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ABSTRACT

Daiqi Gao: Learning Individualized Treatment Rules with Sequential and Multi-Outcome
Data

(Under the direction of Yufeng Liu and Donglin Zeng)

Learning optimal individualized treatment rules (ITRs) has become increasingly important in

the modern era of precision medicine. Many statistical and machine learning methods for learning

optimal ITRs have been developed in the literature. In this dissertation, we propose several ap-

proaches to solve some important problems regarding the data generating process and the learning

algorithm for estimating ITRs.

In the first project, we improve the outcome of interest in a clinical trial using a sequentially

rule-adaptive design. Each entering patient will be allocated with a high probability to the current

best treatment for this patient, which is estimated using the past data based on machine learning

algorithm. We discuss the tradeoff between the training and test performance of the learnt ITR

in the framework of contextual bandits. We also develop a tool that combines martingale with

empirical process for sequentially generated data to tackle the theoretical problem with dependent

data that cannot be solved by existing techniques for i.i.d. data.

In the second project, we focus on the multi-stage stationary treatment policy (MSTP), which

prescribes treatment assignment probabilities using the same decision function over stages. We

estimate and conduct statistical inference for the parameters of the MSTP in high-dimensional

settings. We propose to estimate the MSTP based on a penalized doubly robust estimator of the

value function, and construct confidence intervals of the low-dimensional parameters that we are

interested in using a one-step estimator. The proposed method allows for a slow convergence rate

of the nuisance parameters in the model with a guarantee of the 1/
?
n convergence rate of our

interested parameters.

In the third project, we estimate the ITR that maximizes the primary outcome and causes

little harm to auxiliary outcomes in the meanwhile. We propose a fusion penalty to encourage

iii



ITRs based on the primary outcome and auxiliary outcomes to yield similar recommendations, and

optimize a surrogate loss function for estimation. We derive the non-asymptotic properties for the

proposed method and show that the agreement rate between the estimated ITRs for primary and

auxiliary outcomes converges faster to the true rate compared to methods without using auxiliary

outcomes.
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CHAPTER 1

Introduction

For many diseases, patients respond heterogeneously to treatments and a one-size-for-all strat-

egy is often not effective. Recent technology advances allow personalized treatment strategy by

tailoring the treatment to patient characteristics, including demographics, medical histories or ge-

netic information (Hamburg and Collins, 2010). The personalized policy is often referred as the

Individualized Treatment Rule (ITR), which aims to maximize a predefined reward such as the

patient’s health status. In this dissertation, we investigate some machine learning (ML) methods,

including reinforcement learning (RL), to learn ITR in both single-stage and multi-stage problems.

In this chapter, we introduce the background and some related literature in the field of person-

alized medicine and reinforcement learning. In Section 1.1, we introduce the ITR and the literature

with various goals in single-stage and multi-stage settings. In Section 1.2, we introduce the ba-

sic concepts and algorithms of RL and its recent developments in estimating ITRs, including the

single-stage special case of RL, the bandit algorithms. In Section 1.3, we outline the rest of the

dissertation and briefly discuss several projects.

1.1 Individualized Treatment Rules

An ITR consists of a sequence of decision rules that determine which treatment to take for a

patient at each stage based on the covariates and treatment history. A common goal is to find the

optimal rule that can generate the largest mean reward across all stages and the whole population,

with potential constraints on the form of the rules, the side effects, etc. For single-stage decision

problems, only one decision rule is needed. For multi-stage decision problems, decision rules can

be the same or different at every stage, depending on the problem and the practical need.

1



1.1.1 Single-Stage Decision Problems

In single-stage decision problem, a prognostic variable vector X ∈ X ⊂ Rd is observed for each

patient. Based on the covariates, we need to decide which treatment A ∈ A to take for the patient.

A reward R ∈ R is then observed, usually as a function of the clinical outcome, with higher values

desirable. An ITR is a map D : X 7→ A that assigns the patient of covariates X to a treatment A.

If the mean reward is used as the criterion, the optimal ITR

D∗ ∈ argmax
D:X 7→A

E[R|A = D(X)] (1.1)

can generate the largest mean reward for the population. The quantity on the right hand side of

(1.1) is called the value function of an ITR.

Methods for learning single-stage ITRs can be generally categorized as regression-based or

classification-based methods. The Q-function is defined as the conditional expectation of rewards,

i.e. Q(x, a) = E(R|X = x, A = a). A regression-based method fits a regression model for the

Q-function and finds the best treatment D(x) = argmaxa∈AQ(x, a). Qian and Murphy (2011)

proposed to fit a parametric model of the covariates and the treatment against the reward using

penalized least squares and find the treatment that maximizes the estimated reward. This method

fits into the general framework of Q-learning. An alternative method called A-learning directly

models the conditional average treatment effect (CATE), Q(x, 1)−Q(x, 0), in the binary treatment

case. Lu et al. (2013); Shi et al. (2016) used A-learning to select important variables in potentially

high dimensional settings. Another related topic is subgroup identification, which finds the target

patients with enhanced treatment effect (Tian et al., 2014; Chen et al., 2017).

In contrast to regression-based methods, classification-based methods try to find the best ITR

by maximizing the average reward without relying on an estimation of the rewards. A common

method is to use inverse probability weighted (IPW) estimator to consistently estimate the value

function of a rule. A shown in Qian and Murphy (2011), the mean reward under an ITR D can be

expressed as

E[R|A = D(X)] = E
„

R1(A = D(X))

π(A;X)

ȷ

. (1.2)
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Zhao et al. (2012) proposed a weighted classification algorithm for binary treatments called outcome

weighted learning (OWL), which transforms (1.2) into a convex optimization problem and solves it

under the framework of support vector machine (SVM). Residual weighted learning (Zhou et al.,

2017) and augmented outcome weighted learning (Liu et al., 2018b) are proposed to reduce the

variance by removing the estimated main effect from the rewards. The doubly robust (DR) structure

is also utilized in finding ITRs so that we can still get a consistent estimator of the value function

when either the propensity score or the Q-function is misspecified (Liu et al., 2018b; Zhao et al.,

2019). Other variations of OWL include multicategory outcome-weighted margin-based learning

for multi-armed treatments (Zhang et al., 2020a), generalized outcome weighted learning for ordinal

treatments (Chen et al., 2018) and personalized dose finding for continuous treatments (Chen et al.,

2016).

Zhang et al. (2012b) proposed to use the augmented inverse probability weighted estimator

(AIPWE) of the value function, which is also doubly robust, to find the parameters of ITR. However,

the objective function is nonsmooth as opposed to the convex function in OWL. Zhang et al.

(2012a) proposed C-learning that minimizes the CATE-weighted misclassification error rate. Athey

and Wager (2021) maximized the cross-fitting AIPWE to optimize either binary treatments or

infinitesimal nudges to continuous treatments using observational data, and established guarantees

for the asymptotic utilitarian regret. Some tree-based methods have been proposed for generating

interpretable rules which are important in clinical practice (Laber and Zhao, 2015; Zhu et al.,

2017). There are also several other methods that considers the ITR problem from a different

perspective. For example, angle-based direct learning considers the angle between the ITR of a

patient and the treatments for multi-treatment settings (Qi et al., 2020). E-learning deals with

misspecified treatment-free effect model and heteroscedasticity by designing the objective function

using semiparametric efficient estimate (Mo et al., 2022). Another important topic is the statistical

inference for the estimated rule (Song et al., 2017; Liang et al., 2022).

1.1.2 Multi-Stage Decision Problems

Multi-stage ITRs are often referred to as the dynamic treatment regime (DTR) (Murphy et al.,

2001; Murphy, 2003) to reflect the possible change of treatment rules through time. Multi-stage

decision problems are usually treated differently for finite stages and indefinite/infinite stages.
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While problems with indefinite/infinite horizon are usually modeled with the Markov assumption

and the treatment rule is homogeneous across stages, in finite-stage problems, each stage can be

treated differently. We focus on the finite-stage problems in this section.

When there are T decision stages in total, a trajectory (Xt, At, Rt)
T
t=1 is observed for each

patient, where Xt ∈ Xt is the time-varying covariates that can depend on covariates and treatments

in previous stages, At ∈ At is the treatment, and Rt ∈ R is the outcome observed. A DTR is a

sequence of maps D1:T = (D1, . . . ,DT ), where Dt : Xt 7→ At is the treatment rule at stage t. In

this case, an outcome is observed at the end of each stage (Murphy, 2005b; Zhao et al., 2015; Liu

et al., 2018b; Zhu et al., 2019) and the optimal DTR is defined as

D∗
1:T ∈ argmax

(Dt:Xt 7→At)Tt=1

T∑
t=1

E[Rt|At = Dt(Xt)]. (1.3)

There are also cases when an outcome is observed at the end of the study (Murphy, 2003; Zhang

et al., 2013), so the observed trajectory is (X1, A1, . . . ,XT , AT , R). The DTR is then defined as

D∗
1:T ∈ argmax

(Dt:Xt 7→At)Tt=1

E[R|A1 = D1(X1), . . . , AT = DT (XT )]. (1.4)

The quantity on the right hand side of (1.3) or (1.4) is called the value function of a DTR.

In either (1.3) or (1.4), the value function depends on the DTR at all stages. In order to

estimate the value of the sequence of DTR, we need to estimate the effect of the rule at each

stage in a backward fashion. Q-learning (Murphy, 2005b) and A-learning (Murphy, 2003) can be

generalized to multi-stage settings. The main difference is that the Q-functions should be calculated

in a backward fashion to incorporate the future rules and outcomes as delayed results of the current

stage. Zhao et al. (2011) proposed an adaptive design for clinical trials based on Q-learning to select

optimal compounds of treatments and the optimal time of the second treatments. Shi et al. (2018)

proposed penalized A-learning in the high-dimensional setting and established oracle inequalities

and error bounds. Sun and Wang (2021) proposed a stochastic tree search method based on the

backward estimated mean of counterfactual outcomes.

Classification-based methods can also be generalized to multi-stage problems. Based on

AIPWE, Zhang et al. (2013) proposed to directly maximize the value function over a paramet-
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ric class. Backward outcome weighted learning and simultaneous outcome weighted learning are

extensions of OWL for multi-stage problems, which backward estimate the value function and find

the best DTR by minimizing the weighted surrogate loss (Zhao et al., 2015). Augmented outcome

weighted learning removes the estimated main effect from the Q-function in a backward fashion to

reduce the variance (Liu et al., 2018b). C-learning minimizes the CATE-weighted misclassification

error rate at each stage (Zhang and Zhang, 2018a).

Statistical inference of the value of a given DTR provides information about the impact of im-

plementing such a policy. Inference of the parameters of the learned DTR informs us the important

variables in guidance of treatment assignment. Shi et al. (2020a) proposed to use subsample aggre-

gating (subagging) to deal with nonregularity problems, when the treatment is neither beneficial

nor harmful for a subpopulation. Laber et al. (2014) dealt with nonregularity under the frame-

work of Q-learning and Zhu et al. (2019) discussed the problem under high-dimensional settings.

Zhang and Zhang (2018b) considered variable selection for making treatment decisions under the

framework of C-learning, by forward sequentially minimizing the weighted misclassification error

rate.

1.2 Reinforcement Learning and Applications in ITR

Reinforcement learning is a class of algorithms aiming at making sequential decisions by trial

and error. It can improve the performance on training data as the trial develops. Its wide appli-

cations include chess playing, robotics, adaptive controller and beyond (Sutton and Barto, 2018).

Algorithms on single-stage problems are called multi-armed bandit, and those using context infor-

mation in addition to environment information are called contextual bandits specifically.

1.2.1 Introduction to Reinforcement Learning

Assume there are T stages in a decision problem. The number of stages or the horizon T can

be finite or infinite, random or nonrandom, fixed or different for each subject. Let Xt ∈ X be a

d-dimensional state vector and At ∈ A be the action at stage t = 1, . . . , T . The state and action

spaces X and A can also be extended to time-variant cases, but we discuss the simple case here for

illustration. Assume π := {π1, . . . , πT } is a policy such that each action At is taken following πt.
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Then a trajectory

D = {X1, A1,X2, A2, . . . ,XT , AT ,XT+1}

is observed for each subject i. The initial state X1 are usually assumed to be independent and

identically distributed across all trajectories. The reward Rt ∈ R can be a known or unknown

function of the history prior to time t, that is, Ht = {X1, A1, . . . ,Xt, At}. The return is defined

as the total discounted reward

G(D) =
1∑T

t=1 γ
t−1

T∑
t=1

γt−1Rt,

where γ ∈ (0, 1] is a discount factor. When γ = 1, the value function is actually the average reward

across all time points. Then the value function of a policy πt is the average return in the population

V(π) = E

«

1∑T
t=1 γ

t−1

T∑
t=1

γt−1Rt

ˇ

ˇ

ˇ

ˇ

ˇ

At = πt(Xt,Ht−1), t = 1, . . . , T

ff

if all the actions follow this policy. The state-action value function at stage t, also called the

Q-function, is defined to be

Qt(xt, at) = E

«

1∑T
t=1 γ

t−1

T∑
k=t

γk−1Rk

ˇ

ˇ

ˇ

ˇ

ˇ

Xt = xt, At = at

ff

and the state value function is defined as

Vt(xt) = E[Qt(xt, at)|Xt = xt].

These two functions are frequently used in RL literature.

Online algorithms update the policy after each trajectory. For each new stage t for the ith

trajectory, we need to decide which action Ai,t to take at each stage based on the previous states

and actionsXi,1, Ai,1, . . . ,Xi,t−1, Ai,t−1 in this trajectory and all previous trajectories D1, . . . ,Di−1.

These problems deal with two types of dependence, the dependence of states and actions within each

trajectory, and the dependence between trajectories. On the contrary, batch or offline algorithms

do not update until we get a batch of trajectories.
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All reinforcement learning problems encapsulate an “exploration-exploitation” dilemma. While

we want to follow the current policy given by previous information since they are more trustworthy

than random guess, it is also possible that our estimation is not accurate. Consequently, we also

want to take our opportunity to explore more action options. There is a trade-off between exploiting

the current rule and exploring the true optimal rule.

Various approaches of exploration have been proposed. ϵ-greedy (Watkins, 1989; Yang and Zhu,

2002; Sutton and Barto, 2018) is one of the most widely used exploration methods. It chooses the

current optimal policy with probability 1− ϵ and performs pure randomization with probability ϵ.

Boltzmann exploration assigns probabilities of whether to follow the current optimal policy using

soft-max function (Sutton and Barto, 2018). The randomization probability is tailored to differ-

ent characteristics. Another category of commonly used exploration method is Upper-Confidence

Bound (UCB), which chooses the arm with the largest upper confidence bound (Li et al., 2010;

Srinivas et al., 2010; Krause and Ong, 2011). UCB also allows the algorithm to choose the current

optimal rule with a higher probability if we have more confidence based on the covariates. In fact,

Chu et al. (2011) shows that a variant of LinUCB, SupLinUCB, has an optimal convergence rate

up to logarithmic factors. Bayesian methods assign a treatment to a future patient according to

the posterior distribution of reward parameters (Chapelle and Li, 2011; Liao et al., 2020). Action

elimination is another branch that ignores the inferior arms gradually (Perchet and Rigollet, 2013).

A special case of exploration is active learning, which is an efficient approach in estimating the final

policy. Generally, active learning is a classification algorithm that can interactively query labels of

specific data points.

The literature in RL can be generally categorized as policy evaluation and policy optimization.

The former focuses on evaluating the value of a given target policy or evaluation policy πe, while

the latter targets at finding the optimal policy. The policy used for generating the data is usually

called behavior policy or sampling policy πb. When the target policy is the same as the behavior

policy, the problem is called an on-policy problem. On the contrary, when the target policy and

the behavior policy are different, the problem is called an off-policy problem.
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1.2.2 Contextual Bandit

In contextual bandits, each trajectory i only contains a triplet (Xi, Ai, Ri), where the reward

Ri is a function of Xi and Ai. For each new subject, we decide which action Ai to take based on

Xi and the history information X1, A1, R1, . . . ,Xi−1, Ai−1, Ri−1. While the actions may depend

on the states and actions of other subjects due to the sequential decision procedure, the states of

subjects are usually assumed to be independent. Some works focus on finding the optimal policy

that can minimize the cumulative regret,

n∑
i=1

E[Ri(a∗i )]− E[Ri(Ai)],

where Ri(a
∗
i ) is the reward under the optimal action a∗i and Ri(Ai) is the reward under the actual

action Ai. The optimal policy can be estimated by regression-based methods to fit a model for

the Q-function. Parametric methods includes linear regression (Li et al., 2010), LASSO (Bastani

and Bayati, 2020), generalized linear models (Filippi et al., 2010); and nonparametric methods

includes nearest neighbor (Yang and Zhu, 2002), Gaussian process regression (Krause and Ong,

2011), binning of the covariate space (Rigollet and Zeevi, 2010; Perchet and Rigollet, 2013), and

local polynomial regression estimators that adjust to any smoothness level (Hu et al., 2020). Dud́ık

et al. (2011) applies the doubly robust technique to the problems to avoid the drawbacks of potential

misspecified reward models. Similar as in Section 1.1.1, the optimal action is the one that maximizes

the estimated Q-function.

There is other literature that focus on various issues. Zhang et al. (2020b) derived inferential

results about the parameters in a model of the batched bandits. Zhang et al. (2021) extended the

results to single trajectory, infinite horizon contextual bandit problems using adaptively-weighted

least squares. Chen et al. (2020) conducted inference on the model parameter and the value

function under a linear reward model and ϵ-greedy policy for correctly specified or misspecified

model. Chen et al. (2021a) proposed an efficient algorithm for online update of the rule based

on stochastic gradient descent and conducted inference on the model parameter and the value

function. In addition, Bastani et al. (2021) showed that a simple greedy algorithm can be rate
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optimal when the contexts are sufficiently diverse, and proposed an algorithm that used observed

data to determine whether to take a greedy policy or explore.

Instead of focusing on the training performance, pure exploration with fixed budget in multi-

armed bandits (Lattimore and Szepesvári, 2020) tries to minimize the simple regret of the test set.

Interested readers are referred to Tewari and Murphy (2017); Lattimore and Szepesvári (2020) for

a comprehensive review of bandit problems.

1.2.3 General Reinforcement Learning

As discussed in Section 1.1.2, for finite-stage problems, the value functions and the optimal

policies can be estimated backward from the last stage to the first stage. However, for indefinite or

infinite stage problems, it is hard or impossible to find the last stage or to conduct backward esti-

mation for a large number of stages. It is usually assumed that the decision process is non-Markov

decision process (NMDP), time-varying Markov decision process (TMDP), or Markov decision pro-

cess (MDP). NMDP does not make any structural assumption on the transition probability or the

policy, and the joint distribution of the observed data can be written as

P(d) = PX1(x1)

T∏
t=1

πbt (at|xt,ht−1)PXt+1,Rt(xt+1, rt|ht).

TMDP is a special case of NMDP which assumes that the observed data satisfy the Markov property

and that the behavior policy is a Markov policy. The joint distribution in TMDP can be written

as

P(D) = PX1(x1)
T∏
t=1

πbt (at|xt)PXt+1,Rt(xt+1, rt|xt, at).

MDP is a special case of TMDP which assumes that the transition probability does not depend on

t, so that we can treat every stage homogeneously (Sutton and Barto, 2018). The joint distribution

in MDP can be written as

P(D) = PX1(x1)

T∏
t=1

πbt (at|xt)PX,R(xt+1, rt|xt, at).
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Shi et al. (2020b) developed a test for the Markov assumption in sequential decision making. There

are also tests developed to ensure the stationarity of the data by detecting the change point (Li

et al., 2022).

In offline policy evaluation, when the data is generated according to the target policy, the value

can simply be estimated using the sample average. However, when the data is generated according

to some behavior policy different from the target policy, we need to adjust for the bias coming

from different distributions of data. Since the data generating process can be expensive, especially

in clinical trials, it is often not realistic to perform on-policy evaluation. Not to mention that

sometimes we are simultaneously interested in multiple policies, and the expense might be even

higher. Therefore, off-policy evaluation (OPE) is an important topic in RL.

The first approach to OPE is called direct method (DM), where the value function

pVDM(πe) =
1

n

n∑
i=1

pV1(Xit) or pVDM(πe) =
1

n

n∑
i=1

∑
a∈A

pQ1(Xit, Ait)π
e
t (a|Xit)

is directly estimated by taking the average estimated Q-function or state value function. The Q-

function or state value function is usually fitted using the Bellman equation (Sugiyama, 2015). Shi

et al. (2021b) proposed such an OPE method by specifying a model for Q-function based on linear

sieves and transforming the Bellman equation into a linear regression. The target policies can either

be fixed or dependent on the observed data, and the proposed method can be extended to on-policy

evaluation. Liao et al. (2021) proposed to minimize the Bellman error and use a coupled estimator

to directly solve for the long-term average outcomes. Luckett et al. (2020) also used such method

based on the state value function, although their final goal is policy optimization. All the above

three papers provide results about the asymptotic distribution of the value function. For finite

horizon problems, the value functions can be estimated backward as discussed in Section 1.1.2.

However, DM may suffer from bias if the model of value functions is misspecified.

The second approach is importance sampling (IS), which uses the weight between the distribu-

tion of actions in the target policy and the behavior policy to adjust the bias in sample average.

The weight can be calculated based on the whole trajectory or each decision point (Precup, 2000a),
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such that

pVDM(πe) =
1

n

n∑
i=1

«

T∏
k=1

πek(Aik|Xk,Hk−1)∏T
k=1 π

b
k(Aik|Xk,Hk−1)

˜

T∑
t=1

Rit

¸ff

or pVDM(πe) =
1

n

n∑
i=1

«

T∑
t=1

∏t
k=1 π

e
t (Aik|Xk,Hk−1)∏t

k=1 π
b
k(Aik|Xk,Hk−1)

Rit

ff

.

It does not require the Markov assumption. However, since the total weight is a product of the

weights at each stage, the estimate may suffer from a large variance, especially when the horizon is

long. To improve the stability, a flattening parameter can be introduced to flatten the importance

weight towards one (Sugiyama et al., 2007; Sugiyama, 2015). This flattening parameter can be

tuned to balance the bias and variance according to the data. Liu et al. (2018a) proposed to use

the stationary state-visitation distributions instead of the product of a long series of weights. The

proposed method can efficiently avoid the exploding variance, but may need an accurate estimation

of the stationary distribution, which might be challenging especially when the dimension of the

states is high.

The doubly robust (DR) estimator

pVDM(πe) =
1

n

n∑
i=1

T∑
t=1

{∏t
k=1 π

θ(Aik|Xik)∏t
k=1 µk(Aik|Hik)

[Rit − pQθ
t (Xit, Ait)]

+

∏t−1
k=1 π

θ(Aik|Xik)∏t−1
k=1 µk(Aik|Hik)

pV θ
t (Xit)

}
.

is a combination of DM and IS to solve the potential problems in these methods, where pQt and

pVt are estimated Q-function and state value function. Jiang and Li (2016) proposed to extend the

DR estimator of contextual bandits (Dud́ık et al., 2011) to the multi-stage setting, and Thomas

and Brunskill (2016) write the estimator in the form where the augmentation term is constructed

based on Q-function and state value function. Although the value functions is model-based and can

be misspecified, the DR property ensure that the estimator is unbiased and do not need Markov

assumption. Farajtabar et al. (2018) further improve the method by minimizing the variance of the

DR estimator to learning the model parameter. Kallus and Uehara (2020) proposed a new estimator

double reinforcement learning (DRL), which is the cross-fold version of the DR estimator in non-

MDP and uses the marginalized density ratios in MDP. They prove that DRL is semiparametrically

11



efficient and doubly robust. Shi et al. (2021a) improved DRL using a deeply-debiasing procedure

so that the value estimator is consistent when either the Q-function, marginalized density ratio, or

conditional density ratio estimator is consistent, and the convergence rate of nuisance parameters

can be even slower. Zhang et al. (2022) focused on the inference based on adaptively sampled data

from RL algorithms. See Uehara et al. (2022) for a full review of the OPE literature.

Policy optimization relies on an accurate evaluation of the policies. Several papers proposed

to use batch or offline data for learning optimal policies. Murphy et al. (2016) estimated the long-

term average outcome based on Bellman equation, and find the policy within a policy class that

maximizes the long-term average outcome with a quadratic penalty. Liao et al. (2020) proposed

a Bayesian methods to update the posterior distribution for the reward every night and generate

a probability for sending an activity suggestion based on the posterior distribution. Luckett et al.

(2020) estimated the state-value function of a given policy using DM based on Bellman equation,

and use gradient descent to find the policy within a policy class. Zhou et al. (2022) proposed a

Proximal Temporal consistency Learning (pT-Learning) framework to adaptively adjust between

deterministic and stochastic sparse policy when a large number of treatment options existed. Liao

et al. (2022) used the DR estimator of the value function based on the marginalized density ratio

and proposed a coupled estimation framework to solve for the optimal policy within a policy class.

Shi et al. (2022a) proposed an advantage learning framework that can improve the efficiency of any

Q-learning type estimator, including deep Q-learning. Nie et al. (2021) developed an “advantage

doubly robust” estimator to learn when to start which treatment without Markov assumption.

Gao et al. (2023b) developed the deep spectral Q-learning algorithm to handle the mixed frequency

data with high dimension. To address the problem of over-estimation of the value for the out-

of-distribution actions in off-policy problems, the pessimism principle is deployed to restrict the

learned policy to be close to the behavior policy (Yu et al., 2020; Kidambi et al., 2020; Jin et al.,

2021; Xie et al., 2021).

Another line of research is about the unobserved confounders in RL. While all the previously

mentioned literature assumes sequential ignorobility or no unmeasured confounding, this assump-

tion can be violated in practice. See Shi et al. (2022c) for examples in ride-hailing platform and

predictive policing. Some literature focuses on the confounded MDP model (Zhang and Barein-

boim, 2016; Bennett et al., 2021). Fu et al. (2022); Xu et al. (2022) studied policy learning and
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policy evaluation respectively with the help of instrumental variables in confounded MDP. Shi et al.

(2022c) estimated the confidence interval of a target policy’s value using some auxiliary variables

that mediate the action effects. Wang et al. (2022) took in the expert recommendation that contain

information of the unobserved confounders. Another approach is to utilize the partially observable

MDP (POMDP) model, where the agent cannot observe the underlying states directly, and the pol-

icy can only be estimated from the history data Bennett and Kallus (2021); Shi et al. (2022b). Miao

et al. (2022) provided the finite-sample error bound for OPE in POMDPs under non-parametric

models with time-dependent proxy variables.

1.2.4 Applications of RL for Estimating ITRs

RL is a useful tool for estimating ITRs in sequential problems. This sequentiality can either

lies between patients not enrolled in a clinical trial simultaneously, or between the treatment stages

of the same patient.

Contextual bandits can be used to improve personalized treatment suggestion along the treat-

ment process in single-stage treatment decision problems. For example, Bastani and Bayati (2020)

applied their proposed LASSO Bandit algorithm on a simplified version of a medication dosing

problem, where they sequentially improve the optimal discretized dosing level of Warfarin based on

the patients’ demographics, diagnoses data, etc. Lei et al. (2017) proposed an actor critic contex-

tual bandit algorithm for personalizing mobile health interventions with linear reward assumption.

Hu et al. (2021) proposed a contextual bandit method based on generalized linear mixed model

with group lasso type penalty to develop personalized push schedules in mobile health, and the cur-

rent contextual factor is allowed to be endogenous. Tewari and Murphy (2017) reviews contextual

bandits and the challenges in mobile health application. Bandit and RL algorithms have also been

widely applied to develop new clinical trial schemes. Minsker et al. (2016) proposed to enroll more

patients around the decision boundary to increase the efficiency of estimating ITR based on active

learning, which can be viewed as a special case of RL. Durand et al. (2018) designed an adaptive

treatment allocation strategy within the contextual bandit framework in a mouse model to increase

the data collection efficiency by assigning more samples to promising treatments.

In multi-stage decision problems, Luckett et al. (2020) applied their proposed V-learning on a

study of type-I diabetes to decide whether to inject insulin based on the data collected by mobile
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devices of patients. Nie et al. (2021) proposed a new estimator based on the doubly robust estimator

in RL to decide which treatment to take and when to start the treatment. Liao et al. (2021) used

OPE technique to construct confidence intervals of the value of given ITR in a mobile health study,

HeartSteps. Liao et al. (2020) developed a Bayesian RL algorithm to generate physical activity

suggestions in HeartSteps. Trella et al. (2022) studied the reward design for delayed effects to

encourage oral hygiene behaviors with mobile devices. Shi et al. (2021a,b) proposed RL-based

methods to construct confidence intervals of the value of a target ITR for a simulated diabetes

study, the OhioT1DM dataset.

1.3 Outline of the Dissertation

Motivated by the problems in estimating ITRs and the recent development in RL techniques, we

identify a few unaddressed problems in current literature. To address these problems, we propose

several new approaches to fill in the gap.

In Chapter 2, we propose a sequentially adaptive trial and discuss the tradeoff between training

and test performance of contextual bandits in learning ITRs. Many statistical and ML methods

for learning optimal ITRs have been developed in the literature. However, most existing methods

are based on data collected from traditional randomized controlled trials and thus cannot take

advantage of the accumulative evidence when patients enter the trials sequentially. It is also

ethically important that future patients should have a high probability to be treated optimally

based on the updated knowledge so far. In this work, we propose a new design called sequentially

rule-adaptive trials to learn optimal ITRs based on the contextual bandit framework, in contrast

to the response-adaptive design in traditional adaptive trials. In our design, each entering patient

will be allocated with a high probability to the current best treatment for this patient, which is

estimated using the past data based on some ML algorithm (for example, outcome weighted learning

in our implementation). We explore the tradeoff between training and test values of the estimated

ITR in single-stage problems by proving theoretically that for a higher probability of following the

estimated ITR, the training value converges to the optimal value at a faster rate, while the test

value converges at a slower rate. This problem is different from traditional decision problems in

the sense that the training data are generated sequentially and are dependent. We also develop a
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tool that combines martingale with empirical process to tackle the problem that cannot be solved

by previous techniques for i.i.d. data. We show by numerical examples that without much loss of

the test value, our proposed algorithm can improve the training value significantly as compared to

existing methods. Finally, we use a real data study to illustrate the performance of the proposed

method. This work has been published on the Journal of Machine Learning Research (Gao et al.,

2022).

In Chapter 3, we work on the statistical inference of the parameter of high dimensional ITRs in

multi-stage problems (Gao et al., 2023a). One important class of DTR in practice, namely multi-

stage stationary treatment policies, prescribe treatment assignment probabilities using the same

decision function over stages, where the decision is based on the same set of features consisting of

both baseline variables (e.g., demographics) and time-evolving variables (e.g., routinely collected

disease biomarkers). Although there has been extensive literature to construct valid inference for

the value function associated with the dynamic treatment policies, little work has been done for the

policies themselves, especially in the presence of high dimensional feature variables. We aim to fill

in the gap in this work. Specifically, we first estimate the multistage stationary treatment policy

based on an augmented inverse probability weighted estimator for the value function to increase

the asymptotic efficiency, and further apply a penalty to select important feature variables. We

then construct one-step improvement of the policy parameter estimators. Theoretically, we show

that the improved estimators are asymptotically normal, even if nuisance parameters are estimated

at a slow convergence rate and the dimension of the feature variables increases exponentially with

the sample size. Our numerical studies demonstrate that the proposed method has satisfactory

performance in small samples, and that the performance can be improved with a choice of the

augmentation term that approximates the rewards or minimizes the variance of the value function.

In Chapter 4, we consider the case where a clinical trial contains multiple outcomes. In practice,

the optimal ITR that maximizes its associated value function is also expected to cause little harm

on other non-primary outcomes. For example, when treating the major depressive disorder, the

primary goal is to reduce depressive symptoms, but the overall clinical improvement should not be

negatively affected. Hence, one goal is to learn the ITR that not only maximizes the value function

for the primary outcome, but also approximates the optimal rule for the other auxiliary outcomes as

close as possible. In this work, we propose a fusion penalty to encourage ITRs based on the primary
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outcome and auxiliary outcomes to yield similar recommendations. We then optimize a surrogate

loss function using empirical data for estimation. We derive the non-asymptotic properties for

the proposed method and show that the agreement rate between the estimated ITRs for both

primary and auxiliary outcomes converges to the true agreement rate at a faster rate as compared

to methods without using auxiliary outcomes. Finally, simulation studies and a real data example

are used to demonstrate the finite-sample performance of the proposed method.

16



CHAPTER 2

Non-asymptotic Properties of Individualized Treatment Rules from Sequentially
Rule-Adaptive Trials1

2.1 Introduction

For many diseases, patients respond heterogeneously to treatments and a one-size-for-all strat-

egy is often not effective. Recent technology advances allow personalized treatment suggestions by

tailoring it to patient characteristics, including demographics, medical histories or genetic informa-

tion (Hamburg and Collins, 2010). The personalized policy is often referred to as the Individualized

Treatment Rule (ITR), which aims to maximize a predefined reward such as the patient’s health

status.

The optimal ITR can be estimated through regression-based or classification-based methods.

The former fits a regression model for the rewards and finds the treatment with the maximum

estimated reward (Qian and Murphy, 2011). The latter obtains the optimal ITR directly by max-

imizing the average reward. For example, Zhao et al. (2012) proposed a weighted classification

algorithm called outcome weighted learning (OWL), which is based on the support vector machine

(SVM) and equipped with various kernels. There are also variations of OWL designed for ITR

estimation in single-stage problems (Zhou et al., 2017; Chen et al., 2018) and multi-stage problems

(Zhao et al., 2015; Liu et al., 2018b).

For all the above methods, to avoid unobserved confounding bias as present in observational

studies, data used to learn optimal ITRs are typically obtained from randomized controlled trials

(RCTs), where patients receive treatments based on a prefixed probability rule. RCTs are con-

ducted primarily to compare the efficacy of new treatments. However, in the case when the control

drug is not beneficial or is even harmful, patients may have to switch treatments or withdraw from

1This chapter previously appeared as an article in the Journal of Machine Learning Research. The original citation
is as follows: Gao, D., Liu, Y., and Zeng, D. (2022). Non-asymptotic properties of individualized treatment rules
from sequentially rule-adaptive trials. Journal of Machine Learning Research, 23(250):1–42.
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the study due to little benefit or adverse events under the assigned treatments. This may cause

violation of the randomization and result in bias in estimating clinical efficacy. In fact, as data are

gathered during the process, we already have an inference about which treatment should be better

for the next patient. A more effective design for the trial should be sequentially adaptive so that any

new patients entering the trial are more likely to receive the best treatment learned from the past.

This is especially important ethically since an inferior treatment may cause severe health issues to

a patient. A sequentially adaptive trial has the advantage to better maintain randomization while

keeping most of the study participants benefiting from their assigned treatments. As commented

in Thall (2002), a clinical trial ideally should provide patients in the trial with the best treatment

available, while also generate data for improving therapies. We will discuss the tradeoff between

the two goals from a statistical viewpoint in this chapter. We refer to the clinical trial data as the

training set and refer to an independent population as the test set for clarity.

The clinical trials that allow the trial protocol to be modified according to observed patient

information as the trial continues are called adaptive clinical trials (ACTs) (Chow, 2014). A special

class of ACTs is the response-adaptive randomization (Hu and Rosenberger, 2006), which is divided

into four categories: restricted randomization, response-adaptive randomization, covariate-adaptive

randomization, and covariate-adjusted response-adaptive (CARA) randomization. The latter three

are adjusted for response, covariates, and response with covariates respectively. As an example

of CARA, Zhang et al. (2007) proposed a framework for the treatment distribution to converge

to a predefined distribution, which can be applied to generalized linear models. Hu et al. (2015)

suggested to balance ethics in avoiding assigning patients to inferior arms and efficiency in the

power of detecting treatment differences. ACTs sometimes also use Bayesian designs to find the

optimal dose schedule based on efficacy and toxicity and maximize survival time by combining

different phases (Thall et al., 2013; Riviere et al., 2018; Chapple and Thall, 2019). These methods

mainly use adaptive designs to improve the efficiency, which refer to the power of estimating average

treatment effects, and are not suitable for learning optimal ITRs. There are also a few papers for

learning subgroup treatment effects through enrichments (Kim et al., 2011; Lai et al., 2012; Renfro

et al., 2016), but they are not optimal for finding ITRs. Furthermore, theoretical justification is

lacking for the estimated treatment effects for all subgroups.
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There is a close connection between the sequentially adaptive design and the contextual bandit,

which is a class of algorithm that deals with online decision problems. As a single-stage special

case of reinforcement learning, it aims at making sequential decisions through trial and error.

All reinforcement learning algorithms encapsulate an “exploration-exploitation” dilemma. Various

exploration methods have been proposed in the contextual bandit literature. The ϵ-greedy methods

assign the current optimal arm with a probability of 1− ϵ or chooses from all arms randomly with

a total probability of ϵ (Yang and Zhu, 2002; Chen et al., 2020). Boltzmann exploration assigns

probabilities of whether to follow the current optimal policy using the soft-max function based on

the estimated mean rewards of arms (Sutton and Barto, 2018). Upper-Confidence Bound (UCB)

methods choose the arm with the largest upper confidence bound, which either has a large estimated

mean reward or a large estimated variance (implying great uncertainty) (Li et al., 2010; Chu et al.,

2011; Krause and Ong, 2011). Bayesian methods assign a treatment to a future patient according

to the posterior distribution of reward parameters (Chapelle and Li, 2011; Liao et al., 2020). Action

elimination is another branch that ignores the inferior arms gradually (Perchet and Rigollet, 2013).

Different estimation methods have also been proposed in linear scenarios (Auer, 2002; Li et al.,

2010; Chu et al., 2011; Chen et al., 2020; Bastani and Bayati, 2020) and nonlinear scenarios (Yang

and Zhu, 2002; Krause and Ong, 2011; Zhou et al., 2020) under the contextual bandits framework.

Interested readers are referred to Tewari and Murphy (2017); Lattimore and Szepesvári (2020) for a

comprehensive review of bandit problems. However, most works in contextual bandits focus on the

training phase and do not address the test performance theoretically. Pure exploration with a fixed

budget in multi-armed bandits (MAB, Lattimore and Szepesvári (2020)) also tries to minimize the

test regret (also called simple regret), but they generally do not require a small training regret

(also called cumulative regret). Bubeck et al. (2009) illustrated the tradeoff between training and

test performance in MAB algorithms without a context, that an asymptotically optimal policy for

training regret will lead to a suboptimal policy for test regret. Lattimore and Szepesvári (2020)

also discussed in Chapter 33 that algorithms with logarithmic cumulative regret in MAB settings

(for example UCB) are not well suited for pure exploration. In contrast, we consider more complex

settings with context and also provide a way to find the balance point.

To our best knowledge, the most relevant clinical trial design for learning ITR is the active

clinical trial (Minsker et al., 2016), which is an active-learning based algorithm. In terms of data
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collection, they focus on exploring patients close to the decision boundary and omit the trials

on patients known to benefit from one of the treatments with a high probability. However, the

actually conducted trials are still purely randomized, and will not benefit from previous information.

Practically speaking, the patients omitted from the trial still need to be recruited to collect their

basic information before deciding whether they are close to the boundary, which can still create a

burden on the trial and the patients.

We propose a sequentially adaptive trial design named “rule-adaptive design” in contrast to

“response-adaptive design”. It updates the treatment assignment policy during the clinical trial

using some statistical or machine learning methods, so that the outcomes in the clinical trial are

improved. In the meantime, we also allow for some exploration probability in order to learn an

efficient final ITR. In the current work, we consider estimating the two-armed ITR with OWL and

explore with ϵ-greedy or a variation of Boltzmann exploration. Different from most contextual

bandit methods which rely on a regression model of the rewards, our OWL-based algorithm is a

weighted classification method which tries to maximize the rewards directly. Only a model for the

treatment effect is specified and thus minimum assumption (for example, boundedness) is needed

for the main effect, unlike in Li et al. (2010) and Chen et al. (2020) where a reward model is

constructed for the total effect. While Chambaz et al. (2017) and Chen et al. (2020) focused on

the inference of the parameters or value functions, we perform the regret analysis.

Specifically, we consider a trial with n sequentially enrolled patients with independent feature

variables. Since some of the characteristics of a patient can only be observed after the patient is

enrolled in the clinical trial and the process maybe expensive, we assume that we cannot choose

which patients to enroll. After a pilot trial of some patients, we assign any incoming patient the

estimated optimal treatment learnt from the available data with a probability of p and the other

treatment with a probability of 1 − p. We restrict that p is bounded by 1 − ϵ and ϵ, where ϵ is a

positive constant between 0 and 0.5. Furthermore, we let ϵ decay to zero as the ITR estimation

gets more accurate over the trial. If the probability p is a constant that does not depend on the

current context or the history information, including the characteristics, treatments and rewards of

previous patients, the above method is actually ϵ-greedy. Note that the ϵ defined here is one half of

that in the definition of ϵ-greedy in most reinforcement learning literature. However, we allow p to

be dependent on the current status and the history in theory and in simulation. In this algorithm,
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p governs the chance of exploration. Intuitively, a small p indicates a high tendency to follow the

current estimated ITR. Future patients to enter the trial are likely to receive a favorable treatment

when data accumulate. On the other hand, a small p limits the chance of exploring new treatments.

