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ABSTRACT

ESTONIA BLACK: Essays on Diversity and Selectivity.
(Under the direction of Peter Norman)

This dissertation consists of two essays, both dealing with selectivity decisions and diversity.

Chapter 1 studies optimal admissions test design for a monopolistic profit-maximizing school

in a signalling model with a notion of diversity that is correlated with an individual’s ability to

pay for education, but uncorrelated with productivity. Workers’ willingness to pay for education is

determined by firms’ expectations of the productivity of educated and uneducated workers, which

are in turn determined by the school’s choice of admissions test and tuition. A more selective

admissions test may increase the wage differential for educated workers, allowing the school to

charge a higher tuition, but requires the school to admit fewer workers. At the same time, a higher

tuition reduces attendance and dilutes the signalling value of education, as an uneducated worker

becomes more likely to have passed the admissions test but been unable to afford education. This

paper characterizes how the school may optimally discriminate in admissions and/or pricing under

various policies restricting discrimination.

Chapter 2 demonstrates the impact that the involvement of individuals of diverse sexual or

romantic orientations can have on the equilibria of simple marriage market models. I modify the

model of Burdett and Coles (1997) to involve singles who are attracted only to individuals of their

own gender and singles who are attracted to individuals of more than one gender, and show that this

fundamentally altars the structure of any partial rational expectations equilibria. Singles can still be

divided into finitely many classes such that individuals of the same class, gender, and orientation

behave identically. However, the key characteristic of Burdett and Coles’ equilibria, that marriages

only occur between singles in the same class, does not hold in the presence of queer individuals.
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CHAPTER 1

SCHOOL SELECTIVITY DECISIONS AND DISCRIMINATION

1.1 Introduction

When education acts as a signal of productivity to firms, preferences for smarter educational

peers can arise endogenously (MacLeod and Urquiola (2015)). The signalling benefits of smarter

peers for a student are intuitive: education at a school with a more generally capable student body

may make a worker appear more capable to potential employers.

What is less clear is how we should think about a school’s incentives as they relate to the

quality of its students or the signalling value of the education it offers. A school that can condition

admission on information about a worker’s ability level can influence the signal created by its

degrees. But it is not necessarily obvious what a selective educational institution’s goals are when

deciding who it will allow to attend. In theoretical models, schools’ goals are often characterized

as either as either maximizing the number of students who will attend (eg. MacLeod and Urquiola

(2015) ), or attracting the highest quality students (eg. Epple, Romano, and Sieg (2006), Chade,

Lewis, and Smith (2014), Fu (2006)). However, if a school perceives some value in both the quality

and number of its students, an inherent tradeoff is introduced: at a certain point the school cannot

improve the average quality of its student body without reducing its size.

The contribution of this paper is to formalize the tradeoff for a school that cares both about the

signalling value of education to its students and the number of students it serves, and to outline the

implications of the resulting incentives for educational discrimination and affirmative action.

I develop a model in which a single profit-maximizing school designs an admissions test and

chooses a tuition. Admitted workers who can afford tuition choose whether or not to get educated

and then enter into a competetive labor market, in which all workers are paid a wage equal to their

expected productivity conditional on their education status, similar to the Spence (1973) signalling



model. Thus the school faces a tradeoff between the signalling value of its education (which

affects the tuition it can charge its students) and the number of workers it admits. I show that a

threshold admissions rule will be optimal for the school. I then introduce a notion of worker type

that is correlated with ability to pay tuition but not correlated with productivity, and characterize

the school’s incentives to discriminate based on this type in admissions and/or tuition.

I characterize the solution to the school’s problem under various restrictions on how it can dis-

criminate, showing that generally discrimination will take the form of charging a higher tuition to

the ‘richer’ type of student or holding the ‘poorer’ type of student to a higher admissions standard.

If firms are able to observe and condition wage on workers’ types, they see an uneducated worker

of the poorer type as more likely to be someone who passed the admissions test but could not

afford tuition than an uneducated worker of the richer type who faced the same tuition and admis-

sions rule. This dampens the signalling value of education with any given admissions threshold

and tuition for the poorer type of workers, which can motivate the school to be more selective in

admissions for that group. If firms are unable to observe or condition wage on workers’ types, the

school may benefit from admitting lower-quality students of the richer type at a high tuition, while

holding the poorer type of worker to a higher admissions standard to make its whole student body

look smarter.

The remainder of this paper proceeds as follows. Section 1.2 defines the basic model without

diversity and establishes a result about the school’s optimal admissions rule, which is useful in

understanding the results in the rest of the paper. Section 1.3 introduces a type characteristic into

the model and characterizes the school’s optimal behavior under various restrictions when firms

are able to observe and condition a worker’s wage on their type. Section 1.4 characterizes the

school’s optimal behavior under the same restrictions when firms are unable to discriminate based

on type.
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1.2 The Model Without Diversity

1.2.1 The Environment

There is a unit mass of workers, each endowed with initial ability x ∈ [x, x], representing

their lifetime productivity. The ability of workers is distributed according to continuous cumula-

tive distribution function F on [x, x], with corresponding probability density function f such that

f(x) > 0 for all x ∈ [x, x]. Each worker also has a wealth level y, independent of ability and

distributed according to G (with probability density function g) on R+.1

While I refer to y as a worker’s wealth level throughout, it may alternatively be viewed as a

kind of credit constraint. What is important is that y represents the maximum amount of money a

worker can spend on schooling before they enter the labor market, which is exogenous and varies

between individuals; it is less important whether that money comes from an initial endowment or

represents the amount a worker may borrow from future earnings.

There is an entity, which I refer to as the school, that can increase an ability x worker’s produc-

tivity to ax for some a > 1 at cost c(x) > 0.

There is a competetive labor market, in which firms cannot directly observe workers’ ability

or wealth levels, but can observe whether or not a worker has been educated. I largely abstract

away from the mechanisms within the labor market: firms form some shared beliefs about workers’

productivity based only on their education status, and any worker entering the labor market receives

a lifetime wage equal to their expected lifetime productivity given these beliefs.

1.2.2 Decisions and Timing

I model the market for education as a sequential game in which the school commits to some

admissions test and tuition before workers decide whether to attend. The school announces a

tuition t ≥ 0 and an admissions test s : [x, x] → [0, 1], where s(x) is the probability that a worker

of ability x is admitted. Once announced, s and t are known to all workers and firms.

The admissions test s is then applied to all workers; an admitted worker with wealth y ≥ t

1Throughout, I use the notation H̄(·) to refer to the survival function H̄(·) = 1 −H(·) for any cumulative distri-
bution function H .
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Nature

School

Nature

Worker

t− c(x), aµ1(s, t)− t

Attend

0, µ0(s, t)

Do not attend

Ḡ(t)s(x) = p

0, µ0(s, t)

1− p

(s, t)

x

Figure 1.1: Extensive form for representative worker

chooses whether or not to pay tution t to attend the school and become educated. An admitted

worker with wealth y < t cannot afford to pay tuition. Workers who are not admitted or cannot

afford tuition do not make an attendance decision, and cannot attend the school.

All workers then enter the labor market and receive a wage equal to their expected productiv-

ity, according to firms’ beliefs. Firms observe a worker’s education status, and are aware of the

admissions rule and tuition announced by the school when formulating their expectations about

worker’s productivity. Given admissions test s and tuition t, write µ0(s, t) and µ1(s, t) for firms’

expectations of the initial ability level of an uneducated and educated worker, respectively. Note

that the total expected productivity of an educated worker is thus aµ1(s, t).

A worker’s payoff is their wage net of any tuition paid to the school. The school’s payoff is its

profit: total tuition extracted from workers who attend the school net of the total costs of educating

those workers.

It would be equivalent to consider a model with a single representative worker, with ability level

x and wealth level y drawn from F and G, in which the school seeks to maximize its expected profit

from that one worker. The extensive form of that game with a representative worker is depicted in

4



Figure 1.1.

1.2.3 Strategies and Beliefs

A strategy for the school simply consists of a tuition t ≥ 0 and an admissions test s : [x, x] →

[0, 1]. Denote the set of possible admissions tests by S := [x, x][0,1].

A worker faced with an attendance decision is aware of the tuition and admissions test the

school has chosen, and can condition their decision on that information. Each worker who is

admitted to the school and has wealth y ≥ t faces the same attendance decision: regardless of a

worker’s ability or wealth levels, they will recieve a payoff of aµ1(s, t)− t if they choose to attend

the school, or µ0(s, t) if they do not. Therefore, I assume that workers will follow a symmetric

strategy profile, with admitted workers who can afford tuition all choosing to attend the school

with the same probability. With that in mind, a worker strategy is a function σ : S × R+ → [0, 1],

where σ(s, t) is the probability with which any worker will choose to attend the school if faced

with an attendance decision.

When workers enter the labor market, firms are aware of the admissions rule and tuition cho-

sen by the school, but cannot directly observe the ability levels of or strategy employed by workers.

Given σ, for any (s, t) such that some workers will attend the school (i.e., σ(s, t)Ḡ(t)
∫ x

x
s(x)dF (x) >

0), µ1(s, t) is well-defined by Bayes’ rule. For any t > 0, there will be some workers who can-

not afford tuition and thus will not attend the school even if they are admitted, so µ0(s, t) can be

defined by Bayes’ rule for all (s, t) and σ.

Definition 1.2.1. Firm beliefs µ = (µ1, µ2) are consistent with worker strategy σ if µ0(s, t) and

µ1(s, t) are determined by s, t, and σ using Bayes’ rule wherever possible.

That is, µ is consistent with σ if and only if

µ1(s, t) =

∫ x

x
xs(x)dF (x)∫ x

x
s(x)dF (x)

5



for all (s, t) such that σ(s, t)Ḡ(t)
∫ x

x
s(x)dF (x) > 0, and

µ0(s, t) =
E(x)− σ(s, t)Ḡ(t)

∫ x

x
xs(x)dF (x)

1− σ(s, t)Ḡ(t)
∫ x

x
s(x)dF (x)

for all (s, t).

1.2.4 Equilibrium Characterization

Given a worker strategy σ, the school’s expected profit as a function of its choice of tuition and

admissions rule can be written as

Π(s, t;σ) = σ(s, t)Ḡ(t)

∫ x

x

(t− c(x))s(x)dF (x)

where σ(s, t)Ḡ(t) is the proportion of admitted workers who can afford tuition and will choose to

attend the school.

Definition 1.2.2. An equilibrium is an object (s∗, t∗, σ∗, µ), satisfying the following conditions:

(i) σ∗ is a best response to s∗, t∗ for workers:

σ∗(s∗, t∗) ∈ argmax
σ

σ(aµ1(s
∗, t∗)− t∗) + (1− σ)µ0(s

∗, t∗)

(ii) (s∗, t∗) is profit-maximizing for the school:

(s∗, t∗) ∈ argmax
(s,t)

Π(s, t;σ∗)

(iii) µ is consistent with σ∗.

(s∗, t∗, σ∗, µ) is a subgame perfect equilibrium (SPE) if it is an equilibrium and

σ∗(s, t) ∈ argmax
σ

σ(aµ1(s, t)− t) + (1− σ)µ0(s, t)

for all admissions rules s and tuitions t > 0.
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The additional constraint of subgame perfection rules out many equilibria in which a particular

strategy is optimal for the school only because of a threat of non-optimal play by the workers

should the school announce a different admissions test or tuition. However, many fairly trivial

SPE are possible since firms can hold extreme and arbitrary beliefs when they are not well-defined

by Bayes’ rule. For example, if ax ≤ E(x), then a large number of subgame perfect equilibria

exist in which the workers’ strategy is to attend the school if and only if a particular admissions

rule and tuition are announced.

