations. The converged collection of noisy realizations can aid

in determining how paths concentrate, where escape of a basin of attraction occurs, or finding the expected

time for escape.
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We note that the techniques provided in this chapter provide a basis for the rest of this dissertation.

3.1 The Theory of Large Deviations and the Freidlin-Wentzell Functional

Consider the system of stochastic differential equations given by

dx = f (x,y)dt +σ1dW1,

dy = g(x,y)dt +σ2dW2.

Assuming (3.1) has two stable states, the goal is to find the most probable path to tip between these two states,

and the tool used to study these transitions is the Freidlin-Wentzell theory of large deviations.

As presented in Freidlin and Wentzell 23 , the most probable path between two points (x0,y0) and (x f ,y f )

is a curve of the form (c1(t),c2(t)) that minimizes the Freidlin-Wentzell functional

I[c1,c2] =
∫ t f

t0

(
(ċ1 − f (c1(t),c2(t)))2

σ2
1

+
(ċ2 −g(c1(t),c2(t)))2

σ2
2

)
dt, (3.1)

over absolutely continuous functions from [t0, t f ] where

(c1(t0),c2(t0)) = (x0,y0) and (c1(t f ),c2(t f )) = (x f ,y f ).

I[c1,c2] is nonnegative and vanishes if and only if both ċ1 = f and ċ2 = g are solutions to the associated

deterministic system. This functional represents the cost of straying from the deterministic dynamics.

Minimizing this functional leads to the Euler-Lagrange equations, and satisfying the Euler-Lagrange

equations is necessary but not sufficient for minimizers23. The most probable path must satisfy these

equations, and so they form the basis to then perform further analysis, as the Euler-Lagrange equations allow

the extrema of the Freidlin-Wentzell function to be written as a Hamiltonian system.

Of particular interest are the cases when (x0,y0) is a fixed point and (x f ,y f ) is either another fixed point

or a periodic orbit. The formulation of the Freidlin-Wentzell functional suggests that the most probable path

starting at the fixed point (x0,y0) should reach the final state in time t f − t0. This causes some complications:

it turns out that there is not a minimizer defined on a bounded time domain. By Lemma 3.1 of Freidlin

and Wentzell 23 , this minimizer must lie inside the zero-set (H = 0) of the four-dimensional Hamiltonian

system. The only path that starts at (x0,y0), and lies in H = 0, is on the unstable manifold of (x0,y0). Since a

trajectory cannot reach the fixed point (x0,y0) in finite (backwards) time, the minimizer must lie on a domain

that is at least semi-infinite. The strategy is to modify the process to instead consider a minimizing sequence
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that converges on a semi-infinite domain, though studying the Euler-Lagrange equations is still justified.

Since the minimizing trajectory must be smooth, it follows that it must be a heteroclinic orbit from (x0,y0)

to (x f ,y f ). In particular, its domain will be (−∞,∞) and it lies in both the unstable manifold of (x0,y0) and

the stable manifold of (x f ,y f ) in the Hamiltonian system.

To derive the Euler-Lagrange equations, (c̄1, c̄2) is assumed to be a critical point of the Freidlin-Wentzell

functional, where

c1(t) = c̄1 + εδc1(t),

c2(t) = c̄2 + εδc2(t),
(3.2)

for 0 < ε ≪ 1. Assume δc1,δc2 ∈ C2[t0, t f ], and that δc1(t0) = δc1(t f ) = δc2(t0) = δc2(t f ) = 0. The

components εδci(t) are small perturbations of the critical point.

Let F(ε) = I[c̄1 + εδc1, c̄2 + εδc2], and expand the functional form of F(ε) to see

F(ε) =
∫ t f

t0

( ˙̄c1 + εδ ċ1 − f (c̄1 + εδc1, c̄2 + εδc2))
2

σ2
1

+
( ˙̄c2 + εδ ċ2 −g(c̄1 + εδc1, c̄2 + εδc2))

2

σ2
2

dt. (3.3)

Since (c̄1(t), c̄2(t)) is a critical point of I, it follows that F ′(0) = 0 for all δc1,δc2. The calculations begin

with differentiating (3.3) with respect to ε , resulting in an equation for F ′(ε) given by

F ′(ε) =
∫ t f

t0

[
2

σ2
1
( ˙̄c1 + εδ ċ1 − f (c̄1 + εδc1, c̄2 + εδc2))(δ ċ1 − fxδc1 − fyδc2)

+
2

σ2
2
( ˙̄c2 + εδ ċ2 −g(c̄1 + εδc1, c̄2 + εδc2))(δ ċ2 −gxδc1 −gyδc2)

]
dt.

(3.4)

Rearranging (3.4),

F ′(ε) =
∫ t f

t0

[
2

σ2
1
( ˙̄c1 + εδ ċ1 − f (c̄1 + εδc1, c̄2 + εδc2))δ ċ1

+
2

σ2
1
( ˙̄c1 + εδ ċ1 − f (c̄1 + εδc1, c̄2 + εδc2))(− fxδc1 − fyδc2)

+
2

σ2
2
( ˙̄c2 + εδ ċ2 −g(c̄1 + εδc1, c̄2 + εδc2))δ ċ2

+
2

σ2
2
( ˙̄c2 + εδ ċ2 −g(c̄1 + εδc1, c̄2 + εδc2))(−gxδc1 −gyδc2)

]
dt.

(3.5)

Expand F ′(ε), and then apply integration by parts twice to eliminate terms that have either δ ċ1 and δ ċ2

attached to the quantity. To use integration by parts, let
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u = ˙̄c1 + εδ ċ1 − f

du = [ ¨̄c1 + εδ c̈1 − fxċ1 − fyċ2]dt

v = δc1

dv = δ ċ1dt

,

u = ˙̄c2 + εδ ċ2 −g

du = [ ¨̄c2 + εδ c̈2 −gxċ1 −gyċ2]dt

v = δc1

dv = δ ċ1dt.

(3.6)

Since δc1(t0) = δc1(t f ) = 0 and δc2(t0) = δc2(t f ) = 0, the boundary terms from the integration by parts

vanish. Rearrange F ′(ε) by collecting δc1 and δc2 terms to see

F ′(ε) =
∫ t f

t0

[(
2

σ2
1
(− ¨̄c1 − εδ c̈1 + fxċ1 + fyċ2 − ˙̄c1 fx − εδ ċ1 fx + f fx)+

2
σ2

2
(− ˙̄c2gx + εδ ċ2gx +ggx)

)
δc1 +

(
2

σ2
1
(− ˙̄c1 fy − εδ ċ1 fy + f fy) +

2
σ2

2
(− ¨̄c2 − εδ c̈2 +gxċ1 +gyċ2 − ˙̄c2gy − εδ ċ2gy +ggy)

)
δc2

]
dt.

(3.7)

To find expressions for ċ1 and ċ2 differentiate (3.2), leading to

ċ1(t) = ˙̄c1 + εδ ċ1,

ċ2(t) = ˙̄c2 + εδ ċ2,

(3.8)

and then (3.8) are substituted into (3.7). Making these substitutions and evaluating F ′(ε) at ε = 0 results in

F ′(0) =
∫ t f

t0

[(
2

σ2
1
(−c̈1 + fyċ2 + f fx)+

2
σ2

2
(ggx − ċ2gx)

)
δc1

+

(
2

σ2
1
( f fy − ċ1 fy)+

2
σ2

2
(−c̈2 +ggy +gxċ1)

)
δc2

]
dt.

(3.9)

Remember that (c̄1(t), c̄2(t)) is a critical point of I, and so F ′(0) = 0. It follows that (3.9) is zero for all

curves δc1,δc2, and the resulting equations are

0 =
2

σ2
1
(−c̈1 + fyċ2 + f fx)+

2
σ2

2
(ggx − ċ2gx),

0 =
2

σ2
1
( f fy − ċ1 fy)+

2
σ2

2
(−c̈2 +gxċ1 +ggy).

(3.10)
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These equations are rewritten as the Euler-Lagrange equations, given by

c̈1 = fyċ2 + f fx +
σ2

1

σ2
2
(ggx − ċ2gx),

c̈2 = gxċ1 +ggy +
σ2

2

σ2
1
( f fy − ċ1 fy),

(3.11)

which, to reiterate, are a condition that extrema of the Freidlin-Wentzell functional must satisfy. These

Euler-Lagrange equations for extrema of (3.1) can be written as a Hamiltonian system, and this process is

performed in later chapters as needed.

Depending on the source, there are multiple variations in the formulation of the Freidlin-Wentzell

functional as seen in (3.1): some include the noise coefficient and some include a constant of 1/2. As these

terms amount to multiplying the functional by a constant, the extrema of the function are still extrema when

scaling them, and so there is no difference in the outcome. This choice of formulation does lead to different

asymptotic formulae for the expected time to tip.

3.2 Numerically Solving Stochastic Differential Equations

To numerically simulate the stochastic differential equation expressed in (2.9), we use the Euler-

Maruyama method, which gives rise to a discretized Markov process24. The Euler-Maruyama method

creates the stochastic Euler scheme given by

xn+1 = xn + f (xn,λ )∆t +σ∆Wn, (3.12)

where ∆t = tn+1 − tn is the time increment and ∆Wn =Wtn+1 −Wtn is the Brownian increment.

Implementing the map in (3.12) requires using properties of the Wiener process to numerically evaluate

∆Wn. Recall from Chapter 2.2 that the Brownian increments of the Wiener process are independent Gaussian

random variables and normally distributed with mean zero and variance ∆t, implying ∆Wn ∼ N(0,∆t). In

practice, a random number generator is used to draw noise values from this distribution and the stochastic

Euler scheme becomes

xn+1 = xn + f (xn,λ )∆t +σ∆Wn

= xn + f (xn,λ )∆t +σN(0,∆t).
(3.13)

While it is possible to implement the scheme in (3.13), the size of the Brownian increment is not intuitive

as N(0,∆t) is not a standard normal distribution. Instead, we choose to numerically simulate ∆W =Wtn+1 −Wtn
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using
√

∆t ·N(0,1), so that the size of the Brownian increment is relative to a standard normal distribution.

This transformation is justified by Claim 3.2.1 below, and the alternative scheme

xn+1 = xn + f (xn,λ )∆t +σ∆Wn

= xn + f (xn,λ )∆t +σ
√

∆tN(0,1),
(3.14)

is implemented to numerically simulate (2.9).

Claim 3.2.1. Let X be a normally distributed random variable with mean 0 and variance ∆t, implying

X ∼ N(0,∆t). Then X ∼
√

∆tZ where Z ∼ N(0,1), and N(0,∆t) =
√

∆tN(0,1).

Proof. Suppose X ∼ N(µ,σ2). We standardize the normal distribution by introducing Z = X−µ

σ
, where Z

is a standard normal random variable. Since Z is standard normal, Z ∼ N(0,1). Therefore, if X ∼ N(0,∆t)

then Z = X√
∆t

. Rearranging this equation, we see that X =
√

∆tZ, implying X ∼
√

∆tZ and that N(0,∆t) =
√

∆tN(0,1). □

Recursively running the scheme in (3.14) over a defined time interval results in a single noisy realization.

Implementing this scheme repeatedly to get a large amount of noisy realizations is the Monte Carlo method,

in which repeated sampling is used until enough results are gathered to make up a representative sample

of the behavior. The collection of these noisy realizations are used to visualize dominant behaviors of the

stochastic system, including where trajectories concentrate, where trajectories may exit a set, or the expected

time for trajectories to exit a set.

The behavior of the noisy realizations however, may not actually form a true representation of solutions

to the system. It is necessary that the Monte Carlo simulations are a valid representation if we want to trust

the numerical results of the behaviors mentioned above. To build confidence into these behaviors or events, a

sufficiently large amount of Monte Carlo simulations are needed so that the event simulations converge.

The first step in this process is to consider the event outcomes as a probability distribution. The second

step is to show the probability distribution of the event simulations converges. The probability distribution of

the Monte Carlo simulations converges if more realizations added to the set of simulations does not change

the statistics of the probability distribution of the event. To determine the convergence of a distribution, we

first choose the event of the system that needs to be resolved. The algorithm for determining if an event has a

converged distribution is as follows.

24



1. Run M simulations of a stochastic Euler scheme such as (3.14) on some time interval, and assume K

events occur. Bin the K events by the Freedman Diaconis rule22. This separates the K events into B

bins of equal length.

2. Run another M realizations of (3.14) on the same time interval and with the same step size. Assume

there are J events. Bin the J events by the same number of bins B found in Step 1.

3. There are two vectors D1,D2 of the same dimension, where each component of the vector represents

the amount of paths that tipped in that time interval. Calculate Err = ||D1−D2||2
||D1||2 , which is the relative

error between the two data sets.

4. If Err < 0.1, then the distribution has converged. If Err ≥ 0.1, iterate this process with larger M until

the relative error of D1 and D2 is small enough. To iterate, double the number of samples and repeat

this process. In addition, once Err < 0.1, use the Kolmogorov-Smirnov Two Sample Test19 as a final

verification that the distribution has converged.

The numerical methods described throughout this chapter are used to join the dynamical and stochastic

perspectives in the later chapters. In Chapter 4, using the above convergence process, Monte Carlo simulations

will show that the escape locations of the noisy trajectories match that of a special set of minimizers of

the Freidlin-Wentzell functional. In Chapter 5, Monte Carlo simulations are used to find a numerical most

probable path, as well as to find the expected time for noisy trajectories to tip over a basin boundary.
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CHAPTER 4

Tipping in an Oceanic Carbon Cycle Model

The amount of carbon dioxide in the atmosphere is rising32. For a MIT news article14, geophysicist and

applied mathematician Daniel Rothman hypothesized:

By the end of this century, the planet is likely to reach a critical threshold, based on the rapid rate at
which humans are adding carbon dioxide to the atmosphere. When we cross that threshold, we are
likely to set in motion a freight train of consequences, potentially culminating in the Earth’s sixth
mass extinction.

Rothman38 presents a two-component dynamical system encompassing the important features of the oceanic

carbon cycle, which describes the processes that exchange carbon between the ocean, atmosphere, and the

continents. After analyzing the model, he discusses the implications of these findings for interpreting the

geochemical record of past disruptions and predicting the carbon cycle’s response to today’s anthropogenic

perturbations. Rothman determined when the CO2 injection rate crossed a critical threshold value, it led to

significant disruptions of the ancient earth system, including mass extinction events. He concluded that the

injection rate is near that critical threshold.

The ocean absorbs much of the carbon dioxide; it is the largest sink of CO2 on the planet. This addition

of CO2 causes ocean acidification, meaning the pH levels of the ocean are decreasing, causing difficulty

for marine species and ecosystems (e.g. coral reefs) to survive. These species will either have to adapt to

the changing ocean or risk extinction. Understanding the carbon cycle is of vital importance for our society

as the preservation of these ecosystems and organisms are tied to fishing, industrial materials, and tourism

industries32. These realizations, along with the results of Rothman’s work, demonstrate the importance of

understanding the carbon cycle and its underlying mechanisms.

Using Rothman 38 as motivation, Section 4.1 begins with the model description and looking at the

regime of study. The regime chosen is bistable and exhibits a stable fixed point and a stable periodic orbit,

separated by an unstable periodic orbit. Section 4.2 considers the deterministic system and the possibility of

rate-induced tipping away from the stable fixed point when the system’s parameter representing the injection

of CO2 is time-dependent. After considering basins of attraction of the stable fixed point and the stable
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periodic orbit, and choosing a correct parameter shift, the conditions of Theorem 2.1.4 are met, and the

system undergoes tipping away from the stable fixed point.

After the deterministic analysis, Section 4.3 considers the effects of stochasticity on the state variables of

the model in which the focus is noise-induced tipping from the stable fixed point to the stable periodic orbit.

We only need to find a trajectory between the stable fixed point and the unstable periodic orbit, as after a

trajectory reaches this boundary, the system will follow the deterministic flow. The emphasis of this work is

to find local minimizers of the Freidlin-Wentzell functional on the semi-infinite domain t ∈ (−∞, t f ], where

trajectories reach the unstable periodic orbit of the underlying deterministic system at t = t f . Since ultimately

we are looking for global minimizers for the small, but not vanishingly small noise regime, the extra step

needed is the use of the Onsager-Machlup functional13, a perturbation of the Freidlin-Wentzell functional,

on the set of minimizers found. This extra consideration is not highlighted in this work but is discussed in

Section 4.4.1. This analysis of the stochastic system is largely based on the analysis and the methods used

in Fleurantin et al. 20 as the base structures are the same; the goal is to tip from a stable fixed point to an

unstable periodic orbit.