This leads to a slow convergence of the learnt ITR to the optimal one, yielding a suboptimal ITR if

the training sample size in the trial is not large enough. This suggests a tradeoff between training

and test performance. Our proposed class of algorithms allows adaptive probabilities to depend on

already collected data in a flexible way, and includes Boltzmann exploration and an approximate

UCB algorithm as special cases.

In this chapter, to fully characterize the performance of the rule-adaptive design, we establish

the convergence rate of both the test regret for the learnt ITR if implemented in an indepen-

dent population, and the training regret for patients in the training set. The former concerns the

expected reward loss as compared to the theoretically optimal ITR. The latter describes the cumu-

lative reward loss between actually observed rewards and the hypothetical rewards if each patient

would receive the learnt optimal ITR over time. The established bounds depend on the number

of initial patients, the number of patients enrolled in the main trial, and the decay rate of the ϵ-

sequence. The bounds clearly indicate a tradeoff between the training and test performance of the

algorithm. This tradeoff can be useful for us to choose an ϵ-sequence that guarantees a small loss

of rewards for the testing sample due to the reduction of exploration in the training process, while

at the same time allowing a majority of the experiment patients to receive better than random

treatments. To our knowledge, these are the first rigorous results for contextual bandits.

Our proofs for establishing bounds are substantially different from the ones that are based on

i.i.d. training data, due to the challenge that the treatment assignment depends on the past data.

In the proof, we derive a new concentration inequality for suprema of a martingale sequence by

extending the results in Rakhlin et al. (2015). Particularly, to obtain the sequential Rademacher

complexity of function classes needed in the inequality, we develop a new mathematical tool that

applies the empirical process and bracketing number technique to martingale sequences. Bae and

Levental (1995) showed that Freedman’s inequality (Freedman, 1975) works well for ergodic Markov

chains as a substitution for Bernstein’s inequality in i.i.d. sequences. Van de Geer (1995), Nishiyama

(1997) and Nishiyama et al. (2000) also took similar approaches in continuous-time martingales or

some martingales with jumps. Rakhlin et al. (2015) created a scheme of extending empirical
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process and symmetrization methods to martingale. Chambaz et al. (2017) derived a new maximal

inequality for martingales based on the uniform entropy integral. However, to our knowledge,

our work is the first one to make use of bracketing numbers in the test value bound of martingale

sequences. As a remark, we note that Rakhlin and Sridharan (2014) provided a bound for sequential

Rademacher complexity of linear functions on dual spaces of covariates and linear coefficients. In

contrast, our method applies to any function class with bounded bracketing integral.

The rest of this chapter is organized as follows. In Section 2.2, we describe our proposed

algorithm that uses the OWL algorithm for learning ITRs over time. Section 2.3 gives theoretical

guarantees for the performance of our algorithm on the training and test sets. We describe the

implementation details of our proposed algorithm, and discuss the connections and differences

between our algorithm and existing methods in Section 2.4. In Section 2.5, we conduct extensive

simulation studies to examine how parameters in our algorithm influence the empirical results, and

compare our method with randomized controlled trials, LinUCB (Li et al., 2010) and active clinical

trials (Minsker et al., 2016). We further use a real data example to illustrate the advantage of the

proposed method in Section 2.6. The chapter is concluded with some remarks in Section 2.7.

2.2 Methodology

We consider the single-stage decision problem, the case where a single treatment recommenda-

tion is made for every patient. For each patient, the feature variables or covariates X ∈ X ⊂ Rd

are observed. We assume that the covariates {Xi}∞i=1 are drawn from a population independently

and identically. Based on the covariates, we need to decide which treatment to take for the pa-

tient. We focus on a two-armed problem in this chapter. That is, the treatment A takes values in

A = {1,−1}. An outcome R ∈ R is then observed, which is also called the reward, with higher

values desirable. An ITR is a map D : X 7→ A that assigns the patient of covariates X to a

treatment A. An optimal ITR can generate the largest mean reward for the test data. If there

exists a measurable discriminant function f : X 7→ R such that D = sign{f}, we only need to find

such a function f .
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2.2.1 Learning Algorithm for Updating ITRs

We propose to estimate the ITR using machine learning methods, OWL in particular, since

it is shown to provide useful ITR recommendations in various scenarios (Zhao et al., 2012). We

briefly describe the method of OWL below.

Let P be the joint distribution of Z := (X, A,R) and E be the corresponding expectation.

If the data are sampled according to the ITR D, that is, given A = D(X), the distribution and

expectation are denoted as PD and ED respectively. Then the optimal ITR can be defined as

D∗ := argmaxD ED(R) and the optimal decision function f∗ satisfies sign{f∗} = D∗. Qian and

Murphy (2011) showed that the expected reward under policy D is given by

ED(R) = E
„

R1(A = D(X))

π(A;X)

ȷ

, (2.1)

where π(A;X) is the probability of taking treatment A given covariates X of a patient. After

transforming (2.1) to a loss function based on the 0-1 loss, Zhao et al. (2012) proposed OWL to

instead minimize a surrogate loss, hinge loss ϕ(x) = [1−x]+. That is, they try to find the function

f that minimizes E[gf (Z)], where gf (Z) = Rϕ(Af(X))/π(A;X). If we obtain a total number of

n observations, OWL tries to minimize

1

n

n∑
i=1

Ri
πi(Ai;Xi)

ϕ(Aif(Xi)).

A penalty term can be added to the loss function for high-dimensional settings to avoid overfitting.

This is a weighted classification problem that can make use of the framework of SVM. The estimated

ITR can be obtained by taking D̂ = sign{f̂}. The resulting estimator of ITR generated by OWL

is consistent (Zhao et al., 2012). Moreover, Ri can be replaced by Ri−E(R|Xi) to further improve

the learning performance (Liu et al., 2018b).

2.2.2 Sequentially Rule-Adaptive Trials (SRATs)

We describe the proposed algorithm to improve the clinical trial outcome and learn the optimal

ITR as follows. Before the trial begins, assume we already have a pure randomized pilot trial of

small size n0, from which our first function f̂0 can be estimated. Then the first patient i = 1 can
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choose to follow D̂0 or not. The observations in initial samples all have a propensity score of 0.5.

The function is updated after each patient has been treated. Denote the estimated function based

on data before the ith patient coming as f̂i−1, and the corresponding ITR as D̂i−1 for i = 1, . . . , n.

Assume pi is a probability that can depend on the current feature variables Xi and the history

information of previous patients, bounded away from 0 and 1 for all i. At each time point i, we

choose to follow our current estimated ITR D̂i−1 with a probability pi or choose the other treatment

with a probability 1 − pi. Let Ii be a binary variable such that the ith treatment follows D̂i−1 if

Ii = 1 and follows −D̂i−1 if Ii = −1. That is, Ii takes the value 1 with a probability of pi and the

value −1 with a probability of 1− pi. Then the treatment can be chosen as Ai = IiD̂i−1(Xi).

When pi only depends on the order i but not on the history and covariates, our algorithm

actually follows the ϵ-greedy exploration method. Note that the randomization probability is

sometimes described in another way. In most reinforcement learning literature, for ϵ̃i ∈ (0, 1] at

stage i, ϵ-greedy chooses the best arm with a probability of 1− ϵ̃i; and with a total probability of ϵ̃i,

it chooses from all arms randomly with equal probability. Our definition coincides with this in the

sense that 1 − pi = ϵ̃i/2. We use the slightly different notation here to describe the boundedness

assumption of pi in a more general way. In the special case when pi = 0.5 for all i = 1, . . . , n, the

adaptive clinical trial degenerates into a purely randomized clinical trial. Besides, as a limiting

case without truncation, Boltzmann exploration assumes pi = logit−1(benefiti), where benefiti is

the difference between the estimated rewards of two treatments for the patient i.

Although we choose the presumed best arm with a high probability, there is also some chance

that we explore the other arm and observe consequences. When i is small, estimations are usually

not accurate due to the large sampling bias and estimation bias. A large probability should be

assigned to the inferior arm to allow for exploration and reduce variances. When data accumulate

and the ITR estimation gets more accurate as i increases, we will take a higher probability for

following the current estimated ITR. Therefore, a decreasing sequence of {pi}ni=1 is desirable. As

n goes to infinity, we want pn → 0 if our estimation method is consistent. The speed at which pn

decreases depends on the convergence rate of estimation.

Let Z
(0)
i = {X(0)

i , A
(0)
i , R

(0)
i , I

(0)
i } be the feature variables, treatments and rewards of the

patient i = 1, . . . , n0 in the pilot trial. Here I
(0)
j can take any value since we do not have an

estimated ITR to follow in the pilot trial. Similarly, denote Zi = {Xi, Ai, Ri, Ii} to be all the
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information about the patient i = 1, . . . , n in the main trial. Extend the definition of P,PD and

E,ED to be the joint distributions and expectations of Z respectively. For simplicity, denote

Hi−1 as the history information for the ith patient, where H0 := {Z(0)
1 ,Z

(0)
2 , . . .Z

(0)
n0 } and Hi :=

{Z(0)
1 ,Z

(0)
2 , . . .Z

(0)
n0 ,Z1,Z2, . . . ,Zi}, i = 1, . . . , n. Then before we decide which treatment to take

for the ith (i = 1, . . . , n) patient, the data that we can base our decision on are {Hi−1,Xi}. The

final ITR is estimated from the whole training sample Hn.

To adapt the algorithm of estimating ITRs to our sequential setting, we will denote

πi(Ai;Hi−1,Xi) as the probability of taking treatment Ai at stage i to indicate that it depends on

the history Hi−1 and the covariates Xi for the main trial. The probability pi = pi(Hi−1,Xi) de-

fined as P(Ii = 1|Hi−1,Xi) also depends on the history and covariates, and is a simplified notation

for πi(D̂i−1(Xi);Hi−1,Xi).

We make the following assumptions to quantify potential outcomes for both the pilot trial and

the main trial. Although data are sequentially generated in the main trial, Ri still only depends

on Ai and Xi for each i = 1, . . . , n.

Assumption 1 (Ignorability). The treatment Ai (A
(0)
i ) is independent of the potential outcome

R∗
i (a) (R

(0)∗
i (a)) given feature variables Xi (X

(0)
i ) for all a ∈ A and all i = 1, . . . , n (i = 1, . . . , n0).

Assumption 2 (Consistency). The observed outcome Ri (R
(0)
i ) under a treatment Ai = a (A

(0)
i =

a) equals the potential outcome R∗
i (a) (R

(0)∗
i (a)) for all a ∈ A and all i = 1, . . . , n (i = 1, . . . , n0).

For the pilot trial, we make an additional assumption on propensity scores.

Assumption 3 (Positivity). There exists a constant c0 > 0 such that πi(a;X
(0)
i ) ≥ c0 for all a ∈ A

and all X
(0)
i ∈ X for all i = 1, . . . , n0.

We do not need to make the positivity assumption for the main trial since it is guaranteed by

our data generating process when we require pi(Hi−1,Xi) to be bounded away from 0 and 1. We

will formally quantify the assumptions on the probability pi(Hi−1,Xi) in Sections 2.3.1 and 2.3.2.

Different choices of pi(Hi−1,Xi) will be discussed in Section 2.4 and their performances will be

compared in Section 2.5.
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Following the scheme of OWL, we propose to minimize the ϕ-risk using the hinge loss in a

function class F : X 7→ R. Using OWL, we can obtain the first estimated function

f̂0 = argmin
f∈F

1

n0

n0∑
j=1

R
(0)
j

πj(A
(0)
j )

ϕ(A
(0)
j f(X

(0)
j )) (2.2)

using the pilot trial and update it to get

f̂i = argmin
f∈F

1

n0 + i

{
n0∑
j=1

R
(0)
j

πj(A
(0)
j )

ϕ(A
(0)
j f(X

(0)
j )) +

i∑
j=1

Rj
πj(Aj ;Hj−1,Xj)

ϕ(Ajf(Xj))

}
(2.3)

for i = 1, . . . , n along with the main trial. For weighted SVM problems, the function class F is

generally taken to be a linear space for linear decision rules or a reproducing kernel Hilbert space

(RKHS) for nonlinear decision rules. The full algorithm is summarized in Algorithm 1.

Algorithm 1: Sequentially Rule-Adaptive Trial

Initialize. For n0 number of patients, assign treatments randomly with equal probabilities

and observe {Z(0)
j }

n0
j=1;

Estimate f̂0 with {Z(0)
j }

n0
j=1 by (2.2);

for i = 1, . . . , n do
Observe feature variables Xi;

Estimate the best treatment D̂i−1(Xi) = sign{f̂i−1(Xi)};
Sample Ii from {−1, 1} with a probability {1−pi(Hi−1,Xi), pi(Hi−1,Xi)} respectively;
Take the treatment Ai = IiD̂i−1(Xi) and observe the reward Ri;

Update the function f̂i with {Z(0)
j }

n0
j=1 ∪ {Zj}ij=1 by (2.3).

end

Let D̂n = sign{f̂n} be the final estimated ITR.

2.3 Theoretical Results for SRAT

In order to demonstrate a tradeoff between training and test performance of our algorithm, we

need to bound the estimated value function on both sets. Previous work has shown a bound for

the test value trained on i.i.d. data (Zhao et al., 2012). We will expand the bounds of OWL to

dependent training samples.
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2.3.1 Performance Guarantee for the Test Set

Define V(f) := Esign{f}(R) as the value function of f . We use value function V(f̂n) as an

indicator of how well our algorithm performs on the test set, after training on n observations.

We will call V(f̂n) the test value, and define V(f∗) − V(f̂n) as the test regret. Remember that

V(f∗) = maxf V(f) according to the definition of f∗. In this chapter we assume that the optimal

function f∗ belongs to the function class F , in which we find the estimated ITR. As a consequence,

Zhao et al. (2012, Theorem 3.2) implies that the excess risk satisfies 0 ≤ Esign{f∗}(R)−Esign{f}(R) ≤

E[gf (Z)]−E[gf
∗
(Z)]. If f minimizes E[gf (Z)], the right-hand side cannot be larger than zero since

f∗ is also in the function class F . Therefore, we have Esign{f}(R) = Esign{f∗}(R), which suggests

that f and f∗ have the same Bayesian risk. For example, we would reasonably assume that f∗ is

linear in the covariates or in the basis function of covariates for a linear space F . The following

result shows that the test regret converges in probability and gives the convergence rate.

We first introduce some key notations. With N[](η,F , ∥·∥) being the bracketing number for the

set F with respect to the semi-norm ∥·∥, define a bracketing integral of F as

J[](δ,F , ∥·∥) :=
∫ δ

0

b

1 + logN[](η,F , ∥·∥)dη.

Let L2(P) norm be the L2 norm with respect to measure P. An envelope of function class F is any

function F : X 7→ R such that f(x) ≤ F (x) for every x ∈ X and f ∈ F . The minimal envelope

function is F (x) = supf∈F |f(x)|, for all x ∈ X . The ∗ symbols on the top right corner of P and E

indicate outer probability and the corresponding outer expectation respectively in order to avoid

measurability problems (Van der Vaart and Wellner, 1996).

Assumption 4. Suppose we have a nonincreasing sequence of {ϵ1, . . . , ϵn} with ϵi ∈ (0, 0.5] for all

i = 1, . . . , n, where each ϵi can only depend on the order i. Assume ϵi ≤ pi(Hi−1,Xi) ≤ 1 − ϵi

almost surely for all i.

Assumption 5. There exists a positive constant r such that ∥Ri∥∞ ≤ r for all i.

Assumption 6. Suppose F is a class of measurable functions satisfying

∫ ∞

0

b

1 + logN[](η,F , L2(P))dη <∞. (2.4)
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Let F be the minimal envelope function of F and assume F has a weak second moment, that is,

x2P∗(F (X) > x)→ 0 as x→∞.

Theorem 2.3.1. Assume the pilot trial satisfies Assumptions 1, 2, 3, 5 and the main trial satisfies

Assumptions 1, 2, 4, 5. If we take c0 = 0.5 and a function class satisfying Assumption 6 in

Algorithm 1, then with a probability higher than 1− e−δ for any δ > 0,

V(f∗)− V(f̂n) ≤
C

n0 + n

„

(J +
?
δb)r

?
n0 + rbδ +

r2bJ

ϵ2n

b

δn log3 n

ȷ

, (2.5)

where J := supP J[](∥F∥P,2 ,F , L2(P)), b := supf∈F ∥f∥∞, and C is a constant depending on δ, r, b, J

and {ϵi}ni=1.

Remark. The above bound shows that the terms containing n0 are not dominant as long as the

order of n0 does not exceeds the order of n, since ϵn is nonincreasing and ϵ−2
n has an order of Ω(1).

In practice, n0 can be taken as the minimum value that a stable initial rule f̂0 can be estimated

with. For example, if the covariates X has a dimension d including an intercept, n0 can be taken as

d+1 for linear kernel. We choose n0 to be a small constant in our simulation study in Section 2.5.

For generality, we will assume that n0 = O(n) in the following analysis, which includes the constant

n0 as a special case.

Remark. Note that the bracketing number and covering number here are defined for i.i.d. data,

since F is defined on X and the observed feature variables {Xi}∞i=1 are i.i.d. The constant J

characterizes the complexity of the function class F . It generally increases as the dimension d of

covariates increases, and will result in a larger upper bound.

Remark. For the bound (2.5) to be non-trivial, we need the right-hand side to be op(1). That is,

when assuming n0 = O(n), we need ϵn to decay slower than n−1/4 log3/4(n) and J to be finite.

Intuitively speaking, if the ϵ sequence decays too fast and the algorithm is extremely greedy in the

training process, then the data sample is biased and cannot be used to learn an efficient final ITR.

Remark. Theorem 2.3.1 holds when n is large enough but finite, so Assumption 4 ensures that

the positivity assumption is satisfied for all n. The randomness parameter ϵn, which can be close

to zero, is incorporated in the error bounds and accounts for the variance inflation in the value

estimation. Simulation study in Section 2.5 shows that there is no significant variance inflation for
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different choices of ϵn sequences in practice. The complexity of the function class containing πi

increases as the lower and upper bounds of propensity score get wider, but our proof only relies on

the lower bound ϵi.

In our sequentially dependent algorithm, any constant sequence {ϵ1, . . . , ϵn} can generate a

convergence rate of n−1/2 log3/2(n) as long as n0 = O(n). If we take ϵi = 0.5 for all i, the algorithm

degenerates to pure randomization. Therefore, the traditional RCT is actually a special case

contained in our framework. Zhao et al. (2012) proved that the convergence rate of OWL with the

Gaussian kernel almost achieves n−1/2 under the Geometric noise assumption. The extra log3/2(n)

term comes from a martingale concentration inequality that we used, as shown in Section 2.8.3 in

the supplementary material. This indicates that the efficiency of learning ITR is not significantly

affected by using sequentially generated data.

Example 2.1. If F is a class of linear functions with bounded parameters β ∈ B ⊂ Rd, the

above assumptions are satisfied. Linear functions are Lipschitz in parameters in the sense that

|fβ1(x)− fβ2(x)| ≤ m(β1,β2)G(x) for Euclidean metric m on the index parameter set, G(x) =

∥x∥2, and for every β1,β2 by Cauchy–Schwarz inequality. By Theorem 2.7.11 of Van der Vaart and

Wellner (1996), N[](2η ∥G∥ ,F , ∥·∥) is bounded by N(η,B,m). Since N(η,B,m) ≤ K/ηd for some

constant K, N[](η,F , L2(P)) can be bounded by 2dK ∥G∥dP,2 /ηd for all measure P. If we further

assume that ∥G∥P,2 ≤ u for all measure P and some constant u > 0, for example, when the covariate

space X is bounded, then the constant J and the integral in (2.4) is finite. The assumptions in

Theorem 2.3.1 are then satisfied. ♢

The general idea of proof is to find a classification risk bound for the weighted SVM on sequen-

tially generated data. It is quite similar to the proof idea of Theorem 4 in Bartlett et al. (2006).

However, the key step of their proof relies on a variant of Talagrand’s inequality (Talagrand, 1994;

Bousquet, 2002), which is a concentration inequality of suprema of empirical process on i.i.d data.

On the contrary, our algorithm generates data that are adapted to a filtration.

We will define some new notations here. For any sequence {Yi}i∈N adapted to a filtration

{Gi}i∈N, observe that {Ei−1f(Yi)−f(Yi)}i∈N is a martingale difference sequence for any measurable

function f , where Ei−1(·) := E(·|Gi−1). Define a martingale process indexed by f ∈ F analogous to
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an empirical process as

f 7→Mn(f) :=
1

n

n∑
i=1

{Ei−1f(Yi)− f(Yi)} .

In accordance with Rakhlin et al. (2015), the scaling factor
?
n is not included in the definition.

In our setting, let G0 = σ{H0} and Gi = σ{Hi}, i ∈ N, so that {Zi}i∈N is adapted to the filtra-

tion {Gi}i∈N. Similar as the definition in Section 2.2.1, let the loss function on a single observation

in a sequential experiment be

gf (Zi) =
Riϕ(Aif(Xi))

πi(Ai;Hi−1,Xi)
.

Note that Zi is implicitly dependent on the history Hi−1 through Ai. Define hf (Zi) = gf (Zi) −

gf
∗
(Zi) as the difference between the loss generated by any f and the optimal function f∗. Based

on our weighted classification setting, we can further define a weighted version of the martingale

process by

Wn(f) := Mn(h
f ) =

1

n

n∑
i=1

”

Ei−1h
f (Zi)− hf (Zi)

ı

.

The key step is to bound the test regret by the conditional expectations of hf . To extend

the idea to a martingale sequence, we make use of sequential complexity techniques and a suprema

concentration inequality presented in Rakhlin et al. (2015, Lemma 2.8.2). The inequality essentially

relies on E supf∈F Wn(f), so we first present the following lemma for the upper bound of the

expectation of suprema. We use the symbol “À” to indicate that the left-hand side is no larger

than the right-hand side for all n up to a universal constant.

Lemma 2.3.2. Assume the main trial satisfies Assumptions 1, 2, 4, 5. If we take a function class

satisfying Assumption 6 in Algorithm 1, then

E sup
f∈F

Wn(f) À
r

?
nϵn

J[](∥F∥P,2 ,F , L2(P)). (2.6)

The above lemma suggests that if some f performs well enough on the training set compared

to f∗, then it should not be too bad on the test set as well. When ϵn does not depend on n,

E supf∈F Wn(f) converges at a rate of n−1/2, which is the same as the rate for independent data.
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2.3.2 Performance Guarantee for the Training Set

We propose to use R̄n :=
∑n

i=1Ri/n as the measure of performance on the training set, which

does not concern the pilot trial. We will call R̄n the training value and it indicates what we really

observe in n patients drawn out of the population. Furthermore, we define our regret on the training

set as
∑n

i=1[V(f̂i−1)−Ri]/n. Each observed reward Ri is compared with the corresponding V(f̂i−1),

which is the value function based on previous (i − 1) data points, and the sum of differences is

recorded.

A common metric in bandit problems for training data is the cumulative regret for n obser-

vations. It is defined as the difference between the expectation of the sum of rewards under the

optimal ITR and that under the estimated ITR, that is,
∑n

i=1 ExiR(D∗(xi)) − ExiR(D̂i−1(xi)),

where xi is the instantiated tailoring variable vector for the ith (i = 1, . . . , n) patient. It mainly

measures how much benefit the actual treatments generate compared with the optimal ones for

fixed tailoring variables (x1, . . . ,xn) regardless of the randomness in rewards. A bound on the

expectation of regret or a probably approximately correct (PAC) bound is often derived. However,

the true optimal rule D∗ and the expectation of rewards are unknown in the training process.

Furthermore, the cumulative regret does not include the intrinsic randomness in rewards.

Here we present the training regret bound in terms of our definition with an additional assump-

tion on the randomization probability pi.

Assumption 7. Suppose we have another nonincreasing sequence of {ϵ′1, . . . , ϵ′n} with ϵ′i ∈ (0, 1)

for all i = 1, . . . , n, where each ϵ′i can only depend on the order i. Assume that pi(Hi−1,Xi) ≥ 1−ϵ′i

almost surely for all i.

Under Assumptions 4 and 7, the two sequences {ϵi}ni=1 and {ϵ′i}ni=1 actually help create upper

and lower bounds of 1 − pi(Hi−1,Xi), which are needed in the test and training regret bounds

respectively.

Theorem 2.3.3. Assume the main trial satisfies Assumptions 1, 2, 5, 7 and we have 0 <

pi(Hi−1,Xi) < 1 for all i. Then with a probability higher than 1− e−δ for any δ > 0,

∣∣∣∣∣ 1n
n∑
i=1

”

V(f̂i−1)−Ri
ı

∣∣∣∣∣ ≤ C ′r

«

c

δ ∧ δ2
n

+

˜

1

n

n∑
i=1

ϵ′i

¸ff

, (2.7)

31



where C ′ is a constant depending on δ, r and {ϵ′i}ni=1.

Remark. The concentration bound implies that the training regret is upper bounded by the average

of the ϵ′i sequence plus a term of order Op(1/
?
n). ϵ′i should be of order o(1) if we need the training

regret to converge to zero. Otherwise, if there is always some probability that the inferior treatment

is taken, the training reward cannot be optimal. Specifically, when {ϵ′i}ni=1 is constant and does

not rely on i, the above bound is a constant. The purely randomized clinical trial is a special case

of this setting.

Remark. In most of the cases, the randomization probability of following the inferior treatment is

1−pi(Hi−1,Xi) ≤ ϵ′i ≤ 0.5 and is nonincreasing. For example, Assumption 7 is satisfied by ϵ-greedy

with nonincreasing ϵ′i = ϵi for all i. However, in some special cases such as Boltzmann exploration,

pi(Hi−1,Xi) can be less than 0.5 if the estimated benefit is negative. This can happen when the

method for learning ITR (OWL in our design) and that for estimating benefit (for example, linear

regression) are different. While OWL recommends D̂i−1(Xi), the difference between the estimated

rewards of D̂i−1(Xi) and −D̂i−1(Xi) can be negative. In this case, we also need the probability of

a negative benefit to converge to zero at a certain rate.

If we assume the true optimal value function V(f∗) is known and compare each Ri for i =

1, . . . , n with it, we have the following result. Note that
∣∣V(f∗)− R̄n∣∣ is a notion more similar to

the cumulative regret. Except for the randomness in rewards, the difference only lies in the optimal

value. While the cumulative regret considers maximum rewards for each individual, we still focus

on the population value.

Corollary 2.3.4. Let the assumptions in Theorems 2.3.1 and 2.3.3 hold. With a probability higher

than 1− e−δ for any δ > 0,

∣∣V(f∗)− R̄n∣∣ ≤ C ′′

«

r

c

δ ∧ δ2
n

+ r

˜

1

n

n∑
i=1

ϵ′i

¸

+
1

n(n0 + i)

n−1∑
i=0

˜

(J +
a

(δ + log n)b)r
?
n0

+ rb(δ + log n) +
r2bJ

ϵ2i

b

i log3 i(δ + log n)

¸ff

,

where C ′′ is a constant depending on r, b, J, δ and the sequences {ϵi}ni=1, {ϵ′i}ni=1, if we take i log3 i =

0 for i = 0.
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The above corollary demonstrates the well-known exploration-exploitation tradeoff in contex-

tual bandits when the observed reward is compared to the true optimal value. The first two terms

on the left-hand side come from Theorem 2.3.3, which characterize the loss in the value due to

exploration and increases as ϵ′i increases. On the other hand, the last term, which comes from

Theorem 2.3.1, describes the regret of exploiting the estimated ITR compared to the optimal ITR

and decreases with more exploration. The optimal rate is achieved when the two components strike

a balance.

2.3.3 Tradeoff Between Training and Test Values

In this section, we discuss the tradeoff between the training value and the test value. To better

describe the convergence rates of training and test values, we can set a decreasing schedule for ϵn

and ϵ′n. Here we assume ϵn and ϵ′n decreases polynomially with n since the upper bounds in (2.5)

and (2.7) are dominated by polynomial terms of n.

Theorem 2.3.5. Assume ϵn = ϵ0n
−(1−θ)/4 with ϵ0 ∈ (0, 0.5], θ ∈ (0, 1] and ϵ′n = ϵ′0n

−(1−θ′)/4 with

ϵ′0 ∈ (0, 1), θ′ ∈ (−∞, 1]. Let Assumptions 1-7 hold and assume ϵn ≤ ϵ′n for all n. If n0 = O(n),

then the test value V(f̂n) converges to V(f∗) at a rate of Op(n
−θ/2(log n)3/2), and the training value∑n

i=1Ri/n converges to
∑n

i=1 V(f̂i−1)/n at a rate of Op(n
−(1−θ′)/4). If we further assume that

θ = θ′ and ϵ0 ≤ ϵ′0, then the two regrets converge at the same rate Op(n
−1/6) when θ = 1/3.

The above results suggest that the convergence rate in the logarithmic scale is negative in θ for

the test regret and positive in θ′ for the training regret. When θ and θ′ are close to 0, {ϵi}ni=1 and

{ϵ′i}ni=1 decay fast and the algorithm is greediest on the training set, leading to a fast convergence

of the training value and a slow convergence of the test value. On the contrary, when θ = θ′ = 1,

{ϵi}ni=1 and {ϵ′i}ni=1 are constant sequences that does not change with the order i. The test value

converges quickly while the training value may not converge in this case. This demonstrates in

theory why there is a tradeoff between training and test values. Where the “balance” point is

can be defined differently in difference settings. Theorem 2.3.5 provides a balance point where

the two rates match with each other. In Sections 2.5 and 2.6, we will further demonstrate the

tradeoff between training and test values using numerical examples. Note that ϵ-greedy satisfies

the assumptions with θ = θ′ and ϵ0 = ϵ′0.
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2.4 Implementation

Recall that in theory we allow the randomization probability pi(Hi−1,Xi) to be a constant

or be dependent on the current covariates Xi and the history Hi−1. In implementation, when

pi(Hi−1,Xi) is a constant that only depends on the order i, the exploration method becomes the

special case ϵ-greedy. We call the full algorithm SRAT-E in this case.

To build a bridge between ϵ-greedy and UCB methods, for example LinUCB (Li et al., 2010)

in linear cases, we propose to let pi(Hi−1,Xi) depend on the history in the following way. While

OWL provide an estimation of ITR, we need a separate regression model to show how much benefit

a patient will gain from one treatment against the other. In the case of a greatly positive benefit,

we can assign the current patient D̂i−1(Xi) with a large probability since we are almost sure that

this treatment is the better one. On the contrary, if the benefit is negative, we allow for more

exploration. Specifically, let µ̂a(Hi−1,Xi) and σ̂a(Hi−1,Xi) be the estimated mean and standard

deviation of the reward of the ith patient given the treatment a, where a ∈ {D̂i−1(Xi),−D̂i−1(Xi)}.

Denote Ûa(αi,Hi−1,Xi) = µ̂a(Hi−1,Xi) + αiσ̂a(Hi−1,Xi) as the upper confidence bound of the

estimated reward, where αi is a constant tuning parameter that does not depend on Gi−1 or Xi.

Note that the estimations rely on the regression model completely, since OWL does not provide an

estimation of rewards, but only provides a distance between the covariate point and the decision

boundary. Further define

B̂i(αi,Hi−1,Xi) = ÛD̂i−1(Xi)
(αi,Hi−1,Xi)− Û−D̂i−1(Xi)

(αi,Hi−1,Xi)

as the UCB-based benefit, which is the difference between the estimated UCB of rewards given two

treatments. Let the probability pi be

pi(Hi−1,Xi) =


1− ϵi if B̂i(αi,Hi−1,Xi) ≥ 0,

max
{
ϵi, logit

−1
{
B̂i(αi,Hi−1,Xi)

γi

}}
if B̂i(αi,Hi−1,Xi) < 0,

where γi is a constant tuning parameter that does not depend on Gi−1 or Xi. Recall that we

truncate the probability by ϵi because we require that pi is bounded away from 0 and 1. We
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call this method SRAT-B since the randomization probability is partially based on Boltzmann

exploration.

In practice, we can estimate µ̂a and σ̂a for a ∈ A by µ̂a(Hi−1,Xi) = XT
i β̂a(Hi−1) and

σ̂a(Hi−1,Xi) = [XT
i Ŵa(Hi−1)

−1Xi]
1/2, where β̂a(Hi−1) and Ŵa(Hi−1) are the estimated linear

parameter and variance matrix before stage i. Following Li et al. (2010, Algorithm 1), the initial

estimates can be obtained by

Ŵa(H0) = Id + (X(0)
a )TX(0)

a , Ŷa(H0) = (X(0)
a )TR(0)

a , and β̂a(H0) = Ŵa(H0)
−1Ŷa(H0),

where

X(0)
a := [X

(0)
j ]T

j:A
(0)
j =a

and R(0)
a := [R

(0)
j ]T

j:A
(0)
j =a

for all a ∈ A. The identity matrix Id of dimension d is added to avoid the singularity of Ŵa when

the sample size is small. Then we iteratively update β̂a and Ŵa for a = Ai after each stage i by

Ŵa(Hi) = Ŵa(Hi−1) +XiX
T
i , Ŷa(Hi) = Ŷa(Hi−1) +RiXi

and let β̂a(Hi) = Ŵa(Hi)
−1Ŷa(Hi). The parameters for the treatment not selected at the stage

i, which is a = −Ai, will not be updated at this stage.

When B̂i(αi,Hi−1,Xi) ≥ 0, it means that the regression model prefers D̂i−1(Xi) than

−D̂i−1(Xi). This is also the conclusion by the OWL model. Therefore, we are actually requir-

ing the treatment to follow D̂i−1 with high probability when the two models agree with each other.

However, when the two models disagree, we assign treatment −D̂i−1 with a soft probability based

on the estimated benefit.

In LinUCB, the treatment is taken as sign{Û1(αi,Hi−1,Xi)− Û−1(αi,Hi−1,Xi)} with a prob-

ability 1, where the regression model is the ordinary least squares (OLS) model. This implies that

P(Ii = 1) = P(Ai = D̂i−1(Xi)) = 1[B̂i(αi,Hi−1,Xi) ≥ 0]. The actual value of D̂i−1(Xi) does not

really matter here since the probability is symmetric for the two treatments. If D̂i−1(Xi) = 1, then

P(Ai = 1|Hi−1,Xi) = 1[Û1(αi,Hi−1,Xi)− Û−1(αi,Hi−1,Xi) ≥ 0];
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Figure 2.1: The randomization probability P(Ai = D̂i−1(Xi)|Hi−1,Xi) of SRAT-E, SRAT-B and LinUCB
when ϵi = 0.05 and γi = 0.4.

otherwise, if D̂i−1(Xi) = −1, then

P(Ai = −1|Hi−1,Xi) = 1[Û−1(αi,Hi−1,Xi)− Û1(αi,Hi−1,Xi) ≥ 0]

= 1− P(Ai = 1|Hi−1,Xi)

and they are equivalent if P(Û1(αi,Hi−1,Xi) = Û−1(αi,Hi−1,Xi)) = 0.

The relationship between SRAT-E, SRAT-B and LinUCB can be illustrated in Figure 2.1.

While the randomization probability of SRAT-E is not affected by the estimated benefit of D̂i−1(Xi)

over −D̂i−1(Xi), the probability of LinUCB is purely determined by this benefit. Note that the

dot-dashed line is symmetric about zero for LinUCB, since the value of D̂i−1(Xi) does not affect

the probability of Ai = 1 as we discussed before. SRAT-B is a method that has an exploration

probability in between, which actually approximates that of LinUCB when ϵi → 0 and γ → 0. In

this sense, our proposed variation of Boltzmann exploration is a soft version of UCB. If we also

take OLS to be our model for estimating the benefit, we can view LinUCB as a limiting case of

SRAT-B in the training process. However, since the treatment rules are learnt from OLS and OWL

respectively, the test values are based on completely different final ITRs.
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2.5 Simulation Study

We assess the empirical performance of SRAT on training and test samples using synthetic

data. Here we examine two scenarios. In both scenarios, let X be a 10-dimensional vector

(X1, X2, . . . , X10). Assume X has a joint distribution N(0,Σ) truncated by [−1, 1] for each dimen-

sion, where Σ is the covariance matrix with 1 on the diagonal and 0.1 off-diagonal. The treatment

A is generated from {−1, 1} according to the SRAT algorithm and other algorithms to be com-

pared. Assume the reward R is normally distributed with mean Q0(X, A) = m0(X) + T0(X, A)

and variance ν0(X) = 0.2(X2
1X3 + 1). Here m0 is the main effect and T0 is the treatment effect.

The variance ν0 is allowed to be a function of X to show that our proposed SRAT does not rely

on the variance of rewards. We consider two scenarios as follows:

1. Linear treatment effect T0(X, A) = 0.5(0.2−X1 −X2)A;

2. Nonlinear treatment effect T0(X, A) = 0.5(0.2−X2
1 −X2)A.

In both scenarios, the main effect m0(X) = 1 + 2X1 +X2
2 + 2X2X3 is nonlinear. It can be easily

seen that the optimal ITR is determined by T0(X, A).

For our proposed SRAT algorithm, we first generate n0 patients along with their purely ran-

domized treatments and observed clinical outcomes. Then at each step i, we get a new sample of

feature variables Xi, and estimate its current optimal treatment by D̂i−1. In accordance with our

theoretical results in Example 2.1, we only use the linear kernel for OWL. The package DTRlearn2

(Chen et al., 2019) is used to implement the OWL algorithm with L2 penalty. It improves the

learning performance by removing the main effect from the rewards and takes care of negative

rewards by flipping the sign of the reward and the action simultaneously (Liu et al., 2018b). Next,

we sample the binary indicator Ii with a probability {1 − pi(Hi−1,Xi), pi(Hi−1,Xi)} and take

Ai = IiD̂i−1(Xi). Here pi(Hi−1,Xi) is defined in Section 2.4 for SRAT-E and SRAT-B differently,

and the truncation parameter ϵn is defined as

ϵ0n
−(1−θ)/4, where ϵ0 ∈ (0, 0.5], θ ∈ (0, 1]
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as in Theorem 2.3.5. The final estimated ITR decision function f̂n will be evaluated using the test

data. We also include RCT, estimated by OWL, as a special case of SRAT with ϵ0 = 0.5 and θ = 1

in our simulation.

To compare our algorithm with existing bandit methods in linear scenario, we also implement

LinUCB (Li et al., 2010) for demonstration. It is widely used in reinforcement learning and its

variation SupLinUCB (Chu et al., 2011) is known to be rate optimal in contextual bandit problems

with linear reward functions. LinUCB chooses the treatment with the largest upper confidence

bound of reward, which is estimated by linear regression. It does not require a pilot trial for

initialization, but we still generate one of size n0 for it in consistency with our algorithm.

The active clinical trial (Minsker et al., 2016) is also compared here, which targets an effective

ITR. Minsker et al. (2016) applied the active learning technique in the clinical trial and proposed

to only conduct clinical trials on patients close to the decision boundary. In this way, patients that

will benefit from one of the treatments with a high probability can be omitted from the trial and

thus save experiment expenses and efforts. Minsker et al. (2016) considered two nonparametric

methods, Gaussian process regression (AL-GP) and kernel smoothing (AL-BV) to construct a

confidence interval around the decision boundary. The actually recruited patients are assigned

to each treatment with equal probabilities. Since the two methods generally perform similarly in

different scenarios, we only compare with AL-GP in our simulation study. AL-GP also requires a

pilot trial, and we take n0 as the initial sample size as well.

We fit each estimation model of the corresponding algorithm with linear terms of X1, . . . , X10

for scenario 1, and with both linear and quadratic terms of X1, . . . , X10 for scenario 2. While

SRAT-E, RCT, LinUCB and AL-GP involve only one model, SRAT-B relies on both OWL and

OLS models. Since at least 21 observations are needed to fit an initial model with 20 predictors

and an intercept for OWL in scenario 2, we choose n0 = 30 for both scenarios, which is almost

the least possible for a reliable estimate of the initial rule. By comparing different values of n0,

we see that n0 does not affect the results of SRAT-E and SRAT-B significantly. Larger n0 reduces

randomness but does not improve the average performance. This verifies the theoretical result that

n0 is not a dominating term in the theoretical bound as long as it has an order O(n).

We have proved the properties of training and test regrets of SRAT in theoretical analysis and

they will be used here as an indication of training and test performance of each algorithm. Each
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Figure 2.2: Scenario 1. The regret (logarithmic scale) and the false decision ratio on the training or test
set against sample size n.

value function V is computed numerically using a sample of size 100, 000 randomly drew out of an

independent population. The value function is estimated using the mean reward on this set.