In order to rule out such trivial equilibria, and to illustrate the incentives of the school when it

has the most control over the signalling value of the education it provides, I restrict my analysis to

equilibria in which workers use the following strategy:

σ̃(s, t) :=


1 aE(x|admitted; s)− t ≥ E(x|not admitted or y < t; s)

ϕ(s, t) E(x) < aE(x|admitted; s)− t < E(x|not admitted or y < t; s)

0 else

where

ϕ(s, t) :=
1

Ḡ(t)
∫ x

x
s(x)dF (x)

aE(x|admitted; s)− t− E(x)
(a− 1)E(x|admitted; s)− t

A detailed motivation for restriction to this worker strategy is given in Appendix A.1.

For any admissions rule s and tuition t such that σ̃(s, t) ∈ (0, 1), the admissions rule s′ given by

s′(x) = σ̃(s, t)s(x) has the property that σ̃(s, t) = 1 and Π(s′, t; σ̃) = Π(s, t; σ̃). Thus the school

can earn at least as much profit by selecting a tution and admissions rule such that all workers with

an education decision will choose to attend.

If workers use strategy σ̃, the school’s problem can be formulated as choosing admissions rule

s and tuition t to maximize profit subject to attendance constraint

aE(x|admitted; s)− t ≥ E(x|not admitted or y < t; s) (1.1)

which guarantees that all admitted workers who can afford tuition will choose to attend the school.

7



1.2.5 Threshold Admissions Rules

Assume that higher ability workers are not more costly to educate: c′(x) ≥ 0 for all x ∈

[x, x]. Since admitting more productive workers would be conducive to a higher signalling value

of education, it is natural to consider admissions tests that simply set a minimum ability level for

admission.

Definition 1.2.3. Admissions test s is a threshold admissions rule if there exists some x̃ such that

s(x) = 0 almost everywhere on [x, x̃) and s(x) = 1 almost everywhere on (x̃, x].

In fact, if workers are following strategy σ̃ and the school has a best response that would induce

some workers to attend the school, it must involve a threshold admissions rule:

Proposition 1.2.1. If (s∗, t∗, σ̃, µ) is a subgame perfect equilibrium in which some workers attend

the school with positive probability, then s∗ is a threshold admissions rule.

Intuitively, if s∗ is not a threshold admissions rule, the school must be able to shift some proba-

bility of admission from lower ability levels to higher ability levels without changing the expected

mass of workers who would attend the school. This would slacken the attendance constraint with-

out increasing costs, creating an opportunity for the school to increase profits by adjusting tuition

or the number of students admitted. The full proof of Proposition 1.2.1 is given in Appendix A.3.

Given that the school’s best response to σ̃ is either to shutdown or to use a threshold admissions

rule, the school’s problem can again be reformulated as choosing an admissions threshold x̃ ∈

[x, x] and tuition t > 0 to solve

max
x̃,t

Ḡ(t)

∫ x

x̃

(t− c(x))dF (x)

subject to attendance constraint

aE(x|x ≥ x̃)− t ≥ E(x|x < x̃ or y < t) (1.2)

8



1.3 The Model with Diversity

In this section, I introduce a notion of diversity among workers. I outline results about this

model with diversity that are similar to those in section 1.2, and then examine the school’s behavior

under various restrictions on how it can discriminate in admissions and tuition.

Suppose that the unit mass of workers each also have a type characteristic i ∈ {1, 2} inde-

pendent of ability, but correlated with wealth. Let Gi be the cumulative distribution function of

wealth among type i workers, with corresponding probability density function gi. I assume that

both wealth distributions display a non-decreasing hazard rate.

Let qi be the proportion of workers who are type i. Further, suppose that type 1 workers are

‘richer’ than type 2 workers in the sense of the monotone likelihood ratio property: g1(y)
g2(y)

≥ g1(y′)
g2(y′)

for all y > y′.

1.3.1 Decisions and Timing

The order of events is the same as that of the basic model. First, the school announces ad-

missions rules s = (s1, s2) and tuitions t = (t1, t2), where ti > 0 and si : [x, x] → [0, 1] for

i = 1, 2.

Each admissions test si is then applied to all type i workers; an admitted type i worker with

wealth y ≥ ti may choose whether or not to attend the school at price ti.

All workers then enter the labor market, receiving a wage equal to their expected productivity,

according to firms’ beliefs. Firms observe workers’ type and education status, and are aware of

each admissions rule and tuition announced by the school. Given admissions tests s = (s1, s2) and

tuitions t = (t1, t2), write µ0(s, t; i) and µ1(s, t) for firm’s expectations of the initial ability level

of an uneducated and educated type i worker, respectively.

The school’s and workers’ payoffs are defined analogously to those in the model without di-

versity.

1.3.2 Strategies and Beliefs

A strategy for the school is a pair of tuitions t ∈ R+ × R+ together with a pair of admissions

tests s : [x, x] → [0, 1]× [0, 1]. A strategy for type i workers is a function σi : (s, t) 7→ σi(s, t) ∈

9



[0, 1], where σi(s, t) is the probability with which an admitted type i worker with wealth y > ti

will choose to attend the school.

When workers enter the labor market, firms observe their type and education status, and form

expectations about their ability level based on the school’s choice of admissions rules and tuition.

In Section 1.4, I examine an alternate version of the model with diversity, in which firms are unable

to observe worker type or prohibited from conditioning wage on type. I refer to the model in which

firms can condition wage on type as the model with firm discrimination, and the model in which

firms cannot condition wage on type as the model without firm discrimination.

Definition 1.3.1. Firm beliefs µ = (µ0, µ1) are consistent with worker strategies σ = (σ1, σ2) in

the model with firm discrimination if µ0(s, t; i) and µ1(s, t; i) are determined by si, ti, and σi using

Bayes’ rule wherever possible.

That is, µ is consistent with σ if and only if

µ1(s, t; i) =

∫ x

x
xsi(x)dF (x)∫ x

x
si(x)dF (x)

for all (s, t) and i such that σi(s, t)Ḡi(ti)
∫ x

x
si(x)dF (x) > 0, and

µ0(s, t; i) =
E(x)− σi(s, t)Ḡi(ti)

∫ x

x
xsi(x)dF (x)

1− σi(s, t)Ḡi(ti)
∫ x

x
si(x)dF (x)

for all (s, t) and i.

1.3.3 Equilibrium Characterization

Given worker strategies σ = (σ1, σ2), the school’s expected profit as a function of its choice of

admissions rule can be written as

Π(s, t;σ) =
2∑

i=1

qiσi(s, t)Ḡi(ti)

∫ x

x

(ti − c(x))si(x)dF (X)

where σi(s, t)Ḡi(t) is the proportion of admitted type i workers who are able to afford tuition and

choose to attend the school.

10



Definition 1.3.2. An equilibrium in the model with firm discrimination is an object (s∗, t∗, σ∗, µ)

satisfying the following conditions:

(i) σ∗
i is a best response to s∗, t∗:

σ∗
i (s

∗, t∗) ∈ argmax
σ

σ(aµ1(s
∗, t∗; i)− t∗i ) + (1− σ)µ0(s

∗, t∗; i)

for i = 1, 2.

(ii) (s∗, t∗) is profit maximizing for the school:

(s∗, t∗) ∈ argmax
(s,t)

Π(s, t;σ∗)

(iii) µ is consistent with σ∗.

(s∗, t∗, σ∗, µ) is a subgame perfect equilibrium if it is an equilibrium and

σ∗
i (s, t) ∈ argmax

σ
σ(aµ1(s, t; i)− ti) + (1− σ)µ0(s, t; i)

for all s, t > 0, and i ∈ {1, 2}.

Let

vi(s, t) := aE(x|admitted; s, i)− ti

For reasons similar to those laid out in Section 1.2.4 and Appendix A.1, I restrict my analysis to

subgame perfect equilibria in which workers use the strategies σ̃ = (σ̃1, σ̃2) given by

σ̃i :=


1 vi(s, t) ≥ E(x|not admitted or y < ti; s, i)

ϕi(s, t) E(x) < vi(s, t) < E(x|not admitted or y < ti; s, i)

0 else

11



where

ϕi(s, t) :=
1

Ḡi(ti)
∫ x

x
si(x)dF (x)

vi(s, t)− E(x)
vi(s, t)− E(x|admitted; s, i)

When the school faces no additional restrictions on its admissions rules or tuitions, its profit

maximization problem in the model with diversity is essentially to solve two separate versions of

the profit maximization problem in the model without diversity. Thus it is optimal for the school

to choose two threshold admissions rules under similar circumstances to those in which it would

be optimal in the model without diversity.

Proposition 1.3.1. If (s∗, t∗, σ̃, µ) is a subgame perfect equilibrium in which some workers of type

i attend the school with positive probability, then s∗i is a threshold admissions rule.

The proof of Proposition 1.3.1 is identical to that of Proposition 1.2.1.

In the remainder of Section 1.3, I characterize potential equilibria in the model with firm dis-

crimination when the school faces additional restrictions on how they vary admissions rules and

tuition based on type. I refer to the practice of applying a different admissions rule to each type

of worker (ie. s1 ̸= s2) as admissions discrimination on the part of the school, and the practice of

charging different tuitions to each type (ie. t1 ̸= t2) as tuition discrimination.

1.3.4 No school discrimination

Suppose the school must apply the same admissions rule and tuition to each type of worker.

For (s, t) such that s1 = s2 and t1 = t2, firms will likely have different expectations of the

ability of an uneducated worker with i = 1 versus i = 2. If some workers attend the school

with positive probability and some are not admitted, an uneducated type 2 worker is relatively

more likely to be a worker who passed the admissions test of the school but was unable to afford

tuition than an uneducated type 1 worker. However, since ability is independent of wealth and of

i, E(x|admitted; s, i) will be the same for both types of worker if s1 = s2.

Definition 1.3.3. A subgame perfect equilibrium with firm discrimination and no school discrimi-

nation is an object (s∗, t∗, σ∗, µ) such that
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(i)

σ∗
i (s, t) ∈ argmax

σ
σ(aµ1(s, t; i)− ti) + (1− σ)µ0(s, t; i)

for all s, t > 0, and i ∈ {1, 2}.

(ii)

(s∗, t∗) ∈ arg max
{(s,t)|s1=s2,t1=t2}

2∑
i=1

qiσ
∗
i (s, t)Ḡi(ti)

∫ x

x

(ti − c(x))si(x)dF (x)

(iii) µ is consistent with σ∗.

If workers follow strategy profile σ̃, the school essentially faces an attendance constraint for

each type of worker. Its best response will either be to shut down, to choose (s, t) such that

σ̃i(s, t) = 1 for i = 1, 2 or to choose (s, t) such that all workers of one type facing an education

decision will choose to attend the school, while all workers of the other type will choose not to

attend the school.

Proposition 1.3.2. If (s∗, t∗, σ̃, µ) is a subgame perfect equilibrium with firm discrimination and

no school discrimination in which some workers attend the school with positive probability, then

s∗1 = s∗2 is a threshold admissions rule.

The proof of Proposition 1.3.2 is similar to that of Proposition 1.2.1. The main difference to

consider is the possibility that the school might choose (s, t) such that only students of one type i

will choose to attend. However, if the school were to choose such an (s, t) for which s1 = s2 is not

a threshold admissions rule, it would be possible to shift some probability of admission to higher

ability workers without changing the number of admitted workers, and without making attendance

optimal for type j ̸= i workers. This would slacken the attendance constraint for type i workers,

creating an opportunity for the school to increase profit.

Using Proposition 1.3.2, if (s∗, t∗, σ̃, µ) is an SPE with firm discrimination and no school dis-

crimination, then

µ1(s
∗, t∗; 1) = µ1(s

∗, t∗; 2) > E(x)

Since a type 1 worker who does not face an education decision is less likely to have passed the

13



school’s admissions test than a type 2 worker who does not face an education decision,

E(x|not admitted or y < t∗1; s
∗, 1) ≤ E(x|not admitted or y < t∗2; s

∗, 2)

The signalling value of an education must then be higher for a type 1 worker than a type 2 worker.