The approach is as follows. The Euler-Lagrange equations associated with the Freidlin-Wentzell action

functional are derived and then used to create a four-dimensional Hamiltonian system. This four-dimensional

system changes the stability directions of the stable fixed point and unstable periodic orbit as compared to

their stability in the original two-dimensional system. This change of stability allows us to find the invariant

manifolds associated with these objects, and their intersections, resulting in two heteroclinic orbits. Using a

geometric dynamical systems approach, there exists an isolated subset of the unstable manifold of the stable

fixed point in the Euler-Lagrange system, which we call the River. Then using the Maslov index, a subset of

the River can be further identified, which is comprised of local minimizers that escape the periodic orbit with

minimal rotation. By Monte Carlo simulations, it is shown that this set of minimizers on the River matches

closely the escape region of the simulated noisy trajectories at a certain level of small noise.

This process uses the Freidlin-Wentzell action functional to capture a phenomenon that is occurring at

noise levels that are not vanishingly small. The key question becomes finding which parts of the theory hold

true for small, but not vanishingly small, levels of noise, and how to best capture the behaviors exhibited by

the system for these noise strengths.

For vanishingly small noise, this escaping behavior we foreshadow does not occur when tipping from a

stable fixed point to an unstable periodic orbit. The work of Day16 shows that as noise vanishes, there is no
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preferred exit point or region along an unstable periodic orbit, and that the most probable exit point exhibits

cycling around the periodic orbit. However, for slightly larger noise strengths, this cycling is actually resisted.

4.1 The Original Model

4.1.1 Model Setup

Rothman38 creates a simple dynamical system model of the marine carbon cycle given by

ċ = f (c)[µ(1−bs(c,cp)−θ s̄(c,cx)−ν)+w−w0],

ẇ = µ[1−bs(c,cp)+θ s̄(c,cx)+ν ]−w+w0,

(4.1)

where ċ is the rate of change of the CO2−
3 concentration and ẇ is the rate of change of the dissolved inorganic

carbon concentration. The functions f ,s, s̄ are sigmodal functions modeling the buffering, burial, and

respiration of the concentration of CO2−
3 , and are explicitly given by

f (c) =
f0cβ

cβ + cβ

f

,

s(c,x) =
cγ

cγ + xγ
,

s̄(c,x) = 1− s(c,x).

(4.2)

Hence, substituting (4.2) into (4.1) results in the expanded system

ċ = F(c,w) =
f0cβ

cβ + cβ

f

[
µ

(
1− bcγ

cγ + cγ
p
−θ

(
1− cγ

cγ + cγ
x

)
−ν

)
+w−w0

]
,

ẇ = G(c,w) = µ

(
1− bcγ

cγ + cγ
p
+θ

(
1− cγ

cγ + cγ
x

)
+ν

)
−w+w0.

(4.3)

This model assumes a well-mixed ocean, implying the timescales considered must be larger than approxi-

mately 1000 years, which are the timescales necessary for global ocean mixing: in (4.3), time is nondimen-

sionalized by t = t/τw, where τw = 1000. Keep in mind that this model does not account for effects that arise

on shorter timescales. The other parameters, along with their descriptions, values, and units, are listed in

Table 4.1.1.

In Rothman 38 , only µ,b,θ ,cx,cp, and ν were of interest, and the remaining 5 parameters were set to

correspond to the equilibrium chemistry or the properties of the modern ocean in order to maintain realism.

For the purposes of this work, the parameters of focus are cx and ν . The parameter cx is considered in regards
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Parameter Value Units Description
b 4 - maximum CaCO3burial rate
β 1.70 - sigmoid sharpness index
c f 43.9 µmol kg−1 crossover [CO2−

3 ] (buffering)
cp 110 µmol kg−1 crossover [CO2−

3 ] (burial)
cx 58 µmol kg−1 crossover [CO2−

3 ] (respiration)
f0 0.694 - maximum buffer factor
γ 4 - sigmoid sharpness index
µ 250 µmol kg−1 characteristic concentration jinτw

ν 0.1 - CO2 injection rate
τw 104 year characteristic timescale
θ 5 - maximum respiration feedback rate
w0 2000 µmol kg−1 reference DIC concentration

Table 4.1: Parameters of the oceanic carbon cycle model (4.3) and their values.

to showing different system behaviors and is also the bifurcation parameter. Later, the parameter ν is changed

into a time-dependent parameter instead of staying a fixed value.

4.1.2 Parameter Regimes, Fixed Points, and a Bifurcation Analysis

The fixed points of (4.3) occur where ċ = ẇ = 0, implying the unique steady-state solution (c∗,w∗) is

c∗ = cp(b−1)−1/γ ,

w∗ = w0 +µ

(
θ +ν − θcγ

p

cγ
p +(b−1)cγ

x

)
.

(4.4)

System (4.3) is linearized about this fixed point (c∗,w∗) from (4.4) using the Jacobian matrix

J(c∗,w∗) =

Fc Fw

Gc Gw

 , (4.5)

where the partial derivatives Fc,Fw,Gc, and Gw are defined as

Fc =
f0cβ−1

(cβ + cβ

f )
2

[
βcβ

f

(
w−w0 +µ

(
1− bcγ

cγ + cγ
p
− θcγ

x

cγ + cγ
x
−ν

))

−µγcγ(cβ + cβ

f )

(
bcγ

p

(cγ + cγ
p)2

− θcγ
x

(cγ + cγ
x)2

)]
,

Fw =
f0cβ

cβ + cβ

f

,

(4.6)
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Gc =−µγcγ−1
(

bcγ
p

(cγ + cγ
p)2

+
θcγ

x

(cγ + cγ
x)2

)
,

Gw =−1.

The eigenvalues of J(c∗,w∗) are complex conjugate pairs, and as cx increases, these eigenvalues cross the

imaginary axis. This crossing of the imaginary axis implies the system undergoes a Hopf bifurcation when

the real part of the eigenvalues of J(c∗,w∗) are zero. See Figure 4.1 for a depiction of the shift in eigenvalues.

Figure 4.1: The eigenvalues of J(c∗,w∗) for varying values of cx ∈ [55,70], with a step size of 0.25. When
the eigenvalues cross the imaginary axis at cx ≈ 62.6, the system undergoes a Hopf bifurcation.

A bifurcation analysis is needed to further understand the possible solution behaviors that system (4.3) can

exhibit. Using MatCont18, a Matlab software project that provides a toolbox for the numerical continuation

and bifurcation study of continuous and discrete parameterized dynamical systems, we create the bifurcation

diagram seen in Figure 4.2.

There are three different system behaviors dependent on the parameter regime chosen, within realistic

values of cx. From the bifurcation diagram in Figure 4.2, it follows that there can be a stable fixed point, an

unstable fixed point and stable periodic orbit, or a stable fixed point and a stable periodic orbit separated by

an unstable periodic orbit. See Figure 4.3 for an illustration of the phase planes of these three dynamical

regimes. In Sections 4.2 and 4.3, the focus is on the regime in which there is bistability.

This bistable regime, where the parameter values are set as in Table 4.1.1, corresponds to Figure 4.3b.

Let z∗ denote the fixed point (c∗,w∗), let Γu denote the unstable periodic orbit, and let Γs denote the stable

periodic orbit.
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Figure 4.2: Bifurcation diagram for the parameter cx. The solid blue lines indicates the maximum and
minimum values of w in the stable periodic orbit and the dashed red lines represents the same extremes
for the unstable periodic orbit. The black solid line indicates the stable fixed point while the black dashed
line indicates the unstable fixed point. The subcritical Hopf bifurcation occurs at cx ≈ 62.6. A saddle-node
bifurcation of cycles occurs where the unstable and stable limit cycles collide at cx ≈ 55.9.

The fixed point is explicitly given by

z∗ = (83.58192542167518,2260.2904217603455), (4.7)

and the linearzation at (4.7) is

J(z∗) =

 0.08712628 0.51998416

−18.11401945 −1

 . (4.8)

The eigenvalues of the matrix in (4.8) are given by

λ1,2 =−0.456437±3.02052i, (4.9)

implying the fixed point (4.7) is a stable spiral. In the two-dimensional system, z∗ and Γs have two stable

directions, implying they each have a two-dimensional stable subspace, and Γu has one unstable direction

and one neutral direction, implying it has a one-dimensional unstable subspace. Floquet multipliers are used

to find the stability of the periodic orbits.
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(a) (b) (c)

Figure 4.3: Phase planes of system (4.3) with all parameters set as in Table 4.1.1, except allowing cx to vary.
Stable states are in blue and unstable states are in red. Black solid and dashed curves represent single solution
trajectories. (a) cx = 55: There is a stable fixed point. (b) cx = 58: There is a stable periodic orbit and a
stable fixed point separated by an unstable periodic orbit. (c) cx = 65: There is a stable periodic orbit and an
unstable fixed point.

4.2 The Addition of a Time-Varying Parameter

4.2.1 Creating the Ramped Parameter and the Susceptibility to R-Tipping

Introducing a parameter shift to replace ν allows the CO2 injection rate to vary in time. We create a

monotonically increasing bi-asymptotically constant Λr(t) given by

Λr(t) = ν−+
ν+−ν−

2
(1+ tanh(rt)), (4.10)

in which Λr(t) will gradually transition from ν− to ν+. After making this substitution, (4.1) is a nonau-

tonomous system of the form

ċ = f (c)[µ(1−bs(c,cp)−θ s̄(c,cx)−Λr(t))+w−w0],

ẇ = µ[1−bs(c,cp)+θ s̄(c,cx)+Λr(t)]−w+w0.

(4.11)

As mentioned earlier, the parameter values were chosen such that there is a stable fixed point and a

stable periodic orbit separated by an unstable periodic orbit. The unstable periodic orbit forms the boundary

between the basins of attraction for the stable fixed point and the stable limit cycle. Let p−,Γu− , and Γs−

represent the stable fixed point, unstable periodic orbit, and the stable periodic orbit at the past limit state ν−.

Let p+,Γu+ , and Γs+ represent the stable fixed point, unstable periodic orbit, and the stable periodic orbit

at the future limit state ν+. For rate-induced tipping to occur within system (4.11) for this parameter shift,

(p−,ν−) ∈ B(Γs+ ,ν+), by the conditions of Theorem 2.1.4.

This condition is checked visually in Figure 4.4. In this figure, the past limit state is set at ν− = 0 and we
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plot the corresponding stable fixed point p−. We also plot the unstable periodic orbit Γu+ for different possible

values of the future limit state ν+. For rate-induced tipping to occur, it is necessary that (p−,0) ∈ B(Γs+ ,ν+),

implying that p− must be on the outside of Γu+ . For ν = 0.4, this transition occurs and the carbon cycle

model is susceptible to rate-induced tipping away from p−.

Figure 4.4: The stable fixed point p− (black circle) of (4.11) at the past limit state ν− = 0, plotted against the
unstable periodic orbit Γu+ at the future limit state ν+ for varying values. Crossing of the basin of attraction
boundary occurs as (p−,0) ∈ B(Γs+ ,0.4), implying there will be rate-induced tipping away from p−.

4.2.2 Numerical Results

From the analysis in Section 4.2.1, (4.10) becomes

Λr(t) = 0.2(1+ tanh(rt)), (4.12)

which gradually transitions from 0 to 0.4 in time. To convert system (4.11) back to an autonomous system, it

is augmented using Approach 1 from Section 2.1, resulting in the system given by

ċ = f (c)[µ(1−bs(c,cp)−θ s̄(c,cx)−Λr(s))+w−w0],

ẇ = µ[1−bs(c,cp)+θ s̄(c,cx)+Λr(s)]−w+w0,

ṡ = 1.

(4.13)

Initializing system (4.13) at p−, and numerically simulating (4.13) for increasing values of r, shows how

solution behaviors change as r changes. In Figure 4.5, notice that for sufficiently large values of r the system

tips, and for sufficiently small values of r the system does not tip. This shows that the rate at which ν is varied

determines whether the system tips, implying the existence of a critical rate, rc, and above which tipping
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(a) (b)

(c) (d)

Figure 4.5: The two-dimensional viewpoint. Solution behaviors (blue) of system (4.13) for varying values
of r. The system is initialized at p− (black circle). (a) r = 0.5: No tipping occurs as the solution end-point
tracks p+. (b) r = 1.5: No tipping occurs as the solution end-point tracks p+. (c) r = 1.62: Rate-induced
tipping occurs away from p− as the solution escapes the basin of attraction of p− and relaxes to Γs+ . (d)
r = 1.7: Rate-induced tipping occurs away from p− as the solution escapes the basin of attraction of p− and
relaxes to Γs+ .

occurs. The behaviors for the cases r = 1.5 and r = 1.62 are also illustrated in three-dimensional space in

Figure 4.6.

The main goal was to show that the system is susceptible to rate-induced tipping, not to find rc, though at

r = rc, there is an orbit connecting the stable fixed point p− to the unstable periodic orbit Γu+ .

In conclusion, if the CO2 injection rate ν is a time-dependent parameter, and if it varies fast enough, the

system does in fact cross over from the basin of attraction of the fixed point to that of the stable periodic orbit.

Therefore, the system can tip between states before the actual loss of stability of the fixed point. Physically

this implies that the amounts of carbonate and dissolved inorganic carbon could change drastically in a

relatively short time, affecting the oceans and their current balance.
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(a) (b)

Figure 4.6: The three-dimensional viewpoint. Solution behaviors (black) of system (4.13) for varying values
of r, where the past limit system is in blue and the future limit system is in red. The system is initialized at p−
(blue circle). (a) r = 1.5: No tipping occurs as the solution end-point tracks p+. (b) r = 1.62: Rate-induced
tipping occurs away from p− as the solution escapes the basin of attraction of p− and relaxes to Γs+ .

4.3 The Stochastic Version of the Model

Instead of considering the addition of a ramp parameter, we now look at the addition of additive white

noise on the dynamics of c and w. Looking at numerically simulated noisy trajectories to gain an initial

understanding of the stochastic behavior, there seems to be a clear location on Γu that the trajectories

concentrate around when tipping away from the stable fixed point, as seen in Figure 4.7.

Figure 4.7: Realizations (colored trajectories) of (4.15) that escape the unstable periodic orbit (black) on the
time interval [0,15] with noise strength σ1 = σ2 = 5. Once they have escaped, they follow the stable periodic
orbit (not pictured).

4.3.1 The Initial Setup and the Most Probable Path Equations

Consider the system given by

dc = F(c,w)dt +σ1dW1,

dw = G(c,w)dt +σ2dW2,

(4.14)
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where F(c,w) and G(c,w) are as given in (4.3), and we set σ1 = σ2 for mathematical simplification. Recall

the regime of focus is bistable and the parameters are set as they are in Table 4.1.1. The goal is to tip from

the stable fixed point to the stable periodic orbit. From Freidlin-Wentzell theory, the system will tip with

probability one, but it needs to be determined how and on what timescale. The approach is to consider the

most probable path for tipping from the stable fixed point to the unstable periodic orbit, as the system will

follow the deterministic flow once it reaches the basin boundary.

The theory of large deviations says that the most probable paths of escape from the attracting fixed point

through the unstable periodic orbit should minimize (3.1). Using the methods described in Section 3.1, the

general Euler-Lagrange equations (3.11) derived in Section 3.1 become

c̈ = Fwẇ+FFc +GGc − ẇGc,

ẅ = Gcċ+GGw +FFw − ċFw,

(4.15)

for the stochastic carbon cycle model, assuming σ1 = σ2. Using the Euler-Lagrange equations in (4.15), we

make a Legendre transform4 to create a degree four Hamiltonian system. Let

p = ċ−F,

q = ẇ−G.