We first compare the convergence rate of regret for different algorithms. SRAT-E and SRAT-B

are implemented with ϵ0 = 0.1 and θ = 0.01 or 1. As will be discussed later in Figure 2.4, the

training and test regrets are monotone in the parameters ϵ0 and θ. Therefore, to save space, we

only show two possible combinations of parameters here. The scheduling parameter γi for SRAT-

B is taken as 0.999i so that it will not decay too fast to zero. RCT is a special case of SRAT

with ϵ0 = 0.5 and θ = 1. According to Li et al. (2010), the click-through rate (mean reward) of

LinUCB in news article recommendation does not change much on the deployment bucket (test

set) when α ≥ 0.2, while it decreases quickly on the learning bucket (training set) as α increases

from 0.2. In our experiment settings, α does not affect training and test regrets significantly.
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Therefore, we will fix αi = 0.2 for all i for LinUCB and SRAT-B in our following experiments.

The process is repeated 1, 000 times and the resulting values are averaged across all iterations. To

better illustrate the polynomial relationship between training or test regret and the sample size n,

we plot the regret values and the sample sizes on the logarithmic scale. The false decision ratio,

or 1 − accuracy in classification literature, is also displayed against n. One standard error of the

mean regret or the mean false decision ratio across the 1, 000 iterations is reported on each point.

The result of scenario 1 is plotted in Figure 2.2. The plot of scenario 2, Figure 2.7, is included in

the supplementary material since it shows a similar conclusion as scenario 1.

According to Figure 2.2, LinUCB is the greediest on the training process, with the least regret

and false decision ratio. As discussed in Section 2.4, LinUCB can actually be viewed as a limiting

case of SRAT-B on the training set. Indeed, our proposed greediest algorithms, SRAT-E and

SRAT-B with parameters ϵ0 = 0.1 and θ = 0.01, perform similarly as LinUCB in terms of training

regret. AL-GP and RCT take purely randomized treatments on the training set, so they have the

largest training regret and a 50% training accuracy. Since the training regret is calculated based on

V(f̂n−1) which is increasing as n grows, the training regret actually increases for largely randomized

methods. In theory, the training regret of RCT is bounded by a constant that does not rely on n

when the ϵ-sequence is constant. SRAT-E and SRAT-B perform similarly in terms of regrets on

both training and test sets, but SRAT-B has a lower false decision ratio on the training set. The

logarithms of their training and test regrets are approximately linear in log n, which is consistent

with our theory.

On the test set, AL-GP and RCT perform the best due to their full exploration in the training

process. LinUCB needs to fit the regression model of rewards and thus relies on both the main

effect and the treatment effect model. In addition, to estimate the upper confidence bound, it

needs an assumption on the inference model. With these limitations, the regret or false decision

ratio of LinUCB on the test set does not decrease. When n is small, the final ITR estimated by

LinUCB can sometimes be optimal since the true ITR is linear. However, the ITR converges to the

projection onto that of the linear total reward space when n is large and thus the average regret

gets pulled up. On the other hand, OWL tries to find the decision function that maximizes the

reward directly. It only requires a correct model of the treatment effect for consistency, without
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Figure 2.3: The weighted sum of training and test regrets in scenario 1 when n = 800.

any assumption on the main effect or the distribution of the error term. Therefore, SRATs with

ϵ0 = 0.1, θ = 1 outperform LinUCB on the test set when n is larger than 200.

We plot a weighted sum of training and test regrets in Figure 2.3 to show their balance.

Specifically, the weighted sum is defined as

λRegrettest + (1− λ)Regrettrain = λ
1

n

n∑
i=1

[V(f̂i−1)−Ri] + (1− λ)[V(f∗)− V(f̂n)]

for λ ∈ [0, 1], so that it equals the training regret when λ = 0 and equals the test regret when

λ = 1. The sample size is fixed at 800. The initial value of truncation parameter ϵ0 equals 0.1

and the decay parameter θ takes values in 0.01, 1 for SRAT-E and SRAT-B. The plot shows that

we should choose LinUCB when we consider the training regret only, and should choose AL-GP or

RCT when we consider the test regret only. However, if we want to consider the performance on

both the training and the test sets, we should choose SRAT-E or SRAT-B with θ = 1.

The change of SRAT-E with different parameters θ and sample size n is demonstrated in

Figure 2.4 for scenario 1. Since SRAT-B performs quite similarly to SRAT-E as shown in Figures 2.2

and 2.7, we omit it here to save space. The parameter θ can take values from 0.01, 0.1, 0.2, . . . , 1 and

n can take values from 100, 200, 400, 800. Note that only when ϵ0 = 0.5 and θ = 1, our algorithm

represents pure RCT. Thus we only illustrate our findings with ϵ0 = 0.5 here. Other ϵ0’s give

similar conclusion, and smaller ϵ0 means better training performance and worse test performance.
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Figure 2.4: Scenario 1 with ϵ0 = 0.5. The regret (logarithmic scale) and the false decision ratio on the
training or test set against parameter θ.

The values and standard errors of the mean regret and mean false decision ratio are shown. For

all sample sizes, the plots clearly show the tradeoff between training and test performance. Note

that when θ increases, ϵi increases for all i and the treatments are more randomized in the training

process. While the training regret increases with more randomization, the test regret decreases.

The false decision ratio shows a similar tendency. All the points with θ = 1 have an accuracy of 50%

on the training set, which indeed illustrates the pure randomization. In accordance with the theory,

the logarithm of training and test regrets are approximately linear in θ. In practice, the training

regret is more affected than the test regret by θ. As shown in Figure 2.4, when n = 800, the training

regret increases by e−1.27− e−2.93 = 0.227 while the test regret decreases by e−3.85− e−4.91 = 0.014

when θ increases from 0.01 to 1.

Using this simulation example, we can also illustrate how to find the sample size needed for

a clinical trial of certain purposes. Given different requirements for the trial and the population,

we need different sample sizes. Here we illustrate the situation when the proportion of patients

assigned the better treatments is required to reach a certain level in Figure 2.5 for SRAT-E in

scenario 1. Note that the variation trends of correct decision ratios against θ are opposite for the

training and test data. In particular, θ should be small enough so that the decision process is
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Figure 2.5: Sample size consideration for SRAT-E in scenario 1 with ϵ0 = 0.5. Correct decision ratios on
the test set against that on the training set. Each line represents a sample size n and each point on the line
represents a value of θ. Points to the right correspond to smaller θ, and thus lead to higher correct decision
ratio on the training set and lower ratio on the test set.

greedy on the training set, and in the meanwhile it should be large enough so that the final ITR is

efficient on the test set. It is clear that the two accuracies are negatively correlated. For example,

when we need the training ratio to be greater than 65%, θ ≤ 0.1 for n = 150, θ ≤ 0.2 for n = 200,

θ ≤ 0.3 for n = 250, θ ≤ 0.4 for n = 300, θ ≤ 0.4 for n = 350, θ ≤ 0.4 for n = 400, θ ≤ 0.5 for

n = 500, θ ≤ 0.5 for n = 600, θ ≤ 0.5 for n = 700, and θ ≤ 0.6 for n = 800 will all do. When

we need the test ratio to be greater than 86%, θ ≥ 0.8 for n = 300, θ ≥ 0.6 for n = 350, θ ≥ 0.4

for n = 400, θ ≥ 0.2 for n = 500, θ ≥ 0.1 for n = 600, any θ for n = 700, and any θ for n = 800

all satisfy the requirement. However, only points lie in the top right rectangle marked by the two

dot-dashed lines meet the two requirements simultaneously. The smallest sample size among these

points is n = 400, with θ = 0.4. Other levels of the correct decision ratios and their required sample

sizes are listed in Table 2.1. Since larger θ generates better ITR and ITR is our ultimate goal, we

report the largest θ corresponding to the minimum sample size required.
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Test
Training

0.74 0.78 0.82 0.86 0.90

0.49 50(1.0) 100(1.0) 150(1.0) 300(1.0) 800(1.0)
0.55 50(0.6) 100(0.7) 150(0.7) 300(0.8) 800(0.8)
0.60 50(0.1) 100(0.3) 200(0.6) 350(0.6)
0.65 150(0.1) 150(0.1) 250(0.3) 400(0.4)
0.70 350(0.01) 350(0.01) 350(0.01) 500(0.2)

Table 2.1: Clinical trial sample sizes needed for different requirements of correct decision ratios on the
training and test sets.

2.6 Real Data Analysis

We use a real study to illustrate the performance of the proposed method. The Nefazodone-

CBASP trial was designed to compare the efficacy of several treatment options for patients with

nonpsychotic chronic major depressive disorder (MDD) (Keller et al., 2000). Specifically, 681

outpatients were randomized to either Nefazodone, Cognitive Behavioral-Analysis System of Psy-

chotherapy (CBASP), or the combination of Nefazodone and CBASP with equal probabilities. The

primary outcome was the score on the 24-item Hamilton Rating Scale for Depression (HRSD). Lower

HRSD scores indicate satisfactory therapeutic efficacy. T -tests have shown that the combination

treatment generated significantly lower HRSD scores than the other two treatments, and there are

no significant differences between the Nefazodone group and the CBASP group. However, CBASP

requires two onsite visits to the clinic weekly, which burdens patients compared with Nefazodone

alone. Consequently, we want to investigate whether CBASP is necessary for all patients. Here we

compare Nefazodone with the combination treatment only. We consider three feature variables for

treatment suggestions: the baseline HRSD scores, the alcohol dependence, and the HAMA somatic

anxiety scores, following Minsker et al. (2016), which referred to Gunter et al. (2007). There were

436 patients with complete information on treatments, rewards and feature variables, among which

216 were randomized to Nefazodone and 220 belonged to the combined treatment group.

To simulate an adaptive clinical trial, we first generate a treatment suggestion based on the

tailoring variables of the next patient using our algorithm. If the actual treatment taken is consistent

with our suggestion, we take down the whole record of this patient, including feature variables, the

treatment and the reward; otherwise, we drop this record and move on to the next. Note that the
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Figure 2.6: Mean cross-validated HRSD scores against the sample size n.

first n0 suggestions are given with equal probabilities on each treatment. Five-fold cross validation

is used here to avoid overfitting. Specifically, the data set is partitioned into five parts randomly.

Four of the five parts are used iteratively as training data to apply our algorithm in generating the

treatment suggestion. The last part is used as the test set to evaluate the ITR. The performance

on the test data is evaluated using an unbiased estimator of the value function V(f) (Qian and

Murphy, 2011; Minsker et al., 2016)

n∑
i=1

Ri1 rAi = sign{f(Xi)}s
πi(Ai;Xi)

O

n∑
i=1

1 rAi = sign{f(Xi)}s
πi(Ai;Xi)

.

Here the rewards Ri’s are defined as the negative HRSD scores.

The initial sample size n0 is fixed at 50. The recruitment stops when the sample size n

reaches 100, or the training data run out. We average the mean reward on each test fold for

n = 10, 20, . . . , 100. The process is repeated 1, 000 times. Finally, the means and standard errors

of means across all iterations are reported. From Section 2.5, we know that the training and test

values are monotone in ϵ0 and θ. Therefore, we only demonstrate the situation when ϵ0 = 0.1 and

θ = 0.01, 1. The contextual bandit algorithm LinUCB and the active clinical trial method AL-GP
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are also compared here. Figure 2.6 displays the negative mean rewards, that is, the mean cross

validated HRSD scores, against the sample size n. Lower scores are more satisfactory.

On the training set, LinUCB produces the least HRSD scores on the training set and SRAT-B

with ϵ = 0.1, θ = 0.01 is the second best. Note that LinUCB can be viewed as a limiting case of

SRAT-B on the training set as discussed before, and is actually the greediest among the algorithm

family. Patients taking purely randomized treatments suggested by RCT and AL-GP have higher

HRSD scores. On the test set, RCT produces the most desirable HRSD score, followed by SRAT-B

with θ = 1. LinUCB is slightly worse due to its greediness. AL-GP is not competitive on both sets,

maybe because the nonparametric method is not efficient when the sample size is small.

2.7 Discussion

Our goal is to construct an efficient ITR, and in the meantime make the data collection process,

the clinical trial, as beneficial to the patients as possible. We propose a classification-based bandit

algorithm, SRAT, that uses OWL to update the ITR and ϵ-greedy or a variation of Boltzmann

exploration for exploration. This is a work of finding the tradeoff between the ethics of patients

involved in the clinical trial and the general population. We also present a new theoretical analysis

tool based on empirical process for estimating finite sample risk bound on martingale sequences.

Given different requirements of training and test performance, the sample size needed is illustrated

by simulation.

In this chapter, we assume that the true optimal decision function lies in the function class

where we search for the estimated function, and proved a n−1/2 convergence rate of test regret up

to logarithmic factors for a constant {ϵi}ni=1 sequence. If tailoring variables have high dimensions, a

penalty term can be added in finding the optimal solution to avoid overfitting. For i.i.d. data, when

Gaussian kernel is used with a penalty term and the optimal function need not be in the function

class, Steinwart and Scovel (2007) proved a rate faster than n−1/2 for SVM under Tsybakov’s

noise assumption and geometric noise assumption, and Zhao et al. (2012) proved a rate a little bit

slower than n−1/2 for OWL under the geometric noise assumption. How to extent these ideas to

sequentially generated data is still an open question.
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Currently, the estimated ITR is updated after each trial. However, it can be a burden on the

computation resources and running time if the algorithm runs slowly or the sample size is too

large. Batch sampling is an efficient approach that worths investigation. Apart from accelerating

the training process, it also allows in-time evaluation of the current estimated optimal ITR. Part

of the batch can be drew randomly as a test set. How the estimation improves through time can

be recorded as well.

Another interesting question is how to set up an early stopping rule. We can stop enrolling new

patients into a clinical trial if the learnt ITR is good enough. This can be done by constructing

a confidence interval for the estimated value of the learnt ITR. If we have enough confidence that

the estimated value is satisfactory in the clinical sense, we can stop the trial at this point. Future

work is needed on constructing a confidence interval for sequentially generated data.

This article focuses on a single-stage problem. However, it is widely recognized that some dis-

eases require multiple treatments throughout the therapeutic session. For example, the sequential

multiple assignment randomized trial (SMART) is a way of connecting potential outcomes with

observed data (Lavori and Dawson, 2000; Murphy, 2005a; Murphy et al., 2007). Patients are ran-

domized at every decision point. An abundance of literature has discussed this issue on independent

data (Zhao et al., 2015; Liu et al., 2018b). Problems on infinite horizon can be solved with addi-

tional Markovian assumptions and offline data (Luckett et al., 2020). However, multi-stage decision

problems with slack constraints on the value function or with online data still worth investigation.

2.8 Supplementary Materials

2.8.1 Preliminaries

We provide useful lemmas used for proving our main theorems, among which Lemmas 2.8.1

to 2.8.4 are quoted from existing literature without proof.

Talagrand’s inequality (Talagrand, 1994; Bousquet, 2002) below is used to prove the convergence

rate in Theorem 2.3.1 for i.i.d. data in the pilot trial. The following version is taken from Steinwart

and Scovel (2007, Theorem 5.3).

Lemma 2.8.1 (Talagrand’s inequality). Assume {Xi}ni=1 are independent X -valued random vari-

ables on P. Let F be a countable set of functions from X to R and assume that all functions f in F
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are P-measurable, square-integrable such that ∥f∥∞ ≤ U <∞ and E[f(X1)] = · · · = E[f(Xn)] = 0.

Let Z := supf∈F
∑n

i=1 f(Xi), µ
∗ := EZ and let σ2 be a positive real number such that σ2 ≥

1
n

∑n
i=1 supf∈F Var[f(Xi)]. Then for all δ ≥ 0,

P
´

Z ≥ 3µ∗ +
?
2δσ2n+ Uδ

¯

≤ e−δ.

The following lemma gives an analogy of Talagrand’s inequality on martingale processes. A

Z-valued tree z of depth n is a rooted complete binary tree with nodes generated by elements of

Z. The tree z = (z1, . . . ,zn) is a sequence of labeling functions such that zi : {±1}i−1 7→ Z.

Let η = (η1, . . . , ηn) be a sequence of i.i.d. Rademacher random variables. Then the sequential

Rademacher complexity of a function class F ⊂ RZ on a Z-valued tree z is defined as

Rn(F , z) := E

«

sup
f∈F

1

n

n∑
i=1

ηif(zi(η))

ff

.

Further, define

Rn(F) := sup
z
Rn(F , z),

and Rakhlin et al. (2015) showed that

1

2
E sup
f∈F

Mn(f) ≤ Rn(F) ≤ 2 sup
P

E sup
f∈F

Mn(f) +
D

2
?
n
, (2.8)

where D = infz∈Z supf,f ′∈F [f(z) − f ′(z)] ≥ 0. This indicates that Rn(F) and the expectation of

the martingale process suprema supP E supf∈F Mn(f) are on the same scale.

The covering numbers are also extended to sequential data. A set V of R-valued trees of depth

n is a (sequential) ϵ-cover with respect to Lp-norm of F ⊂ RZ on a tree z of depth n if for any

f ∈ F and any η ∈ {±1}n, there exists v ∈ V such that
`

1
n

∑n
i=1 |vi(η)− f(zi(η))|

p˘1/p ≤ ϵ. The

sequential covering number of a function class F on a given tree z is defined as

Np(ϵ,F , z) = min {|V | : V is an ϵ-cover with respect to Lp-norm of F on z} .

Moreover, define the maximal Lp covering number of F over depth-n trees as Np(ϵ,F , n) =

supzNp(ϵ,F , z).
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Lemma 2.8.2 (Lemma 15 in Rakhlin et al. 2015). For F ⊂ [−1, 1]Z , for n ≥ 2 and any t > 0, we

have that

P

˜

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Zi)− Ei−1f(Zi)

∣∣∣∣∣ > t

¸

≤ 8L exp

ˆ

− t2

c log3 nR2
n(F)

˙

(2.9)

under the mild assumptions Rn(F) ≥ 1/n and N∞(2−1,F , n) ≥ 4. Here c is an absolute constant

and L > e4 is such that L >
∑∞

j=1N∞(2−j ,F , n)−1.

From the above lemma, we can see that the concentration inequality essentially relies on the

sequential Rademacher complexity Rn(F), which can be upper and lower bounded by functions of

E supf∈F Mn(f).

To obtain a bound on the suprema of martingale process over a finite set, we take use of a

martingale inequality and a conclusion about Lψ-Orlicz norm. Freedman’s inequality is an extension

of Bernstein’s inequality to martingale difference sequences.

Lemma 2.8.3 (Freedman’s inequality, Freedman 1975). Suppose {Xi}i≥1 is a Gi-adapted martin-

gale difference sequence and Sn =
∑n

i=1Xi. Then for all t > 0,

P(Sn ≥ t) ≤ exp

{
−1

2

t2

∥⟨S⟩n∥∞ +maxi ∥Xi∥∞ t/3

}
,

where ⟨S⟩n =
∑n

i=1 E
`

X2
i |Gi−1

˘

is the quadratic variation of S.

The following lemma gives a bound on the expectation of suprema over a finite set using

Lψ-Orlicz norm.

Lemma 2.8.4 (Van der Vaart and Wellner 1996). Suppose that X1, . . . , Xn are arbitrary random

variables satisfying the probability tail bound

P(|Xi| > t) ≤ 2 exp

{
−1

2

t2

d+ cx

}
,

for all t > 0 and i = 1, . . . , n for fixed positive numbers c and d. Then there is a universal K <∞

so that ∥∥∥∥max
1≤i≤n

|Xi|
∥∥∥∥
ψ1

≤ K
{
cLog n+

?
d

a

Log n
}
,

where the Lψ-Orlicz norm is defined as ∥X∥ψ = inf {c > 0 : Eψ(|X| /c) ≤ 1} for any random vari-

able X, and ψp = ex
p − 1 is a Young modulus for each p ≥ 1.
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The following inequality is a key step in the proof of Lemma 2.3.2. It bounds the expectation

of the suprema of a martingale process over a finite set, after which the bound on a general set can

be derived.

Corollary 2.8.5. Suppose {Xi}i≥1 is a X -valued, Gi-adapted martingale difference sequence. For

any finite set F : X 7→ R,

E
∥∥?

nMn

∥∥
F À

1
?
n
max
f∈F
∥f∥∞ Log |F|+ 1

?
n
max
f∈F

b

∥⟨M⟩n∥∞
a

Log |F|,

where ⟨M⟩n =
∑n

i=1Var[f(Xi)|Gi−1].

Proof. First we rewrite Lemma 2.8.3 in the form of a martingale process. For a Gi-adapted sequence

{Yi}i≥1, take E[f(Yi)|Gi−1]−f(Yi) as Xi in Lemma 2.8.3, which is a martingale difference sequence.

The supremum term can be bounded as ∥E[f(Yi)|Gi−1]− f(Yi)∥∞ ≤ 2 ∥f∥∞. Scale both sides by a

factor of
?
n and we get

P(
∣∣?nMn(f)

∣∣ > t) ≤ 2 exp

{
−1

2

t2

∥⟨M⟩n∥∞ /n+ 2 ∥f∥∞ t/(3
?
n)

}
, (2.10)

where t > 0 and ⟨M⟩n =
∑n

i=1Var[f(Yi)|Gi−1]. The result follows by applying the inequality (2.10)

to Lemma 2.8.4 and expand the Lψ-Orlicz norm.

The following lemma shows how the dependence of πi on f̂i−1 can be canceled by the sampling

probability so that it reduces to a constant term.

Lemma 2.8.6. Under our problem settings, remember that the covariates Xi are i.i.d. Besides,

Gi is defined as σ{Hi}, i ∈ N and f̂i−1 is the estimated ITR based on Hi−1. For any function

G : X 7→ R, we have

E
„

G(Xi)

πi(Ai;Hi−1,Xi)

ȷ

= E
„

G(Xi)

πi(Ai;Hi−1,Xi)

ˇ

ˇ

ˇ

ˇ

Gi−1

ȷ

= 2E[G(Xi)], (2.11)

E
„

G(Xi)

π2i (Ai;Hi−1,Xi)

ȷ

= E
„

G(Xi)

π2i (Ai;Hi−1,Xi)

ˇ

ˇ

ˇ

ˇ

Gi−1

ȷ

≤
ˆ

1

ϵi
+

1

0.5

˙

E[G(Xi)]. (2.12)
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Proof. For the first equation (2.11), notice that by tower property and the definition of Ii,

E
„

G(Xi)

πi(Ai;Hi−1,Xi)

ˇ

ˇ

ˇ

ˇ

Gi−1

ȷ

=E

{
G(Xi)E

«

1 pIi = 1q

πi(f̂i−1(Xi);Hi−1,Xi)
+

1 pIi = −1q

πi(−f̂i−1(Xi);Hi−1,Xi)

ˇ

ˇ

ˇ

ˇ

ˇ

Xi,Gi−1

ffˇ

ˇ

ˇ

ˇ

ˇ

Gi−1

}

We have that πi(f̂i−1(Xi);Hi−1,Xi) is a fixed function of Hi−1,Xi and that it equals

E[1 pIi = 1q |Hi−1,Xi]. It is also true for the second term in the bracket. Therefore, the right-

hand side equals E r2G(Xi)|Gi−1s. The result follows from the assumption that Xi is independent

of the history. The first equality in (2.11) can be proved by taking expectation of both sides of the

equation.

Similarly, when G is divided by the square term of πi in (2.12),

E
„

G(Xi)

π2i (Ai;Hi−1,Xi)

ˇ

ˇ

ˇ

ˇ

Gi−1

ȷ

=E

{
G(Xi)E

«

1 pIi = 1q

π2i (f̂i−1(Xi);Hi−1,Xi)
+

1 pIi = −1q

π2i (−f̂i−1(Xi);Hi−1,Xi)

ˇ

ˇ

ˇ

ˇ

ˇ

Xi,Gi−1

ff
ˇ

ˇ

ˇ

ˇ

ˇ

Gi−1

}

=E

{
G(Xi)

«

1

πi(f̂i−1(Xi);Hi−1,Xi)
+

1

πi(−f̂i−1(Xi);Hi−1,Xi)

ffˇ

ˇ

ˇ

ˇ

ˇ

Gi−1

}
.

Since one of πi(f̂i−1(Xi);Hi−1,Xi) and πi(−f̂i−1(Xi);Hi−1,Xi) must be lower bounded by 0.5

and the other one is lower bounded by ϵi, the inequality follows. Now for the first term in (2.12),

its upper bound can be proved by taking expectation of both sides of the inequality.

2.8.2 Proof of Lemma 2.3.2

The proof essentially follows the proof of Van der Vaart and Wellner (1996, Theorem 2.5.6),

the bracketing entropy Donsker theorem, with an extension to martingale sequences.

In this proof, we assume that there exists a constant τ2 such that the second conditional moment

E(R2|X, A) ≤ τ2. This also implies that the conditional variance Var(R|X, A) is bounded by τ2.

However, we will show that τ2 does not appear in the dominating term of the final bound.

Proof. Define L2,∞(P) norm as ∥f∥P,2,∞ = supx>0[x
2P(|f(X)| > x)]1/2. Note that L2,∞(P) norm

is not actually a norm, but it can be shown that there is a norm equivalent to it up to a constant
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multiple. The assumption (2.4) implies that

∫ ∞

0

b

logN[](η,F , L2,∞(P))dη +
∫ ∞

0

a

logN(η,F , L2(P))dη <∞,

because ∥f∥P,2 ≥ ∥f∥P,2,∞ for any measurable function f , and we have N[](η,F , L2(P)) ≥

N(η,F , L2(P)) for any function class F .

For each positive integer q, define a bracketing number N1
q := N[](2

−q,F , L2,∞(P)) and a

covering number N2
q := N(2−q,F , L2(P)). Then there are two partitions {Fqj}

N1
q

j=1 and {Fqk}
N2

q

k=1 of

F into disjoint sets such that
∑

q 2
−q

b

logN1
q <∞ and

∑
q 2

−q
b

logN2
q <∞. Take intersection of

the two partitions that correspond to the bracketing number and covering number respectively. The

total number of sets will be Nq := N1
qN

2
q and this joint partition {Fqj}

Nq

j=1 satisfies the combined

conditions:

∑
q

2−q
a

logNq <∞, (2.13)∥∥∥∥∥( sup
f,g∈Fqj

|f − g|)∗
∥∥∥∥∥
P,2,∞

< 2−q, ∀j ∈ {1, . . . , Nq} , (2.14)

sup
f,g∈Fqj

∥f − g∥P,2 < 2−q, ∀j ∈ {1, . . . , Nq} . (2.15)

Furthermore, the sequence of partitions can be chosen to be nested. To see this, consider a sequence

of partitions
{
F̄qj

}N̄q

j=1
that are possibly not nested. Take the partition at stage q to consist of all

intersections of the form
⋂q
p=1 F̄p,ip . Then this generates Nq = N̄1 . . . N̄q sets. Conditions (2.13) -

(2.15) continue to hold since (log
∏q
p=1 N̄p)

1/2 ≤
∑q

p=1(log N̄p)
1/2.

Now for each q, fix a function fqj ∈ Fqj to be the representative of the set Fqj and let ξ be the

function of choosing the representative. In addition, let ∆ be the function of finding the “size” of

the set that a function belongs to. Then we have

ξqf :=
∑
j

I(f ∈ Fqj)fqj , and ∆qf :=
∑
j

I(f ∈ Fqj) sup
f1,f2∈Fqj

|f1 − f2|∗ .
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For the weighted function hf of f , define

ξqh
f := hξqf , and ∆qh

f :=
∑
j

I(f ∈ Fqj) sup
f1,f2∈Fqj

∣∣∣hf1 − hf2∣∣∣∗ .
Note that ∆qh

f =
∑

j I(f ∈ Fqj) supf1,f2∈Fqj

∣∣gf1 − gf2∣∣∗ and |ϕ(Af1)− ϕ(Af2)| ≤ |f1 − f2| since

ϕ(Af) is Lipschitz 1 with respect to f . Hence we obtain that |Ri|∆qh
f (Zi) ≤ ∆qf(Xi)/πi(Ai; f̂i−1).

Note that ξqh
f and ∆qh

f form sets of only Nq functions when hf ranges over F . We will actually

approximate each hf with ξqh
f and ∆qh

f . While F may be infinite, ξqh
f and ∆qh

f run over finite

sets.

Let Log(x) := 1 + log(x). For each fixed n and q0, define truncation levels aq and indicator

functions Aq, Bq for q ≥ q0 as

aq = 2−q/
a

LogNq+1, ∀q ≥ q0,

Aq−1f = 1
{
∆q0f ≤

?
naq0 , . . . ,∆q−1f ≤

?
naq−1

}
, ∀q > q0,

Bqf = Aq−1f1
{
∆qf >

?
naq

}
, ∀q > q0,

Bq0f = 1
{
∆q0f >

?
naq0

}
.

Since the partitions are nested, the functions Aq and Bq are constants in f on each set Fqj in level

q. The key observation here is that

hf − ξq0hf = (hf − ξq0hf )Bq0f +
∞∑

q=q0+1

(hf − ξqhf )Bqf +

∞∑
q=q0+1

(ξqh
f − ξq−1h

f )Aq−1f (2.16)

pointwise in x. To see this, note that either Bqf = 0 for all q or there is a unique q1 such that

Bqf = 1. In the former case, the first two terms are all zero and the third term has canceling

components and converges to f − ξq0f . In the latter case, the right-hand side of (2.16) is equivalent

to hf − ξq1hf +
∑q1

q=q0+1(ξqh
f − ξq−1h

f ), and the result follows.
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Write ∥Mn(f)∥F as the supremum of |Mn(f)| as f ranges over F . Then E∗ supf∈F Wn(f) can

be bounded as

E∗ ∥∥?
nWn(f)

∥∥
F ≤E

∗
∥∥∥?

nMn(h
f − ξq0hf )Bq0f

∥∥∥
F

(2.17)

+ E∗

∥∥∥∥∥∥
∞∑

q=q0+1

?
nMn(h

f − ξqhf )Bqf

∥∥∥∥∥∥
F

(2.18)

+ E∗

∥∥∥∥∥∥
∞∑

q=q0+1

?
nMn(ξqh

f − ξq−1h
f )Aq−1f

∥∥∥∥∥∥
F

(2.19)

+ E∗
∥∥∥?

nMnξq0h
f
∥∥∥
F
. (2.20)

To bound the first term (2.17), note that for any function class H with some envelope function

H, |Mn(h)| ≤ 1
n

∑n
i=1(Ei−1H(Zi) +H(Zi)) for all h ∈ H. Then we have

E∗ ∥Mn(h)∥H ≤ E∗

∥∥∥∥∥ 1n
n∑
i=1

Ei−1H(Zi) +H(Zi)

∥∥∥∥∥
H

=
2

n

n∑
i=1

E∗H(Zi).

An envelope function of (hf − ξq0hf )Bq0f is

|Ri|
πi(Ai;Hi−1,Xi)

∣∣∣hf − ξq0hf ∣∣∣Bq0f ≤ r

πi(Ai;Hi−1,Xi)
2F1

{
2F >

?
naq0

}
by the definitions of envelope function F and indicator function Bq0 . Therefore,

E∗
∥∥∥?

nMn(h
f − ξq0hf )Bq0f

∥∥∥
F
≤ 2

?
n

n∑
i=1

E∗ r

πi(Ai;Hi−1,Xi)
2F (Xi)1

{
2F (Xi) >

?
naq0

}
=

4r
?
n

n∑
i=1

E∗2F (Xi)1
{
2F (Xi) >

?
naq0

}
≤ 4r

aq0
E∗ “

(2F )21
{
2F >

?
naq0

}‰

À
r

aq0
∥F∥2P,2 .
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The equality comes from Lemma 2.8.6 and the third line is true since Xi’s are i.i.d. Choose q0 such

that 2−q0 = δ ∥F∥P,2 for some δ > 0. Then

E∗
∥∥∥?

nMn(h
f − ξq0hf )Bq0f

∥∥∥
F

À r2−q0
a

LogNq0 . (2.21)

For any function class H with some envelope function H, we can bound |Mnh| by

1
n

∑n
i=1(Ei−1H + H) = −MnH + 2

n

∑n
i=1 Ei−1H for any h ∈ H. Since

∣∣(hf − ξqhf )Bqf ∣∣ ≤
|Ri|∆qfBqf/πi(Ai; f̂i−1), the second term (2.18) can be bounded by

E∗

∥∥∥∥∥∥
∞∑

q=q0+1

?
nMn(h

f − ξqhf )Bqf

∥∥∥∥∥∥
F

=
∞∑

q=q0+1

E∗
∥∥∥∥?

nMn
|Ri|

πi(Ai;Hi−1,Xi)
∆qfBqf

∥∥∥∥
F

+

∞∑
q=q0+1

2
?
nE∗

∥∥∥∥∥ 1n
n∑
i=1

Ei−1
|Ri|

πi(Ai;Hi−1,Xi)
∆qfBqf

∥∥∥∥∥
F

.

(2.22)

By Corollary 2.8.5, for each q in the first term in (2.22), the expectation can be split into two parts:

E∗
∥∥∥∥?

nMn
|Ri|

πi(Ai;Hi−1,Xi)
∆qfBqf

∥∥∥∥
F

À
1

?
n
max
f∈F

∥∥∥∥ |Ri|
πi(Ai;Hi−1,Xi)

∆qfBqf

∥∥∥∥
∞
LogNq

+
1

?
n
max
f∈F

g

f

f

e

∥∥∥∥∥
n∑
i=1

Var

„

|Ri|
πi(Ai;Hi−1,Xi)

∆qfBqf

ˇ

ˇ

ˇ

ˇ

Gi−1

ȷ

∥∥∥∥∥
∞

a

LogNq.

Since ∆qfBqf ≤ ∆q−1fAq−1f ≤
?
naq−1, the L∞ term in the first part can be bounded by

∥∥∥∥ |Ri|
πi(Ai;Hi−1,Xi)

∆qfBqf

∥∥∥∥
∞
≤ r

ϵn

?
naq−1 (2.23)
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for any f ∈ F . For the second part, by the assumption of the second conditional moment,

∥∥∥∥∥
n∑
i=1

Var

„

|Ri|
πi(Ai;Hi−1,Xi)

∆qfBqf

ˇ

ˇ

ˇ

ˇ

Gi−1

ȷ

∥∥∥∥∥
∞

≤
n∑
i=1

∥∥∥∥E „

τ2

π2i (Ai;Hi−1,Xi)
∆2
qfB

2
qf

ˇ

ˇ

ˇ

ˇ

Gi−1

ȷ∥∥∥∥
∞

≤
n∑
i=1

∥∥∥∥ˆ

1

ϵi
+

1

0.5

˙

E
`

τ2∆2
qfB

2
qf

˘

∥∥∥∥
∞
.

(2.24)

The last inequality comes from Lemma 2.8.6. For any non-negative random variable X, we have

the inequality ∥X∥22,∞ ≤ supt>0 tE rX1(X > t)s ≤ 2 ∥X∥22,∞. Then

?
naqE p∆qfBqfq ≤

?
naqE

`

∆qf1(∆qf >
?
naq)

˘

≤ 2 ∥∆qf∥2P,2,∞ ≤ 2 · 2−2q. (2.25)

Since ∆qfBqf is bounded by
?
naq−1 for q > q0, it follows that

E
`

∆2
qfB

2
qf

˘

≤
?
naq−1E p∆qfBqfq ≤ 2

aq−1

aq
2−2q.

Using Lemma 2.8.6 again and the inequality (2.25), the second term in (2.22) can be bounded as

E∗

∥∥∥∥∥ 1n
n∑
i=1

Ei−1
|Ri|

πi(Ai;Hi−1,Xi)
∆qfBqf

∥∥∥∥∥
F

≤ 1

n

n∑
i=1

E∗ ∥2rE p∆qfBqfq∥F ≤ 4r
1

?
naq−1

2−2q.

(2.26)

Now apply the above bounds (2.23), (2.24), (2.26) on (2.18) to find

E∗

∥∥∥∥∥∥
∞∑

q=q0+1

?
nMn(h

f − ξqhf )Bqf

∥∥∥∥∥∥
F

À

∞∑
q=q0+1

»

–

1
?
n

r

ϵn

?
naq−1 LogNq +

1
?
n

g

f

f

e2τ2
n∑
i=1

ˆ

1

ϵi
+

1

0.5

˙

aq−1

aq
2−2q

a

LogNq

+
?
n4r

1
?
naq−1

2−2q

ȷ

À

∞∑
q=q0+1

»

–

r

ϵn
+ τ

g

f

f

e

1

n

n∑
i=1

1

ϵi
+ r

fi

fl 2−q
a

LogNq.

(2.27)
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The last inequality comes from the fact that aq−1/aq ≤ (aq−1/aq)
2 for decreasing aq.

To handle the third term (2.19), first note that it is bounded by

∞∑
q=q0+1

E∗
∥∥∥∥?

nMn
|Ri|

πi(Ai;Hi−1,Xi)
∆q−1fAq−1f

∥∥∥∥
F
,

since the partition is nested. Then we can use Corollary 2.8.5 as in the bound of the second term

(2.18). The maximum of L∞ norm over F in the first part is upper bounded by r
?
naq−1/ϵn. For

the second part, use Lemma 2.8.6 and assumption (2.15) to find

∥∥∥∥∥
n∑
i=1

Var

„

|Ri|
πi(Ai;Hi−1,Xi)

∆q−1fAq−1f

ˇ

ˇ

ˇ

ˇ

Gi−1

ȷ

∥∥∥∥∥
∞

≤

∥∥∥∥∥
n∑
i=1

E
„

τ2

π2i (Ai;Hi−1,Xi)
∆2
q−1f

ˇ

ˇ

ˇ

ˇ

Gi−1

ȷ

∥∥∥∥∥
∞

≤τ2
n∑
i=1

ˆ

1

ϵi
+

1

0.5

˙ ∥∥E∆2
q−1f

∥∥
∞

≤τ2
n∑
i=1

ˆ

1

ϵi
+

1

0.5

˙

(2−q+1)2.

Combining the two parts together, we have

E∗

∥∥∥∥∥∥
∞∑

q=q0+1

?
nMn(ξqh

f − ξq−1h
f )Aq−1f

∥∥∥∥∥∥
F

À

∞∑
q=q0+1

»

–

1
?
n

r

ϵn

?
naq−1 LogNq +

1
?
n

g

f

f

e2τ2
n∑
i=1

ˆ

1

ϵi
+

1

0.5

˙

2−2q+2
a

LogNq

fi

fl

À

∞∑
q=q0+1

»

–

r

ϵn
+ τ

g

f

f

e

1

n

n∑
i=1

1

ϵi

fi

fl 2−q
a

LogNq.

(2.28)

For the last term (2.20), consider two cases on whether the envelope function F is bounded by

?
naq0 or not. Apply Corollary 2.8.5 in the first case. With the supremum part bounded by

∥∥∥ξq0hf1 `

F ≤
?
naq0

˘

∥∥∥
∞
≤ r

ϵn

∥∥2F1 `

F ≤
?
naq0

˘∥∥
∞ ≤

2r

ϵn

?
naq0
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and the conditional variance part bounded by

∥∥∥∥∥
n∑
i=1

Var
`

ξq0h1
`

F ≤
?
naq0

˘ˇ

ˇGi−1

˘

∥∥∥∥∥
∞

≤ τ2
n∑
i=1

ˆ

1

1− ϵi
+

1

ϵi

˙

∥F∥2P,2 ,

we have

E∗
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nMnξq0h
f
1

`
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naq0

˘
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F

À
1

?
n
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?
naq0 LogNq0 +

1
?
n

g

f

f

eτ2
n∑
i=1

ˆ

1

ϵi
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1

0.5

˙

∥F∥2P,2
a

LogNq0
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r

ϵn
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LogNq0 + τ
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f

f

e

1

n

n∑
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1
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∥F∥P,2

a

LogNq0 .

In the second case, since ξq0h
f
1 pF >

?
naq0q is bounded by 2r

ϵn
F1 pF >

?
naq0q,

E∗
∥∥∥?

nMnξq0h
f
1

`

F >
?
naq0

˘

∥∥∥
F

À
r

aq0
∥F∥2P,2

by the same argument in the bounds for (2.21). Therefore, by applying the triangle inequality and

choosing q0 so that 2−q0 = δ ∥F∥P,2 for some constant δ > 0,

E∗
∥∥∥?

nMnξq0h
f
∥∥∥
F
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fi

fl 2−q0
a

LogNq0 ,

(2.29)

where Nq0 = N[](δ ∥F∥P,2 ,F , L2(P)).

Finally, we obtain

E∗ ∥∥?
nWn(f)
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F À
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J[](∥F∥P,2 ,F , L2(P))
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by combining the four upper bounds (2.21), (2.27), (2.28) and (2.29).

2.8.3 Proof of Theorem 2.3.1

Using Lemma 2.8.2 and Lemma 2.3.2, we can give our proof of Theorem 2.3.1. Apart from

applying the bound on the expectation of supremum to the concentration inequality of martingale

process, we also combine the pilot trial with the main trial which follows the adaptive design.

