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ABSTRACT

AIDAN J. YOUNG: Temporo-Spatial Differentiations
(Under the direction of Idris Assani)

Temporo-spatial differentiation problems were first introduced in (Assani and Young, 2022) under the
name of spatial-temporal differentiation problems. Given a probability space (X, ;1) and measurable map
T : X — X, atemporo-spatial differentiation problem is concerned with the limiting behavior of the

sequence

1 1 k—1
= Tid
u(cw/ckk;fo :

where f € L'(X, 1) and (Cy )52, is a sequence of measurable subsets of X with positive measure. These
problems were then generalized to the setting of non-autonomous dynamical systems in (Assani and Young,
2023).

We will present several of the basic aspects of temporo-spatial differentiation problems, including their
connections with the field of ergodic optimization. We also present several positive convergence results
for “random temporo-spatial differentiation problems.” We then discuss generalizations of temporo-spatial
differentiation problems to the setting of actions of groups and semigroups other than Z, as well as the

construction of pathological temporo-spatial differentiation problems.
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Introduction

Dynamical systems is classically concerned with the study of some space X equipped with a map
T : X — X that respects some structure of X. Typically, we are especially interested in questions about the
“long-term behavior” of these systems, though exactly what long-term behavior means can vary contextually.
Measure-theoretic dynamical systems is interested in measurable or measure-preserving maps 7' : X — X
on a measure space X = (X, u), and topological dynamical systems is interested in continuous maps
T : X — X on a compact metrizable topological space X. As a rule, one could consider a field of dynamical
systems for every kind of structure: a field of smooth dynamical systems that studies C" maps 7" : X — X
on C" manifolds X, a field of algebraic dynamics that studies endomorphisms 7" : X — X of some
algebraic object (e.g. abstract groups, topological groups, fields) X, a field of complex dynamics that studies
holomorphic maps 7" : X — X of a complex manifold X, a field of C*-dynamical systems that studies
endomorphisms 7" : X — X of C*-algebras X, and so on.

Though there are many separate fields within dynamical systems, in practice we’re often interested in
the interplay between the dynamics of different structures on a space. For example, we might consider the
case where X is a compact metrizable space equipped with a continuous map 7" : X — X, and pis a
Borel measure on X, making 7" also measurable; do the measure-theoretic dynamics force certain properties
on the topological dynamics, and vice-versa? Given the frequent interplay between measure-theoretic and
topological dynamics, it benefits us to not be too rigid about where the boundaries between these fields
of dynamics fall. For our purposes, we understand ergodic theory to be the study of measurable maps
T : X — X on a probability space (X, 1) -especially their long-term behaviors- as well as of the interplay
between measurable dynamics and other fields of dynamics.

More generally, dynamical systems are not just concerned with the dynamics of a single map, but with
the dynamics of semigroup actions on spaces. In this broader context, the view of dynamics presented above
can be understood as the study of actions of the additive group Ny of nonnegative integers, where n-x = T"z.

At times, we will be interested in the more general case where we allow semigroups other than Ny to act on



our spaces. However, the study of Ny actions we’ve described above is essentially the classical setting for the
field. When presenting new concepts, we will often describe them in terms of actions of Ny if we feel that
whatever phenomenon we wish to draw attention to can be seen clearly in this classical setting.

One of the classical areas of study in ergodic theory is the study of ergodic averages: Given a measurable

function f : X — C, what can be said about the limiting behavior of the sequence

= \
Z Z foT? ?
7=0 k=1
These averages k! Z;:é o TV are referred to as ergodic averages, and admit a physical intuition: If T
describes the change in a system X over time, and f is a measurement of X, then k! Z?;é foT7 can be
understood as the average measurement over a period of time k. In light of this physical description of the
ergodic averages, we sometimes call them “temporal averages.”
Two foundational results in ergodic theory, namely the von Neumann and Birkhoff Ergodic Theorems,
describes the limiting behavior of these ergodic averages in the senses of LP convergence and pointwise-almost

everywhere convergence, respectively.

Theorem 1.0.1 (Von Neumann Ergodic Theorem). (c.f. (Neumann, 1932)) Consider a probability space
X = (X, ) along with a p-preservingmap T : X — X. Let f € L*(X, ). Then

exists in the L?(X, i) norm.

Theorem 1.0.2 (Birkhoff Ergodic Theorem). (c.f. (Birkhoff, 1931)) Consider a probability space X = (X, u)
along with a measure-preserving map T : X — X. Let f € L'(X, u). Then for ji-almost all z € X, the

limit

exists.

We will often write 7" f := f o T", i.e. regard composition with 7" as an operator which we also write

asT.



Another classical area of study within measure theory is the study of spatial derivatives. Given a measure
space (X, i), a sequence (Cy)32 , of measurable subsets of X satisfying ;(Cy) € (0,00) forall £ € N, and

an integrable function f € L(X, i), what can be said about the limiting behavior of the sequence

(e IR d“):;?

One classical result along these lines is the Lebesgue Differentiation Theorem (Folland, 1999, Theorem

3.21). A fuller treatment of the study of local spatial differentiation theorems of this kind can be found in
(De Guzman, 1976).

This is where we situate the problem that interests us, which we call the temporo-spatial differentiation
problem. Consider a probability space (X, 1), and a measurable transformation 7' : X — X. Consider
further a sequence (C});2 ; of measurable subsets of X such that ;1(Cy) > 0 for all k € N, and a function

f € L'(X, it). What can be said about the limiting behavior of the sequence

[e.9]

1 = ‘
/ SN foTidu|

k=1

The temporo-spatial differentiation problem was first proposed under the name “spatial-temporal differen-
tiation” in a joint work between the present author and his advisor, I. Assani, in (Assani and Young, 2022). Its
name reflects that it is a synthesis of two averaging processes: the “temporal averaging” f % Zf;é foTi
and the “spatial averaging” f — @ J. L fdu. The present author and I. Assani agreed to change the name
when we found the older one difficult to pronounce consistently. The nuance of these problems lies in the
potential “conflict” between the tendencies of the temporal and spatial averaging processes.

Chapter 2 of this dissertation discusses the temporo-spatial differentiation problem in the context of
actions of Z on a compact metric space X by homeomorphisms that preserve a Borel probability measure on
X. We provide some characterizations of when a temporo-spatial differentiation can behave well, and also
provide certain convergence results. This chapter is based largely on a joint paper between the present author
and I. Assani (Assani and Young, 2022).

Chapter 3 generalizes some of the general results of Chapter 2 to the setting of actions of topological
groups. We also discuss several instances of what we call a pointwise reduction heuristic: a temporo-spatial

differentiation over a spatial averaging sequence (C});° , of sets containing a fixed point with diameter



going to O sufficiently fast, then the temporo-spatial differentiation will have the same limiting behavior as
an ergodic average at the point. This heuristic then allows us to convert pointwise convergence results into
convergence results for so-called “random temporo-spatial differentiation problems.”

Chapter 4 introduces what we call multi-local temporo-spatial differentiations, i.e. temporo-spatial
differentiations with respect to finite unions of balls. We demonstrate a multi-local form of the pointwise
reduction heuristic from Chapter 3, and then present several constructions of pathological temporo-spatial
differentiations.

In Chapter 5, we discuss a generalization of temporo-spatial differentiations to the setting of non-
autonomous dynamical systems. We consider random temporo-spatial differentiation problems for systems
of endomorphisms of compact abelian metrizable groups, showing that these problems are almost surely
well-behaved. We then demonstrate that under mild conditions, the fopologically generic behavior is that
these random temporo-spatial differentiations will diverge. This chapter is based on a joint paper between the
present author and I. Assani (Assani and Young, 2023).

In Chapter 6, we extend the notions of ergodic optimization to the setting of so-called “non-commutative
topological dynamical systems,” i.e. C*-dynamical systems. We consider relative ergodic optimization for
C*-dynamical systems, where we attempt to optimize relative to a constrained family of invariant states, and
extend several elementary results from the classical setting to the relative non-commutative setting. We also

provide alternate proofs of several results using techniques from nonstandard analysis.



Temporo-spatial differentiations for actions of Z

This chapter is based on the article (Assani and Young, 2022), a joint work between the author and his

advisor, I. Assani. The only changes made have been as follows:

The abstract was removed.
* We replaced phrases like “this article” with “this chapter.”

* We replaced the phrase “spatial-temporal differentiation” with “temporo-spatial differentiation,” for

reasons described in Chapter 1.

* In the second paragraph of Section 2.1, we replaced a reference to a secondary source with a reference

to the article in which the result originated.

* We revised Remark 2.1.2. In (Assani and Young, 2022), this remark indicated a future line of
investigation. However, since that article was accepted, we pursued that line of investigation further,
and in fact we pursue that line of investigation further in later chapters of this dissertation. Remark

2.1.2 has been revised to reflect this.

* We added this paragraph to explain the relation between (Assani and Young, 2022) and the current

chapter.

All these changes were made so that the contents of the article would make sense in the context of this
dissertation. Aside from those changes listed, this chapter is identical in content to (Assani and Young, 2022).

Let (X, B, 11, T') be an ergodic topological dynamical system, where X is a compact metric space, B is
the Borel o-algebra of X, and 7" : X — X a homeomorphism that is ergodic with respect to the probability

measure p. We consider temporo-spatial differentiation problems of the type

1 1t
lim / - T | dp,
k—oo t(F) F, (k iz:% >




where (F},);2, is a sequence of measurable sets Fj, € B with positive measure u(F)) > 0; specifically, we

consider questions of when this limit exists, and when it exists, what that limit is for f € L>(X, p).
Before proceeding, we pause to distinguish these problems from two other kinds of differentiation

problems which we will call temporal and spatial differentiation problems. A temporal differentiation

. oo
problem typically considers properties of the sequence (% Zf:_ol T f ) .t especially convergence properties,

and a spatial differentiation problem might consider convergence p?operties of sequences of the form
(ﬁ J F f d,u), where Fj, are sets of positive measure. What we describe here as temporal differentiation
is the domain of the classical ergodic theorems, and results exist regarding spatial differentiation problems
(e.g. the Lebesgue Differentiation Theorem (Folland, 1999, 3.21), Fundamental Theorem of Calculus). Our
problem, however, fits in neither of these bins, except in trivial cases, and these differentiation problems
might be called “temporo-spatial” differentiation problems.

A temporo-spatial differentiation problem (ﬁ I F, <% Zf:_ol T f > d,u) :;1 hinges on three param-
eters: the dynamical system (X, B, u,T'), the sequence (F})7°, of measurable sets, and the function
f € L>=(X, ). For the most part, the questions we consider in this chapter can be understood as "fixing” two
of these parameters and investigating what can be said about the convergence properties of the differentiation

when the remaining parameter is allowed to “vary”.

The chapter is organized as follows:

1. In Section 2.1, we consider certain functions which behave particularly well with respect to these
differentiations, called uniform functions, and analyze them with respect to these temporo-spatial
differentiations. We pay special attention to topological dynamical systems and how these temporo-

spatial differentiations interact with unique ergodicity and uniformity.

2. In Section 2.2, we consider a non-expansive topological dynamical system, and consider temporo-

spatial differentiations along certain random nested sequences of subsets, deriving probabilistic results.

3. In Section 2.3, we consider instead a broader class of Lipschitz maps, and differentiate along ran-
domly chosen sequences of sets; in particular, we derive probabilistic results about temporo-spatial
differentiations along random sequences of cylinders in a subshift, as well as find certain pathological

counterexamples.



4. In Section 2.4, we turn to study differentiations along random cylinders on Bernoulli shifts, but using a
more probabilistic set of tools different from those we employed in the second section. We then use
these techniques to consider a different problem of random cylinders, where we allow the cylinders at

different steps to have different centers.

2.1 Uniform functions and differentiation theorems

In this section, we consider questions of the following forms: Given an appropriate system (X, B, T, 1),
are there f € L°°(X, ) for which < ) ka ( k ! T2f> du):; converges for all choices of (F},)7 ?
On the other hand, are there restrictions we can place on (X,B,u,T) to ensure that
( oy 5, ( Sk &T’f) du)Zozl converges for all choices of (Fj)°, and all f € C(X)? The an-
swer to the former question will be centered around the notion of a uniform function (defined below), and the
answer to the latter question will be centered around unique ergodicity.

Let X be a compact metrizable space with Borel o-algebra B, and let T : X — X be a homeomorphism.
Then (X, T) is uniquely ergodic iff the sequence (% Zf:_ol T f) 20:1 converges in C'(X) to a constant
function for all f € C'(X) (Oxtoby, 1952, (5.3)), and when this happens, the sequence converges to [ fdp,
where 4 is the unique ergodic T-invariant Borel probability measure. Thus if (F})32, is any sequence
of measurable sets of positive measure, then %) i) £ % Zf:_ol Tifdp — [ fduforall f € C(X), since

e ) fF fdu is a state on L>°(X, pu). Fix € > 0, and choose K € N such that

<ee.

k:>K:>||/fdu—ZT2

Then if k£ > K, we have

1 k—1 ‘
|/fdﬂ—k2apk <Tzf>| -
1=0

k—1
an, (/fdu—;ZTifN
=0

1 k—1 ‘
fdp—> T'f
=0




More generally, if we have any dynamical system (Y, .4, v, .5), we can call a function g € L*°(Y,v)
uniform if % Zf:_ol Stg — [gdvin L. Let Z (Y, A,v,S) C L*>°(Y,v) denote the space of all uniform
functions on (Y, A, v, S). If g is uniform, then for any sequence (G)32; of measurable sets of positive

measure, we have

182 1
- Sgdv — [ gdv,
kgum) o T /9 Y
meaning that essentially any differentiation problem of the type that interests us will behave exceptionally

well for that g.

Whenever (X, T') is a uniquely ergodic system, we have C'(X) C % (X, B, 1, T), since

1 k—1 ' 1 k—1 '
H/fdu—kZT@f JETE
=0 =0

<
9) C(X)

We collect here a few results about some more general differentiation problems. We first demonstrate a

general characterization theorem for uniform functions.

Theorem 2.1.1. Let (Y, A, v, S) be an ergodic dynamical system, and let g € L*°(Y, v). Then g is uniform

if and only if for all sequences (G,);2, in A of measurable sets of positive measure,

1
Py dy%/ v,
k i—0 I/(Gk) G g g

Proof. (=) If g is uniform, then

1 k—1 1 1 1 k—1
dv — — Sigdy| = / / dv — — S'qg | dv
'/g k;’/(Gk) G g v(Gr) Gk< g k; g)
k—1
1 / / 1 i
gdv — — S'g
I/(Gk) G k =0
=
| fow-i s
i=0 0o
— 0.
<) Suppose that g is not uniform, and set hy = gdv — 1L ]:1 Sig. Then
k 1=0

lim supy_,o0 ||kl > 0. Breaking hy into its real part hR® and imaginary part ™ tells us that ei-



ther lim supy,_, Hh}jeHOO > 0, or limsup,,_, Hh}cmHoo > 0. Suppose without loss of generality that
lim sup;,_, o Hh}?eHoo > 0. Then at least one of the inequalities

y({yEY:hEe(y)Z%o})>0,V({yEY:hEe( )<—%0})>0

attains for infinitely many k € N. Assume without loss of generality that
I={keN:v({yeY:hiy)>L}) >0} is an infinite set.

Construct a sequence (Gj)p; by letting G, = {y € Y : h{(y) > ¢} forall k € I, and G, =Y for
k€ N\ I. Thenif k € I, then

hitdy
v(Gr) Ja, "
= hredy
v(Gy) G b

1 €0
> —dv
~ v(Gg) /Gk 2

€0

5

Therefore, there exist infinitely many &£ € N such that

1
h.dyv
v(Gy) /G g

meaning that ‘fgdy % Zl o e} fG St gdu‘ A 0. O

1 « 1 .
dv — — Stgdv
‘/g k ; WG Jo,” !

Remark 2.1.2. In this chapter, we consider averages of the form T Z f F, T’ fdp, where TC) is a

1= 0 12 Fk
probability measure-preserving action of Z on the probability space (X, B, i), and F}, € B is a set of positive
measure. We could extend our scope to consider probability measure-preserving actions 7'(") of an amenable

group G on (X, B, i), and consider averages of the form ﬁ > f . 19 fdu, where (Ap) isa

9EAL 1 Fk

Fglner sequence for G. This will be the subject of chapters 3 and 4.

Because we will so frequently be considering averages of functions over sets of positive measures, it will

benefit us to introduce the following notation.



Notation 2.1.3. Let (X, B, i) be a probability space. When F' € B is a set of positive measure p(F") > 0,

we denote by o the state on L (X, i) given by

1
ap(f) = M(F)/Ffdu.

Theorem 2.1.1 hints at why we consider temporo-spatial differentiations of L functions instead of,
for example, differentiations of LP functions for p € [1, c0). One might plausibly propose that if we have a
uniquely ergodic dynamical system (X, 3, u, T'), then we can observe that for all f € C(X), all temporo-
spatial differentiations converge to | fdu. We could then try to extend this convergence to all of LY(X, ),
since C(X) is L'-dense in L' (X, 11). However, we know that a uniquely ergodic dynamical system can
still have non-uniform L functions (in fact, any ergodic dynamical system over a non-atomic standard
probability space will have them, as seen in Proposition 2.1.14), so this cannot be right. The catch is that
for measurable F' of nonzero measure, the functional ap : f = f  Jdp is of norm 1 with respect to
L, but the same can’t be said relative to L? for p € [1,00). As such, the natural” choice of function for a
temporo-spatial differentiation is an L>° function.

A similarly plausible but misguided attempt to establish convergence results of temporo-spatial dif-
ferentiations for all f € L>°(X, i) could be through the concept of uniform sets. In (Hansel et al., 1973,
Theorem 1), it was established that if 3 is separable with respect to the metric (A, B) — p(AAB), then
there exists a dense T-invariant subalgebra B’ C 3 of sets such that y g is uniform for all B € B’. Again,
one might propose that we could use a density argument to extend convergence results on temporo-spatial
differentiations to functions x 4 for all A € B O B’. But again, Theorem 2.1.1 tells us that this would be
tantamount to proving that all L functions are uniform, and we know that there can exist non-uniform L>°
functions.

Other results are possible regarding topological dynamical systems, as we show below.

Lemma 2.1.4. Let f € L>*(X,pu), where (X,B,u,T) is a dynamical system. Then the sequence

k 1 i Sl
<H o I'f ’ ) is convergent, and
k=1
=
lim || Y T° = inf T'f
8 I 1 Z
- oo

10



Proof. Letay = HZf:OI T'f

‘ . Then the sequence (aj)?° , is subadditive. This follows since if k, ¢ € N,
oo

then
k-1
arpe=| >, T'f
i=0 0o
k=1 k-1
<DoTH| | D] T
=0 00 1=k 0o
k=1 -1
[Ery| A
i=0 0 i=0 00
k=1 -1
S ot I e
= ag + ay.
The result then follows from the Subadditivity Lemma. O
Definition 2.1.5. For f € L>°(X, ), set
=
r =i - ‘
()= fim |13 T
=0 o)
We call this value I'( f) the gauge of f.
This I'(f) satisfies the inequality I'(f) > [ fdu, since
= =
R TS|
i=0 1=0 0o
almost surely, implying that
= = =
[ran= [23 s [|2r] au= 1T
=0 =0 0o =0 0
Therefore
=
dp < inf |- ) T° =TI(f).
/f”—éréN k; f (f)
- o0

Definition 2.1.6. Let X be a compact metric space, and let Cg (X ') denote the (real) space of real-valued

continuous functions on X endowed with the uniform norm || - [|¢(x). Let T : X — X be a continuous

11



homeomorphism, and let M7 denote the family of all T-invariant Borel probability measures on X. A
measure 1 € My (X) is called f-maximizing for some f € Cr(X)if [ fdu = sup,c My [ fdv. We denote

by Mumax(f) the set of all f-maximizing measures.

The definition of maximizing measures is due to Jenkinson (Jenkinson, 2006a, Definition 2.3). The
definition is topological in nature, in the sense that it is defined with reference to a homeomorphism on a
compact metric space prior to any other measure that the metric space might possess. A result of Jenkinson

(Jenkinson, 2006a, Proposition 2.4) tells us that for every f € Cr(X), we have
L. Muax(f) # 0,
2. Mupax(f) is a compact metrizable simplex, and

3. the extreme points of M.y (f) are exactly the ergodic f-maximizing measures. In particular, every

f € Cr(X) admits an ergodic f-maximizing measure.

For every nonnegative f € Cr(X), let ;1y denote an ergodic maximizing measure for f. We claim

that I'(f) < [ fdus. To prove this, we note that H% Zf;ol T f

‘ < maxgex 1 Z;:ol T'f(x), where
o

the maximum exists because X is compact and f € Cg(X) is continuous. Choose z; € X such that

maXgex Zk LT f () =z Zk T f(x1,). Let 8, denote the Borel point-mass probability measure
1 x2,€ A
Oz (4) =
0 Tk ¢ A
Let ju, = ¢ L sk 5T1Ik, so that 7 Shdriy = [ fduy.

Since the space of Borel probability measures on X is compact in the weak* topology on C'(X)*, there
exists a subsequence (ju, )02 ; of (1x)72, converging to a Borel probability measure 1. It follows from a
classical calculation that ' is T-invariant.

Therefore, 1 is a T-invariant Borel probability measure on X such that [ fdy’ = T'(f). Butif sy is

— [t < [ sauy.

Under certain conditions, however, we can achieve equality here.

f-maximal, then

12



Lemma 2.1.7. Let (X, B, i) be a probability space, where X is a compact metric space with Borel o-algebra
on X denoted by B. Let T : X — X be a homeomorphism. If y is strictly positive, and f € Cr(X) is

nonnegative, then

r(5) = [ rduy.

Proof. If 1 is strictly positive, then the L°° norm restricted to C'(X') agrees with the uniform norm on C'(X)

(see the discussion after (Folland, 1999, Theorem 6.8)). Therefore
[ty

’OO = SUP,cx ‘% S Tif(a:)’ for all k € N. However, we can bound [ fdu by

k—1
/fduf —/;ZTifdu

o
sup ¢ ;Tlf(:v)
1 k—1 '
e

1 k—1 .
F 2T
=0

IN

dps < inf
= [ sanr < ot

e}

=I(/f),

establishing the opposite inequality. 0

Lemma 2.1.8. Suppose that (X, BB, 1, T') consists of a compact metric space X with Borel o-algebra B and
a strictly positive probability measure y that is ergodic with respect to a homeomorphism 1" : X — X. Then

the system (X, T) is uniquely ergodic if and only if I'(f) = [ fdu for all nonnegative f € Cr(X).

Proof. (=) If (X,T) is uniquely ergodic, then in particular o = py for all nonnegative f € Cr(X).

Therefore by the previous lemma, we have

[ rau= [ raus =r(s)

(<) If (X, T) is not uniquely ergodic, then we know that M (X)) is not a singleton, and thus contains
another ergodic measure v. By a result of Jenkinson (Jenkinson, 2006a, Theorem 3.7), we know that there

exists f € C(X) real-valued such that v = /i is the unique f-maximizing measure. We may assume without
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loss of generality that f is nonnegative, since otherwise we can replace f with f —inf,ex f(z). Since we

claimed that v was the unique f-maximizing measure, we can conclude in particular that

/fdu</fd1/
z/fduf

=I(f).