(4.16)

Differentiating p and q with respect to t,

ṗ = c̈−Fcċ−Fwẇ,

q̇ = ẅ−Gcċ−Gwẇ.
(4.17)

Substituting c̈ into ẇ and ÿ into q̇ from (4.15), (4.17) becomes

ṗ = (Fwẇ+FFc +GGc − ẇGc)−Fcċ−Fwẇ

= FFc +GGc − (G+q)Gc −Fc(F + p)

=−Fc p−Gcq,

q̇ = (Gcċ+GGw +FFw − ċFw)−Gcċ−Gwẇ

(4.18)
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= GGw +FFw − (F + p)Fw −Gw(G+q)

=−Fw p−Gwq.

The Euler-Lagrange equations as a Hamiltonian system then reads as

ẋ = F + p,

ẏ = G+q,

ṗ =−Fc p−Gcq,

q̇ =−Fw p−Gwq,

(4.19)

where the Hamiltonian is given by

H(c,w, p,q) = F(c,w)p+G(c,w)q+
p2 +q2

2
. (4.20)

Notice p = q = 0 is invariant. These invariant planes carry the deterministic flow given by system (4.3).

The fixed point z∗ and periodic orbits Γu and Γs reappear with their attraction and repulsion reproduced. We

slightly abuse notation to allow the same notation of z∗,Γu, and Γs for the fixed point and the unstable and

stable periodic orbits, respectively, in reference to both Equations (4.3) and (4.19), as the p and q components

are just zero. While the notation stays the same, notice that their stability properties change between the

two-dimensional system in (4.3) and the four-dimensional system (4.19). This is the reason for using system

(4.19) for determining the most probable paths of escape from z∗ out of its basin of attraction, and to Γu.

The stability of z∗,Γu, and Γs were determined for the two-dimensional system, and now it is necessary

to determine their stability in the four-dimensional system. The Jacobian matrix for the linearized flow of

(4.19) is given by

J(c,w, p,q) =



Fc Fw 1 0

Gc Gw 0 1

−Fcc p−Gccq −Fcw p−Gcwq −Fc −Gc

−Fwc p−Gwcq −Fww p−Gwwq −Fw −Gw


, (4.21)

which actually evaluated at z∗ is
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J(z∗) =



0.08712628 0.51998416 1 0

−18.11401945 −1 0 1

0 0 −0.08712628 18.11401945

0 0 −0.51998416 1


. (4.22)

The eigenvalues of this matrix are given by

λ1,2 =−0.456437±3.02052i,

λ3,4 = 0.456437±3.02052i,
(4.23)

where λ3,4 are the eigenvalues associated with the unstable eigenvectors that span the two-dimensional

unstable subspace. The corresponding eigenvectors are given by

v3,4 =



−.415332954257906±3.614767708743985i

18.692389481011410∓6.191296365829346i

1.045345562758857±5.808869622205990i

1±0i


. (4.24)

Notice that λ1,2 are exactly the eigenvalues of (4.8), and correspond to the two-dimensional stable subspace

of the fixed point z∗ in (4.19), as well as the deterministic flow of (4.3). From the above analysis, the unstable

manifold of z∗, denoted by W u(z∗), is two-dimensional.

Technically, Γu has one stable, two neutral, and one unstable Floquet multipliers. These can be found

numerically or determined using the fact that for a Hamiltonian system with two degrees of freedom, there

are two neutral Floquet exponents and two that are reciprocals of one another. It may seem as though Γu

should have a one-dimensional stable manifold, but integrating this one-dimensional stable direction results

in a tangent bundle, which will be a two-dimensional manifold. It follows that Γu has both a two-dimensional

stable subspace and a two-dimensional unstable subspace in (4.19), where the two-dimensional unstable

subspace aligns with that of the deterministic flow of (4.3).

Both the unstable manifold of z∗ and stable manifold of Γu lie inR4, in the complement of the deterministic

plane, and will aid in determining the most probable path, as the transverse intersections of W u(z∗) and

W s(Γu) are the heteroclinic orbits. W u(z∗) will be of special importance in later sections.
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4.3.2 Computing the Unstable Manifold

W u(z∗) is computed as follows. We first find a piece of the local unstable manifold, W u
loc(z

∗). Take the

fixed point z∗ ∈ R4, corresponding to a time of negative infinity, where the linearized system about z∗ has

eigenvectors v3,4 corresponding to the two eigenvalues with positive real part λ3,4. Then, we initialize using

ψ = z∗+θ1v1 +θ2v2, (4.25)

where |θ1|2 + |θ2|2 = ε2, and ε scales how close the initialization is to the fixed point z∗. As v3 = v̄4, it is

necessary that θ1 = θ̄2 in order to keep components real by applying the conjugate. Let

θ1 = ε(cos(x)+ isin(x))

θ2 = ε(cos(x)− isin(x))
(4.26)

where 0 ≤ x ≤ 2π . As x ∈ [0,2π] varies, a collection of ψ values is created, which together form a circle of

points that lie in W u
loc(z

∗). Call this set K. See Figure 4.10(a) for a depiction of K.

The global unstable manifold is generated by initiating trajectories from circle K inside the local unstable

manifold. (4.19) is numerically simulated using each point on K as an initial condition, and the union of the

set of these full trajectories form W u(z∗). With exception of the heteroclinic orbits, the only trajectories of

interest are those that reach the unstable periodic orbit Γu in finite time. Therefore, it is not necessary to

integrate over too long a time period and we focus on the finite portion of W u(z∗) that reaches just past the

boundary of Γu. See Figure 4.7(a) for a visualization of W u(z∗).

4.3.3 Computing the Stable Manifold

W s(Γu) is computed as follows. First, the period of Γu, T , needs to be determined. The periodic orbit

Γu is discretized into N +1 points Γuk , where 0 ≤ k ≤ N. For each point, there corresponds a time along the

period τk such that Γuk = Γuτk
. Note that it does not matter the location of the start point.

Then, the monodromy matrix, which is the state transition matrix φ after one period, is found for k = 0.

Let ξs0 be the eigenvector associated with the stable eigenvalue of the monodromy matrix, where the stable

eigenvalue λ ∈ (0,1). This vector ξs0 is tangent to the stable manifold at Γ0. The stability type of the

state transition matrix of any point Γk on the periodic orbit is independent of k, and the eigenvectors can

be computed if the state transition matrix is known at a base point Γ0. It will be the eigenvector of the

monodromy matrix computed at Γ0, multiplied by the state transition matrix of the new point Γk at its
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associated time τk. Formally this is written as

ξsk = φ(0,τk)ξs0 . (4.27)

So, for each point Γk, the state transition matrix φ(0,τk) is computed to obtain the tangent space to the stable

manifold at the point with (4.27). The collection of these ξsk form a tangent bundle.

A tolerance ε is chosen, where ε scales how close the initialization is to the periodic orbit. For small

enough ε ,

xsk = Γk + εξuk (4.28)

are points in the stable subspace of Γu. This set of initial conditions (4.28) is integrated in backwards time

over some time interval, obtaining the orbits xsk(t). The collection of these orbits form the global stable

manifold of Γu. See Figure 4.7(b) for a visualization of W s(Γu).

4.3.4 Finding the Heteroclinic Orbits

Now that there are approximations of W u(z∗) and W s(Γu), it is possible to find the heteroclinic orbits.

The heteroclinic orbits are found through the intersections of these invariant manifolds. We expect these

intersections to be transverse, which is why they can be found computationally.

To actually achieve finding these intersections, an algorithm to find sets of closest points (one on W u(z∗)

and the other on W s(Γu)) is used. The algorithm for finding a set of closest points is as follows.

1. Restructure both the unstable and stable manifold datasets into two dataframes with columns of

c,w, p,q.

2. Create a BallTree for the stable manifold, which partitions its dataframe into a nested set of balls. The

resulting data structure has characteristics that make it useful for a nearest neighbor search.

3. Query the tree to find its nearest neighbor within the unstable manifold dataframe, and return the

distance between, and the IDs, of the two points.

4. Sort by the shortest distance.

Initially the heteroclinic orbits are computed using these sets of points, where the point on W s(Γu) is

integrated forward in time towards Γu, and the point on W u(z∗) is integrated backwards in time towards z∗.

The tangency of the two trajectories has to be verified to ensure that two points actually have trajectories
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tangent to one another, and not intersecting one another or meeting at a cusp. This process is performed by

inspection of the integration near the intersection point. Once it is determined that they fall on the same

path, the trajectory integrated backwards in time is used to find its corresponding point on the parameterized

circle K. The initialized points on K correspond to angles in [0,2π]. Using this process, two heteroclinic

orbits are found: H1 and H2. This implies there are two initial points on K, corresponding to two angles

x1,x2 ∈ [0,2π].

The invariant manifolds are illustrated in (c,w,q) space in Figure 4.8(a) and Figure 4.8(b). An overlap of

the invariant manifolds with their transverse intersections, as well as the heteroclinic orbits themselves are

illustrated in (c,w,q) space in Figure 4.8(c) and Figure 4.8(d). For other images of the heteroclinic orbits, see

Figure 4.11(a) and 4.11(c) for two-dimensional projections, or Figure 4.12(a) for a different three-dimensional

view, projected into (c,w,q) space, without the invariant manifolds overlaid.

4.3.5 The River

Recall, there are two heteroclinic orbits, H1 and H2, connecting z∗ and Γu. As mentioned in Section

4.3.4, the heteroclinic orbits H1 and H2 are associated with two points on K, which correspond to two angles

x1 and x2 respectively, from the initialization process. The angles x1 and x2 divide the circle K ⊂ W u(z∗)

into two arcs of points. From Lemma 2.3 in Fleurantin et al. 20 , there are angles x near angle x1 for which

the associated trajectories pass over Γu, and so they are considered exit trajectories. These exit trajectories

correspond to x values between x1 and x2, and most exit with minimal rotation.

All trajectories with angles between x1 and x2 exit Γu. This implies that every trajectory associated with

angles x ∈ (x1,x2) crosses Γu when projected into (c,w) space. The River, formally defined below, is used

to describe the set of trajectories on W u(z∗) that cross Γu with x values between x1 and x2. The heteroclinic

orbits H1 and H2 form the banks of the River. It is expected that between the two heteroclinics H1 and H2,

part of the River will leak out. Using the Maslov index, a subset of the River can be further identified, called

the subriver. The definitions of the Maslov Index and the subriver are below.

Definition 4.3.1. Let Z be a trajectory z(t) for t ∈ (−∞, t f ] satisfying (4.19). The River, denoted R, is defined

as R = {Z | z(τ1) ∈ K for some x1 < x < x2 and for some τ1 < t f and z(t f )⊂ Γu.}

Definition 4.3.2. Let Z be a trajectory in R. The Maslov Index of a trajectory Z on W u(z∗), denoted M(Z),

is the number of conjugate points along z(t) for t ∈ (−∞, t f ], counting multiplicity.

Definition 4.3.3. Let Z be a trajectory in R. The sub-river, denoted R̃, is defined as R̃ = {Z ∈R|M(Z) = 0}.
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(a) (b)

(c) (d)

Figure 4.8: The invariant manifolds in (c,w,q) space. (a) W u(z∗). (b) W s(Γu). (c) W u(z∗) (blue) and W s(Γu)
(magenta) overlaid together. (d) W u(z∗) (blue) and W s(Γu) (magenta) and their transverse intersections. The
transverse intersections correspond to the heteroclinic orbits (yellow, cyan).
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We note that R̃ ⊂ R.

The angles of K that correspond to the River are depicted in Figure 4.10(b) and the angles of K that

correspond to the subriver are shown in Figure 4.10(c). The River R of (4.19) is depicted in two dimensions

in Figure 4.9 and in three dimensions in Figure 4.12(b), specifically in (c,w,q) space.

Figure 4.9: The River trajectories (colored curves) integrated until they are past Γu. The heteroclinic orbits
H1 and H2 (both in black) form the banks of the River.

(a) (b) (c)

Figure 4.10: The stable fixed point z∗ is denoted by the blue circle. The black circles represent the angles x1
and x2 associated with the heteroclinic orbits H1 and H2. (a) The collection of ψ values that form the set K.
This circle lies in W u

loc(z
∗) and integrated forward in time to find W u(z∗). (b) The arc of set K associated with

the angles that will form the river trajectories when integrated forward in time. (c) The arc of set K associated
with the angles that will form the river trajectories overlaid with the angles that will form the subriver (red).

Now, from Definitions 4.3.2 and 4.3.3, it is only necessary to find the number of conjugate points on

a River trajectory to determine whether or not it is a trajectory in the subriver. A conjugate point occurs

along a trajectory in W u(z∗) when the tangent space to the invariant manifold at a point on that trajectory

has a degenerate projection onto (c,w) space. These points can be found by tracking the tangent space to

W u(z∗) along trajectories in W u(z∗). There are coordinates on the space of planes that allow the tracking

of this tangent space to W u(z∗) along a trajectory. The approach is to form the Plücker coordinates of the

two-dimensional subspace in R4, as Plücker coordinates are a way to assign six homogeneous coordinates to
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planes in R4. The space of planes in R4 can be embedded into P5.

A conjugate point can be conveniently described in Plücker coordinates. Using Lemma 4.3 from

Fleurantin et al. 20 , the time t = τ is a conjugate point for a trajectory z(t) = (c(t),w(t), p(t),q(t)) in W u(z∗)

if ρ12(τ) = 0 for the Plücker coordinates of the tangent space of W u(z∗).

If Π is a two-dimensional subspace of R4, using coordinates (y1,y2,y3,y4), then the coordinates of Π are

given by

dyi1 ∧dyi2 (4.29)

for all choices of (i1, i2)25. Let Π be a plane spanned by v3 and v4 from (4.24) with

v3 =



v31

v32

v33

v34


and v4 =



v41

v42

v43

v44


. (4.30)

Use (4.29), to set

ρi j =

∣∣∣∣∣∣∣
v3i v3 j

v4i v4 j

∣∣∣∣∣∣∣= dxi ∧dx j(v3,v4), 1 ≤ i, j ≤ 4, i , j. (4.31)

It follows the Plücker coordinates for this particular problem are given by

ρ12 = dc∧dw,

ρ13 = dc∧d p,

ρ14 = dc∧dq,

ρ23 = dw∧d p,

ρ24 = dw∧dq,

ρ34 = d p∧dq.

(4.32)

How the Plücker coordinates of a plane vary can be captured by an ordinary differential equation

governing the variation in time of the plane’s Plücker coordinates. This is calculated using the properties of

differential forms of the linearized system (4.19), which can be written as
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U̇ = AU, (4.33)

since it is Hamiltonian, and where U = (dc,dw,d p,dq). Therefore, we only need to solve

dÛ
dt

= B(x(t),y(t), p(t),q(t))Û , (4.34)

where Û = (ρ12,ρ13,ρ14,ρ23,ρ24,ρ34) and

B(c,w, p,q)=



Fc +Gw 0 1 −1 0 0

−pFcw −qGcw 0 −Gc Fw 0 0

−pFww −qGww −Fw Fc −Gw 0 Fw 1

pFcc +qGcc Gc 0 −Fc +Gw −Gc −1

pFwc +qGwc 0 Gc −Fw 0 0

0 pFcw +qGcw −pFcc −qGcc pFww +qGww −pFcw −qGcw −Fc −Gw


.

(4.35)

The trajectories in W u(z∗) are parameterized by angles x that determine a point on K. The algorithm for

finding conjugate points along a trajectory that passes through K is as follows.

1. Take a trajectory of W u(z∗), z(t), initialized from K. From this trajectory, the locations (c,w, p,q) as

well as the time of each location are known.

2. Form Plücker coordinates of the unstable subspace of system (4.19) at z∗ and initialize system (4.34)

with these coordinates at the first time and point location of z(t).

3. Integrate system (4.34) forward in time, by one time step. The ending location becomes the next initial

condition. Repeat this process until reaching the final time of z(t). Keep track of ρ12.

4. Find the values of t where ρ12 = 0.

For every trajectory in R, the conjugate points are tracked. Using Theorem 5.2 in Fleurantin et al. 20 , the

trajectories in R̃ are minimizers of the Freidlin-Wentzell functional given their respective boundary value.

While the trajectories in R̃ are minimizers of the Freidlin-Wentzell functional, it is only expected that these

trajectories are local minimizers. In fact, there will be infinitely many trajectories in W u(z∗) that cross Γu

at a fixed boundary point that will consist of minimizers. The argument is that the trajectories in R̃ play a
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fundamental role for the noisy realizations that escape for small but not vanishing noise strengths.