Proof. First note that V(f∗) − V(f) = Esign{f∗}(R) − Esign{f}(R), which is the opposite of excess

0-1 risk. For the initial n0 i.i.d. observations, we know that the excess 0-1 risk is bounded by excess

ϕ-risk, that is,

Ehf (Z(0)
i ) ≥ Esign{f∗}(Ri)− Esign{f}(Ri)

for any i = 1, . . . , n0 and any measurable f by Theorem 3.2 in Zhao et al. (2012). For sequentially

generated data {Zi}ni=1, note that conditioning on Gi−1,

Ei−1h
f (Zi) =E

ˆ

Riϕ(Aif)

πi(Ai;Hi−1,Xi)

ˇ

ˇ

ˇ

ˇ

Gi−1

˙

− E
ˆ

Riϕ(Aif
∗)

πi(Ai;Hi−1,Xi)

ˇ

ˇ

ˇ

ˇ

Gi−1

˙

≥E
ˆ

Ri1{Ai ̸= sign{f}}
πi(Ai;Hi−1,Xi)

ˇ

ˇ

ˇ

ˇ

Gi−1

˙

− E
ˆ

Ri1 {Ai ̸= sign{f∗}}
πi(Ai;Hi−1,Xi)

ˇ

ˇ

ˇ

ˇ

Gi−1

˙

=Esign{f∗}(Ri)− Esign{f}(Ri)

for any i = 1, . . . , n and any measurable f . The inequality can be proved similarly as in the i.i.d.

case of Theorem 3.2 in Zhao et al. (2012), but with a condition on Gi−1. Therefore, the value

function difference V(f∗)− V(f̂n) is upper bounded by

1

n0 + n

«

n0∑
i=1

Ehf̂n(Z(0)
i ) +

n∑
i=1

Ei−1h
f̂n(Zi)

ff

.

In SRAT, f̂n should be minimizing
∑n0

i=1 g
f (Z

(0)
i ) +

∑n
i=1 g

f (Zi), so we have

n0∑
i=1

hf̂n(Z
(0)
i ) +

n∑
i=1

hf̂n(Zi) ≤ 0.
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It follows that

V(f∗)− V(f̂n)

≤ 1

n0 + n

«

n0∑
i=1

Ehf̂n(Z(0)
i ) +

n∑
i=1

Ei−1h
f̂n(Zi)−

n0∑
i=1

hf̂n(Z
(0)
i )−

n∑
i=1

hf̂n(Zi)

ff

≤ sup
f∈F

1

n0 + n

«

n0∑
i=1

”

Ehf (Z(0)
i )− hf (Z(0)

i )
ı

+

n∑
i=1

”

Ei−1h
f (Zi)− hf (Zi)

ı

ff

.

(2.30)

Now it suffices to bound the right-hand side of (2.30).

We will use Lemma 2.8.2 to bound the martingale part. First we test the conditions of

the lemma. Since Rn(F) and supP E supf∈F Mn(f) are on the same scale and the latter one

supP E supf∈F Mn(f) is in the order of 1/
?
n, the first assumption in Lemma 2.8.2 is satisfied. The

second one can be satisfied when taking a large class F , for example, a linear class with parameters

bounded loosely.

Let H(F) be the class of functions constructed by hf as f ranges over F . According to (2.8),

Rn(H(F)) ≤ 2 sup
P

E sup
f∈F

Wn(f) +
D

2
?
n
,

where D = infz∈Z suphf ,hf ′∈F [h
f (z) − hf ′(z)] ≥ 0. Since R and hf can take value zero, D = 0

here. Therefore, Rn(H(F)) is bounded by rJ[](∥F∥P,2 ,F , L2(P))/(
?
nϵn) up to a constant by

Lemma 2.3.2. Since Ei−1h
f (Zi)− hf (Zi) is upper bounded by 2rb/ϵn for all i and all f ∈ F , scale

(2.9) and we get

P

˜

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

”

Ei−1h
f (Zi)− hf (Zi)

ı

∣∣∣∣∣ > t

¸

≤ 8L exp

{
− nϵ4n
log3 n

t2

Cr4b2J2

}

for some constant C and any t > 0. In other words,

P

˜

sup
f∈F

∣∣∣∣∣
n∑
i=1

”

Ei−1h
f (Zi)− hf (Zi)

ı

∣∣∣∣∣ > C
r2bJ

ϵ2n

b

n log3 nδ

¸

≤ e−δ (2.31)

for some constant C and any δ > 0.

To derive a bound for the initial randomized treatments of size n0, we will take use of a variant

of Talagrand’s inequality (Talagrand, 1994) in Lemma 2.8.1, which is a common approach in i.i.d.
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classification problems. In our setting, Ei−1h
f (Zi) − hf (Zi) has an expectation zero for all i and

all f ∈ F and
∥∥Ei−1h

f (Zi)− hf (Zi)
∥∥
∞ ≤ 2rb/(1/2). Note that πi(Ai) = 1/2 for all i ∈ {1, . . . , n0}

in pilot data. By assumption, 1
n

∑n
i=1 supf∈F Var[hf (Zi)] is bounded by 4b2r2. The key step here

is to bound

µ∗ = E

{
sup
f∈F

n0∑
i=1

[Ehf (Z(0)
i )− hf (Z(0)

i )]

}

in Lemma 2.8.1. By Theorem 2.14.2 in Van der Vaart and Wellner (1996), the expectation of

supremum of an empirical process is bounded by the bracketing integral. Following a similar

proof of Lemma 2.3.2, with only Freedman’s inequality (Freedman, 1975) replaced by Bernstein’s

inequality, we know µ∗ ≤ rJ?
n0, since J is the supremum of bracketing integrals over all possible

measures. Therefore,

P

˜

sup
f∈F

n0∑
i=1

”

Ehf (Z(0)
i )− hf (Z(0)

i )
ı

≥ 3rJ
?
n0 +

a

4δbr2n0 + 4rbδ

¸

≤ e−δ. (2.32)

Now by the triangle inequality and the fact that P(|X + Y | ≥ a+ b) ≤ P(|X| ≥ a)+P(|Y | ≥ b),

P

˜

sup
f∈F

1

n0 + n

«

n0∑
i=1

”

Ehf (Z(0)
i )− hf (Z(0)

i )
ı

+

n∑
i=1

”

Ei−1h
f (Zi)− hf (Zi)

ı

ff

≥ C

n0 + n

„

(rJ + r
?
δb)

?
n0 + rbδ +

r2bJ

ϵ2n

b

n log3 nδ

ȷ˙

≤ e−δ (2.33)

for some constant C and any δ > 0. The result on test data follows by combining inequalities (2.30)

and (2.33).

2.8.4 Proof of Theorem 2.3.3

Proof. First note that

∣∣∣∣∣ 1n
n∑
i=1

”

V(f̂i−1)−Ri
ı

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

rRi − Ei−1Ris

∣∣∣∣∣+ 1

n

n∑
i=1

∣∣∣Ei−1Ri − V(f̂i−1)
∣∣∣ . (2.34)

Given Gi−1 and Ii, E(Ri|Gi−1, Ii) is actually V(f̂i−1Ii). Then Ei−1Ri can be written as

E rE(Ri|Gi−1, Ii)|Gi−1s = E[pi(Hi−1,Xi)|Gi−1]V(f̂i−1) + E[1− pi(Hi−1,Xi)|Gi−1]V(−f̂i−1),
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where pi(Hi−1,Xi) is the probability of Ii = 1. So the second term of the right-hand side of (2.34)

is upper bounded by

1

n

n∑
i=1

E[1− pi(Hi−1,Xi)|Gi−1]|V(f̂i−1)− V(−f̂i−1)|≤
2r

n

n∑
i=1

ϵ′i.

For the first term, note that {Ri − Ei−1Ri}ni=1 is a martingale difference sequence. We

will use the Freedman’s inequality in Lemma 2.8.3. The two parameters can be bounded as

∥Ri − Ei−1Ri∥∞ ≤ 2r and
∥∥∑n

i=1 Ei−1(Ri − Ei−1)
2/n

∥∥
∞ ≤ nr

2. Therefore,

P

˜∣∣∣∣∣ 1n
n∑
i=1

rRi − Ei−1Ris

∣∣∣∣∣ ≥ t
¸

≤ 2 exp

{
−1

2

nt2

r2 + 2rt/3

}
. (2.35)

Let the right-hand side be e−δ and the result follows.

2.8.5 Proof of Corollary 2.3.4

Proof. First note that

∣∣V(f∗)− R̄n∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

rRi − Ei−1Ris

∣∣∣∣∣+ 1

n

n∑
i=1

∣∣∣Ei−1Ri − V(f̂i−1)
∣∣∣+ 1

n

n∑
i=1

∣∣∣V(f̂i−1)− V(f∗)
∣∣∣ ,

where the first two terms are the same as in the decomposition (2.34). Now let the right-hand

side of (2.35) be e−δ/3 and the right-hand side of (2.31) and (2.32) be e−δ/3n by inverting the two

bounds in the proof of Theorem 2.3.1. Note that in the third term we are comparing V(f̂i) with

V(f∗) for i = 0, . . . , n − 1. When i = 0, the term in (2.31) does not actually exist. Hence letting

i log3 i = 0 will work.

2.8.6 Proof of Theorem 2.3.5

Proof. For the test regret bound (2.5), note that the last term

1

n0 + n

r2bJ

ϵ2n

b

δn log3 n
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is in the order of O(n−1/2(log n)3/2ϵ−2
n ) and the sum of the first two terms

1

n0 + n

”

(J +
?
δb)r

?
n0 + rbδ

ı

is in the order of Op(n
−1/2). So the last term dominates. In addition, we also want ϵ to be non-

increasing and the last term to converge to 0. Therefore, θ should be no greater than 1 and larger

than 0. Similarly, for the training regret bound (2.7), the second term that contains ϵn dominates.

The result follows by substituting ϵn into the convergence rate and letting the two rates be equal.

Note that

1

n

n∑
i=1

ϵi = O(

ˆ

1

n

∫ n

0
x−(1−θ)/4dx

˙

= O(n−(1−θ)/4).

2.8.7 Additional Simulation Results

Figure 2.7 of scenario 2 demonstrates similar results as Figure 2.2. However, since the dimension

of predictors increases, the regret and false decision ratio of the test set are larger than that of

scenario 1, especially for small sample sizes. LinUCB is not largely affected by the dimension

compared to other methods. Therefore, SRATs with ϵ0 = 0.1, θ = 1 exceed LinUCB on the test set

only when n is larger than 600. RCT is better than AL-GP on the test set in this scenario, possibly

because the nonparametric method is not efficient in a linear setting with a high dimension.
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Figure 2.7: Scenario 2. The regret (logarithmic scale) and the false decision ratio on the training or test
set against sample size n.
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CHAPTER 3

Asymptotic Inference for Multi-Stage Stationary Treatment Policy with High
Dimensional Features

3.1 Introduction

Dynamic treatment rules (DTRs) or policies have recently attracted great attentions in precision

medicine, and they are a sequence of decision functions to prescribe treatments over stages based

on a patient’s features which can evolve over stages. When the patient’s features consist of both

baseline variables and clinical variables that are routinely collected over stages, one important class

of policies, which we name as multistage stationary treatment policies (MSTPs), are to prescribe

from the same set of treatments using the same decision function over all stages. For example in

the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial (Rush et al., 2004),

demographics and the initial score of Hamilton Rating Scale for Depression (primary outcome) are

baseline variables, and the side effect ratings, clinical global impression of improvement, and other

depression related symptoms are time-evolving variables. Moreover, the policies are stochastic,

meaning that individuals have a large probability to receive recommended treatments. We focus on

MSTPs in this chapter because they are particularly useful for treating chronic diseases in clinical

practices. First, the policies use the same decision function and the same set of variables so they

are convenient for both implementation and interpretation. Second, the policies are dynamic by

incorporating individual’s evolving features in decisions, which are often known to be important for

disease prognostics and thus are routinely collected during clinical visits or lab tests. Third, using

stochastic decisions or soft policies is more flexible than relying on a hard policy whose estimation

is known to be sensitive to evidence bias and noise. Moreover, the soft policies are useful for

exploration when applied to future unknown individuals.

Many approaches have been developed to estimate optimal DTRs using data from a multi-stage

study. For example, Q-learning derives the optimal DTRs by maximizing the so-called Q-functions,
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which are the conditional means of a total optimal reward outcome given the features at each stage

and are often estimated using regression models in a backward fashion (Murphy, 2005b; Zhao et al.,

2011; Moodie et al., 2012; Zhu et al., 2019). On the other hand, A-learning poses assumptions only

on the interaction effect between the treatments and actions, and thus avoids potential problems

of misspecified treatment-free effect (Murphy, 2003; Shi et al., 2018; Jeng et al., 2018). Some other

methods find the DTR within a function class that directly maximizes the value function, which

is estimated using inverse probability weighting (IPW) with a convex surrogate loss (Zhao et al.,

2015) or its augmentation (AIPWE) (Zhang et al., 2013; Liu et al., 2018b).

In addition to the DTR estimation, a number of literature have considered obtaining valid

inference for the value function associated with the estimated DTR. For example, Luedtke and Van

Der Laan (2016); Zhu et al. (2019) and Shi et al. (2020a) considered the value inference allowing

the situation when the treatment is neither beneficial nor harmful for a subpopulation. Similar

inference has been studied in the reinforcement learning framework under Markov decision process

assumptions (Kallus and Uehara, 2020; Luckett et al., 2020; Liao et al., 2021; Shi et al., 2021b,a).

There are very few methods to make inference for the treatment policies themselves. The latter is

especially important for studying MSTPs with many feature variables: clinicians usually favor a

simple and parsimonious decision because of concern about implementation and cost in collecting

disease biomarkers in routine visits or lab tests. Zhu et al. (2019) and Jeng et al. (2018) obtained the

asymptotic distribution of the parameters in Q-learning or A-learning by assuming the regression

models to be correct, which may not be plausible when there are many features. More recently,

Liang et al. (2022) studied inference for a hard treatment decision in a high-dimensional setting,

but only restricted to one stage.

This work aims to fill in the above gap through obtaining a valid inference for MSTP with

high-dimensional features, assuming data from a sequentially multiple-assignment randomized trial

(SMART). Our stationary treatment policy is a probability function of a linear combination of

all the feature variables, and a tuning parameter is used in this function to approximate a hard

decision. For inference, we first estimate the average value function using the AIPWE method

(Liu et al., 2018b), where the augmentation term is constructed by fitting a working model for

the single-stage Q-function. We show that any specification of the outcome regression model does

not affect the consistency or convergence rate of the resulting estimator due to the construction
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method of the augmentation term. Furthermore, to find a sparse estimator of MSTP, we impose

a L1 penalty for the purpose of variable selection. The classical inferential theory fails in this case

due to the presence of high-dimensional parameters. The asymptotic distribution of the estimated

parameter becomes intractable due to the non-ignorable estimation bias and the sparsity effect

of the nuisance parameters. To validate the inference for the parameter estimators, we adopt

the idea of one-step estimation (Zhang and Zhang, 2014; Ning and Liu, 2017) to remove bias

in the regularized estimators. The augmentation in our first step shares a similar spirit with

debiased machine learning methods in Chernozhukov et al. (2018a) to decorrelate the nuisance

parameters (Q-functions) with the policy parameters, except that we do not rely on data-splitting

to ensure more reliable estimation with limited data. The one-step improvement in our second step

follows (Ning and Liu, 2017) to further decorrelate the parameter of interest from the remaining

high-dimensional parameters in MSTP. In other words, our proposed method incorporates two

decorrelation procedures for inference. The theoretical analysis is more involved since we need to

take care of the high-dimensional plug-in estimator of the nuisance parameters. In addition, the

objective function to be minimized in our problem is not convex, which invalidates some of the

arguments in Ning and Liu (2017). Theoretically, we show that the final estimators for the policy

parameters are asymptotically normal even if (1) the dimension of the feature variables increases

exponentially with n; or (2) the models for Q-functions are misspecified and their parameters are

estimated at a rate arbitrarily slow.

The rest of this chapter is organized as follows. In Section 3.2, we define the objective of

our problem and describe our method for learning the MSTP. Then we introduce the procedure

of constructing the one-step estimator in theory and specify some implementation details. In

Section 3.3, we show that the one-step estimator is asymptotically normal and provide its confidence

intervals. In Sections 3.4, we demonstrate our method in simulation studies. Finally, we conclude

this chapter with some discussion in Section 3.5.

3.2 Methodology

Consider treatment decisions for T stages. Let X = (X1, . . . , Xd) ∈ X be a d-dimensional

feature vector and A = {−1, 1} be the set of treatment options. We assume that at each stage, the
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feature variables are from X and the treatments are from the same set A, but their distributions

may vary with stages. An MSTP is defined as a sequence of the same probability function, denoted

by π(a|X), to assign treatment at all stages. We assume that π(a|X) is from the following class

B(A) =

{
πθ(a|X) =

eag(X,θ)/τ

1 + eag(X,θ)/τ
: ∥θ∥2 = 1, a ∈ A

}
,

where τ is a constant scaling parameter, and the restriction ∥θ∥2 = 1 is for avoiding non-

identifiability. We take g(X,θ) =
∑d

j=1Xjθj to be the linear function for easy interpretability,

which is important in clinical practice. Note that the scaling parameter τ can be used to adjust the

influence of parameters on the action probability. A smaller τ leads to a decision closer to a hard

policy. When π(a|X) is from B(A), the corresponding MSTP is indexed by θ. Without confusion,

we use Eθ to denote the expectation under the evaluation policy indexed by θ, which means that

the treatment in each stage is taken with probability indicated by πθ. Our goal is to estimate the

optimal MSTP and obtain a proper inference for θ.

We assume that data are obtained from a T -stage study, so the observations of the i-th subject

can be represented as

Di = {Xi,1, Ai,1, Ri,1,Xi,2, Ai,2, Ri,2, . . . ,Xi,T , Ai,T , Ri,T },

where the reward Ri,t ∈ R is an unknown function of the data {Xi,1, Ai,1, Ri,1, . . . ,Xi,t, Ai,t}

observed prior to or at time t. Let the domain of Di be defined as D := (X × A × R)T . Assume

there are n subjects and their trajectories {Di}ni=1 are independent and identically distributed. We

assume that each action Ai,t is taken randomly with probability depending on the history Hi,t =

{Xi,1, Ai,1, Ri,1, . . . ,Xi,t}, and denote µt(a|Hi,t) as the conditional probability of Ai,t = a given

Hi,t. The collection µ := (µ1, . . . , µT ) is sometimes called the behavior policy in the reinforcement

learning literature. We use E without subscript to denote the expectation under this policy.

We need some basic assumptions to infer the optimal MSTP using the observed data. Specif-

ically, denote Xt(a1:(t−1)) the potential state at time t if an action sequence a1:(t−1) ∈ At−1 were

taken. We make the following three standard assumptions (Murphy, 2003; Nie et al., 2021).
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Assumption 8 (Sequential ignorability). The sequence of potential outcomes (states)

{Xt′(A1:(t−1), at:(t′−1))}T+1
t′=t+1 is independent of the treatment At given the observed information

{X1, A1, . . . ,Xt−1, At−1} for all at ∈ A, t = 2, . . . , T .

Assumption 9 (Consistency). The observed states are consistent with the potential states, Xt =

Xt(A1:(t−1)) for all t = 2, . . . , T + 1.

Assumption 10 (Positivity). There exists a constant p0 > 0 such that µt(a|Ht) ≥ p0 for all a ∈ A

and t = 1, . . . , T .

As a note, the first assumption holds if the data are from a SMART, which we assume for the

subsequent development.

3.2.1 Estimate Policy Parameter with Variable Selection

An important metric to evaluate an MSTP with parameter θ is called the value function, which

is defined as the sum of rewards V (θ) = Eθ(
∑T

t=1Rt). The optimal MSTP, whose parameter value

is denoted as θ∗, is the one maximizing V (θ).

To estimate V (θ) using the SMART data with known µt, we first denote the expectation of Rt

given Xt and At under a given policy with parameter β as

Qθ
t (xt, at) := Eθ[Rt|Xt = xt, At = at]

and denote the expectation of Qt given Xt as

Uθ
t (xt) := Eθ[Q

θ
t (Xt, At)|Xt = xt].

Let Q := (Q1, . . . , QT ) and U := (U1, . . . , UT ). Then according to AIPWE given in Liu et al.

(2018b), we propose the following estimator for V (θ):

V̂ (θ) =
1

n

n∑
i=1

T∑
t=1

{∏t
k=1 π

θ(Ai,k|Xi,k)∏t
k=1 µk(Ai,k|Hi,k)

[Ri,t −Qθ
t (Xi,t, Ai,t)]

+

∏t−1
k=1 π

θ(Ai,k|Xi,k)∏t−1
k=1 µk(Ai,k|Hi,k)

Uθ
t (Xi,t)

}
.
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It uses the step-wise weight instead of the trajectory-wise weight to reduce the variability. One

major advantage of using the AIPWE for estimating V (θ) is that the asymptotic limit of V̂ (θ)

remains to be unbiased even if we use a misspecified model for Q, as long as Ut is correctly

evaluated as the conditional expectation of Qt. To see this, notice that the expectation of the

estimator V̂ (θ) is

EV̂ (θ) = Eθ

{
T∑
t=1

Ri,t

}

− E

{
T∑
t=1

∏t−1
k=1 π

θ(Ai,k|Xi,k)∏t−1
k=1 µk(Ai,k|Hi,k)

E
„

πθ(Ai,t|Xi,t)

µt(Ai,t|Hi,t)
Qt(Xi,t, Ai,t)− Ut(Xi,t)

ˇ

ˇ

ˇ

ˇ

Hi,k

ȷ

}

given any Qt and Ut. Now by the definition of Ut,

E
„

πθ(Ai,t|Xi,t)

µt(Ai,t|Hi,t)
Qt(Xi,t, Ai,t)− Ût(Xi,t)

ˇ

ˇ

ˇ

ˇ

Hi,k

ȷ

=
∑
a∈A

µt(a|Hi,t)
πθ(a|Xi,t)

µt(a|Hi,t)
Qt(Xi,t, a)− Ut(Xi,t) = 0

once Ut(Xi,t) = Eθ[Q
θ
t (Xi,t, Ai,t)|Xt]. Therefore, EV̂ (θ) = V (θ) for any Qt. As a remark, Thomas

and Brunskill (2016) and Jiang and Li (2016) proposed to construct the augmentation term in

an AIPWE based on the long-term Q-function in reinforcement learning settings, and Kallus and

Uehara (2020) proved the double robustness and semiparametric efficiency of this value estimator.

The above property implies that we can always obtain a consistent estimator for θ∗ with any

working model for Qt; however, a good choice of Qt is likely to improve the efficiency of the

estimator. For example, a simple estimate, denoted by Q̂t, for Qt can be obtained by fitting the

single-stage outcomes {Ri,t}ni=1 against the covariates {Xi,t}ni=1, using models like parametric and

nonparametric regression or other machine learning models for all t. To ensure the relationship

between Qt and Ut to be correct, we estimate Ut using

Ût(x) =
∑
a∈A

πθ(a|x)Q̂t(x, a). (3.1)
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After plugging Q̂t and Ût into the expression of V̂ (θ), we aim to maximize V̂ (θ), or equivalently,

minimize the function

ℓ(θ, η̂) :=
1

n

n∑
i=1

li(θ, η̂), (3.2)

where η := Q is the nuisance parameter, and

li(θ, η̂) := −
T∑
t=1

{∏t
k=1 π

θ(Ai,k|Xi,k)∏t
k=1 µk(Ai,k|Hi,k)

[Ri,t − Q̂t(Xi,t, Ai,t)]

+

∏t−1
k=1 π

θ(Ai,k|Xi,k)∏t−1
k=1 µk(Ai,k|Hi,k)

Ût(Xi,t)

}
.

(3.3)

Assume η ∈ H, where H is a convex subset of some normed vector space. Suppose the estimator

η̂ converges in probability uniformly to some deterministic limits η̄. Only the limit η̄ but not the

true value η∗ will appear in the asymptotic distribution of θ̂. Finally, since θ is high dimensional,

we include L1-penalty to obtain a sparse MSTP. That is, we estimate θ as

θ̂ = argmin
θ

[ℓ(θ, η̂) + λθ ∥θ∥1] s.t. ∥θ∥2 = 1, (3.4)

where λθ is a tuning parameter for θ.

Since η depends on θ, it is computationally challenging to directly minimize the above loss

function for estimation. Instead, we propose to estimate η using an initial estimator θ̌ that does

not depend on the η and is a consistent estimator of θ∗. For example, θ̌ could be the one minimizing

the same loss by setting Q̂t = 0, i.e., without augmentation. We will give some additional examples

on how to estimate θ̌ and Q̂ in Section 3.2.3.

3.2.2 Statistical Inference for Sparse High Dimensional Parameters

To obtain valid inference, we follow Zhang and Zhang (2014) and Ning and Liu (2017) to

construct one-step improvement of the estimator obtained in the previous section. More specifically,

we denote θ−j the parameters in θ except θj . Without loss of generality, we can put θj at the first

position in the parameter vector, so that θ can be written as (θj ,θ−j). Similarly, the true parameter

θ∗ can be partitioned as (θ∗j ,θ
∗
−j). Given a vector θ, we can define the matrix I := E[∇θℓ(θ, η̂)]

2

under regularity conditions since E[ℓ(θ,η)] = −V (θ) for any η. With Iθjθj , Iθjθ−j
, Iθ−jθ−j

, Iθ−jθj
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being the corresponding submatrix of I to the parameters, let Iθj |θ−j
= Iθjθj − Iθjθ−j

I−1
θ−jθ−j

Iθ−jθj .

Next, a decorrelated score function is defined as

S(θj ,θ−j ,η) = ∇θjℓ(θj ,θ−j ,η)−wT∇θ−j
ℓ(θj ,θ−j ,η),

where wT = Iθjθ−j
I−1
θ−jθ−j

. It is uncorrelated with the nuisance score function in the sense that

E[S(θj ,θ−j ,η)∇θ−j
ℓ(θj ,θ−j ,η)] = 0.

Given the estimated parameters θ̂ and η̂, the sparse estimator ŵ of w can be obtained using the

Dantzig estimator

ŵ = argmin ∥w∥1 , s.t.
∥∥∥∇2

θjθ−j
ℓ(θ̂, η̂)−wT∇2

θ−jθ−j
ℓ(θ̂, η̂)

∥∥∥
∞
≤ λw, (3.5)

where λw is tuned by cross-validation. This Dantzig estimator (3.5) is essentially the best sparse

linear combination of the nuisance score function ∇θ−j
ℓ(θj ,θ−j ,η) that approximates the score

function ∇θjℓ(θj ,θ−j ,η) of the parameter of interest with error λw. It can also be estimated by

penalized least squares using the gradient or Hessian matrix of ℓ (see Ning and Liu, 2017, Remark

3). Let v̂ := (1,−ŵT )T . Then S(θj ,θ−j , η̂) can be estimated by plugging in θ̂, η̂ and ŵ as

Ŝ(θ̂j , θ̂−j , η̂) = ∇θjℓ(θ̂j , θ̂−j , η̂)− ŵT∇θ−j
ℓ(θ̂j , θ̂−j , η̂). (3.6)

This score function can be used for hypothesis testing (see Ning and Liu, 2017).

Finally, given the sparse estimator θ̂ from the previous section, a one-step estimator is defined

as

θ̃j := θ̂j − Ŝ(θ̂j , θ̂−j , η̂)/Îθj |θ−j
, where Îθj |θ−j

= ∇2
θjθj

ℓ(θ̂, η̂)− ŵT∇2
θ−jθj

ℓ(θ̂, η̂). (3.7)

It is the solution to

Ŝ(θ̂j , θ̂−j , η̂) + Îθj |θ−j
(θj − θ̂j) = 0,
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which is the estimating equation of the one-step method for solving

Ŝ(θj , θ̂−j , η̂) = 0.

For the true parameter θ∗, define the matrix I∗ := E[∇θℓ(θ
∗, η̄)]2 and the vectors w∗ =

I∗−1
θ−jθ−j

I∗θ−jθj
, v∗ = (1,−w∗T )T . Let

Σ∗ := Var[∇θl0(θ
∗, η̄)] and σ∗S := v∗TΣ∗v∗, (3.8)

where l0 is an independent copy of li for any i. As will be shown in Section 3.3, θ̃j is asymptotically

normal with mean θ∗ and asymptotic variance σ∗S/[nI
∗2
θj |θ−j

], which can be used for constructing

the confidence intervals.

We summarize the theoretical steps of estimating the high dimensional parameters and making

inference with one-step estimators in Algorithm 2. Note that the confidence level is for every single

confidence interval rather than for multiple confidence intervals simultaneously. Some implemen-

tation details will be specified in Section 3.2.3.

3.2.3 Implementation

To get an initial estimate of the policy parameter, we propose to use the sum of rewards without

the augmentation term as an estimate of the value function. This estimate is unbiased and does

not require estimation of the nuisance parameters. Besides, the probability ratio
∏t

k=1 π
θ(Ai,k|Xi,k)∏t

k=1 µk(Ai,k|Hi,k)

in (3.2), which we denote as ρθ,µi,1:t, may be highly unstable in numerical computation since it is a

product of t probability ratios. The variance of the value estimator can thus grow exponentially

with the horizon T (Liu et al., 2018a) and leads to performance worse than that of a biased estimator

(Sugiyama, 2015). A practical solution is to use the weighted importance sampling, which weights

the probability ratio by the average ratio across all episodes at this stage. Therefore, the initial

estimator θ̌ is found by

θ̌ = argmin
θ

«

− 1

n

n∑
i=1

T∑
t=1

ρθ,µi,1:t
w1:t

Ri,t + λθ̌ ∥θ∥1

ff

s.t. ∥θ∥2 = 1, (3.10)

73



Algorithm 2: Procedure for the estimation and inference of high-dimensional policy pa-
rameters
Input : n samples
Output: θ̃ and the confidence intervals for each coefficient
Obtain an initial estimator θ̌ of θ;

Estimate Q̂ using the initial estimator θ̌;

Estimate the policy parameter θ̂ by (3.4) with Q̂, where λθ is tuned by cross-validation;
for j = 1, . . . , d do

Partition the sparse estimate θ̂ as (θ̂j , θ̂−j);
Obtain the Dantzig type estimator ŵ by (3.5);

Obtain the decorrelated score function Ŝ(θj , θ̂−j , η̂) by (3.6);

Calculate the one-step estimator θ̃j by (3.7);
Construct the (1− α)× 100% confidence interval of θj by

˜

θ̃j − Φ−1(1− α/2)
?
σ̂S

?
nÎθj |θ−j

, θ̃j +Φ−1(1− α/2)
?
σ̂S

?
nÎθj |θ−j

¸

, (3.9)

where Φ is the cumulative distribution function of the standard normal distribution,
and

σ̂S = (1,−ŵT )

«

1

n

n∑
i=1

∇θli(θ̂, η̂)∇θli(θ̂, η̂)
T

ff

(1,−ŵT )T .

end
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and the final sparse estimator θ̂ is found by

θ̂ = argmin
θ

«

− 1

n

n∑
i=1

T∑
t=1

ρθ,µi,1:t
w1:t

[Ri,t − Q̂t(Xi,t,Ai,t)] +
ρθ,µi,1:(t−1)

w1:t−1
Ût(Xi,t)

+ λθ ∥θ∥1

ff

s.t. ∥θ∥2 = 1,

(3.11)

where w1:t =
1
n

∑n
j=1 ρ

θ,µ
j,1:t and λθ̌, λθ are tuning parameters for the initial and final sparse estima-

tors respectively. Similar weighted ratios have been used and discussed in Precup (2000b); Thomas

(2015); Thomas and Brunskill (2016).

To solve for θ̌ and θ̂, note that (3.10) and (3.11) are both constrained nonconvex nondifferen-

tiable optimization problems. To deal with the L1 penalty, we use the proximal coordinate descent

algorithm. To ensure that the L2 norm of the estimated parameter is bounded by one, we normalize

the parameter by its L2 norm in each iteration of the coordinate descent. Since nonconvex problem

may converge to a local minimizer, we try to start the optimization from different starting points

for better numerical results. In addition, it has been shown that a refitted Lasso estimator usually

leads to a better finite sample performance than the original Lasso estimator (Zhang and Zhang,

2014; Ning and Liu, 2017). A refitted Lasso estimator means that we re-estimate the parameter on

the support of the original Lasso estimator using the original loss function without the L1 penalty.

This refitted estimator may be less biased and less sensitive to the choice of tuning parameters

of the penalty. Therefore, we refit θ̌ and θ̂ on their support using the trust-region constrained

algorithm, which is suitable for minimization problems with constraints. The full optimization

procedure is summarized in Algorithm 4.

Based on this initial estimate θ̌, we model the nuisance parameter Q using a linear model of

basis functions for each stage separately. Assume that ϕ(xt) is a basis function of the covariates

xt at some stage t of dimension d′ and it includes an intercept. In practice, ϕ(xt) can be taken to

be the linear function, polynomial function, Gaussian radial basis functions, splines, wavelet basis,

etc. of xt (Luckett et al., 2020; Shi et al., 2021b). Let Φ(Xt, At) := [ϕT (Xt), At · ϕT (Xt)]
T and

we can fit the model Qt(Xt, At) = Φ(Xt, At)
Tβt at stage t, where βt is in the dimension 2d′. We

discuss two different ways for constructing the loss function of βt here. In the first method, we

minimize the square loss function with the L1 penalty to deal with the high dimensional covariates,
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so that

β̂
(1)
t = argmin

βi,t∈R2d′

1

n

n∑
i=1

“

Rt − Φ(Xi,t, Ai,t)
Tβt

‰2
+ λ

β
(1)
t
∥βt∥1, (3.12)

where λ
β
(1)
t

is a tuning parameter. In the second method, we propose to minimize the variance of

the estimator V̂t(θ, η̂) of the value function at stage t, where

V̂t(θ, η̂) =
1

n

n∑
i=1

”

ρθ,µi,1:t[Ri,t − Q̂t(Xi,t, Ai,t)] + ρθ,µi,1:(t−1)Ût(Xi,t)
ı

.

Note that V ar(V̂t(θ, η̂)) = E(V̂t(θ, η̂))2−(EV̂t(θ, η̂))2. Since EV̂t(θ, η̂) = EθRt for any θ, EV̂t(θ̂, η̂)

is approximately the same for all η̂ when θ̂ is close enough to the true optimal θ∗. Therefore, we

only need to minimize the sample average of E(V̂t(θ, η̂))2. With the linear model of Qt and the

weighted probability ratio, we have

β̂
(2)
t = argmin

βi,t∈R2d′

1

n

n∑
i=1

{
ρθ,µi,1:t
w1:t

Ri,t−

«

ρθ,µi,1:t
w1:t

Φ(Xi,t, Ai,t)−
∑
a∈A

πθ(a|Xi,t)Φ(Xi,t, a)

ffT

βt

}2

+ λ
β
(2)
t
∥βt∥1,

(3.13)

where λ
β
(2)
t

is a tuning parameter. Now (3.12) and (3.13) can be easily solved by existing Lasso

packages. To improve the finite sample performance, we also refit β̂t on its nonzero components

for all t. Then the estimated function Q at stage t is

Q̂
(m)
t (Xt, At) = Φ(X1:t, A1:t)

T β̂
(m)
t (3.14)

for m = 1, 2.

The confidence interval of θ̃j in Algorithm 2 relies on the gradient and the Hessian matrix of

the loss function. However, our simulation experience shows that the gradient and the Hessian

matrix can be highly unstable due to the product of a series of sampling probability πθ and µt.

Therefore, we propose two amendments to solve this problem in practice. First, for the gradient and

the Hessian matrix in (3.5), (3.6), and (3.7), we calculate them numerically using the symmetric

difference quotient. Since the ℓ2-norm of θ̂ is restricted to be 1, we need to take care of the special
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case when θ̂0 = 0 and only the Newton’s difference quotient is available. Second, we use bootstrap

to find the confidence interval of θ̃j for step (3.9).

The full procedure for finding the estimate and the confidence interval of high-dimensional pol-

icy parameters is summarized in Algorithm 3. Note that λw is tuned by cross-validation, where we

minimize the average projection error ∥∇2
θjθ−j

ℓ(θ̂, η̂)−wT∇2
θ−jθ−j

ℓ(θ̂, η̂)∥∞ across all j = 1, . . . , j.

In addition, since θ̃ may be unstable with a small λw when the Hessian matrix is approximately

singular, the one standard error rule is used to select the best λw. In particular, we choose the

largest λw whose average projection error on the validation set is smaller than the minimum average

projection error plus its standard error. Then we use the same λw for all j and for the bootstrap

estimators.

3.3 Theoretical Results

Denote sθ := ∥θ∗∥0 and sw := ∥w∗∥0 to be the number of nonzero elements in the corresponding

vectors. We assume the following assumptions hold for the variables and the convergence rate of

the nuisance parameters.

Assumption 11. Assume the rewards Rt are bounded in the sense that ∥Rt∥∞ ≤ r for some r > 0

and for all t = 1, . . . , T . Assume the covariates are bounded such that ∥Xt∥∞ ≤ z and
∣∣v∗TXt

∣∣ ≤ z
for some z > 0 and for all t = 1, . . . , T .

Assumption 12. Suppose that η̂ ∈ Hn with probability no less than 1−∆n, where

Hn :=
{
Q ∈ H : ∥Qt∥P,∞ ≤ r, ∥Qt − Q̄t∥P,2 ≤ δn for all t

}
and δn = o(1),∆n = o(1) are positive constants. In addition, we assume that log d = o(

?
n) and

sθ + sw = O(1).

Assumption 13. Suppose that the covariance matrix Σ∗ := Var[∇θl0(θ
∗, η̄)] is positive definite

and finite.

Assumption 14. Assume V (θ) is κ-strongly concave at θ∗. That is, there exists κ > 0 such that

⟨∇θV (θ∗),∆θ⟩ − [V (θ∗ + ∆θ) − V (θ∗)] ≥ κ
2 ∥∆θ∥22 for all ∆θ ∈ B(R) for some radius R, where

B(R) is the ball with radius R defined by L2 norm.
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Algorithm 3: Implementation procedure for the estimation and inference of high-
dimensional policy parameters

Input : n samples, the number of bootstrap iterations B, the confidence level 1− α
Output: θ̃ and the confidence intervals for each coefficient
Solve (3.10) using Algorithm 4 to obtain an initial estimator θ̌ of θ, where λθ̌ is tuned by
cross-validation;

Estimate Q̂t for t = T, . . . , 1 with the initial estimator θ̌ by (3.14) using solvers for Lasso
and re-estimate it on the support, where λβ1 , . . . , λβT

are tuned by cross-validation at
each stage t;

Solve (3.11) using Algorithm 4 to obtain the policy parameter θ̂ with Q̂t, where λθ is
tuned by cross-validation;

Tune λw by cross-validation with the one standard error rule;
for j = 1, . . . , d do

Calculate the one-step estimator θ̃j following the steps in (3.5), (3.6), and (3.7) with
λw and the gradient and Hessian matrix estimated numerically by (3.16) and (3.20);

end
for b = 1, . . . , B do

Obtain a bootstrap sample of size n;

Obtain the bootstrap estimator θ̂bs by refitting (3.11) with the bootstrap sample, Q̂t
and λθ using Algorithm 4;
for j = 1, . . . , d do

Calculate the one-step estimator θ̃b,j following the steps in (3.5), (3.6), and (3.7)
with λw and the gradient and Hessian matrix estimated numerically by (3.16) and
(3.20);

end

end
for j = 1, . . . , d do

Obtain the (1− α)× 100% confidence interval of θ̃j by finding the α/2 and 1− α/2
quantiles of {θ̃b,j}Bb=1.

end
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Assumption 11 requires the boundedness of the variables. The conditions about the covariates

Xt follow the example of generalized linear models in Ning and Liu (2017). Assumption 12 deals

with the convergence rate of the nuisance parameters. Since we assume that we are using the data

from a randomized controlled trial and µ is known, we do not need the model of Qt to be correctly

specified. Besides, Q̂t can converge to its limit at any rate. This assumption can be easily satisfied

by almost all learning methods, including regularized methods like Lasso, ridge regression or elastic

net. Different from the case of Liang et al. (2022) in the single stage, our theorem relies on the

assumption that the number of nonzero elements sθ and sw should be bounded. This assumption

is needed to take care of the non-convexity of the loss function. Weaker assumptions in Ning

and Liu (2017); Liang et al. (2022) rely on the special structure of their convex loss functions.

Assumption 13 is used in the multivariate central limit theorem to prove the asymptotic normality

of the score function. Assumption 14 is used to verify the restricted strong convexity, which is one

of the sufficient conditions for proving the convergence of parameters regularized by L1 penalty.

We follow the proof of Ning and Liu (2017) to decorrelate θ−j from the parameter θj that we are

interested in, and the assumptions will be used to verify the conditions in Theorem 3.2 (Ning and

Liu, 2017). The main challenge lies in the nuisance parameters η, which need to be estimated and

are also high-dimensional. We will use the technique in Chernozhukov et al. (2018a) to decorrelate

the nuisance parameters.

Theorem 3.3.1. Under Assumptions 8-14, the one-step estimator θ̃j satisfies

?
n(θ̃j − θ∗j )I∗θj |θ−j

⇒ N(0, σ∗S), (3.15)

where σ∗S is defined in (3.8).