O

Theorem 2.1.9. Suppose that (X, B, 1, T') consists of a compact metric space X with Borel o-algebra B and
a probability measure y. that is ergodic with respect to a homeomorphism 1T : X — X. Then the following

results are related by the implications (1)=-(2)=(3). Further, if y is strictly positive, then (3)=-(1).
1. (X, T) is uniquely ergodic.

2. For every sequence of Borel-measurable sets (F},)7° | of positive measure, and for every f € C(X),
the limit limy,_, o0 Op, (% Zf:_ol T f ) exists and is equal to | fdu, where «. is as defined in Notation

2.1.3.

3. For every sequence of open sets (Uy)32 , of positive measure, and for every f € C(X), the limit

limy, o0 o, <% Zf:_ol Tif> exists and is equal to [ fdu, where . is as defined in Notation 2.1.3.

’ k—o00

Proof. (1)=(2): If (X, T) is uniquely ergodic, then Hf fdp— Lty 0 =70, s0

1k*l ' 1]{?71 ‘
'/fdu—aFk <kZT’f>‘ — |ar, (/fdu—kZTZf>'
=0 =0
1k71 .
< /fdu—k;Tf

k—o0
_)

C(X)

0.

(2)=(3): Trivial, since an open set is automatically Borel.
—(1)= —(3): Suppose (X, T) is not uniquely ergodic, and that  is strictly positive. Then Lemma

2.1.8 tells us that there exists nonnegative f € Cgr(X) for which I'(f) > [ fdu. Let L be such that

14



[ fdp < L < T(f), and consider the open set

By the proof of Lemma 2.1.7, we know that

k—1 k—1
. 1 i o1 i
P = fofm g 2T 0) = o T @)

where xj, € Uy for all £ € N. Therefore Uy, is a nonempty open set, and since p is strictly positive, that

means ((Uy) > 0. Therefore

O]

Theorem 2.1.10. Suppose that (X, B, uu, T') consists of a compact connected metric space X = (X, p) with
Borel o-algebra B and a probability measure y that is ergodic with respect to a homeomorphismT : X — X.
Suppose further that p is strictly positive, but (X, T') is not uniquely ergodic. Then there exists a sequence
(Ur)32, of nonempty open subsets of X and a nonnegative continuous function f € C(X) such that the
sequence (04(],c < % Zf:_ol T f ) ) :1 is not Cauchy. Furthermore, if 1 is atomless, then we can choose the

sequence (Uy,)72 , such that p (Uy) N\, 0.
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Proof. Lemma 2.1.8 tells us that there exists nonnegative f € Cg(X) for which I'(f) > [ fdu. Let

L,M € Rsuchthat [ fdu < L < M < I'(f), and consider the open sets

- {rer o).
W—{meX /fdu< ZTZ }

By the proof of Lemma 2.1.7, we know that V}, # (), so let 2, € Vj.. We also know that there exists 25 in X
such that f(z;) < [ fdp, sinceif f(z) > [ fduforall z € X, then [ f(z)du(z) > [ fdu, a contradiction.

By the Intermediate Value Theorem, there then exists y;, € Wj. Construct (U k)iozl as

V/m k‘ odd
U, =
Wi, keven.
Then
2k—2
lim sup o, _, ( Z T'f ) > limsup ag,,_, (M)
k—o0 k—o00
= M,
1 2k—1
. L i < lim
hkrggéf Qyy,, <2k‘ Zz; T f) > hkrggéf AUy, (L)
= L.
Therefore

k—1
1 .
hmlnfaUk ( ZT’ ) <L<M< liinsupozyk (kZT’f> .
o i=0

Moreover, if  is atomless, then we can choose (Uy)p-; so that p (Uy) — 0 by letting Uy, be a ball of
sufficiently small radius contained in V}, (if k is odd) or W}, (if k is even). The above calculations can be

carried out in the same way. 0

In Theorem 2.3.7, we construct an example of a Bernoulli shift (X, B, 1, T') where there exists (z, f) €

X x C(X) such that the sequence (ozck (@) (% Zi':ol Tif ) ):O ) not only does not converge to | fd, as in
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Theorem 2.1.9, but such that it does not converge at all. Theorem 2.1.10 does not encompass that example,
since subshifts are a priori totally disconnected.

In the next result, we will be making use of the Jewett-Krieger Theorem in a specific formulation. This is
the formulation originally proven by Jewett in (Jewett, 1970) under the assumption that the transformation
was weakly mixing; Bellow and Furstenberg later demonstrated in (Bellow and Furstenberg, 1979) that the
parts of Jewett’s argument which relied on the weakly mixing property could be proven under the weaker

assumption of ergodicity. The version of the Jewett-Krieger Theorem we will be using is as follows.

Jewett-Krieger Theorem. Given an invertible ergodic system (Y, A, v, S) on a standard probability space
(Y, A, v), there exists an essential isomorphism h : (Y, A,v,S) — (2¥,B,u,T) (where 2* denotes the

Cantor space) such that (2*,T) is a strictly ergodic system.

The following result provides some structure statements about the space % (Y, A, v, S) of uniform

functions.

Theorem 2.1.11. Let (Y, A, v) be a standard probability space, and S : Y — Y an ergodic automorphism.
Then % (Y, A, v, S) is a closed S-invariant subspace of L*° (Y, v) that is closed under complex conjugation,
and contains a unital S-invariant C*-subalgebra A which is dense in L*(Y,v). This A is isomorphic as a

C*-subalgebra to C' (2v).

Proof. First, we prove that % (Y, A, v, S) is a closed S-invariant subspace of L>°(Y,v). The fact it is a

subspace of L>°(Y, v) is clear, so suppose f € cl (Z (Y, A,v,S)). Then there exists g € Z (Y, A, v, S) such

that || f — gl < §. Choose K € N such that k > K implies Hfgdu - %Zf:ol T'g LO < §. Then
=
[ ron-igr] =l fond
1=0 00 00
k—1
+ /gdﬂ— EZTlQ
=0 00
=
+ EZTZ(g—f)
i=0 00
1 k—1 ‘
<17 =gl | [ 90— ST +15 -l
i=0 00
cELEL €
—+-+-=c¢
-3 3 3
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Thus f € % (Y, A,v,S). Now, we claim that if f € Z (Y, A,v,S), then Sf,S™1f € %(Y, A, v,S). We

compute

1k—1 '
H/Sfdu—kiZ:;S’(Sf)

o0

=0 o'}
k—
. 2
| [ - 15| 20
=0 00

An analogous argument will show that S™1f € % (Y, A, v, S). To see that % (Y, A, v, S) is also closed

under complex conjugation, we see that

_ p =t
H/fd“‘kZTlf
=0

1 k—1
[
=0

[e.9]

=
[ fau- s
i=0 00
Finally, we prove that % (Y, A, v, S) contains a unital S-invariant C*-algebra A that’s dense in L' (Y, v).
By the Jewett-Krieger Theorem, we know there exists an essential isomorphism ¢ : (Y, A,v,S) —
(2¥,B,u,T), where (2¥, B, u,T) is uniquely ergodic. Let A = & (C'(2¥)), where & : L™ (2¥,u) —
L>®(Y,v) is the pullback of ¢. Since C'(2*) is dense in L' (2, u1), we can infer that A = & (C (2¢)) is
dense in L!(Y,v). Since continuous functions in a uniquely ergodic system are uniform, it follows that the
functions of A are uniform.
Because p is strictly positive, we know that C'(2) is isomorphic as a C*-algebra to its copy in
L™ (2¥, u) (see proof of Lemma 2.1.7), so this map & is an isomorphism between C' (2¥) C L> (2, 11) and
A= (C(2v)). O

Proposition 2.1.12. Suppose that (X, B, i, T') consists of a compact metric space X = (X, p) with Borel
o-algebra B and a probability measure y that is ergodic with respect to a homeomorphism T : X — X,
where X is connected. Suppose further that 3F € B such that 0 < u(F) < 1. Then there exists
few(X,B,uT)\CX).

18



Proof. By the Jewett-Krieger = Theorem, there  exists an  essential  isomorphism

h: (X,B,u,T) — (X',B,u,T), where X’ = 2% and (X', T") is uniquely ergodic. The topological

space 2¢ admits a basis G of clopen sets. We claim that there exists G € G such that 0 < p/(G) < 1.
Assume for contradiction that 1/(G) € {0,1} forall G € G. If (E})72 , is some sequence in B’ of sets

for which ' (Ey) € {0, 1}, then

1 (g Ek) = max 1/ (Ej) € {0,1},
I (pl Ek) = Ikneigu'(Ek) € {0,1},
WX\ Ep)=1— pu(E) € {0,1}.

But since G generates 13, this would imply that ¢/ (E) € {0,1} for all E € B, a contradiction.

Therefore, there exists Gy € B’ clopen such that 0 < p/(Gp) < 1. Setg = xg, € C(X') C
w (X',B, 1/, T"), and let f = go h. Then f € % (X,B,u,T). But since f takes values in {0,1}, and
pu{z e X : f(z) =1}) ¢ {0,1}, we must conclude that f € % (X', B, 1/, T") \ C(X). O

We conclude this section by remarking that in most situations, we’ll have % (Y, A, v, S) # L= (Y,v).

We cite here a special case of a result of N. Ormes.

Lemma 2.1.13. Suppose (Y, A, v) is a non-atomic standard probability space, and S : Y — Y is an ergodic
automorphism. Then there exists a minimal homeomorphism T : 2% — 2“ and an affine homeomorphism
p:[0,1] — My (2¥) for which (2¢,B,p(0),T) is essentially isomorphic to (Y, A, v, S), where B here

denotes the Borel o-algebra on 2*.

Proof. This is a special case of (Ormes, 1997, Corollary 7.4), where we specifically consider the Choquet

simplex [0, 1]. O

. o
Since (2, T') is not uniquely ergodic, it follows that there exists fo € C' (2¢) such that (% Zi‘:ol T f[)) -
does not converge uniformly to the constant | fod (p(0)). Since (2¢,T') is minimal, and the support of p(0)

is a nonempty 7'-invariant compact subset of 2, it follows that p(0) is strictly positive, and so the uniform
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norm on C'(2%) coincides with the L> (2%, p(0)) norm on C' (2*). As such, it follows that

k%oo
= sup
Te2W

1 k—1 4
H / fod(p(0)) = 7> T' fo / fod(p(0)) — — Z T fo(x
i=0 00

Leto: (Y, A v,S5) — (29, B,p(0),T) be an essential isomorphism, and let & : L> (2¥,p(0)) — L*=(Y,v)
be the pullback of ¢. Then

k—o0

H/ dfo) du——ZS’ ®fo)

=
= H/fod(p(o)) % > T
i=0 o0

Therefore @ fy € L>(Y,v) \ Z (Y, A,v,S).

The following proposition summarizes this discussion.

Proposition 2.1.14. Suppose (Y, A, v) is a non-atomic standard probability space, and S : Y — Y is an
ergodic automorphism. Then % (Y, A, v, S) # L*>(Y,v).

2.2 Non-expansive maps

In this section, as well as in Section 2.3, we investigate for a certain class of dynamical system (X, B, u, T')
what can be said about the convergence properties of ( D) f F, ( Ek L f ) du) :;1 for f € C'(X) when
we consider a “probabilistically generic” sequence (F} )72 ;. In other words, we investigate in some sense a

“typical” behavior of (u( ) I} i ( Zf 01 T f) d,u) ZO=1 for f € C(X), and find sufficient conditions for
this differentiation to converge almost surely to [ fdu forall f € C(X).

Let X = (X, p) be a compact metric space, and 7' : X — X a 1-Lipschitz map, i.e. such that
p(Tx,Ty) < p(z,y) for all z,y € X. Let B denote the Borel o-algebra on X, and p a T-invariant,
ergodic Borel probability measure on X. Then (X, T') has topological entropy 0, and thus (X, B, u, T')
is automatically of entropy 0 < oo (Goodman, 1971, Lemma 1). By the Krieger Generator Theorem
(Krieger, 1970, 2.1), the ergodic system admits a finite measurable partition £ = {FE;}4ep of X such that
{TiEd i€ Z,d e D} generates the o-algebra BB, where D is a finite indexing set. We call £ a generator of
(X,B,u,T).

Letd; : X — D, € Z be the measurable random variable uniquely determined by the relation

RS T_iEdi (z)
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or equivalently

TiZL‘ € Edz(:v) .

Given a word a = (ag,a1,...,a7-1) € D!, we define the cylinder associated to a by

-1
[ag, a1,y ... ap—1] := ﬂ T7'E,,.
=0

We also define the rank-k cylinder associated to x € X by
k=1
Cr(@) :=[do(x),dr(2), ..., dg—1(z)] = [ | T~ Egya)-
i=0

Equivalently, we can define C(x) to be the element of \/f:_OlT_iE containing x.

We note here that ;4(Cy(x)) > 0 for all k£ € N for almost all x € X, since

{z € X:3keNst u(Cr(x) =0} = | {z € X : p(Ci(x)) = 0}
keN

U U

kEN \deD* s.t. u([d])=0

is a countable union of null sets.

Suppose further that diam(Cj(z)) — 0 for almost all z € X. Our main result for this section is the
following.

The following result states that when an ergodic system (X, B, i, T') is equipped with a generating
partition satisfying certain topological conditions, then temporo-spatial differentiations of a continuous
function f along a nested sequence of cylinders defined with respect to that generating partition will almost

surely converge to the expected value of f.

Theorem 2.2.1. Let X = (X, p) be a compact metric space, and T' : X — X a 1-Lipschitz map, i.e.
such that p(Tx,Ty) < p(x,y) for all z,y € X. Let B denote the Borel o-algebra on X, and p a T-
invariant, ergodic Borel probability measure on X. Let £ = {Ej}qcp be a finite measurable partition

of X which generates BB, and let Cy(x) be the element of \/?;&T ~i& containing x. Suppose further that
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diam(Cy(z)) — O for almost all x € X. Then the set of x € X such that

(Cri/cmkzwfd W' [ s

forall f € C(X) is of full measure.

Proof. Since X is compact metrizable, we know that C'(X) is a separable vector space, so let { f,, }en be a
countable set in C'(X) such that Span{ f,, }nen = C(X), where the closure is taken in the uniform norm on

C(X). Let
1k
Sn—{ - 2 acu (') /fndu}

We claim that p(S,,) = 1.

Choose = € X satisfying the following three conditions:
(a) diam(Cg(z)) — 0,
(b) pu(Cr(z)) > 0forall k € N, and

© LS5 Tifu(x) = [ fadu.

The set of z € X satisfying the condition (a) is of full measure by hypothesis, and the set of z € X satisfying
the condition (b) is of full measure by the discussion preceding the statement of this theorem. Finally, the set
of z € X satisfying condition (c) is of full measure by the Birkhoff ergodic theorem (Walters, 2007, Theorem
1.5). Therefore, the set of x € X satisfying all three conditions is of full measure.

Fix € > 0. Since f), is uniformly continuous, we know there exists 6 > 0 such that p(z1,22) < 6 =

|fn(71) — fu(z2)| < 5. Choose K1 € N such that diam(Cy(x)) < 6 for all k > K. Choose K2 € N such
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that k > Ky = ’f Jndp — Ek LT (x )‘ < §. Let K = max{K1, K>}, and suppose that £ > K. Then

) [ = 2 ocu (T'f:)

< ' [ i~ ,f: T fo(a)| + ;]:Z:j_olr‘fn(x) - ,1: oo (T'1:)
<ty ,1: 7o) - e . T
:;+;§§Mé@»émfwmm—ﬁmw

T
|
- o

€ 1 1
<f4l N ACEAL
2 kZO (TiCi()) Tz-cm)' (@) = ful dp
k—1
€ 1 1 €
2 k= p(T'Cr(x)) Jricy () 2

since diam (T"Cy(z)) < diam(Ck(z)) < diam(Cx(z)) < 4. Thus if 4(Ck(z)) > 0 for all k € N, if
diam(Cy(z)) — 0, and if + KT f,(2) — [ fudp, then € S,. Thus u(S,) = 1 forall n € N, and so
H (mneN S ) = L.

We claim now that if 2 € S = (),,cy Sn. then } ZZ 0 @) (T'f) = [ fdpforall f € C(X). Fix

x €S, feC(X),e>0. Then there exist N € Nand z1,...,zy € C such that

<€
3"

N
Hf - Z ann
n=1 00

Choose L1, ..., Ly € N such that

k

kZLn:'/fndu Z V(T f,)

=0

€
3Nmax{|z1|, SER) |ZN|> 1}
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Abbreviate g = 25:1 Znfn, and let L = max{Ly,..., Lx}. Thenif k > L, then

‘/fdu—zack(x Ty '

S‘/fdu—/gdu‘Jr

ZaCk x) g f))‘

k—1

gdu—%za

=0

<|f =gl + Z |20 ]
n=1

1 k—1
+ 23 N9~ e
1=0

<e.

k-1
1 .
[ fue = 3 Yo (T'52)
=0

Thus z € S = limy_yo0 £ ZZ 0 @) (T'f) = [ fdpuforall f € C(X). Since u(S) = 1, this concludes

the proof. O

Remark 2.2.2. We remark that the cylindrical structure of the C(x) was not essential to our proof of
Theorem 2.2.1. Rather, the important feature of (C},())72; was that their diameter went to 0 as & — oo. To
demonstrate this fact, we consider the scenario where we replace the Cy(z) with balls around z of radius
decreasing to 0, and note that the technique of proof is remarkably similar to that used to prove Theorem

2.2.1.

Theorem 2.2.3. Let X = (X, p) be a compact metric space, and T : X — X a 1-Lipschitz map, i.e. such
that p(Tx,Ty) < p(x,y) forall z,y € X. Let B denote the Borel o-algebra on X, and y a T-invariant,
ergodic Borel probability measure on X. Let ()32, be a non-increasing sequence of positive numbers
r > 0 such that limy_,o 1, = 0. Let Bi(x) = {y € X : p(z,y) < ri}. Then the set of z € X such that
1 / 1162 Z’fdﬂ’“i?o/fdu
1(Bi(2)) JBy () k =

forall f € C(X) is of full measure.

Proof. First we will prove that for an arbitrary f € C(X), the set of all = € X such that

s ZZ 0 OBy (x (Tif) hpe [ fd is of full measure. Fix € > 0, and choose § > 0 such that p(z,y) < § =
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|f(z) — f(y)| < § (where we invoke the uniform continuity of f). Choose K7 € N such that rx, < 6.
Then if k& > Ky,i € [0,k — 1], we have that y € By(z) = p(z,y) < § = p(T'z,T'y) < §. Let

x € supp(u), k > Ki. Then

1 4
_ T fd
(B /Bkm Jdu

i) L
= (11O~ B S T

T f(z) — ap,) (T°f)| = |T" f(z) —

1 iy
= AT B@) /Tis,m (') = f) du

1 ; B
e ] N CRL

IN
N =

k—00

Let 2 € X Nsupp(p) such that ¢ Zf:_ol Tif(x) "= [ fdu. Choose K5 € N such that

k-1
1 i €
k> Ky = ‘/fdu—k;%Tf(x) <3
Then if £ > max{ K7, K3}, then
= 4
'/fdu— =D OB,) (Tzf)‘
i=0
= = = .
< /fdu - %ZTlf(ﬂf) + %ZTlf(@ - %ZQB;C(I) (TZ)‘
i=0 i=0 i=0
£L8
-2 2

— €.

The Birkhoff Ergodic Theorem then tells us that the set {x €X:1 Zf:_ol T f(x) hope Ir d,u} is of full
measure, and so we can intersect it with the support of 1 to get another set of full measure.
We can now use an argument almost identical to that used in the proof of Theorem 2.2.1 to prove this

present theorem. Let {f,},cn be a countable set in C'(X) such that span{ f,, }n,en = C(X), where the
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closure is taken in the uniform norm on C'(X). Let

k
A%z%%XﬂwW Zj @ﬁlﬁ/mw}

1=0

As we have already shown, each Sy, is of full measure, and thus so is (), .y Sn. From here, appealing to the

fact that these { f,, } nen generate C'(X), we can prove the present theorem. O

Remark 2.2.4. Assuming that ({z}) = 0 forall z € X, then u(By(x)) — O forall x € X.

Example 2.2.5. Theorem 2.2.3 ceases to be true if we drop the hypothesis that our system is ergodic. Let
X = (X, p) be a compact metric space, and let 7' : X — X be the identity map 7" = idx on X. Let
be any non-atomic Borel probability measure p on X (which is automatically id x -invariant) that is strictly
positive. Fix g € X and let f(z) = p(z, zo). Let B(z9) = {z € X : p(x, x0) < 1/k}.

We claim that [ fdp > 0, but

OBy (o) ( ZTZ )k—)oo

First, we observe that ;.(By(x¢)) > 0 for all k£ € N, since z € supp(u). However, since (-, Bi(zo) =
{0}, we know that p1(By(z9)) — 0. Therefore there exists K € N such that 0 < p(Bx (z0)) < p(Bi(xo)).

Since f is a nonnegative function, we can then conclude that

[ rau= | fdu
B1(z0)\Bk (o)
1

> p(Bi(wo) \ Br(w0)) 7

> 0.

Then
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However, we can also say that ‘aBk(xo)(f)} < 1/k, since

fdp

‘aBk(IO ‘ =

Bk (z0)) /Bk(m
1

= (B (z0)) /Bk(azg) Fldy

o / L,
#(Bk(20)) JBy(a0) K

IN

| =

i f) R
Thus ap, (2) <% S T1f> =204 [ fdp.
Thus for every xg € X exists fz, € C(X) such that

lim sup
k—o0

[ i = an, o ( ZTfo())‘

This example highlights how if the system under consideration is not ergodic, then results like Theorem

2.2.3 can fail.

Remark 2.2.6. In this section, as well as in Sections 2.3 and 2.4, we focus on continuous functions f € C'(X).

Our reason for this is that we can study these f in relation to the topological properties of (X, 7).

2.3 Lipschitz maps and subshifts

Let us consider a compact pseudometric space X = (X,p), and T': X — X a map that is Lipschitz
of constant L. > 1, i.e. p(Tx,Ty) < L - p(z,y). Recall that a pseudometric is distinguished from a
metric by the fact we do not assume that a pseudometric distinguishes points, i.e. we do not assume that
p(z,y) = 0 = x = y. Suppose that (X, B, u, T') is of finite entropy, and thus admits a generator £. Suppose

further that for almost all x € X exists a constant v = 7, € [1, 00) such that
diam(Cy(z)) <~ - L% (Vk € N).

We pause to remark on two points. The first is that our consideration of pseudometric spaces is not
generality for generality’s sake. As we will see later in this section, this consideration of pseudometric

spaces will be useful for studying certain metric spaces. The second is that this class of examples is not
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a direct generalization of the class considered in Section 2.2. Though every 1-Lipschitz map is of course
Lipschitz for every constant L > 1, our condition on diam(C}(z)) is stronger here, since we ask not just that
diam(Cy(z)) go to 0, but that it do so exponentially.

Since we are working in the slightly unorthodox setting of pseudometric spaces rather than metric spaces,
we will prove that one of the strong properties of compact metric spaces is also true of compact pseudometric
spaces, namely that every continuous function is uniformly continuous. The proof is essentially identical to
the “’textbook™ argument for compact metric spaces. We doubt this is a new result, but we could not find a

reference for it, so we prove it here.