If (s∗, t∗) satisfies the attendance constraint for type 2 workers, it must also satisfy the attendance

constraint for type 1 workers. Thus, if (s∗, t∗, σ̃, µ) is an SPE with firm discrimination and no

school discrimination in which only one type of worker attends the school, it is type 1 workers (the

‘richer’ type).

1.3.5 Tuition-only school discrimination

Suppose the school must apply the same admissions rule to each type of worker, but is not

restricted from tuition discrimination. Again in this case, the expected ability of a worker without

an education decision will vary based on type i, but the expected productivity of an admitted type

i worker will be the same for i = 1, 2.

Definition 1.3.4. A subgame perfect equilibrium with firm discrimination and tuition-only school

discrimination is an object (s∗, t∗, σ∗, µ) such that

(i)

σ∗
i (s, t) ∈ argmax

σ
σ(aµ1(s, t; i)− ti) + (1− σ)µ0(s, t; i)

for all s, t > 0, and i ∈ {1, 2}.

(ii)

(s∗, t∗) ∈ arg max
{(s,t)|s1=s2}

2∑
i=1

qiσ
∗
i (s, t)Ḡi(ti)

∫ x

x

(ti − c(x))si(x)dF (x)

(iii) µ is consistent with σ∗.

If workers use strategy profile σ̃, the school’s best response when restricted to tuition-only

discrimination is again to use a threshold admissions rule.

Proposition 1.3.3. If (s∗, t∗, σ̃, µ) is a subgame perfect equilibrium with firm discrimination and
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tuition-only school discrimination in which some workers attend the school with positive probabil-

ity, then s∗1 = s∗2 is a threshold admissions rule.

The proof of Proposition 1.3.3 is similar to that of Proposition 1.2.1.

Naturally, if the school engages in tuition-only discrimination, it will charge a higher tuition to

the ‘richer’ type of students.

Proposition 1.3.4. If (s∗, t∗, σ̃, µ) is a subgame perfect equilibrium with firm discrimination in

which some workers of both types attend the school, then t∗1 ≥ t∗2.

A full proof of Proposition 1.3.4 is given in Appendix A.3. Intuitively, type 1 students will

always be willing to pay more for education than type 2 students when faced with the same ad-

missions threshold. Furthermore, the MLRP and monotone hazard rate assumptions on G1 and G2

guarantee that if t1 < t2, the marginal revenue of raising t1 is greater than that of raising t2.

1.3.6 Admissions-only discrimination

Suppose the school must charge the same tuition to each type of worker, but is not restricted

from admissions discrimination. In this case, both the expected productivity of educated and une-

ducated workers may vary based on type.

Definition 1.3.5. A subgame perfect equilibrium with firm discrimination and admissions-only

school discrimination is an object (s∗, t∗, σ∗, µ) such that

(i)

σ∗
i (s, t) ∈ argmax

σ
σ(aµ1(s, t; i)− ti) + (1− σ)µ0(s, t; i)

for all s, t > 0, and i ∈ {1, 2}.

(ii)

(s∗, t∗) ∈ arg max
{(s,t)|t1=t2}

2∑
i=1

qiσ
∗
i (s, t)Ḡi(ti)

∫ x

x

(ti − c(x))si(x)dF (x)

(iii) µ is consistent with σ∗.

Again, if workers use strategy σ̃ and firm beliefs are consistent with σ̃, the school’s best re-

sponse involves threshold admissions rules.
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Proposition 1.3.5. If (s∗, t∗, σ̃, µ) is a subgame perfect equilibrium with firm discrimination and

admissions-only school discrimination in which some workers of type i attend the school with

positive probability, then s∗i is a threshold admissions rule.

The proof of Proposition 1.3.5 is similar to that of Proposition 1.2.1.

For all x̃ ∈ (x, x), each type of worker has a maximum tuition ti(x̃) which they would be

willing to pay if the admissions threshold for type i is x̃, determined by their attendance constraint

aE(x|x > x̃)− t ≥ E(x|x < ∃ or y < t; i)

In particular, t1(x̃) > t2(x̃) for all x̃, since the signalling value of an education with the same

tuition and admissions rule is greater for type 1 workers than type 2 workers. In the special case

where c is constant on [x, x], this leads to the conclusion that the school will apply a weakly lower

admissions threshold to the ‘richer’ type of student.

Proposition 1.3.6. If c′(x) = 0 for all x ∈ [x, x] and (s∗, t∗, σ̃, µ) is a subgame perfect equilib-

rium with firm discrimination and admissions-only school discrimination in which some workers

of both types attend the school with positive probability, where x̃1 is the admissions threshold

corresponding to s∗1 and x̃2 is the admissions threshold corresponding to s∗2, then x̃2 ≥ x̃1.

Essentially, if c is constant and x̃1 > x̃2 with both attendance constraints satisfied, the school

could earn strictly higher profit by either applying admissions threshold x2 to both types of student

(if t1 = t2 ≥ c(x2)) or shutting down completely (else).

1.4 Case without firm discrimination

Suppose that firms are either unable to observe worker type, or prohibited from wage discrimi-

nation. Then firm’s expectations of the ability of an educated or uneducated worker do not depend

on the worker’s type, but do depend on the admissions rule and tuition applied to both types.

1.4.1 Equilibrium Characterization

For any s = (s1, s2) and t = (t1, t2), let µ1(s, t) denote firms’ expectation of the initial ability of

an educated worker, and µ0(s, t) denote firms’ expectation of the ability of an uneducated worker.
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Definition 1.4.1. Firm beliefs µ = (µ0, µ1) are consistent with worker strategy profile σ = (σ1, σ2)

in the model without firm discrimination if µ0 and µ1 are determined by σ, s, and t using Bayes’

rule wherever possible.

That is, µ is consistent with σ if and only if

µ1(s, t) =

∑2
i=1 qiσi(s, t)Ḡi(ti)

∫ x

x
xsi(x)dF (x)∑2

i=1 qiσi(s, t)Ḡi(ti)
∫ x

x
si(x)dF (x)

for all s, t such that
∑2

i=1 qiσi(s, t)Ḡi(ti)
∫ x

x
si(x)dF (x) > 0, and

µ0(s, t) =
E(x)−

∑2
i=1 qiσi(s, t)Ḡi(ti)

∫ x

x
xsi(x)dF (x)

1−
∑2

i=1 qiσi(s, t)Ḡi(ti)
∫ x

x
si(x)dF (x)

for all s, t.

I define equilibria in the model without firm discrimination in the way that natural coincides

with equilibria in the models without it:

Definition 1.4.2. A subgame perfect equilibrium in the model without firm discrimination is an

object (s∗, t∗, σ∗, µ) such that

(i)

σ∗
i (s, t) ∈ argmax

σ
σ(aµ1(s, t)− ti) + (1− σ)µ0(s, t)

for all s, t > 0, and i ∈ {1, 2}.

(ii)

(s∗, t∗) ∈ argmax
(s,t)

Π(s, t;σ∗) =
2∑

i=1

qiσ
∗
i (s, t)Ḡi(ti)

∫ x

x

(ti − c(x))si(x)dF (x)

(iii) µ is consistent with σ∗.

I restrict my analysis of equilibria in the model without firm discrimination to cases in which

workers use the particular strategy profile σ̃ = (σ̃1, σ̃2), which is defined fully in Appendix A.2,

and has the following properties:
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(i) σ̃1(s, t) = σ̃2(s, t) = 1 if and only if

aE(x|admitted; s)−
E(x)−

∑2
i=1 qiḠi(ti)

∫ x

x
xsi(x)dF (x)

1−
∑2

i=1 qiḠi(ti)
∫ x

x
si(x)dF (x)

≥ max{ti}2i=1 (1.3)

(ii) σ̃i(s, t) = 1 and σ̃−i(s, t) = 0 if and only if

ti ≤ aE(x|admitted; s, i)−
E(x)− qiḠi(ti)

∫ x

x
xsi(x)dF (x)

1− qiḠi(ti)
∫ x

x
si(x)dF (x)

≤ t−i (1.4)

and not (1.3)

(iii) σ̃1(s, t) = σ̃2(s, t) = 0 if and only if

aE(x|admitted; s)− E(x) ≤ min{ti}2i=1 (1.5)

and not (1.3) and not (1.4).

(iv) For any s, t such that σ̃i(s, t) ∈ (0, 1) for some i, there exists s′ such that σ̃−i(s
′, t) =

σ̃−i(s, t), σ̃i(s
′, t) ∈ {0, 1} and

Π(s′, t; σ̃) = Π(s, t; σ̃)

If the school faces no restrictions on its admissions rules or tuition, and workers use strategy

profile σ̃, it will be optimal for the school to employ threshold admissions rules:

Proposition 1.4.1. If (s∗, t∗, σ̃, µ) is a subgame perfect equilibrium in the model without firm

discrimination such that some type i workers will attend the school with positive probability, then

s∗i is a threshold admissions rule.

The proof of Proposition 1.4.1 is similar to that of Proposition 1.2.1.

Proposition 1.4.2. If F has a non-decreasing hazard rate and (s∗, t∗, σ̃, µ) is a subgame perfect

equilibrium in the model without firm discrimination in which the school makes a positive profit,
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then t1 ≥ t2, and the admissions threshold is weakly higher for type 2 workers.

Intuitively, the school may benefit from extracting more money from the richer type of worker,

while holding the poorer type of worker to a higher admissions standard in order to make all of

their students seem smarter. The proof of Proposition 1.4.2 is detailed in Appendix A.3.

In the remainder of Section 1.4, I characterize potential equilibria in the model without firm dis-

crimination when the school faces various additional restrictions on how it can vary its admissions

test and/or tuition based on type.

1.4.2 No school discrimination

Suppose the school must apply the same admissions rule and tuition to each type of worker.

For any (s, t) such that s1 = s2 and t1 = t2, all workers who face an education decision perceive

the same value and face the same cost of education, regardless of type.

Definition 1.4.3. A subgame perfet equilibrium with no firm discrimination and no school discrim-

ination is an object (s∗, t∗, σ∗, µ) such that

(i)

σ∗
i (s, t) ∈ argmax

σ
σ(aµ1(s, t)− ti) + (1− σ)µ0(s, t)

for all s, t > 0, and i ∈ {1, 2}.

(ii)

(s∗, t∗) ∈ arg max
{(s,t)|s1=s2,t1=t2}

2∑
i=1

qiσ
∗
i (s, t)Ḡi(ti)

∫ x

x

(ti − c(x))si(x)dF (x)

(iii) µ is consistent with σ∗

If workers follow strategy σ̃, then the school is essentially facing the same problem as in the

model without diversity. Thus Proposition 1.2.1 has the following corollary:

Corollary 1.4.1. If (s∗, t∗, σ̃, µ) is a subgame perfect equilibrium with no firm discrimination and

no school discrimination in which some students attend the school with positive probability, then

s∗1 = s∗2 is a threshold admissions rule.
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1.4.3 Tuition-only school discrimination

Suppose the school must apply the same admissions rule to each type of worker, but is not

restricted from tuition discrimination.

Definition 1.4.4. A subgame perfect equilibrium without firm discrimination and with tuition-only

school discrimination is an object (s∗, t∗, σ∗, µ) such that

(i)

σ∗
i (s, t) ∈ argmax

σ
σ(aµ1(s, t)− ti) + (1− σ)µ0(s, t)

for all s, t > 0, and i ∈ {1, 2}.

(ii)

(s∗, t∗) ∈ arg max
{(s,t)|s1=s2}

2∑
i=1

qiσ
∗
i (s, t)Ḡi(ti)

∫ x

x

(ti − c(x))si(x)dF (x)

(iii) µ is consistent with σ∗.