Theorem 3.3.1 shows that the plug-in one-step estimator is asymptotically normal. Since Îθj |θ−j

is consistent for I∗θj |θ−j
and σ̂S is consistent for σ∗S , we can construct confidence intervals as in (3.9)

based on the theorem. Note that Σ∗ and thus σ∗S depend on the nuisance parameter η̂. Therefore,

although the limit and the convergence rate of η̂ does not affect the convergence rate of θ̃j , the

limit η̄ does influence the asymptotic variance of θ̃j .
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3.4 Simulation Study

In this section, we test our proposed procedure for estimating the confidence intervals of low

dimensional parameters in high dimensional settings in two simulated scenarios. Assume that the

data are from a SMART, and the action Ai,t takes value from {−1, 1} with equal probability at

each stage t for all patients i. The horizon T is taken to be 1 or 3. The initial states are generated

independently and identically such that Xi,1 ∼ N(0, Id) for all i = 1, . . . , n. For stages t ≥ 2, let

ϵi,t,j
i.i.d.∼ N(0, 0.2) for all i = 1, . . . , n, j = 1, . . . , d, where j represents the coordinate of the state

vector. The useful variables and the rewards are generated as follows. For i = 1, . . . , n,

Xi,t,1 = 0.6Ai,t−1X̃i,t−1,1 + 0.2X̃i,t−1,1 + 0.1X̃i,t−1,2 + ϵi,t,1, t = 2, . . . , T

Xi,t,2 = −0.6Ai,t−1X̃i,t−1,2 + 0.3X̃i,t−1,1X̃i,t−1,2 + ϵi,t,2, t = 2, . . . , T

Ri,t = exp

{
1

2
(Xi,t+1,1 +Xi,t+1,2)− 0.2Ai,t − 1

}
, t = 1, . . . , T,

in Scenario 1, and

Xi,t,1 = 0.5Ai,t−1X̃i,t−1,1 + 0.3X̃i,t−1,1 + 0.1X̃i,t−1,2 + ϵi,t,1, t = 2, . . . , T

Xi,t,2 = 0.5Ai,t−1X̃i,t−1,2 + 0.1X̃i,t−1,1 + 0.3X̃i,t−1,2 + ϵi,t,2, t = 2, . . . , T

Ri,t = Xi,t+1,1 +Xi,t+1,2 − 0.5Ai,t, t = 1, . . . , T

in Scenario 2. Here X̃i,t,j is the sequence of exponentially weighted moving average of Xi,t,j such

that X̃i,1,j = Xi,1,j and X̃i,t,j = 0.2X̃i,t−1,j + 0.8Xi,t,j for j = 1, 2 and t ≥ 2. The other variables

Xi,t,j = ϵi,t,j for j = 3, . . . , d are noise variables. Under this scenario, the Markov assumption is

violated since the state at each stage depends on the states in all previous stages.

We find the true minimizer θ∗ of the loss function within the class B(A) by grid-search. In

particular, we estimate the value function on an independent test set of size 200, 000 for θ1, θ2 on the

grids inside the unit ball and let θ0 =
a

1− θ21 − θ22. Since the value function on close grid points

may be quite similar, we repeat the grid-search process 4 times and average the θ∗’s. Finally, we

find θ∗ = (−0.39, 0.68,−0.62) when T = 1, and θ∗ = (−0.45, 0.53,−0.72) when T = 3 for Scenario

1 and θ∗ = (−0.57, 0.58, 0.58) when T = 1, and θ∗ = (−0.57, 0.58, 0.58) when T = 3 for Scenario 2.
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In this simulation, we experiment with 3 different constructions of the nuisance parameter

Q. For the first method, we take Q̂
(0)
t (x, a) = 0 for all x and a, so that θ̂ is actually equal to

θ̌. The second and third estimators Q̂
(1)
t , Q̂

(2)
t are found by (3.12) and (3.13) respectively. We

use the function scipy.optimize.minimize with method=‘trust-constr’ in Python to solve

the constrained minimization problem when refitting θ̌ and θ̂ on their support. To estimate the

Dantzig type estimator in (3.5), we use the package cvxpy in Python to solve the constrained

convex minimization problem.

We test our procedure for three different settings, where n = 500, d = 30, d = 800, d = 30 and

n = 800, d = 50 respectively. The parameter τ is fixed at 0.1, since our simulation experiments

show that a larger τ leads to a soft policy far from the true optimal hard policy, and a smaller τ

may cause unstable computation. We take the number of bootstraps to be B = 100. The value

function of each estimated policy is calculated based on an independent test set of size 10, 000

generated by this policy. We repeat the whole procedure for 100 times for each scenario.

We compare our proposed method with penalized efficient augmentation and relaxation learning

(PEARL) (Liang et al., 2022) when T = 1. PEARL is a method for estimating the optimal ITR

and conducting statistical inference from high-dimensional data in single-stage decision problems.

It utilizes the data-splitting method to allow for slow convergence rate of the nuisance parameter

estimations. In addition, it also follows the inference procedure in Ning and Liu (2017) to first find a

sparse estimator and then obtain the one-step estimator. We denote the sparse estimator by θ̂PEARL

and the one-step estimator by θ̃PEARL. We use the package ITRInference for implementation

(Liang et al., 2022). The package does not provide an inference result for the intercept θ0 and does

not have requirements on the scale of the parameters. Therefore, we keep θ̃PEARL,0 = θ̂PEARL,0 and

then normalize θ̃PEARL by its L2 norm. Since the estimated ITR takes the selected treatment with

probability one, the scale of the parameters does not affect the ITR. In this way, we can estimate

the coverage probability of θ̃PEARL on the same scale of θ∗.

The simulation results for Scenario 1 when T = 1 are shown in Tables 3.1. We report the

estimated value function, the mean absolute deviations (MADs) and the coverage probabilities

(CPs). For the value functions, we report their means and standard deviations of the estimated

policies corresponding to the sparse estimator of PEARL θ̂PEARL, the one-step estimator of PEARL

θ̃PEARL, the proposed sparse estimator θ̂, and the proposed one-step estimator θ̃. Besides, we report
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Table 3.1: Value functions, MADs and CPs of the learnt ITR for T = 1 in Scenario 1.

n = 500, d = 30 n = 800, d = 30 n = 800, d = 50

V (θ)

Train 0.1159 (0.0218) 0.1173 (0.0208) 0.1138 (0.0205)

θ̂PEARL 0.4854 (0.0040) 0.4829 (0.0052) 0.4871 (0.0041)

θ̃PEARL 0.4822 (0.0048) 0.4723 (0.0059) 0.4839 (0.0044)

θ̂

Q̂(0) 0.4731 (0.0071) 0.4767 (0.0060) 0.4747 (0.0066)

Q̂(1) 0.4761 (0.0075) 0.4794 (0.0061) 0.4789 (0.0056)

Q̂(2) 0.4753 (0.0074) 0.4791 (0.0056) 0.4785 (0.0055)

θ̃

Q̂(0) 0.4519 (0.0338) 0.4600 (0.0346) 0.4541 (0.0288)

Q̂(1) 0.4661 (0.0213) 0.4724 (0.0084) 0.4610 (0.0361)

Q̂(2) 0.4630 (0.0213) 0.4677 (0.0340) 0.4619 (0.0228)

MAD

θ1 θ2 θ3:d θ1 θ2 θ3:d θ1 θ2 θ3:d

θ̃PEARL
0.0225 0.0228 0.0174 0.0321 0.0310 0.0294 0.0175 0.0180 0.0135 Estimated
0.0231 0.0240 0.0209 0.0221 0.0246 0.0294 0.0139 0.0173 0.0145 Empirical

θ̃

Q̂(0) 0.0338 0.0447 0.0323 0.0265 0.0354 0.0298 0.0280 0.0364 0.0267
EstimatedQ̂(1) 0.0292 0.0352 0.0273 0.0234 0.0285 0.0234 0.0239 0.0281 0.0225

Q̂(2) 0.0284 0.0353 0.0295 0.0218 0.0272 0.0253 0.0237 0.0277 0.0241

Q̂(0) 0.0301 0.0370 0.0349 0.0239 0.0395 0.0303 0.0234 0.0316 0.0290
EmpiricalQ̂(1) 0.0291 0.0317 0.0278 0.0267 0.0277 0.0240 0.0263 0.0245 0.0246

Q̂(2) 0.0257 0.0294 0.0315 0.0267 0.0272 0.0265 0.0260 0.0239 0.0266

CP

θ1 θ2 θ3:d θ1 θ2 θ3:d θ1 θ2 θ3:d

θ̃PEARL 96% 93% 89% 99% 99% 94% 98% 94% 91%

θ̂

Q̂(0) 97% 94% 100% 95% 93% 100% 96% 89% 100%

Q̂(1) 97% 93% 99% 98% 96% 99% 93% 91% 99%

Q̂(2) 97% 95% 100% 97% 97% 100% 98% 91% 100%

θ̃

Q̂(0) 98% 97% 99% 98% 100% 99% 99% 95% 99%

Q̂(1) 94% 98% 97% 95% 96% 96% 98% 97% 97%

Q̂(2) 93% 99% 98% 95% 97% 97% 97% 99% 98%

* The notation θ̂PEARL represents the sparse estimator of PEARL, θ̃PEARL is the one-step estimator of
PEARL, θ̂ is the proposed sparse estimator, and θ̃ is the proposed one-step estimator. The nuisance
parameters in θ̂ or θ̃ can be constructed in three different ways, where Q̂(0) = 0, and Q̂(1), Q̂(2) are
obtained by (3.12) and (3.13) respectively.
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Table 3.2: Value functions, MADs and CPs of the learnt ITR for T = 3 in Scenario 1.

n = 500, d = 30 n = 800, d = 30 n = 800, d = 50

V (θ)

Train 0.1903 (0.1154) 0.1890 (0.0910) 0.1876 (0.0832)

θ̂

Q̂(0) 1.0751 (0.0223) 1.0918 (0.0145) 1.0862 (0.0153)

Q̂(1) 1.0843 (0.0178) 1.0943 (0.0124) 1.0906 (0.0145)

Q̂(2) 1.0828 (0.0175) 1.0961 (0.0123) 1.0899 (0.0143)

θ̃

Q̂(0) 1.0521 (0.0387) 1.0398 (0.1027) 1.0427 (0.0624)

Q̂(1) 1.0467 (0.1015) 1.0651 (0.0786) 1.0615 (0.0353)

Q̂(2) 1.0511 (0.0737) 1.0586 (0.0719) 1.0615 (0.0291)

MAD

θ1 θ2 θ3:d θ1 θ2 θ3:d θ1 θ2 θ3:d

θ̃

Q̂(0) 0.0564 0.0502 0.0359 0.0414 0.0404 0.0347 0.0437 0.0440 0.0298
EstimatedQ̂(1) 0.0508 0.0452 0.0343 0.0371 0.0366 0.0316 0.0396 0.0395 0.0281

Q̂(2) 0.0489 0.0435 0.0346 0.0379 0.0359 0.0323 0.0398 0.0379 0.0280

Q̂(0) 0.0607 0.0421 0.0343 0.0382 0.0416 0.0358 0.0382 0.0400 0.0317
EmpiricalQ̂(1) 0.0541 0.0392 0.0348 0.0319 0.0351 0.0324 0.0379 0.0450 0.0305

Q̂(2) 0.0494 0.0350 0.0358 0.0324 0.0310 0.0344 0.0360 0.0384 0.0304

CP

θ1 θ2 θ3:d θ1 θ2 θ3:d θ1 θ2 θ3:d

θ̂

Q̂(0) 94% 91% 100% 94% 92% 99% 91% 94% 100%

Q̂(1) 94% 95% 99% 91% 95% 99% 88% 95% 99%

Q̂(2) 94% 94% 99% 91% 94% 99% 89% 95% 100%

θ̃

Q̂(0) 98% 94% 99% 94% 94% 98% 92% 94% 99%

Q̂(1) 94% 96% 98% 92% 96% 98% 92% 95% 99%

Q̂(2) 95% 95% 98% 93% 93% 98% 93% 94% 99%
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Table 3.3: Value functions, MADs and CPs of the learnt ITR for T = 1 in Scenario 2.

n = 500, d = 30 n = 800, d = 30 n = 800, d = 50

V (θ)

Train 0.0053 (0.0427) 0.0034 (0.0337) 0.0049 (0.0349)

θ̂PEARL 0.6883 (0.0082) 0.6873 (0.0080) 0.6882 (0.0080)

θ̃PEARL 0.6870 (0.0063) 0.6646 (0.0108) 0.6873 (0.0054)

θ̂

Q̂(0) 0.6834 (0.0074) 0.6868 (0.0061) 0.6868 (0.0061)

Q̂(1) 0.6861 (0.0057) 0.6886 (0.0048) 0.6873 (0.0060)

Q̂(2) 0.6844 (0.0065) 0.6883 (0.0047) 0.6870 (0.0055)

θ̃

Q̂(0) 0.6654 (0.0191) 0.6761 (0.0074) 0.6684 (0.0098)

Q̂(1) 0.6768 (0.0093) 0.6812 (0.0068) 0.6761 (0.0080)

Q̂(2) 0.6726 (0.0090) 0.6790 (0.0060) 0.6724 (0.0077)

MAD

θ1 θ2 θ3:d θ1 θ2 θ3:d θ1 θ2 θ3:d

θ̃PEARL
0.0212 0.0210 0.0188 0.0332 0.0335 0.0326 0.0165 0.0166 0.0143 Estimated
0.0200 0.0197 0.0200 0.0329 0.0304 0.0333 0.0165 0.0195 0.0151 Empirical

θ̃

Q̂(0) 0.0309 0.0305 0.0265 0.0229 0.0226 0.0227 0.0229 0.0228 0.0214
EstimatedQ̂(1) 0.0229 0.0223 0.0216 0.0171 0.0171 0.0183 0.0176 0.0174 0.0178

Q̂(2) 0.0267 0.0269 0.0243 0.0202 0.0203 0.0208 0.0200 0.0197 0.0199

Q̂(0) 0.0215 0.0260 0.0264 0.0230 0.0205 0.0232 0.0205 0.0183 0.0222
EmpiricalQ̂(1) 0.0176 0.0198 0.0223 0.0170 0.0161 0.0183 0.0171 0.0148 0.0177

Q̂(2) 0.0195 0.0255 0.0245 0.0213 0.0194 0.0215 0.0191 0.0174 0.0204

CP

θ1 θ2 θ3:d θ1 θ2 θ3:d θ1 θ2 θ3:d

θ̃PEARL 72% 77% 92% 92% 98% 93% 65% 56% 92%

θ̂

Q̂(0) 95% 95% 100% 93% 91% 100% 95% 91% 100%

Q̂(1) 94% 92% 99% 85% 92% 99% 93% 95% 99%

Q̂(2) 95% 93% 100% 92% 91% 100% 97% 91% 100%

θ̃

Q̂(0) 95% 97% 98% 91% 92% 97% 96% 94% 97%

Q̂(1) 98% 98% 96% 92% 90% 94% 91% 93% 95%

Q̂(2) 92% 96% 97% 93% 94% 96% 97% 96% 97%
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Table 3.4: Value functions, MADs and CPs of the learnt ITR for T = 3 in Scenario 2.

n = 500, d = 30 n = 800, d = 30 n = 800, d = 50

V (θ)

Train 0.0111 (0.2468) 0.0041 (0.1803) -0.0006 (0.1984)

θ̂

Q̂(0) 1.8715 (0.0226) 1.8892 (0.0167) 1.8849 (0.0180)

Q̂(1) 1.8775 (0.0174) 1.8911 (0.0131) 1.8865 (0.0143)

Q̂(2) 1.8771 (0.0160) 1.8904 (0.0132) 1.8841 (0.0160)

θ̃

Q̂(0) 1.8344 (0.1288) 1.8644 (0.0178) 1.8266 (0.1584)

Q̂(1) 1.8542 (0.0239) 1.8716 (0.0165) 1.8549 (0.0498)

Q̂(2) 1.8209 (0.1957) 1.8707 (0.0177) 1.8531 (0.0338)

MAD

θ1 θ2 θ3:d θ1 θ2 θ3:d θ1 θ2 θ3:d

θ̃

Q̂(0) 0.0319 0.0316 0.0305 0.0246 0.0247 0.0263 0.0263 0.0267 0.0260
EstimatedQ̂(1) 0.0295 0.0289 0.0282 0.0239 0.0236 0.0251 0.0232 0.0239 0.0231

Q̂(2) 0.0301 0.0302 0.0293 0.0240 0.0229 0.0257 0.0240 0.0240 0.0235

Q̂(0) 0.0341 0.0300 0.0308 0.0239 0.0207 0.0281 0.0275 0.0238 0.0271
EmpiricalQ̂(1) 0.0311 0.0318 0.0297 0.0215 0.0207 0.0256 0.0250 0.0223 0.0243

Q̂(2) 0.0299 0.0268 0.0311 0.0203 0.0254 0.0269 0.0252 0.0266 0.0254

CP

θ1 θ2 θ3:d θ1 θ2 θ3:d θ1 θ2 θ3:d

θ̂

Q̂(0) 90% 90% 99% 85% 89% 100% 91% 79% 100%

Q̂(1) 93% 88% 99% 92% 93% 99% 92% 83% 99%

Q̂(2) 90% 89% 99% 87% 89% 99% 89% 85% 100%

θ̃

Q̂(0) 93% 93% 98% 92% 93% 98% 96% 93% 98%

Q̂(1) 96% 95% 97% 95% 95% 97% 94% 91% 98%

Q̂(2) 94% 93% 98% 93% 94% 97% 98% 91% 98%
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the value function on the training set, which is calculated by taking the average total reward of

all observations. For the MADs, we report that of the two important variables θ1, θ2 and the

average MAD of θ3, . . . , θd for θ̃PEARL and θ̃. For the one-step estimator of PEARL θ̃PEARL, the

estimated value is the average estimated MAD based on the asymptotic normal distribution across

all replications, calculated by σ̃PEARL/1.4826 where σ̃PEARL is the estimated standard deviation

of θ̃PEARL. The empirical value is the MAD of one-step estimators θ̃PEARL in all replications.

For the proposed one-step estimator θ̃, the estimated value is the average estimated MAD by

bootstrap across all replications, and the empirical value is the MAD of one-step estimators θ̃ in all

replications. For the CPs, we report that of the two important variables θ1, θ2 and the average CPs

of θ3, . . . , θd for θ̃PEARL, θ̌ and θ̃. The confidence intervals of the sparse estimator θ̂ are estimated

by bootstrap as well. Note that each proposed sparse estimator θ̂ and one-step estimator θ̃ can

be constructed by three different nuisance parameters Q̂(0), Q̂(1), Q̂(2) The results for T = 1 in

Scenario 1 and T = 1, 3 in Scenario 2 are included in Tables 3.2, 3.3, 3.4.

In the single-stage settings, the value function of the proposed method is slightly smaller than

that of PEARL, since PEARL estimates a hard policy while the proposed method estimates a soft

policy. However, the difference is not significant. The one-step estimator θ̃ may affect the value

to a small extent, but it is suitable for estimating the confidence intervals. The estimated MAD

of θ̃ is close to its empirical value, which suggests that the bootstrapped confidence interval is an

approximation for the confidence interval of θ̃. The coverage probabilities of θ̃ are concentrated

near the nominal coverage 95%, while that of the sparse estimator θ̂ can be significantly lower than

95%. This demonstrates the necessity of using the one-step estimator for statistical inference. The

MAD of θ̃PEARL is smaller than that of θ̃, but its coverage probabilities cannot reach 95%.

Compared to the zero estimator Q̂(0) of the nuisance parameterQ, we can see that the estimated

value functions of the sparse estimators θ̂ of Q̂(1) and Q̂(2) always have larger means and smaller

standard deviations, with an exception when n = 500 or 800 and d = 30 in Scenario 1. In addition,

the true MADs of the one step estimators θ̃ of Q̂(1) and Q̂(2) are usually smaller than that of Q̂(0).

This leads to the fact that its coverage probability is close to 1 in Scenario 1 when T = 1, indicating

the over-estimate of the its confidence intervals. Between Q̂(1) and Q̂(2), we can conclude that they

generally have similar performance in Scenario 1, and Q̂(1) is always better than Q̂(2) in Scenario 2.

Therefore, the above experiments demonstrate the advantage of the proposed AIPWE of the value
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function over the IPW estimator, and the influence of the nuisance parameters on the asymptotic

efficiency.

3.5 Discussion

In this work, we focus on the multi-stage decision problem and propose a method for estimating

the high-dimensional MSTP and the confidence intervals of its parameters. We first estimate the

MSTP based on the AIPWE of the value function with an L1 penalty to encourage sparsity and

an L2 constraint to avoid non-identifiability. Then we find the one-step estimators which is asymp-

totically normal and suitable for statistical inference. We show that there is a tradeoff between

the value function and the coverage probability. While the sparse MSTP is better for generating

treatment suggestions with higher value functions, the one-step estimator is suitable for construct-

ing confidence intervals. The proposed one-step estimator is shown to achieve nominal coverage

probabilities in simulation studies. While the choice of the nuisance parameter estimation does

not affect the convergence rate of the low-dimensional policy parameter, it affects the asymptotic

efficiency. We compare different estimators Q̂ in the simulation study, and show that the AIPWE

generates higher value function and smaller MAD of the estimated policy than the IPW estimator.

We assume that the behavior policy µ is known as in randomized controlled trials. When the

data from an observational study are used for learning, µ is unknown and needs to be estimated. For

binary treatments with continuous covariates, a common approach is to fit a logistic regression for

the behavior policy, possibly with various penalties to handle high-dimensional covariates (Hernán

and Robins, 2020). Other nonparametric or machine learning methods can also be used for the

estimation.

For problems with a long horizon, similar doubly robust estimators of the value function can

be applied as well (Jiang and Li, 2016; Thomas and Brunskill, 2016; Kallus and Uehara, 2020).

The results for the inference of MSTP parameters can be extended to these settings. However,

our simulation experiments show that the ratio ρθ,µ1:t can become extremely unstable numerically

when t is large and it will affect the construction of a valid confidence interval. How to stabilize

the weight when the horizon is long remains an open question. An alternative method based on
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the marginalized distribution of the current state and action has been proposed in (Chernozhukov

et al., 2018a). However, it requires the Markov assumption which may not be satisfied in reality.

3.6 Supplementary Materials

3.6.1 Implementation Details

3.6.1.1 Optimization with L1 Penalty and L2 Constraint

We present the full algorithm of the optimization method for a nonconvex loss function with

L1 penalty and L2 constraint as described in Section 3.2.3. Notice that to find the global minimizer

of a nonconvex function, we need to try different starting point. Since running the full algorithm

from multiple starting points is computationally heavy, we compare the function value of multiple

points for each coordinate separately at the beginning. In practice, ξ in line 2 can be taken as

several discrete values, for example −0.8,−0.4, 0, 0.4, 0.8.

3.6.1.2 Numerical Computation of the Gradient and Hessian matrix of Loss Function

The direct estimation of the gradient and Hessian matrix of ρθ,µi,1:t is unstable due to the prob-

ability product, which may cause even larger variability when constructing confidence intervals for

the one-step estimator and lead to the undercoverage of the true parameter. Therefore, we propose

to calculate them numerically. An estimate of the partial derivative at the coordinate j = 1, . . . , d

is calculated using the symmetric difference quotient as

p∇θjℓ(θ,η) =
ℓ(θ+,η)− ℓ(θ−,η)

2hj
, (3.16)
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Algorithm 4: Optimization of a Loss Function with L1 penalty and L2 constraint

Input : a loss function ℓ to be minimized with L1 penalty and L2 constraint, the tuning
parameter λ for the L1 penalty, a starting point θ(0), the error threshold e, the
maximum number of iterations M

Output: The estimated parameter θ̌ or θ̂
for each coordinate j = 1, . . . , d do

Find the best starting point of the coordinate j

θ
(1)
j = argmin

θj∈
{
θ
(0)
j +ξ:ξ∈[−1,1]

} ℓ((θ(0)1 , . . . , θj , . . . , θ
(0)
d ));

end

Normalize θ(1) by its ℓ2-norm;
Initialize the number of iterations m = 1;

while m ≤M and ∥θ(m) − θ(m−1)∥2 ≥ e do
m← m+ 1;
for each coordinate j = 1, . . . , d do

Find the minimizer of ℓ with respect to the current coordinate using BFGS
algorithm

θ̃
(m)
j = argmin

θj

ℓ((θ
(m)
1 , . . . , θ

(m)
j−1, θj , θ

(m−1)
j+1 , . . . , θ

(m−1)
d ));

Shrink θ̃
(m)
j using soft-thresholding

θ
(m)
j = sign{θ̃(m)

j }max(|θ̃(m)
j | − λ, 0);

Normalize (θ
(m)
1 , . . . , θ

(m)
j , θ

(m−1)
j+1 , . . . , θ

(m)
d ) by its ℓ2-norm;

end

end

Re-estimate θ̌ or θ̂ by minimizing the loss function ℓ with the L2 constraint on the support
of θ(m) using the trust-region constrained algorithm.
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where

hj = min

 1
?
nT

,

d

1−
∑
l ̸=0,j

θ2l − |θj |

 ,

θ+j = θj + hj ,

θ+0 = sign{θ0}
d

1−
∑
l ̸=0,j

θ2l − (θ+j )
2, (3.17)

θ+l = θl for l ̸= 0, j, (3.18)

and θ− can be defined similarly with θ−j = θj − hj . Here 1/
?
nT is the common value for hj

taken in numerically computations. However, since the ℓ2-norm is restricted to be 1 in our case, hj

sometimes needs to be even smaller depending on the initial estimate θj . If θ0 = 0, then we have
b

1−
∑

l ̸=0,j θ
2
l − |θj | = 0. In this case, when θj ̸= 0, we estimate the gradient using Newton’s

difference quotient as

p∇θjℓ(θ,η) =
ℓ(θ+,η)− ℓ(θ,η)
−hj sign{θj}

,

where

hj = min

{
1

?
nT

, 2 |θj |
}
,

θ+j = θj − hj sign{θj}

and the other coordinates θ+l for l ̸= j are calculated as (3.17) and (3.18). When θ0 = θj = 0, we

use the gradient of θ′ for approximation, where

θ′0 = 0, θ′j =
1

?
nT

, θ′l = θl

b

1− (θ′j)
2 for l ̸= 0, j. (3.19)

Similarly, we use the symmetric difference quotient to find an estimate of the Hessian matrix

p∇θjθkℓ(θ,η) =
ℓ(θ++,η)− ℓ(θ+−,η)− ℓ(θ−+,η) + ℓ(θ−−,η)

(2h)2
. (3.20)
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When j ̸= k,

hjk = min

 1
?
nT

,
1−

b∑
l ̸=0 θ

2
l

?
2

 ,

θ++
j = θj + hjk, θ++

k = θk + hjk,

θ++
0 = sign{θ0}

d

1−
∑
l ̸=0,j,k

θ2l − (θ++
j )2 − (θ++

k )2, (3.21)

θ++
l = θl for l ̸= 0, j, k, (3.22)

and θ+−,θ−+,θ−− can be defined similarly with

θ+−
j = θj + hjk, θ+−

k = θk − hjk,

θ−+
j = θj − hjk, θ−+

k = θk + hjk,

θ−−
j = θj − hjk, θ−−

k = θk − hjk.

When j = k,

hjj = min

 1
?
nT

,
1

2

¨

˝

d

1−
∑
l ̸=0,j

θ2l − |θj |

˛

‚

 ,

θ++
j = θj + 2hjj ,

θ++
0 =

d

1−
∑
l ̸=0,j

θ2l − (θ++
j )2, (3.23)

θ++
l = θl for l ̸= 0, j, k, (3.24)

and θ+−,θ−+,θ−− can be defined similarly with

θ+−
j = θ−+

j = θj , θ−−
j = θj − 2hjj .

If θ0 = 0 and θj , θk ̸= 0, we instead use Newton’s difference quotient to estimate the Hessian matrix

as

p∇θjθkℓ(θ,η) =
ℓ(θ++,η)− ℓ(θ+·,η)− ℓ(θ·+,η) + ℓ(θ,η)

(hjk sign{θj})(hjk sign{θk})
.
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When j ̸= k,

hjk = min

{
1

?
nT

, 2 |θj | , 2 |θk|
}
,

θ++
j = θj − hjk sign{θj}, θ++

k = θk − hjk sign{θk},

and the other coordinates θ++
l for l ̸= 0 are calculated as (3.21) and (3.22). Similarly, θ+−,θ−+

can be defined with

θ+·
j = θj + hjk, θ+·

k = θk,

θ·+j = θj , θ·+k = θk + hjk.

When j = k,

hjj = min

{
1

?
nT

, |θj |
}
,

θ++
j = θj − 2hjj sign{θj},

and the other coordinates θ++
l for l ̸= 0 are calculated as (3.23) and (3.24). Similarly, θ+·,θ·+ can

be defined with

θ+·
j = θ·+j = θj − hjj sign{θj}.

When θ0 = θj = 0 and θk ̸= 0, we use the gradient of θ′ for approximation, where θ′ is defined in

(3.19). When θ0 = θj = θk = 0, we use the gradient of θ′′ for approximation, where

θ′′0 = 0, θ′′j =
1

?
nT

, θ′′k =
1

?
nT

, θ′′l = θl

b

1− (θ′′k)
2 − (θ′′k)

2 for l ̸= 0, j, k.
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3.6.2 Proof of Theorem 3.3.1

Note that the gradient and Hessian matrix of the loss function are

∇θℓ(θ, η̂) = −
1

n

n∑
i=1

T∑
t=1

{
∇θ[

∏t
k=1 π

θ(Ai,k|Xi,k)]∏t
k=1 µk(Ai,k|Hi,k)

[Ri,t − Q̂t(Xi,t, Ai,t)]

+
∇θ[

∏t−1
k=1 π

θ(Ai,k|Xi,k)]∏t−1
k=1 µk(Ai,k|Hi,k)

∑
a∈A

πθ(a|Xi,t)Q̂t(Xi,t, a),

+

∏t−1
k=1 π

θ(Ai,k|Xi,k)∏t−1
k=1 µk(Ai,k|Hi,k)

∑
a∈A
∇θπ

θ(a|Xi,t)Q̂t(Xi,t, a)

}
,

∇2
θθℓ(θ, η̂) = −

1

n

n∑
i=1

T∑
t=1

{
∇2

θθ[
∏t
k=1 π

θ(Ai,k|Xi,k)]∏t
k=1 µk(Ai,k|Hi,k)

[Ri,t − Q̂t(Xi,t, Ai,t)]

+
∇2

θθ[
∏t−1
k=1 π

θ(Ai,k|Xi,k)]∏t−1
k=1 µk(Ai,k|Hi,k)

∑
a∈A

πθ(a|Xi,t)Q̂t(Xi,t, a),

+
∇θ[

∏t−1
k=1 π

θ(Ai,k|Xi,k)]∏t−1
k=1 µk(Ai,k|Hi,k)

∑
a∈A
∇θπ

θ(a|Xi,t)Q̂t(Xi,t, a),

+

∏t−1
k=1 π

θ(Ai,k|Xi,k)∏t−1
k=1 µk(Ai,k|Hi,k)

∑
a∈A
∇2

θθπ
θ(a|Xi,t)Q̂t(Xi,t, a)

}
,

where

∇θ

«

t∏
k=1

πθ(ak|xk)

ff

=

«

t∏
k=1

πθ(ak|xk)

ff «

t∑
k=1

akxk/τ

1 + eakx
T
k θ/τ

ff

,

∇2
θθ

«

t∏
k=1

πθ(ak|xk)

ff

=

«

t∏
k=1

πθ(ak|xk)

ff «

t∑
k=1

akxk/τ

1 + eakx
T
k θ/τ

ff «

t∑
k=1

akxk/τ

1 + eakx
T
k θ/τ

ffT

−

«

t∏
k=1

πθ(ak|xk)

ff

t∑
k=1

eakx
T
k θ/τ

„

akxk/τ

1 + eakx
T
k θ/τ

ȷ „

akxk/τ

1 + eakx
T
k θ/τ

ȷT

.

Since Rt is bounded for all t by Assumption 11, we know that η̄ is bounded by r with probability

one. For a real valued function f : D 7→ R, write the empirical process as

Gn =
1

?
n

n∑
i=1

[f(Di)− Ef(Di)].

Denote [·]j as the jth dimension of a vector and [·]j. the jth row of a matrix.

93



For H̄ := {η−η̄ : η ∈ H} define the pathwise derivative of the nuisance parameterDq : H̄ 7→ Rd,

Dq[η − η̄] := ∇qE r∇θℓ(θ
∗, η̄ + q(η − η̄))s , η ∈ H,

for all q ∈ [0, 1). This derivative exists by our construction of ℓ. We will use the Neyman or-

thogonality to decorrelate the high-dimensional nuisance parameters. The definition is taken from

Chernozhukov et al. (2018a).

Definition 3.6.1 (Neyman orthogonality). The score ∇θℓ obeys the orthogonality condition at

(θ∗, η̄) with respect to the nuisance realization set Hn ∈ H if

E[∇θℓ(θ
∗, η̄)] = 0

and the pathwise derivative map Dq[η − η̄] exists for all q ∈ [0, 1) and η ∈ Hn and vanishes at

q = 0; namely,

D0[η − η̄] = 0, for all η ∈ Hn.

Lemma 3.6.1. Under Assumptions 8, 9, 10 and 11, the gradient ∇θℓ satisfies the Neyman or-

thogonality. In addition, the following results hold for the nuisance parameters:

sup
η∈Hn,q∈(0,1)

∥∥∇2
qqE[∇θℓ(θ

∗, η̄ + q(η − η̄))]
∥∥
∞ = 0, (3.25)

sup
η∈Hn,q∈(0,1)

∥∇qE[∇θθℓ(θ
∗, η̄ + q(η − η̄))]∥∞ = 0. (3.26)

Proof. Since E[ℓ(θ,η)] = −V (θ) for any η and ∇θV (θ∗) = 0 by the definition of θ∗, we have

E[∇θℓ(θ
∗,η)] = 0 for any η, when the regularity conditions are satisfied. Therefore,

D0[η − η̄] = ∇QE[∇θℓ(θ
∗,η)]|η=η̄·(η − η̄) = 0

since ∇QE[∇θℓ(θ
∗,η)] = 0.
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Similarly, for each dimension j we also have ∇2
QQE[∇θjℓ(θ∗,η)] = 0 since E[∇θjℓ(θ∗,η)] is a

constant zero. Consequently,

“

∇2
qqE[∇θℓ(θ

∗, η̄ + q(η − η̄))]
‰

j

=∇2
qqE[∇θjℓ(θ

∗, η̄ + q(η − η̄))]

=(η − η̄)T∇2
QQE[∇θjℓ(θ

∗, η̄ + q(η − η̄))](η − η̄)

=0

and (3.25) follows. Since E[∇θθℓ(θ
∗,η)] = ∇θθV (θ∗) for any η, we have that

∇qE[∇θθℓ(θ
∗, η̄ + q(η − η̄))] = ∇q∇θθV (θ∗) = 0

and thus (3.26) follows.

Lemma 3.6.2. Under Assumptions 8, 9, 10, 11 and 12, we have

sup
η∈Hn

∥∇θℓ(θ
∗,η)−∇θℓ(θ

∗, η̄)∥∞ = oP(1/
?
n), (3.27)

sup
η∈Hn

∥∥v∗T∇2
θθℓ(θ

∗,η)− v∗T∇2
θθℓ(θ

∗, η̄)
∥∥
∞ = oP(

a

log d/n). (3.28)

Proof. To show (3.27), first note that

∥∇θℓ(θ
∗,η)−∇θℓ(θ

∗, η̄)∥∞ ≤
1

?
n
∥Gn[∇θl(θ

∗,η)−∇θl(θ
∗, η̄)]∥∞ (3.29)

+ ∥E[∇θℓ(θ
∗,η)−∇θℓ(θ

∗, η̄)]∥∞ (3.30)

for any η ∈ Hn. We will bound (3.30) using Neyman orthogonality and bound (3.29) using the

results of empirical process.

To bound (3.30), define

hη(q) := E[∇θℓ(θ
∗, η̄ + q(η − η̄))−∇θℓ(θ

∗, η̄)]
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for q ∈ [0, 1). By Taylor’s expansion, there exists q̃ ∈ (0, 1) such that

hη(1) = hη(0) +∇qhη(0) +
1

2
∇2
qqhη(q̃).

We have hη(0) = 0 by definition and ∇qhη(0) = 0 by Lemma 3.6.1. In addition, the second

derivative satisfies ∥∇2
qqhη(q̃)∥∞ = 0 by Lemma 3.6.1. Therefore, ∥hη(1)∥∞ = 0 for any η ∈ Hn

and thus

sup
η∈Hn

∥E[∇θℓ(θ
∗,η)−∇θℓ(θ

∗, η̄)]∥∞ = o(1/
?
n).

To bound (3.29), define

gη1,η2(q) = ∇θℓ(θ
∗,η1 + q(η2 − η1))−∇θℓ(θ

∗,η1)

for any η1,η2 ∈ Hn. Then we have

gη1,η2(1) = ∇θℓ(θ
∗,η2)−∇θℓ(θ

∗,η1).

By Taylor’s expansion, there exists q̃ ∈ (0, 1) such that

gη1,η2(1) = gη1,η2(0) +∇qgη1,η2(q̃) = ∇2
θ,ηℓ(θ

∗,η1 + q̃(η2 − η1))(η2 − η1)

since gη1,η2(0) = 0 by definition. Hence by Cauchy-Schwartz inequality we have

[∇θℓ(θ
∗,η2)−∇θℓ(θ

∗,η1)]j ≤ ∥[∇2
θ,ηℓ(θ

∗,η1 + q̃(η2 − η1))]j.∥2 ∥η2 − η1∥2 (3.31)

for the jth dimension, which implies that the functions [∇θℓ(θ
∗,η)]j and [∇θℓ(θ

∗,η)−∇θℓ(θ
∗, η̄)]j

are Lipschitz in the parameter η. Note that with Assumption 11 and the boundedness of Q̂t, we

have

∥∇2
θ,ηℓ(θ

∗,η1 + q̃(η2 − η1))∥2 ≤ C,

where C is a constant.

96



Therefore, the bracketing number N[](ϵ,Gn,j , L2(P)) of the function set

Gn,j := {[∇θℓ(θ
∗,η)−∇θℓ(θ

∗, η̄)]j : η ∈ Hn}

is upper bounded by the covering number N(ϵ/(2C),Hn, ∥·∥2) of the nuisance parameter set Hn

(Van der Vaart and Wellner, 1996, Theorem 2.7.11). Since ∥η − η̄∥2 = oP(1), the covering number

of the nuisance set N(ϵ/(2C),Hn, ∥·∥2) is finite. Let

J[](δ,Gn,j , ∥·∥) :=
∫ δ

0

b

1 + logN[](ϵ,Gn,j , ∥·∥)dϵ

be the bracketing integral. The minimum envelop function of class Gn,j is defined as Gn,j(x) :=

supg∈Gn,j
|g(x)|. Suppose Gn,j is covered by the brackets [l1, u1], . . . , [lNϵ , uNϵ ], where Nϵ :=

N[](ϵ,Gn,j , L2(P)) is the bracketing number for any ϵ > 0. Then we can write the minimum envelop

function as

Gn,j(x) = max
j=1,...,Nϵ

{|lNϵ(x)|, |uNϵ(x)|}.

The LP,2 norm of Gn,j(x) is then

∥Gn,j∥2P,2 = EG2
n,j(D) ≤ E

Nϵ∑
j=1

(l2j (D) + u2j (D)).

Note that

El2j (D) =E[g(D) + (lj(D)− g(D))]2

≤2[Eg2(D) + E(lj(D)− g(D))2]

≤2[Eg2(D) + ϵ2]

for some g ∈ Gn,j contained in the jth bracket for any j = 1, . . . , Nϵ. According to (3.31),

Eg2(D) ≤ C2∥η − η̄∥P,2 ≤ δn
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by Assumption 12 and thus

El2j (D) ≤ 2[ϵ2 + δn].

The same holds for upper brackets uj . Since

Nϵ ≤ N
´ ϵ

2C
,Hn, ∥·∥2

¯

≤ δn
2C

ϵ
,

we get that

∥Gn,j∥2P,2 ≤ 4[ϵ2 + δn]Nϵ ≤ 4[ϵ2 + δn] · 2Cδn
1

ϵ
.

So ∥Gn,j∥2P,2 → 0 when n→∞. Since

E∗ sup
g∈Gn,j

Gn(g) À J[](∥Gn,j∥P,2 ,Gn,j , L2(P)) (3.32)

by Van der Vaart and Wellner (1996, Theorem 2.14.2), the left-hand side of (3.32) is in the order

of o(1). Finally, by Markov’s inequality,

sup
η∈Hn

1
?
n
Gn[∇θℓ(θ

∗,η)−∇θℓ(θ
∗, η̄)]j = oP(1/

?
n).

The bound on (3.29) follows by taking the maximum over all the dimensions.

Combining the upper bounds of (3.30) and (3.29) we can show (3.27).

For (3.28), note that

∥∥v∗T∇2
θθℓ(θ

∗,η)− v∗T∇2
θθℓ(θ

∗, η̄)
∥∥
∞ (3.33)

≤ 1
?
n

∥∥Gn[v
∗T∇2

θθℓ(θ
∗,η)− v∗T∇2

θθℓ(θ
∗, η̄)]

∥∥
∞ (3.34)

+
∥∥E[v∗T∇2

θθℓ(θ
∗,η)− v∗T∇2

θθℓ(θ
∗, η̄)]

∥∥
∞ (3.35)

for any η ∈ Hn.