Lemma 2.3.1. Let (X, p) be a compact pseudometric space. Then every continuous function f : X — C is

uniformly continuous.

Proof. Fix € > 0. Then for every = € X exists d; > 0 such that p(x,y) < d; = |f(z)— f(y)| < e. Then the

[ n
family U/ = {B (v, %)} _, is anopen cover of X, so there exists a finite subcover i’ = {B (xj, 7]> }

reX j=1

of X.
Oz .
Let 0’ = minj<j<, -, and suppose that x,y € X such that p(x,y) < ¢’. Then there exists z; € X

On; . .
such that p(z, ;) < —~, since U’ is a cover of X. Then

p(xj,y) < p(zj, ) + p(x,y)

S b
< =2 7

2 + 2
=0y,

O ; € €
Therefore p(x;, ) < 5+ < 0g;,p(,y) < dz;, 50 |f(x) — f(25)] < 5, [f(y) — f(x;)| < §. Thus

[f(@) = f)l < [f (@) = [zl + 1 (z5) = F)]

Therefore &' > 0 is such that p(z,y) < 0’ = |f(z) — f(y)| < e. Thus we have shown that f is uniformly

continuous. U
Now we are able to both state and prove the first main result of this section.
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Proposition 2.3.2. Let (X, p) be a compact pseudometric space, and let T : X — X be an L-Lipschitz
homeomorphism on X with respect to p, where L > 1. Suppose p is a regular Borel probability measure on
X such that T is ergodic with respect to ui. Let £ = {E4}qep be a generator of (X, T) such that for almost

all x € X exists v, € R such that diam(Cy,(x)) < v, - L~* forall k € N. Fix f € C(X). Then

k—1
1 Do\ K
2D ac,@ (T'f) z>°°/fdu
i=0
for almost all z € X.

Proof. Our goal is to show that for every € > 0, there exists some K & N such that if k¥ > K, we have

1 k—1 ‘
'/fdﬂ DI (T’f)|
1=0

= = ' ‘
< /fdeZ(Tzf) @)+ |2 >_ ((T°f) (2) — acy @) (Tlf))|
i=0 =0
= = ' ‘
<|[n- ST @)+ XN @) - acyw (1'5)]
i=0 =0
<e.
We will accomplish this by bounding the terms
= = ‘ ‘
' / fap=2> (T f) @), 23 _[(T'f) (2) = ac, @) (T'F)]
i=0 i=0

by e.
We will start with bounding the latter term. We claim that if © € X such that ;1(Cg(x)) > 0, diam(Ci(z)) <

vz - L7F for all k € N, then for every € > 0, there exists K] € N such that

T
I

k> K= Y |(T) (0) = acye (T')] < 5

| =
-.
I
o
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To prove this, choose § > 0 such that p(y, z) < 6 = [f(y) — f(2)| < §. Let s € Nsuch that, - L™" < 6.

Then if k£ > k, then

= , T = .
22T (@) —acy@ (T = 7 | D [(T7F) (@) = agw (T7F)]
= il
= 4 '
+o | 2o HT) @) = acyw (T'H]|
k—r+1

We will estimate these two terms separately, bounding each by 7. Beginning with the former, we observe that

if 2,y € Ci(z), then
p (T2, Ty) < L'p(z,y) < L'~y - L% =, - L'7F.

In particular, this means that if i — k < —, then |(T"f) (z) — f(z)| < { forall z = T’y € T'Cj(x), so

1 k—k . |

k [ (1) (@) = ey (T1)]
i=0
1 [k—k 1 i i

k| & | u(Cile) /ck<m> (') @) =T fdM]
1 [k—k 1 i

=7 ; p (TiCy(x)) /Tick(m) [(T"f) () — f|du]
1 [k—k 1 .

- k Lizo M (T"C()) /Tick(x) 4d,u]

_ k—rk+1le

= s

<

On the other hand, we can estimate

L[kt 4 . 2K
LY @) @)~ e (1)1 < 20l

k—r+1
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Choose K7 > k such that % < 7. Thenif k > K7, we have

1 k—1 ‘ A 1 k—kK ‘ A
=2 (1) (@) —ac,@ (T'f)| = £ [Z () (2) = acy @) (T'F))]
=0 =0
1 k-1 ’
| 2 1T @)~ ac@ (7))
k—r+1
<it+3
- =

Now suppose further that = € X is such that £ S5 (T7f) (x) "= hope | fdp. Choose K5 € N such that
k> Ky = ‘f fdp — %Z;:ol (T f) (a:)‘ < §. Thenif k > max{K7, K>}, then we have

1 k—1 ' 1 k—r X .
2 2T @) —ag,@ (T'F)| = ¢ !Z}(Tlf) (2) = acy(@ (T'f)]
par i=0
1 k—1 '
+o | 2 [T @) = acy @) (T')]
k—k+1
< B + 5

Since the set of z € X for which this calculation could be performed is of full measure, the proposition

follows. o

From here, we get the following corollary.

Corollary 2.3.3. Let (X, p) be a compact metric space, and let T : X — X be an L-Lipschitz homeomor-
phism on X with respect to p, where L > 1. Suppose 1 is a regular Borel probability measure on X such that
T is ergodic with respect to . Let € = {E4}4ep be a generator of (X, T') such that for almost all z € X

exists v, € R such that diam(Cy(z)) < v, - L™F forall k € N. Then the set of z € X such that

| =

k—
i k 0
kZaoM (i) "= [ e
=0

for all f € C(X) is of full measure.
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Proof. Let { f, }nen be a countable set in C'(X) such that C'(X) = span{ f, }nen. By the previous result,
we can extrapolate that the set of z € X such that % Zi:ol g, (z) (Ti fn) hpe J fndp is of full measure.

We can then extend to all of C'(X) in the same manner as we did in the proof of Theorem 2.2.1. O

2.3.1 Two-sided subshifts and systems of finite entropy

This brings us to the matter of (two-sided) subshifts. Let D be a finite discrete set, and let 7" : D% — DT
be the map (T'x),, = x,, 11, called the left shift. We call X C D” a subshift if X is compact and TX = X.
Assume that p is a Borel probability measure on X with respect to which 7 is ergodic.

In a shift space, we will always take our generator to be the family & = {Ey}4ep of sets Eg = {z € X :

xo = d},d € D. We claim that for almost all z € X, we have

k—oo k

k—1

1 i

lim — E Qcy(z) (T f) = /fd,u
=0

forall f € C'(X). First, we want to establish the following lemma. This is no doubt a classical result, but we

could not find a reference for it, so we prove it here.

Lemma 2.3.4. Let (X, F, 1, T) be a subshift, where X C D”. The family
F = {THX[ao,ah...,ag,ﬂ : (ao, A1y ag,l) S ’Dé,g eN,i e Z}

generates C'(X) in the sense that its span is dense in C'(X) with respect to the uniform norm.

Proof. We claim that every f € C'(X) can be approximated uniformly by elements of span F. We will begin
by demonstrating the result for real f € C'(X), then extrapolate the result to all complex-valued f € C(X).

For ¢/ € N, set

A(a,gﬂ,a,gﬂ,...,a_l,ag,al,...,ag,l,ag,l)
={reX:zj=q;Vje[—L+1,0-1]}

_ m—4+1
=T [a—f-‘rla Q—p+42;5-.-,0-1,00,01,...,0¢0-1, aé—l]
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and let

ge=Y_ min{f(y):y € A@@)} xa@)

aeD2t-1

— 3 min { fy) iy e T*“l[a]} XT~[a]

acD2(-1

€ span F.

We claim that g, — f uniformly. The sequence ¢ — g, is monotonic increasing. Moreover, we claim that it
converges pointwise to f. To see this, let x € X, and consider g;(x). Fix € > 0. Then for each ¢ € N exists
y¥) € X such that gy(x) = f (y(é)). However, since y]@ = z;forall j € [-¢+ 1,¢ — 1], we can conclude
that ¥ — =, and so by continuity of f, we can conclude that g,(z) = f (y)) — f(z). Thus g, / f
pointwise. Dini’s Theorem then gives us uniform convergence. Therefore, if f € C(X) is real-valued, then
f € spanF. On the other hand, any complex-valued function f € C'(X) can be expressed as the sum of its

real and imaginary parts, and we can apply this argument to both of those parts separately. O

Theorem 2.3.5. Let X C D7 be a subshift, and let ;. be a Borel probability measure on X with respect to

which the left shift T' is ergodic. Then the set of all x € X such that

k-1
%Z@ck(x) (T'f) — /fdu
=0

forall f € C(X) is of full measure.

Proof. Our first step is to show that

N

1
ACy(x) (TzX[ao,al,...,ag,ﬂ) - /X[ao,a17~~~,021]du

x| =
<
|
o

for all finite strings a = (ag, a1, ...,ar_1) € D’. Let p be the pseudometric on X given by p(z,y) =
9~ min{n=0xn#yn} where min()) = 400 and 2~ = 0.
We claim that the function x5 is continuous with respect to the topology of p, and that (X,B,u1,T)

satisfies the hypotheses of Proposition 2.3.2 for L. = 2. A straightforward calculation shows that 7' is

33



2-Lipschitz and that diam ([a]) < 2 -2~ for all £ € N, a € D*. Therefore, if

k—1
Ra = {Z' e X: % aCk(x) (T X[ao,ah...,ag,l]) — /X[a07a1,...,a51}dﬂ} )

=0

then ;1(Ra) = 1 foralla € J;2, D, and so R = Nacyze, p¢ Ra is of full measure. We now claim that if

% Zz 0 XCy(x) (T Xlag,a1,....,ae— 1]) - fX[ao,mw,azfl]d“’ then

1 L
%ZO‘CIC(I) (T T X[ao,al,m,aefl]) — /X[ao,ahm,ael]du

foralln € Z.
It will suffice to prove the result for n = 41 and extend to all n € Z by induction. To prove the claim for

n = 1, we observe that

k-1
< Zack (TX(T'f) ) (1 ZaCk(:r > = %O‘Ck(x) (ka—f>

s

k—1

1 i 1 i 2
(kzaok (T'( Tf))) (k: acy @) (T'f )) EHfHoo
— 0.
A similar calculation tells us that
1 k—1 ' 1 k—1 ‘ 9
\ (1 e @) - (o @) < Fist 0
i=0 i=0

verifying the claim for n = —1. Thus if £ ZZ 0 QC () (Ti f ) — [ fdp, then a straightforward induction

argument will show that

1k71 ‘
=S ace (@ @) = [ fdu= [ T"fdu
k; @) ( ) / /

forall n € Z.
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In particular, this means that if x € R, then % Zi':ol acy (x) (Tif) — [ fdpforall f € F. Since the

span of F is dense in C'(X), this means that if = € R, then

1k—1 '
7. aka: Tzf)_> fd/‘L
kZ; @) /

forall f € C(X). O

We turn now to apply Theorem 2.3.5 to a slightly broader context. Let (Y, A, v, S) be an invertible
ergodic system with finite entropy. Then the system admits a finite generator £ = {E,}4ep. For each
y € Y,i € Z, let e;(y) € D be the element of D such that y € S*iEei(y), or equivalently such that

Sy € E.,(y)- Define the k-length cylinder corresponding to y by

k—1
Fk(y) = ﬂ S_zEei(y)-
=0

We denote these cylinders by Fj, instead of C}, to indicate that they live in Y, not X.

We define amap ¢ : Y — D% by
o(y) = (€i(y))icz.-

We call this map ¢ the itinerary map on Y induced by €. Let T be the standard left shift on DZ. The itinerary

map commutes with the left shift in the sense that the following diagram commutes:

y — 5 vy

oo Lo
pt L, p

We can now state the following corollary.

Corollary 2.3.6. Let (Y, A, v, S) be an invertible ergodic system with finite entropy and finite generator

E ={Ej}taep. Let A C L*°(Y,v) be the subspace

A = span {Snxﬂﬁ:ésjEdj :neZleN,d;e D} .

35



Then the set of y € Y such that

1 1 / ,
- —_ Stgdy — /gdl/
k= 1(Fi(y)) Jrw)

for all g € A is of full measure.

Proof. Endow D” with the pushforward measure u(B) = v (¢~ 'B). Since ¢ ![d] = E4 € A for all
d € D, we know that 1 is Borel. We also observe that Fi(y) = ¢~1Cy(¢(y)). Consider f = XM=t p, =
=0 i

X¢—1[do,dr,.dy_1]- LB C D? be the set of all 2 € X such that

k-1
%Z@ck(x) (T°f) — /fdu
1=0

for all f € C'(X), which we know by the previous theorem to be of full measure in X, and let A = ¢! B.

Thenif y € A, and dy, dy,...,dy_1 € D, then

1 k—1 1
k‘lz;y(Fk(y)) /Fk( )anz Y

1t 1 1
1 ) l J
kS v(F(y) Fily)n s jﬂOS Eq
B 1]§ 1 (¢_1 (C (6(y)) ﬂT_i[d d d ]))
T k(6 1G0W)” Kol 0., dey

1 k—1 1 -
= 2 e (O N T s i)

k—1

= | X{dod1,sde—1] A1

,u([doa d17 cee )df—l])
-1 ‘
(S 7Eqy,
7=0

:/Xﬂﬁ_ésjEdjdy7
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Since X(do,di,....de_,] € C (DZ). By an argument similar to that employed in the proof of Theorem 2.3.5, we

can extrapolate that if y € A, then

M1

1 | |
hl - gign L dy —s gn oy
kg m(Ek() /Fk(w =R / Xnizhs-iEa, Y

1=0

for n € Z. By density, it follows that if g € A, then + E Z ka(y Sigdy — [ gdv forally € A,

10,qu

and A is a set of full measure. O]

2.3.2 Pathological differentiation problems and relations to symbolic distributions

In Theorem 2.3.5, we demonstrated that

k—1
oy (0 ( 2T )’“‘” / fdu (Vf € C(X))

for almost all x € X . We take this opportunity to demonstrate that the “almost all” caveat is indispensable, as
there can exist z € X for which ag, () (% Zf:_ol Tl'f> # [ fdu for certain f € C'(X). This is related to
the shift not being uniquely ergodic, which we discussed in more detail in Section 2.1. In fact, we even claim

. oo
the sequence (ack (@) (% Zf:_ol T f) ) L, can fail to be Cauchy for certain pairs (z, f) € X x C(X).

Theorem 2.3.7. Let X = D? be a Bernoulli shift with symbol space D = {0,1,...,D —1},D > 2, a
Borel probability measure p such that p([d]) # 0 for all d € D. Let f = X|o), and left shift T'. Then there

exists an uncountable subset S C X such thatz,y € S = x; = y; (V4 <0), and such that the sequence

<a0k (@) (% S Tif) ) :;1 is not Cauchy forall z € S.

Proof. We first compute vy o, 41 (T7f) for 0 < i < k — 1 as follows. We see

: 1 .
Qo zr o Tf) = / T x1od
[®0,21,..,Tk—1] ( f) M([JTO,ml, L xk—l]) B0t n] X[ojdH
= ! / X7-ij0)dp
pllzo, 1, s weal) Jppt r-ife,) bl
- 1 o[ (N7 | nr
M([‘I.O?xl?"'axkfl]) .

= 5(1’1, 0),
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where 6(, -) refers here to the Kronecker delta. Thus if x = (z;);ez € X, then

k-1 , o
i=0

The identity (f) implies that if there exists z € X such that (ack(x) (% Zf:_ol T f)) is not

o0

k=1
Cauchy, then we can then build our set S. For z,y € X, write x ~ y if z; = y; forall j < 0,
and the set {j € N : z; # y;} has density 0. This is an equivalence relation. We claim that if

2~y then acy ) (1 5850 T ) = acy (3 205 7F) | "2 0. By (1), we know that

1 k-1 . 1 k—1 . 1
thk(x) E T f — O‘Ck(y) E T f = % Z(&(xz,O) — 5(yi,0))
1=0 =0 =0
k—1
1
< - > 1(0(2i,0) = 6(3i, 0))
1=0
#{Liel0,k—1]:x; #yi}
- k
"2,

Therefore, we can let S be the equivalence class of = under ~. To see that this S is uncountable, let £ C N
be an infinite subset of density 0. Then every subset F of E has density 0. For each F C E, let 2/ € X be a
sequence such that xf =z for j € F and xf # x; for j € F'. Since I has uncountably many subsets, and
x ~ xf for all F C E, we have shown that the equivalence class of by ~ is uncountable. So, assuming
that z € X such that <Oéck.(x) (% Zf:_ol ))::1 is not Cauchy, then we canlet S = {y € X : = ~ y}.

Our next order of business is to construct some such . The identity (1) also helps us construct an x € X

. oo
for which (ack (x) (% Zf:_ol T f)) is not Cauchy. Construct z = (x;)jcz € X as follows. For brevity,
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letc, = > 7, 2. Set

0 j<0

1 j=0

0 0<j<2
1 2<j<6
0 6<j<14

Tj =91 14< ;<30

0 con <J<copg
1 copy1 <J < congo

0 cont2 <j < congs

L
In plain language, this sequence begins with 0 for j < 0,a 1 at j = 0, then 2! terms of 0, then 22 terms of 1,
then 23 terms of 0, then 2* terms of 1, and so on. We claim that
lim infg 00 0y () (% Zi':ol T f ) # limsup ag, () <% Zi‘:ol T f>. Sampling along the subsequence

kp = cop + 1, we get

. 1 ”Z"Tif 248432442201 e
Cmtt@ gy +1 4" | T 1424446+ 220 Sl 2
1 4n—1 oo 1

= — % p—

3 401 3’

2

where the limit is taken using L’ Hospital’s Rule. On the other hand, looking at the subsequence k,, = co,,—1+1,

we get
1 CQileif 24843244221 2 Xp1 ¥
Q — = T Iy 2nlyg
Cegn-101@) | o 11 — 1424446+ +221 14yt 0
14— noyoo 2
T3 I 3
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Thus we can say

Lo =

1 k—1 ‘ 9 1 k—1 )
lilgicgfack(x) (l{: 21”]") <-< 3 < lilrcri)solipack(x) (k‘ ,ZOTZf> .

. oo
Therefore the sequence (ack (@) (% Zf:_ol T f ) ) - is divergent, and thus not Cauchy. O

Remark 2.3.8. Theorem 2.3.7 is not encompassed by Theorem 2.1.10, since a subshift is a priori totally

disconnected.

This calculation adequately sets up the following result.

Theorem 2.3.9. Let (X, B, i1, T) be an ergodic subshift, with X C D%, and let x € X . Then the following

statements about x € X are equivalent.

1. Forall f € C(X), the limit

exists and is equal to [ fdu.

2. For all words (ag, ax,...,as—1) € |Js2, D, the limit

k—1
. 1 i
k:lin;o gy (z) (k‘ E T X[ao,ah..-,aeﬂ)

i=0
exists and is equal to u([ag, a1, ..., ap_1]).
3. For all words (ag, ay,...,a,—1) € |Jp2, D*, the limit
lim #{ie[0,k—4]:z;=a0,Tit1 = a1, Ting_1 = ap_1}
k—00 k
exists and is equal to u([ag, a1, ..., ap_1]).
4. For all words (ag,ay,...,ap—1) € Jp2, D*, the limit
lim #{ie0,k—1]: 2, =ap,xi41 = a1, -, Tjrp—1 = Qp_1}
k—o0 k
exists and is equal to j1([ag, a1, . .., ar—1]).
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Proof. Lemma 2.3.4 tells us that (1) <= (2). That (3) <= (4) comes from the observation that the
absolute difference between the two sequences is at most Z_Tl. To establish (2) < (3), we compute

oy () (T X{ag,a1,....a0_y]) for i € [0,k — £] as follows.

) 1
ACy(z) (TZX[ao,al,-..,ae—ﬂ) = H([xo 1 Th 1]) /[a: o XT_i[ao,ah-..,aefl]du
ybly e ey bk— 0515y Th—1

I ai =0, i41 =21, .., Qitr—1 = Ty—1,

0 otherwise

Therefore

1 A
L Z QACy () (TZX[‘ZO@L---»@I’.—I])
=0
_ #{l S [0, k— f] Xy = A0, Ti41 = A1y oy Tj4p—1 = ag_l}
3 .
Finally, we observe that
1 k—1 ' 1 k—{ ' 1 k—1 '
Ay (x) (kZTZf> ~ () (kZT’fN = |acy(@) (k > T’f>‘
i=0 i=0 i=k—(+1
-1
< = fle.
Therefore the end behaviors of (ack (x) (% Zi:ol TiX[ao,al,...,ag,l])>:o ) and

. o0
<a0k(x) (% Zf:_og TZX[aoah---,az—ﬂ))k:l are identical, i.e. one converges iff the other converges, and

if they converge, then they converge to the same value. But then, as has already been established, we know

that
1 k=t o0
<O‘Ck(ﬂc) (k: Z TZX[ao,al,..-,ae_ﬂ) >
i=0 k=1
_ <#{Z S [O,k‘ — 1] 1T = A0, Titl = A1y, Tijgp—1 = ag_l})oo
k k=1 ,
demonstrating that (2) <= (3). ]

41



Theorem 2.3.9 gives us an alternate proof of Theorem 2.3.5. Applying the Birkhoff Ergodic Theorem
to the functions x4 tells us that almost all z € X satisfy % Zf:_ol T X(a) () Fopo w([a]) for all strings
a € J;2, D. But this is exactly condition (4) from Theorem 2.3.9. Moreover, this result gives us a more
concrete characterization of the set of full measure” that Theorem 2.3.5 alludes to.

Before concluding, we demonstrate that Proposition 2.3.2 does not hinge on the cylinder structure of X.

Theorem 2.3.10. Let (X, p) be a compact metric space, and let T : X — X be an L-Lipschitz homeomor-
phism on X with respect to p, where L > 1. Suppose . is a regular Borel probability measure on X such that
T is ergodic with respect to 1. Let (r},)7°, be a sequence of positive numbers 71, > 0 such that there exists a
constant y € R such that ry, < - L~ forallk € N. Fix f € O(X). Let By(z) = {y € X : p(x,y) < ri}.

Then the set of x € X such that

e

-1

(]

1 : 00
3 S an () [ rau

K2

Il
=)

forall f € C(X) is of full measure.

Proof. Since C(X) is separable, it will suffice to show that given some fixed f € C'(X), we have

k—1

1 ; 00

2o am (1) /fdu
=0

for almost all x € X. Our method of proof will closely resemble our proof of Proposition 2.3.2.

Our goal is to show that for every € > 0 exists some K € N such that if £ > K (¢), we have

1 k—1 ‘
[ s o 1)
1=0

= = ‘
< /fd,u—k (T"f) (=)] + %Z((Tzf) () — ap,(a) (Tzf))'
=0 1=0
L= =
<|[ fn- ST @)+ XN @) - s (175)]
=0 1=0
<e
We will accomplish this by bounding the terms
PR 1 k=t 4 4
=0 =0




by e.
We will start with bounding the latter term. We claim that if x € X such that p(By(x)) > 0, diam(Bg(z)) <

vz - L7F for all k € N, then for every ¢ > 0, there exists & € N such that

el
I
—

k> K=

(T') (@) = o) (T')] < 5

x| =
<
|
o

To prove this, choose 6 > 0 such that p(y, 2) < 0 = |f(y) — f(2)| < §. Let x € N such that v, - L™" < 6.