If workers use strategy profile σ̃, the school’s best response when retricted to tuition-only dis-

crimination is to use a threshold admissions rule.

Proposition 1.4.3. If (s∗, t∗, σ̃, µ) is a subgame perfect equilibrium without firm discrimination

and with tuition-only school discrimination such that some students attend the school with positive

probability, then s∗1 = s∗2 is a threshold admissions rule.

The proof of Proposition 1.4.3 is similar to that of Proposition 1.2.1. Naturally, if the school

engages in tuition-only discrimination, it will charge a higher tuition to the ‘richer’ type of students:

Proposition 1.4.4. If (s∗, t∗, σ̃, µ) is a subgame perfect equilibrium with no firm discrimination

and with tuition-only school discrimination such that some students attend the school with positive

probability, then t∗1 ≥ t∗2.

Because type 1 students are richer than type students in the sense of the monotone likelihood

ratio property and both wealth distributions have a non-decreasing hazard rate, if t1 < t2, the

marginal profit of raising t1 will always be higher than that of t2. Thus, if the school can benefit
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from tuition-only discrimination, it will charge a higher tuition to students it knows are more likely

to be able to pay. A full proof of Proposition 1.4.4 is given in Appendix A.3.

1.4.4 Admissions-only school discrimination

Suppose the school is permitted to apply different admissions rules s1 and s2 to each type of

worker, but must charge the same tuition to all students.

Definition 1.4.5. A subgame perfect equilibrium with no firm discrimination and admissions-only

school discrimination is an object (s∗, t∗, σ∗, µ) such that

(i)

σ∗
i (s, t) ∈ argmax

σ
σ(aµ1(s, t)− ti) + (1− σ)µ0(s, t)

for all s, t > 0, and i ∈ {1, 2}.

(ii)

(s∗, t∗) ∈ arg max
{(s,t)|t1=t2}

2∑
i=1

qiσ
∗
i (s, t)Ḡi(ti)

∫ x

x

(ti − c(x))si(x)dF (x)

(iii) µ is consistent with σ∗.

If workers use strategy profile σ̃, the school essentially faces one attendance constraint. It is

optimal for the school to employ a threshold admissions rule:

Proposition 1.4.5. If (s∗, t∗, σ̃, µ) is a subgame perfect equilibrium with no firm discrimination

and admissions-only school discrimination in which some workers attend the school with positive

probability, then s∗i is a threshold admissions rule for all i ∈ {1, 2}.

The proof of Proposition 1.4.5 is similar to that of Proposition 1.2.1.

Furthermore, the school has no incentive to actually vary its admissions rules:

Proposition 1.4.6. If (s∗, t∗, σ̃, µ) is a subgame perfect equilibrium with no firm discrimination and

admissions-only school discrimination in which the school makes a positive profit, then s∗1 = s∗2.

The proof of Proposition 1.4.6 is detailed in Appendix A.3. Thus the school will not discrimi-

nate in the model with no firm discrimination if it is restricted to admissions-only discrimination.
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1.5 Conclusion

In this paper I have studied a monopolistic profit-maximizing school designing an admissions

test. The admissions test chosen by the school affects the signalling value of its degrees, which

affects the tuition potential students are willing to pay for education. The tuition the school charges

also effects not only the number of workers who will be able to attend the school, but also the

signalling value of education (via the expected ability of uneducated workers). I show that the

school’s optimal admissions test involves an admissions threshold.

I then apply the basic structure of this model to an environment in which workers are distin-

guished by a type characteristic that is correlated with ability to pay tuition but not correlated with

productivity in the labor market. I characterize the school’s optimal admissions thresholds and

tuition with and without restrictions on whether they can set different thresholds and/or tuitions

for different types of worker, both in a model in which firms are able to observe and discriminate

based on type and in a model in which they are not.

There are several areas for further study. An obvious potential restriction on the school that

is not considered in this paper is a quota on the diversity of its students. Competition between

multiple educational institutions might result in different schools catering to workers of different

ability levels, resulting in a more complex relationship between a school’s admissions test, the

signalling value of its degrees, and the number of students it educates. Finally, a similar model

in which the school or schools are able to designate separate programs with different admissions

standards (e.g. an ‘honors’ degree program) may provide insight into diversity levels in programs

of different calibers within the same institution.
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CHAPTER 2

QUEER MARRIAGE AND CLASS

2.1 Introduction

Since Becker’s seminal 1973 paper on marriage as a matching process, and subsequent papers

which extend his analysis to introduce search frictions (eg. Burdett and Coles (1997); Mortensen

and Pissarides (1999)), economic marriage market models have been used empirically to study

topics including online dating Hitsch, Hortaçsu, and Ariely (2010), mate selection in speed dating

Fisman, Iyengar, Kamenica, and Simonson (2006), and the interactions between household forma-

tion and inequality Fernández, Guner, and Knowles (2005). In the language of the vast majority

of marriage market literature, a man and a woman bump into each other and then decide whether

or not to enter into a relationship together. One could imagine that same-sex couples form in two

separate, one-sided marriage markets that operate in roughly the same way as the one described in

economic literature. But people with no strict preferences over the gender of a potential partner

cannot be trivially accounted for in this framework.

In Burdett and Coles (1997), unmarried men and women occasionally contact singles of the

opposite gender, and upon observing their objective level of impressiveness, or ‘pizazz’, decide

whether or not to propose marriage. They show that in an equilibrium in which all singles are

rational except that they believe the current distribution of pizazz among each gender will remain

constant throughout time, men and women are partitioned into finitely many ‘classes’ (half-open

pizazz intervals), and singles will only marry each other upon meeting if they are in the same class.

In this paper I modify the model of Burdett and Coles (1997) to allow for the existence of singles

of different orientations.

Rather than unmarried individuals only contacting singles of the opposite gender, the singles



one meets on the market might be of any orientation or gender. Throughout it is assumed that a po-

tential partner’s orientation and gender are immediately observable upon contact. In this environ-

ment, people with no preferences over the gender of a potential partner have a distinct advantage,

in that they are more likely to contact another single with whom they share a mutual attraction.

I show that, as in Burdett and Coles (1997), equilibrium behavior can be characterized by parti-

tions of each type of individual into classes, but unlike in the model that only includes straight

individuals, singles who are not in the same class will get married.

The paper is organized as follows. In Section 2.2 I outline the basic framework of the model.

In Section 2.3, the notion of a partial rational expectations equilibrium in this model is defined,

and the unique equilibrium for a given collection of constant distributions of pizazz for singles of

different orientations within the market. In Sections 2.4, conditions and characteristics of possible

steady state equilibria are explored.

2.2 Model Framework

Suppose that a large population of singles participate in a marriage market. For simplicity,

half of these singles are men, and half are women. Each individual can be characterized by their

gender, m or w, an orientation j ∈ {s, g, b} and a pizazz level x ∈ R, which represents an objective

measure of impressiveness that will determine the flow utility that a potential partner would recieve

from marrying them. In this model, singles will search for potential partners, and occasionally

succeed in contacting another single. The singles that they meet, however, may or may not be

suitable candidates for marriage; for instance, a straight woman might run into another woman

during the process of her search. Regardless of how much pizazz this contacted woman posesses,

the straight woman will not consider marrying her, and both will have to continue searching. If the

same straight woman happens to contact a straight man, however, each will weigh the other’s level

of pizazz against their prospective value from continued search, and decide whether to propose

marriage. They will only get married if both parties choose to propose. Otherwise, they both

continue their searches.

An individual’s orientation defines a restriction on the gender of singles with which they would

be willing to consider marriage. Singles of orientation s can only form marriages with individuals
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of the opposite gender. Singles of orientation g can only form marriages with singles of the same

gender. Singles of orientation b do not face any particular restrictions as to the gender of their

potential spouses. Two singles are ‘compatible’ with each other if each individual’s gender and

orientation do not preclude them from marrying someone of the other’s gender. For example, a

man of orientation b is compatible with a woman of orientation s or b, or a man of orientation g or

b, but not with a woman of orientation g or a man of orientation s. If two singles get married, they

permanently exit the market, and each receives a flow utility from marriage equal to their spouse’s

pizazz level. All individuals receive zero flow utility while single.

Following Burdett and Coles (1997), let singles meet others according to a poisson process with

parameter α, where α is assumed to be independent of the number of participating singles. Upon

meeting, singles observe each other’s gender, orientation, and pizazz level. If two singles who meet

are not compatible with each other, they seperate and continue searching. If they are compatible

with each other, each individual will decide whether or not to propose marriage. If both propose,

they get married. If not, they seperate and continue searching. Assume that individuals who get

married must permanently leave the market (i.e., marriages last forever and there is no search while

married). Let individuals live according to an exponential random variable with parameter δ > 0,

so that individuals die at rate δ, and assume that widowed individuals do not return to the market.

All individuals discount at rate r > 0.

Let β be the arrival rate of new singles, so that the number of new singles entering the market

in any time interval dt is βdt. Any new individual entering the market has equal probability of

being a man or a woman, has orientation s with probability p, orientation g with probability q, and

orientation b with probability 1 − p − q. Assume that a new single’s pizazz level is independent

of their gender and orientation, and let F (z) be the probability that any new single has pizazz no

greater than z. Assume that F is twice differentiable and strictly increasing on support [x, x̃].

Without a clone assumption, the distribution of pizazz among singles of a particular orientation

in the market at a given time may not equal F . Let Gj(·, t) for j ∈ {s, g, b} denote the distribution

of pizazz among singles of orientation j in the market at time t. If a searcher meets a single

individual of type j in the market at time t, Gj(z, t) is the probability of that individual having
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pizazz no greater than z. The proportion of individuals of each orientation may also vary across

time. Let p̃(t) and q̃(t) denote the proportion of singles who are type s and g at time t, respectively.

2.3 Stationary Environment

The analysis in this section is based on the concept of a partial rational expectations equilib-

rium, in which all agents are rational, except that they believe they exist in a stationary environ-

ment. Accordingly, the equilibrium results in this section must hold in any steady-state equilibrium,

if one exists, but are less useful for considering a marriage market outside of a steady state.

Assume that all singles believe that the market can be characterized by Gs, Gg, Gb, where Gj

is continuous with support [x, x̃] for j = s, g, b, and

Gs(z, t) = Gs(z) for all z and for all t; (R1)

Gg(z, t) = Gg(z) for all z and for all t; (R2)

Gb(z, t) = Gb(z) for all z and for all t; (R3)

p̃(t) = p̃ for all t; (R4)

q̃(t) = q̃ for all t. (R5)

Conditions (R1)-(R3) require that all singles believe that the distribution of pizazz among all

groups they face today will remain constant throughout time. Likewise, conditions (R4) and (R5)

require that singles believe the number of singles in the market belonging to each orientation will

not change. Thus, they believe they are operating in a stationary environment; when determining

their expected value of continued search, they assume that their prospects will remain the same

forever. Following (Burdett and Coles 1997, p. 6), conditional on beliefs (R1)-(R5) a partial ra-

tional expectations equilibrium (PREE) “requires that all agents use utility-maximizing strategies,

given the behavior of other agents.”

Let Gj(·|x) denote the distribution of pizazz among singles of type j ∈ {s, g, b} who would

propose upon meeting a single of pizazz x with whom they were compatible. Let αjk(x) denote

the arrival rate of proposals faced by a single of type j and pizazz x from singles of type k.