Figure 4.11 illustrates the tracking of conjugate points for the heteroclinic orbits H1 and H2 that were

computed in Section 4.3.4. The heteroclinic orbits are shown in the left column and their associated plot

in the right column, indicating if and where a conjugate point is detected, corresponding to where ρ12 = 0.

These computations show that one heteroclinic orbit has Maslov Index: 0 (Figure 4.11(b)) and the other

has Maslov Index: 2 (Figure 4.11(d)). The zero-conjugate point heteroclinic orbit is denoted by H1 and the

two-conjugate point heteroclinic orbit is denoted by H2.

(a) (b)

(c) (d)

Figure 4.11: (a) The heteroclinic orbit H1 of system (4.19). (b) A plot tracking the component ρ12 for H1
and showing there are no conjugate points on the time interval specified as the curve never crosses 0. (c) The
heteroclinic orbit H2 of system (4.19). (d) A plot tracking the component ρ12 for H2 and showing there are
two conjugate points on the time interval specified as the curve crosses 0 twice.

4.3.6 Monte Carlo Simulations and Escaping Paths

The analysis carried out so far was aimed at finding a most probable path of escape for noisy trajectories

through a periodic orbit that forms the boundary of the basin of attraction of the attracting fixed point. The

work has been predicated on the notion that for small, but non-vanishing small noise, noisy trajectories that

escape will not exhibit cycling behavior. Rather, they find an escape region at a specific part of the periodic

orbit. Moreover, they will choose to leave the basin of attraction without overly cycling.
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(a) (b)

Figure 4.12: (a) The heteroclinics H1 (blue) and H2 (magenta) in three-dimensional space. (b) Trajectories
in the River R reaching Γu (black) in (c,w,q) space.

We show that this escape region exists by carrying out Monte Carlo simulations on the oceanic carbon

cycle model with additive noise. In the computations, the noise strength is set at σ1 = σ2 = 5. It may be

argued that this is not all that small, however, it was derived by pushing the noise to the smallest level for

which convergence could be obtained for the exit distributions within reasonable computing time. Studying

(4.36) with σ1 = σ2 = 5 on the time interval [0,15], initialized at z∗ with a step size of dt = .005, has the

percentage of samples that escape at approximately 4%.

System (4.14) is numerically simulated using the Euler-Maruyama method to create a discretized Markov

process24 over the time interval [0,15]. The time interval is partitioned into sub-intervals of width ∆t = .005,

and the solution is initialized at c = c∗ and w = w∗. To create the discretized Markov process, the system is

recursively defined as

cn+1 = ( f (cn)[µ(1−bs(cn,cp)−θ s̄(cn,cx)−ν)+wn −w0])∆t +σ∆W1n,

wn+1 = (µ[1−bs(cn,cp)+θ s̄(cn,cx)+ν ]−wn +w0)∆t +σ∆W2n.

(4.36)

Recall a standard Weiner process, W , satisfies the property that Brownian increments are independent and

normally distributed with mean zero and variance ∆t. It follows that ∆Wi = Wi n −Wi n−1, i = 1,2, can be

numerically simulated using
√

∆t ·N(0,1), as shown in Claim 3.2.1.

The goal is to find the realizations that have transitioned from z∗ to somewhere outside the unstable

periodic orbit, and capture where on Γu they have exited. Let τi denote the first time a path, Xi, crosses

Γu. Escape events are defined to be the paths Xi that have τi ≤ 15. Let the point of Xi at τi be given by
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(ci,wi). Refer to Figure 4.13 for an example of realizations that have and have not escaped on the finite time

interval, as well as the escape location. Assume for M realizations there are K escape events. We construct

the distributions for the c and w locations for the K escape events. To verify these distributions of the escape

location have converged, the convergence process from Section 3.2 is used for both c and w escape locations.

This process results in converged distributions for exit location in both c and w along Γu for this noise

regime: starting with two sets of N = 50000 realizations and doubling until there are two sets of N = 1600000.

In this case, Errc = 0.095 < 0.1 and Errw = 0.098 < 0.1. In total, there are 3200000 simulations in which

65008 realizations escape.

Collecting the points (ci,wi) from the paths that escaped, we see they fall on a specific part of Γu. In

Figure 4.14(a) see a jointplot of the exit locations respectively and notice that there is a distinct spot on Γu

where trajectories mostly exit. Additionally, see the overlay of the subriver and just the mouth of the subriver

with the jointplot in Figure 4.14(b) and Figure 4.14(c) respectively. The majority of the subriver exits at the

densest spot of the exit points.

(a) (b) (c)

Figure 4.13: Two sample paths of (4.36) (black) initialized at z∗ on the interval [0,15] with dt = .005 and
σ1 = σ2 = 5, overlaid with the stable (blue) and unstable (red) periodic orbits. (a) The sample path does
not escape. (b) The sample path escapes the unstable periodic orbit, Γu. (c) A zoomed-in version of the
rectangular box in (b), where the cyan star denotes the path’s exit location, (ci,wi).

In conclusion, a dynamical system approach was used for computing the most probable path where

the boundary of the basin of attraction is a periodic orbit. Notice that besides the noisy realizations, these

calculations do not depend on the noise strength. While vanishingly small noise predicts cycling, Freidlin-

Wentzell theory can be used to show how cycling is actually resisted when noise strengths are larger. Of

interest are the points on Γu where the River trajectories cross as they escape, in which a subset of these

trajectories, the subriver, lined up almost exactly with the Monte Carlo simulations.

48



(a) (b) (c)

Figure 4.14: Jointplots and kernel density estimates of the tipped realizations of (4.36). Parameters are set
at σ1 = σ2 = 5. The stable fixed point z∗ is denoted by the black circle and the unstable periodic orbit Γu

is denoted by the gray dashed curve. (a) Jointplot of points (ci,wi) from 21801 realizations that escaped
through Γu. We can see a clear region of exit points. (b) Jointplot of points (ci,wi) from 65008 realizations
that escaped through Γu overlaid with trajectories of the subriver (red). (c) Jointplot of points (ci,wi) from
65008 realizations that escaped through Γu overlaid with where subriver exits Γu (red points).

4.4 Discussion

4.4.1 Considering the Onsager-Machlup Functional for the Stochastic System

To understand why the noisy trajectories escape via a specific area when crossing Γu, we need to calculate

the energy required by a path to escape to higher order. This involves the Onsager-Machlup functional13

which becomes relevant when the noise is not vanishingly small. The Onsager-Machlup functional is

considered as a perturbation of the Freidlin-Wentzell functional.

The Onsager-Machlup functional for a path (c(t),w(t)) on an interval [t0, t f ] is given by

I[c,w] =
∫ t f

t0

(
(ċ1 − f )2

σ2
1

+
(ċ2 −g)2

σ2
1

+σ1(∇ ·V (c,w))
)

dt, (4.37)

where V is the vector field given by (4.3). To find the global minimizer of the system, we have to calculate

this Onsager-Machlup term for each of our trajectories within the subriver. Essentially, this process provides

a selection mechanism to pick out a specific most probable escape path out of our subriver trajectories.

Once we have the selected path, it needs to be verified with Monte Carlo simulations. A kernel density

estimation will be used to determine how noisy trajectories exit Γu. The trajectories will be reparameterized

to begin a certain radius away from z∗. This circle is chosen large enough so that realizations are on their way

to tip, and not just bouncing around z∗. While this is an arbitrary choice of a parameterization, it shows the

time evolution of the distribution of noisy trajectories. We believe, based on the work of Fleurantin et al. 20 ,
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the chosen trajectory from the Onsager-Machlup functional will match the distribution of noisy trajectories

all along the path, where this trajectory is acting as a guide for the realizations exiting Γu.

4.4.2 Allowing Both Noise and Rate-Induced Tipping

As seen in this chapter, we have studied rate-induced tipping and noise-induced tipping individually within

the oceanic carbon cycle model. In the next chapter, these two tipping mechanisms are combined by allowing

white noise on both state variables, while also having the CO2 injection rate be a time-dependent parameter.

Realistically, it makes sense to still allow noise to act on the system and interact with the time-dependent

CO2 injection rate.
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CHAPTER 5

A Canonical Problem for Rate and Noise-Induced Tipping

This chapter focuses on when there is a parameter shift (R-tipping) and the addition of random fluctuations

(N-tipping). The aim is to assess the extent that rate and noise-induced tipping work together to facilitate

tipping in cases where neither readily tip on their own.

We consider a canonical one-dimensional system with a ramp parameter and impose additive noise on its

dynamics. The addition of noise to the system causes the system to tip for all r values less than the critical

rate needed for rate-induced tipping, and does so with significantly increased probability over the noise or

ramp acting alone. The most probable path to tip for all r values corresponds to the global minimizer of

the Freidlin-Wentzell rate functional, which itself is a heteroclinic orbit. While we show these results in

context of a canonical problem, the phenomenon found is suggestive for tipping between stable base states

and threshold boundaries.

We compactify the system and derive the Euler-Lagrange equations associated with the Freidlin-Wentzell

action functional23. Using a dynamical systems framework, including tracking invariant manifolds, using the

Wazewski principle, and applying shooting methods, we prove there is always an intersection of the unstable

manifold of the base state and stable manifold of the threshold state. Through numerical simulations it is

shown that this intersection is unique.

There are three candidates for the path to tip between the two saddles of interest. However, this chapter

exposes that the most probable path is unambiguous. The action values indicate that the heteroclinic

connection through the found intersection point is the global minimizer of the Freidlin-Wentzell functional,

and Monte-Carlo simulations, at appropriate noise levels, converge to this heteroclinic connection as well.

As nonzero rates are considered within the ramp parameter, the ramp is a nontrivial component of the

system. Consequently, this means that the additive noise should be of small levels, away from the limit, as

otherwise the noise effects would come after the ramp finishes, and our focus is on the interplay of these

phenomena. A drawback of the Freidlin-Wentzell theory is that it necessitates vanishingly small noise23.

In focusing on a small but not vanishingly small noise regime, the transient behavior of the underlying
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deterministic system will play an important role. The Freidlin-Wentzell theory will still hold in regard

to the dynamical structure for small noise strengths, namely the heteroclinic connection will be the most

probable path, but more discussion is needed when considering the expected time to tip. The extension

from vanishingly small to small noise levels is relevant for several applications of interest, especially in

environmental, social, or biological contexts, as detailed in the motivation for this work in Chapter 1.2.

The addition of noise, regardless of size, will always result in tipping of the system in infinite time. If we

consider a finite time horizon, the addition of noise will cause the system to tip with a certain probability.

The probability of tipping is dependent on both the noise strength and the speed of the ramp parameter, r,

where the time horizon is chosen long enough to ensure the ramp function completes its transition. The size

of small noise will change depending on the value of r being considered. The noise strengths are chosen so

that the probability of tipping is less than 21%.

This analysis builds off the work of Ashwin et al. 5 and Ritchie and Sieber 36 . Ashwin et al. 5 introduced

and studied the prototype model for rate-induced tipping:

ẋ = (x+λ )2 −1, (5.1)

with a monotonically increasing time-dependent parameter,

λ (t) =
λmax

2

(
1+ tanh

(
λmaxrt

2

))
, r > 0. (5.2)

Using a compactification44 as described in Chapter 4.2, they augment the system to an autonomous

two-dimensional system containing equilibria and compact invariant sets, and in turn, the rate-induced tipping

problem turns into a heteroclinic connection problem between two saddle equilibria. Perryman 35 finds the

critical rate needed for tipping within the system is rc = 4/3. Ritchie and Sieber 36 then considered this

canonical problem with additive noise, and found that an interplay between the noise and ramp parameter

results in tipping of the system before the critical rate, rc, is reached. However, they only consider r values

close to the critical rate. Ritchie and Sieber 36 find solutions of the variational problem determining the most

likely tipping path using numerical continuation techniques. The majority of their work focuses on the most

likely tipping time in the plane of two parameters: distance from tipping threshold and noise intensity.
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5.1 Deterministic Dynamics

Consider

ẋ = (x+ y)2 −1, (5.3)

where · = d
dt , and a monotonically increasing time-dependent parameter, as proposed by Ashwin et al. 5 ,

y(t) =
3
2

(
1+ tanh

(
3rt
2

))
, r > 0. (5.4)

Reformulating the nonautonomous system in (5.3) into the compactified system using the ramp function

in (5.4) as the coordinate transformation maps the real line onto the finite y−interval (0,3). The y-interval

is closed by including y = 0,3 which come from the limits of (5.4) at ±∞. This leads to the autonomous

compactified two-dimensional system

ẋ = (x+ y)2 −1,

ẏ = ry(3− y).
(5.5)

The system given in (5.5) has four fixed points, though the focus is on the saddle equilibria (−1,0) and (−2,3).

At a critical r, denoted rc, there is a heteroclinic connection between the two saddle points. Perryman 35

found that rc = 4/3 and the connecting orbit is the line given by x = − y
3 − 1. For 0 < r < rc, the system

end-point tracks the saddle equilibrium initialized at (−1,0) to (−4,3), and when r > rc, the system tips to

infinity. Figure 5.1 shows trajectories for different values of r for the system given in (5.5), demonstrating

solution behaviors when initializing at the saddle (−1,0).

Figure 5.1: Solutions of the compactified system given by (5.5). The blacked dash curves track the fixed
points x = 1− y and x =−1− y in the frozen system over time. The colored trajectories are solution curves
initialized at x =−1,y = 2.80729×10−13 for different values of r. Solution curves with 0 < r < 4/3 do not
tip, whereas the solution curves with r ≥ 4/3 tip. There is a heteroclinic connection between the two saddle
equilibria at r = 4/3.
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5.2 Building the Stochastic Framework

For the remainder of this work, we want to consider the effects of additive noise on the dynamics of x

in (5.5). However, to use Freidlin-Wentzell theory, noise has to be considered on both the dynamics of x

and y, but then we can take the limit as noise goes to zero in the y component. The stochastic version of the

canonical problem is of the form

dx = f (x,y)dt +σ1dW1 = ((x+ y)2 −1)dt +σ1dW1,

dy = g(x,y)dt +σ2dW1 = (ry(3− y))dt +σ2dW2.

(5.6)

Speaking generally of this form, x,y are the stochastic processes parameterized by time, f ,g are the deter-

ministic pieces of the system, W1,W2 are standard Wiener processes, and σ1,σ2 denote the respective noise

strengths.

With the addition of noise to the system, with probability equal to one, there is tipping in the system

between the two saddle equilibria. We want to find the most probable path to tip between these two points.

The tool used to study these transitions is the Freidlin-Wentzell theory of large deviations, where the action

functional and derivation of the Euler-Lagrange equations were introduced in Section 3.1.

5.3 A Dynamical Systems Perspective on the Canonical Problem

The general Euler-Lagrange equations from (3.11) for the stochastic version of the canonical problem

(5.6) become

ẍ = fyẏ+ f fx,

ÿ = ggy +
σ2

2

σ2
1
( f fy − ẋ fy),

(5.7)

as g(x,y) = g(y), implying gx = 0. Using the Euler-Lagrange equations given by (5.7), we make a Legendre

transform4 to create a degree four Hamiltonian system. Let

p =
ẋ− f
σ2

1
,

q =
ẏ−g
σ2

2
.

(5.8)

Differentiating p and q with respect to t implies
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ṗ =
ẍ− fxẋ− fyẏ

σ2
1

,

q̇ =
ÿ−gyẏ

σ2
2

.

(5.9)

Then ẍ is substituted into ṗ and ÿ is substituted into q̇ from (5.7), resulting in

ṗ =
( fyẏ+ f fx)− fxẋ− fyẏ

σ2
1

=
f fx − fxẋ

σ2
1

=
f fx − fx( f +σ2

1 p)
σ2

1

=− fx p,

q̇ =

σ2
2

σ2
1
(−ẋ fy + f fy)+ggy −gyẏ

σ2
2

=

σ2
2

σ2
1
(−( f +σ2

1 p) fy + f fy)+ggy −gy(g+σ2
2 q)

σ2
2

=
−σ2

2 p fy −σ2
2 qgy

σ2
2

=− fy p−gyq.