Then if £ > &, then

1 -1 . 1 k—kK .
kz;’(Tlf) (x)—aBk( ) E [z;‘ 7O[Bk(33 (Tzf)‘
— 1 ;_
+2 2 I —ag,@ (T -
k—r+1

We will estimate these two terms separately, bounding each by 7. Beginning with the former, we observe that

if x,y € Bi(x), then
p(T'2,T'y) < L'p(x,y) < L' yp - L7F =~ - L5

In particular, this means thatif i — k < —~, then | (T"f) (z) — f(z)| < § forall z = T’y € T'Cj(x), so

1 ; L
| (By(@) /BW)((T f) (@) deu]
[k—k

1 1 o
5 |2 T S| TN @ ‘d"]

Li=0

[k—k

F o,

| w(T'Bi(x)) Jrip,(2) 4
k+1

k

€
4

= o
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On the other hand, we can estimate

1 k—1

=1 > (T) (@) = a,@ (T7F)]

2K
< — .
) <1
k—rk+1

Choose K| > k such that % < 7. Thenif k > K7, we have

= , 1 [Fzr .
g KTW)@)—am@»@Tﬂ\Zk!E:HTW)@)—am@NTTH
=0 =0
= ’ .
+o | 22 HT) @) = ap@ (T'F)]
k—kr+1
<S4l
-

Now suppose further that = € X is such that } Zf:—ol (T°f) (z) Fope J fdu. Choose K € N such that

k2 Kp = |[ fdu—} S8 (T') ()] < § Thenif k > max {1, Ko}, then we have

=N ' 1 [F= .
‘ Wﬁﬁﬁﬂ—amwﬂTTH—kIEZWVﬂCW—amuNTVH
1=0 =0
= ' '
+ 4| 22 [T (@) —ap@ (TF)]
k—r+1
<5+3

O]

Before looking at a more general family of differentiation problems, we want to take a moment to
observe that if (X, 3,7, ;1) is an ergodic system, then if the (measure-theoretic) entropy h(7, 1) of the
system is positive, then we automatically have that p(Cy(x)) 2000 by the Shannon-McMillan-Breiman
Theorem (Dajani and Kraaikamp, 2002, Theorem 6.2.1), it follows that for p-almost every = € X there exists

K = K, € Nsuch that
h(T, )
5

1
kE>K = —Elog,u(Ck(x)) >
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Then if kK > K, we have

- log u(Ci(e)) 2 ML
= log u(Cg(x)) < _h(];, M)k <0
= u(Chl@) < (*52) kg

On the other hand, whether (B (7)) F2900 depends on where (X, BB, 1) contains atoms. If p({z}) =0

k—o00

forall z € X, then pu(Bg(z)) "= 0.

2.4 Random cylinders in a Bernoulli shift - a probabilistic approach

In this section, we consider problems similar to those addressed in Sections 2.2 and 2.3, where we take
some (X, B, u, T') with specified properties (in this case, we assume the system is Bernoulli), and seek to
establish conditions under which for a randomly chosen sequence (F},)?° ; of sets of positive measure, the
sequence <ﬁ I5 (% Sy T"f> du)

We provide now an alternate proof of a special case of Theorem 2.3.5. Though the result proved is lesser

:;1 converges almost surely to [ fdu forall f € C(X).

in scope, we include it for the reason that the proof provided here has a decidedly more probabilistic flavor

than the proof provided of Theorem 2.3.5 in Section 2.3. This method of proof also proves slightly more

versatile, as it allows us to consider randomly chosen sequences of cylinders which are not necessarily nested.
In this section, X = D is a Bernoulli shift on a finite alphabet D with probability vector p = (p(d))aep,

and  is the Borel probability measure on X induced by p. We begin by proving a lemma to which we assign

a whimsical title.

Lemma 2.4.1 (The Even Stronger Law of Large Numbers). Let (Y, A, v) be a probability space, and let

(kn)2, be a sequence in N such that Y >° | k2 < oo. Let (in)o<i<k,—1nen be a family of L™ real

random variables satistying the following conditions.
1. There exists C' € [1,00) such that ||(; p|lcc < C forall0 <i <k, —1,neN.
2. f Gindy =m forall0 <i < k, — 1,n € N, where m is a constant.

3. For eachn € N, the subfamily {Cm}f;g ! is mutually independent.
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Then
kp—1

1
E; z{: CLn n:§X)n7
=0
almost surely.

Proof. For the sake of brevity, abbreviate

kn—1

Sh:: :E: CLn7

1=0

and assume without loss of generality that m = 0 (else, we can just consider @n = (i,n —m). Given € > 0,

set

Ene={y €Y :[Su(y)|/kn = e} ={y €Y : [Sn(y)] = kne}.

Then Chebyshev’s inequality tells us that

1
w(Ep ) < (o)t /Sﬁdl/.

Then
n— 1

|/ stav= b [ aantenGund.

r,s,t,u=0

This sum consists of terms of the forms
L J C;{ndl/
2. [ 2y
3. f anCs,ndV
4. [ G nCsmlrndr

5'.[Cnn€an€tn<mndV

where r, s, t, u are distinct. We assert that the terms of the third, fourth, and fifth forms all vanish by virtue of

independence. This leaves k,, terms of the first form and 3k, (k,, — 1) terms of the second form. Thus there
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are k,, + 3ky(k, — 1) terms of absolute value < C*. Thus

L/gwyg(mﬁ2mfcﬂ

< 3k2ct
3k2C*
Ene) < 7
:> :u( 3 ) (kn6)4
fe’e) 304 00 _2
= ZN(En,e) < e Z k,,
n=1 n=1
< Q.

By the Borell-Cantelli Lemma, it follows that x (\x—; Up—n En.e) = 0. But

ﬁ G Ene= {er:limsup’SZ(y)' > e},

so we can conclude that

(frer e 520o]) -+ (8(0.9 ) -

K=1 \N=1n=N

Thus %Z — m almost surely. 0

Now we apply this to estimating

1 1 / .
7. A N TZX(L A1,y _1)
L yar 1(Cr(2)) i) [ao,a1,...,ap—1]

where Cy () is the rank-k cylinder associated to x (see the discussion near the beginning of Section 2.2). Fix

aword a = (ag,ay,...,ar_1) € D'. We are going to consider a sequence of families of discrete random

variables in X given by

a oy L i

(AT /ckm Txmds

1 (Cr(z) N T "[a])
w(Cr(x))

(0<i<k—1)
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Each random variable is bounded in L>° (X, 11) by 1. We claim that they also have a shared mean [ &2, dp =

p((al).

/ sﬁkdu
deDk

1 .
( ) B / TZX[a()aal,--.,a(g_l}d,Uz
deD* 1525 p(dn) Jidods...dis)

TX[ao,al, Lag_q]dp
d07d17 ’dk 1

)a[do,dl, odg—1] (T Xlao,a1,...,ae— 1})

D

E :/ XT*i[ao,al 77777 az—ﬂd'u
deD [do,d1,...,dk—1]

Z (ldo,di, ..., dr—1] N T "[ag, a1, ..,as1])
deDk

— Z 1% [dOadlv"')dk—l]m U [CO)Cla"'7Ci—17a07a17"°7a€—1]

deDk €0,C1 500 Cim 1
= Z p([do,dy,. .. ,dg—1] N [do,d1,. .. ,di—1,a0,a1,...,a0-1])
deDk

To compute this value, we look at two cases: where ¢ + £ < k, and where i + ¢ > k.

If 7 + ¢ < k, then

[do,dl, o ,dk_l] M [do,dl, e, di1,a0,a1,. .. ,ag_l]
[do,d1,...,dx1] di =ag,dix1=a1,...,dipe—1 =ap1

0 otherwise
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This means that dy, dy, ...,d;—1, as well as d; ¢, ..., dp_1 are "free”. Thus

Z ,Uf([d()adlv .. '7dk—1] N [doadlv s 7di71,a07a17 .. 'aaf—l])
deDk
= Z p([do, d1, ..., di—1,a0,a1,...,a0-1,dits, ..., dr_1])

-

deD!

= > (p(do)p(dr)---p(di-1)) (p(ao)p(ar) - - - plag—1)) (p(dize) - - P(dk—1))

deDk
= p([ag, a1, ..., ar—1]).

On the other hand, if 7 + ¢ > k, then

[d(), dyi,... ,dkfl] N [do, di,...,d;_1,a0,a1,..., ag,l]

[do,d1,...,di—1,a0,01,...,a—1] d;i =ag,...,dx—1 = ap—i—1

0 otherwise

leaving dg, d1, . .., d;—1 "free”. Thus

Z p([do,dy, ... dr—1] N [do,dy,. .. di—1,a0,a1,...,00_1])
deDk
= Z M([dO)dlu e 7di—17 apg,aiy ..., af—l])
deDk
= > p(do)p(dr) -+ p(di—1)plao)p(ar) - - - plae—1)
deDk

= ,u([ao, ai, ... ,agfl]).

Thus in either case, we have [ ¢2,dp = p([a]).
is not necessarily independent, but we can break it up into arith-
[k/¢)—

Now, for fixed k, the family { Zak} .
b Z:

1
forj € {0,1,...,¢—1}. Then these

metic subsequences which are. Consider the families {5 s j k}
b m=

subfamilies are independent, so the Even Stronger Law Of Large Numbers tells us that ﬁ 251—210 §oy ik~
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w([a]) almost surely. Now we calculate

1 1
- Tiyid
kgmck(x)) /ck() Xl

1 k—1
=% ng‘k(:c)

=0

elkye) |
4 ]

Olk/t 15 . ke €8 ()
= L/J J:()i/ 2 émé-{-]k + ka’/zJ k
almost surely 1 !

1) |33 ula) | +0
7=0

= p([a])

= /X[a}dﬂ-

Taking a countable intersection over a € |J;2, D¢, we can conclude that the set B of all z € X such
that 1 ZZ 0 i Ck RO ka T'Xa)die = [ X[ajdp for all words a is of full measure. We can further
conclude that if x € B, we have m ka (@) T’T”X[a] du— [ T"X|q) for all words a and n € Z. Since
span {T"X[a} rae U, Dfne Z} is dense in C'(X), we can conclude the following special case of

Theorem 2.3.5.

Proposition 2.4.2. Let X = D” be a Bernoulli shift, and let i1 be the associated measure. Endow X with the

generator £ = {Eg}qep, where Eg = {x € X : xg = d}. Then the set of all x € X such that

o ( ZT@ >—>/fdu

forall f € C(X) is of full measure.

However, this technique lends itself to another result that is not encompassed by Theorem 2.3.5. We have
looked at temporo-spatial differentiation problems where we are differentiating with respect to the cylinders
Ck(z) of a randomly chosen z € X. The next result considers instead the situation where we randomly

choose a sequence (xj)3° , in X and differentiating with respect to the sequence (Cy(xx))72 ;.
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Theorem 2.4.3. Let X = D% be a Bernoulli shift, and let ;. be the associated measure. Endow X with
the generator € = {Eq}4ep, where Eg = {zv € X : xyp = d}. Consider the countably infinite product

probability space (X*°, B>, u*°) = [[,cn(X, B, 1t). Then the set of all (x1)32., € X°° such that

k—1
1 i
ACy (wy) (kZTf> %/fdﬂ
=0
forall f € C(X) is of full ;1>°-measure.

Proof. Our method is very similar to the method used for Proposition 2.4.2. Let x = (x)5>, € X denote
a sequence in X.
Fix a word a = (ag, a1, ...,a,_1) € D'. We are going to consider a sequence of families of discrete

random variables in X given by

1 / ,
— T X[ dp
w(Cr(@r) Jorwy

w(Cr(zr))

Ge(x) =

Each random variable (2, is bounded in L°>°(X, ;1) by 1. By a calculation identical to the one used to prove

Proposition 2.4.2, we can conclude that [ ¢?.du = p([a]).
k-1

As before, for fixed k, the family {Cf‘k} . is not necessarily independent, but we can break it up
b ,L:
lk/€]—1
into arithmetic subsequences which are. Consider the families {Cfne » k} . forj € {0,1,...,¢—
) m=

1}. Then these families are independent, and so the Even Stronger Law Of Large Numbers tells us that
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Lk/fJ Z Cnawﬂ x — t([a]) almost surely. Now we calculate

NI R =
Tk KLk/Kjiz;i’k(X)]

01 k€] —1 k-1 a
Clk/e] |1 1 a Dicikye) Gre(X)
_ tk/E] ZZ Z )| + Lk/EJ

= p([a])

= /X[a]dlt-

Again, taking a countable intersection over a € | J;2, D¢, we can conclude that the set B of all x € X
such that ¢ Skt o W e, (z2) T Xja)dpt = [ X(ajdp for all words a is of full measure. We can further
conclude that if x € B, we have m ka(zk) T'T"X[a)dp — [ T"X[q) for all words a and n € Z.

Since span {T”X[a] ra €2, DY n € Z} is dense in C(X), we can conclude that if x € B, then

k—1
1 .
Qcy (zx) (]{;ZTZ]() — /fd,u
=0

forall f € C(X). O
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Temporo-spatial differentiations for actions of topological groups and the pointwise reduction heuristic

Our primary goal with this chapter is to extend some of the results in Chapter 2 to the setting of actions
of amenable groups. In particular, we demonstrate several special cases of a general heuristic: that a temporo-
spatial differentiation relative to a family of sets containing a point x with diameter going to 0 sufficiently
fast will be equivalent to a pointwise ergodic average at the point x. This heuristic applies to many kinds of
ergodic averages.

In Section 3.1, we provide some general results about temporo-spatial differentiations. In particular, we
provide a characterization in terms of ergodic optimization of a kind of “best-case scenario” behavior, where
temporo-spatial averages of continuous functions always converge to the integral.

In Section 3.2, we provide convergence theorems for two special cases of temporo-spatial differentiation
averages: where the spatial averaging sets have measure going to 1, and where they are constant.

In Section 3.3, we show that in the case where the spatial averaging sets share a common fixed point x and
have diameter going to O sufficiently fast, then the associated temporo-spatial differentiations can be reduced
to a pointwise temporal average at that fixed point z. This then provides us a means to prove convergence
results for suitable “random temporo-spatial differentiation problems.” In particular, these reduction results
can be applied even when the temporal averaging sets are not Fglner.

In Section 3.4, we generalize some of the results of Section 3.3 to the setting of weighted temporo-spatial
ergodic averages. These include equicontinuous families of continuous weight functions of modulus 1, as

well as potentially unbounded weight sequences of complex constants.

3.1 General results and unique ergodicity

Throughout this chapter, by a topological dynamical system, we will mean a continuous action 7" of a
locally compact unimodular topological group GG on a compact metrizable space X, denoted 7' : G ~ X.
We will use m to refer to a left- and right-invariant Haar measure on the group G, hereafter referred to simply

as a Haar measure. Our consideration of unimodular groups is primarily to simplify some bookkeeping about
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when we are invoking a left-invariant Haar measure and when we are invoking a right-invariant Haar measure.
Of course, the class of unimodular groups includes all abelian groups, all discrete groups, and all compact

groups, thus encompassing many of the groups ergodic theory classically considers actions of.

Definition 3.1.1. Let 7' : G ~ X be a topological dynamical system, where G is an amenable group, and let

f € Cr(X) be a real-valued continuous function on X. The gauge of f is the value

I(f) = sup { [ rauine MT<X)} ,

where M7 (X') denotes the family of T-invariant Borel probability measures on X . We say that u € Mp(X)

is f-maximizing if [ fdu = I'(f), and denote the class of all f-maximizing measures on X by

Mumax(f) == {u € Mrp(X): /fdu = F(f)} :

The gauge is well-defined, since if G is amenable, then M (X ) is a nonempty Choquet simplex in the
weak*-topology. Since M7 (X)) is compact, it follows that M pax(f) is nonempty.

We now wish to provide an alternative description of the gauge for nonnegative-valued functions.

Lemma 3.1.2. LetT : G ~ X be a topological dynamical system, and let K C G be a compact subset of a
locally compact group G. Let f € C(X). Then the function x — [} f(T,x)dm(g) is continuous, where m

is a Haar measure on G.

Proof. We can assume that K is of positive Haar measure, and in particular nonempty, since otherwise this
would be trivial.

Fix € > 0, and let p be a compatible metric for X. We know a priori that the function G x X — C given
by (g,x) — f(T4x) is continuous, so for each g € K, choose an open neighborhood U, C G of g and a
positive number d, > 0 such that i (¢, 2) € Uy x B (z,6,), then | f (Tya') — f(Tyz)| < SRy~ Then
{Ug}geK is an open cover of the compact K, so there exist g1,...,g, € K suchthat K C Uy, U---UU,,.

Let 6 = min{dg,...,dy,}. Thenif p(z,y) < §,and g € K, then g € Uy, for some j € {1,...,n}.
Therefore (g, ), (9,y) € Uy, x B(x,6) C Uy, x B(w,d;), s0

F(Ty2) = F(Ty)] < |F(Ty) = £ (To,)] + |F (Ty2) = £ ()| < s + =
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Thus there exists 6 > 0 such that if p(z,y) < 6, then |f(Tyz) — f(Tyy)| < - ) Therefore, it follows

that if p(z,y) < 6, then

L/ffwdm - [ s@amy \:L/<ﬂn@—faw»mmm
§AJwa0—waﬂmdm

Therefore the function = — [, f(Ty2)dm(g) is continuous. O

Notation 3.1.3. (a) Let 7' : G ~ X be a continuous action of a locally compact group G with Haar
measure m on a topological space X, and let f be a continuous function X — C. Let K be a compact

subset of GG with positive Haar measure. We define Avg f : X — C to be the continuous function

Avg f(z /fT:z:dm

The continuity of Avg, f follows from Lemma 3.1.2. In the event where G is a discrete group, we

will also define Avg, f for all nonempty compact subsets K of G and f € L'(X, ) by

Avgy f = |K\ ZfoT

geK

(b) Let (X, ;1) be a probability space, and let f € L!(X, u). Let C be a measurable subset of X with
u(C) > 0. We define the functional ¢ : LY(X, 1) — C by

1
acuyzumm/fmh

Although the functionals o are defined here on L', we will almost always be interested in their action

on L°°, where they are considerably better behaved.
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Definition 3.1.4. Let GG be a locally compact topological group. A net (F});c.» of compact subsets of G is
called Fplner if m(F;) > 0 forall i € .#, and

lim m(gF,AFZ)

a— =0 (Vg € G),

where A denotes the symmetric difference AAB = (A\ B) U (B\ A).

Theorem 3.1.5. LetT : G ~ X be a topological dynamical system, where G is an amenable group with
Haar measure m. Let (F});c » be a left Fglner net for G, and let f € Cr(X) be a nonnegative-valued

continuous function on X. Then the net <HAvg S H o X)> P converges, and
icy

L(f) = lim [|Avep, f]-

Proof. Foreachi € .#, let o; be a Borel probability measure on X such that

[ Aver, sdos = |[Aver, flloqs,

For each i € ., define the Borel probability measure 1; on X by

[ = /X (Aver, ) daizm(lm /F | ( /X Tgf(x>daz-<x>) dm(g),

where the latter equality follows from Fubini’s Theorem.
In order to prove that the net ( i fd,ui)i s converges to ['(f), it will suffice to prove that for any

convergent sub-net (1, ) the sub-net ( [ fd,ul-j)j ¢ 5 converges to T(f), because if ([ fdu;),_ , didn’t

jerl’

converge to I'(f), then we could extract some subnet (Hij)j c s along which ( N d,uij)j c s converged to

7
some other point (because the net is contained in a compact subset of R), then take a weak*-convergent
subnet of that, yielding a contradiction.

Therefore, we need to show that every weak*-limit point of the net (),  is f-maximizing.

Since the space M (X) of Borel probability measures on X is weak*-compact, it follows that there exists

a weak*-convergent sub-net (,ui j) converging to some u. It follows then that p is T-invariant, since if

JjeS’
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fo € C(X),g0 € G, then

‘ [ Tutodu— [ fodu‘ ' [ Twso— 1o dﬂ'

= h]r.n ‘/ (Tyo fo — fo) dps;

)

where
(7)) dm(g)do;; ()
Fy
— (( Ty fo(z)dm(g )) — </ Tgfg(x)dm(g)>> doy (z)
Fi g0\ Fi, F;,\Fi; 90

: / /goF \Fij Tyfo(w)dm(g )da%< x)

" /X m (Fy) /Fij\QOF Ty fo(w)dm(g)dai; (x)

m (903, \ Fy) + 0 (Fy \goFs) |
- m (Fy,) ollow
_m (Fu90AF,)

m(Fz]) HfOHC
72890,

Therefore [ Ty, fodu = [ fodu, meaning g is T-invariant.
We claim that g is f-maximizing. On one hand, we know that [ fdu < T'(f), because pn € Mp(X).

Now, suppose that v € Mp(X). Then

1
/fdu—/Xm(Fij)Tgf(x)dm(g)dy(a:)

< Hm(lFij)Tgfdm(g)

~ [ au,
N / fdv < lim / fdus,
_ / Fdu.
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Therefore [ fdu > [ fdv for all v € Mp(X), meaning that [ fdu = sup,epn,(x) J fdv, ie. pis
f-maximizing, so [ fdu =T(f). O

From this, we can use the gauge to provide a characterization of uniquely ergodic systems.

Theorem 3.1.6. Let T : G ~ X be a topological dynamical system, where G is amenable, and let
w € Mp(X) be a T-invariant Borel probability measure on X that is fully supported on X, i.e. gives
positive measure to every nonempty open subset of X. Then T : G ~ X is uniquely ergodic if and only if

L'(f) = [ fdu for all nonnegative-valued f € Cr(X).

Proof. Clearly [ fdu <T(f) forall f € Cr(X).

(=) IfT : G ~ X is uniquely ergodic, then p is f-maximizing for all f € Cg(X), so in particular
[ fdu =T(f) for all nonnegative f € Cr(X).

(<) We’ll prove the contrapositive. Suppose that 7' : G ~ X is not uniquely ergodic. Then there exists
an ergodic T-invariant Borel probability measure v # p. By (Jenkinson, 2006b, Theorem 1), there exists a
continuous real-valued function f € Cg(X) such that My, (f) = {v}. By possibly adding a nonnegative

constant to f, we can assume that f is nonnegative. But I'(f) = [ fdv # [ fdp. O

Finally, we want to provide a connection between unique ergodicity and temporo-spatial differentiation
problems. Before stating the main theorem relating these, we prove the following lemma that relates the a.¢

functionals to the L°° norm.