Let Uj(x) denote the expected lifetime utility of an individual with orientation j and pizazz
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level x. Then

(1 + rdt)Us(x) = (1− δdt)

[
αss(x)dtE

(
max{x̃, Us(x)}|x and offer from s

)
+ αsb(x)dtE

(
max{x̃, Us(x)}|x and offer from b

)
+
(
1− αss(x)dt− αsb(x)dt

)
Us(x)

]

Rearranging and letting dt → 0,

(r + δ)Us(x) = αss(x)E
(
max{x̃− Us(x), 0}|x and offer from s

)
+ αsb(x)E

(
max{x̃− Us(x), 0}|x and offer from b

)
Thus, the optimal strategy is characterize by a reservation value, Rs(x) = Us(x), defined by

Rs(x) =
1

r + δ

(
αss(x)

∫ x̃

Rs(x)

[1−Gs(x̃|x)]dx̃+ αsb(x)

∫ x̃

Rs(x)

[1−Gb(x̃|x)]dx̃
)

Similarly,

Rg(x) =
1

r + δ

(
αgg(x)

∫ x̃

Rg(x)

[1−Gg(x̃|x)]dx̃+ αgb(x)

∫ x̃

Rg(x)

[1−Gb(x̃|x)]dx̃

)

and

Rb(x) =
1

r + δ

(
αbs(x)

∫ x̃

Rb(x)

[1−Gs(x̃|x)]dx̃

+ αbg(x)

∫ x̃

Rb(x)

[1−Gg(x̃|x)]dx̃

+ αbb(x)

∫ x̃

Rb(x)

[1−Gb(x̃|x)]dx̃

)

In a PREE, Rj(·) must be nondecreasing: anyone willing to propose to a single of a particular

gender and orientation j with pizazz x is also willing to propose to a single of that gender and

orientation with pizazz x′ > x. So Uj(x
′) ≥ Uj(x), and thus Rj(x

′) ≥ Rj(x).
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Further, equilibrium implies that type b individuals must be the pickiest. That is, Rb(x) ≥

Rj(x) for all x and for all j ∈ {s, g, b}. Consider αgg(x) and αbg(x). The arrival rate of proposals

from type g individuals to a single of pizazz x with whom they are compatible is α
2
q̃ Pr(Rg(x̃) ≤

x|g): the instantaneous probability of meeting someone of the same gender, who is type g, and who

(given that they are type g) has pizazz low enough to be willing to propose to someone of pizazz

x. Because the reservation match strategy of type g individuals is irrespective of the orientation

of their prospective partner, this arrival rate is the same for a type b individual of pizazz x as for

a type g individual of the same pizazz level: αgg(x) =
α
2
q̃ Pr(Rg(x̃) ≤ x|g) = αbg(x). Similarly,

αss(x) = αbs(x). But in the arrival rate of proposals from singles of orientation b, type b individuals

have an advantage. While a type s (g) individual has to be lucky enough to meet a type b individual

of the opposite (same) gender with low enough standards, a type b individual is compatible with

any other type b individual:

αsb(x) = αgb(x) =
α

2
(1− p̃− q̃) Pr(Rb(x̃) ≤ x|b)

≤ α(1− p̃− q̃) Pr(Rb(x̃) ≤ x|b) = αbb(x)

In particular, individuals of orientation b can expect to get proposals from other individuals of

orientation b twice as often as a type s or g individual of the same pizazz level would. Thus

αss(x)

∫ x̃

z

[1−Gs(x̃|x)]dx̃+ αsb(x)

∫ x̃

z

[1−Gb(x̃|x)]dx̃

≤ αbs(x)

∫ x̃

z

[1−Gs(x̃|x)]dx̃+ αbb(x)

∫ x̃

z

[1−Gb(x̃|x)]dx̃

≤ αbs(x)

∫ x̃

z

[1−Gs(x̃|x)]dx̃+ αbg(x)

∫ x̃

z

[1−Gg(x̃|x)]dx̃

+ αbb(x)

∫ x̃

z

[1−Gb(x̃|x)]dx̃

for all x ∈ [x, x̃] and for all z ≤ x̃, and so Rs(x) ≤ Rb(x) for all pizazz levels x. Similarly,

Rg(x) ≤ Rb(x) for all x.

As in Burdett and Coles (1997), market participants of each type can be partitioned into a
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finite number of distinct classes, with individuals in the same type and class sharing the same

equilibrium behavior. Unlike in Burdett and Coles, the addition of overlapping orientations will

preclude a meaningful definition of classes such that singles will only marry others within the same

class.

Proposition 2.3.1. Given {Gj}j∈{s,g,b} and p̃, q̃, a PREE implies the existence of a unique col-

lection of three partitions, ({ys(n)}Jsn=0, {yg(n)}
Jg
n=0, {yb(n)}

Jb
n=0) with yj(0) = x̃ and yj(Jj) ≤ x

such that a single of type j and pizazz x ∈ [yj(n), yj(n − 1)) proposes to an individual of type

k with pizazz x′ ∈ [yk(m), yk(m − 1)) upon meeting if and only if they are compatible and

Rj(yj(n)) ≤ yk(m).

Proof.

Lemma 2.3.1. Rj(x̃) < x, ∀j ∈ {s, g, b}

Proof. Any compatible individual will propose if they encounter a single with pizazz x̃. Therefore,

αbs(x̃) = α p̃
2
, αbg = α q̃

2
, and αbb = α(1− p̃− q̃), and Gj(·|x̃) = Gj(·) for j = s, g, b. So

Rb(x̃) =
α

r + δ

(
p̃

2

∫ x̃

Rb(x̃)

[1−Gs(x̃)]dx̃+
q̃

2

∫ x̃

Rb(x̃)

[1−Gg(x̃)]dx̃

+ (1− p̃− q̃)

∫ x̃

Rb(x̃)

[1−Gb(x̃)]dx̃

)

Clearly, Rb(x) ≥ x̃ does not satisfy this equation, so Rb(x) < x̃. Since type b individuals must be

weakly pickier than type s and g individuals of the same pizazz level, Rg(x̃) ≤ Rb(x̃) < x̃ and

Rs(x̃) ≤ Rb(x̃) < x̃

Noting also that αss(x̃) = α p̃
2
, αgg(x̃) =

q̃
2
, and αsb(x̃) = αgb(x̃) = α 1−p̃−q̃

2
,

Rs(x̃) =
α

r + δ

(
p̃

2

∫ x̃

Rs(x̃)

[1−Gs(x̃)]dx̃+
1− p̃− q̃

2

∫ x̃

Rs(x̃)

[1−Gb(x̃)]dx̃

)

and

Rg(x̃) =
α

r + δ

(
q̃

2

∫ x̃

Rg(x̃)

[1−Gg(x̃)]dx̃+
1− p̃− q̃

2

∫ x̃

Rg(x̃)

[1−Gb(x̃)]dx̃

)
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Let yj(0) = x̃ and yj(1) = Rb(x̃) for j = s, g, b.

Lemma 2.3.2. Singles of orientation j with pizazz x ∈ [yj(1), yj(0)) have Rj(x) = Rj(x̃).

Proof. Consider a type s individual with pizazz x ∈ [ys(1), x̃) = [Rb(x̃), x̃). Since x ≥ Rb(x̃) ≥

Rs(x̃), any compatible single will propose to this individual upon meeting. Thus, αss(x) = α p̃
2
,

αsb(x) = α 1−p̃−q̃
2

, Gs(·|x) = Gs(·), and Gb(·|x) = Gs(·). Therefore, Rs(x) = Rs(x̃). A similar

argument shows this result for j = g, b.

The inductive process to define the remaining elements of the partition can be thought of as

follows: Given ({ys(n)}ns
n=0, {yg(n)}

ng

n=0, {yb(n)}
nb
n=0) such that {n : yj(n) ≥ y and n > nj} =

Ø,∀j ∈ {s, g, b}, where y := min{ys(ns), yg(ng), yb(nb)}, and given

A(y) = {(j, Rj(yj(n))) : n ≤ nj, j ∈ {s, g, b}},

let

B(y) := {(j, lim
ϵ→0

Rj(y − ϵ)) : yj(nj) = y}.

Now, let y′ := maxj=s,g,b{x : (j, x) ∈ A(y)∪B(y) and x < y}. Let, yj(nj +1) = y′ for all j such

that (k, y′) ∈ A(y) ∪ B(y) for some k compatible with j. For j such that (k, y′) /∈ A(y) ∪ B(y)

for all k compatible with j, we will have yj(nj + 1) < y′, so this process can now be repeated.

Essentially, given any class cut-off y and knowledge of reservation values for all singles with

pizazz higher than y, the next highest partition element for any orientation will be the maximum of

the reservation values in that set which are lower than the y together with the reservation values of

singles with pizazz just below y. This next highest cut-off, y′ will be an element of the partitions

corresponding only to the orientations j for which there exists some k compatible with j and some

x ∈ [x, x̃] such that Rk(x) = y′. Note that, since type b individuals are compatible with individuals

of every orientation, this next highest cut-off y′ will always be an element of {yb(n)}Jbn=1. That is,

{yj(n)}
Jj
n=1 ⊆ {yb(n)}Jbn=1 for all j.
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Lemma 2.3.3. Given yj(n) defined in this way, any individual of orientation j and pizazz x ∈

[yj(n), yj(n− 1)) will have reservation value Rj(x) = Rj(yj(n)).

Proof. Taking Lemma 2.3.2 as a basis step, suppose that yj(n) is found by this inductive process,

and that this result holds for all k and m such that yk(m) > yj(m). Now, let x ∈ [yj(n), yj(n−1)).

By construction, ∄(k, x′) such that k is compatible with j and Rk(x
′) ∈ (yj(n), yj(n − 1)) ⊇

(yj(n), x]. That is, there is no one compatible with singles of orientation j who would propose to

someone of pizazz x and would not propose to someone of pizazz yj(n). Since type j individuals

of pizazz x and pizazz yj(n) get the same offers, αjk(x) = αjk(yj(n)) and Gk(·|x) = Gk(·|yj(n))

for all k compatible with j, so Rj(x) = Rj(yj(n)).

Finiteness of the partitions follows from a simple contradiction argument if x > 0.

Finally, consider a single of type j and pizazz x ∈ [yj(n), yj(n − 1)) and a single of type k

with pizazz x′ ∈ [yk(m), yk(m− 1)). The reservation match strategy and Lemma 2.3.3 imply that

if j and k are compatible and Rj(yj(n)) ≤ yk(m), then Rj(x) = Rj(yj(n)) ≤ yk(m) ≤ x′ and

individual of type j will propose upon meeting. Conversely, if the individual with orientation j and

pizazz x would propose upon meeting, then j and k are compatible and Rj(yj(n)) = Rj(x) ≤ x′.

Since j and k are compatible, by construction Rj(x
′′) /∈ (yk(m), yk(m − 1)),∀x′′ ∈ [x, x̃], so

Rj(yj(n)) ≤ x′ and Rj(yj(n)) /∈ (yk(m), x′], and therefore Rj(yj(n)) ≤ yk(m).

Consider a type s individual with pizazz x = Rb(x̃)−ϵ for ϵ arbitrarily small. Then x > Rs(x̃),

so any compatible type s single would propose to this indivudal upon meeting. Thus αss(x) =

α p̃
2

and Gs(·|x) = Gs(·). Since x < Rb(x̃), type b individuals of the highest class would not

propose to this individual, but since x is just under this cutoff, any compatible type b individual

with pizazz less than yb(1) = Rb(x̃) would propose. So αsb(x) = α 1−p̃−q̃
2

Gb(yb(1)) So this

individual’s reservation value is

Rs(x) =
α

r + δ

(
p̃

2

∫ x̃

Rs(x)

[1−Gs(x̃)]dx̃+
1− p̃− q̃

2
Gb(yb(1))

∫ yb(1)

Rs(x)

[1−Gb(x̃|x)]dx̃

)

=
α

r + δ

(
p̃

2

∫ x̃

Rs(x)

[1−Gs(x̃)]dx̃+
1− p̃− q̃

2

∫ yb(1)

Rs(x)

[Gb(yb(1))−Gb(x̃)]dx̃

)
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This will be the reservation value for any type s individual in the second class, [yb(2), yb(1)).