(5.10)

Using the expressions for ṗ and q̇ from (5.10) and rearranging the expressions in (5.8) for ẋ and ẏ, the degree

four Hamiltonian system is of the form

ẋ = f +σ
2
1 p,

ṗ =− fx p,

ẏ = g+σ
2
2 q,

q̇ =−gyq,

(5.11)

and the associated Hamiltonian function is

H(x, p,y,q) = f p+gq+
σ2

1
2

p2 +
σ2

2
2

q2. (5.12)

As mentioned earlier, we want to only consider noise on the dynamics of x, as y is a time parameterization,

and thus σ2 is sent to zero. It follows that ẋ, ṗ, ẏ are all independent of q, and so it is possible to project the

equations into x, p,y space. Using this independence of q and substituting f and g as they are defined in (5.6)
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results in (5.11) becoming

ẋ = (x+ y)2 −1+σ
2
1 p,

ṗ =−2(x+ y)p,

ẏ = ry(3− y).

(5.13)

In addition, notice that p= 0 is invariant and carries the deterministic flow given by (5.5). These equations

in (5.13) are the most probable path equations. Throughout this work, remember that x is the original state

variable, y is a time reparameterization, and p is the extra variable representing the work a trajectory has to

do against the vector field.

Notice that alternatively we could have derived the Euler-Lagrange equations using the Freidlin-Wentzell

functional on the nonautonomous system (5.3), then use a Legendre transform to create a degree two

Hamiltonian system, and finish by compactifying the system. The compactification process and the Euler-

Lagrange and Legendre transform procedures commute, as proven below in Claim 5.3.1, and results in the

same equations as shown in (5.13). This alternative method is useful when performing numerical experiments

in Section 5.4.2.

Claim 5.3.1. The compactification process and the Euler-Lagrange and Legendre transform procedures

commute.

Proof. Consider the one-dimensional system (5.3) with ramp function (5.4). The stochastic version of this

system is of the form

dx = f (x, t)dt +σ1dW1. (5.14)

The most probable path, between two points is a curve c1(t) that minimizes the Freidlin-Wentzell functional

I[c1] =
∫ t f

t0

(ċ1 − f (x, t))2

σ2
1

dt. (5.15)

Minimizing this functional would be similar to that of the argument shown in Section 3.1. The resulting

Euler-Lagrange equation for the system in (5.3) is

ẍ = f fx + ft . (5.16)
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Making a Legendre transform with

p =
ẋ− f
σ2

1
, (5.17)

results in a two-dimensional Hamiltonian system. Differentiating p with respect to t and substituting ẍ from

(5.16) implies

ṗ =
ẍ− fxẋ− ft

σ2
1

=
f fx + ft − fxẋ− ft

σ2
1

=
f fx − fx( f +σ2

1 p)
σ2

1

=− fx p.

(5.18)

Using the expressions for ṗ from (5.18) and rearranging the expressions in (5.17) for ẋ, the degree two

Hamiltonian system is of the form

ẋ = f +σ
2
1 p,

ṗ =− fx p,
(5.19)

and the associated Hamiltonian function is

H(x, p,y,q) = f p+
σ2

1
2

p2. (5.20)

Now introducing the coordinate transform y(t) = 3
2

(
1+ tanh

(3rt
2

))
and compactifying the system leads

to the three-dimensional system

ẋ = (x+ y)2 −1+σ
2
1 p,

ṗ =−2(x+ y)p,

ẏ = ry(3− y),

(5.21)

and finishes the proof that the two procedures commute.

□

Performing a phase portrait analysis on (5.13), there are six equilibria: three on y = 0 and three on y = 3.

We are interested in the heteroclinic connection between the saddle points (−1,0,0) and (−2,0,3), as these

correspond to the saddles (−1,0) and (−2,3) in our two-dimensional phase space. For notation purposes,

refer to (−1,0,0) as s1 and (−2,0,3) as s2. A quick check of the eigenvalues of (5.13) linearized at s1 show
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s1 has a one-dimensional stable manifold and a two-dimensional unstable manifold. Similar methods show s2

has a one-dimensional unstable manifold and a two-dimensional stable manifold. We denote the unstable and

stable manifolds of a point p by W u(p) and W s(p) respectively. Using this notation, the desired heteroclinic

will lie on W u(s1) and also on W s(s2). See Figure 5.2 for what the phase space looks like on y = 0. Notice

that asymptotically the phase space dynamics are identical on y = 3.

Figure 5.2: The phase space for (5.13) on the plane y = 0. There are two saddles (black circles) and one
center (black square). The black dashed lines represent where H = 0. The blue arrows show the direction of
the vector field. The phase space is asymptotically identical on the plane y = 3.

Using the Hamiltonian structure in the invariant planes y = 0 and y = 3 creates two possible tipping

paths between the two saddles of interest. The first possible path is to tip from s1 to (1,0,0) in y = 0 and

then end-point track from (1,0,0) to s2 in p = 0. The second possible path is to end-point track in p = 0

from s1 to (−4,0,3) and then tip to s2 in y = 3. As seen in Section 5.4.3 and Section 5.4.4, these paths have

essentially an infinite time until tipping occurs and have a high action value.

We claim there is always a third heteroclinic connection that is the most probable path and is the path of

least action. To prove the existence of a heteroclinic orbit between the two saddles s1 and s2 for all 0 < r ≤ rc,

we first show W u(s1) is continuous on the plane y =−x for y ≤ 3
2 for 0 < r ≤ rc, and then, that W u(s1) and

W s(s2) are symmetric.

Proposition 5.3.2. The primary intersection of W u(s1) with the plane y = −x is continuous on the plane

y =−x for y < 3
2 and r > 0.

Proof. The Wazewski Principle40 states the following:

Let W− be the immediate exit set of W and let W 0 be the eventual exit set of W. If W− is closed relative to

W 0, then W is a Wazewski set, and the map K : W 0 →W− that takes each point to the first where it exits W,
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is continuous.

We define the primary intersection of W u(s1) with the plane y =−x to be the first crossing of this plane

from trajectories initialized in the unstable subspace of s1 coming from −∞. For the system given in (5.13),

the Wazewski set, W , is the space bounded by the following planes: y =−1− x, y =−x, y = 0, y = 3/2, and

p = 0, and extends infinitely in the positive p direction. Based on flow of the vector field, the following are

true about the boundaries of W : y =−1− x is an entrance set, y = 0 and p = 0 are neither entrance nor exit

sets as they are invariant planes, and y = 3/2 is an exit set. On y =−x, below the curve p = 1
σ2

1
(1− ry(3−y))

is an entrance set, and above it, an exit set. Refer to Figure 5.3 for a visual of W .

Now it needs to be determined what happens on the curve p = 1
σ2

1
(1− ry(3− y)) itself, which is the

boundary between an entrance set and an immediate exit set. Consider x and p as functions of y. Looking

at the first and second derivatives at the point z = (−y, 1
σ2

1
(1− ry(3− y)),y), representing any point on this

curve, these derivatives simplify to

dx
dy

∣∣∣
z
=−1,

d2x
dy2

∣∣∣
z
=

3−2y
y(3− y)

> 0 for y < 3/2,

d p
dy

∣∣∣
z
= 0,

d2 p
dy2

∣∣∣
z
= 0.

(5.22)

In (5.22), dx
dy =−1 and d2x

dy2 > 0. By the second derivative test, a trajectory would be concave up at this point,

forcing any points to leave and consequently not enter W . Therefore the boundary of the immediate exit set is

contained in the immediate exit set, and the following can be said about the immediate exit set and eventual

exit set of W :

W− = {(x, p,y) | y = 3/2,y =−x for p ≥ 1
σ2

1
(1− ry(3− y))},

W 0 = {(x, p,y) |W \{y = 0,y =−1− x, p = 0,(−1,0,0),(0,1,0)}}.

59



The boundary of the immediate exit set is in the immediate exit set, and it easily follows that W− is closed

relative to W 0, implying W is a Wazewski set and the map K : W 0 →W− is continuous for y < 3
2 . This further

implies that W u(s1) intersected with the plane y =−x is continuous for y < 3
2 and r > 0. □

Proposition 5.3.3. W u(s1) intersected with W− crosses the plane y = 3
2 for 0 < r ≤ rc.

Proof. Notice y = 3
2 separates W− into two pieces. Take the quarter circle of radius ε around the fixed point

s1 intersected with W u(s1) that lies in W , and call this curve CW . Applying the map K to CW results in a curve

in R3, specifically a curve lying in W− by the definition of Wazewski map K.

Since CW is a closed curve, it is possible to track where the two endpoints of CW map to under K. The

first endpoint of CW has y = 0, p , 0 and second endpoint of CW has p = 0,y , 0. Take the endpoint of CW

that lies in y = 0. Since the y = 0 plane is invariant, when applying K, the trajectory must stay in this plane

and eventually exit through y =−x and above p = 1
σ2

1
(1− ry(3− y)). Take the endpoint of CW that lies in

p = 0. Since the p = 0 plane is invariant, applying K, the trajectory must stay in this plane. Since ẏ > 0, this

trajectory will eventually exit through y = 3
2 , when 0 < r ≤ rc.

W u(s1) intersected with W− actually intersects y = 3
2 by the intermediate value theorem, as K is a

continuous map, and one endpoint of CW maps to the plane y =−x in y = 0 while the other endpoint of CW

maps to the plane y = 3/2 in p = 0. Therefore the intersection of W u(s1) and the plane y =−x is continuous

for y ≤ 3
2 for 0 < r ≤ rc. See Figure 5.3 for an illustration of this shooting argument. □

Proposition 5.3.4. W u(s1) and W s(s2) are symmetric.

Proof. Recall the system given in (5.13). Making the change of variables τ =−t, the time reversed system is

x′ =−(x+ y)2 +1−σ
2
1 p,

p′ = 2(x+ y)p,

y′ = ry(y−3).

(5.23)

We transform the variables x, p,y by

x̂ =−x−3,

p̂ = p,

ŷ = 3− y.

(5.24)
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and substitute them into the time-reversed system found in (5.23). The equations simplify to

x̂′ = (x̂+ ŷ)2 −1+σ
2
1 p̂,

p̂′ =−2(x̂+ ŷ)p̂,

ŷ′ = rŷ(3− ŷ).

(5.25)

Observe that (5.25) is in the original form as given in (5.13), and it follows that W u(s1) and W s(s2) are

symmetric.

□

Figure 5.3: The boundary of the Wazewski set is in blue and extends infinitely in the positive p direction.
It is the space bounded by y =−1− x,y = 0,y =−x,y = 3

2 , and p = 0. Taking a quarter circle of radius ε

about s1 intersected with the piece of W u(s1) lying in W , and applying map K, results in the dotted red curve.

Theorem 5.3.5. There exists a heteroclinic connection between the saddle points s1 and s2 that goes through

the plane y =−x at y = 3
2 for 0 < r ≤ rc.

Proof. Using Propositions 5.3.2 and 5.3.3, the intersection of W u(s1) and the plane y = −x is continuous

for y ≤ 3
2 for 0 < r ≤ rc. The symmetry of W u(s1) and W s(s2), proven in Proposition 5.3.4, implies the

intersection of W s(s2) intersected with the plane y =−x is continuous for y ≥ 3
2 for 0 < r ≤ rc. Therefore

W u(s1) and W s(s2) will always intersect once in the plane y =−x at y = 3
2 , implying a heteroclinic connection

between s1 and s2 for 0 < r ≤ rc, and concluding the proof of Theorem 5.3.5. □

There exists a heteroclinic connection between s1 and s2 for all 0 < r ≤ rc, and this proof demonstrates

how to find this heteroclinic using the intersection of the invariant manifolds. In the deterministic system, for

0 < r < rc, there would not be tipping or a heteroclinic connection between the saddles. The presence of

noise, regardless of size, allows direct tipping between these saddles within the system.
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5.4 Computational Methods and Numerical Results

5.4.1 Visualization of Invariant Manifolds and the Heteroclinic Connection

Section 5.3 proved the existence of the intersection of W u(s1) and W s(s2) at y = 3/2, giving rise to a

heteroclinic connection between the two saddle points through that specific point. We numerically compute

these manifolds, plot them in y =−x, and observe their intersection at y = 3/2. This enables the visualization

of their intersection, as well as enables the computation of the trajectory through the intersection point.

The trajectory is then projected into the xy plane to find the heteroclinic connection in the two-dimensional

extended phase space.

The local unstable subspace of s1 is spanned by the two vectors

(
σ2

1
4
,1,0

)T

and
(

−2
3r+2

,0,1
)T

, (5.26)

which span the plane

4(x+1)− (σ2
1 +4)p− 12r

3r+2
y = 0. (5.27)

Intersecting this plane with the sphere

(x+1)2 + p2 + y2 = (0.001)2 (5.28)

and taking points such that y, p > 0, results in a curve of points that lie in the unstable subspace, as seen in

Figure 5.4. This curve is discretized and the tuples are used as a set of initial conditions.

Figure 5.4: Parameters are set at r = 1,σ1 = 0.15. The red curve is the intersection of the sphere (5.28) and
the plane (5.27) spanned by (5.26).

We numerically run system (5.13) forward in time for each initial condition until the trajectory first
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hits the plane y = −x. Similarly, this process is performed when looking at the stable subspace of s2 and

running system (5.13) backwards in time. The intersection of these two curves is found in the plane y =−x,

and through these simulations, observe that the intersection point of these two curves in y =−x is unique.

Running the system both forwards and backwards in time from the intersection point supplies the full

heteroclinic trajectory. Refer to Figure 5.5 to see a visualization of W u(s1) and W s(s2) intersecting in the

plane y =−x, as well as the trajectory through the intersection point for two different parameter pairs of r

and σ1, corresponding to the heteroclinic orbit between s1 and s2. Projecting this heteroclinic orbit into xy

space is the connecting orbit between (−1,0) and (−2,3), and it is shown in the next section that this orbit is

in fact the most probable path between these points.

(a) (b)

Figure 5.5: W u(s1) (red) and W s(s2) (cyan) in the plane y =−x (purple) for y ∈ (0,3). The trajectory through
their intersection point is the heteroclinic orbit connecting s1 and s2 (yellow). (a) Parameters are set at
r = 1,σ1 = 0.25. (b) Parameters are set at r = 0.5,σ1 = 0.25.

In the compactified system, the heteroclinic connections do not look identical when varying r. For fixed

r and varying σ1, the heteroclinic connections will look identical when projected into the xy plane as this

variation of σ1 only scales the p variable. Notice that in Figure 5.7(b), while the heteroclinic orbit connecting

the two saddle equilibria looks linear, it is not a line. As r approaches the critical rate of the deterministic

system, the heteroclinic orbit becomes deceptively linear.

Besides the existence of the heteroclinic connection between s1 and s2 proven in Section 5.3, this first

set of numerical simulations now verifies the uniqueness of the heteroclinic connection between s1 and s2,

though it has not yet been shown that the heteroclinic connection is the most probable path between these

two points. These calculations are performed in the next section.
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5.4.2 Monte Carlo Simulations and the Most Probable Path

The heteroclinic connection constructed in Section 5.3 is in fact the most probable path and corroborated

using Monte Carlo simulations. Recall the original problem was a one-dimensional differential equation.

Consider its stochastic version, given by

dx = ((x+ y)2 −1)dt +σ1dW,

y(t) =
3
2

(
1+ tanh

(
3rt
2

))
,r > 0.

(5.29)

As shown in Claim 5.3.1, the order of compactification process and the Euler-Lagrange and Legendre

procedures commute, so (5.29) can be used for running simulations as it is computationally less expensive.

Realizations of (5.29) are numerically simulated using the Euler-Maruyama method, described in Section

3.2 over a time interval of length 30. To apply the Euler-Maruyama method, the time interval is partitioned

into sub-intervals of width ∆t = 0.001, and the solution is initialized at x =−1 and y = 2.80729×10−13. This

y initial condition is used to find the corresponding t0 by solving the rescaled time rt =−10. This explains

why the exact time intervals of length 30 vary for each case. Changing the initial y value, corresponding

to changing the starting time, only shortens or extends the time for a realization to tip36. To create the

discretized Markov process, x is recursively defined as

xn+1 = xn +((xn + y(tn))2 −1)∆t +σ1∆Wn. (5.30)

Recall a standard Weiner process, W , satisfies the property that Brownian increments are independent and

normally distributed with mean zero and variance ∆t. It follows that ∆W =Wn −Wn−1 can be numerically

simulated using
√

∆t ·N(0,1), as shown in Claim 3.2.1.