Lemma 3.1.7. Let (X, 1) be a probability space, and let f € L>°(X, ). Then
%Hf”oo <sup {|ac (f)|: C C X measurable, i(C) > 0} < || fl .,
and in particular, if f is real-valued, then
sup {|ac(f)| : C € X measurable, 1(C') > 0} = || f|| -

Proof. In either case, it’s clear that |ac(f)| < || f]|o for all C' C X measurable with u(C') > 0, since o is
a state on L (X, u)
Consider now the case that f is real-valued. If || f|| ., = 0, then the equality is immediate, so suppose

that [ [, > 0. Set f+ = max(f,0), f~ = max(—f,0). Then || f|loc = max {|[f*]|. . | £[|..}. Assume
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without loss of generality that || f|| ., = || fT||,.. For each k € N, set

co={oexi o> 2ol - fre x> i

Then p(Cy) > 0and ag, (f) > =17 +1 || f|l o forall & € N, meaning in particular that
sup {|ac (f)| : C C X measurable, 1(C) > 0} > || f]l

Now suppose that f is not necessarily real-valued. Let hy, ho € Lg° (X, i) be the real and imaginary
parts of f, respectively. Then ||f[loo < ||P1]lso + [|h2]loc- Therefore max {||h1|oc, [[P2]loc} = 3| floo-
Assume without loss of generality that [|21[|sc > [|h2]|o0s 50 [|h1 oo > 3| f|lsc. For each k € N, choose
C}, € X measurable such that p (C}) > 0, and agy (h) > kiﬂ |1 |0, Which is possible if we appeal to the

real case. Then

Taking the limit as £ — oo verifies that
1
sup {|ac (f)| : C € X measurable, u(C) > 0} > inHOO

O]

In the case that X is a compact metrizable space, the measure y is Borel, and the f is continuous, Lemma

3.1.7 can be sharpened as follows.

Lemma 3.1.8. Let (X, 1) be a probability space, where X is a compact metrizable space and p is a Borel

probability measure. Let f € C(X). Then

%HfHoo <sup{lac (f)| : € € X open, u(C) > 0} < ||l
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and in particular, if f is real-valued, then we have

sup {|ac(f) : € € X open, u(C) > 0} = || f| -
Proof. Under these conditions, all the Cj, and C}, in the proof of Lemma 3.1.7 are open. The result follows
from the same proof. O

A natural corollary of Lemma 3.1.7 is the following qualitative statement.

Theorem 3.1.9. LetT : G ~ (X, pu) be a measure-preserving action of a discrete (not necessarily amenable)
group G on a probability space (X, ). Let (F;);c » be a net of compact subsets of G with positive measure.

Let f € L*(X, u). Then the following conditions are equivalent.
(i) Avep [ — [ fdp in the norm topology on L.
(i) ag, (Avg rf ) — [ fdu for all nets of measurable subsets C; of X with positive measure.

Proof. This equivalence follows from the estimates in Lemma 3.1.7. For each i € .#, set

fo=Aver, £ - [ fdp.

(1)=-(ii) Suppose that f; — [ fdu in L*°, and let (C;);c.» be a net of measurable subsets C; of X with
Pp

positive measure. Then

Qg (AVgFi f) - /fdu‘ = |ac, (fi)] < Ifill oo 290,

(ii)=-(i) We’ll prove —(i)= —(ii). Suppose that lim sup; || fi|| ., > 0. For each i € .#, choose C; C X

measurable with positive measure such that
1 1
lac, (fi)l 2 5 sup {lac (fi)| : € C X measurable, 4(C) > 0} 2 7 [|fill -

Then lim sup; ‘aci (Avgp f) — ffd,u| = limsup; |ac, (fi)] > ilimsupz- || fill o > O. O

2

Theorem 3.1.9 gives a qualitative description of the conditions under which we get the “best possible

behavior for a temporo-spatial differentiation problem, i.e. conditions under which ac; (Avg S ) — [ fdu
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independent of the choice of C;. However, Lemma 3.1.7 provides a potential avenue for quantitative
estimates on the rate of convergence for temporo-spatial averages by “importing” estimates on the rate of
L*>-convergence for Avgyp, — [ fdpu.

In general, the classical ergodic theorems don’t give us estimates on the rate of convergence they promise,
and this convergence can in fact be very slow. See the “Speed of Convergence” discussion in §1.2 of (Krengel,
2011) for a survey of relevant counterexamples. However, some authors have studied situations where
effective estimates on the convergence of certain ergodic averages can be obtained. For a rudimentary
example of this type, consider the case where « € R\ Q is an irrational real, and 7" : Z ~ (R/Z) is an
action of Z on the circle by Tx = o + x, where R /Z is endowed with its Haar probability measure . Then
by appealing to the unique ergodicity of (X, 7T), we can say that % Z;Zé Tif — [ fdpin L>®(X, p) for
all f € C(X). However, if f(x) = €2™™ for some n € Z \ {0}, i.e. if f is a nontrivial character on R/Z,
then using a geometric series, we can see that H% Z?;& Tif — i fd,u”Oo < Aamk*l for some constant
Aqn € (0,00), yielding a quantitative estimate on that convergence rate. In particular, Lemma 3.1.7 tells us

that under those circumstances, we’d have that

1 k—1

acy, E Z ij < k_lAa,n
j=0

for all choices of (C},)22 ;. In this dissertation, we will say no more on this topic, which is linked to the study

of effective equidistribution (see (Einsiedler, 2010)).

Lemma 3.1.10. LetT : G ~ X be a topological dynamical system, where G is amenable. Let (F;);c s be a
Folner net for G, and let f € C(X), A € C. Then the following conditions are related by the implications

(i) <= (ii)=-(iii). If in addition we have that .# = N, i.e. that (F;);cn is a Fglner sequence, then (iii)=(i).
(i) [ fdp = X for all T-invariant Borel probability measures j on X.
(i) Avgp f — X uniformly.

(iii) Avgp, f(x) — A forallz € X.
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Proof. (i)=(ii): Suppose that [ fdu = A for all T-invariant Borel probabiliy measures £ on X, and let

(i)ic.s be anetin X such that

|Avep, f(a:) = A| = |[Avep, f — )‘HC(X) (Vi e 7).

Let (u;)ie1 be the net of Borel probability measures on X given by

/ odps = Avgg, g(zs) (Vg€ C(X),i€ 7).

Appealing to compactness, let (,uij) , be a weak*-convergent subnet along which

jes
/fdm — )\‘.

Let pu = lim; p1;;. Since (F;)je ¢ is Folner, it follows from a classical argument that 4 is T-invariant, and

1

lim ‘/fd,uij — )\‘ = lim sup
J ,

'/fd,u — /\‘ = limsup ‘/fdui — )\‘ = lim sup HAngi - )\HC(X) .

But [ fdu = A by (i), so it follows that lim sup;, HAngi f- /\HC(X) = 0, meaning that Avgp, f — A
uniformly.

(i1)=-(i): Trivial.

(i1)=-(iii): Trivial.

(iii))=(1): (F})ien is a Fglner sequence, and let p be a Borel probability measure on X. Then
Avep f 20 pointwise-almost everywhere, and the functions Avgy. f are dominated by the constant

function || f||c(x), so we can appeal to the Dominated Convergence Theorem to say that

/fdu = /Angi Fdp 28 /)\du =\

O]

Remark 3.1.11. The reason we add the caveat that .# = N to ensure that (iii)=-(i) in our proof of Lemma
3.1.10 is that there is in general no Dominated Convergence Theorem for arbitrary nets. For an elementary

example, let .# = Pr([0,1]) be the net of finite subsets of [0, 1], and define for each i € .#, and for each
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S e Z,let f; € C(X) be a continuous function such that f;|; = 1 and [ f;dp < 1/2, where p is the
Lebesgue probability measure on [0, 1]. Then lim; f;(z) = 1 for all z € [0,1], but limsup; [ fidp < 1/2.

The equivalence (i) <= (ii) of Lemma 3.1.10 in the case where G = Z, Fy, = {0,1,...,k — 1} can
be found in (Herman, 1983, Lemme on pg. 487). This result generalizes the classical result of Oxtoby
(Oxtoby, 1952, (5.3)) relating unique ergodicity and uniform convergence of temporal averages, as unique
ergodicity is equivalent to { [ fdv:ve Mp(X )} being singleton for all f € C'(X). Since this property
will be important for the remainder of this section, we introduce the following definition.

Definition 3.1.12. Let 7' : G ~ X be a topological dynamical system, and let f € C'(X). We say that f is
T-Herman (or simply Herman, when T is clear from context) if { [ fdv:ve Mp(X )} is singleton.

As Lemma 3.1.10 shows, this Herman property is equivalent to a certain definition of uniformity in
terms of uniform convergence of ergodic averages. However, since we used the term “uniform function” in
Chapter 2 to refer to a function whose ergodic averages converged in an L* norm, whereas Herman functions
converge in the uniform norm, we saw fit to distinguish these two terms, keeping the terminology between
chapters more consistent.

The following theorem tells us that the best kind of convergence for temporo-spatial differentiations can

be characterized in terms of ergodic optimization.

Theorem 3.1.13. LetT : G ~ X be a topological dynamical system, where G is amenable. Let ;i € M7 (X)
be a T-invariant Borel probability measure on X. Let (F;);c.» be a Fglner net for G, and let f € C(X).
Then the following conditions are related by the implications (1)=(2)=-(3), and if p is fully supported on X,
then (3)=(1).

1. f is Herman.

2. For every net (C;);c.# of Borel-measurable sets C; of positive measure, the net

(O‘Ci (AVgFi f))iej

converges to [ fdpu.

3. Forevery net (U;);c.» of open sets U; of positive measure, the net

(an (AVgFi f))ieﬂ

63



converges to [ fdpu.

Proof. (1)=(2) Suppose that f is Herman, and let (F});c.» be a Fglner net for G. Then by Lemma 3.1.10,
the net (Avgy, f)ieﬂ converges in C(X)-norm to [ fdpu, and since || - [[oo < || - [l¢(x). it follows that
Avgp f— [ fdpin L°°(X, p). Therefore (1)=(2) follows from Theorem 3.1.9.

(2)=(3) Trivial.

—(1)= —(3) Suppose that y is fully supported. For this direction, we can assume that f is real-valued,
since otherwise we can break f into its real and imaginary parts and consider those parts separately. So for
the remainder of this proof, we can assume that f is real-valued.

Suppose that f is not Herman, and that p is strictly positive. Set

mi :min{/fdu:Z/E/\/lT(X)}a

ma :max{/fduzl/eMT(X)}.

If { [ fdp s Mp(X )} is not singleton, then m; < Mg, and in particular this tells us that at least one of the
inequalities | fdu < mo, [ fdu > my is true. We consider two cases:
Case (i): Consider the case where my > [ fdu. Set g = f + || fll¢(x)» Which is a nonnegative-valued

function with

I(g) = ma + | flleex) > / Fdp+ I loe = / gd.

Choose L € ([ gdu,T'(g)). For each i € .7, set

_ {z € X :Avgp g(z) > L} if HAngi gHC(X) > L,

X ifHAVgFL-QHC(X) <L

Because each U; is a nonempty open set, and p is fully supported, we know that each U; has positive measure.

By Theorem 3.1.5, we know that

lim |Avegr g|| =T(g9) > L > /gdu.
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Thus lim sup; v, (Avgp, g) > L > [gdp= [ fdu+ ||fllcix). so

limsup ay, (Avgg, f) = limsup ay, (Aver, g — || fllex)) > / fdu.

K3 2

Case (ii): Suppose m; < [ fdu. Consider g = || f||c(x) — f, a nonnegative-valued function. Then for

v € Mrp(X), we have

[ odv =1lewn - [ sav

= I'(9) = I fllcx)y —ma

> 1o - / Jdu

= /gd,u.

Choose L € ([ gdp,T(g)). Construct open subsets U; of X by

. {v € X : Avgp, g(z) > L} if |Avey, g|| > L,

X if ||Avegp, g|| < L.
Then by a similar argument to that wused in Case (i), we know that

lim sup; o, (Avg P, g) > L > [ gdu. It then follows that

limiinf av, (Avep, f) = limiinf av, (Avgr, (Ifllex) — 9))
= [|fllc(x) — limsup oy, (Avep, g)

< lleco - / gdy

= /fd,u.

O

We now come to a theorem which provides a qualitative connection between unique ergodicity and

temporo-spatial differentiation problems.
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Theorem 3.1.14. LetT : G ~ X be a topological dynamical system, where G is amenable. Let yn € M7 (X)
be a T-invariant Borel probability on X. Let (F;);c.» be a Fglner net for G. Then the following conditions

are related by the implications (1)=-(2)=-(3), and if u is fully supported on X, then (3)=-(1).
1. T : G ~ X is uniquely ergodic.

2. For every net (C;);c.» of Borel-measurable sets C; of positive measure, the net

(aC'i (AVng‘ f))ie,ﬂ

converges to [ fdu forall f € C(X).

3. For every net (U;);c.» of open sets U; of positive measure, the net

(O‘Uz‘ (AVgFi f))iej

converges to [ fdu forall f € C(X).

Proof. (1)=-(2) The unique ergodicity of 7' : G ~ X is equivalent to every f € C(X) being Herman. Apply
Theorem 3.1.13.

(2)=(3) Trivial.

=(1)= —=(3) Suppose that ' : G ~ X is not uniquely ergodic, and that y is strictly positive. By
Theorem 3.1.6, there exists a nonnegative-valued f € Cr(X) such that [ fdu < T'(f) = lim; ||Avgp, f||-
Let L € ([ fdu,T'(f)). Foreachi € .7, set

. {z e X:Avgp, f(x) > L} ifHAngZ_ fH > L,

X if ||Avey, f|| < L.

Because each U; is a nonempty open set, and p is fully supported, we know that each U; has positive measure.

Thus lim sup; ay, (Avgp, f) > L > [ fdu. O

In the event that we’re dealing not just with a Fglner net, but instead a Fglner sequence, we can make a
stronger claim: that unique ergodicity is equivalent to all the temporo-spatial differentiations of continuous

functions by that temporal averaging sequence converging.
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Theorem 3.1.15. LetT : G ~ X be a topological dynamical system, where G is amenable. Let yn € M7 (X)
be a T-invariant Borel probability measure on X, and let (F},);° , be a Folner sequence. Let f € C(X).
Then the following conditions are related by the implications (1)=(2)=(3)=(4), and if y is fully supported
on X, then (4)=(1).

1. f is Herman.

2. For every sequence (C,)72 | of Borel-measurable sets C}, of positive measure, the sequence

(aCk (AVng f));;

converges to [ fdpu.

3. For every sequence (Uy)32 , of open sets Uy, of positive measure, the sequence

(O‘Uk (AVng f))?:1

converges to [ fdpu.

4. For every sequence (Uy)32, of open sets U, of positive measure, the sequence

(O‘Uk (AVng f))io:1

converges to some complex number.

Furthermore, if { [fdv:ive Mp(X )} is not singleton, the measure p is fully supported, and the space

(X, p) is atomless, then we can choose a sequence (U,g)zozl of open subsets of X with positive measure and

a continuous f € C(X) such that <04U}/€ (Avgp, f)):o_l diverges and ;. (U}) \, 0.

Proof. That (1)=-(2)=(3) follows immediately from Theorem 3.1.13, and (3)=-(4) is trivial. Now we’ll
show that if x is fully supported, then —(1)=- —(4). Suppose that f is nor Herman. We can consider the case
where f is real-valued, since otherwise we can break f into its real and imaginary parts. Moreover, we can
assume that f is nonnegative-valued, since otherwise we can just replace f with f + || f||c(x). So for the

remainder of this proof, we assume that f is nonnegative-valued.
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Set

m :min{/fdy:yeMT(X)},

ma :max{/fdz/:z/eMT(X)}.

If { [ fdp s Mp(X )} is not singleton, then m; < Mo, and in particular this tells us that at least one of the
inequalities [ fdu < mg, [ fdp > my is true.

Case (i): Consider first the case where mg > [ fdu. Choose L, M € Rsuchthat [ fdu < L < M <
I'(f). Define open sets Vi, Wi, C X for k € N by

Vi ={xe€X:Avgp f(z) > M},

Wy ={xeX:Avgp f(z) <L}.

Both sets are obviously open, since they’re preimages of open subsets of R under the continuous functions
Avgp, [ € Cr(X).

First, we know that there exists K € N such that V}, # () for all k > K. This is because we know there
exists K € Nin X such that ||Avgp, f| (x) > M forall k > K, and by the Extreme Value Theorem, we

know there exists a sequence (x)72; such that

[Aver, f(@)]| o x) = Aver, f(zk)

for all k£ € N. In particular, if & > K, then z;, € V}. Therefore V), # 0 for all k > K.

Secondly, we claim that T/}, is nonempty for all & € N. To see this, suppose to the contrary that W, = ()
for some k& € N. Then f(z) > L > [ fdu for all z € X, meaning that [ fdu > L > [ fdu, a clear
contradiction. So Wy, # () for all k € N.

Now, define a sequence (Uy)32 ; of nonempty open subsets of X by

;

X ifk<K,

Ug=SV, ifk>Kisodd,

Wy, if k> K iseven.
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Then

lim sup oy, (AVng f) > lim sup QUspt1 (AVngkH f)

k—oo k—o00

= lim sup ank.H (AVgFQkJ,-I f)

k—o0

> lim sup oy, (M)
k—o00

= M,

liminf ag, (Avep, f) <liminfag,, (Avep, f)

— hknl iol.}f oy, (Avgr, f)

< Tim
< hklglcgf aw,, (L)

=0L.

Therefore

lim inf oy, (AVng f) < L < M <limsup oy, (AVng f) ,
o0

k— k—o0

meaning the sequence diverges.

Case (ii): Consider now the case where m; < [ fdu. Replacing f with f* = || f|lc(x) — f, another

nonnegative-valued continuous function, we see that

[ fau=1loo - [ sau<iflog - m =max{ [ ravsv e saco}.

We can now carry out the construction from Case (i) on f” instead of f to get a sequence (Uy)?2 ; of open

sets along which (aUk (Avg o Vi ))2021 diverges, and thus along which (aUk (Avg .t ))2021 diverges.

Furthermore, if in addition, we assume that (X, y) is atomless, then we can replace our Uy, with subsets

U}, such that ¢ (U}) \, 0. This can be done by recursively constructing a sequence of balls U}, contained

in U}, with sufficiently small radius that p (U} ;) < min {x (U}),1/k} for all k € N. This is possible by

virtue of the atomlessness of (X, ), since 0 = p({yr}) = limy 00 (B (yk, 1/n)). The above calculation

will proceed the same way with the Uy, replaced by U;..
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Theorem 3.1.16. LetT : G ~ X be a topological dynamical system, where G is amenable. Let n € M7 (X)
be a T-invariant Borel probability on X, and let (F},)?° ; be a Folner sequence. Then the following conditions

are related by the implications (1)=(2)=(3)=(4), and if y is fully supported on X, then (4)=(1).
1. T : G ~ X is uniquely ergodic.

2. For every sequence (C,)72 | of Borel-measurable sets C}, of positive measure, the sequence

(ac, (AVng f))iozl

converges to [ fdu forall f € C(X).

3. For every sequence (Uy);2, of open sets U}, of positive measure, the sequence

(aUk (AVng f))z;

converges to [ fdu forall f € C(X).

4. For every sequence (Uy)32, of open sets U}, of positive measure, the sequence

(aUk (AVng f))z;

converges to some complex number for all f € C(X).

Furthermore, if (X, T) is not uniquely ergodic, the measure . is fully supported, and the space (X, )
is atomless, then we can choose a sequence (U,’C)ZO:1 of open subsets of X with positive measure and a

continuous f € C(X) such that (an (Avgp, f))ZO diverges and . (U}) \, 0.
’ =1

Proof. That (1)=-(2)=-(3) follows immediately from Theorem 3.1.14, and (3)=-(4) is trivial. Now we’ll show
that if p is fully supported, then —(1)=> —(4). Suppose that 7' : G ~ X is not uniquely ergodic. By Theorem

3.1.5, there exists a nonnegative-valued f € Cr(X) such that [ fdu < I'(f) = limj—oo ||Avgp, f

, 1.e.

for which { [ fdv : v € Mp(X)} is non-singleton. Appeal to Theorem 3.1.15. O

Remark 3.1.17. Our Theorem 3.1.15 generalizes Theorem 2.1.10. We thank Benjamin Weiss for pointing

out that connectedness was not necessary for that result.
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3.2 Special cases of temporo-spatial differentiation problems

We digress here quickly to consider certain special classes of temporo-spatial differentiation problems:

where the sequence of spatial averaging sets are constant, and where the spatial averaging sets have measure

going to 1.

Proposition 3.2.1. LetT : G ~ (X, ) be a measure-preserving action of a discrete group G on a probability
space (X, uu). Let f € L'(X, ju), and let (F)32., be a sequence of nonempty finite subsets of G such that

the sequence (AVng f) converges to a function f* € L*(X, p) in the weak topology on L*(X, p1). Then

for every measurable subset C' of X with positive measure, we have

ac (Avep, ) "= ao (f).

Proof. We know p(C)'xc € L®(X, p) = (LY(X, ,u))/, SO

ac (Avgp, f) = /M(C)1Xc Avgp, fdu

= (Avgp, f,(C) 'xe)

|:AVng #"28° £* in the weak topology on L' (X, u)] hopo (f*, 1(C) xc)

=ac (f7).

O]

We note that Proposition 3.2.1 is exceptional among all our temporo-spatial convergence results to date,

in that it can be applied to a function f which is not L>, but merely L. It also brings us to the following

corollary.

Corollary 3.2.2. LetT : G ~ (X, 1) be a measure-preserving action of a discrete amenable group G on a

probability space (X, j1). Let f € L'(X, ;1), and let (F},)?2, be a Folner sequence for G. Then for every

measurable subset C of X of positive measure, we have

ac (Avep, f) "= ao (F),

where f* is the projection of f onto the subspace of invariant functions in L*(X, p1).
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Proof. This is a corollary of Proposition 3.2.1 and the Mean Ergodic Theorem for actions of amenable groups

(Kerr and Li, 2016, Theorem 4.23), since the norm topology on L' is stronger than the weak topology. [

Proposition 3.2.3. LetT : G ~ (X, ) be a measure-preserving action of a discrete group G on a probability
space (X, i), and let (Cy,)32, be a sequence of measurable subsets of X such that ;1(Cj,) — 1. Let (Fj,)72

be a sequence of nonempty finite subsets of G. Then

i ac, (Aver, f) = [ fd

forall f € L>®(X, p).

Proof. Fix f € L*°(X, u). Then

[ = ac, (aven, f)‘
= / Avgp, du—/ Avgp, fdu+/ Avgp, fdu—u(Ck)l/ Avgp, fdu'
X Cr Cr Cy,

<| [ Aven fau- [ avey, fdu'Jr‘ [ Aven san—n(Ct [ avey, fdu’
X Ch Cy Cy

= / Avgp, fdu|+ (1 —p(Cr)™") ‘/ Avgp, fdu’
X\Ck Ck
< (1= p(C)) 1 flloo + (1 = u(Cr) ™) m(Cr)[I fll oo
kj}MOO

O]

In light of Proposition 3.2.3, we can see that temporo-spatial differentiation problems become trivial in the
case where y(Cj) — 1 for f € L (X, ). The result, however, fails for any unbounded integrable function.
Let f € L (X, ) \ L%°(X, 1), i.e. an unbounded integrable function, and let B, = {x € X : |f(z)| > k}

for all k € N. Then by Chebyshev’s inequality, it follows that 0 < pu(Ey) < k71||f|j; for all k € N, and
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p(Ex) (0. Thenif T': G ~ (X, p) is the trivial action, i.e. T, = idx for all g € G, then

g, (Aver, |f]) = s (|f])
>k
k
= OE; (AVng |f’) = +00.
Based on this example, we can see that in contrast with Proposition 3.2.1, there’s no hope for improving

Proposition 3.2.3 to even the case where f € L™~ (X, u) =) ) LP (X, ).

pe(l,00
3.3 Temporo-spatial differentiation theorems around sets of rapidly vanishing diameter

In this section, we’ll be concerned with the following general setup and question: Let (X, p) be a
compact pseudometric space, and let ' : G ~ X be a continuous action of a locally compact group G on
X which preserves a Borel probability measure ;4 on X. Now fix some point zg € X, and consider a net
of positive-measure subsets C; of X containing x¢. When will the temporo-spatial derivative relative to C;
(and some averaging net F;) resemble the pointwise temporal average at xo? Theorem 3.3.2 establishes a
powerful sufficient condition: If f : X — C is uniformly continuous and bounded, and the diameter of the
elements of the net C; go to 0 sufficiently fast, then we’ll have that (Avgp. f) (z0) = ac, (Avgy, f), where
“sufficiently fast” depends upon the (pseudo)metric properties of the continuous action, the averaging net
(F})ic.7» and the point xq. In this situation, we can reduce the temporo-spatial problem to a problem of taking
a pointwise ergodic average. We then consider cases where narrowing our focus (e.g. considering Holder
actions instead of general continuous actions) allow us to improve the diameter decay rate. We then move on
to make statements about the “probabilistically generic” behavior of these temporo-spatial derivatives by
appealing to pointwise convergence results from ergodic theory. Finally, we extend this pointwise reduction
to the setting of nonconventional ergodic averages with Theorem 3.3.12.