In general, we can write the reservation value for all members of a class, ϕj(n) = Rj(yj(n))

as follows:

ϕs(n) =
α

r + δ

(
p̃

2

∫ css(n)

ϕs(n)

[Gs(css(n))−Gs(x̃)]dx̃

+
1− p̃− q̃

2

∫ csb(n)

ϕs(n)

[Gb(csb(n))−Gb(x̃)]dx̃

)

ϕg(n) =
α

r + δ

(
q̃

2

∫ cgg(n)

ϕg(n)

[Gg(cgg(n))−Gg(x̃)]dx̃

+
1− p̃− q̃

2

∫ cgb(n)

ϕg(n)

[Gb(cgb(n))−Gb(x̃)]dx̃

)

and

ϕb(n) =
α

r + δ

(
p̃

2

∫ cbs(n)

ϕb(n)

[Gs(cbs(n))−Gs(x̃)]dx̃

+
q̃

2

∫ cbg(n)

ϕb(n)

[Gg(cbg(n))−Gg(x̃)]dx̃

+ (1− p̃− q̃)

∫ cbb(n)

ϕb(n)

[Gb(cbb(n))−Gb(x̃)]dx̃

)
,

where

cjk(n) := min
m∈N

{yk(m) : Rk(yk(m)) > yj(n)} = sup{x : Rk(x) ≤ yj(n)}

Let Cj be the set of types compatible with j. That is, Cs = {s, b}, Cg = {g, b}, and Cb = {s, g, b}.

Then, for all j ∈ {s, g, b} and all n ≥ 1,

yj(n) = max
k∈Cj ,m∈N

{ϕk(m) : ϕk(m) < yj(n− 1)}
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2.4 Steady State Equilibria

A given (Gs, Gg, Gb, p̃, q̃) imply a unique partition as in Proposition 2.3.1. This partition im-

plies a unique distribution of singles flowing out of the market through marriage. Together with

the number N of singles in the market, this would imply an outflow rate of singles of each type

exiting the market through marriage or death. Given (F, β, p, q), a steady state equilibrium is

(Gs, Gg, Gb, N, p̃, q̃) such that the strategies are consistent with a PREE, and there is balanced

flow:

∀n,∀[z1, z2) ⊆ [ys(n), ys(n− 1)),

p̃N(αλsn + δ)[Gs(z2)−Gs(z1)] = pβ[F (z2)− F (z1)]

∀n,∀[z1, z2) ⊆ [yg(n), yg(n− 1)),

q̃N(αλgn + δ)[Gg(z2)−Gg(z1)] = qβ[F (z2)− F (z1)]

and ∀n,∀[z1, z2) ⊆ [yb(n), yb(n− 1)),

(1− p̃− q̃)N(αλbn + δ)[Gb(z2)−Gb(z1)] = (1− p− q)β[F (z2)− F (z1)]

where λjn denotes the probability that a meeting between an individual of type j and class n and

another individual results in a marriage:

λsn =
p̃

2

[
Gs(css(n))−Gs(ϕs(n))

]
+

1− p̃− q̃

2

[
Gb(csb(n))−Gb(ϕs(n))

]
λgn =

q̃

2

[
Gg(cgg(n))−Gg(ϕg(n))

]
+

1− p̃− q̃

2

[
Gb(cgb(n))−Gb(ϕg(n))

]
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and

λbn =
p̃

2

[
Gs(cbs(n))−Gs(ϕb(n))

]
+

q̃

2

[
Gg(cbg(n))−Gg(ϕb(n))

]
+ (1− p̃− q̃)

[
Gb(cbb(n))−Gb(ϕb(n))

]
As in Burdett and Coles (1997), these balanced flow conditions imply that within a type and class,

the steady state density function is a rescaled version of the entry density function F ; Since F is

differentiable,

∀n,∀z2 ∈ [ys(n), ys(n− 1)),

G′
s(z2) =

pβ

p̃N(αλsn + δ)
F ′(z2)

∀n,∀z2 ∈ [yg(n), yg(n− 1)),

G′
g(z2) =

qβ

q̃N(αλgn + δ)
F ′(z2)

and ∀n,∀z2 ∈ [yb(n), yb(n− 1)),

G′
b(z2) =

(1− p− q)β

(1− p̃− q̃)N(αλbn + δ)

The problem of characterizing a steady state equilibrium is made difficult in this model by the

fact that individuals do not marry only within their own class, but in fact might marry someone of

a higher or lower class than their own, or someone of a different orientation with classes that are

not in one-to-one correspondance with their own type’s classes.

By splitting the integrals in the expression for a class’s reservation value, ϕj(n) into sums of

within-class integrals, ϕj(n) can be expressed in terms of the exogenous distribution of pizazz and

proportions of orientations, rather than the endogenous Gj(·) and p̃, q̃. Similarly writing λjn as

sums of within-class probability masses would aid in identifying the steady-state class cutoffs for
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a given (F, β, p, q). For instance,

yb(1) =
αλb1

r + δ

∫ x̃

yb(1)

1− F (x)

1− F (yb(1))
dx

However, as the number of classes of potential partners between an individual’s reservation pizazz

level and the maximum pizazz level of someone who would be willing to marry that individual

grows, the task of simplifying their reservation value and identifying it in terms of exogenous vari-

ables and distributions becomes more algebraically complex. I have not yet been able to directly

or inductively identify the steady-state class partitions, and so the question of the existence of a

steady state remains open.

2.5 Conclusion

This paper provides an example of how the existence of queer people is relevant to the structure

of equilibria in economic models which study the formation of romantic partnerships. While I did

not reach an explicit solution for steady state equilibria in this model, it is clear that the presence

of singles of various orientations in the marriage market fundamentally alters the class structure

of Burdett and Coles (1997). Thus, the restriction to straight individuals, an implicit assumption

which often goes unremarked upon in marriage market literature, is not without loss of generality.

This suggests several avenues for future research. In this model, because individuals leave the

market upon marriage, singles are indifferent between potential partners of the same pizazz level

and different orientations. However, with a possibility of continued search after marriage, a pref-

erence for partners who are attracted to only one gender might arise. As individuals with attraction

to more than one gender are more likely to meet someone with whom they are compatible, they

may be perceived to present a higher risk of unfaithfulness. This may result in higher reservation

values for the pizazz of a potential partner with that orientation, attenuating their natural advantage

in the marriage market. This would also suggest the relevance of a model in which a single’s ori-

entation is not immediately or perfectly observable upon contact, as those who would be percieved

as riskier matches may have incentive to hide their true type.
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APPENDIX A

APPENDIX OF CHAPTER 1

A.1 Details from Section 1.2.4

The class of subgame perfect equilibria described in Section 1.2.4 includes many trivial equi-

libria in which the school’s incentives do not reflect the signalling value of education. For example,

suppose that ax ≤ E(x). Then for all (s, t) such that

(i)
∫ x

x
(t− c(x))s(x)dF (x) ≥ 0 and

(ii) t ≤ aE(x|admitted; s)− E(x|not admitted or y < t; s),

there exists a subgame perfect equilibrium (s, t, σ, µ), where

σ(s′, t′) =


1 (s′, t′) = (s, t)

0 else

and µ1(s
′, t′) ≤ E(x)+t

a
for all (s′, t′) ̸= (s, t).

(i) ensures that the school will make a non-negative profit if they announce (s, t) and all admit-

ted workers who can afford tuition choose to attend, and (ii) ensures that the payoff of educated

workers is not less than that of uneducated workers if all workers with an education decision choose

to attend. Essentially, if ax < E(x), it is always possible to set firm beliefs which are consistent

with no workers getting educated if the school chooses a particular strategy, and which also justify

workers choosing not to get educated if the school chooses that strategy. So for any (s, t) satisfying

(i) and (ii), there are consistent beliefs which allow for an SPE in which workers force the school

to choose (s, t) by refusing to attend if they announce any other admissions rule or tuition.

These equilibria arise because firms may hold arbitrary and extreme beliefs when their expec-

tations of workers’ productivity are not well-defined by Bayes’ rule. One additional restriction on

the ‘reasonability’ of beliefs which could eliminate such equilibria is a notion of trembling hand

consistency.

Definition A.1.1. Firm beliefs µ = (µ0, µ1) are trembling hand consistent with worker strategy
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Table A.1: Values of σ∗(s, t) in a trembling hand consistent SPE

v(s, t) > E(x|not admitted or y < t; s) v(s, t) = E(x|not admitted or y < t; s) v(s, t) < E(x|not admitted or y < t; s)

v(s, t) > E(x) σ∗(s, t) = 1 σ∗(s, t) = 1 σ∗(s, t) = 1
p(s)Ḡ(t)

v(s,t)−E(x)
v(s,t)−µ1(s,t)

v(s, t) = E(x) σ∗(s, t) = 1 σ∗(s, t) ∈ [0, 1] σ∗(s, t) = 0

v(s, t) < E(x) σ∗(s, t) ∈ {0, 1, 1
p(s)Ḡ(t)

v(s,t)−E(x)
v(s,t)−µ1(s,t)

} σ∗(s, t) = 0 σ∗(s, t) = 0

σ : S × R+ → [0, 1] if µ = limϵ→0 µ(ϵ), where for all ϵ ∈ (0, 1) µ(ϵ) is the unique firm belief

consistent with the perturbed worker strategy σϵ given by

σϵ(s, t) = σ(s, t)(1− ϵ) + (1− σ(s, t))ϵ

That is, µ is trembling hand consistent with σ if it is the limit as ϵ approaches 0 of the beliefs

consistent with a perturbed strategy in which workers with admissions decisions follow σ but have

probability ϵ of ‘accidentally’ deviating.

Suppose that (s∗, t∗, σ∗, µ) is a subgame perfect equilibrium, and that µ is trembling hand

consistent with σ∗. First, note that µ1(s, t) = E(x|admitted; s) for all admissions rules s : [x, x] →

[0, 1] and tuition t > 0 such that some students are admitted and can afford tuition with positive

probability. Additionally, letting p(s) :=
∫ x

x
s(x)dF (x),

µ0(s, t) =


E(x|not admitted or y < t; s) σ∗(s, t) = 1

E(x)−σ∗(s,t)p(s)Ḡ(t)E(x|admitted;s)
1−σ∗(s,t)p(s)Ḡ(t)

σ∗(s, t) ∈ (0, 1)

E(x) σ∗(s, t) = 0

for all s, t.

Given this formulation of firm beliefs, worker optimality of σ∗ for all s, t identifies the value of

σ∗(s, t) for most admissions rules and tuition. This identification can be determined based on the

value of education to a worker,

v(s, t) := aE(x|admitted; s)− t

in comparison to E(x) and E(x|not admitted or y < t; s). Table A.1 lists the possible values
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of σ∗(s, t) in any trembling hand consistent SPE for all cases of that comparison. The value

of σ∗(s, t) is not pinned down by the requirements of trembling hand consistency or subgame

perfection only if µ1(s, t) > E(x) > v(s, t) > E(x|not admitted or y < t; s) or µ1(s, t) = E(x) =

v(s, t) = E(x|not admitted or y < t; s). In the former case, σ∗(s, t) = 0, σ∗(s, t) = 1, or a unique

σ∗(s, t) ∈ (0, 1) could be supported in a trembling hand consistent SPE; in the latter, any value of

σ∗(s, t) could be supported. In my analysis I assume that workers use the strategy σ̃ given by

σ̃(s, t) =


1 v(s, t) ≥ E(x|not admitted or y < t; s)

1
p(s)Ḡ(t)

v(s,t)−E(x)
v(s,t)−E(x|admitted;s) E(x) < v(s, t) < E(x|not admitted or y < t; s)

0 else

which is equivalent to restricting to trembling hand consistent SPE, and assuming that whenever

possible, all workers with an education decision would choose to attend the school. This worker

strategy gives the school maximum control over the signalling value of education.