We simulate M realizations of (5.29) using the Euler-Maruyama method given in (5.30). These realizations

are mapped to two dimensional phase space by plotting (y(t),x). We define tipping to be when a realization

of (5.29) crosses W s(−2,3), and limt→∞ x(t) ,−4. W s(−2,3) can be see in Figure 5.6.

Of the M realizations, Mtip is defined as the number of realizations that tip on the finite time interval

of choice. Thus M −Mtip do not tip, an example of which is shown in Figure 5.7(a) for r = 1,σ1 = 0.15.

There are Mtip points within the Mtip realizations that tipped for every discretized time. Python is used to

get the kernel smoothing density estimation of the Mtip points at each time. This finds the ‘most probable
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point’ at every time step, which is determined by the peak of the kernel density estimation (KDE). This

peak corresponds to the mode of the Mtip points at that time. Plotting the mode at each time step provides

an approximation for the most probable path. Overlaying the numerically-simulated most probable path,

with what was found using the the projection of the trajectory through intersection of W u(s1) and W s(s2) in

y =−x in Section 5.4.1, observe that the approximation matches the actual path extremely well, an example

of which is shown in Figure 5.7(b) for r = 1,σ1 = 0.15. Therefore, the trajectories that tipped followed the

heteroclinic connection, and the heteroclinic connection between the two saddles is the most probable path.

Figure 5.6: W u(−1,0) (red) and W s(−2,3) (blue) for r = 0.5 and r = 1. Tipping occurs when a realization
of (5.30) crosses W s(−2,3) and limt→∞ ,−4.

As mentioned above, the Monte Carlo simulations show that trajectories either tip to infinity or end-point

track the stable path to (−4,3) on the given finite time horizon. The trajectories that end-point track the

stable path follow the pullback attractor5 of (−1,0). Performing another kernel smoothing density estimation

on the realizations that did not tip, observe that these trajectories actually peak along this pullback attractor,

an example of which is shown in Figure 5.7(c) for r = 1,σ1 = 0.15.

The heteroclinic orbit and the pullback attractor are objects that can be used to separate trajectories of the

system. These computations show that the addition of noise allows the system to tip when its deterministic

equivalent would not tip, as the trajectory would be the pullback attractor. For the specific parameter regime

r = 1,σ1 = 0.15 as depicted above, even with r being 3/4 of the critical rate, tipping occurs within the

system.

5.4.3 Time to Tip

There is concern that the influence of noise on (5.3) is the sole reason the system exhibits tipping.

However, it is verified in this section that the tipping occurs due to the interplay of both the ramp parameter

and noise. The frequency of tipping largely increases with this addition of small noise strengths interacting

with the ramp parameter.
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(a) (b) (c)

Figure 5.7: (a) 3000 Monte Carlo simulations of (5.29) with r = 1 and σ1 = 0.15 on the interval [0,30] with
dt = 0.001. 2807 realizations do not tip (blue) and 193 tip (red). (b) The realizations that tipped, overlaid
with the heteroclinic orbit found (solid black) and a kernel density estimate of the realizations that tipped
(dashed black). (c) The realizations that did not tip, overlaid with the pullback attractor of (−1,0) (solid
black) and the kernel density estimate (dashed black).

Recall the original goal is to tip from (−1,0) to (−2,3), which correspond to s1 and s2 in the three-

dimensional system in (5.13). Using (5.13), based on the stable and unstable directions of these saddles

and the direction of the vector field, there were initially two possible ways to tip due to the Hamiltonian

structure in the invariant planes y = 0 and y = 3. Section 5.3 proves that there is a third way of tipping via a

heteroclinic orbit between the two saddles, which is now verified as the most probable path from the Monte

Carlo simulations. Refer to Figure 5.8 for a visual of these possible tipping paths.

Notice that if tipping occurs in either y = 0 or y = 3, there is no interplay with the ramp parameter, as it

would be before or after the ramping occurs. In the planes y = 0,3, if there is no ramp parameter, then the

system is a one-dimensional stochastic differential equation. Recall from Chapter 2 that there are asymptotic

formulae to approximate the expected time to tip for gradient systems9, given by

E[τ]≈Ce
2∆V
σ2

1 , (5.31)

where V is the associated potential function and ∆V gives the height of the potential barrier. The expected

time to tip is calculated for each tipping path. In the numerical analysis, 0.08 ≤ σ1 ≤ 0.3 for all experiments,

as a small noise regime is considered.

Case 1. Assume tipping from s1 to (1,0,0) occurs in y = 0 and then there is end-point tracking from

(1,0,0) to s2 along W s(−2,3). We can find the expected time to tip between the fixed points in y = 0 as the

system is a gradient system in this plane. The associated form of the gradient system and potential function,

V , is
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dx = (x2 −1)dt +σ1dW

=−∇V dt +σ1dW

=−∇(x− 1
3

x3)dt +σ1dW.

(5.32)

The extrema of V correspond to the fixed points of the problem when y = 0 : x = −1,1. Solving for the

expected time to tip, without the ramp parameter,

E[τ]≈ e
8

3σ2
1 > 1012. (5.33)

The time to tip from s1 to s2 along this path will be some time greater than 1012. There is a depiction of Case

1 in Figure 5.8(a).

Case 2. Similarly, assume there is an end-point tracking of the path from s1 to (−4,0,3) along W u(−1,0)

and then tipping occurs from (−4,0,3) to s2 in y = 3. We find the expected time to tip in y = 3. Again, it is a

gradient system and so the system is rewritten in terms of the potential function V ,

dx = ((x+3)2 −1)dt +σ1dW

=−∇(−8x−3x2 − 1
3

x3)dt +σ1dW.
(5.34)

Solving for the expected time to tip, without the ramp parameter,

E[τ]≈ e
8

3σ2
1 > 1012. (5.35)

The time to tip from s1 to s2 along this path will also be some time greater than 1012. There is a depiction of

Case 2 in Figure 5.8(b).

Case 3. To determine the expected time to tip of the most probable path found in Section 5.3, a sufficient

number of Monte-Carlo simulations are run so that the expected time to tip distribution converges. The

Euler-Maruyama method is used to simulate M realizations of (5.29) on a time interval of length 30, initialized

at x =−1,y = 2.80729×10−13, with a step size of dt = 0.001. Recall this initial condition for y is used to

find the corresponding t0 for each value of r. We want to find the realizations that have tipped to infinity, and

capture when the mapped versions, (y(t),x), have crossed W s(−2,3).

Let τi denote the first time a path, Xi of the form (y(t),x), crosses W s(−2,3). Escape events are defined

to be the paths Xi that have τi ≤ 30 and component x → ∞. Assume that for M realizations there are K escape
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events. We construct the distribution for the K crossing times of W s(−2,3). To verify if the distribution of

the time of escape events has converged, the process described in Section 3.2 is used.

(a) (b) (c)

Figure 5.8: Schematic diagrams for the three possible ways to tip from saddle node (−1,0) to saddle node
(−2,3). (a) Case 1. (b) Case 2. (c) Case 3. In Cases 1 and 2, the end-point tracking curves (dashed red) will
be dependent on W u(−1,0) and W s(−2,3). Here they are sketched for r = 0.5. Additionally, in Cases 1 and
2, the solid red curves are to represent tipping via the heteroclinic orbit in y = 0 and y = 3. These are for
presentation purposes as one would only see vertical lines instead of these parabolic curves if projected into
the xy plane.

This experiment is conducted for different values of r,σ1 pairs. In Table 5.1, the ranges of some of the

expected times to tip are displayed. Unlike Cases 1 and 2, the expected time to tip is now finite. The different

times to tip between s1 and s2, depending on which path taken, demonstrates that tipping without the ramp is

extremely rare to the point of almost never tipping. In addition, if there is a ramp parameter but no stochastic

component, there is no tipping for when 0 < r < 4/3. Thus, there is an interplay of additive noise and a ramp

parameter, and together they facilitate tipping on a finite timescale.

Notice in Table 5.1 that the expected time to tip for the majority r,σ1 pairs considered correspond

approximately to t = 0, implying y ≈ 3/2. This might be seen as validation that the symmetric extremal

calculated in Section 5.3 is indeed close to where the first passages are taking place.

r σ1 range t0 τ range
0.75 0.15−0.30 −13.33 ∈ (0.07,0.67)
0.85 0.10−0.30 −11.76 ∈ (0.04,0.74)

1 0.08−0.25 −10.00 ∈ (−0.20,0.48)
1.1 0.08−0.25 −9.09 ∈ (−0.29,0.41)

Table 5.1: Monte Carlo simulation results for the expected time to tip, τ , for r = 0.75,0.85,1,1.1 for different
values of σ1. These times come from converged results of the Monte Carlo simulations using the method
described above.
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5.4.4 Path Actions

In addition to using Monte Carlo simulations to see how realizations behave and to calculate the expected

time to tip, we compute the action along the different path options. The most probable path should be the path

of least action. Due to the choice for the p variable in the Legendre transform, for a fixed r, the variation of

σ1 results in a scaling in p. Scaling by some constant does not change the actual minimizer of the functional

given by (3.1). Therefore, consider the normalized action when calculating the path actions to make the

action more numerically tractable. The normalized action is given by

IN [x] =
∫ t f

t0
(ẋ− f )2dt =

∫ t f

t0
σ

4
1 p2dt. (5.36)

Using (5.36), we find the heteroclinic constructed in Section 5.3, Case 3, has the least action compared to the

other two paths of tipping, Cases 1 and 2. If tipping occurs before the ramp starts or after the ramp finishes,

the action value is 5.333, but tipping along the most probable path gives the least action value, by multiple

orders of magnitude. Table 5.2 displays the comparison of the action size for each of Cases 1−3 for different

r values.

In regards to the action values for Cases 1 and 2 being the same, we first want to stress that both of these

paths for tipping are extremely unlikely on reasonable timescales. Practically speaking, the action values

are the same when looking along the heteroclinic orbits in the planes y = 0,3 as the p values are the exact

same when considering the curves where H = 0. The rest of each path lies in p = 0, so there is no other

contribution to the action. While one might expect it would be easier to track a stable quasi-steady state and

then transition, as opposed to transitioning and then tracking an unstable quasi-steady state, we believe it has

to do with the compactification, as this brought the dynamics at ±∞ into the finite world.

Case # r value Action
1 - 5.333
2 - 5.333
3 1.1 0.023
3 1 0.054
3 0.75 0.226
3 0.5 0.684

Table 5.2: Action values for Cases 1-3. Cases 1 and 2 do not depend on r as they tip either before or after the
ramp. For Case 3, which is dependent on r, we see that for different r values the action is much less than the
action of the other paths to tip.
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5.5 Discussion and Final Conclusions

5.5.1 The Heteroclinic Orbit as the Most Probable Path

A key observation is the proximity of the heteroclinic orbit to the Monte Carlo KDE most probable path.

The KDE most probable path estimate tracks the heteroclinic connection quite closely far beyond the first half

of the ramping phase. A consequence of this fact is that we can conclude the heteroclinic connection does

carry the realizations that tip through the ramping phase. The heteroclinic connection provides a surprising

amount of guidance on how the trajectories that tip do so, especially as we are dealing with not vanishingly

small noise: a regime we were forced into because otherwise there would be no interaction of the ramp

parameter and additive noise.

Another interpretation for how realizations are tipping would involve considering trajectories following

the corresponding deterministic pullback attractor: tipping would occur when W u(−1,0) and W s(−2,3) were

closest. Running simulations of the noisy system for different values of r and overlaying the tipped realizations

with W u(−1,0) and W s(−2,3), we see these realizations do not track W u(−1,0) (when you consider where

the tipped realizations are most densely concentrated). As we decrease r, we see the significance of the

heteroclinic orbit more clearly as the heteroclinic orbit becomes more distinguishable from the pullback

attractor. The realizations that tip closely follow the heteroclinic orbit from the start. However, as r increases,

W u(−1,0) and W s(−2,3) grow closer together which is why it looks as if the tipped realizations track the

pullback attractor for some time.

5.5.2 A Scaling Law for the Expected Time to Tip

For vanishingly small noise, the Freidlin-Wentzell theory of large deviations, which gives the probability

of a specific trajectory in a stochastic dynamical system, aids in finding the most probable path between two

points. This is obtained by minimizing the Freidlin-Wentzell action functional. This theory also provides the

expected time to tip23. We saw in this work that Freidlin-Wentzell theory holds in regard to the dynamical

structure of the most probable path for small noise strengths. It is still an open question if the expected time

to tip aligns between the vanishingly small noise case and the small noise case.

We discovered a power scaling law for the expected time to tip via Monte Carlo simulations, τ , and 1/σ2
1 ,

for set r > 0 and varying values of σ1. The log-log plot of these coordinate pairs result in a linear relationship,

examples of which are shown in Figure 5.9. This linear relationship in log-log space corresponds to a power

law of the form a( 1
σ2

1
)b between 1/σ2

1 and the expected time to tip. While the scaling laws in Figure 5.9 are
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(a) (b)

Figure 5.9: (a) Log-log plot of τ vs. 1
σ2

1
for r = 1,σ1 = 0.25,0.2, 0.15,0.1,0.08. The linear relationship

in log-log space corresponds to a power law of the form 9.14( 1
σ2

1
)0.027. (b) Log-log plot of τ vs. 1

σ2
1

for
r = 0.75,σ1 = 0.3,0.25,0.2,0.15. The linear relationship in log-log space corresponds to a power law of the
form 12.42( 1

σ2
1
)0.021.

for r = 1 and r = 0.75, the linear relationship in log-log space held true for multiple r values we studied. An

interesting observation is the slope of the line in log-log space for r = 1 in Figure 5.9(a) is the same as the

1
2(Action Value r = 1), the value of which can be seen in Table 5.2.

This scaling law is different from the asymptotic formula given by the Freidlin-Wentzell theory. There

are various explanations for this mismatch. The most likely is that we are considering a small noise regime,

and not σ1 → 0, and so it is not necessarily surprising the known scaling law does not hold. Alternatively, we

have yet to find the leading coefficient, c, which could be dependent on r. We hypothesize that you can find

the leading coefficient by finding more expected times to tip and switching perspectives to that of inverse

problems.

We believe this task needs to implement importance sampling45 to aid in speeding up the time required to

gather the converged data sets. Importance sampling is commonly used to speed up Monte Carlo simulations

of rare events by biasing realizations to those rare events21.

We would like to point out that Ritchie and Sieber 36 found that for rate values between r = 1.05 and

r = 1.25, that as the noise is decreased, the time to tip increases slowly. They find a similar relationship for

the delay in the rate-induced tipping as that of Bakhtin 7 for rare escapes of an autonomous system.

5.5.3 Final Conclusions

Using compactification44 with a coordinate transformation of the ramp parameter (5.4) allows us to frame

the canonical problem as a two-dimensional autonomous system with fixed points and invariant objects, as

well as study the heteroclinic connection. We have shown the addition of additive noise causes the system

to tip well below the critical rate needed for rate-induced tipping to occur. The system will always have
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a heteroclinic connection directly between the two saddle equilibria for all 0 < r ≤ rc. The heteroclinic

orbit found using the intersection of invariant manifolds matches the kernel density estimate of the noisy

realizations found by Monte Carlo simulations, corroborating it as the most probable path of tipping between

these two points. Calculating the action over all the possible paths between the two saddles, we find that the

heteroclinic connection we constructed has the least action by multiple orders of magnitude, verifying we

have truly found the most probable path between these two points. We find rate and noise-induced tipping

conspire to facilitate tipping with increased probability, when neither tip on their own when considering a

finite time horizon and 0 < r < rc.

We have pushed on the levels of noise to a size where the Freidlin-Wentzell theory may no longer hold as

the noise strength was not vanishingly small, though we find that the Freidlin-Wentzell theory actually is still

relevant in the extent of the most probable path.