Several results in this section will be quite general in their statement, and as such will sometimes require
a number of additional hypotheses that are satisfied automatically in many reasonable situations. We make
notes after the proofs of some results to note that certain hypotheses stated explicitly in the results in question

are satisfied a priori in certain reasonable cases.
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Our first result of this section describes a sufficient condition for the temporo-spatial averages to reduce

to pointwise averages.

Lemma 3.3.1. Let (X, p) be a compact pseudometric space, and let T : G ~ X be a continuous action of a
locally compact topological group G (not necessarily amenable) on X . Let p be a regular Borel probability
measure on X. Fix a point zg € X.

Let (F});c.» be a net of compact subsets of G with positive Haar measure m. Let (C;);c » be a net of
measurable subsets of X such that u(C;) > 0 and xo € C; for alli € .#. Suppose that for every § > 0, there

exists a net (A;);c.» of measurable subsets of G such that

A; C {g € Fi : diam(C;) < 8}, (Vi € .7)

lim m(4;) =
i m(F)

Let f : X — C be a continuous function. Then

lill,m ‘ (AVgFi f) (z0) — ag; (AVgFi f)‘ =0.

Proof. Fix € > 0. Since f is uniformly continuous (by Lemma 2.3.1), there exists § > 0 such that if
y1,92 € X, and p(y1,y2) <6, then [f(y1) — f(y2)| < 55- Let (A;)ic.r be as in the lemma statement, and
set B; = I} \ A; foralli € .Z, so lim; m(B;)/m(F;) =0

Now, we estimate

|(Avep, f) (z0) — ac,(Avep, f)]
’O‘C (Avgp, f) (z0) — Avgp, f)‘

F(Tyz0) — <fng>>) dm(g)

a (e
<o <m<1ﬂ Ty - (£ 7))
loc: (i [ (B0 = (7 0 T)amto))
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Our goal now is to bound both

by 5.

First, we estimate the term ’0401- (m(lF_) fAj(f(Tgxo) —(fo Tg))dm(g)) ’ We see that if g € A;, then

e (s [ 1T0) = 70Tt )|
:\M /m J ], o) = 5(@m)am(g)anta)

/ m(F, / |[f(Tyzo) — f(Tyx)| dm(g)dp(x)

Butif y € T,C;, and Dy, (g, diam(C;)) < 6, then 2o, T,-1y € C;, meaning that

p(TQ‘TOa y) = p(Tng’Tg(Tg_ly)) S DIO (Q, Tg—ly) S DIO (g’dlam(cl)) S 6

Therefore

0 Lt ) stmamtoinG) < s [ s [ Samio)ut

Now, we bound the term ‘aci (ﬁ i) 5, (f(Tyzo) = (fo Tg))dm(g)) ‘ By estimates similar to those

used to approximate the former term, we have that

f(Tyzo) — f(Tyx))dm(g)du(z)
e Lt

101 / m( /|f (Tyxo) — f(Tyx)| dm(g)dp(z)
= (10,)/ (FZ)/ [ fllw) dm(g)dp(z)

e (B) m(B;)
Choose I € .# such that if i > 1, then 75725 < gt Then if ¢ > 1, then (575 (2] fllu) <

£
3-
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Therefore, if i > I, then ’(Angi f) (zo0) — ac,(Avgp, f)‘ <S+5=e O

We have stated Lemma 3.3.1 for pseudometric spaces, rather than just metric spaces. In Chapter 2,
we found that looking at certain pseudometric spaces helped us to establish convergence results for certain
temporo-spatial averages. For example, Proposition 2.3.2 was useful in proving Theorem 2.3.5. For this
reason, we state several results of this section in terms of compact pseudometric spaces.

We also observe that Lemma 3.3.1 does not assume that the action 7" : G ~ (X, p1) is measure-preserving,
only continuous.

Lemma 3.3.1 as stated is a powerful tool for achieving the kind of reduction to the pointwise setting that
we aim for, but we desire still a sufficient condition for the hypotheses of the lemma to attain. The following
result states that, under appropriate conditions, we can find an xg-dependent diameter decay condition on

(Ci);e.s for this reduction to attain.

Theorem 3.3.2. Let (X, p) be a compact pseudometric space, and let T' : G ~ X be a continuous action of
a locally compact topological group G (not necessarily amenable) on X . Let i1 be a regular Borel probability

measure on X . Fix a point xy € X, and for each g € G,r € (0,00), let D,,(g,r) be the value
D,y (g,7) =sup{p(Tyzo, Tyz) : x € X, p(xo,x) <71},

and assume that Dy, (-,7) : G — (0, 00) is measurable for each r € (0, c0).
Let (F});c.s be a net of compact subsets of G with positive Haar measure m. Let (C;);c » be a net of
measurable subsets of X such that 1(C;) > 0 and xo € C; for alli € .. Suppose that for every § > 0, we

have

i ™ ({g € F; : Dy,(g,diam(C;)) > 6})

1 (D —0.

Let f : X — C be a continuous function. Then

li?l ‘ (AVgFi f) (z0) — ag; (AVgFl- f)‘ =0.

Proof. For each § > 0, set

A; = {g € F; : Dyy(g,diam(Cy)) < 6}
The result follows from Lemma 3.3.1. 0
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The assumption that D, (-, 7) : G — (0, c0) be a measurable function in G for all r € (0, co), though
relevant to make sure the sets A; in our proof are measurable, is satisfied automatically in the case where G
is discrete. Our use of this function D, ensures that the condition being imposed is in fact a decay condition
on diam(C}), in the sense that if (C;),. , is a net satisfying the condition

i ™ ({g € Fi : Dy,(g,diam(C;)) > 6})
i m(F;)

=0 (V6 > 0),

and (C7),. , is a net of measurable subsets of X containing o with positive measure, and diam (C}) <
diam(C;) for all i € .#, then (Cj),. , will also satisfy the condition. However, this decay rate depends on
Zg, a shortcoming which can be overcome with some additional conditions on the action 7', as will be seen in

Theorem 3.3.4.

Definition 3.3.3. Let (X, p) be a pseudometric space (not necessarily compact), and let 7" : G ~ X be an

action of a group G on X. We call the action Hélder if for every g € G exist H(g), L(g) € (0, c0) such that
p(Tyz, Tyy) < L(g) - pla,y)7@ (Vg € G,z € X,y € X).

Our next result shows that if we assume that our action is Holder, and the Holder parameters of 7, satisfy
certain measurability properties as functions of G, then this diameter decay rate can be chosen independent
of . We remark now that our statement of the result is quite wordy, with several hypotheses, but as we’ll

explain shortly, several of these hypotheses are satisfied automatically in many cases.

Theorem 3.3.4. Let (X, p) be a compact pseudometric space, and let T : G ~ X be a continuous action of
a locally compact topological group G (not necessarily amenable) on X . Let i1 be a regular Borel probability

measure on X . Assume further that there exist measurable functions H, L : G — (0, c0) such that
p(Tyz, Tyy) < L(g) - pl(w, )" (Vg € G, € X,y € X).

Let (F;);c.s be a net of compact subsets of G with positive Haar measure m. Let (C;);c » be a net of
measurable subsets of X such that u(C;) > 0 and x € C; for all i € .#. Suppose that for every 6 > 0, we

have

lim m ({g € F;: L(g) - diam(C;)#(9) > 6})

1 Y —0.

77



Letxzg € X be apointin X, and let f : X — C be a uniformly bounded continuous function. Then

lim |(Avep, f) (z0) — ac, (Avgp, f)| = 0.

Proof. We first observe that if p(Tyz, T,y) < L(g)p(z,y)79), then D, (g,7) < L(g)r9 for all 2 € X,

so diam(T,C;) < L(g) - diam(C;)"(9), Given § > 0, set
A = {g € Fy : L(g) - diam(C;) ) < 5} ,

and apply Lemma 3.3.1. O
Remark 3.3.5. * If G is discrete, then the measurability assumptions on H, L are automatically fulfilled.

 If T}, is Lipschitz for all g € G, then we can take H to be the constant function 1. This is the case in

particular if 7" is an action on a compact Riemannian manifold X by diffeomorphisms.

* In the special case where G = Z, if both T, T"_; are Holder with exponent cg and coefficient L, then

for n > 0, we can take H(n) = oz‘om, L(n) = Lgﬂ.

* If G acts by isometries, then we can take H, L to both be the constants 1.

Theorem 3.3.4 says that given a Holder action 7" of a group GG (subject to certain measurability conditions)
on a compact pseudometric probability space, and an averaging net (F;);c ~, there exists a diameter decay
rate such that if (C});c.» is a net of positive-measure sets containing a fixed point ¢, then the temporo-spatial
derivative at C; will resemble the temporal pointwise average. Notably, this decay rate depends only on the
averaging net and the Holder condition on 7', and not on the point x( or the function f.

Theorem 3.3.4 cannot be called sharp in the strictest sense, since given any net (C;) satisfying the
hypotheses of Theorem 3.3.4, we could replace all the C; with C; U E, where E is some fixed subset of X
with positive diameter but measure 0. A truly sharp Theorem 3.3.4 would -at the very least- have to account
for a notion of “essential diameter.”

Under an additional assumption on the function being averaged, we can provide quantitative estimates

on the approximation in Theorem 3.3.4.

Proposition 3.3.6. Let (X, p) be a compact pseudometric space, and let T : G ~ X be a continuous

action of a locally compact topological group G (not necessarily amenable) on X. Let . be a regular Borel
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probability measure on X. Assume further that there exist measurable functions H, L : G — (0, 00) such

that
p(Tyx, Tyy) < L(g) - p(z,y)79) (Vg€ G,z e X,ycX).

Let F' be a compact subset of G with positive Haar measure m, and let C' be a measurable subset of X such
that ;(C') > 0.

Letxg € X be apointin X, and let f : X — C be a Holder function with constants c, 3 for which

f(z) = f(y)| < c- p(z,y)” (Va,y € X).

Then
c
m(F)

(Avep ) (20) — ac (Avey f)] < /F L(g)? - diam(C)*# @dm(g).

Proof.

|(Avgp f) (z0) — ac (Avgp )]

ac (g [0 @0~ (oL am) )

e Lot LU0 - @) dmig)ante)
)

F
/F | (Tyro) — [ (Tya)| dm(g)du(x)

@r—t
T
EL

.qu—‘

<o | Lo (o) o)) dmig)duta)

5 [ 1@ diam(©) "D am(gap(z)

_ 8. diam(C)PH@dm
et [ D) - dinan(C) ()
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Our next result takes us in the direction of a “random temporo-spatial differentiation problem,” where we

consider a temporo-spatial problem in which the spatial averaging net is considered to be chosen “randomly

according to some scheme or constraints.

Corollary 3.3.7. LetT' : G ~ X be a continuous action of a locally compact topological group GG on a
compact pseudometric space X = (X, p), and let ;1 be a regular Borel probability measure on X, and let

(F})ics beanetinG. Let H, L : G — (0, 00) be measurable functions such that
p(Tyz, Tyy) < L(g) - plw, )" (Vg€ G,w € X,y € X).
Suppose that for each x € X, the net (C;(z));c.» is a net of measurable subsets C;(x) of X containing the

point x such that (C;(x)) > 0 for all z € X, as well as that for almost all x € X, we have

i ™ ({g € F; : L(g) - diam(Cy(z))"@) > (5})

7 m(Fl) =0

forall 6 > 0. Let f : X — C be a continuous function, and suppose that for almost all x € X, we have that

lim; Avgp, f(x) = f*(x), where f* is a measurable function X — C. Then

limag, @) (Aver, f) = f*(2)

for almost allz € X.

Remark 3.3.8. Corollary 3.3.7 is a tool that turns almost-sure pointwise convergence results from ergodic
theory into almost-sure convergence results for classes of random temporo-spatial differentiations. Corollaries
3.3.10 and 3.3.11, corresponding to the Lindenstrauss pointwise ergodic theorem and Bourgain’s theorem on
pointwise convergence of averages along polynomials, respectively, are special cases of Corollary 3.3.7. In
principle, there is a special case of Corollary 3.3.7 corresponding to any result that ensures the almost-sure

pointwise convergence of an ergodic average.
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Proof of Corollary 3.3.7. Let

B pay . m ({g € F; : L(g) - diam(C;(z)) "9 > 1/k}) _
A—ﬂ{méX.hzm m(F) =0,

k=1

B = {:r €eX: lizmAngif(x) = f*(a:)}

Both A, B are of full measure by hypothesis, and thus sois A N B. Let z € AN B. Then

’O‘Ci(ac) (AVgFi f) - f*(ff)‘ < ‘O‘Ci(x) (AVgFi f) — Avgp, f(l‘)| + ‘AVgFi f(x) - f*(ff)‘

z—_>>oo 0,
where the first summand goes to 0 (by Theorem 3.3.4) because = € A and the second summand goes to 0

because x € B. O

As arule, results like Theorem 3.3.4 lead naturally to results like Corollary 3.3.7, and we’ll see several
other examples of this in this chapter. Theorem 3.3.4 provides a sufficient condition for a spatial averaging net
(Ci);c.s around a point z to induce a temporo-spatial differentiation problem that’s reducible to a pointwise
temporal problem at that point x; it then follows that if we have some scheme for associating to every point
r a spatial averaging net (C;(z));c.» around x, and we know that Avgp. f(x) — f*(x) almost surely for
f € C(X) continuous, then we have a convergence result for the “random temporo-spatial differentiation
problem” (ac,(2) (Avep, f)),. - There will be several other examples of results like Corollary 3.3.7 in
various contexts, taking some temporal pointwise reduction result like Theorem 3.3.4 and extrapolating a
statement about random temporo-spatial problems.

It should be noted, however, that the convergence in Corollary 3.3.7 will in general be only for almost
every x € X, rather than all z € X. If there exists a point x € X where (Avg S (a:))l c.» does not converge

to f*(x), then Theorem 3.3.4 tells us that (aci(x) (Angi f))ief won'’t either.

Corollary 3.3.9. Let T : G ~ X be an action of a locally compact topological group GG on a compact
metric space X = (X, p) that preserves a Borel probability measure p. on X, and let (F;);c » be a net. Let

H,L:G — (0,00) be measurable functions such that

p (Tyz, Tyy) < L(g) - pla,y)"® (Vg€ G,z € X,y € X).
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Suppose that for each x € X, the net (C;(z));c.» is a net of measurable subsets C;(x) of X containing the

point x such that (1(C;(x)) > 0 for all z € X, and

m ({g € F;: L(g) - diam(C;(z))79) > 6})

li =
e m(F;) 0
for almost all x € X. Suppose that for p-almost all z € X, we have
i Av, f(o) = [ fdu (Vf € C(X)

Then for almost all x € X, we have

lim ac, ) (Aver, f) = / fdu.

Proof. Since X is compact metrizable, it follows that C'(X) is separable, so let { f,, : n € N} be a subset of

C'(X) with dense span. For each n € N, set

A, = {x € X :limag;(y) (Angi fn) = /fdu}.

Each A, is of full measure.

Let f € C(X), and fix N € N. Choose Jy € N and a sequence 21 y, ..., zjy,~ € C such that

JNn 1
li S vt <.
Ngnoo f sz?Nf] -3
7=1 c(x)
For convenience, set ¢y = 23121 zj N fj. Then Hf fdp — fngd/'LHLOO(X,,LL) <|If=onllex) <5

Now for j € {1,...,Jn}, choose i; y € .# such thatif ¢ > i; v, then

1
< .
~ 3N2max{zn, 1}

ac; (Avgp, fi(x)) —/fdu‘
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Choose Iy € . such that Iy > ij v forall j € {1,...,Jy}, and letx € (), oy An. Thenif i > Iy, we

have

ac, (Avgg, f) — /fd,u‘ <l|ac, (Avgp, f) — ac, (Avgp, on)|

_|_

ac; (Avgp, ¢n) — / ¢Ndﬂ‘

+‘/¢Ndu—/fdu‘.

We bound each of the three summands by ﬁ in turn. Firstly, we can see that

lac (Aver, ) = ac, (Avgr, éx)| = |ac, (Aver, (f = on))| < If = olloex) < 55+

which addresses the first summand. For the second summand, we have

JN

ac, (Avep, o) — / ¢Ndﬂ‘ =Dz (aci (Aver, fj) - / de”>

=1

N
<>zl
j=1

Qg (AVgFi fj) —/fjdﬂ'

M= T

1
2,7
j=1 P 3N2max{|zj n|, 1}
1
< —.
— 3N

Finally, for the third summand, we have that

1
[oxan= [ an] < ow -~ Flow < 55

Taken together, these tell us that for every N € N,z € ﬂneN A,,, there exists I € . such that if ¢ > I, then
lac, (Avgp, f) — [ fdu| < +. Therefore lim; ac, (Avgp, f) = [ fdu forall z € (,,cy An- Since each
A,, is of full measure, it follows that their countable intersection (.-, A,, is of full measure, yielding our

desired almost-sure convergence. d
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This result tells us that if to (almost) every x € X we assign a net (C;(z)) of sets of positive measure
with rapidly decaying diameter, and Avgp. f — [ fdpforall f € C(X) then the “probabilistically generic”
behavior is that a¢, (Avgy, f) — [ fdu.

Corollary 3.3.9 encompasses several results from Chapter 2, including Theorem 2.2.1, Theorem 2.2.3,
and Corollary 2.3.3. Proposition 2.3.2 can also be recovered from our Corollary 3.3.7. Corollary 3.3.9 is
motivated by the desire to find positive convergence results for temporo-spatial differentiations relative to
actions of groups other than Z, as well as to find to find positive convergence results for temporo-spatial

differentiations relative to averages over other subsequences of Z. Moreover, Corollary 3.3.9 opens the door

to temporo-spatial differentiations along subsequences. We present here a few examples.

Corollary 3.3.10. LetT : G ~ X be an action of a locally compact amenable topological group GG on a
compact pseudometric space X = (X, p) that preserves a regular Borel probability measure . on X, and let

(Fy)ken be a tempered Folner sequence for G. Let H, L : G — (0, 00) be measurable functions such that
p (Tyw, Tyy) < L(g) - plz,y)"9 (Vg€ G,x € X,y € X),
Suppose that for each x € X, the sequence (Cy(x))ken is a sequence of measurable subsets Cy(x) of X

containing the point x such that ;i(Cy(x)) > 0 for all z € X, and

lim ™ ({9 € Fr: L(g) - diam(Cj,(z))#9) > 6})

=0
k—o0 m(Fk)

for almost all x € X.

Then given f € C(X), for almost all x € X, we have

lim ag, () (AVng f) =Ef(x),

k—o00
where E is the projection onto the space of T-invariant functions in L (X, ).

Proof. The Lindenstrauss Ergodic Theorem (Lindenstrauss, 2001, Theorem 3.3) tells us that Avgp, f — Ef

almost surely, so we can apply Corollary 3.3.9. O

Corollary 3.3.11. Let P € R[t] be a polynomial with real coefficients, and let T : Z ~ X be an action of Z

on a compact pseudometric space X = (X, p) that preserves a regular Borel probability measure p on X .
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Let F, = {|P(1)],|P(2)],...,|P(k)|} forall k € N, and let H, L : G — (0, 00) be functions such that
p(Toz, Tuy) < L(n) - p(a,y) "™ (Vn€ZxeX,yeX).

Suppose that for each x € X, the sequence (Cy(x))ken is a sequence of measurable subsets C(x) of X

containing the point x such that ;i(Cy(x)) > 0 for all x € X, and

lim ™ ({n € Fx: L(n) - diam(Cj,(z))H ™ > 5})

k00 m(F) =0

for almost all z € X. Let f € C(X). Then there exists a function f* € L*° (X, u) such that for almost all

xr € X, we have

Jim ac, () (Avgp, f) = f*(=).

Proof. By (Bourgain, 1989, Theorem 2), there exists f* € L°°(X, ) such that Avgp, f(z) — f*(z) almost

surely. Apply Corollary 3.3.7. O

Finally, we remark that a form of the pointwise reduction in Theorem 3.3.2 can be recovered in the
context of nonconventional ergodic averages. In order to make the statement of this result a bit more readable,
we use slightly different notation for the remainder of this section than we used in previous parts of this

article, using 7} to refer to an ¢th homeomorphism, rather than an action of the integer ¢ € Z.

Theorem 3.3.12. Let (X, p) be a compact pseudometric space, and let Ty, ..., Ty, be a tamily of homeo-
morphisms Ty : X — X. Let 4 be a regular Borel probability measure on X invariant under each Ty. Let
( (1)>C>o ( (L))C>o ;

n; N X be sequences of integers.