A.2 Details from Section 1.4.1

The notion of trembling hand consistency can easily be extended into the model without firm

discrimination, and is again helpful in ruling out trivial subgame perfect equilibria:

Definition A.2.1. Firm beliefs µ = (µ0, µ1) are trembling hand consistent with worker strategy

σ = (σ1, σ2) in the model without firm discrimination if µ = limϵ→0 µ(ϵ), where for all ϵ ∈ (0, 1)

µ(ϵ) is the unique firm belief consistent with the perturbed worker strategy σϵ given by

σϵi = σi(s, t)(1− ϵ) + (1− σi(s, t))ϵ

Denote the mass of type i students who are admitted and can afford tuition by ni(s, t) :=

qiḠi(ti)
∫ x

x
si(x)dF (x) for all admissions rules s, tuition t, and i = 1, 2. Also denote the expected

initial ability of an admitted type i worker by mi(s) :=
∫ x
x xsi(x)dF (x)∫ x
x si(x)dF (x)

for all admissions rules s.
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Finally, let

w̃(p1, p2; s, t) :=


∑2

i=1 ni(s,t)mi(s)∑2
i=1 ni(s,t)

− E(x) p1 = p2 = 0

a
∑2

i=1 pini(s,t)mi(s)∑2
i=1 pini(s,t)

− E(x)−
∑2

i=1 pini(s,t)mi(s)

1−
∑2

i=1 pini(s,t)
else

for all (p1, p2) ∈ [0, 1] × [0, 1] and all admissions rules s and tuitions t such that ni(s, t) > 0 for

some i. That is, w̃(p1, p2; s, t) is the value of education to a worker if the school announces (s, t)

and firm beliefs are trembling hand consistent with a worker strategy σ such that σi(s, t) = pi for

i = 1, 2.

Now, if (s∗, t∗, σ∗, µ) is a subgame perfect equilibrium in the model without firm discrim-

ination, and µ is trembling hand consistent with σ∗, then for all (s, t) such that ni(s, t) > 0,

σ∗
i (s, t) = 1 if w̃(1, σ∗

−i(s, t); s, t) > ti, and σ∗
i (s, t) = 0 if w̃(0, σ∗

−i; s, t) < ti. I will restrict

my analysis to potential subgame perfect equilibria in which workers follow a particular strategy

profile σ̃ which has the characteristic that it could be supported in a subgame perfect equilibria

along with firm beliefs which are consistent with σ̃, and can be constructed as follows:

Suppose t = (t1, t2), for some t1 = t2 > 0. Since workers of both types facing an education

decision would receive the same value from education and face the same tuition, I make the sim-

plifying assumption that in this case σ̃1(s, t) = σ̃2(s, t). In particular, assuming all students with

an education decision will choose to attend the school wherever possible,

σ̃i(s, t) =



1 w̃(1, 1; s, t) ≥ ti

a

∑2
j=1 nj(s,t)mj(s)∑2

j=1
nj(s,t)

−E(x)−ti

(a−1)
∑2

j=1 nj(s,t)mj(s)−ti
∑2

j=1 nj(s,t)
w̃(1, 1; s, t) < ti < w̃(0, 0; s, t)

0 else

Suppose instead that t1 > t2. Let σ̃1(s, t) = σ̃2(s, t) = 1 if

w̃(1, 1; s, t) ≥ t1 > t2 (A.1)
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Else, if

t1 ≥ w̃(0, 1; s, t) ≥ t2 (A.2)

let σ1(s, t) = 0 and σ2(s, t) = 1. Otherwise, if

w̃(0, 0; s, t) ≤ t2 < t1 (A.3)

let σ̃1(s, t) = σ̃2(s, t) = 0. If none of the above hold, and σ̃i(s, t) is a best response to (s, t) for

i = 1, 2 when firm beliefs are trembling hand consistent with σ̃, then σ̃i ∈ (0, 1) for some i. In

particular, if (A.2) does not hold, then either

t2 > w̃(0, 1; s, t) (A.4a)

or

t1 < w̃(0, 1; s, t) (A.4b)

If (A.4a) and not (A.1) and not (A.3), let σ̃1(s, t) = 0 and σ̃2(s, t) = 1
n2(s,t)

am2(s)−E(x)−t2
(a−1)m2(s)−t2

, the

unique p2 ∈ (0, 1) such that w̃(0, p2; s, t) = t2. If (A.4b) and not (A.1) and not (A.3), let σ̃2(s, t) =

1, and suppose σ̃1(s, t) ∈ (0, 1). The condition w̃(σ̃1(s, t), 1) = t1 defines a quadratic equation in

σ̃1(s, t) ∈ (0, 1), with solution

σ̃1(s, t) =


n2(s,t)(1−n2(s,t))(w̃(0,1);s,t)−t1

n1(s,t)((1−n2(s,t))(w̃(0,1;s,t)−t1)+t1+m1(s)−am2(s))
(a− 1)m1(s, t) = t1

−B(s,t)+
√

B(s,t)2+4n2(s,t)(1−n2(s,t))((a−1)m1(s)−t1)(w̃(0,1;s,t)−t1)

2n1(s,t)((a−1)m1(s)−t1)
else

where B1(s, t) := (1− n2(s, t))((a− 1)m1(s)− w̃(0, 1; s, t)) + t1 +m1(s)− am2(s).

The construction of σ̃i(s, t) for i = 1, 2 when t2 > t1 is symmetric to that of σ̃i(s, t) when

t1 > t2.

Similarly to the model without diversity, the school cannot strictly benefit from selecting an

admissions rule and tuition such that workers faced with an education decision will randomize:

For any (s, t) such that σ̃i(s, t) ∈ (0, 1) and σ̃−i(s, t) ∈ {0, 1} for some i, σ̃i(s, t) is inversely
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proportional to ni(s, t). Thus the school could adjust its admissions rule to s′ given by s′i(x) =

si(x)σ̃i(s, t) and s′−i(x) = s−i(x), and educate the same number of students from each type with

the same distribution of abilities under (s′, t) as they would under (s, t), but have σ̃i(s
′, t) = 1.

Similarly, if t1 = t2 and σ̃1(s, t) = σ̃2(s, t) ∈ (0, 1), then σ̃i(s, t) is inversely proportional to∑2
i=1 ni(s, t) for all i. The school could reduce the number of students of each type it admits

without changing the distribution of ability among its admitted workers in such a way that the

same number of workers would attend the school and all workers with education decisions would

attend for sure. Thus any school strategy in which some workers would randomize under σ̃ is

weakly dominated by a strategy such that no workers randomize.

A.3 Proofs

A.3.1 Proofs for Section 1.2

Proof of Proposition 1.2.1. It is first useful to prove that the school’s best response to σ̃ involves a

deterministic admissions test

Lemma A.3.1. If (s∗, t∗) solves max
s,t

Π(s, t; σ̃) and σ̃(s∗, t∗) > 0, then s∗(x) ∈ {0, 1} almost

everywhere on [x, x].

Recall that when workers use strategy σ̃, the school’s problem can be written as

max
s,t

Π(s, t) := Ḡ(t)

∫ x

x

(t− c(x))s(x)dF (x)

subject to attendance constraint (1.1).

Suppose that (s∗, t∗) satisfies the attendance constraint and there exists some set A ⊆ [x, x]

such that s∗(A) ⊆ (0, 1) and
∫
A
f(x)dx > 0. Since 0 <

∫
A
s∗(x)f(x)dx <

∫
A
f(x)dx and

F is continuous, there exists some x̃ ∈ [x, x] such that
∫
A′ f(x))dx =

∫
A
s∗(x)f(x)dx, where
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A′ := [x̃, x] ∩ A. Consider the alternative admissions rule s given by

s(x) =


1 x ∈ A′

0 x ∈ A \ A′

s∗(x) else

Now,

t∗ ≤ aE(x|admitted; s∗)− E(x|not admitted or y < t∗; s∗)

< aE(x|admitted; s)− E(x|not admitted or y < t∗; s)

so the school’s attendance constraint is satisfied and nonbinding at (s, t∗).

If
∫
A′ c(x)dF (x) <

∫
A
c(x)s∗(x)dF (x), (s, t∗) brings the school the same revenue as (s∗, t∗)

with strictly lower costs, so Π(s, t∗) > Π(s∗, t∗).

Suppose instead that
∫
A′ c(x)dF (x) =

∫
A
c(x)s∗(x)dF (x). Then c must be constant on A,

and Π(s, t∗) = Π(s∗, t∗). Denote cA := c(x) for all x ∈ A. If ∂Π(s,t∗)
∂t

̸= 0, then we are done.

Otherwise, if cA ̸= t∗, the school could strictly increase profits without violating the attendance

constraint by charging tuition t∗ and modifying admissions rule s to admit slightly more or fewer

workers whose ability levels fall within A. Finally, if ∂Π(s,t∗)
∂t

= 0 and cA = t∗, then there exists

ϵ > 0 such the admissions constraint is slack at (sϵ, t∗), where the admissions rule sϵ is given by

sϵ(x) =


1 x ∈ [x̃− ϵ, x̃]

s(x) else
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Now, Π(sϵ, t∗) = Π(s, t∗) = Π(s∗, t∗), and

∂Π(sϵ, t
∗)

∂t
= Ḡ(t∗)

∫ x

x

sϵ(x)dF (x)− g(t∗)

∫ x

x

(t∗ − c(x))sϵ(x)dF (x)

=
∂Π(s, t∗)

∂t
+

∫ x̃

x̃−ϵ

f(x)dx

=

∫ x̃

x̃−ϵ

f(x)dx

> 0

Thus, there exists some t′ > t such that (sϵ, t′) satisfies the attendance constraint and Π(sϵ, t
′) >

Π(s, t).

With Lemma A.3.1 in mind, suppose that (s∗, t∗) solves maxs,t Π(s, t; σ̃) and that s∗ is not a

threshold admissions rule. Then there exist A ⊂ [x, x] and B ⊂ [x, x] such that

1. x > x′ for all x ∈ A and x′ ∈ B

2. s∗(A) = {0} and s∗(B) = {1}

3.
∫
A
f(x)dx > 0 and

∫
B
f(x)dx > 0

Since F is continuous, there exist some A′ ⊂ A and B′ ⊂ B such that
∫
A′ f(x)dx =

∫
B′ s

∗(x)dF (x) =∫
B′ f(x)dx. Consider the alternative admissions rule s given by

s(x) =


1 x ∈ A′

0 x ∈ B′

s∗(x) else

Now,

t∗ ≤ aE(x|admitted; s∗)− E(x|not admitted or y < t∗; s∗)

< aE(x|admitted; s)− E(x|not admitted or y < t∗; s)
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so the school’s attendance constraint is satisfied and nonbinding at (s, t∗). The rest of the proof is

similar to the proof of Lemma A.3.1.

A.3.2 Proofs for Section 1.3

Proof of Proposition 1.3.4. Suppose that (s∗, t∗, σ̃, µ) is a subgame perfect equilibrium with firm

discrimination and tuition-only school discrimination in which some workers of both types attend

the school with positive probability. By Proposition 1.3.3, s∗ is a threshold admissions rule; let x̃∗

be the threshold set by s∗.

Let w̃i(x̃, ti) := aE(x|x > x̃) − E(x|x < x̃ or y < ti; i) and ni(x̃, t) = F̄ (x̃)Ḡi(ti) for all

i ∈ {1, 2}, x̃ ∈ [x, x], and t ∈ R+2 .

x̃∗, t∗ must solve

max
x̃,t

2∑
i=1

qi(1−Gi(ti))

∫ x

x̃

(ti − c(x))dF (x)

subject to attendance constraints w̃i(x̃, ti) ≥ ti for i = 1, 2.