To bound (3.35), define

h̃η(q) := E[v∗T∇2
θθℓ(θ

∗, η̄ + q(η − η̄))− v∗T∇2
θθℓ(θ

∗, η̄)]
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for q ∈ [0, 1). By Taylor’s expansion, there exists q̃ ∈ (0, 1) such that

h̃η(1) = h̃η(0) +∇qh̃η(q̃).

We have h̃η(0) = 0 by definition and ∇qh̃η(q̃) = o(
a

log d/n) by Lemma 3.6.1.

Using similar arguments as that for (3.29), we can conclude that (3.34) is in the order of

oP(1/
?
n). Combining the upper bounds of (3.35) and (3.34) gives the results.

Lemma 3.6.3 (Concentration of the gradient and Hessian). Under Assumptions 8, 9, 10, 11 and

12, we have

∥∇θℓ(θ
∗, η̂)− E∇θℓ(θ

∗, η̄)∥∞ = OP(
a

log d/n), (3.36)∥∥v∗T∇2
θθℓ(θ

∗, η̂)− E(v∗T∇2
θθℓ(θ

∗, η̄))
∥∥
∞ = OP(

a

log d/n). (3.37)

Proof. Since P(η̂ /∈ Hn) ≤ ∆n and ∆n converges to zero, we can focus on the event when η ∈ Hn.

To prove (3.36), note that

∥∇θℓ(θ
∗, η̂)− E∇θℓ(θ

∗, η̄)∥∞

≤∥∇θℓ(θ
∗, η̂)−∇θℓ(θ

∗, η̄)∥∞ + ∥∇θℓ(θ
∗, η̄)− E∇θℓ(θ

∗, η̄)∥∞ .

By (3.27), we only need to show that

∥∇θℓ(θ
∗, η̄)− E∇θℓ(θ

∗, η̄)∥∞ = OP(
a

log d/n). (3.38)

Write

h(D1, . . . ,Dn) := −∇θℓ(θ, η̄),

which is a d-dimensional real-valued function, and denote the j-th dimension of h as hj . Remember

that ∇θℓ(θ, η̄) can be divided into 3 parts, so

h(D1, . . . ,Dn) =
1

nT

n∑
i=1

T∑
t=1

{
∇θρ

θ,µ̄
i,1:t[Ri,t − Q̄t(Xi,t, Ai,t)] + [∇θρ

θ,µ̄
i,1:(t−1)]Ūt(Xi,t)

+ ρθ,µ̄i,1:(t−1)[∇θŪt(Xi,t)]
}
.
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Since

ρθ,µ̄i,1:t ≤ 1/pt0 and
Ai,kXi,k,j/τ

1 + eAi,kX
T
i,kθ/τ

≤ z/τ,

we have that the jth dimension of ∇θρ
θ,µ̄
i,1:t is upper bounded by zt

τpt0
. Besides, we know that

|Ri,t − Q̄t(Xi,t, Ai,t)|≤ 2r since Q̄t is bounded by r according to Assumption 11 and the definition

of Q̄t. Thus the jth dimension of the first part is changed by

1

nT

T∑
t=1

∣∣∣[∇θρ
θ,µ̄
i,1:t]j [Ri,t − Q̄t(Xi,t, Ai,t)]− [∇θρ

′θ,µ̄
i,1:t ]j [R

′
i,t − Q̄t(X ′

i,t, A
′
i,t)]

∣∣∣ ≤ 2

n

T∑
t=1

2rzt

τpt0

if the ith trajectory Di is changed into D′
i. Similarly, since |[∇θπ

θ(a|x)]j |≤ z
4τ , we have

|[∇θρ
θ,µ̄
i,1:(t−1)]jŪt(Xi,t)|≤

rtz

p0τ
and |ρθ,µ̄i,1:(t−1)[∇θŪt(Xi,t)]j |≤

rz

2p0τ
.

Therefore, the upper bound on the change of hj when changing Di is ci := C/n for some constant

C > 0 depending on r, z, p0, τ, T . By McDiarmid’s inequality, we get that

P p|hj(D1, . . . ,Dn)− Ehj(D1, . . . ,Dn)| ≥ ϵq ≤ 2 exp

{
− 2ϵ2∑n

i=1 c
2
i

}
≤ 2 exp

{
−C ′nϵ2

}
for some constant C ′ > 0. Now the union bound inequality yields

P p∥h(D1, . . . ,Dn)− Eh(D1, . . . ,Dn)∥∞ ≥ ϵq ≤ 2d exp
{
−C ′nϵ2

}
.

With ϵ = C ′′alog d/n for some C ′′ > 0, we have h(D1, . . . ,Dn) = OP(
a

log d/n) and equation

(3.38) follows.

Similarly, by (3.28), we only need to prove

∥∥v∗T∇2
θθℓ(θ

∗, η̄)− E(v∗T∇2
θθℓ(θ

∗, η̄))
∥∥
∞ = OP(

a

log d/n)

for (3.37). Now v∗T∇2
θθℓ(θ

∗, η̄) can be divided into 5 parts. When Q̄t is upper bounded by the

constant r, each dimension for each part is bounded by C ′′/n for some constant C ′′ > 0, since v∗

is a constant. The result follows from the same arguments as before.
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Lemma 3.6.4 (Central limit theorem for the score function). Under Assumptions 8, 9, 10 and 13,

it holds that
?
nv∗T∇θℓ(θ

∗, η̂)⇒ N(0, σ∗S),

where σ∗S ≥ C for some constant C > 0.

Proof. Since E∇θℓ(θ
∗, η̄) = 0, note that

?
n∇θℓ(θ

∗, η̂) =
?
n[∇θℓ(θ

∗, η̂)−∇θℓ(θ
∗, η̄)] +

?
n[∇θℓ(θ

∗, η̄)− E∇θℓ(θ
∗, η̄)]. (3.39)

Th equation (3.27) shows that the first difference on the right-hand side of (3.39) is in the order of

oP(1) when η̂ ∈ Hn. Besides, the probability of η̂ /∈ Hn converges to zero. For the second different

in (3.39), when Σ∗ is finite by Assumption 13, the multivariate central limit theorem (Ferguson,

2017, Theorem 5) shows that

?
n[∇θℓ(θ

∗, η̄)− E∇θℓ(θ
∗, η̄)]⇒ N(0,Σ∗).

The convergence follows sinceN(0,v∗TΣ∗v∗)+oP(1) = N(0,v∗TΣ∗v∗). In addition, Assumption 13

guarantees that v∗TΣ∗v∗ ≥ C, since v∗T is nonzero at least in its first argument.

Lemma 3.6.5. Under Assumptions 8, 9, 10, 11, 12 and 14, when n satisfies (τn,δ +Lδn)sθ ≤ κ/2

and λθ ≃
a

log d/n, we have

∥θ̂ − θ∗∥1 = OP(sθ
a

log d/n), (3.40)

(θ̂ − θ∗)T∇2
θθℓ(θ

∗, η̂)(θ̂ − θ∗) = OP(sθ log d/n). (3.41)

Proof. Denote ∆̂θ := θ̂ − θ∗. According to Chernozhukov et al. (2018b, inequality (88)), we have

〈
∇θℓ(θ̂, η̂), ∆̂θ

〉
≤λθ(∥θ∗∥1 − ∥θ̂∥1) = λθ(∥θ∗

Sθ
∥1 − ∥θ∗

Sθ
+ ∆̂θ,S∥1 − ∥∆̂θ,Sθ

c∥1)

≤λθ(∥∆̂θ,Sθ
∥1 − ∥∆̂θ,Sθ

c∥1).
(3.42)
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Define the empirical symmetric Bregman distance as

H(θ,θ∗,η) = ⟨∇θℓ(θ,η)−∇θℓ(θ
∗,η),θ − θ∗⟩ .

Since all variables are bounded, by Taylor’s expansion on each dimension we have

sup
θ

∥∥∇θθℓ(θ,η)−∇θθℓ(θ,η
′)
∥∥
∞ ≤ L

∥∥η − η′∥∥
2

for any η,η′ ∈ Hn. Therefore, the empirical symmetric Bregman distance is Lipschitz in the

nuisance parameters:

∣∣H(θ,θ∗,η)−H(θ,θ∗,η′)
∣∣ ≤ L∥∥η − η′∥∥

2
∥θ − θ∗∥21 (3.43)

for any η,η′ ∈ Hn and for any θ (Chernozhukov et al., 2018b, Lemma 3).

By Assumption 14, we know Eℓ(θ, η̄) = −V (θ) is κ-strongly convex at θ∗. We will use Cher-

nozhukov et al. (2018b, Lemma 2) to prove the restricted strong convexity:

H(θ∗ +∆θ,θ
∗, η̄) ≥ κ∥∆θ∥22 − τn,δ∥∆θ∥21 (3.44)

holds with probability 1 − δ for all ∆θ ∈ B(R) and τn,δ ≃ 1/(δ
?
n). To verify the condition, we

need to show that

sup
θ∈{θ∗+∆θ :∆θ∈B(R)}

∥∥v∗T∇θθℓ(θ, η̄)− v∗TE∇θθℓ(θ, η̄)
∥∥
∞ ≤ τn,δ

with probability 1− δ. Similar as the bound for (3.29), for each dimension j, we can use Taylor’s

expansion to show that ∇θθℓ(θ, η̄) is Lipschitz in the parameter θ with constant C. Consequently,

the bracketing number N[](ϵ,Gn,j , L2(P)) of

Gn,j := {[v∗T∇θθℓ(θ
∗ +∆θ, η̄)]j : ∆θ ∈ B(R)}
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is upper bounded by the covering number N(ϵ/(2C),B(R), ∥·∥2). For a finite R, the set B(R) is

bounded and N(ϵ,B(R), ∥·∥2) ≃ (1/ϵ)d. Therefore,

E∗ sup
g∈Gn,j

Gn(g) À J[](∥Gn,j∥P,2 ,Gn,j , L2(P)) ≤ J[](∞,Gn,j , L2(P)) <∞

by Van der Vaart and Wellner (1996, Theorem 2.14.2). By Markov’s inequality and union bound

inequality, we get that

τn,δ ≃ dJ[](∥Gn,j∥P,2 ,Gn,j , L2(P))/(δ
?
n).

Combining the Lipschitz bound (3.43) and the restricted strong convexity bound (3.44), we

have

H(θ̂,θ∗, η̂) ≥H(θ̂,θ∗, η̄)− L∥η̂ − η̄∥2∥∆̂θ∥21

≥κ∥∆̂θ∥22 − (τn,δ + L∥η̂ − η̄∥2)∥∆̂θ∥21.

On the other hand,

H(θ̂,θ∗, η̂) ≤
〈
∇θℓ(θ̂, η̂)−∇θℓ(θ

∗, η̂), θ̂ − θ∗
〉

≤λθ(∥∆̂θ,Sθ
∥1 − ∥∆̂θ,Sθ

c∥1) + ∥∇θℓ(θ
∗, η̂)∥∞ ∥∆̂θ∥1

according to (3.42). The assumption that λθ ≃
a

log d/n and Lemma 3.6.3 implies

∥∇θℓ(θ
∗, η̂)∥∞ À λθ/2

with high probability. Conditioning on this event, the above two bounds yield

κ∥∆̂θ∥22 ≤
λθ
2
(3∥∆̂θ,Sθ

∥1 − ∥∆̂θ,Sθ
c∥1) + (τn,δ + L∥η̂ − η̄∥2)∥∆̂θ∥21

≤3λθ
2

?
sθ∥∆̂θ∥2 + (τn,δ + L∥η̂ − η̄∥2)sθ∥∆̂θ∥22.

Since P(η /∈ Hn) → 0, we focus on the events when η ∈ Hn. When n is large enough such that

(τn,δ + Lδn)sθ ≤ κ/2, we have

∥∆̂θ∥2 ≤
3λθ
4

?
sθ ≃

a

sθ log d/n.
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Besides, since

λθ
2
(3∥∆̂θ,Sθ

∥1 − ∥∆̂θ,Sθ
c∥1) ≥

κ

2
∥∆̂θ∥22 ≥ 0,

we also have ∥∆̂θ,Sθ
c∥1 ≤ 3∥∆̂θ,Sθ

∥1 and thus

∥∆̂θ∥1 ≤ 4∥∆̂θ,Sθ
∥1 ≤ 4

?
sθ∥∆̂θ,Sθ

∥2 À sθ
a

log d/n.

Now considering the randomness of ∥∇θℓ(θ
∗, η̂)∥∞ and we have ∥∆̂θ∥1 = OP(sθ

a

log d/n).

To show (3.41), note that

∣∣∣H(θ̂,θ∗, η̂)− ∆̂T
θ∇2

θθℓ(θ
∗, η̂)∆̂θ

∣∣∣
=
∣∣∣∆̂T

θ

”

∇2
θθℓ(qθ̂ + (1− q)θ∗, η̂)−∇2

θθℓ(θ
∗, η̂)

ı

∆̂θ

∣∣∣
=∥∆̂θ∥21∥∇2

θθℓ(qθ̂ + (1− q)θ∗, η̂)−∇2
θθℓ(θ

∗, η̂)∥∞

by Taylor’s expansion for some q ∈ [0, 1], where ∆̂θi = θ̂i − θ∗i . Use Taylor’s expansion again and

we have

∇2
θiθj

ℓ(qθ̂ + (1− q)θ∗, η̂)−∇2
θiθj

ℓ(θ∗, η̂)

≤∥∇θ(∇2
θiθj

ℓ)(q′[qθ̂ + (1− q)θ∗] + (1− q′)θ∗, η̂)∥∞∥∆̂θ∥1
(3.45)

for some q′ ∈ [0, 1]. Since the first term on the right-hand side of (3.45) is bounded, the left-hand

side is in the order of ∥∆̂θ∥1 = OP(sθ
a

log d/n). By Assumption 12, we have

∣∣∣H(θ̂,θ∗, η̂)− ∆̂T
θ∇2

θθℓ(θ
∗, η̂)∆̂θ

∣∣∣ = OP((sθ
a

log d/n)3) = oP(sθ log d/n) (3.46)

if sθ is bounded. Finally, since

H(θ̂,θ∗, η̂) ≤ λθ
2
(3∥∆̂θ,Sθ

∥1 − ∥∆̂θ,Sθ
c∥1) À λθ∥∆̂θ,Sθ

∥1 = OP(sθ log d/n),

we conclude that ∆̂T
θ∇2

θθℓ(θ
∗, η̂)∆̂θ = OP(sθ log d/n).
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Lemma 3.6.6. Under Assumptions 8, 9, 10, 11 and 12, when λw ≃
a

log d/n, we have

∥ŵ −w∗∥1 = OP((sθ ∨ sw)
a

log d/n), (3.47)

(v̂ − v∗)T∇2
θθℓ(θ

∗, η̂)(v̂ − v∗) = OP((sθ ∨ sw) log d/n). (3.48)

Proof. Let ∆̂w := ŵ −w∗. Since ∥w∗∥1 ≥ ∥ŵ∥1, we have

∑
j∈Sw

|w∗
j | ≥

∑
j∈Sw

|ŵj |+
∑
j∈Sc

w

|ŵj | ≥
∑
j∈Sw

|w∗
j | −

∑
j∈Sw

|∆̂w,j |+
∑
j∈Sc

w

|ŵj |.

Hence ∑
j∈Sw

|∆̂w,j | ≥
∑
j∈Sc

w

|ŵj | =
∑
j∈Sc

w

|∆̂w,j |,

that is, ∥∆̂w,Sc
w
∥1 ≤ ∥∆̂w,Sw∥1. Therefore, ∥∆̂w∥1 ≤ 2∥∆̂w,Sw∥1. Consider the following function

∆̂T
w∇2

θ−jθ−j
ℓ(θ̂, η̂)∆̂w

=
”

∇2
θjθ−j

ℓ(θ̂, η̂)−w∗T∇2
θ−jθ−j

ℓ(θ̂, η̂)
ı

∆̂w −
”

∇2
θjθ−j

ℓ(θ̂, η̂)− ŵT∇2
θ−jθ−j

ℓ(θ̂, η̂)
ı

∆̂w

=:I1 + I2.

According to the definition of ∆̂w,

I2 ≤ ∥∇2
θjθ−j

ℓ(θ̂, η̂)− ŵT∇2
θ−jθ−j

ℓ(θ̂, η̂)∥∞∥∆̂w∥1 ≤ λw∥∆̂w∥1.

Note that for I1,

I1 = v∗T∇2
θθ−j

ℓ(θ∗, η̂)∆̂w + v∗T [∇2
θθ−j

ℓ(θ̂, η̂)−∇2
θθ−j

ℓ(θ∗, η̂)]∆̂w =: I11 + I12.

Since

E[∇2
θ−jθ

ℓ(θ∗, η̄)v∗] = I∗θ−jθj
− I∗θ−jθ−j

w∗ = 0,

we can use the similar proof of Lemma 3.6.3 to show that

|I11| ≤ ∥v∗T∇2
θθ−j

ℓ(θ∗, η̂)∥∞∥∆̂w∥1 À
a

log d/n∥∆̂w∥1.
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For I22, use (3.45) again and we have

I12 ≤ ∥v∗T [∇2
θθ−j

ℓ(θ̂, η̂)−∇2
θθ−j

ℓ(θ∗, η̂)]∥∞∥∆̂w∥1 À swsθ
a

log d/n∥∆̂w∥1.

Combine the bounds for I11, I12, I2,

∆̂T
w∇2

θ−jθ−j
ℓ(θ̂, η̂)∆̂w À swsθ

a

log d/n∥∆̂w∥1.

According to Lemma 3.6.7,

s
−1/2
w ∥∆̂w,Sw∥1 À [∆̂T

wℓθ−jθ−j
(θ̂, η̂)∆̂w]

1/2.

Combine the upper and lower bounds of ∆̂T
w∇2

θ−jθ−j
ℓ(θ̂, η̂)∆̂w with the fact that ∥∆̂w∥1 ≤

2∥∆̂w,Sw∥1,

[∆̂T
w∇2

θ−jθ−j
ℓ(θ̂, η̂)∆̂w]

1/2 À swsθ
a

sw log d/n.

Therefore, we have

∥∆̂w∥1 ≤ 2∥∆̂w,Sw∥1 À s2wsθ
a

log d/n.

Finally,

(v̂ − v∗)T∇2
θθℓ(θ

∗, η̂)(v̂ − v∗) = ∆̂T
w∇2

θ−jθ−j
ℓ(θ∗, η̂)∆̂w

=∆̂T
w∇2

θ−jθ−j
ℓ(θ̂, η̂)∆̂w + ∆̂T

w[∇2
θ−jθ−j

ℓ(θ∗, η̂)−∇2
θ−jθ−j

ℓ(θ̂, η̂)]∆̂w

À(swsθ
a

sw log d/n)2 + (s2wsθ
a

log d/n)2(sθ
a

log d/n)

=s4ws
2
θ log d/n

by similar proof of (3.46). The conclusion follows by the assumption that sw and sθ are constants.

Lemma 3.6.7. Denote

κD(sw) = min

s
1/2
w [wT∇2

θ−jθ−j
ℓ(θ̂, η̂)w]1/2

∥wSw∥1
: w ∈ Rd−1\{0}, ∥wSc

w
∥1 ≤ ξ∥wSw∥1

 ,
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where ξ is a positive constant. Under Assumptions 8, 9, 10, 11, 12, 13 and 14, κD(sw) ≥ κ/
?
2

with probability tending to one.

Proof. Since ∥vSw∥1 ≤ s
1/2
w ∥vSw∥2 ≤ s

1/2
w ∥v∥2, we have

κ2D(sw) ≥ min

{
wT∇2

θ−jθ−j
ℓ(θ̂, η̂)w

∥w∥22
: w ∈ Rd−1\{0}, ∥wSc

w
∥1 ≤ ξ∥wSw∥1

}
.

Note that

wT∇2
θ−jθ−j

ℓ(θ̂, η̂)w

∥w∥22
=

wT∇2
θ−jθ−j

ℓ(θ∗, η̂)w

∥w∥22
+

wT [∇2
θ−jθ−j

ℓ(θ̂, η̂)−∇2
θ−jθ−j

ℓ(θ∗, η̂)]w

∥w∥22

and

wT [∇2
θ−jθ−j

ℓ(θ̂, η̂)−∇2
θ−jθ−j

ℓ(θ∗, η̂)]w = OP(sθ
a

log d/n) = oP(1)

by similar proof as (3.46). Therefore, with probability tending to one,

wT∇2
θ−jθ−j

ℓ(θ̂, η̂)w

∥w∥22
≥ 3

4

wT∇2
θ−jθ−j

ℓ(θ∗, η̂)w

∥w∥22

=
3

4

wT Iθ−jθ−j
w

∥w∥22
+

3

4

wT [∇2
θ−jθ−j

ℓ(θ∗, η̂)− Iθ−jθ−j
]w

∥w∥22

≥3

4
λmin(Iθ−jθ−j

)− 3

4

∣∣∣∣∣w
T [∇2

θ−jθ−j
ℓ(θ∗, η̂)− Iθ−jθ−j

]w

∥w∥22

∣∣∣∣∣
≥3

4

«

κ2 −
∥w∥21∥∇2

θ−jθ−j
ℓ(θ∗, η̂)− Iθ−jθ−j

∥∞
∥w∥22

ff

In addition, from

∥w∥21 ≤ (ξ + 1)2∥wSw∥21 ≤ sw(ξ + 1)2∥w∥22

we get
wT∇2

θ−jθ−j
ℓ(θ̂, η̂)w

∥w∥22
≥ 3

4

”

κ2 − sw(ξ + 1)2∥∇2
θ−jθ−j

ℓ(θ∗, η̂)− Iθ−jθ−j
∥∞

ı

.

Similar to the proof of Lemma 3.6.3, we can obtain

∥∇2
θ−jθ−j

ℓ(θ∗, η̂)− Iθ−jθ−j
∥∞ = OP(

a

log d/n).
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Hence we have ∥∇2
θ−jθ−j

ℓ(θ∗, η̂)− Iθ−jθ−j
∥∞ = oP(1) by Assumption 12. When n is large enough,

∥∇2
θ−jθ−j

ℓ(θ∗, η̂)− Iθ−jθ−j
∥∞ ≤ κ2/[3(ξ + 1)2].

Therefore, κD(sw) ≥ κ/
?
2 with probability tending to one.

Lemma 3.6.8 (Local smoothness conditions on the loss function). Under Assumptions , we have

v∗T [∇θℓ(θ̂, η̂)−∇θℓ(θ
∗, η̂)−∇2

θθℓ(θ
∗, η̂)(θ̂ − θ∗)] = OP(sθ log d/n), (3.49)

(v̂ − v∗)T [∇θℓ(θ̂, η̂)−∇θℓ(θ
∗, η̂)] = OP(sθ log d/n). (3.50)

The same results hold for θ̂0 = (0, θ̂T−j)
T , where θj is the parameter we are interested in.

Proof. Using the similar proof as (3.46),

∣∣∣v∗T [∇θℓ(θ̂, η̂)−∇θℓ(θ
∗, η̂)−∇2

θθℓ(θ
∗, η̂)(θ̂ − θ∗)]

∣∣∣
=
∣∣∣v∗T [∇2

θθℓ(qθ̂ + (1− q)θ∗, η̂)∆̂θ −∇2
θθℓ(θ

∗, η̂)∆̂θ]
∣∣∣

À∥v∗∥1∥∆̂θ∥1∥∆̂θ∥1 À s2θ log d/n = oP(1/
?
n)

for some q ∈ [0, 1] by Assumption 12. Let ∆̂v := v̂ − v∗. For (3.50), we have

∣∣∣(v̂ − v∗)T [∇θℓ(θ̂, η̂)−∇θℓ(θ
∗, η̂)]

∣∣∣
=
∣∣∣∆̂v∇2

θθℓ(qθ̂ + (1− q)θ∗, η̂)∆̂θ

∣∣∣
≤
∣∣∣∆̂v∇2

θθℓ(θ
∗, η̂)∆̂θ

∣∣∣+ ∣∣∣∆̂v[∇2
θθℓ(qθ̂ + (1− q)θ∗, η̂)−∇2

θθℓ(θ
∗, η̂)]∆̂θ

∣∣∣
by Taylor’s expansion. For the first term on the right-hand side of the inequality, the Cauchy-

Schwartz inequality yields

∣∣∣∆̂v∇2
θθℓ(θ

∗, η̂)∆̂θ

∣∣∣
≤
∣∣∣∆̂v∇2

θθℓ(θ
∗, η̂)∆̂v

∣∣∣1/2 ∣∣∣∆̂θ∇2
θθℓ(θ

∗, η̂)∆̂θ

∣∣∣1/2
À

a

sθ log d/n
a

(sθ ∨ sw) log d/n = OP((sθ ∨ sw) log d/n) = oP(1/
?
n)
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by (3.41) and (3.48). For the second term on the right-hand side, similar proof as (3.46) yields

∣∣∣∆̂v[∇2
θθℓ(qθ̂ + (1− q)θ∗, η̂)−∇2

θθℓ(θ
∗, η̂)]∆̂θ

∣∣∣
À∥∆̂v∥1∥∆̂θ∥1∥∆̂θ∥1 À ((sθ ∨ sw)

a

log d/n)3

=oP(1/
?
n)OP((sθ ∨ sw)

a

log d/n) = oP(1/
?
n).

Finally, we give the proof of Theorem 3.3.1.

Proof. For the assumptions needed in Ning and Liu (2017, Theorem 3.2), Lemma 3.6.5 and 3.6.6

satisfy Assumption 1, Lemma 3.6.3 satisfies Assumption 2, Lemma 3.6.8 satisfies Assumption 3,

and Lemma 3.6.4 satisfies Assumption 4. Now we only need to verify that Îθj |θ−j
− I∗θj |θ−j

= oP(1).

First note that

Îθj |θ−j
= ∇2

θjθj
ℓ(θ̂, η̂)− ŵT∇2

θ−jθj
ℓ(θ̂, η̂)

and

I∗θj |θ−j
= I∗θjθj −w∗T I∗θ−jθj

, where w∗ = I∗−1
θ−jθ−j

I∗θ−jθj
.

For the second part of Îθj |θ−j
and I∗θj |θ−j

,

ŵT∇2
θ−jθj

ℓ(θ̂, η̂)−w∗T I∗θ−jθj

≤
∣∣∣(ŵ −w∗)T∇2

θ−jθj
ℓ(θ̂, η̂)

∣∣∣+ ∣∣∣w∗T [∇2
θ−jθj

ℓ(θ̂, η̂)−∇2
θ−jθj

ℓ(θ∗, η̂)]
∣∣∣

+
∣∣∣w∗T [∇2

θ−jθj
ℓ(θ∗, η̂)− I∗θ−jθj

]
∣∣∣

=:J1 + J2 + J3.

It can be shown that

J1 ≤ ∥ŵ −w∗∥1∥∇2
θ−jθj

ℓ(θ̂, η̂)∥∞ À (sθ ∨ sw)
a

log d/n

since the variables are bounded. By Taylor’s expansion,

J2 =
∣∣∣w∗T∇3

θ−jθjθ
ℓ(qθ̂ + (1− q)θ∗, η̂)(θ̂ − θ∗)

∣∣∣ À ∥θ̂ − θ∗∥ À sθ
a

log d/n
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for some q ∈ [0, 1]. Using similar arguments as the proof of (3.37), we have that

J3 À
a

log d/n.

In addition, similar arguments also imply that

|∇2
θjθj

ℓ(θ̂, η̂)− I∗θjθj | À
a

log d/n.

Therefore, Îθj |θ−j
− I∗θj |θ−j

= oP(1) and thus
?
n(θ̃j − θ∗j )I∗θj |θ−j

⇒ N(0, σ∗S).
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CHAPTER 4

Fusing Individualized Treatment Rules Using Auxiliary Outcomes

4.1 Introduction

An individualized treatment rule (ITR) is the decision rule that recommends a treatment to

a patient based on his or her pre-treatment covariates such as demographics, medical history and

genotypes. When the primary outcome is of interest, the goal of ITR learning is to estimate the

optimal ITR that yields the maximal outcome if patients follow the treatment recommendations.

During the past decade, many methods have been proposed to estimate the optimal ITR using

data from a randomized controlled trial (RCT) or an observational study (Qian and Murphy, 2011;

Zhao et al., 2012; Liu et al., 2018b; Zhao et al., 2019). All these methods consider only a single

primary outcome when estimating ITRs.

In practice, when making treatment decisions additional auxiliary outcomes also need to be

considered, since they are often affected by treatments and non-favorable auxiliary outcomes can

potentially represent worsened overall health or increase the chance of non-compliance. Hence,

when estimating the optimal ITRs for the primary outcome of interest, the derived ITRs should

also optimize auxiliary outcomes to the best extent and do not incur harm. For example, when

treating patients with major depressive disorder (MDD; Trivedi et al., 2016), one common outcome

to measure depressive symptoms is the Quick Inventory of Depressive Symptomatology (QIDS)

score, which is a rating system based on the patient’s feelings in the past 7 days. In addition,

another important outcome is the Clinical Global Improvement (CGI) Scale, which is often used

to assess a patient’s symptoms, behavior, the impact on the patient’s ability to function, and is

an indicator of the overall clinical improvement. Although the primary goal is to find the best

treatment strategy to improve the QIDS score, it is important for such strategy to be also effective

in terms of CGI scale.
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Several approaches are proposed to learn ITRs that maximize multiple outcomes simultaneously.

Wang et al. (2018) and Laber et al. (2018) estimated the optimal ITRs for the primary outcome

while restricting the auxiliary outcome (or risk outcome) to be no larger than a threshold. These

approaches require pre-specification of the threshold value. Moreover, they only guarantee the

average risk to be small, but for a given individual, the treatment decision can be different from

the one yielding the minimal risk. Luckett et al. (2021) proposed to construct patient-specific

composite outcomes for learning ITRs, and the composition weights were obtained using observed

clinical decisions in practice. However, the estimated ITRs are no longer the optimal treatment

decisions for the primary outcome of interest.

Our goal is to estimate the optimal ITRs for the primary outcome and at the same time,

ensuring the derived treatments are consistent with the optimal rules for other auxiliary outcomes

as much as possible. In other words, we aim to fuse the treatment rules for these different outcomes

to obtain a desirable fused ITR that performs optimally for the primary outcome and effectively

for non-primary outcomes, although not necessarily the best. We emphasize that this goal is

fundamentally different from all existing works for combining multiple studies in analysis, such as

meta-analysis (Haidich, 2010; Lin and Zeng, 2010; Claggett et al., 2014; Liu et al., 2015), where the

estimators for common parameters from multiple studies are combined into a statistically efficient

estimator, or integrative data analysis (Curran and Hussong, 2009; Brown et al., 2018), where

multiple data sources or summary statistics are analyzed together through some shared parameter

models, or transferring learning (Li et al., 2021; Tian and Feng, 2022; Cai and Wei, 2021) in which

one uses existing knowledge from another task to assist the learning of a new task. All existing

methods either require individual-level data or assumes models or distributions for each data to

achieve integration, so are not applicable to combine different treatment rules.

In order to integrate treatment rules, we propose a fused learning framework to estimate the

optimal ITR, which we name as the fused individualized treatment rule (FITR). Specifically, we

maximize the value function for the primary outcome, but at the same time, we introduce a fusion

penalty to encourage the similarity between the estimated ITR and the optimal ITRs for the

auxiliary outcomes. The latter are assumed to be estimated apriori using either external data or

the same study. The fusion penalty is chosen to be a weighted sum of the disagreement rates

between the treatment rules, where the weights depend on the similarity of treatment response for
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these outcomes such as their correlations. The fusion penalty encourages the ITRs for the different

outcomes to be as consistent as possible. Computationally, we propose a ramp loss to approximate

the fusion penalty and use a surrogate loss, e.g., logistic loss, to substitute the value function in the

objective function. We obtain the convergence rate for the value function of FITR. Furthermore,we

prove theoretically that the agreement rate, which is between the estimated FITR and the auxiliary

outcome treatment rule, will converge to the agreement rate between their corresponding optimal

ITRs. More importantly, the convergence rate is faster than the one without using the fusion

penalty.

The rest of this chapter is organized as follows. In Section 4.2, we introduce basic assumptions

and the proposed method, FITR. We also propose optimization algorithms to solve for the FITR.

In Section 4.3, we derive the convergence rates of FITR in terms of the value functions, treatment

selection accuracy and agreement rates. In Section 4.4, we demonstrate the performance of our

method using simulation studies. In addition, we analyze how close the true optimal ITRs for dif-

ferent outcomes should be in order for FITRs to have higher value functions. Finally, in Section 4.5,

we illustrate the proposed method through analysis of a clinical trial for MDD patients (Trivedi

et al., 2016).

4.2 Methodology

Let R1 denote the primary outcome. Without loss of generality, assume a higher outcome

indicates a better health condition. We use a vectorX ∈ X ⊂ Rd to denote pre-treatment covariates

for tailoring treatment decisions, where d is the dimension of X, and assume that treatment

A ∈ A = {1,−1} is binary. For the primary outcome R1, an ITR D1 : X → A maps the covariate

space of a patient to a treatment. Equivalently, we can express D1(X) = sign{f1(X)} for some

decision function f1. Letting V1(f1) = ED1(R1) be the value function associated with D1, our goal

is to estimate the optimal ITR that maximizes this value function.

Let P be the joint distribution of Z := (X, A,R1) and E be the corresponding expectation

for k = 1, . . . ,K. If the treatment is assigned according to some ITR D1 with A = D1(X), the

distribution and expectation are denoted as PD1 and ED1 , respectively. Then the optimal ITR D∗
1

is given as sign{f∗1 (x)}, where f∗1 (x) = E[R1(1)|X = x]−E[R1(−1)|X = x] and R1(a) denotes the
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potential outcome for treatment a. We assume the following conditions so that the optimal ITR is

estimable using data n i.i.d copies of (X, A,R1).

Assumption 15 (Ignorability). The treatment A is independent of the potential outcomes R∗
1(a)

given covariates X.

Assumption 16 (Consistency). The observed outcome R1 under a treatment A = a equals the

potential outcome R1(a) for all a ∈ A.

Assumption 17 (Positivity). There exists p0 > 0 such that π(a;x) ≡ P (A = a|X = x) > p0 for

all a ∈ A and all x ∈ X .

Under these conditions, according to Qian and Murphy (2011), V1(f1) = E[R1I(Af1(X) >

0)/π(A;X)]. Thus, the optimal ITR can be estimated by solving

min
f1∈F

1

n

n∑
i=1

Ri1I(Aif1(Xi) < 0)

π(Ai;Xi)
+ λ1n ∥f1∥2 , (4.1)

where F is some function class, ∥f1∥ is the semi-norm for f1 in its function space, and λ1n is a

tuning parameter depending on the sample size n. Since the 0-1 loss is computationally challenging,

it can be substituted by some convex surrogate loss (Bartlett et al., 2006), denoted by ϕ(x), and

we can solve a convex optimization problem:

rf1n = argmin
f1∈F

1

n

n∑
i=1

Ri1
π(Ai;Xi)

ϕ(Aif1(Xi)) + λ1n ∥f1∥2 . (4.2)

For example, Zhao et al. (2012) proposed to use the hinge loss where ϕ(x) = max(1 − x, 0). In

our following implementation, we propose to use the logistic loss, ϕ(t) = log(1 + e−t), due to its

differentiability property. We refer to this method as separate learning (SepL).

4.2.1 Learning Fused ITR using Optimal Rules for Auxiliary Outcomes

Suppose that for auxiliary outcomes R2, . . . , RK , corresponding ITRs denoted as rf2, . . . , rfK

have been obtained from external data or the same study. Our goal is to estimate the optimal

ITR for the primary outcome but encourage it to be consistent to these auxiliary ITRs as much

as possible. To this end, we propose a fusion penalty on the disagreement rates between f1 and
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rf2, . . . , rfK . Specifically, the fused individualized treatment rule (FITR) f1 is estimated by

pf1n = argmin
f1∈F

1

n

n∑
i=1

Ri1
π(Ai;Xi)

I(Aif1(Xi) < 0) + λ1n ∥f1∥2

+
µ1n
n

n∑
i=1

K∑
j=2

Ω1jI(f1(Xi) rfj(Xi) < 0),

(4.3)

where Ω1j is a pre-specified constant to reflect the similarity between ITRs rf1n and rfj for j ≥ 2.

For example, Ω1j can be defined as the correlation of R1 and Rj if the treatment decisions are

expected to be similar between two highly-correlated outcomes. In the objective function (4.3),

µ1n is a tuning parameter to be selected data-adaptively.

The optimization in (4.3) is a NP-hard problem, so we substitute the 0-1 losses with another

smooth loss for optimization. First, the 0-1 loss in the first part of the expression is substi-

tuted by a logistic loss as in SepL. For the 0-1 loss in the fusion penalty, we use a ramp loss

ψκ(t) = min {1,max {0, 1− t/κ}}, where κ is a tuning parameter, for approximation since the lat-

ter converges to the 0-1 loss when κ decreases to zero. As a result, we solve the following problem to

estimate f1. where we allow κ1n to depend on the sample size n. To further reduce the variability,

we can replace Ri1 by Ri1 − E(Ri1|Xi). However, we assume that all rewards are nonnegative in

Section 4.3. To deal with negative rewards, we can take the absolute value of Ri1−E(Ri1|Xi) and

flip the sign of A (c.f., (Liu et al., 2018b)). Therefore, FITR-Ramp finds pf1n by minimizing

1

n

n∑
i=1

|Ri1 − E(Ri1|Xi)|
π(Ai;Xi)

ϕ(Ai sign{Ri1 − E(Ri1|Xi)}f1(Xi))

+ λ1n ∥f1∥2 +
µ1n
n

n∑
i=1

K∑
j=2

Ω1jψκ1n(f1(Xi) rfj(Xi))

with a shift of a constant. Here E(Ri1|Xi) can be estimated by a simple linear regression. We call

this optimization problem FITR-Ramp since it substitutes the fusion penalty with the ramp loss.
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Alternatively, we can solve (4.3) using the following procedure. First note that for j ≥ 2,

I(f1(Xi) rfj(Xi) < 0)

=I(Aif1(Xi) < 0)I(Ai rfj(Xi) > 0) + (1− I(Aif1(Xi) < 0))I(Ai rfj(Xi) < 0)

=I(Aif1(Xi) < 0) sign{Ai rfj(Xi)}+
1− sign{Ai rfj(Xi)}

2
.

Therefore, the problem in (4.3) is equivalent to

pf1n = argmin
f1∈F

1

n

n∑
i=1

rRi1
π(Ai;Xi)

I(Aif1(Xi) < 0) + λ1n ∥f1∥2 ,

where rRi1 = Ri1 + µ1nπ(Ai;Xi)
∑K

j=2Ω1j sign{Ai rfj(Xi)} is the pseudo outcome. After substitute

the indicator function by the logistic loss to obtain

pf1n = argmin
f1∈F

1

n

n∑
i=1

rRi1
π(Ai;Xi)

ϕ(Aif1(Xi)) + λ1n ∥f1∥2 . (4.4)

Similarly, we can replace rRi1 by rRi1 − E( rRi1|Xi) and estimate pf1n by minimizing

1

n

n∑
i=1

∣∣∣ rRi1 − E( rRi1|Xi)
∣∣∣

π(Ai;Xi)
ϕ(Ai sign{ rRi1 − E( rRi1|Xi)}f1(Xi)) + λ1n ∥f1∥2 .

We call this optimization method FITR-IntL. As a note, similar procedure was originally proposed

in Qiu et al. (ress) to integrate treatment rules from multiple studies.

In both procedures, the semi-norm for f1 is usually chosen as the one from a reproducing

kernel Hilbert space (RKHS) associated with a real valued kernel function k : X × X → R. The

choice of k can be k(x,x′) = xTx′, which yields a linear decision function for f1, or the Gaussian

kernel, k(x,x′) = exp(−σ2 ∥x− x′∥22), where σ is a parameter that can depend on n, to give

a nonlinear decision function. By the representer theorem, the minimizer for f1 takes the form

f(X) =
∑n

i=1 αik(X,Xi) so solving for FITR-Ramp or FITR-IntL can be restricted to class

H :=

{
f : f(X) =

n∑
i=1

αik(X,Xi), (α1, . . . , αn) ∈ Rn
}
.
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The tuning parameters λ1n and µ1n can be selected by cross-validation. For example, we can first

select λ1n in SepL and then select µ1n for FITR-Ramp or FITR-IntL with λ1n fixed. Computa-

tionally, FITR-Ramp can be solved by the difference of convex functions algorithm (DCA) (Le Thi

and Pham Dinh, 2018) or the Powell algorithm (Powell, 1964; Press et al., 2007). While DCA

re-expresses the objective function as the difference of two convex functions and obtains solution

iteratively, the Powell algorithm is suitable for non-differentiable objective functions. In contrast,

FITR-IntL has a differentiable convex objective function so it can be easily solved by gradient-based

algorithms like variations of the gradient descent algorithm (Ruder, 2016) or the BFGS algorithm

(Fletcher, 1987).