Fix a point g € X, and let (C})32 ; be a sequence of measurable subsets of X with positive measure

for which xy € Cy, and suppose that foreach{ = 1,... ¢, and every § € (0,00), we have that

(0
Hje {0,1,...,k—1} : diam (Tgﬂ Ck> 25}‘
k

— 0.
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Let fo, f1,..., fr € C(X). Then

L
im || 23 Ao T2 feteo) | — e | 3 A TIT )| =0

k— o0

Proof. For the sake of making some notation in this proof more concise, we’ll write

Ty = idy,

) %)
meaning that fj Hle T;J fo= Hf:o Tfnj fe. We also use || - ||, to denote the uniform norm on C'(X).
Fix M = max {1, || follu, || f1llus - - -+ || fz ||} and fix € > 0. By appealing to the uniform continuity of

the functions fy, f1,..., fr, choose &g, d1, ...,z > 0 such that

v e Xy e X o) <00 > (o)~ ) € 5 )] €= 01D

Set 6 = min {dg, d1,...,9} > 0, and set

n®
lﬁp:{je{QL”wk—lyde<Q]C%><5} (t=1,...,L,k €N),
L J4
A=A
/=1

Then

0.1 k- Ay U (01 k-1 A
k N k

L‘GQL”qk—H\Agv‘

2 ;

(=1

nt?
L Hje{(),l,...,k—l}:diam <T£] C’k> 25}‘
—

IA

k
1

k—
=0.
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We now turn to estimating

7=0 (=1 7=0 (=1
S% (fo(ivo)HT/ fz(%)) —ag, (foHT fz)
=0 /=1
=z 2| ((fo(ﬂfo)Hng fe(ﬂﬁo) nllT fe)
7=0 (=1
1 n® £
=z ac, ((fo(wo)HT/ Je( > fOHTg fz)‘
JEAL (=1 (=1

1
+ 4 >

Lo LI ()
((fo 20) [T707 felxo ) - h]]7,° fz)‘
=1

(=1

In light of this decomposition, we make separate estimates on

¢ n(l> ¢ N0
((fo xo HTg fe 960) foHT] fz)
=1

based on whether j € A orj € {0,1,...,k—1}\ Ap.
RO
If j € Ag, and © € Ay, then p (T; Tz, T ) < ¢§. Using an elementary “telescoping” estimate, it

follows that

VR

¢ n® ¢ n(é)
fo@) [T 7,7 fola ) (foﬂfo HTz )‘

(=1 {=

L h—1 TL(-Z) TL (h) (h) £)
< (I () o (527) - ()| (| T (5) )
h=0 \¢=0 f=h+1
L
h € L—h
SZ%M o+t
=€/2.
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On the other hand, if j € By, then

¢ n<e) L ()
((fo zo) [[T,7 £ )) —foHT/ fz)‘
4 (e) ¢ (;)
(fo 0 H ) foHTJ e

—oL+1pL+1

Now, choose K € N such that if k¥ > K, then

‘{0717"-7 _1}\"4]{’ €
k - 2L+2ML+1

Then for all k¥ > K, we have

V4 n ) nt
:% ((fo x0) || 7,7 fz(%)) - h]lT’ fz)
=0 =1 =1

1
+ 5 >

j€{0717 ak 1}\Ak

Lo W0
ac, ((fo(wo)HT/ fe(iﬂ()) foHT ! fz)
¢

=1

‘Ak‘ |{0717-‘-7 _1}\Ak| L+1 L+1

< — 29T M .

-k 2 + k

<< 4 € oL+1prL+1

) 2L+2ML+1

—€.

Therefore
k—1 l (£) k—1 4 £)
Jim Zfo(l“o)l]__[ngJ fe(wo) | = ag, Zofot]__lngJ fell=0

J= = Jj= —
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O]

Theorem 3.3.12 can be used to convert pointwise convergence results for nonconventional ergodic

averages into convergence results for random temporo-spatial averages, as shown by the following result.

Corollary 3.3.13. Let (X, p) be a compact pseudometric space, and let T}, . .., T, be a family of homeo-
morphisms Ty : X — X. Let 4 be a regular Borel probability measure on X invariant under each Ty. Let
( (1)>°o ( (L))Oo ;

n; N K be sequences of integers.

For each point x € X, let (Cy(x))32, be a sequence of measurable subsets of X with positive measure

for which x € Cy(x) and suppose that foreach¢ = 1,...,¢, and every § € (0,00), we have that

Hje{o,l,..., —1}: d1am<T y)ck( )>25H

A — 0.

Let fo, f1,..., fn € C(X), and suppose that f* € L>(X, u) such that

. *
]:0 E:l
for almost all x € X. Then
‘ = L @ )
Jim ag,@) | ¢ [T fo] = @)
j=0 ¢=1
for almost all x € X.
Proof. Set
1 k—1 n“)
E=queX: lim > fol@) [[7,7 f(w) = ()
j=0 =1
If x € E, then Theorem 3.3.12 tells us that
hﬁm acy (z) T fo H T, fo|l=1f (z)
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3.4 Weighed temporo-spatial differentiation theorems

For the duration of this section, we narrow our attention to the case where G = Z, and introduce a
generalized form of a temporo-spatial differentiation problem. We also adopt the common notation that the
action of the integer n € Z be written as 7. Let (X, i) consist of a compact pseudometrizable space X
endowed with a Borel probability measure i, and let 7" : X — X be a homeomorphism. A weight on X is a

measurable function X — T, where T = {z € C : |z| = 1}. For convenience, write

Ave 1= 7 3 (o).

JEF

where F' is a finite nonempty subset of Z. Let (C})?2; be a sequence of measurable subsets of X with

w(Cx) > 0forall k € N, and let f € L (X, 1v). What can be said of the limiting behavior of the sequence

g (o]
Ch (Angk f) k::l?

Moreover, suppose = is some family of measurable functions X — T. What can be said about the limiting

behavior of the sequence

ACk (AVg%k f) 20:1

forall ¢ € 27

We consider this problem in analogy with a classical problem of pointwise weighted temporal averages.

Wiener-Wintner pointwise ergodic theorem. Let (X, ;1) be a standard probability space, and let T be an
automorphism of the probability space (X, u1). Set [k] = {0,1,...,k — 1} C Z. Then for each f € L' (u)

exists a set Xy C X of full measure such that for all x € Xy, and all & € T, the sequence

(Avely ()

=1

converges, where we identify the unimodular complex number 6 with the constant function x — 6 on X.

The first alleged proof of the Wiener-Wintner Theorem was presented in (Wiener and Wintner, 1941), but
the argument presented was found to be incorrect. However, several proofs of the result have been presented

since then. See (Assani, 2003, Chapter 2) for a discussion of several different approaches to the result.
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As in Section 3.3, we present a very general result that allows us to reduce certain temporo-spatial
problems to certain pointwise temporal problems. Afterwards, we provide specific examples of this reduction.
Before we can prove Proposition 3.4.3, we introduce some terminology and prove an elementary technical

lemma.

Definition 3.4.1. Let  : (X,p) — C be a complex-valued function on a pseudometric space (X, p). A

modulus of uniform continuity for £ is a function A : (0,1) — (0, co) such that

Ve € (0,1) Vap,20 € X [(p(x1,22) < A(e)) = |€(x1) — &(m2)| < €]

Given a family Z of functions (X, p) — C, we call a function A : (0,1) — (0, 00) a modulus of uniform

equicontinuity for = if A is a modulus of uniform continuity for all £ € =.

A function £ is of course uniformly continuous if and only if it admits a modulus of uniform continuity,
and a family = is uniformly equicontinuous if and only if it admits a modulus of uniform equicontinuity.
Note we make no assumption that a modulus of uniform continuity or modulus of uniform equicontinuity is
the “best possible” choice. For example, if = = {1} consists solely of the constant function 1, then any map
(0,1) — (0, 1) would be both a modulus of uniform continuity for 1 and a modulus of uniform equicontinuity

for =.

Lemma 3.4.2. Let (X, p) be a compact pseudometric space, and let = be a uniformly equicontinuous family
of functions (X, p) — T with modulus of uniform equicontinuity A. Then =/ = {ﬁj € e E} is a uniformly
equicontinuous family for all j € Z, and if j # 0, then € — A (e/|j|) is a modulus of uniform equicontinuity

for =7

Proof. If j = 0, then Z7 = {1}, which is trivially uniformly equicontinuous, and in fact any map (0,1) —

(0, 1) whatsoever will be a modulus of uniform equicontinuity for Z°. Now assume that j # 0.
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We prove this first for j € N, i.e. j = |j| > 0. Let 1,29 € X, £ € E. We set up a telescoping sum

7—1

|67 (1) — & (wa)| = | (1) — &(2)) Y _ EP(1)& P ()
p=0

j—1

= [&(z1) — (@) - | D &P (1) P (g)
p=0
p—1

< [&(z1) — E@@2)| - Y 6P (1) P (w2)]
j=0

= |§(z1) — &(z2)| - J-

Now, in the case where j < 0, i.e. j = —|j|, we observe that =/ = (EU‘)*1 = {¢: (€&}, and

conjugation is an isometry. O

Proposition 3.4.3. Let (X, p) be a compact pseudometric space, and let T : X ~ X be a homeomorphism of
X. Let p be a regular Borel probability measure on X . Fix a point zo € X, and for eachn € Z,r € (0,00),

let Dy, (j,r) be the value
Dy, (j,7) = sup {p (Tjajo,Tja:) cx € X, p(xg,x) < r} .

Let (F},)2, be a sequence of finite nonempty subsets of Z. Let = be a uniformly equicontinuous family
of continuous functions X — T, and for each j € Z, let AV be a modulus of uniform equicontinuity for
=7. Let (Ck)$2., be a sequence of measurable subsets of X such that (Cy,) > 0 and zo € Cy, for all k € N.

Suppose that for every § > 0,¢ > 0, we have

lim {j € F : Dy, (g,diam(Cy)) > 0} _

k—o0 |Fk‘ 0’
lim [{j € F}, : diam (Cy) > AJ(e) }| o
k—o0 |Fk|

Let f € C(X). Finally, suppose there exists a constant A > 0 such that pu (T?Cy) < Au(Cy) forall j € N.

Then for all £ € =, we have

lim ’(Avg%k f) (x0) — ag, (Avg%k f)‘ =0,

k—oo

92



and the convergence is uniform in £ € =.

Proof. Our proof of this result is similar in structure to our proof of Lemma 3.3.2, but with the added wrinkle
of accounting for how the weight affects our averages.

Fix € > 0, and let £ € =. Since f is uniformly continuous, there exists d; > 0 such that if y1,ys € X,
and p(y1,y2) < 6, then |f(y1) — f(y2)| < Tnmax(T7T.y > Where || - ||. denotes the uniform norm on C'(X).

Write

. . €
_ . . D, .’. S, : ] < J y
A {jeFk Dy, (4, diam(Cy)) < 6, diam (T7Cy) < A <4)\max{1,|f|u})}

B, = F}. \ Ag.
Our hypothesis tells us that |Ag|/|Fx| — 1,|Bg|/|Fi| — 0. We estimate

(Avg%k f) (o) — ac, (Avg%k) ‘

= lag, ((AVg%k f) (o) — AVg%k f)‘

— |, |F1| S [€(wo) f (Vo) — € (f o T9)]

JEFY

<|ac, |F1k| S [E(wo £ (Tiao) — € (f 0 T9)]
JEA
1 Jg (T j j
+ |ac, ijZBk [€(zo) f (T720) — & (f o T7)]

We estimate these two terms separately, starting with the first.
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If j € Ag, then

o, (E(xo) f (TV0) — & (f 0 TY))]

_ ’M(lck) /C (E 60 (') ~&@)f (T'2)) dn()
<siey L [0S () — @5 ()] dute)
=u(ék) /T o |6 @) £ (T0) € (1799) £ ()] ant)
SP«(T)]\CIc) /chk | (o) [ (Ta0) — & (T 7y) f (y)| du(y)
< /. o, |8 @) £ (T20) =€ @) ()] an)

e | 18 @070 =€ (T79) 1 )] antw
=TT o, (€@ 1S (T0) = £ )]ty

+ M(T);Ck) /chk & (o) — & (T7y)| - | f(w)] du(y)
<—c ) o 1 (T20) = £ )] auty)

e | o, 180 =& ()] 1 an)

First, if y € T9C},, and Dy, (j,diam(Cy) < 6), then p (Tj:cg, y) < J, meaning that

A

w(TICy) / [ (TP20) = £ ()] dpty) < 7.

andy € T'Cy, = T 7y € Cj, meaning that p (zo, T 7y) < diam(Cy) < AJ (m) SO

T Jrog 1€ @) =€ ()]l dnt) < 5
Thus
- (Flk D> [6@o) f (T720) — & (foTj)]) <5

JEAE
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Suppose now that j € Bj. By a computation similar to the one performed for the case where j € Ay, we

get

(o) | (T70) — & (f o T7)]

SAL(T)J\'CIC) /ch €7 (o) £ (T70) =& (T7y) [ (v)| dus(y)

SM(T/;CIC)/mk (1€ (o) f (T70) [ + 1€ (Ty) £ (w)]) dna(y)

A
<
1 (17 Cy,)

=2 f |-

p(T7Cx) (2] fllu)

. |By| .
Choose K € N such that if k¥ > K, then ‘F—:| < m. Then if k£ > K, we have

‘ (Avg%k 1) (o) - ac, (Avg%k>

< |ag, . > [E(@o) f (TP0) — & (f o T7)]
1l 2
lacy [ o 3 [0 f (T9m0) — € (£ 0 T9)]
1l
§§+§

We note that our estimates on K were independent of our choice of £ € =, meaning the convergence is

uniform in &. O
With this in mind, we can state the following.

Theorem 3.4.4. Let (X, p) be a compact pseudometric space, and let T : X ~ X be a homeomorphism of
X. Let yu be a regular Borel probability measure on X . Suppose there exist functions H, L : 7. — (0, 00)

such that

p(T9z,T9%) < L(j) - p(x,y)H (VjeZxeX,yeX).
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Let (F},)72, be a sequence of finite nonempty subsets of Z.. Let = be a uniformly equicontinuous family
of continuous functions X — T, and for each j € 7, let A’ be a modulus of uniform equicontinuity for
=J. Let (Cr)2, be a sequence of measurable subsets of X such that (Cy,) > 0 and x € Cy, for all k € N.
Suppose that for every § > 0, ¢ > 0, we have

lim ‘{] € F:L(j) - dlam(Ck)H(J >5}}
k=00 | F| v

) ‘{jGFk.dlam(C’k)>Aj(6)}}
lim
k—o0 ‘Fk‘

=0.

Letxg € X be apointin X, and let f : X — C be a uniformly bounded continuous function Finally, suppose

there exists a constant A > 0 such that (TjC’k) < Au(Cy) forall j € N. Then for all { € =, we have
; £ £ _
Jim |(Aveh, £) (20) = ac, (ave, £)| =0

and the convergence is uniform in £ € =.
Proof. We have the bound D, (j,7) < L(j) - r#(). We can thus apply Lemma 3.4.3. O

Corollary 3.4.5. Let (X, p) be a compact metric space, and let'T' : X — X be a homeomorphism. Let 1.
be a Borel probability measure on X that’s T-invariant. Let f € C(X). For each xz € X, let Cy(x) be a

measurable subset of X with positive measure such that

po [ € K] Do diam(Ci(a)) > 8} _
k—o0 k ’
i |{J € [k] : diam (Cy(x)) > Al (e)}| _

Then for every f € C(X) exists a set Xy C X of full measure such that for allx € Xy, and all § € T, the

(ecuo (Avely)),_,

sequence

converges.
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Proof. By the Wiener-Wintner pointwise ergodic theorem, there exists a set Xy C X of full measure such
that for all z € X, and all 6 € T, the sequence

(AVg[ek] f (95)) :o_

=1

converges. By Lemma 3.4.3, it follows that limg_, ‘ack(x) <Avg?k} f) — <Avg[9k} f(m)) ‘ = 0. Thus the

sequence converges. O

We now consider a different class of weighting sequences, where we choose our weights to be constant
functions, but loosen our assumptions about boundedness. Given a sequence F = (F},)72 , of finite subsets

of Z, set

1
MY = { (ap)rez € CF : sup — Z laj| < oo
cen |Fe| =

We also introduce the notation

1 ,
Avg} = mZajfoT],
jeF

where F' is a finite subset of Z.
Our next result establishes that under a rapidly decaying diameter condition, temporo-spatial differen-
tiations involving weighted ergodic means for continuous functions can be reduced to pointwise temporal

averages. The twist here is that the diameter decay condition also hinges on the weighting sequence.

Proposition 3.4.6. Let (X, p) be a compact pseudometric space, and let T : X ~ X be a homeomorphism of
X. Let y1 be a regular Borel probability measure on X . Fix a point zo € X, and for eachn € Z,r € (0,00),

let Dy, (j,r) be the value
Dy, (j,7) = sup {p (Tj:co,Tj:L‘) cx € X, p(xg,x) < 7“} .

LetF = (F;)$2, be a sequence of finite nonempty subsets of Z. Let (ag)$2., € MY, and let (Cy)32,
be a sequence of measurable subsets of X such that ;(Cy) > 0 and x¢ € C, for all k € N. Suppose that for

every 0 > 0, we have

1
lim —— =0
dm T 2 ;1 =0,
JEFk, Dz (j,diam(Cy))>0

97



Let f : X — C be a continuous function. Finally, suppose there exists a constant A > 0 such that

1 (T7Cy) < Au(Cy) for all j € N. Then we have

Jim | (A, ) () =, (v, )] =0

Proof. Fix € > 0. Appealing to the uniform continuity and boundedness of f, choose § > 0 such that

p(y1,92) <0 = [f(y1) — fly2)| < e

Set

Ak’ = {.] S Fk‘ : Dwo(j7 dlam(Ck)) < 6}7

By = {] € Fy: D:ro(j, dlam(ck)) > 5} .

Then % < 1,and ﬁ >_jen, laj| — 0. Using a calculation similar to that used in our proof of Proposition

3.4.3, we get

’(Avg%k f) (x0) — ag, (Avg‘}k)’ <lag, |F1k| Z [ajf (zjo) —aj (foTj)}
JEAL

+ |ag, \Flk\ > [aif (T7a0) = a; (f o T7)]

JEBk

As before, we’ll estimate these two terms separately. Many of the calculations done here are quite similar to

those used in our proof of Proposition 3.4.3, so we will be terser in our presentation here.
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First, suppose j € Aj. Then

ace (0] (T0) = (Fo )| = 85| [ (7 (Pa0) = (T'2)) aute)

| Txg) — Ty T
SN Ck\f(T 0) = f (TVx)| dp(x)
< Aaj|

M/Z“jck |f (T720) — f ()| du(y)

< Aajle.

Therefore

(Fk Z a]f Txo)fa (foTj)])

JEAL

Z Alajle

JGAk

? Z ac, (a;f (T?x) — aj (f o T7))]
€Ay

L

|

| EE:|QNA6

JEFY

< | sup|Ey|~! a;| | e
( Y o

JEF,

Now, consider the case where j € By. Then

lac, (a;f (TVm0) —aj (f o T7))| < Alaj |f (T920) — f (y)| du(y)

1
1 (T9Cy) /chk
< Aa| 2[[flw) -
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Choose K € N such that if £k > K, then ﬁ > jen, laj| < e Then

1 - - 1
ac, | gy D [aif (TPw0) —a; (FoT9)] || < =t D Aasl2l1£]l)
JEA JEByg
1
<2 flle— E a;
= ”f” ‘kajeBk’ ]’

Therefore, if £ > K, we have

’(Avg%k f) (xo) - agy, (AVg%k) ’

<oy [ im0 losf (20) —ay (5o

JEAR

tlac, [ = > lajf (T7a0) = aj (f o T7)]

| E| jEBy,

< [ sup |Fe 7D lajl | Ae + 2] fllue
¢eN byt

=0 [ sup [EAT Y ol | + 20l | e
leN jeF,

This coefficient on ¢ is independent of our choice of k, so we can conclude that

Jlim [(Avef, f) (x0) — ac, (Aveg, f)| =0.
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Multi-local temporo-spatial differentiations

In this chapter, we focus on the case where the spatial averaging sequence (C},)?°  consists of finite
unions of balls, a setting we call “multi-local.” We study sufficient conditions for these corresponding
temporo-spatial differentiations to converge, as well as the existence and prevalence of pathological multi-
local temporo-spatial differentiations.

In Section 4.1, we establish several notations that will be used throughout the chapter, as well as some
standing assumptions and conventions.

In Section 4.2, we provide sufficient conditions for multi-local temporo-spatial differentations to converge.
We also show how these convergence results can fail if certain assumptions are relaxed.

In Section 4.3, we briefly present the theory of ergodic optimization. In particularly, we characterize the
maximum ergodic average in the context of continuous actions of amenable groups.

In Section 4.4, we construct multi-local temporo-spatial differentiations for a given real-valued con-
tinuous function f which have a prescribed compact set K as the set of limit points of the temporo-spatial
differentiation.

In Section 4.5, we consider temporo-spatial differentiations as sequences of measures

1 k=1 *
fe / Y Tifdu]|
(Ck) Sy = .
and consider how to construct sequences (Cr)i2y for which

. oo
LS (( f— @ J. C Zf;é 17 f d,u) k:l) is some prescribed subset of the Choquet simplex of 7 -invariant
Borel probability measures on X, where LS ((2)5- ;) denotes the set of all limits of convergent subsequences
of (21,)32 (defined in more detail in Section 4.1). In particular, we construct examples of (C},)7° ; for which
. (e @]
LS (( f— @ J. C Zf;é 17 f d,u) k:1) is the entire Choquet simplex of T-invariant measures.
In Section 4.6, we show that for a system (X, 7') with a specification-like property that we call the

Very Weak Specification Property, there exists a residual set of x € X that exhibit a strong form of the
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maximal Birkhoff average oscillation property. Specifically, there exists a residual set of x € X such that

LS ( (uwr( k))ZO:1) is the entire Choquet simplex of T-invariant measures for all non-constant polynomials

m(t) € Q[t] such that m(N) C N, where p, j, are the the empirical measures i, j, = 1 Z?;& 8, o T for

x € X. Consequently, for sequences (r);2 ; of radii decaying to 0 sufficiently fast, we have for a residual
m(k)—1 44 o0 . . .

set of x € X that LS ((f — m fB(x;Tk) Zjio) ijd,u) k:l) is the entire Choquet simplex of

T-invariant measures for all non-constant integer-valued polynomials 7(¢) that send nonnegative integers to

nonnegative integers.

4.1 Notations and conventions

Here we identify particular notations and conventions we adopt throughout this chapter. Individual
sections might place additional assumptions on some of the objects we define here. We also place more novel
definitions in the later sections of the chapter.

We will let (X, p) be a compact metric space, and 7' : G ~ X will be a continuous monoidal left-action
of a discrete monoid G on X by continuous maps (7y)4cc (not necessarily invertible). That is to say, the

maps (Ty)gec will satisfy the laws

Tgl o ng = TQIQQ (\v/gla.QQ € G)a

T, = idx,

where 14 denotes the identity element of G. We will use y to denote a Borel probability measure on X,
though we will not in general assume that y is T-invariant. The support of 1 will be denoted supp(u).

Given a finite subset F' of GG, and a function f : X — C, we write

1
Avgr f 1= D Ty,

geF

where T, f := f o T,. Similarly, if 3 is a Borel probability measure on X, and &/ C X is a Borel subset of

X, we will write

(BoAvgp) (E) := |;j| Z B(T,'E).

geF
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These notations are consistent with each other in the sense that if f € C'(X), then

/ Fd (8o Avgp) = / Avep fdb.
X X

If no domain is specified for an integral [, then the integral is assumed to be over X, i.e. [ := [.

We will denote the space of all Borel probability measures on X by M (X). We will always consider
M (X)) with the weak*-topology, making M7 (X) a Choquet simplex. We use M7 (X)) to denote the space
of T-invariant Borel probability measures on X, also equipped with the weak*-topology to make M (X) a
Choquet simplex.

We use 0.5 to denote the set of extreme points of a subset S of a real topological vector space, i.e. 0.5
denotes the set of all points in .S which cannot be expressed nontrivially as a convex combination of points in
S.

We will use N to denote the set of positive integers, and Ny to denote the set of nonnegative integers.

A sequence (F},)g2 , of finite subsets of a group G is called Fplner if

. [ FrAgF|
lim ——————— =0 Vge G
TN (Vg €G)

where | - | denotes cardinality and A is the symmetric difference, i.e. AAB = (A\ B)U (B \ A).