The corresponding Lagrangean function

L(x̃, t) =
2∑

i=1

(
qi(1−Gi(ti))

∫ x

x̃

(ti − c(x))dF (x) + λi(w̃i(x̃, ti)− ti)

)

yields first order conditions

0 =
∂L(x̃, t)

∂ti

= qi

(
Ḡi(ti)F̄ (x̃)− gi(ti)

∫ x

x̃

(ti − c(x))dF (x)

)
− λi

(
1 +

g(ti)

(1− ni(x̃, t))2
(E(x|x ≥ x̃)− E(x))

)

for i = 1, 2.

By the monotone likelihood ratio assumption, Ḡ1(t)
g1(t)

≥ Ḡ2(t)
g2(t)

for all t > 0. Since each wealth

distribution also has a nondecreasing hazard rate, if t1 < t2,
Ḡ1(t1)
g1(t1)

≥ Ḡ2(t2)
g2(t2)

.

Suppose the attendance constraint for type 1 does not bind (ie. λ1 = 0). Then t∗1 −
Ḡ1(t∗1)

g1(t∗1)
=
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E(c(x)|x ≥ x̃∗) and t∗2 −
Ḡ2(t∗2)

g1(t∗2)
≤ E(c(x)|x ≥ x̃∗) (with equality only if λ2 = 0). Thus,

t∗1 − t∗2 ≥
Ḡ1(t

∗
1)

g1(t∗1)
− Ḡ2(t

∗
2)

g2(t∗2)

which requires that t∗1 ≥ t∗2 (with equality only if the attendance constraint for type 2 also does not

bind).

Suppose instead that the attendance constraint for type 1 binds. Then t∗1 = w̃1(x̃
∗, t∗1) >

w̃2(x̃
∗, t∗1), so in order for the attendance constraint for type 2 to be satisfied, it must be that t∗2 <

t∗1.

A.3.3 Proofs for Section 1.4

Proof of Proposition 1.4.2. Suppose workers use the strategy profile σ̃ and firm beliefs µ are con-

sistent with σ̃ in the model without firm discrimination. With Proposition 1.4.1 in mind, the

school’s problem can be reformulated as choosing thresholds x̃ = (x̃1, x̃2) and tuitions t = (t1, t2)

to solve

max
x̃,t

2∑
i=1

qiḠi(ti)

∫ x

x̃i

(ti − c(x))dF (x)

subject to attendance constraints

aE(x|x ≥ x̃i and y ≥ ti)− tj ≤ E(x|x < x̃i or y < ti)

for j = 1, 2. Letting n(x̃, t) =
∑2

i=1 qiḠi(ti)F̄ (x̃i),

E(x|x ≥ x̃i and y ≥ ti) =

∑2
i=1 qiḠi(ti)

∫ x

x̃i
xdF (x)

n(x̃, t)

and

E(x|x < x̃i or y < ti) =
E(x)− n(x̃, t)E(x|x ≥ x̃i and y ≥ ti)

1− n(x̃, t)
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The corresponding Lagrangean function

L(x̃, t) =
2∑

j=1

(
qjḠj(tj)

∫ x

x̃j

(tj − c(x))dF (x)

+ λj

(
(a+

n(x̃, t)

1− n(x̃, t)
)E(x|x ≥ x̃i and y ≥ ti)−

E(x)
1− n(x̃, t)

− tj

))

yields first order conditions

0 =
∂L

∂x̃j

= qjḠj(tj)f(x̃j)

(
c(x̃j)− tj

+ (λ1 + λ2)
(
(

a

n(x̃, t)
− 1

1− n(x̃, t)
)(E(x|x ≥ x̃i and y ≥ ti)− x̃j)

− E(x|x ≥ x̃i and y ≥ ti)− E(x)
(1− n(x̃, t))2

))

and

0 =
∂L

∂tj
= qjgj(tj)F̄ (x̃j)

(
Ḡj(tj)

gj(tj)
+ E(c(x)|x ≥ x̃j)− tj −

λj

qjgj(tj)F̄ (x̃j)

− (λ1 + λ2)
(
(

a

n(x̃, t)
− 1

1− n(x̃, t)
)(E(x|x > x̃j)− E(x|x ≥ x̃i and y ≥ ti))

− E(x|x ≥ x̃i and y ≥ ti)− E(x)
(1− n(x̃, t))2

))

for j = 1, 2.

If neither constraint binds, t1 = c(x̃1) and t2 = c(x̃2), which implies that ti > tj only if

x̃i < x̃j . If at least one constraint binds, the first order conditions with respect to x̃1 and x̃2 yield

t1 − c(x̃1)

t2 − c(x̃2)
=

( a
n(x̃,t)

+ 1
1−n(x̃,t)

)(E(x|x ≥ x̃i and y ≥ ti)− x̃1)− E(x|x≥x̃i and y≥ti)−E(x)
(1−n(x̃,t))2

( a
n(x̃,t)

+ 1
1−n(x̃,t)

)(E(x|x ≥ x̃i and y ≥ ti)− x̃2)− E(x|x≥x̃i and y≥ti)−E(x)
(1−n(x̃,t))2

which likewise implies ti > tj if and only if x̃i < x̃j .
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Now, if neither constraint binds, all four FOCs yield

(c(x̃1)− E(c(x)|x > x̃1))− (c(x̃2)− E(c(x)|x > x̃2)) =
Ḡ1(t1)

g1(t1)
− Ḡ2(t2)

g2(t2)

which cannot be true if t1 < t2 and x̃1 > x̃2.

If only the attendance constraint for type 2 workers binds, all four FOCs yield

Ḡ1(t1)

g1(t1)
− Ḡ2(t2)

g2(t2)
+

λ2

q2g2(t2)F̄ (x̃2)

= E(c(x̃1)− c(x)|x ≥ x̃1)− E(c(x̃2)− c(x)|x ≥ x̃2)

+ λ2(
a

n(x̃, t)
+

1

1− n(x̃, t)
)(E(x− x̃1|x ≥ x̃1)− E(x− x̃2|x ≥ x̃2))

which cannot be true if t1 ≤ t2 and x̃1 ≥ x̃2, if F has a nondecreasing hazard rate, since

E(x − x̃|x ≥ x̃) is nonincreasing in x̃. If only the constraint for type 1 workers binds, t1 > t2

is trivial, and thus also x1 < x2. If both constraints bind at the solution to the school’s problem,

t1 = t2, so x̃1 = x̃2.

Proof of Proposition 1.4.4. With Proposition 1.4.3 in mind, if workers are using the strategy profile

σ̃, the school’s problem can be reformulated as choosing admissions threshold x̃ and tutions t =

(t1, t2) to solve

max
x̃,t

2∑
i=1

qiḠi(ti)

∫ x

x̃

(ti − c(x))dF (x)

subject to attendance constraints

aE(x|x > x̃)− tj ≥ E(x|x < x̃ or y < ti)

for j = 1, 2. Here, the expected productivity of an educated worker depends only on the threshold
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chosen by the school, and not the tuitions charged because

E(x|x ≥ x̃ and y ≥ ti) =

∑2
i=1 qiḠi(ti)

∫ x

x̃
xdF (x)

(q1Ḡ1(t1) + q2Ḡ2(t2))F̄ (x̃)

=

∫ x

x̃
xdF (x)

F̄ (x̃)

= E(x|x ≥ x̃)

for all t, x̃. Letting n(x̃, t) := F̄ (x̃)
∑2

i=1 qiḠi(ti), the school’s Lagrangean function can be written

as

L(x̃, t) =
2∑

i=1

(
qiḠi(ti)

∫ x

x̃

(ti − c(x))dF (x)

+ λi

((
a+

n(x̃, t)

1− n(x̃, t)

)
E(x|x ≥ x̃)− E(x)

1− n(x̃, t)
− ti

))

Which gives first order conditions

0 =
∂L

∂ti
= qigi(ti)F̄ (x̃)

(
Ḡi(ti)

gi(ti)
+ E(c(x̃)|x̃ > x)− t1

− λi

( 1

qigi(ti)F̄ (x̃)
+

E(x|x ≥ x̃)− E(x)
(1− n(x̃, t))2

)
− λ−i

E(x|x ≥ x̃)− E(x)
(1− n(x̃, t))2

)

for i = 1, 2

If neither constraint binds, and λ1 = λ2 = 0,

Ḡ1(t1)

g1(t1)
− Ḡ2(t2)

g2(t2)
= t1 − t2

By the monotone likelihood ratio assumption, Ḡ1(t)
g1(t)

≥ Ḡ2(t)
g2(t)

for all t > 0. Since each wealth

distribution also has a nondecreasing hazard rate, if t1 < t2,
Ḡ1(t1)
g1(t1)

≥ Ḡ2(t2)
g2(t2)

. Thus if neither

constraint binds, t1 ≥ t2.
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If only the attendance constraint for type 2 students binds (λ1 = 0, λ2 > 0), t1 < t2, but

t1 − t2 =
Ḡ1(t1)

g1(t1)
− Ḡ2(t2)

g2(t2)
+

λ2

q2g2(t2)F̄ (x̃)
≥ λ2

q2g2(t2)F̄ (x̃)
> 0

So if the attendance constraint for type 2 binds, so does the attendance constraint for type 1.

If only the attendance constraint for type 1 student binds, t1 > t2 is trivial.

Proof of Proposition 1.4.6. With Proposition 1.4.5 in mind, if workers are using strategy profile

σ̃, the school’s problem can be reformulated as selecting admissions thresholds x̃ = (x̃1, x̃2) and

tuition t to solve

max
x̃,t

Π(x̃, t) :=
2∑

i=1

qiḠi(t)

∫ x

x̃i

(t− c(x))dF (x)

subject to attendance constraint

aE(x|x ≥ x̃i and y ≥ t)− t ≥ E(x|x < x̃i or y < t)

Let n(x̃, t) :=
∑2

i=1 qiḠi(t)F̄ (x̃i). Then

E(x|x ≥ x̃i and y ≥ t) =

∑2
i=1 qiḠi(t)

∫ x

x̃i
xdF (x)

n(x̃, t)

and

E(x|x < x̃i or y < t) =
E(x)−

∑2
i=1 qiḠi(t)

∫ x

x̃i
xdF (x)

1− n(x̃, t)

The school’s Lagrangean function can be written as

L(x̃, t) =
2∑

i=1

qiḠi(t)

∫ x

x̃i

(t− c(x))dF (x)

+ λ

((
a+

n(x̃, t)

1− n(x̃, t)

)
E(x|x ≥ x̃i and y ≥ t)− E(x)

1− n(x̃, t)
− t

)
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Which gives first order conditions

0 =
∂L

∂x̃j

= qjḠj(t)f(x̃j)

(
c(x̃j)− t

+ λ
(
(

a

n(x̃, t)
+

1

1− n(x̃, t)
)(E(x|x ≥ x̃i and y ≥ t)− xj)

− E(x|x ≥ xi and y ≥ t)− E(x)
(1− n(x̃, t))2

))

for j = 1, 2. Clearly, if λ = 0, c(x̃1) = t = c(x̃2) so c is constant between x1 and x2, or x̃1 = x̃2.

In the former case, it is possible for the school to slightly decrease the higher admissions threshold

x̃i to some x̃i − ϵ such that profit is unchanged, the attendance constraint is still satisfied, but

∂Π((xi−ϵ,x−i),t)
∂t

> 0 If instead the attendance constraint binds, and λ > 0, combining the FOCs for

x̃1 and x̃2 yields

t− c(x̃1)

t− c(x̃2)
=

( a
n(x̃,t)

+ 1
1−n(x̃,t)

)(E(x|x ≥ x̃i and y ≥ t)− x̃1)− E(x|x≥x̃i and y≥t)−E(x)
(1−n(x̃,t))2

( a
n(x̃,t)

+ 1
1−n(x̃,t)

)(E(x|x ≥ x̃i and y ≥ t)− x̃2)− E(x|x≥x̃i and y≥t)−E(x)
(1−n(x̃,t))2

which would also imply x1 = x2, since c is weakly decreasing.
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