4.3 Theoretical Results

We first study the nonasymptotic properties of FITR-Ramp for K = 2. That is, there exits

only one auxiliary treatment rule rf2, which is already estimated either from an external dataset or

from the same dataset. Without loss of generality, we assume that rf2 : X → {1,−1} is binary, since

every decision function f can be transformed into a binary function by taking its sign. For the first

outcome, we define ℓ1 ◦ f1(Z) := R1
π(A|X)ϕ(Af1(X)) and ℓ2 ◦ f1(Z) := µ1nΩ12ψκ1n [f1(X) rf2(X)].

Let the risk based on the surrogate losses to be

R(f1) := E rℓ1 ◦ f1 + ℓ2 ◦ f1s .

Assumption 18. Suppose that 0 ≤ R1 ≤ r for all R1 and for some constant r > 0.

To give additional assumptions, we define

η(X) :=


E(R1|1,X)

E(R1|1,X)+E(R1|−1,X) , if E(R1|1,X) ̸= E(R1|−1,X)

1
2 , otherwise

and define the classes of a probability measure P by X−1 :=
{
x ∈ X : η(x) < 1

2

}
, X1 :={

x ∈ X : η(x) > 1
2

}
and X0 :=

{
x ∈ X : η(x) = 1

2

}
for some choice of η. Finally, we define a
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distance function x 7→ ωx as

ωx :=


d(x,X0 ∪ X1), if x ∈ X−1,

d(x,X0 ∪ X−1), if x ∈ X1,

0, otherwise,

where d(x,S) denotes the distance of x to a set S with respect to the Euclidean norm.

Assumption 19. Assume that the distribution of X satisfies the following Tsybakov’s noise as-

sumption: there exists a constant C > 0 such that for all sufficiently small t > 0 we have

P({X ∈ X : |2η(X)− 1| ≤ t}) ≤ Ctβ

for some β > 0. Let α = β/(1 + β) so that α ∈ (0, 1].

Assumption 20. Assume that there exists a constant q ∈ (0,∞] for the distribution of X such

that ∫
X
exp

ˆ

−ω
2
x

t

˙

PX (dx) ≤ Ctqd/2, t > 0, (4.5)

for some constant C > 0.

Note that Assumption 20 is used to bound the approximation error when we find the estimated

ITR in a specific function class. It is different from the geometric noise assumption (Steinwart and

Scovel, 2007) in the sense that the term |2η(x)− 1| is not included in left-hand side of (4.5). Since

|2η(x)− 1| ≤ 1, Assumption 20 is stronger than the geometric noise assumption. However, when

t → 0, we can still ensure that the left-hand side of (4.5) goes to zero. For Assumption 19, it has

been shown that the boundary assumption of η(x) regarding β is equivalent to the misclassification

assumption of f1 regarding α (Bartlett et al., 2006). This assumption is needed when bounding

the risk with 0-1 loss using the risk with logistic loss. In the following inequalities, “À” indicates

that the left-hand side is no larger than the right-hand side for all n up to a universal constant.

Lemma 4.3.1. Under Assumptions 15-17, 18 and 20, when µ1n, κ1n, σ
2
1n → 0, µ1n/κ1n → ∞,

and κn ≤ 1 for all n, for any δ > 0, 0 < ν < 2 and for all τ ≥ 1, we have P(R( pf1n) − R(f∗1 ) À
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δ1n(τ)) ≥ 1− e−τ , where

δ1n(τ) := λ
− 1

2
1n n

− 1
2

”?
τ + σ

(1−ν/2)(1+δ)d
1n γ−νn

ı

+ λ1nσ
d
1n +

ˆ

1 +
µ1n
κ1n

˙

(2d)qd/2σ−qd1n , (4.6)

and γn := [1 + µ1nκ
−1
1n ]

−1.

We assume µ1n/κ1n →∞ to ensure that µ1n does not decrease too quickly and guarantee the

effect of the fusion penalty on the agreement rate as in Zou (2006). The first term on the right-hand

side of (4.6) is the estimation error and the sum of the last two terms is the approximation error. A

larger class H (with small penalty parameters λ1n and µ1n) generally leads to a larger estimation

error and a smaller approximation error. The parameters λ1n, µ1n, κ1n should balance them to

achieve the minimal upper bound δ1n(τ). The minimal approximation error is pµ1n/κ1nq
1

1+q λ
q

1+q

1n

when σ1n = pµ1n/(κ1nλ1n)q
1

(1+q)d . Then the best λ1n that balances the estimation error and the

approximation error is

λ1n =

ˆ

µ1n
κ1n

˙

2(∆−1)+2(1+q)v
3q+2∆+1

n
− 1+q

3q+2∆+1 ,

and the corresponding convergence rate is

δ1n(τ) =

ˆ

µ1n
κ1n

˙

2qv+2∆+1
3q+2∆+1

n
− q

3q+2∆+1 (4.7)

where ∆ = (1− ν/2)(1 + δ).

Note that when µ1n = 0, FITR degenerates to SepL learnt with the logistic loss. In this case,

δ
(0)
1n (τ) := λ

− 1
2

1n n
− 1

2

”?
τ + σ

(1−ν/2)(1+δ)d
1n

ı

+ λ1nσ
d
1n + (2d)qd/2σ−qd1n .

The minimum approximation error λ
q

1+q

1n is obtained when σ1n = λ
− 1

(1+q)d

1n . Then the best λ1n that

balances the estimation error and the approximation error is λ1n = n
− 1+q

3q+2∆+1 and the corresponding

convergence rate is

δ
(0)
1n (τ) = n

− q
3q+2∆+1 . (4.8)

To quantify the agreement rate between rf2 and its corresponding optimal ITR f∗2 , we further

assume that rf2 is a binary mapping learnt from a dataset of size N with certain convergence rate.
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Assumption 21. Assume that the estimator of the secondary ITR rf2 converges to f∗2 in the sense

that P( rf2f
∗
2 < 0) ≤ rδ2N (τ) with probability greater than or equal to 1− eτ , where N is the sample

size of the dataset and rδ2N (τ) = o(1) as N →∞.

Now we are able to present the convergence rates of the value function V1( pf1n) and the agree-

ment rate P( pf1nf
∗
2 > 0).

Theorem 4.3.2. Under Assumptions 15-21, the value function of the estimated FITR satisfies

V1(f∗1 )− V1( pf1n) À (δ1n(τ) + µ1n)
1

2−α , (4.9)

with probability greater than or equal to 1− 2eτ .

Notice that the convergence rate rδ2N (τ) of rf2 does not appear in (4.9), since the term containing

rδ2N (τ) is not dominant in the proof due to the assumption that rδ2N (τ) = o(1). By comparing

δ1n(τ) + µ1n and δ
(0)
1n (τ), it is clear that FITR has a slower convergence rate for the value function

than SepL. This is due to the fact that the fusion penalty introduces bias for maximizing the

primary outcome.

However, as discussed before, one major advantage of FITR is to improve the approximity

between the estimated ITR and the optimal ITR, rf2, for the auxiliary outcome.

Theorem 4.3.3. Under Assumptions 15-21, the agreement rate between pf1n and f∗2 satisfies

P(f∗1 f∗2 > 0)− P( pf1nf
∗
2 > 0) À

δ1n(τ)

µ1n
+ rδ2N (τ) (4.10)

with probability greater than or equal to 1− 2eτ .

To compare the agreement rate with or without the fusion penalty, first note that

P( pf1nf
∗
2 < 0) =P( pf1nf

∗
1 < 0, f∗1 f

∗
2 > 0) + P( pf1nf

∗
1 > 0, f∗1 f

∗
2 < 0)

≤P( pf1nf
∗
1 < 0) + P(f∗1 f∗2 < 0),

which bound the agreement rate with the decision accuracy. This can be used for the bound without

the fusion penalty. In Corollary 4.7.1, we present the convergence rate of the decision accuracy with

an additional assumption. For SepL with µ1n = 0, P( pf1nf
∗
1 < 0) À n

− α
2−α

q
3q+2∆+1 with probability
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greater than or equal to 1− 2eτ by (4.8) when σ1n = λ
− 1

(1+q)d

1n and λ1n = n
− 1+q

3q+2∆+1 . Then we can

conclude that for SepL

P(f∗1 f∗2 > 0)− P( pf1nf
∗
2 > 0) ≤ P( pf1nf

∗
1 < 0) À n

− α
2−α

q
3q+2∆+1 . (4.11)

On the other hand, for FITR-Ramp, (4.10) and (4.7) implies that

P(f∗1 f∗2 > 0)− P( pf1nf
∗
2 > 0) À

1

µ1n

ˆ

µ1n
κ1n

˙

2qv+2∆+1
3q+2∆+1

n
− q

3q+2∆+1 + rδ2N (τ) (4.12)

when σ1n = pµ1n/(κ1nλ1n)q
1

(1+q)d and λ1n =
´

µ1n
κ1n

¯

2(∆−1)+2(1+q)v
3q+2∆+1

n
− 1+q

3q+2∆+1 . When the data are fully

separated by the decision boundary and α = 1, the right-hand side of (4.11) n
− q

3q+2∆+1 is smaller

than that of (4.12). In this case, SepL can learn the disagreement rate quick enough and adding the

fusion penalty will reduce the convergence speed. However, the right-hand side of (4.12) is smaller

than that of (4.11) when

µ2qv−3q
1n

κ2qv+2∆+1
1n

≤ nq
2−2α
2−α

if rδ2N (τ) = O

ˆ

1
µ1n

´

µ1n
κ1n

¯

2qv+2∆+1
3q+2∆+1

n
− q

3q+2∆+1

˙

. This relationship holds when, for example, v →

2,∆ → 0, α = 1/2 and µ1n = n−1/18, κ1n = n−1/9, q ≥ 2/5. Besides, (4.12) does not rely on

Assumption 22 which assumes that for all patients at least one action can generate a positive mean

reward given individual covariates, and thus allow the existence of nonrespondents.

The assumptions and results can be easily generalized to any K ≥ 2. Assume that rfk : X →

{1,−1} is a binary mapping learnt from a dataset of size Nk for all k = 2, . . . ,K.

Assumption 21′. For any k = 2, . . . ,K, assume that the estimator of the secondary ITR rfk

converges to f∗k in the sense that P( rfkf
∗
k < 0) ≤ rδkNk

(τ) with probability greater than or equal to

1− eτ , where Nk is the sample size of the dataset and rδkNk
(τ) = o(1) as Nk →∞.

Then Theorem 4.3.2 and 4.3.3 can be generalized as follows.

Theorem 4.3.4. Under Assumptions 15-20 and 21′, the value function of the estimated FITR pf1n

satisfies

V1(f∗1 )− V1( pf1n) À (δ1n(τ) + µ1n)
1

2−α , (4.13)
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with probability greater than or equal to 1 −Keτ , and the agreement rate between pf1n and any f∗k

for k ≥ 2 satisfies

P(f∗1 f∗k > 0)− P( pf1nf
∗
k > 0) À

δ1n(τ)

µ1n
+

K∑
j=2

rδjNj (τ) (4.14)

with probability greater than or equal to 1−Keτ .

4.4 Simulation Study

We conduct extensive simulation studies to demonstrate our proposed method (FITR) and

compare its performance with separate learning (SepL) that does not use the auxiliary outcome

ITRs. Each simulated dataset of size n contains K outcomes, where K = 2 or 3, and we treat one

of them as the primary so the others are auxiliary outcomes. We let the dimension of covariates

be d = 10 and there are n patients in total. The first two covariates are important variables and

are generated as Xij
i.i.d.∼ Unif(−1, 1) for all i = 1, . . . , n and j = 1, 2. For the rest noise variables,

let Xi3 = 0.8X ′
i3 +Xi1, where X

′
i3
i.i.d.∼ Unif(−1, 1) so that Xi3 is correlated with Xi1. The other

variables are generated independently as Xij
i.i.d.∼ Unif(−1, 1) for all j = 4, . . . , d. We assume

the data are collected from a randomized controlled trial and π(1;Xi) = π(−1;Xi) = 0.5 for all

i = 1, . . . , n. The kth outcome is defined as Rik = mk(Xi) + Tk(Xi, Ai) + ϵk(Xi, Ai), where mk

is the main effect, Tk is the interaction effect between the covariates and the treatment, and ϵk is

the noise term. By choosing different Tk, we allow both linear and nonlinear treatment rules. We

repeat the simulation process 400 times under each scenario.

To implement our method, the ITRs for the auxiliary outcomes are estimated using SepL in

the same dataset and we then learn FITR for the primary one using the proposed algorithm.

The similarity matrix Ω is the Pearson correlation matrix based on K outcomes. Our exper-

iments show that Spearman’s rank correlation generates similar results. We implement both

FITR-Ramp and FITR-IntL with the linear kernel and the Gaussian kernel. We use scipy

package in Python to solve the optimization problem. For FITR-Ramp, our experiments show

that the Powell algorithm usually achieves better optimization results than DCA, so we use the

function minimize(method=‘Powell’) to obtain solution. For FITR-Int, we use the function

minimize(method=‘BFGS’) with specified gradients for optimization. The tuning parameter λkn is

first chosen with cross-validation when estimating the ITR using SepL for each reward k = 1, . . . ,K.
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Then the parameter µkn in FITR-IntL or the pamameters µkn and κkn in FITR-Ramp are tuned

simultaneously with cross-validation while λkn is kept fixed. The parameter σ in the Gaussian

kernel is chosen as the median of the distances between all covariate pairs.

The value functions are calculated numerically from an independent test set of size 100,000.

For the optimal value V∗k , the treatment is taken as argmaxAi
Tk(Xi, Ai) for the kth outcome of the

ith patient. For the value function of each learned ITR, the treatment follows the corresponding

ITR. The correct decision ratio of pfk, or accuracy, is estimated by averaging I( pfk(X) = f∗k (X))

on this test set. The agreement rate between any two decision functions f and f ′ is estimated by

averaging I(f(X) = f ′(X)) on this test set.

4.4.1 Learning FITRs

In this section, we examine performance with K = 2 outcomes. The experiment with K = 3 is

included in the Supplementary Material. Consider the following two scenarios. In both scenarios,

the main effects are set to be

m1(X) = 1 + 2X1 +X2
2 +X1X2, m2(X) = 1 + 2X2

1 + 1.5X2 + 0.5X1X2.

The residuals (ϵ1, . . . , ϵK) of each patient follow a mean zero multivariate normal distribution, where

the covariance matrix has 0.2 on its diagonal and 0.1 on its off-diagonal entries. The interaction

terms are defined in two scenarios as follows:

1. Linear scenario T1(X, A) = γ1A(0.2−X1 − 2X2), T2(X, A) = γ2A(0.2−X1 − 1.8X2);

2. Nonlinear scenario T1(X, A) = γ1A(0.9−X2
1 −X2

2 ), T2(X, A) = γ2A(1−X2
1 − 1.2X2

2 ).

Here γ1, γ2 are fixed parameters controlling the ratio between the strength of heterogeneous treat-

ment effect and the noise. We test different kernels and models for various sample sizes n and

parameters γ1, γ2. The true optimal values of each scenario is summarized in Table 4.5. The com-

putation time of one replication when n = 200 is about 0.22 seconds for FITR-IntL, 23 seconds

for FITR-Ramp when using the linear kernel, and about 6 seconds for FITR-IntL, 860 seconds for

FITR-Ramp when using the Gaussian kernel.
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We report the root mean square error (RMSE) of each model across all replications and compare

it with SepL in Tables 4.1 and 4.2 for scenarios 1 and 2 correspondingly. The accuracy is shown in

Figures 4.1 for scenarios 1 and 2. The results are presented for each outcome Rk, k = 1, . . . ,K as if

it is treated as the primary outcome and the other Rj , j ̸= k are treated as the auxiliary outcomes.

Since there are outliers that affect the visual display, we truncate the vertical axis to demonstrate

the results clearly (approximately 5% were outliers not shown in each subfigure).

Table 4.1 suggests that for the value function in scenario 1, FITR-Ramp is better than FITR-

IntL, and the linear kernel is better than the Gaussian kernel. Table 4.2 shows in scenario 2,

FITR-IntL is better than FITR-Ramp, and the Gaussian kernel is better than the linear kernel.

The outcome with larger treatment effect compared to the noise, for example R2 with γ2 = 0.75, has

relatively small improvement from SepL to FITR, but as the auxiliary outcome it can help improve

pD1 significantly. For the accuracy, FITR-Ramp with linear kernel in scenario 1 and FITR-IntL

with Gaussian kernel in scenario 2 generally has larger mean and smaller variance in Figure 4.1.

To summarize, in scenario 1, FITR-Ramp with linear kernel can reduce the RMSE of SepL up to

30.33%, and reduce the standard error of the accuracy up to 28.91%. In scenario 2, FIRT-IntL with

Gaussian kernel can reduce RMSE up to 7.92%, and reduce the standard error of the accuracy up

to 47.98%.

The agreement rates between pf1n and rf2n or pf2n and rf1n and their standard deviations across

all replications are also included in Tables 4.1 and 4.2. The two agreement rates are equal for

SepL since pfkn = rfkn for all k for SepL. We can see that the fusion penalty in FITR-Ramp and

FITR-IntL indeed increases the agreement rate between an FITR and the corresponding auxiliary

outcome ITR, but never exceeds the true value P(f∗1 = f∗2 ), which is 98.51% for scenario 1 and

95.80% for scenario 2. In addition, the standard deviations of the agreement rates are also reduced.

4.4.2 Sensitivity Analysis

To demonstrate the influence of the similarity between outcomes on the value function and

classification accuracy of FITRs, we fix the first outcome and vary the second outcome when

K = 2. Specifically, we use the same main effect and noise term as Section 4.4.1 and let the
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n/(γ1, γ2) Kernel Model RMSE1 RMSE2
RMSE1

RMSE1,SepL

RMSE2

RMSE2,SepL

pP( pf1n = rf2n) pP( pf2n = rf1n)

200
(0.5, 0.75)

Linear
SepL 0.0236 0.0265 1.0000 1.0000 0.9163 (0.0253) 0.9163 (0.0253)

FITR-IntL 0.0223 0.0274 0.9434 1.0311 0.9376 (0.0224) 0.9335 (0.0252)
FITR-Ramp 0.0164 0.0217 0.6967 0.8168 0.9430 (0.0205) 0.9393 (0.0240)

Gaussian
SepL 0.0764 0.0922 1.0000 1.0000 0.8757 (0.0620) 0.8757 (0.0620)

FITR-IntL 0.0812 0.0880 1.0622 0.9549 0.8998 (0.0547) 0.8944 (0.0561)
FITR-Ramp 0.0646 0.0671 0.8460 0.7279 0.8946 (0.0471) 0.8925 (0.0503)

200
(0.5, 0.5)

Linear
SepL 0.0236 0.0346 1.0000 1.0000 0.8965 (0.0307) 0.8965 (0.0307)

FITR-IntL 0.0258 0.0286 1.0914 0.8261 0.9224 (0.0277) 0.9222 (0.0297)
FITR-Ramp 0.0199 0.0240 0.8430 0.6941 0.9263 (0.0274) 0.9299 (0.0285)

Gaussian
SepL 0.0764 0.1218 1.0000 1.0000 0.8365 (0.0852) 0.8365 (0.0852)

FITR-IntL 0.0836 0.1103 1.0938 0.9055 0.8662 (0.0699) 0.8674 (0.0817)
FITR-Ramp 0.0689 0.0827 0.9021 0.6796 0.8591 (0.0725) 0.8735 (0.0583)

300
(0.5, 0.75)

Linear
SepL 0.0165 0.0188 1.0000 1.0000 0.9342 (0.0196) 0.9342 (0.0196)

FITR-IntL 0.0174 0.0234 1.0556 1.2452 0.9487 (0.0185) 0.9465 (0.0186)
FITR-Ramp 0.0127 0.0160 0.7690 0.8541 0.9544 (0.0168) 0.9519 (0.0187)

Gaussian
SepL 0.0353 0.0353 1.0000 1.0000 0.9056 (0.0332) 0.9056 (0.0332)

FITR-IntL 0.0305 0.0457 0.8620 1.2930 0.9210 (0.0305) 0.9192 (0.0355)
FITR-Ramp 0.0231 0.0357 0.6531 1.0117 0.9202 (0.0299) 0.9207 (0.0288)

300
(0.5, 0.5)

Linear
SepL 0.0165 0.0218 1.0000 1.0000 0.9181 (0.0231) 0.9181 (0.0231)

FITR-IntL 0.0181 0.0203 1.1014 0.9310 0.9351 (0.0219) 0.9386 (0.0229)
FITR-Ramp 0.0139 0.0160 0.8455 0.7335 0.9419 (0.0221) 0.9418 (0.0233)

Gaussian
SepL 0.0353 0.0781 1.0000 1.0000 0.8760 (0.0597) 0.8760 (0.0597)

FITR-IntL 0.0422 0.0743 1.1955 0.9511 0.8944 (0.0527) 0.9002 (0.0605)
FITR-Ramp 0.0348 0.0476 0.9854 0.6090 0.8929 (0.0536) 0.9023 (0.0392)

Table 4.1: The RMSEs of value functions, their ratios between SepL and FITR, and the agreement rates
between pf1n and rf2n or pf2n and rf1n under different sample sizes n, parameters (γ1, γ2), models and kernels
in scenario 1.

125



n/(γ1, γ2) Kernel Model RMSE1 RMSE2
RMSE1

RMSE1,SepL

RMSE2

RMSE2,SepL

pP( pf1n = rf2n) pP( pf2n = rf1n)

200
(0.5, 0.75)

Linear
SepL 0.1125 0.1631 1.0000 1.0000 0.8434 (0.1113) 0.8434 (0.1113)

FITR-IntL 0.0966 0.1532 0.8588 0.9392 0.9127 (0.0827) 0.8817 (0.0936)
FITR-Ramp 0.1028 0.1657 0.9136 1.0161 0.9050 (0.0788) 0.8946 (0.0808)

Gaussian
SepL 0.0936 0.1399 1.0000 1.0000 0.8196 (0.1403) 0.8196 (0.1403)

FITR-IntL 0.0862 0.1364 0.9208 0.9755 0.8682 (0.1210) 0.8541 (0.1322)
FITR-Ramp 0.0890 0.1386 0.9501 0.9909 0.8505 (0.1268) 0.8371 (0.1344)

200
(0.5, 0.5)

Linear
SepL 0.1125 0.1283 1.0000 1.0000 0.8036 (0.1171) 0.8036 (0.1171)

FITR-IntL 0.1041 0.1122 0.9249 0.8751 0.8631 (0.1003) 0.8721 (0.0983)
FITR-Ramp 0.1093 0.1203 0.9712 0.9377 0.8671 (0.0939) 0.8794 (0.0882)

Gaussian
SepL 0.0936 0.1078 1.0000 1.0000 0.8032 (0.1575) 0.8032 (0.1575)

FITR-IntL 0.0882 0.0993 0.9415 0.9213 0.8509 (0.1400) 0.8479 (0.1388)
FITR-Ramp 0.0905 0.1040 0.9669 0.9653 0.8296 (0.1432) 0.8308 (0.1409)

300
(0.5, 0.75)

Linear
SepL 0.1015 0.1519 1.0000 1.0000 0.8964 (0.0884) 0.8964 (0.0884)

FITR-IntL 0.0915 0.1456 0.9011 0.9586 0.9404 (0.0641) 0.9206 (0.0764)
FITR-Ramp 0.0957 0.1531 0.9425 1.0078 0.9355 (0.0557) 0.9271 (0.0677)

Gaussian
SepL 0.0846 0.1289 1.0000 1.0000 0.8208 (0.1204) 0.8208 (0.1204)

FITR-IntL 0.0811 0.1276 0.9590 0.9896 0.8619 (0.1138) 0.8576 (0.1143)
FITR-Ramp 0.0830 0.1283 0.9813 0.9946 0.8447 (0.1170) 0.8378 (0.1182)

300
(0.5, 0.5)

Linear
SepL 0.1015 0.1186 1.0000 1.0000 0.8536 (0.1049) 0.8536 (0.1049)

FITR-IntL 0.0957 0.1046 0.9430 0.8816 0.8936 (0.0855) 0.9098 (0.0834)
FITR-Ramp 0.1019 0.1104 1.0040 0.9307 0.9028 (0.0705) 0.9117 (0.0708)

Gaussian
SepL 0.0846 0.0989 1.0000 1.0000 0.8093 (0.1333) 0.8093 (0.1333)

FITR-IntL 0.0821 0.0926 0.9708 0.9362 0.8533 (0.1251) 0.8521 (0.1205)
FITR-Ramp 0.0842 0.0966 0.9956 0.9764 0.8348 (0.1289) 0.8329 (0.1264)

Table 4.2: The RMSEs of value functions, their ratios between SepL and FITR, and the agreement rates
between pf1n and rf2n or pf2n and rf1n under different sample sizes n, parameters (γ1, γ2), models and kernels
in scenario 2.

ρ P(f∗1 = f∗2 ) Model RMSE1 RMSE2
RMSE1

RMSE1,SepL

RMSE2

RMSE2,SepL
Accuracy1 Accuracy2

1 100%
SepL 0.0236 0.0244 1.0000 1.0000 0.9234 (0.0256) 0.9345 (0.0192)

FITR-IntL 0.0208 0.0267 0.8805 1.0928 0.9287 (0.0223) 0.9328 (0.0214)
FITR-Ramp 0.0157 0.0218 0.6644 0.8937 0.9377 (0.0178) 0.9389 (0.0178)

0.75 95.55%
SepL 0.0236 0.0311 1.0000 1.0000 0.9234 (0.0256) 0.9135 (0.0264)

FITR-IntL 0.0266 0.0303 1.1272 0.9751 0.9217 (0.0300) 0.9153 (0.0256)
FITR-Ramp 0.0195 0.0241 0.8258 0.7775 0.9294 (0.0208) 0.9240 (0.0211)

0.5 87.56%
SepL 0.0236 0.0382 1.0000 1.0000 0.9234 (0.0256) 0.8904 (0.0335)

FITR-IntL 0.0340 0.0353 1.4391 0.9229 0.9112 (0.0351) 0.8908 (0.0296)
FITR-Ramp 0.0298 0.0304 1.2641 0.7957 0.9112 (0.0282) 0.8964 (0.0241)

0.25 75.65%
SepL 0.0236 0.0457 1.0000 1.0000 0.9234 (0.0256) 0.8733 (0.0437)

FITR-IntL 0.0396 0.0488 1.6793 1.0664 0.9036 (0.0404) 0.8631 (0.0427)
FITR-Ramp 0.0446 0.0502 1.8914 1.0973 0.8953 (0.0421) 0.8563 (0.0387)

0 62.94%
SepL 0.0236 0.0515 1.0000 1.0000 0.9234 (0.0256) 0.8696 (0.0523)

FITR-IntL 0.0392 0.0552 1.6596 1.0724 0.9059 (0.0407) 0.8601 (0.0486)
FITR-Ramp 0.0505 0.0644 2.1385 1.2514 0.8939 (0.0499) 0.8505 (0.0538)

-0.25 50.64%
SepL 0.0236 0.0425 1.0000 1.0000 0.9234 (0.0256) 0.8762 (0.0410)

FITR-IntL 0.0324 0.0453 1.3743 1.0657 0.9136 (0.0337) 0.8725 (0.0400)
FITR-Ramp 0.0489 0.0558 2.0702 1.3118 0.8990 (0.0497) 0.8650 (0.0485)

Table 4.3: The change of RMSE and accuracy when the similarity between outcomes is changed.
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Figure 4.1: The accuracy of SepL, FITR-Ramp and FITR-Intl under different sample sizes n, parameters
(γ1, γ2), models and kernels in scenario 1 and 2 when K = 2.
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interaction effect be

T1(X, A) = 0.5A(0.2−X1 − 2X2), T2(X, A) = 0.75A(0.2−X1 − 2ρX2),

where ρ controls the similarity between R1 and R2. In Table 4.3, we show different values of ρ and

their corresponding agreement rates between f∗1 and f∗2 . The sample size is n = 200.

The value function and accuracy of FITRs is larger than SepL when ρ ≥ 0.75 for R1 and when

ρ ≥ 0.5 for R2. This indicates that the agreement rate should be no less than 87% in order for the

fusion penalty to have a positive effect on the FITRs when the signal is weak (γ1 = 0.5), and be

no less than 75% when the signal is strong (γ2 = 0.75).

4.5 Real Data Analysis

We apply our proposed methods to the Establishing Moderators and Biosignatures of An-

tidepressant Response in Clinical Care (EMBARC; Trivedi et al., 2016) study, which randomized

patients with major depressive disorder (MDD) to serotonin selective reuptake inhibitor sertraline

(SERT) or placebo (PBO). Our primary outcome for depressive symptoms is the Quick Inventory of

Depressive Symptomatology (QIDS) score, where a lower score represents better relief of symptoms.

Two covariates were shown to be informative for tailoring treatments in a prior study (Chen et al.,

2021b). The first is the NEO-Five Factor Inventory score, where NEO Personality Inventory is a

240-item measurement designed to assess personality in the domains of neuroticism, extraversion,

openness and so on, we focus on the neuroticism domain. The second informative measure is the

Flanker Interference Accuracy score, where a higher value indicates reduced cognitive control. Five

additional baseline variables are used, including sex, age, education years, Edinburgh Handedness

Inventory (EHI) score, and the QIDS score at the beginning of the study.

We consider three different outcomes as rewards. The primary outcome is the difference of

QIDS at the beginning and the end of study (QIDS-change), with a larger value more desirable.

The auxiliary outcome is clinician assessed Clinical Global Improvement scale (CGI) as an overall

assessment of treatment effect, and a smaller score suggests better improvement (Busner and Tar-

gum, 2007). Another auxiliary measure is the Social Adjustment Scale (SAS), which evaluates the

impact of a person’s mental health difficulties, with a higher score indicating greater impairment.
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Value functions from 400 replicates

All SERT All PBO SepL FITR-IntL FITR-Ramp
8.0000 6.4375 8.7750 (1.0291) 8.9387 (1.0474) 8.9419 (1.0505)

Agreement rates between primary ITR and auxiliary ITRs

Auxiliary ITR rfCGI
rfSAS

Primary ITR from
different methods

SepL 0.8065 0.6935
FITR-IntL 0.9032 0.7366
FITR-Ramp 0.8871 0.7204

Table 4.4: The upper half table shows the estimated value functions of the OSFA strategy, SepL, FITR-
IntL and FITR-Ramp for the primary outcome QIDS-change in the EMBARC study. The lower half table
shows the agreement rates between SepL, FITR-Ramp, FITR-Ramp and the auxiliary outcome ITRs rfCGI,
rfSAS for QIDS-change.

Consequently, we use QIDS-change along with the negative values of CGI and SAS as the three

outcomes. There are 186 patients with complete information.

We compare the estimated value functions of FITR-IntL, FITR-Ramp, SepL and the one-size-

for-all (OSFA) strategy in Table 4.4. For SepL, FITR-IntL and FITR-Ramp, we split the dataset

into the training and test set with probability 0.7 and 0.3 respectively. The training set is used

to estimate the ITRs, where the tuning parameters are selected using 4-fold cross-validation. The

test set is used to estimate the value functions Vk(fk) with the unbiased estimator

n∑
i=1

RikI(Ai = sign{fk(Xi)})
πi(Ai;Xi)

O

n∑
i=1

I(Ai = sign{fk(Xi)})
πi(Ai;Xi)

. (4.15)

The process is repeated 400 times. The mean and standard error of the value functions across the

400 replications are reported. For OSFA, we directly calculate the mean reward on the subpopula-

tion with the desired treatment (also equals (4.15) since πi = 0.5 for all i). Our experiments show

that the linear kernel is better than the Gaussian kernel on this dataset, so only the results of the

linear kernel are presented for SepL, FITR-IntL and FITR-Ramp.

The upper half of Table 4.4 suggests that FITR-IntL and FITR-Ramp can improve the ITR

learning for QIDS-change assisted by the other two auxiliary outcomes, when comparing with

OSFA and SepL. FITR-Ramp and FITR-IntL have similar performance. To compare the learned

ITR using different methods, we present the coefficient of each variable in Table 4.11 when the

linear kernel is used. For the primary outcome QIDS, the signs of the coefficients of SepL, FITR-

Ramp and FITR-IntL are all the same. To see the impact of the coefficient differences on SepL and
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FITR, we present the agreement rates between SepL, FITR-Ramp, FITR-Ramp and the auxiliary

outcome ITRs rfCGI, rfSAS in the lower half of Table 4.4. We can see that the agreement rates

between FITR-Ramp or FITR-Ramp and the auxiliary outcome ITRs are greater than that for

SepL, which is consistent with the faster convergence rate proved in Theorem 4.3.3.

4.6 Discussion

In this work, we have proposed a method to borrow auxiliary outcome ITRs to optimize the

primary outcome while also optimizing auxiliary outcomes as much as possible. A fusion penalty

was introduced to regularize the average number of inconsistent treatments suggested by the ITRs

of each outcome pairs, which encourages the ITRs to yield similar treatment recommendations.

We showed theoretically and numerically that the agreement rate between the proposed FITR for

the primary outcome and the ITR for the auxiliary outcome converges faster to its true value than

SepL. Besides, the simulation and real data study suggested that the learned FITRs have better

value function and accuracy than SepL when the true optimal ITRs are close and the sample size

is relatively small.

The fusion penalty share the same spirits with the Laplacian penalty Huang et al. (2011),

which is used to learn multiple models simultaneously while encouraging similarity. Specifically,

the Laplacian matrix is defined as L := D−Ω with size K×K, where Ω is the adjacency matrix of

the rewards andD is the degree matrix withDkk =
∑

l ̸=k Akl andDjk = 0 for j ̸= k, k, j = 1, . . . ,K.

The adjacency matrix can be constructed based on the Euclidean distance, correlation, or power

adjacency function (Huang et al., 2011). Then the Laplacian penalty can be defined as

1

n

n∑
i=1

{
I(f(Xi) ≥ 0) · L · I(f(Xi) ≥ 0)T + I(f(Xi) ≤ 0) · L · I(f(Xi) ≤ 0)T

}
It prompts fk(Xi) and fj(Xi) to have the same sign when Rk are Rj are similar. This is equivalent

to (4.3) if we use the same data for learning ITRs simultaneously, regardless of which outcome is

primary.

There are several promising directions that worth further research. Currently the tuning pa-

rameters λ and µ only depends on the sample size n and is homogeneous for all patients. A possible

extension is to let them depend on the covariates X, since the fusion level should decrease if the
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optimal ITRs for the primary outcome and auxiliary outcomes are far away for these patients.

Another interesting direction is to explore the fusion penalty when estimating the dynamic treat-

ment rules, which are a sequence of rules for multi-stage settings. We can apply the fusion penalty

backwards from the last stage to the first stage. Since our method relies on the auxiliary outcome

only through its treatment rules, we do not need individual-level data if such rules are already

available. The covariates used for constructing the auxiliary outcome ITR may not even need to

be the same as for FITR. Finally, the same fusion idea can be used to combine treatment rules

for different outcomes from different studies, which can be treated as a form of meta-analysis for

learning ITRs.

4.7 Supplementary Materials

In the supplementary section, we provide some addition details about the simulation study and

real data analysis in Section 4.7.1 and prove the theoretical results in Section 4.7.2.

4.7.1 Additional Simulation and Real Data Experiment Results

In this section, we provide some addition details about the simulation in Section 4.4.1 and show

the simulation results when there are K = 3 outcomes. In addition, we provide more results about

the real data analysis in Section 4.5.

4.7.1.1 Similation Details for Section 4.4.1

For the two scenarios considered in Section 4.4.1, here we present their true optimal values.

(γ1, γ2)
Scenario 1 Scenario 2

V∗1 V∗2 V∗1 V∗2

(0.5, 0.75) 1.88 2.42 1.54 2.01

(0.5, 0.5) 1.88 2.17 1.54 1.89

Table 4.5: True optimal values of scenarios 1 and 2 when K = 2.

131



4.7.1.2 Learning ITRs for K = 3

In this section, we experiment with the setting where we have K = 3 outcomes.

The main effects are set to be

m1(X) = 1 + 2X1 +X2
2 +X1X2, m2(X) = 1 + 2X2

1 + 1.5X2 + 0.5X1X2,

m3(X) = 1 +X1 +X2

in the two scenarios that we are considering. The noise terms are the same as that in Section 4.4.1.

The interaction terms are defined differently in the two scenarios as follows:

3. Linear scenario T1(X, A) = γ1A(0.2 − X1 − 2X2), T2(X, A) = γ2A(0.2 − X1 − 1.8X2),

T3(X, A) = γ3A(0.2− 0.8X1 − 1.5X2);

4. Nonlinear scenario T1(X, A) = γ1A(0.9 − X2
1 − X2

2 ), T2(X, A) = γ2A(1 − X2
1 − 1.2X2

2 ),

T3(X, A) = γ3A(0.9− 0.8X2
1 − 0.9X2

2 ).

The first two outcomes are the same as in Section 4.4.1 when K = 2. Here γ1, γ2, γ3 are fixed

parameters controlling the ratio between the signal and the noise. The true optimal values of each

scenario is summarized in Table 4.6.

(γ1, γ2)
Scenario 3 Scenario 4

V∗1 V∗2 V∗3 V∗1 V∗2 V∗3

(0.5, 0.75, 0.5) 1.88 2.42 1.42 1.54 2.01 1.21

(0.5, 0.5, 0.5) 1.88 2.17 1.42 1.54 1.89 1.21

Table 4.6: True optimal values of scenarios 3 and 4 when K = 3.

Table 4.7 and 4.9 shows the RMSE of scenario 3 and scenario 4 correspondingly. Figures 4.2

and 4.3 show the accuracy of each replication, with the y-axis truncated to display the boxes clearly.