This chapter has considered a one-dimensional canonical problem, but we believe this work can extend to

understanding tipping between a base state and a threshold state of similar forms, as we will show in the next

chapter. Our methods in this chapter made use of the symmetry within the system. If that symmetry does not

exist, other implementations of the Wazewski principle will need to be used to prove that an intersection of

the invariant manifolds exist.
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CHAPTER 6

Generalizing the Nonlinearity of the Canonical Problem

Chapter 5 illustrated tipping between two saddles in a noisy system all for r ≤ rc by proving the existence

of a heteroclinic connection between these two saddles. The proof of Theorem 5.3.5 relied on a special

symmetry of the unstable and stable manifolds of these two saddles. Due to this reliance on symmetry,

proving the existence of a heteroclinic orbit between two saddle nodes for other problems with both a ramp

parameter and noise does not readily extend.

We begin with a one-dimensional differential equation with a ramp parameter. At the start of the problem,

we list the necessary assumptions about the function and the ramp parameter, where each assumption will be

denoted by (ai). These assumptions are chosen to ensure a similar structure as seen in Chapter 5, but free

enough to have variability and not have to necessarily assume a symmetry of the invariant manifolds.

The system is compactified using the ramp parameter as the coordinate transform, forming a two-

dimensional autonomous system. This leads to the last required assumption: the deterministic system first

undergoes rate-induced tipping when r = rc between two saddle nodes. We then consider the addition of

additive noise on the compactified system. The Euler-Lagrange equations associated with the Freidlin-

Wentzell action functional23 are derived and used to create a four-dimensional Hamiltonian system, which

can be considered in three-dimensional space due to three of the equations being decoupled.

Using a dynamical systems framework, the remainder of the approach is as follows. By assumption, the

base saddle has a two-dimensional unstable subspace spanned by its unstable eigenvectors of the linearization,

and similarly, the threshold saddle has a two-dimensional stable subspace spanned by its stable eigenvectors.

This is where the methods diverge from those of Chapter 5. We define Wazewski sets for both the forward

and backward time systems: WF and WB, which will share a boundary at a fixed y value. The unstable

manifold of the base saddle is tracked in WF , and the stable manifold of the threshold saddle is tracked in WB.

For each Wazewski set, we consider a quarter circle lying in the unstable and stable subspace, respectively.

The variational equations are then used to track the piece of each manifold carried along the trajectories

that begin at the endpoints of the quarter circle, implying they are tracked by tangent vectors. For both the
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unstable and stable manifolds, the behavior of the tangent vectors as they approach the boundaries of WF and

WB respectively, need to be determined in terms of their initialization. This reveals how the tangent spaces to

the invariant manifolds are carried under the flow.

Then, using the Wazewski principle and shooting methods, it is shown that there is always an intersection

of the unstable manifold of the base state and stable manifold of the threshold state. This intersection implies

there is a heteroclinic connection between two fixed points for all subcritical rates.

A general schematic of these Wazewski sets and shooting methods as well as the intersection of W u(s1)

and W s(s2) is shown in Figure 6.1. This is not necessarily what the surfaces look like, but this figure does

illustrate the bigger picture of this chapter and highlights the approach taken.

Note that this argument only provides the guarantee of a heteroclinic orbit between the base state and the

threshold state; it is not a guarantee that the heteroclinic orbit is the most probable path. As noise strengths

are small, but not vanishingly small, the Freidlin-Wentzell theory does not imply that the heteroclinic orbit

is the most probable path. It is impossible to establish the most probable path in generality. Verifying the

heteroclinic orbit is the most probable path requires the use of Monte Carlo simulations, KDE estimates, and

the consideration of action values, in which an explicit function, parameter shift, and fixed noise strengths are

needed.

Figure 6.1: WF is the space bounded by x = h1(y),x = h2(y),y = y1,y = y2 − εy, and p = 0 and WB is the
space bounded by x = h1(y),x = h2(y),y = y2,y = y2 − εy, and p = 0. Taking a quarter circle of small radius
about s1 intersected with the piece of W u(s1) lying in WF , and applying map KF , results in the red curve.
Taking a quarter circle of small radius about s2 intersected with the piece of W s(s2) lying in WB, and applying
map KB, results in the blue curve. The blue and red curves intersect in the plane y = y2 − εy.
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6.1 The Deterministic System and the Necessary Assumptions

Consider the first-order differential equation

ẋ = f (x,y), (6.1)

where x ∈ R and y = h(rt) ∈ R. The following are the assumptions needed on the parameter shift y.

(a1) The coordinate transform y = z(rt) is a C2 smooth, monotonically increasing, bi-asymptotically

constant external input, that maps the real t-line onto the finite y-interval (y1,y2), and has a vanishing first

derivative as t tends to ±∞. The past limit state is y1 and the future limit state is y2.

(a2) The coordinate transform y = z(rt) is such that ẏ can be rewritten as ẏ = rg(y), such that

g(y) = ż(z−1(y)), where gy(y1) = A > 0 and gy(y2) =−A < 0.

The system is compactified using y = z(rt) as the coordinate transform. By assumptions (a1) and (a2), this

results in the two-dimensional autonomous system given by

ẋ = f (x,y),

ẏ = rg(y).
(6.2)

The following are the assumptions needed on the function f (x,y).

(a3) f (x,y) ∈C2.

(a4) f (x,y1) = 0 at x1 < x2 < ... < xn, and f (x,y2) = 0 at X1 < X2 < ... < Xn.

(a5) The level sets f (x,y) = 0 are such that f (x0,y0) = 0 and fx(x0,y0) , 0. By the implicit function

theorem, let x = h1(y),h2(y), ...,hn(y) be the paths that track the zeros of f (x,y) for y1 ≤ y ≤ y2, where

hi(y) tracks xi to Xi.

(a6) f (x,y)< 0 for all y ∈ [y1,y2] and h1(y)< x < h2(y).

(a7) fx(h1(y),y)< 0 and fx(h2(y),y)> 0, as well as fy(h1(y),y)< 0 and fy(h2(y),y)> 0.

(a8) fx(x1,y1) =−b and fx(x2,y1) = b, where b > 0.

(a9) fx(X1,y2) =−B and fx(X2,y2) = B, where B > 0.
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(a10) fx(x,y1) = fy(x,y1) for x ∈ [x1,x2] and fx(x,y2) = fy(x,y2) for x ∈ [X1,X2].

Solving for fixed points of (6.2), by (a1) and (a2), it follows that ẏ = 0 at y = y1 and y = y2, and by (a4),

when y = y1, ẋ = 0 at x = x1,x2, ...xn, and when y = y2, ẋ = 0 at x = X1,X2, ...Xn. The two fixed points (x1,y1)

and (X2,y2) will be the main focus.

The Jacobian matrix of (6.2) is given by

 fx fy

0 rgy

 , (6.3)

implying both (x1,y1) and (X2,y2) are saddles, as each has one positive and one negative eigenvalue by

assumptions (a2), (a8), and (a10), as see in

J(x1,y1) =

−b −b

0 rA

 , J(X2,y2) =

B B

0 −rA

 . (6.4)

This leads to the final assumption of the chapter.

(a11) The system does not exhibit rate-induced tipping for r < rc, but there is a critical rate rc such that

when r = rc, (6.2) undergoes rate-induced tipping away from (x1,y1) to (X2,y2).

6.2 Introducing the Stochastic Framework

The underlying deterministic system is such that there is rate-induced tipping away from (x1,y1). Now,

consider the stochastic version of (6.2) with additive noise, which is of the form

dx = f (x,y)dt +σ1dW1,

dy = rg(y)+σ2dW2,

(6.5)

where r <≤ rc. The ultimate goal is to find the most probable path between (x1,y1) and (X2,y2). Using the

minimization process of the Freidlin-Wentzell functional as in Chapter 3, the Euler-Lagrange equations for

this system are given by

ẍ = fyẏ+ f fx,

ÿ = ggy +
σ2

2

σ2
1
( f fy − ẋ fy),

(6.6)
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as g(x,y) = g(y), implying gx = 0. Using the Euler-Lagrange equations given by (6.6), we make a Legendre

transform4 to create a degree four Hamiltonian system. Let

p =
ẋ− f
σ2

1
and q =

ẏ−g
σ2

2
. (6.7)

Following an identical process as in Chapter 5, the degree four Hamiltonian system is of the form

ẋ = f +σ
2
1 p,

ṗ =− fx p,

ẏ = g+σ
2
2 q,

q̇ =−gyq,

(6.8)

and the associated Hamiltonian function is

H(x, p,y,q) = f p+gq+
σ2

1
2

p2 +
σ2

2
2

q2. (6.9)

As mentioned earlier, we want to only consider noise on the dynamics of x, as y is a time parameterization,

and thus σ2 is sent to zero. It follows that ẋ, ṗ, ẏ are all independent of q, and so it is possible to project

the equations into x, p,y space. To simplify the calculations performed in this chapter, make the change of

variables p = 1
σ2

1
p, resulting in the system given by

ẋ = f + p,

ṗ =− fx p,

ẏ = rg,

H =
1

σ2
1
( f p+

1
2

p2),

(6.10)

where f = f (x,y) and g = g(y).

On the planes y = y1 and y = y2, there exist Hamiltonian structures, implying the fixed points of the

system are all classified as saddles or centers. We are interested in the heteroclinic connection between

the saddle points (x1,0,y1) and (X2,0,y2), as these correspond to the saddles (x1,y1) and (X2,y2) in the

two-dimensional phase space. For notation purposes, we will refer to (x1,0,y1) as s1 and (X2,0,y2) as s2. To
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study and understand the unstable and stable directions of s1 and s2, we need to linearize both fixed points:

the Jacobian matrix is

J(x, p,y) =


fx 1 fy

− fxx p − fx − fxy p

0 0 rgy

 . (6.11)

A quick check of the eigenvalues of (6.11) show s1 has a one-dimensional stable manifold and a two-

dimensional unstable manifold, and s2 has a one-dimensional unstable manifold and a two-dimensional stable

manifold. We denote the unstable and stable manifolds of a point p by W u(p) and W s(p) respectively. Using

this notation, the desired heteroclinic will lie on both W u(s1) and W s(s2).

Theorem 6.2.1. Under assumptions (a1)− (a11), there exists a heteroclinic orbit between s1 and s2 for all

0 < r ≤ rc.

This theorem is proven by construction throughout the rest of this chapter. To construct the heteroclinic

orbit between s1 and s2, the transverse intersections of the relevant unstable and stable manifolds of the two

fixed points, namely W u(s1) and W s(s2), need to be found. Determining if a transverse intersection occurs

implies understanding the tangent spaces of these manifolds, and so both the forward and backward time

systems are considered.

6.3 The Forward Time System

The forward time system is used to track W u(s1). At the fixed point s1, by assumptions (a2), (a8), and

(a10), (6.11) becomes

J(s1) =


−b 1 −b

0 b 0

0 0 rA

 . (6.12)

The unstable eigenvalues are λ1,2 = b,rA with corresponding eigenvectors v1,2 = ( 1
2b ,1,0),(

−b
b+rA ,0,1).

Recall the Wazewski principle given in Proposition 5.3.2. For the system given in (6.10), the Wazewski

set, WF , is the space bounded by the following two-dimensional surfaces: x = h1(y), x = h2(y), y = y1,

y = y2 −εy, and p = 0, and extends infinitely in the positive p direction. Based on flow of the vector field, the

following are true about the boundaries of WF : y = y1 and p = 0 are neither entrance nor exit sets as they are

invariant planes, y = y2 −εy is an exit set as ẏ > 0, x = h1(y) is an entrance set, by Claim 6.3.1, and x = h2(y)

is an exit set by similar calculations as shown in the proof of Claim 6.3.1.
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Claim 6.3.1. The surface x = h1(y) is an entrance set.

Proof. The normal vector to the surface x = h1(y) is ( fx(h1(y),y),0, fy(h1(y),y)). Recall fx(h1(y),y) and

fy(h1(y),y) have the same sign by (a7). By the right hand rule, the orientation of this normal vector is such

that fx(h1(y),y)> 0 and fy(h1(y),y)> 0. Then,

(ẋ, ṗ, ẏ) · ( fx(h1(y),y),0, fy(h1(y),y)) = ( f (h1(y),y)+ p) fx(h1(y),y)+ rg fy(h1(y),y)

= p fx(h1(y),y)+ rg fy(h1(y),y)

> 0,

(6.13)

by the assumptions for y ∈ [y1,y2 −εy], as long it is not the fixed point s1. So x = h1(y) is an entrance set. □

Now we need to determine the eventual exit set of WF , W 0
F . Recall that based on the eigenvalues of J(s1),

s1 has a two-dimensional unstable manifold and a one-dimensional stable manifold. The unstable subspace is

spanned by the unstable eigenvectors of J(s1), v1 and v2. Taking the plane spanned by v1 and v2, intersected

with a small ball around s1, gives rise to a quarter circle in the unstable subspace of s1. We call the point of

this quarter circle rooted in p = 0, a1, and the point of this quarter circle rooted in y = y1, a2. The goal is to

show that as this quarter circle flows in time, some of it exits through y = y2 − εy and some of it exits through

x = h2(y).

Assume by way of contradiction that W 0
F is empty, implying that the flow acting on the quarter circle

would need to stay within WF for all time. However, W 0
F must be nonempty since a1 will eventually exit

through y = y2−εy as ẏ > 0 and r ≤ rc. This argument guarantees that some of the quarter circle exits through

the plane y = y2 − εy.

6.3.1 Tracking the Tangent Space

To show that some of the quarter circle exits through x = h2(y), the tangent space of W u(s1) is tracked

using the variational equations, by studying the evolution of the normal vector to the unstable manifold of s1

on y = y1.

The variational equations for (6.10) are

δ ẋ = fxδx+ fyδy+δ p

δ ṗ =− fxx pδx− fxy pδy− fxδ p

δ ẏ = rgyδy

(6.14)
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Consider two solutions of (6.14)

η1 = (δx1,δ p1,δy1),

η2 = (δx2,δ p2,δy2),

(6.15)

such that η1 is the vector field itself. Both η1 and η2 are tangent to the unstable manifold of s1 and thus

η1 ×η2 = (ψ,λ ,ω) is normal to it. The idea is that for x sufficiently close to x = h2(y), if the tangent

vector is pointing in the positive y and p directions, it will have to exit x = h2(y) as there will be no time for

the trajectories to exit elsewhere. It must be determined how the tangent vector of W u(s1) behaves when

x = x2 − ε . The normal vector to the plane x = x2 − ε is given by (1,0,0), and to determine the behavior of

the tangent vector of W u(s1) when x = x2 − ε , we consider

(ψ,λ ,ω)× (1,0,0) = (0,ω,−λ ). (6.16)

In y-p space, the tangent vector (0,ω,−λ ) will have a slope of ω

−λ
when x = x2−ε and y = y1. The goal is to

show this tangent vector points in the positive y and positive p directions, and so ω

−λ
needs to be positive. Note

that the vector (ψ,λ ,ω) at x = x1 can be determined using the unstable eigenvectors from the linearization at

s1, ( 1
2b ,1,0) and ( −b

b+rA ,0,1), as they are tangent to the unstable manifold of s1 at x = x1 and y = y1. Taking

the cross product of these vectors results in the normal vector

(
1

2b
,1,0

)
×
(

−b
b+ rA

,0,1
)
=

(
1,
−1
2b

,
b

b+ rA

)
. (6.17)

As t → −∞, the behavior of (ψ,λ ,ω) is written as (1, −1
2b ,

b
b+rA)Cedt , which at s1 results in (ψ,λ ,ω) =

(0,0,0).

To track the normal vector, we study how it is changing by using the components of the derivative of

η1 ×η2 with respect to time. Using properties of the cross product,

d
dt
(η1 ×η2) =

(
dη1

dt
×η2 +η1 ×

dη2

dt

)
. (6.18)
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Recall λ = η1 ×η2 · j. Differentiating λ ,

λ̇ =

(
dη1

dt
×η2 +η1 ×

dη2

dt

)
· j

= δ ẏ1δx2 −δ ẋ1δy2 +δy1δ ẋ2 −δx1δ ẏ2

= rgyδy1δx2 − ( fxδx1 + fyδy1 +δ p1)δy2 +δy1( fxδx2 + fyδy2 +δ p2)−δx1rgyδy2

= rgyδy1δx2 − ( fxδx1 +δ p1)δy2 +δy1( fxδx2 +δ p2)−δx1rgyδy2.

(6.19)

This expression can be simplified using the fact that δx1,δ p1, and δy1 are the vector field itself by assumption.