The general conclusion is similar to that of Section 4.4.1. However, we can see that the increase in

the number of correlated outcomes can improve the learning of ITRs. Indeed, in scenario 3, FITR-

Ramp with linear kernel can reduce the RMSE of SepL up to 36.59% among the first two outcomes

and up to 49.34% for the third outcome. In addition, it reduces the standard error of the accuracy
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n/(γ1, γ2) Kernel Model RMSE1 RMSE2 RMSE3
RMSE1

RMSE1,SepL

RMSE2

RMSE2,SepL

RMSE3

RMSE3,SepL

200
(0.5, 0.75, 0.5)

Linear
SepL 0.0271 0.0254 0.0208 1.0000 1.0000 1.0000

FITR-IntL 0.0278 0.0311 0.0190 1.0261 1.2243 0.9158
FITR-Ramp 0.0173 0.0218 0.0116 0.6374 0.8570 0.5573

Gaussian
SepL 0.0845 0.0627 0.0702 1.0000 1.0000 1.0000

FITR-IntL 0.0869 0.0857 0.0622 1.0277 1.3663 0.8862
FITR-Ramp 0.0545 0.0555 0.0405 0.6444 0.8852 0.5775

200
(0.5, 0.5, 0.5)

Linear
SepL 0.0271 0.0330 0.0208 1.0000 1.0000 1.0000

FITR-IntL 0.0326 0.0320 0.0204 1.2038 0.9700 0.9822
FITR-Ramp 0.0202 0.0209 0.0136 0.7451 0.6341 0.6533

Gaussian
SepL 0.0845 0.1038 0.0702 1.0000 1.0000 1.0000

FITR-IntL 0.0927 0.1056 0.0679 1.0961 1.0170 0.9678
FITR-Ramp 0.0581 0.0706 0.0448 0.6876 0.6800 0.6389

300
(0.5, 0.75, 0.5)

Linear
SepL 0.0169 0.0184 0.0147 1.0000 1.0000 1.0000

FITR-IntL 0.0193 0.0242 0.0131 1.1412 1.3122 0.8920
FITR-Ramp 0.0121 0.0149 0.0074 0.7157 0.8077 0.5066

Gaussian
SepL 0.0367 0.0382 0.0412 1.0000 1.0000 1.0000

FITR-IntL 0.0288 0.0426 0.0364 0.7850 1.1140 0.8830
FITR-Ramp 0.0242 0.0320 0.0225 0.6578 0.8366 0.5473

300
(0.5, 0.5, 0.5)

Linear
SepL 0.0169 0.0209 0.0147 1.0000 1.0000 1.0000

FITR-IntL 0.0202 0.0201 0.0131 1.1937 0.9597 0.8939
FITR-Ramp 0.0129 0.0135 0.0085 0.7653 0.6438 0.5774

Gaussian
SepL 0.0426 0.0878 0.0353 1.0000 1.0000 1.0000

FITR-IntL 0.0412 0.0844 0.0345 0.9674 0.9614 0.9765
FITR-Ramp 0.0368 0.0508 0.0287 0.8640 0.5789 0.8136

Table 4.7: The RMSEs of value functions and their ratios between SepL and FITR under different sample
sizes n, parameters (γ1, γ2), models and kernels in scenario 3.

up to 32.66% among the first two outcomes and up to 47.25% for the third outcome. In scenario 4,

FITR-IntL with Gaussian kernel can reduce the RMSE of SepL up to 10.29% among the first two

outcomes and up to 11.37% for the third outcome. In addition, it reduces the standard error of the

accuracy up to 52.29% among the first two outcomes and up to 34.14% for the third outcome. The

improvement in RMSE and accuracy of R1 and R2 is larger than that in Section 4.4.1, suggesting

that additional outcomes can further help improve the ITRs. Table 4.8 and 4.10 demonstrate the

increase of the agreement rate between an FITR and the corresponding auxiliary outcome ITRs

compared to SepL.
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n/(γ1, γ2) Kernel Model pP( pf1n = rf2n) pP( pf1n = rf3n) pP( pf2n = rf1n) pP( pf2n = rf3n) pP( pf3n = rf1n) pP( pf3n = rf2n)

200
(0.5, 0.75, 0.5)

Linear
SepL 0.9186 (0.0253) 0.9175 (0.0300) 0.9186 (0.0253) 0.9206 (0.0287) 0.9175 (0.0300) 0.9206 (0.0287)

FITR-IntL 0.9351 (0.0244) 0.9355 (0.0236) 0.9319 (0.0239) 0.9345 (0.0225) 0.9343 (0.0251) 0.9351 (0.0243)
FITR-Ramp 0.9418 (0.0197) 0.9373 (0.0261) 0.9380 (0.0231) 0.9386 (0.0251) 0.9402 (0.0215) 0.9431 (0.0187)

Gaussian
SepL 0.8779 (0.0593) 0.8702 (0.0778) 0.8779 (0.0593) 0.8770 (0.0655) 0.8702 (0.0778) 0.8770 (0.0655)

FITR-IntL 0.8972 (0.0618) 0.8966 (0.0634) 0.8963 (0.0509) 0.8977 (0.0550) 0.8965 (0.0686) 0.9009 (0.0601)
FITR-Ramp 0.8945 (0.0443) 0.8924 (0.0566) 0.8892 (0.0514) 0.8900 (0.0540) 0.8972 (0.0510) 0.9013 (0.0429)

200
(0.5, 0.5, 0.5)

Linear
SepL 0.9012 (0.0311) 0.9175 (0.0300) 0.9012 (0.0311) 0.9045 (0.0315) 0.9175 (0.0300) 0.9045 (0.0315)

FITR-IntL 0.9185 (0.0286) 0.9342 (0.0245) 0.9254 (0.0279) 0.9276 (0.0271) 0.9339 (0.0256) 0.9199 (0.0254)
FITR-Ramp 0.9268 (0.0259) 0.9373 (0.0239) 0.9312 (0.0256) 0.9311 (0.0269) 0.9391 (0.0204) 0.9256 (0.0262)

Gaussian
SepL 0.8502 (0.0775) 0.8702 (0.0778) 0.8502 (0.0775) 0.8504 (0.0794) 0.8702 (0.0778) 0.8504 (0.0794)

FITR-IntL 0.8719 (0.0705) 0.8954 (0.0658) 0.8794 (0.0763) 0.8852 (0.0725) 0.8960 (0.0684) 0.8753 (0.0714)
FITR-Ramp 0.8644 (0.0651) 0.8904 (0.0572) 0.8774 (0.0477) 0.8770 (0.0557) 0.8952 (0.0529) 0.8707 (0.0651)

300
(0.5, 0.75, 0.5)

Linear
SepL 0.9336 (0.0217) 0.9316 (0.0255) 0.9336 (0.0217) 0.9338 (0.0240) 0.9316 (0.0255) 0.9338 (0.0240)

FITR-IntL 0.9453 (0.0199) 0.9450 (0.0207) 0.9435 (0.0217) 0.9446 (0.0213) 0.9464 (0.0202) 0.9467 (0.0172)
FITR-Ramp 0.9520 (0.0157) 0.9480 (0.0243) 0.9502 (0.0193) 0.9482 (0.0232) 0.9530 (0.0169) 0.9538 (0.0145)

Gaussian
SepL 0.9053 (0.0383) 0.9007 (0.0509) 0.9053 (0.0383) 0.9038 (0.0437) 0.9007 (0.0509) 0.9038 (0.0437)

FITR-IntL 0.9214 (0.0317) 0.9175 (0.0413) 0.9191 (0.0355) 0.9193 (0.0370) 0.9234 (0.0458) 0.9252 (0.0368)
FITR-Ramp 0.9191 (0.0286) 0.9135 (0.0439) 0.9149 (0.0320) 0.9142 (0.0376) 0.9198 (0.0307) 0.9215 (0.0303)

300
(0.5, 0.5, 0.5)

Linear
SepL 0.9190 (0.0250) 0.9316 (0.0255) 0.9190 (0.0250) 0.9201 (0.0265) 0.9316 (0.0255) 0.9201 (0.0265)

FITR-IntL 0.9321 (0.0224) 0.9439 (0.0217) 0.9381 (0.0241) 0.9396 (0.0225) 0.9462 (0.0198) 0.9338 (0.0204)
FITR-Ramp 0.9394 (0.0210) 0.9468 (0.0233) 0.9442 (0.0219) 0.9414 (0.0247) 0.9516 (0.0164) 0.9395 (0.0196)

Gaussian
SepL 0.8766 (0.0686) 0.9011 (0.0442) 0.8766 (0.0686) 0.8813 (0.0591) 0.9011 (0.0442) 0.8813 (0.0591)

FITR-IntL 0.8946 (0.0586) 0.9188 (0.0375) 0.8982 (0.0702) 0.9056 (0.0576) 0.9217 (0.0394) 0.9035 (0.0504)
FITR-Ramp 0.8889 (0.0573) 0.9147 (0.0350) 0.9019 (0.0458) 0.9045 (0.0408) 0.9177 (0.0358) 0.8955 (0.0558)

Table 4.8: The agreement rates between pf1n, pf2n, pf3n and their corresponding auxiliary outcome ITRs under different sample sizes n, parameters
(γ1, γ2), models and kernels in scenario 3.
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n/(γ1, γ2) Kernel Model RMSE1 RMSE2 RMSE3
RMSE1

RMSE1,SepL

RMSE2

RMSE2,SepL

RMSE3

RMSE3,SepL

200
(0.5, 0.75, 0.5)

Linear
SepL 0.1164 0.1621 0.0495 1.0000 1.0000 1.0000

FITR-IntL 0.0931 0.1467 0.0469 0.7999 0.9050 0.9470
FITR-Ramp 0.0984 0.1540 0.0581 0.8455 0.9501 1.1723

Gaussian
SepL 0.0937 0.1390 0.0520 1.0000 1.0000 1.0000

FITR-IntL 0.0847 0.1344 0.0461 0.9043 0.9669 0.8863
FITR-Ramp 0.0883 0.1360 0.0499 0.9423 0.9784 0.9599

200
(0.5, 0.5, 0.5)

Linear
SepL 0.1164 0.1282 0.0495 1.0000 1.0000 1.0000

FITR-IntL 0.0937 0.1042 0.0493 0.8052 0.8130 0.9960
FITR-Ramp 0.1002 0.1098 0.0623 0.8605 0.8562 1.2573

Gaussian
SepL 0.0937 0.1054 0.0520 1.0000 1.0000 1.0000

FITR-IntL 0.0855 0.0946 0.0476 0.9126 0.8971 0.9153
FITR-Ramp 0.0893 0.0990 0.0499 0.9538 0.9388 0.9596

300
(0.5, 0.75, 0.5)

Linear
SepL 0.1023 0.1507 0.0432 1.0000 1.0000 1.0000

FITR-IntL 0.0884 0.1411 0.0422 0.8645 0.9364 0.9761
FITR-Ramp 0.0919 0.1444 0.0487 0.8983 0.9582 1.1262

Gaussian
SepL 0.0856 0.1281 0.0444 1.0000 1.0000 1.0000

FITR-IntL 0.0813 0.1277 0.0426 0.9501 0.9971 0.9602
FITR-Ramp 0.0825 0.1264 0.0436 0.9634 0.9870 0.9818

300
(0.5, 0.5, 0.5)

Linear
SepL 0.1023 0.1147 0.0432 1.0000 1.0000 1.0000

FITR-IntL 0.0894 0.0984 0.0435 0.8733 0.8584 1.0067
FITR-Ramp 0.0930 0.1010 0.0516 0.9089 0.8806 1.1940

Gaussian
SepL 0.0856 0.0984 0.0444 1.0000 1.0000 1.0000

FITR-IntL 0.0818 0.0905 0.0430 0.9553 0.9201 0.9685
FITR-Ramp 0.0826 0.0932 0.0437 0.9643 0.9479 0.9834

Table 4.9: The RMSEs of value functions and their ratios between SepL and FITR under different sample
sizes n, parameters (γ1, γ2), models and kernels in scenario 4.
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n/(γ1, γ2) Kernel Model pP( pf1n = rf2n) pP( pf1n = rf3n) pP( pf2n = rf1n) pP( pf2n = rf3n) pP( pf3n = rf1n) pP( pf3n = rf2n)

200
(0.5, 0.75, 0.5)

Linear
SepL 0.8389 (0.1091) 0.8505 (0.1142) 0.8389 (0.1091) 0.9183 (0.0863) 0.8505 (0.1142) 0.9183 (0.0863)

FITR-IntL 0.9138 (0.0848) 0.9459 (0.0703) 0.8586 (0.1090) 0.9577 (0.0607) 0.8611 (0.1111) 0.9306 (0.0770)
FITR-Ramp 0.9080 (0.0750) 0.9237 (0.0689) 0.8747 (0.0897) 0.9400 (0.0526) 0.8744 (0.0896) 0.9210 (0.0654)

Gaussian
SepL 0.8218 (0.1362) 0.8491 (0.1381) 0.8218 (0.1362) 0.8696 (0.1207) 0.8491 (0.1381) 0.8696 (0.1207)

FITR-IntL 0.8782 (0.1164) 0.9084 (0.1032) 0.8605 (0.1346) 0.9126 (0.0995) 0.8741 (0.1348) 0.8939 (0.1134)
FITR-Ramp 0.8517 (0.1231) 0.8785 (0.1179) 0.8423 (0.1336) 0.8899 (0.1088) 0.8583 (0.1363) 0.8785 (0.1178)

200
(0.5, 0.5, 0.5)

Linear
SepL 0.8000 (0.1108) 0.8505 (0.1142) 0.8000 (0.1108) 0.8509 (0.1163) 0.8505 (0.1142) 0.8509 (0.1163)

FITR-IntL 0.8544 (0.1069) 0.9448 (0.0717) 0.8522 (0.1055) 0.9351 (0.0787) 0.8653 (0.1061) 0.8651 (0.1075)
FITR-Ramp 0.8653 (0.0861) 0.9187 (0.0672) 0.8640 (0.0877) 0.9167 (0.0690) 0.8709 (0.0902) 0.8667 (0.0927)

Gaussian
SepL 0.8052 (0.1469) 0.8491 (0.1381) 0.8052 (0.1469) 0.8476 (0.1396) 0.8491 (0.1381) 0.8476 (0.1396)

FITR-IntL 0.8556 (0.1347) 0.9070 (0.1039) 0.8577 (0.1374) 0.9070 (0.1065) 0.8738 (0.1335) 0.8701 (0.1348)
FITR-Ramp 0.8333 (0.1378) 0.8757 (0.1184) 0.8370 (0.1365) 0.8811 (0.1163) 0.8596 (0.1350) 0.8569 (0.1374)

300
(0.5, 0.75, 0.5)

Linear
SepL 0.8976 (0.0908) 0.9120 (0.0936) 0.8976 (0.0908) 0.9522 (0.0625) 0.9120 (0.0936) 0.9522 (0.0625)

FITR-IntL 0.9456 (0.0654) 0.9725 (0.0478) 0.9125 (0.0911) 0.9793 (0.0376) 0.9171 (0.0912) 0.9575 (0.0590)
FITR-Ramp 0.9367 (0.0626) 0.9538 (0.0556) 0.9194 (0.0757) 0.9680 (0.0350) 0.9229 (0.0777) 0.9536 (0.0493)

Gaussian
SepL 0.8258 (0.1217) 0.8625 (0.1186) 0.8258 (0.1217) 0.8726 (0.1130) 0.8625 (0.1186) 0.8726 (0.1130)

FITR-IntL 0.8723 (0.1105) 0.9205 (0.0865) 0.8622 (0.1144) 0.9168 (0.0878) 0.8798 (0.1162) 0.8867 (0.1100)
FITR-Ramp 0.8532 (0.1143) 0.8956 (0.0974) 0.8446 (0.1200) 0.8938 (0.1016) 0.8689 (0.1183) 0.8788 (0.1129)

300
(0.5, 0.5, 0.5)

Linear
SepL 0.8625 (0.1014) 0.9120 (0.0936) 0.8625 (0.1014) 0.9012 (0.1002) 0.9120 (0.0936) 0.9012 (0.1002)

FITR-IntL 0.8997 (0.0931) 0.9691 (0.0535) 0.9052 (0.0908) 0.9631 (0.0631) 0.9197 (0.0871) 0.9075 (0.0936)
FITR-Ramp 0.9001 (0.0821) 0.9493 (0.0581) 0.9078 (0.0781) 0.9500 (0.0523) 0.9215 (0.0741) 0.9112 (0.0803)

Gaussian
SepL 0.8166 (0.1344) 0.8625 (0.1186) 0.8166 (0.1344) 0.8602 (0.1336) 0.8625 (0.1186) 0.8602 (0.1336)

FITR-IntL 0.8624 (0.1280) 0.9213 (0.0872) 0.8618 (0.1212) 0.9174 (0.0973) 0.8784 (0.1154) 0.8732 (0.1306)
FITR-Ramp 0.8450 (0.1301) 0.8945 (0.0992) 0.8416 (0.1248) 0.8911 (0.1098) 0.8706 (0.1166) 0.8670 (0.1324)

Table 4.10: The agreement rates between pf1n, pf2n, pf3n and their corresponding auxiliary outcome ITRs under different sample sizes n, parameters
(γ1, γ2), models and kernels in scenario 4.
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Figure 4.2: The accuracy of SepL, FITR-Ramp and FITR-Intl under different sample sizes n, parameters
(γ1, γ2), models and kernels in scenario 3 when K = 3.
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Figure 4.3: The accuracy of SepL, FITR-Ramp and FITR-Intl under different sample sizes n, parameters
(γ1, γ2), models and kernels in scenario 4 when K = 3.
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4.7.1.3 Additional Results for Section 4.5

We list the coefficients of the estimated ITRs by SepL, FITR-IntL and FITR-Ramp in Ta-

ble 4.11. They are learnt with the complete dataset and the linear kernel. We can conclude

that the coefficients fitted by different methods are generally close, which suggests that the fusion

penalty will not dramatically change an ITR compared to SepL. The coefficients are more sim-

ilar for QIDS-change and CGI, which is expected since SAS measures impacts of depression on

social functioning. For the outcome SAS, Flanker variable has a different sign in terms of the ITR

coefficients from different methods. While SepL estimates a positive coefficient, FITR-IntL and

FITR-Ramp estimate the opposite.

Variable intercept sex age education EHI QIDS NEO Flanker

QIDS-change

SepL 0.1302 0.1055 0.2313 -0.1256 0.0655 0.0308 0.2514 -0.3454

FITR-IntL 0.1367 0.0983 0.1257 -0.0204 0.0318 0.0650 0.0867 -0.1738

FITR-Ramp 0.0628 0.0383 0.0776 -0.0364 0.0255 0.0268 0.0709 -0.1079

CGI

SepL 0.3579 0.0194 0.2745 -0.0429 0.0862 0.0136 0.1548 -0.2805

FITR-IntL 0.5473 0.3066 0.5942 -0.1625 0.0884 0.3279 0.4205 -0.6595

FITR-Ramp 0.1958 0.0622 0.2361 -0.1317 0.0670 0.1076 0.2195 -0.2043

SAS

SepL 0.2068 0.0136 0.1471 -0.1018 -0.0514 0.2019 0.1570 0.0285

FITR-IntL 0.1410 0.0842 0.1037 -0.0296 -0.0133 0.1183 0.0888 -0.0808

FITR-Ramp 0.0816 0.0284 0.0646 -0.0228 -0.0104 0.0645 0.0565 -0.0496

Table 4.11: The coefficients of the estimated ITRs by SepL, FITR-IntL and FITR-Ramp when the linear
kernel is used.

4.7.2 Proof for Section 4.3

In this section, we provide the proof for the theoretical results in Section 4.3.

4.7.2.1 Details for the Agreement Rate Comparison

To give a bound for the agreement rate of SepL, we need to bound its decision accuracy. We

first provide another assumption about the rewards and then present the general accuracy bound

for µ1n ≥ 0 in FITR-Ramp.

Assumption 22. Suppose the conditional expectation of rewards satisfies
∑

a∈A E(R1|a,x) ≥ cr

for some constant cr > 0 for all x ∈ X .
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Corollary 4.7.1. Under Assumptions 15-21 and 22, the misclassification rate satisfies

P( pf1nf
∗
1 < 0) À [δ1n(τ) + µ1n]

α
2−α (4.16)

with probability greater than or equal to 1− 2eτ .

Remark. If rf2 is the sign of the decision function learnt by SepL as described in Section 4.2 with

the same dataset of size n, we can directly use Corollary 4.7.1 with µ2n = 0 to find that rδ2n(τ) =

(δ
(0)
2n (τ))

α
2−α , where

δ
(0)
2n (τ) := λ

− 1
2

2n n
− 1

2

”?
τ + σ

(1−ν/2)(1+δ)d
2n

ı

+ λ2nσ
d
2n + (2d)qd/2σ−qd2n

with probability greater than or equal to 1− eτ .

4.7.2.2 Proof for Lemma 4.3.1

Proof. First note that

R( pf1n)−R(f∗1 ) ≤ R( pf1n)−R(f∗1 ) + λ1n∥ pf1n∥2H (4.17)

≤
{

”

R( pf1n) + λ1n∥ pf1n∥2H
ı

− inf
f1∈H

“

R(f1) + λ1n∥f1∥2H
‰

}
(4.18)

+

{
inf
f1∈H

“

R(f1) + λ1n∥f1∥2H
‰

−R(f∗1 )
}
. (4.19)

Define f †1 as the minimizer of R(f1) + λ1n∥f1∥2H in H. We will bound the two terms on the

right-hand side separately.

To bound (4.19), we follow the construction in the proof of Theorem of 2.7 in Steinwart and

Scovel (2007). When X is the closed unit ball, on X́ := 3X define

ή(x) =


η(x), if ∥x∥2 ≤ 1,

η(x/∥x∥2), otherwise.

Besides, let X́−1 := {x ∈ X́ : ή(x) < 1
2} and X́1 := {x ∈ X́ : ή(x) > 1

2}. Fix a measurable

f́1 : X́ 7→ [−1, 1] that satisfies f́1 = 1 on X́1, f́1 = −1 on X́−1 and f́1 = 0 otherwise. The linear
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operator Vσ1n : L2(Rd) 7→ Hσ1n(Rd) defined by

Vσ1ng(x) =
(2σ1n)

d/2

πd/4

∫
Rd

e−2σ2
1n∥x−y∥22g(y)dy, g ∈ L2(Rd),x ∈ Rd,

is an isometric isomorphism (Steinwart et al., 2006). Consequently, we have

inf
f1∈H

“

R(f1) + λ1n∥f1∥2H
‰

−R(f∗1 )

≤ inf
g∈L2(Rd)

”

E(ℓ1 ◦ Vσ1ng − ℓ1 ◦ f∗1 ) + E(ℓ2 ◦ Vσ1ng − ℓ2 ◦ f∗1 ) + λ1n∥g∥2L2(Rd)

ı

.

Now take a specific g := p
σ2
1n
π q

d/4f́1 and we obtain

∥g∥L2(Rd) ≤
ˆ

81σ21n
π

˙d/4

θ(d), (4.20)

where θ(d) denotes the volume of X . Since 1 ≤ f́1 ≤ 1, it can be easily seen that 1 ≤ Vσ1ng ≤ 1.

Note that |ϕ′(t)| =
∣∣∣− e−t

1+e−t

∣∣∣ ≤ 1, so ℓ1 is Lipschitz continuous with respect to f1 with Lipschitz

constant r/p0. It has been shown in Steinwart and Scovel (2007) that

|Vσ1ng(x)− f∗1 (x)| ≤ 8e−σ
2
1nω

2
x/2d.

Therefore, Assumption 20 for t = 2d/σ21n yield

E(ℓ1 ◦ Vσ1ng − ℓ1 ◦ f∗1 ) À E |Vσ1ng − f∗1 | À Ee−σ
2
1nω

2
x/2d À (2d)qd/2σ−qd1n . (4.21)

Since ℓ2 is Lipschitz continuous with respect to f1 with Lipschitz constant µ1nΩ12

κ1n
∥ rf2∥∞,

E(ℓ2 ◦ Vσ1ng − ℓ2 ◦ f∗1 ) À
µ1n
κ1n

E |Vσ1ng − f∗1 | À
µ1n
κ1n

(2d)qd/2σ−qd1n (4.22)

when ∥ rf2∥∞ = 1. Combining (4.20), (4.21) and (4.22), we can bound the approximation error

(4.19) as

inf
f1∈H

“

R(f1) + λ1n∥f1∥2H
‰

−R(f∗1 ) À λ1nσ
d
1n +

ˆ

1 +
µ1n
κ1n

˙

(2d)qd/2σ−qd1n . (4.23)
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To bound (4.18), we will use the Talagrand’s inequality quoted as follows (Steinwart and Scovel,

2007, Theorem 5.6).

Theorem 4.7.2. Let H be a set of bounded measurable functions from Z to R which is separable

with respect to ∥·∥∞ and satisfies Eh = 0 for all h ∈ H. Furthermore, let B > 0 and b ≥ 0 be

constants with ∥h∥∞ ≤ B and Eh2 ≤ b for all h ∈ H. Then for all τ ≥ 1 and all n ≥ 1 we have

P

˜

sup
h∈H

Pnh > 3E sup
h∈H

Pnh+

c

2τb

n
+
Bτ

n

¸

≤ e−τ .

We first obtain a bound for ∥ pf1n∥2H. Since Pn(ℓ1 ◦ pf1n + ℓ2 ◦ pf1n) + λ1n∥ pf1n∥2H ≤ Pn(ℓ1 ◦ f1 +

ℓ2 ◦ f1) + λ1n∥f1∥2H for any f ∈ H, when taking f = 0 we have

λ1n∥ pf1n∥2H ≤ Pn(ℓ1 ◦ f1 + ℓ2 ◦ f1) ≤
r

p0
+ µ1nΩ12.

Since r/p0 + µ1nΩ12 ≃ M , ∥ pf1n∥H is bounded by
a

M/λ1n, where M := r/p0. To this end, it

suffices to consider the ball of radius
a

M/λ1n. Therefore, the function class that we consider here

is

G :=
{
ℓ1 ◦ f1 + ℓ2 ◦ f1 + λ1n∥f1∥2H −

”

ℓ1 ◦ f †1 + ℓ2 ◦ f †1 + λ1n∥f †1∥
2
H

ı

: f ∈ BH(
a

M/λ1n)
}
,

where BH(r) is the ball in H of radius r. Since ℓ1 is Lipschitz continuous with respect to f1 and

∥f∥∞ ≤ ∥f∥H for any g ∈ G,

|g| ≤
∣∣∣ℓ1 ◦ f1 − ℓ1 ◦ f †1 ∣∣∣+ ∣∣∣ℓ2 ◦ f1 − ℓ2 ◦ f †1 ∣∣∣+ λ1n

∣∣∣∥f1∥2H − ∥f †1∥2H∣∣∣
≤M

∣∣∣f1 − f †1 ∣∣∣+ µ1nΩ12 +M

≤2M
a

M/λ1n + µ1nΩ12 +M.

Hence with B := 2M
a

M/λ1n + µ1nΩ12 +M ≃ λ−1/2
1n , we have ∥g∥∞ ≤ B.

Define the modulus of continuity of G by

ωn(G, ϵ) := E

˜

sup
g∈G,Eg2≤ϵ

|Eg − Png|

¸

, ϵ > 0,
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where the supremum is measurable by the separability assumption on G. Define the function class

E := {Eg − g : g ∈ G} , (4.24)

then we have ωn(G, 4B2) ≥ E suph∈E Pnh since |Eg − g| ≤ 2B. By Theorem 4.7.2 we obtain

P

˜

sup
h∈E

Pnh > 3ωn(G, 4B2) +

c

2τb

n
+
Bτ

n

¸

≤ e−τ . (4.25)

Let ϵ = {ϵi}ni=1 be a sequence of i.i.d. Rademacher variable. Then the local Rademacher average

of F is defined by

Rad(G, n, ϵ) := EzEϵ sup
g∈G,Eg2≤ϵ

∣∣∣∣∣ 1n
n∑
i=1

ϵig(zi)

∣∣∣∣∣ .
It has been shown that

ωn(G, ϵ) ≤ 2Rad(G, n, ϵ), ϵ > 0

by symmetrization (Vaart and Wellner, 1996). Since

Rad(G, n, ϵ) = BRad(B−1G, n,B−2ϵ)

for any a > 0 by equation (37) of Steinwart and Scovel (2007), we only need to obtain a bound for

Rad(B−1G, n,B−2ϵ). To this end, we will use Proposition 5.5 of Steinwart and Scovel (2007) to

bound the local Rademacher average, quoted as follows.

Theorem 4.7.3. Let F be a class of measurable functions from Z to [−1, 1] which is separable

with respect to ∥·∥∞. Assume there are constants a > 0 and 0 < p < 2 with

sup
Pn

logN(ϵ,F , L2(Pn)) ≤ aϵ−p

for all ϵ > 0. Then there exists a constant cp > 0 depending only on p such that for all n ≥ 1 and

all ϵ > 0 we have

Rad(F , n, ϵ) ≤ cpmax

{
ϵ
1
2
− p

4

´a

n

¯
1
2
,
´a

n

¯
2

2+p

}
.
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Now we need to find some constants a > 0 and 0 < p < 2 such that

sup
Pn

logN(ϵ, B−1G, L2(Pn)) ≤ aϵ−p

for some a ≥ 1, 0 < p < 2 and for all ϵ > 0. To this end, note that

logN(ϵ, B−1G, L2(Pn))

= logN
´

B−1
{
ℓ1 ◦ f1 + ℓ2 ◦ f1 + λ1n∥f1∥2H : f ∈ BH(

a

M/λ1n)
}
, ϵ, L2(Pn)

¯

≤ logN
´

B−1
{
ℓ1 ◦ f1 + ℓ2 ◦ f1 : f ∈ BH(

a

M/λ1n)
}
, ϵ, L2(Pn)

¯

+ logN
´

B−1
{
λ1n∥f1∥2H : f ∈ BH(

a

M/λ1n)
}
, ϵ, L2(Pn)

¯

by the subadditivity of the entropy. For the first term on the right-hand side, for any f1, f
′
1 ∈

BH(
a

M/λ1n), let u := B−1(ℓ1 + ℓ2) ◦ f1 and u′ := B−1(ℓ1 + ℓ2) ◦ f ′1. Since ℓ1 and ℓ2 are Lipschitz

continuous with respect to f1,

∥∥u− u′∥∥
L2(Pn)

≤ B−1

ˆ

M +
µ1nΩ12

κ1n

˙

∥f − f ′∥L2(Pn).

With u, u′ ∈ B−1
{
ℓ1 ◦ f1 + ℓ2 ◦ f1 : f ∈ BH(

a

M/λ1n)
}
,

logN
´

B−1
{
ℓ1 ◦ f1 + ℓ2 ◦ f1 : f ∈ BH(

a

M/λ1n)
}
, ϵ, L2(Pn)

¯

≤ logN

ˆ

BH(
a

M/λ1n),
Bϵ

M + µ1nΩ12κ
−1
1n

, L2(Pn)
˙

≤ logN pBH, γnϵ, L2(Pn)q ,

where

γn :=
B

a

M/λ1n(M + µ1nΩ12κ
−1
1n )
≃ 1

1 + µ1nκ
−1
1n

For the second term on the right-hand side, it follows that

logN
´

B−1
{
λ1n∥f1∥2H : f ∈ BH(

a

M/λ1n)
}
, ϵ, L2(Pn)

¯

≤ log
M

Bϵ
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since λ1n∥f1∥2H ≤M for all f ∈ BH(
a

M/λ1n). Therefore, we can conclude that

logN(ϵ, B−1G, L2(Pn)) ≤ logN pBH, γnϵ, L2(Pn)q + log
M

Bϵ
.

Theorem 2.1 of Steinwart and Scovel (2007) then yields that

sup
Pn

logN(ϵ, B−1G, L2(Pn)) À σ
(1−ν/2)(1+δ)d
1n (γnϵ)

−ν ,

where σ1n > 0 is the parameter of the Gaussian kernel associated with H, and 0 < ν ≤ 2, δ > 0, ϵ >

0. Therefore, we have a = σ
(1−ν/2)(1+δ)d
1n γ−νn , p = ν and

Rad(G, n, ϵ) ≤ cpmax

{
B

p
2 ϵ

1
2
− p

4

´a

n

¯
1
2
, B

´a

n

¯
2

2+p

}
.

With ϵ = 4B2, we can bound the modulus of continuity as

ωn(G, ϵ) ≤ 2Rad(G, n, ϵ) À Ba
1
2n−

1
2 ≃ λ−

1
2

1n σ
(1−ν/2)(1+δ)d
1n γ−νn n−

1
2 . (4.26)

The definition of pf1n yields that

Pn
{
ℓ1 ◦ pf1n + ℓ2 ◦ pf1n + λ1n∥ pf1n∥2H −

”

ℓ1 ◦ f †1 + ℓ2 ◦ f †1 + λ1n∥f †1∥
2
H

ı}
≤ 0.

Therefore,

”

R( pf1n) + λ1n∥ pf1n∥2H
ı

−
”

R(f †1) + λ1n∥f †1∥
2
H

ı

=E
{
ℓ1 ◦ pf1n + ℓ2 ◦ pf1n + λ1n∥ pf1n∥2H −

”

ℓ1 ◦ f †1 + ℓ2 ◦ f †1 + λ1n∥f †1∥
2
H

ı}
≤(E− Pn)

{
ℓ1 ◦ pf1n + ℓ2 ◦ pf1n + λ1n∥ pf1n∥2H −

”

ℓ1 ◦ f †1 + ℓ2 ◦ f †1 + λ1n∥f †1∥
2
H

ı}
≤ sup
h∈E

Pnh,
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where E is defined in (4.24). Note that ∥h∥∞ ≤ 2B À λ
− 1

2
1n and Eh2 ≤ 4B2 À λ−1

1n for all h ∈ E .

Plugging (4.26) into (4.25) and we have

”

R( pf1n) + λ1n∥ pf1n∥2H
ı

−
”

R(f †1) + λ1n∥f †1∥
2
H

ı

≤ sup
h∈E

Pnh

Àλ
− 1

2
1n σ

(1−ν/2)(1+δ)d
1n γ−νn n−

1
2 +

d

2τλ−1
1n

n
+
τλ

− 1
2

1n

n

Àλ
− 1

2
1n n

− 1
2

”?
τ + σ

(1−ν/2)(1+δ)d
1n γ−νn

ı

(4.27)

with probability greater than or equal to 1− e−τ for any τ ≥ 1.

Finally, plug the upper bounds (4.27) and (4.23) into (4.18) and (4.19) and we get the results.

4.7.2.3 Proof for Theorem 4.3.2

Proof. Define pU1n := EI( pf1nf
∗
1 < 0) and ∆V1(f1) := V1(f∗1 )− V1(f1) for simplicity.

To utilize existing results in general classification problems, we can rewrite our loss functions

with a change of measure. Let h(·) be the probability distribution function of the covariates X.

Then the expectation of ℓ1 can be written as

Eℓ1 ◦ f1 = E
„

R1

π(A;X)
ϕ(Af1(X))

ȷ

=

∫
X+

∑
a∈A

E(R1|a,x)
π(a;x)

ϕ(af1(x))π(a;x)h(x)dx,

where X+ := E(R1|1,x) + E(R1|−1,x) > 0. Now define g(x) :=
∑

a∈A E(R1|a,x), CR1 :=∫
g(x)h(x)dx. Let h′(x) := g(x)h(x)/CR1 so that h′ is a new probability distribution function.

Let

π′(a;x) :=


E(R1|a,x)
g(x) , if g(x) > 0

1
2 , otherwise,
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so that π′ ∈ [0, 1] by Assumption 18 and can be regarded as a new policy for sampling the treat-

ments. Then we obtain

Eℓ1 ◦ f1 =CR1

∫
X+

∑
a∈A

ϕ(af1(x))
E(R1|a,x)
g(x)

g(x)h(x)

CR1

dx

=CR1

∫ ∑
a∈A

ϕ(af1(x))π
′(a;x)h′(x)dx.

Denote E′ as the expectation corresponding to the distributions h′ and π′, so we get

Eℓ1 ◦ f1 = CR1E′ϕ(Af1).

Conversely, for the 0-1 loss, the difference between value functions can be written as

∆V1(f1) =V1(f∗1 )− V1(f1)

=E
„

R1

π(A;X)
I(Af1(X) < 0)

ȷ

− E
„

R1

π(A;X)
I(Af∗1 (X) < 0)

ȷ

=CR1

“

E′I(Af1 < 0)− E′I(Af∗1 < 0)
‰

.

By Theorem 3 of Bartlett et al. (2006)

Eℓ1 ◦ f1 − Eℓ1 ◦ f∗1 = CR1E′ϕ(Af1)− CR1E′ϕ(Af∗1 )

≥CR1c
“

E′I(Af1 < 0)− E′I(Af∗1 < 0)
‰α
ρ

˜

rE′I(Af1 < 0)− E′I(Af∗1 < 0)s1−α

2c

¸

=CR1c

„

1

CR1

∆V1(f1)
ȷα

ρ

«

1

2c

ˆ

1

CR1

∆V1(f1)
˙1−α

ff

≃ r∆V1(f1)sα ρ
”

p∆V1(f1)q1−α
ı

(4.28)

for any f1, where c > 0 is a constant and ρ(t) = 1
2 r(1 + t) log(1 + t) + (1− t) log(1− t)s for the

logistic loss ϕ.

For ℓ2 with the ramp loss, note that ψκn(f
∗
1 f

∗
2 ) = I(f∗1 f

∗
2 < 0) since f∗1 f

∗
2 takes values only in

{−1, 1} when κn ≤ 1. Besides, ψκn(f1f
∗
2 ) ≥ I(f1f

∗
2 < 0) for any f1 by the definition of the ramp

loss ψ. Hence we obtain the relationship between the excess risks under the ramp loss and the 0-1
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loss as

Eψκn(f1f∗2 )− Eψκn(f∗1 f∗2 ) ≥ EI(f1f∗2 < 0)− EI(f∗1 f∗2 < 0). (4.29)

Since rf2 and f∗2 are binary decision functions,

|ψκn(f1 rf2)− ψκn(f1f∗2 )| = I( rf2f
∗
2 < 0)|ψκn(f1 rf2)− ψκn(f1f∗2 )| ≤ I( rf2f

∗
2 < 0) ≤ rδ2N (τ) (4.30)

with probability greater than or equal to 1− eτ for any f1 by Assumption 21. The first inequality

comes from the fact that one of ψκn(f1
rf2) and ψκn(f1f

∗
2 ) must be zero and the other is bounded

by one. Therefore, we have

Eℓ2 ◦ f1 − Eℓ2 ◦ f∗1 =µ1nΩ12

”

Eψκn(f1 rf2)− Eψκn(f∗1 rf2)
ı

≥µ1nΩ12

”

Eψκn(f1f∗2 )− Eψκn(f∗1 f∗2 )− 2rδ2N (τ)
ı

≥µ1nΩ12

”

EI(f1f∗2 < 0)− EI(f∗1 f∗2 < 0)− 2rδ2N (τ)
ı

,

(4.31)

where the first inequality comes from (4.30) and the second inequality comes from (4.29).

Finally, combine Lemma 4.3.1 with (4.28), (4.31) and we get that

”

∆V1( pf1n)
ıα
ρ

„

´

∆V1( pf1n)
¯1−α

ȷ

+ µ1n[EI( pf1nf
∗
2 < 0)− EI(f∗1 f∗2 < 0)− rδ2N (τ)]

ÀEℓ1 ◦ pf1n − Eℓ1 ◦ f∗1 + Eℓ2 ◦ pf1n − Eℓ2 ◦ f∗1 À δ1n(τ)

with probability greater than or equal to 1− 2eτ , that is,

”

∆V1( pf1n)
ıα
ρ

„

´

∆V1( pf1n)
¯1−α

ȷ

+ µ1n[EI( pf1nf
∗
2 < 0)− EI(f∗1 f∗2 < 0)] À δ1n(τ) + µ1nrδ2N (τ).

(4.32)

By Taylor’s expansion, it is easy to see that ρ(t) ≃ t2. Since EI(f∗1 f∗2 < 0) ≤ 1, we can conclude

that

r∆V1(f1)s2−α À δ1n(τ) + µ1nrδ2N (τ) + µ1n. (4.33)

and thus

∆V1(f1) À (δ1n(τ) + µ1n)
1

2−α
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with probability greater than or equal to 1− 2eτ .

4.7.2.4 Proof of Theorem 4.3.3

Proof. The results can be easily obtained since

µ1n[EI( pf1nf
∗
2 < 0)− EI(f∗1 f∗2 < 0)] À δ1n(τ) + µ1nrδ2N (τ).

according to (4.32).

4.7.2.5 Proof of Corollary 4.7.1

Proof. According to Lemma 5 and (9) of Bartlett et al. (2006),

EI(f1f∗1 < 0) ≤ c rE(I(f1f∗1 < 0) |2η(X)− 1|)sα

where c is some constant. By Assumption 22, we have

2η(X)− 1 :=
E(R1|1,X)− E(R1|−1,X)

E(R1|1,X) + E(R1|−1,X)
≤ 1

cr
|E(R1|1,X)− E(R1|−1,X)| .

Since

∆V1(f1) =E
„

R1

π(A;X)
I(Af1(X) < 0)

ȷ

− E
„

R1

π(A;X)
I(Af∗1 (X) < 0)

ȷ

=E {I(f1f∗1 < 0) |E(R1|1,X)− E(R1|−1,X)|} ,

we can bound the disagreement rate by the value difference, such that

EI(f1f∗1 < 0) ≤ c
„

1

cr
E(I(f1f∗1 < 0) |E(R1|1,X)− E(R1|−1,X)|)

ȷα

À r∆V1(f1)sα , (4.34)

that is, pU1n À

”

∆V1( pf1n)
ıα

. Then following (4.33) we have

pU
2−α
α

1n À δ1n(τ) + µ1nrδ2N (τ) + µ1n

with probability greater than or equal to 1− 2eτ if we take ρ(t) ≃ t2.
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4.7.2.6 Proof of Theorem 4.3.4

Proof. The proof is similar to that for K = 2. We only highlight the main differences here.

To extend the results of Lemma 4.3.1 to K ≥ 3, we can write the surrogate loss for the fusion

penalty as ℓ2 ◦ f1(Z) := µ1n
∑K

j=2Ω1jψκ1n [f1(X) rfj(X)]. Then ℓ2 is Lipschitz continuous with

respect to f2 with Lipschitz constant
µ1n

∑K
j=2 Ω1j

κ1n
. Hence we have

B := 2M
a

M/λ1n + µ1n

K∑
j=2

Ω1j +M ≃ λ−1/2
1n

and

γn :=
B

a

M/λ1n(M + µ1n
∑K

j=2Ω1jκ
−1
1n )
≃ 1

1 + µ1nκ
−1
1n

,

which shows that the conclusion in Lemma 4.3.1 still holds.

Now inequality (4.31) should be written as

Eℓ2 ◦ f1 − Eℓ2 ◦ f∗1 =µ1n

K∑
j=2

Ω1j

”

Eψκn(f1 rfj)− Eψκn(f∗1 rfj)
ı

≥µ1n
K∑
j=2

Ω1j

”

EI(f1f∗j < 0)− EI(f∗1 f∗j < 0)− 2rδjNj (τ)
ı

,

(4.35)

with probability greater than or equal to 1 − (K − 1)eτ for any f1 by Assumption 21. Therefore,

inequality (4.32) is changed to

”

∆V1( pf1n)
ıα
ρ

„

´

∆V1( pf1n)
¯1−α

ȷ

+ µ1n

K∑
j=2

[EI( pf1nf
∗
j < 0)− EI(f∗1 f∗j < 0)]

À δ1n(τ) + µ1n

K∑
j=2

rδjNj (τ)

(4.36)

with probability greater than or equal to 1−Keτ , and thus

r∆V1(f1)s2−α À δ1n(τ) + µ1n

K∑
j=2

rδjNj (τ) + µ1n. (4.37)

150



The inequality 4.13 follows from the assumption that
∑K

j=2
rδjNj (τ) = o(1). Similarly, from (4.36)

we can conclude that

µ1n[EI( pf1nf
∗
k < 0)− EI(f∗1 f∗k < 0)] À δ1n(τ) + µ1n

K∑
j=2

rδjNj (τ)

for any k = 2, . . . ,K with probability greater than or equal to 1−Keτ .
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