Consequently, the right-hand side of (6.10) can be substituted into equation (6.19). Additionally, we consider

this expression when y = y1, implying the system is Hamiltonian. Rearranging H = 0 implies p =−2 f (x,y1),

and so (6.19) becomes

λ̇ =−[ fx( f + p)− fx p]δy2 − ( f + p)rgyδy2

=−[ fx(− f )− fx(−2 f )]δy2 − (− f )rgyδy2

= [− f fx + rgy f ]δy2.

(6.20)

It is possible to explicitly solve for δy2 using the third equation of (6.14) with separation of variables. Solving,

δy2 = cergy(y1)t = cerAt by (a2). Assume without loss of generality that c > 0, though it does not matter as it

will cancel in the expression w
−λ

. It follows that (6.20) simplifies to

λ̇ = [− fx(x,y1) f (x,y1)+ rA f (x,y1)]cerAt . (6.21)

By similar calculations,

ω̇ =

(
dη1

dt
×η2 +η1 ×

dη2

dt

)
· k

= δ ẋ1δ p2 −δ ṗ1δx2 +δx1δ ṗ2 −δ p1δ ẋ2

= [−2 fxy(x,y1) f 2(x,y1)−2 fy(x,y1) fx(x,y1) f (x,y1)]cerAt .

(6.22)

To solve for λ and ω , it is necessary to integrate both (6.21) and (6.22), though solving for λ is a more

straightforward calculation. The left hand side of (6.21) is equivalent to dλ

dt , and so rewrite (6.21) as

dλ = [− fx(x,y1) f (x,y1)+ rA f (x,y1)]cerAtdt. (6.23)
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A consequence of the Hamiltonian structure on y = y1 is the fact that dt = −1
f (x,y1)

dx, and so (6.23) turns into

dλ = [− fx(x,y1) f (x,y1)+ rA f (x,y1)]cerAt
(

−1
f (x,y1)

)
dx

= [ fx(x,y1)− rA]cerAtdx,

(6.24)

which changes the variable of integration to x. Integrating over x = x1 to x = x2 − ε , implies

∫ x=x2−ε

x=x1

dλ =
∫ x2−ε

x1

[ fx(x,y1)− rA]cerAtdx

=
∫ x2−ε

x1

c fx(x,y1)erAtdx−
∫ x2−ε

x1

crAerAtdx.
(6.25)

Apply integration by parts on
∫ x2−ε

x1
c fx(x,y1)erAtdx with u = cerAt and dv = fxdx, resulting in (6.25) to

become ∫ x=x2−ε

x=x1

dλ = c f (x,y1)erAt
∣∣∣x2−ε

x1
−

∫ x2−ε

x1

crA
dt
dx

f (x,y1)erAtdx−
∫ x2−ε

x1

crAerAtdx

= c f (x,y1)erAt
∣∣∣x2−ε

x1
+

∫ x2−ε

x1

crAerAtdx−
∫ x2−ε

x1

crAerAtdx

= c f (x,y1)erAt
∣∣∣x2−ε

x1

(6.26)

Notice, using the fundamental theorem of calculus to solve the final line of the right hand side of (6.26)

only relies on knowing the behavior of c f (x,y1)erAt at x = x1 and x = x2 − ε . We can exploit the asymptotic

behaviors at these points to understand the relationship between x and t. The asymptotic behaviors occurring

near x1 and x2 are given by

lim
t→−∞

x− x1

c1ebt = 1 → x ∼ x1 + c1ebt ,

lim
t→∞

x2 − x
c2e−bt = 1 → x ∼ x2 − c2e−bt ,

(6.27)

where we assume that x2 − ε corresponds to some t > T sufficiently large so that this asymptotic behavior is

true near x = x2 − ε . Rearranging the asymptotic relationships show t can be written as a function of x,

x ∼ x1 + c1ebt =⇒ t ∼ 1
b

ln
(

x− x1

c1

)
,

x ∼ x2 − c2e−bt =⇒ t ∼ −1
b

ln
(

x2 − x
c2

)
.

(6.28)
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Using these asymptotic behaviors, (6.26) becomes

λ (x2 − ε)−λ (x1)∼ lim
x→x2−ε

c f (x,y1)

(
x2 − x

c2

)−rA/b

− lim
x→x1

c f (x,y1)

(
x− x1

c1

)rA/b

= c f (x2 − ε,y1)(ε/c2)
−rA/b − c f (x1,y1)(0)rA/b

= c f (x2 − ε,y1)(ε/c2)
−rA/b

(6.29)

By (a6), c f (x2 − ε,y1)(ε/c2)
−rA/b < 0, and because λ (x1) = 0,

λ (x2 − ε)< 0. (6.30)

A similar set of calculations and simplifications are used to solve for ω from ω̇ as above, beginning with

dω = [−2 fxy(x,y1) f 2(x,y1)−2 fy(x,y1) fx(x,y1) f (x,y1)]cerAtdt

= [2 fxy(x,y1) f (x,y1)+2 fy(x,y1) fx(x,y1)]cerAtdx.
(6.31)

Integrating over x = x1 to x = x2 − ε , implies

∫ x2−ε

x1

dω =
∫ x2−ε

x1

2 fxy(x,y1) f (x,y1)cerAtdx+
∫ x2−ε

x1

2 fy(x,y1) fx(x,y1)cerAtdx. (6.32)

Apply integration by parts twice and use (a10), to find

∫ x2−ε

x1

dω = 2c f (x,y1) fy(x,y1)erAt
∣∣∣x2−ε

x1
+2crA f (x,y1)erAt

∣∣∣x2−ε

x1
+

∫ x2−ε

x1

2cr2A2erAtdx, (6.33)

at which point, the asymptotic behaviors in (6.28) are used

∫ x2−ε

x1

dω ∼ 2c f (x2 − ε,y1) fx(x2 − ε,y1)(ε/c2)
−rA/b +2crA f (x2 − ε,y1)(ε/c2)

−rA/b +
∫ x2−ε

x1

2cr2A2erAtdx.

(6.34)

The first two terms of the right hand side of (6.34) are negative while the integral is a positive quantity,

implying the sign of these three terms is inconclusive. However, the integral in (6.34) can be further analyzed

by first expanding it into three components, and then using the asymptotic behaviors in (6.28) to simplify it

as
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∫ x2−ε

x1

2cr2A2erAtdx =
∫ x1+δ

x1

2cr2A2erAtdx+
∫ x2−δ

x1+δ

2cr2A2erAtdx+
∫ x2−ε

x2−δ

2cr2A2erAtdx

∼
∫ x1+δ

x1

2cr2A2(x− x1)
rA/bdx+

∫ x2−δ

x1+δ

2cr2A2erAtdx+
∫ x2−ε

x2−δ

2cr2A2(x2 − x)−rA/bdx

=
2cr2A2b
rA+b

(x− x1)
rA/b+1

∣∣∣x1+δ

x1
+

∫ x2−δ

x1+δ

2cr2A2erAtdx+
2cr2A2

rA−b
(x2 − x)−rA/b+1

∣∣∣x2−ε

x2−δ

=
2cr2A2b
rA+b

(δ )rA/b+1 +
∫ x2−δ

x1+δ

2cr2A2erAtdx+
2cr2A2

rA−b
(ε1−rA/b −δ

1−rA/b).

(6.35)

This further analysis of the integral allows (6.34) to be written as

∫ x2−ε

x1

dω ∼2c f (x2 − ε,y1) fx(x2 − ε,y1)(ε)
−rA/b +2crA f (x2 − ε,y1)(ε)

−rA/b

+
2cr2A2b
rA+b

(δ )rA/b+1 +
∫ x2−δ

x1+δ

2cr2A2erAtdx+
2cr2A2

rA−b
(ε1−rA/b −δ

1−rA/b).

(6.36)

If we consider the limit of (6.36) as ε → 0, L’Hopital’s rule is used to show that there exists ε sufficiently

small such that the positive terms dominate over the negative terms. While these calculations are omitted,

there are three cases to consider: rA
b < 1, rA

b = 1, rA
b > 1, though all cases have the same result. Since the right

hand side of (6.36) is a positive quantity, and ω(x1) = 0,

ω(x2 − ε)> 0. (6.37)

In y-p space, the tangent vector (0,ω,−λ ) has slope ω

−λ
> 0 when x = x2 − ε and y = y1 using (6.30)

and (6.37), which points in the positive y and positive p directions. This implies that some of the quarter

circle must exit through x = h2(y) under the flow.

We conclude the following about the immediate exit set and eventual exit set of WF :

W−
F = {(x, p,y) | y = y2 − ε,x = h2(y)},

W 0
F = {(x, p,y) |W \{y = y1,x = h1(y), p = 0,(x1,0,y1),(x2,0,y2)}}.

It follows that W−
F is closed relative to W 0

F , implying WF is a Wazewski set and the map KF : W 0
F →W−

F

is continuous for y ≤ y2 − ε . For subcritical rates, the flow takes a1 to (X1,0,y2) in p = 0, exiting through

y = y2 − ε , it takes a2 to (x1,0,y2) in the plane y = y1, and it takes some point near a2 on the quarter circle,

call it a2c, through x = h2(y). We know where a1 and a2c map to under KF , and since KF is a continuous map,
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there is a continuous curve in W−
F connecting the exit locations of a1 and a2c.

6.4 The Backward Time System

Before W s(s2) is tracked in the backward time system, notice at the fixed point s2, by assumptions (a2),

(a8), and (a10), (6.11) becomes

J(s2) =


B 1 B

0 −B 0

0 0 −rA

 . (6.38)

The stable eigenvalues are λ3,4 = −B,−rA with corresponding eigenvectors v3,4 = (−1
2B ,1,0),(

−B
B+rA ,0,1),

and so there is a two-dimensional stable manifold of s2.

The stable subspace is spanned by the stable eigenvectors of J(s1), v3 and v4. Taking the plane spanned

by v3 and v4, intersected with a small ball around s2, gives rise to a quarter circle in the stable subspace of s2.

We call the point of this quarter circle rooted in p = 0, a3, and the point of this quarter circle rooted in y = y2,

a4.

Making the change of variables τ =−t, results in the backward time system

x′ =− f − p,

p′ = fx p,

y′ =−rg,

(6.39)

where f = f (x,y) and g = g(y).

Let WB be the space bounded by the following two-dimensional surfaces: x = h1(y), x = h2(y), y = y2,

y = y2 −εy, and p = 0, and extends infinitely in the positive p direction. Based on flow of the vector field, the

following are true about the boundaries of WB: y = y2 and p = 0 are neither entrance nor exit sets as they are

invariant planes, y = y2 − εy is an exit set, x = h1(y) is an exit set and x = h2(y) is an entrance set. Similar

calculations as shown in the proof of Claim 6.3.1 show x = h1(y) is an exit set, and x = h2(y) is an entrance

set.

The goal is to show that as this quarter circle flows in backward time, some of it exits through y = y2 − εy

and some of it exits through x = h1(y). Now we need to determine the eventual exit set of WB, W 0
B . First

assume by way of contradiction that W 0
B is empty, implying that the flow acting on the quarter circle would

need to stay within WB for all time. However, W 0
B must be nonempty since a3 will eventually exit through

85



y = y2 − εy as y′ < 0 and r ≤ rc. This argument guarantees that some of the quarter circle exits through the

plane y = y2 − εy.

6.4.1 Tracking the Tangent Space

To show that some of the quarter circle exits through x = h1(y), tangent space of W s(s2) is tracked using

the variational equations of (6.39), by studying the evolution of the normal vector to the stable manifold of s2

on y = y2.

The idea is that for x sufficiently close to x = h1(y), if the tangent vector is pointing in the negative

y and positive p directions, it will have to exit x = h1(y), as there will be no time for the trajectories to

exit elsewhere. It must be determined how the tangent vector of W s(s2) behaves when x = X1 + ε . The

calculations of tracking the normal vector to the tangent space of the stable manifold of s2 are omitted as

the calculations are nearly identical to that of the forward time system. It can be concluded through these

calculations that the tangent vector does point in the negative y and positive p directions, implying that some

of the quarter circle must exit through x = h1(y) under the flow.

We conclude the following about the immediate exit set and eventual exit set of WB:

W−
B = {(x, p,y) | y = y2 − ε,x = h1(y)},

W 0
B = {(x, p,y) |W \{y = y2,x = h2(y), p = 0,(X1,0,y2),(X2,0,y2)}}.

It follows that W−
B is closed relative to W 0

B , implying WB is a Wazewski set and the map KB : W 0
B →W−

B

is continuous for y ≤ y2 − ε . For subcritical rates, the flow takes a3 to (x2,0,y1) in p = 0, exiting through

y = y2 − εy, it takes a4 to (X1,0,y2) in the plane y = y2, and it takes some point near a4 on the quarter circle,

call it a4c, through x = h1(y). We know where a3 and a4c map to under KB, and since KB is a continuous map,

there is a continuous curve in W−
B connecting the exit locations of a3 and a4c.

6.5 Bringing the Forward and Backward Time Systems Together

Both quarter circles in the unstable subspace of s1 and the stable subspace of s2 are continuous closed

curves. By applying a shooting method on both sets of points a1, a2c and a3, a4c, we know there is a

continuous curve in W−
F connecting the exit locations of a1 and a2c as well as a continuous curve in W−

B

connecting the exit locations of a3 and a4c.

For all rates r ≤ rc, these two curves will always intersect in the plane y = y2 − εy, implying the existence

of a transverse intersection of W u(s1) and W s(s2) in y = y2 − εy, which proves there is always a heteroclinic
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orbit between these two saddle points.

6.5.1 Discussion and Final Conclusions

An artifact of this argument is that it truly only works for subcritical rates r < rc and the critical rate

r = rc. Tracking the points a1 and a3 in the plane p = 0 under the flow show the only way an intersection of

the invariant manifolds is guaranteed is if the x value of a1 is less than or equal to the x value of a3, implying

r ≤ rc. If the x value of a1 is greater than the x value of a3, the shooting method does not guarantee an

intersection. The schematics of these cases are shown in Figure 6.2.

Figure 6.2: A schematic tracking a1 (red circle) and a3 (blue circle) under the flow for different values of r in
the plane p = 0.

The purpose of this chapter was to provide an alternative method for proving the existence of a heteroclinic

connection between two saddle fixed points, that can be used to show tipping occurs between these two

points for subcritical rates. While the framework provided works for a fairly general class of functions, it still

does rely on some specific structures of the underlying system. This method can still be used for proving

the existence of a heteroclinic orbit for functions that do not exactly fit this exact type of nonlinearity, but it

would need to be considered on a case by case basis.
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CHAPTER 7

Conclusions

This dissertation developed tools for rate-induced tipping, noise-induced tipping, and their interaction,

for noise strengths away from the small noise limit. The driving question explored was understanding what

information can be extracted from the theory of large deviations for noise levels outside the validity of

the approach, where the guiding principles were geometric dynamical systems methods and Monte Carlo

simulations.

In Chapter 4, we explored a model of the oceanic carbon cycle, and focused on the escape from a fixed

point through an unstable periodic orbit, both due to a time-dependent parameter as well as noise, but as

separate phenomena. We are the first to show that the system is susceptible to rate-induced tipping in the

deterministic system. When the noisy system is considered, we find that for small noise strengths away

from the limit the escaping paths become resistant to cycling, differing from the behavior in the small noise

limit: realizations should cycle around the unstable periodic orbit16. We expose that a subset of the unstable

manifold of the fixed point in the Euler-Lagrange system, with Maslov index zero, determines where the

noisy trajectories escape.

The only work, to our knowledge, of studying rate-induced tipping in noisy systems is that of Ritchie

and Sieber 36 , 37. We further develop this theory by considering a one-dimensional differential equation

with both additive noise away from the small noise limit and a ramp parameter in Chapter 5. The addition

of noise to the system can cause it to tip well below the critical rate at which rate-induced tipping would

occur. We achieve this by finding a global minimizer of the Freidlin-Wentzell functional of large deviation

theory that represents the most probable path for tipping. This is realized as a heteroclinic connection for

the Euler-Lagrange system associated with the Freidlin-Wentzell action and we show it exists for all rates

less than or equal to the critical rate. We prove that the structure of the most probable path predicted by

Freidlin-Wentzell theory still holds true away from the small noise limit. We also extended this work to show

the existence of a heteroclinic orbit for a fairly general class of functions in Chapter 6.
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