Given a sequence (zj)7° ; in a topological space Z, we write
LS ((zx)52) = { lim 2, : by < ko <---, lim 2, exists}
{—00 {—00
to denote the set of limit points of (z;)7° ,, called the limit set of (z)32 ;.

4.2 Convergence results and their limitations

Definition 4.2.1. Letz = (z1),... ™) e X" 7= (1) ... (M) € (0,00)". We write
B (z;7) :== U B (a:(h),r(h)> ,
h=1

where B (z;r) :={y € X : p(z,y) < r} is the open ball with center = and radius . We refer to sets of the

form B(z; ) as multi-balls.
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Lemma 4.2.2. Every multi-ball B (x(l), oz ,r(”)) can be expressed in the form

B (y(l), ... ,y(m);s(l), .. .,s(m)> ,

where y), ... y(™) are distinct.

Proof. If :E(l), ... ,:c(") are not already distinct, then we can write
{20 M = L) g(m)) where by, ..., hy € {1,...,n}, and ™), .. (") are distinct.
Then

B <:c(1), ORI r(")> =B <y(1), Ly ,s(m)> ,
where y®) = () ) = max{r(h) s = y(p)}. [

Definition 4.2.3. Let (X, p) be a compact metric space, and let 7' : G ~ X be an action of a discrete

semigroup G by Holder maps T, equipped with functions H, L : G — (0, c0) such that
p(Tyx, Tyy) < L(g) - p(x, y)H (Vge G,z e X,y € X).

We refer to the pair (H, L) as a modulus of Holder continuity (abbreviated MoHoC) for T. Let F =

(Fr)2, be a sequence of nonempty finite subsets of G. We say that a sequence (74),—; of n-tuples

(o]
T = (r](cl), o ,r,(g ))k=1 of positive numbers decays (X, p, H, L, F)-fast if

peri ()]

k—o0 |Fk| =0 (V(S S (0,00),h c {1, .. 7n})7

lim r,gh) =0 (Vh € {1,...,n}).

k—o00

An immediate observation about this definition is that if (7;),- , is a sequence of n-tuples of positive
numbers that decay (X, p, H, L, F)-fast, and (5;),—, is another sequence of n-tuples of positive numbers
for which there exists K € N such that s; ) (h) forall h € {1,...,n},k > K, then (5x),-, decays
(X, p, H, L, F)-fast. So we have in fact described a rapid decay condition. Moreover, any system of Holder

maps with MoHG6C (H, L) will admit a sequence (ry)3> ; that decays (X, p, H, L, F)-fast.
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(h)

Our assumption that limg_,, 75, " = 0 ensures that if x(l), ey 2" are distinct points in X, then the
n
balls {B (;c(h); r,gh)> }h ) are pairwise disjoint for sufficiently large k, since for sufficiently large k we’ll
have that

max {TIE}), e ,r,in)} < %min {p (x(hl),a:(h2)) 1< hy <he < n}

For the remainder of this section, 7" : G ~ X will be an action of a discrete group G on X by Holder
homoeomorphisms with MoH6C (H, L), and F = (F},)22 , will be a sequence of nonempty finite subsets of

G.

Notation 4.2.4. Let i be a Borel probability measure on X, and let £ C X be a u-measurable set such that

wu(E) > 0. The functional a; : C(X) — C is defined as

1
o) = | fan.

We will sometimes also treat ap instead as a Borel probability measure ap : A — p(A|E). These

interpretations are consistent with each other in the sense that ag(f) = [ fdag forall f € C(X).

Lemma 4.2.5. Let + € X, and let (r;)72, be a sequence of positive numbers that decays
(X, p,H, L,F)-fast, and suppose f € C(X). Let u be a Borel probability measure on X, and let

x € supp(u). Then

lim (O[B(x;rk) (AVng f) - AVng f(x)) =0.

k—o00

Moreover, if f satisfies the Holder condition

1f(y) = f(2)] < ¢ ply, 2)° (Vy, 2 € X),

for some constants ¢, § € (0,00), then

‘CYB(:c;rk) (AVng f) - AVng f(ac)‘ < FCH Z L(g)/o’ . TfH(g)-
geFy
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Proof. Fix e > 0. Since f is continuous and X is compact, we know that f is uniformly continuous, meaning

that there exists ¢ > 0 such that

ply,z) <6 =1[f(y) — f(»)| <e

Set

A = {gGFk : L(g)-rf(g) 25}.

By the hypothesis that ()32 ; decays (X, p, H, L, F)-fast, we know that limj,_, Al _

[ F]|
We estimate
|aB(a) (Avep, f) — Avep, f(z)]
Lo o ,FLZP; (F(Ty0) — F(Ty)) duty)
< ) S oo ) = I sty (h

1 1
=\ 2= (B(w; ))/B(x;rk)|f(Tg)—f(Tgﬂﬂ)du(y)

1 1
T 2 u(m:wm/B(m;rk)lf(Tg)f(Tgw)du(y)

gEFR\ Ay

We will return to the line marked (1) when we compute the estimate for the case where f is Holder. For now,

we estimate these two terms separately.

1 1
i Zk w(B(@; ) /B(ac;rk) [/ (Zgy) = J(Tyz)| dps(y)

1 1
ST 2 G o 12l 440)

2| Ayl

Choose K € N sufficiently large that % < e. Then for k > K, we have that

2| Ayl
| Fy|

Hf”C(X) < 2”fHC(X)€-
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For the other of second of the two aforementioned terms, we observe that if g € Fy, \ Ag, then

<6

= |f(Tyy) — [(Tyz)| < e

Thus

1
1El ) M/B(z;rk)lf(% ) = f(Ty) | dp(y)

gEFR\ Ay

1
S\Fk| 2 w(B(z;7E)) /B(x;rk)ed,u(y)

gEFR\ Ay
_ Bl — [ Ak]
| F|

<e.

Therefore, if £ > K, then

}OZB(m;rk) (AVng f) — Avgp, f(x)} < (2||f||C(X) + 1) €.
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Finally, in the case where we have the additional hypothesis that f is (¢, 3)-Holder, we can instead

estimate the earlier (1) as

1 1
Al 2 ) [ 15— ) )

1 1 /
< ¢ p(Tyy, Tyx)duy
F Z /J,(B(.CE,T']C)) B(z;rg) p( I I ) M( )

1 1
S|Fk| z:k w(B(x; 7)) /B(m;rk)c' (
: [ z:k 'U’(B(i; Tk)) /B(ac;rk) . (L(g) . T’f(g))ﬁ dp(y)
(

1 1 /
= C.
|Fk‘ Zk :U’(B(x;Tk)) B(z;ry)

L(g) - p(z, y)H(g))ﬁ du(y)

Lg)" - ™) du(y)

O]

The upshot of Lemma 4.2.5 is that when we consider temepero-spatial differentiations with respect to
balls of radius decaying sufficiently fast centered at a fixed point xg, this temporo-spatial differentiation is
equivalent to a pointwise (temporal) ergodic average. On one hand, this means that we can consider certain
“random” temepero-spatial differentiations by appealing to pointwise convergence theorems, as in Corollary
4.2.10. On another hand, this means that we can use pathological pointwise ergodic averages to generate
pathological temporo-spatial differentiations, as we will see in Section 4.6.

The following lemma lets us describe temporo-spatial averages over multi-balls in terms of temporo-

spatial averages over balls, and will be useful going forward.

Lemma 4.2.6. Let y be a Borel probability measure on X, and let
M 2™ e supp(p);r™, ..., 7™ € (0,1) such that the balls {B (x(h); r(h)) }ZZI are pairwise dis-
joint. Let f € L*(X, ). Then

d p (B (2P M)
OtB(zf)(f) - ; 1 (B (x(l);r(l))) +tp (B (x(n);r(n))) OéB(ac(h);r(h))(f).
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Proof.

1
OzB(f:;,'F)(f) = m /B(E'F) fdp

i

Jdp

ZZu 1,u, ( (u); (u))) /B(x(h);r(h))

n x(h) r(h))) 1
Z (2(); 700 R)- (h / fdu
Zu 1# W) (B (257 0)) S p(am )

; u( i)
2 B GO 70)) - (B () o) )

=
—

h=1

O

Theorem 4.2.7. Let (7)),-, be a sequence that decays (X, p, H, L, F)-fast, and let f € C(X). Suppose

T = (ac(l), . ,x(”)) is an n-tuple in X such that
lim Avep, f (:r(h)) e (Yhe {1,...,n}),
k—o00
where C' is independent of h, and let 1 be a Borel probability measure on X for which zV), ... 2™ e

supp(u). Then

lim apzm,) (AVng f) =C.

k—o00
Proof. By Lemma 4.2.2, we can assume without loss of generality that (1), ... 2(") are distinct. Because

(h) — 0, we know that for sufficiently large &k, we’ll have
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where B (z;r) := {y € X : p(z,y) < r} is the open ball with center x and radius r, and LI denotes disjoint

union. We therefore estimate that

‘O‘B(i;ﬁc) (AVng f) - C}

1 1
- |uB@ ) /B(:C;Tk) [Fx| geZFk (f(Tgy) = C) dply)

]. n 1
~ |u(B(m) hzl /B(x(m;rgw) [Fy| g;k (f(Tyy) = C) dply)

-

1 1
W(B(Z; 7)) /B(gg(h);rl(ch)> 17| g;Fk (f(Tgy) = C)du(y)

h=1

<y ! / LS (4T - O duly)
—\, (B <x(h);r](€h))> Bzt ™) |l

:h:1 OéB(x(h>;rl(€h)) (AVng f - C)'

-

) (A, = A (@) [ ) (v, ) = )

T
L

M-

(
(

oy (i (50| o () ]

>
Il
—

T
g

=

where the limit in the last line follows from Lemma 4.2.5. O

We recall here the following definition.

Definition 4.2.8. Let (F},);° ; be a sequence of nonempty finite subsets of a group G. We say that (F},)72

is tempered if there exists a constant ¢ > 0 such that
k-1
U F; ' Fe| < c|Fl (Vk > 2).

J=1

Lemma 4.2.9. Every Fglner sequence (F},)?° | has a tempered subsequence. In particular, every amenable

group admits a tempered Fglner sequence.

Proof. (Lindenstrauss, 2001, Proposition 1.4) O
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The existence of tempered subsequences will be relevant to us in later sections.

Corollary 4.2.10. Suppose G is an amenable group, and F is a tempered Fglner sequence. Suppose further
that 1 is a Borel probability measure on X that is T-invariant and ergdic. Then for almost all T € X", we

have for all f € C'(X) and all sequences (7},);2, that decay (X, p, H, L, F)-fast that

k—o00

i e (Aver, ) = [ fdu

Proof. Since X is compact metrizable, it follows that C'(X) is separable, so let { fy} sy be a countable dense

subset of C'(X). For each ¢ € N, set

Xo= {:c € X : Avgp, fi(x /fedu}

By the Lindenstrauss ergodic theorem (Lindenstrauss, 2001, Theorem 3.3), each of these sets X, has full
probability, and so X" = (), X also has full probability. Thus (X')" is of full probability in X" with

respect to the product measure p X - - - X .
—_—

n
LetZ € (X')", and let (74)%2  be a sequence of n-tuples of positive numbers that decay (X, p, H, L, F)-
fast. By Theorem 4.2.7, we know that limg o ap(z;7,) (AVng fg) = [ fidp for all £ € N. Now it remains
to prove that this convergence occurs for all f € C(X).

Let f € C(X), and fix € > 0. Choose f; such that || f — fyl|c(x) < €. Then

' / Fdpi— apen (Aver, f)‘
' / . / fedu' ‘ / fedp — apgry) (Aver, fo)
<|[f- fz”c ‘/ Jedp — ap(z (AVng fz)

+ ‘aB (AVng(fé f))}

+11f = fellex)

<2e+ ‘/ffd/’é — AB(z;7) (AVng f[) '

Now choose K € N such that if k¥ > K, then U fedp — AB(z;7,) (AVng fg)‘ < ¢. Then for k > K, we

have that

’/fdu — ap(z (AVng f)’ < 3e.
This demonstrates the convergence. O
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Theorem 4.2.7 tells us that if we look at a sequence of concentric multiballs with rapidly vanishing radii,
and if the pointwise Birkhoff averages at the centers converge to the same limit, then the temporo-spatial
average with respect to these sequences of multiballs will inherit the limiting behavior f the pointwise Birkhoff
averages. We might wonder whether Theorem 4.2.7 could be generalized by replacing the assumption that
limy o0 Avgp, f (zW) = C with lim supy,_, Avgp, f (z(W) = C, assuming of course that f was real-

valued. It turns out this generalization fails, as the next example demonstrates.

Example 4.2.11. Let X = {0,1}", and let 1z be the Borel probability measure on X generated by

w(la,... a) =27"

for all ay,...,ap € {0,1},¢ € N, where [a1,...,a)] = {z € X : 2(1) =a1,...,z({) = as}. Let T} :
No ~ X be the left shift (7'x)(i) = x(i + j), where Ny denotes the semigroup of nonnegative integers,

making (X, i, T') a one-sided Bernoulli shift. Equip X with the compatible metric

0 if x =y,
p(z,y) =
27¢ if ¢ =min{i € N: 2(i) # y(i)}.

Then B (z;27%) = [2(1),...,2(k)], and Ty is 2*-Lipschitz, i.e. p (Tyz, Tiy) < 2% - p(z,y). Set L(j) =
2/ H(j) = 1. We can check that (2"‘“)2021 decays (X, p, H, L, F)-fast for F = ({0,1,...,k — 1})2, by
observing that for any § > 0,if 2/7% > §for§ € (0,1),0 < j <k —1,thenj — k > log,§ <= j >

k + logy d. Therefore L(j) - (2_k)H(j) < 4 for all but at most [|log, d|] of j € {0,1,...,k —1},s0

Hj € Fy.: L(j)- (27F) = 5}‘ [[logy 8] k00

Let (c,)5° ; be a sequence of natural numbers chosen to grow fast enough that

-1
n > (Vn € N).
c1+---+cp n
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Set s, = c1 + - -+ + ¢y, s0 our growth condition states that g—z > "Tfl Now construct x € X by

0 1<1< s
1 51 <1< 89,

0 82<i§83,

0 sop <1< Sop41

1 sop41 <7 < Sopyo.

In plain language, this x consists of ¢; terms of 0, then co terms of 1, then c3 terms of 0, then ¢4 terms of 1,

etc. We then define y € X by
y(i) =1 — (i) (Vi € N),

i.e. replacing all 0’s with 1’s and vice-versa. Set f = x[g. We claim that limsupy_,., Avgp, f(z) =

lim supy, o Avgp, (y) = 1.
Consider the case where we sample along (s2,,—1),- . Then
c1t+c3+tes+ -+ o Con—1 2n — 2 poeo

ver, ) = T ta e Tt T et smt  2n 1

But Avgp, f(z) € [0,1] forall k£ € N,z € X, so we can conclude that limsup,_, ., Avgp, f(r) = 1.

Likewise, sampling along so,, we see that

coteat-toam  cm g 2n_1n—_>>oo

A = >
ver, f(y) -~ > 2

1.

Thus lim supy,_, o, Avgp, (y) = 1.
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Computing the temporo-spatial averages, we can see that

OéB(a:,y;Q*k,Q*k) (AVng f)

k
1
= — (T;2)d
:U’(B (:Cay; 271{’27]6)) /B(:r,y,Z k 2—k kz;) 0] Z Iu

1 1 k-1

=Rk 2_,€%ZX[0](sz)dM(Z)
j=0
1 k—
:2k_1/ - ] (T2)dpu(z
(1), 2 (k)L (1), (R)] "@Z c)

o

k—1
1

—9k— 1/kZ Xz (1),.. x(k)](2)+><[y(1) ,,,,, y(k)](z))XT,j[O](Z)dM(Z)
J

0
k— 1

Z X)) (2) + X[y(1), )] (2)) X0 (T52)dpa(z)
7=0

w\v—

=2k1 Xz (D)o 2(e)]T=710) (Z) F Xy(1)...p)nT—i10 (2)) dpa(2)

\
?r\i—*

J=0

‘We know that

1 ifz(1+j)=2(14+j5)=0,
X[z(1),....x(k)NT—i[0] (2) =
0 otherwise,

1 ifz(14+7)=y(1+yj)=0,
X[y(1),....y(k)nT=i[0] (2) =
0 otherwise.

Thus

27F ifz(1+4) =0,
/X[x(l),‘..,x(k)]ﬂT—J'[O}(Z)dﬂ(z) =
0 if,

27F if2(145) =y(1+4) =0,
/ X[y(1),.-y()nT=i[0](2) =

0 otherwise.
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But since (1 + j) =0 <= y(i + j) = 1, it follows that

forall j =0,1,...,k — 1. Therefore

aB(x,y;Q—k,Z—k) (AVng f)

k—1
_ 1
=21 / gz(X[xu),...,a:(k)]mT*j[OJ(Z)+X[yux...,y(k)]mT*HOJ(Z>) du(z)
§=0

_ok—1

S

k—1
> o
§=0

So lim supy,_, o, aB(a:,y;Q*k,Z*k) (AVng f) =1/2#1.

Example 4.2.12. Looking at Theorem 4.2.7, we could also ask whether the result could be generalized to
somehow accommodate the case where limy,_,, Avg P, f (x(h)) exists forall h = 1,...,n, butis allowed to
vary with h. However, we can construct examples of points z,y € X, sequences of radii (ry)32 ;, (sk)72, €
(0,1)N  decaying (X,p,H,L,F)-fast, and a function f € C(X)  where
limy o0 Avgp, f (@), limy_ o0 Avgr f (y) both exist, but limy_,q OB (g2t k) (Avgp, f) does not.

Let X, p, T, u, F be as in Example 4.2.11, but choose x, y to be

‘ 0 ifiiseven, . 0 if ¢ is divisible by 3,
x(i) = y(i) =

1 if¢is odd, 1 otherwise.
Let f = xg- Then limy .o Avgp, f(x) = 1/2,limy oo Avgp, f(y) = 1/3. Construct sequences of
natural numbers (p)?° ;, (qx)72, strictly increasing such that
2Pk k
>
2P 20 — k41

9k k
>
2Pk +2-0k k41

(for k odd),

(for k even).
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Therefore
27p2n— 1 2*q2n

lim =
n—oo 27P2n—1 4 2—G2n—1 2—P2n 4 2—92n

Set r, = 27Pk, 5, = 27%. We can see that (ry, s3,)7°, decays (X, p, H, L, F)-fast. By Lemma 4.2.6, we
have
9~ Pk 2=

AB(ayirysi) (AVEE, f) = 2 mr oo “Blan) (Avep, f) + 7 5 9@ YBsy) (Avgp, f)-

Sampling along even k, we see that

lim QB(x,y;72n,52n) (AVgFZn f)

n—oo
. 27 P2 9—4z2n
= i o W) (AVER,, f) T 5 o B (AVeR,, f)

=0 (nh_%lo QB(x;ran) (AVngn f)) +1 (nh_%lo QB(y;s2n) (AVngn f))
1

=3

where the limits in the last step are taken using Lemma 4.2.5. On the other hand, sampling along odd &, we

see that

lim QAB(z,y;r2n—1,52n-1) <AVgF2”*1 f)

n—oo
. 27p2n71
- nh—>nolo 2—P2n-1 4 2—q2n-1 AB(wiran-1) (AVgF%*l f)
. 2 42n-1
T nh_>Holo 9—P2n—1 | 9—G2n—1 OB(y;s2n—1) (AVgFanl f)

( lim ey, 1) (AVgFQn_l f)) +0 (RILH;O AB(y;s2n-1) (AVngn—l f))

=1
n—oo

1

2

)

where we again appeal to Lemma 4.2.5 to take the limits at the end. Thus the sequence

(aB(xay§Tk73k) (AVng f))zozl

is divergent.
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The argument employed in Example 4.2.12, where we control the “weight” we give several points at
different points in the temporo-spatial differentiation, will have applications in Sections 4.4 and 4.5. However,

the following result also demonstrates that absent such tricks, we have predictable convergence behaviors.

Theorem 4.2.13. Let (7;),-, be a sequence that decays (X, p, H, L, F)-fast, and let f € C(X). Suppose

T = (x(l), . ,x(")) is an n-tuple in X such that
Cp = lim Avgp f (x(h)>
k—o00

exists forallh = 1,...,n. Let u be a Borel probability measure on X for which z) ... 2™ ¢ supp(p)-

Suppose further that
(o)
Dy, = lim :
k—o0 1 <B (x(l);r]g )>> +otpu (B (x(n)7r](€n)>>
exists forallh = 1,...,n. Then
n
klggo QB(z;7) (AVng f) = hzl DpCh,.

Proof. This follows immediately from Lemmas 4.2.5, 4.2.6. O

4.3 Preliminaries from ergodic optimization

Here we prove a generalization of a result of O. Jenkinson (Jenkinson, 2006a, Proposition 2.1) to the
setting of actions of amenable topological groups. Our method of proof closely resembles Jenkinson’s, but
requires that we attend to a few extra details.

Throughout this section, 7" : G ~ X will be an action of a discrete amenable group G on a compact
metrizable space X by homeomorphisms, and f € Cr(X) will be a real-valued continuous function on X.

Let F = (F});2, be a Fglner sequence for G. Define the set Reg( f) by

Reg(f) = {x € X : lim Avgp, f(7) exists}.
k—o0
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We define the following values:

We write b(f) =

well-defined.

The following result is elementary, but will be relevant for much of this chapter, so we state and prove it

here.

Lemma 4.3.1. Let (F})32

probability measures on X. Then if ky < ko < ---

im0 Bk, © AVng/ exists, then v € Mrp(X). In particular, if G is amenable, then Mp(X) # (.

xeX}
J
)

sup {hm sup Avgp, f

k—o0
ut

hm (sup {Avg Py

limsup Avgp, f(z):z€ X

k—o0

ﬂseX}

= kli_}m (inf {Avegp, f(z):z € X}).

Proof. Assume WLoG that k; = ¢ forall £ € N. Let f € C'(X), g € G.

—00,b(f) = +oo if Reg(f) = 0. We will show in Theorem 4.3.3 that d(f), d(f) are

1 be a Fglner sequence for a group G, and let (f1,)72

is a sequence of natural numbers such that v

TS JE

‘/fdu—/Tgfdy = lim & Z/Thfdﬁk
heF, h/Gng
= lim — T — Th
~ 550 | Fy| >, Tif >, Tief
heF\gFy h'€gF\Fy,
: |FAgF|
<limsup —————||f
= 0.
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To prove that M7 (X) # 0, consider any Borel probability measure 5 on X, and use the weak*-
compactness of M(X) to extract a convergent subsequence from (ﬁ o Avg Fk)zozl' The limit of that

convergent subsequence will be T'-invariant. O
Definition 4.3.2. Let v € Mp(X), and f € C(X). A point z € X is called (f,F,v)-typical if

Theorem 4.3.3. Suppose f € Cgr(X). Then the valuesa(f),a(f),e(f),c(f),d(f),d(f) are all well-defined

real numbers, and

Proof. We will only prove the inequalities and identities for @, b, ¢, d, since the analogous relations between
a, b, ¢, d can be proven in a parallel fashion.

The well-definedness of a( f) follows from the weak*-compactness of M7 (X). We also know a priori
that ¢(f) < || fllc(x)» and thus ¢(f) is well-defined.

It still remains to prove that d( f) is well-defined, which we will accomplish by proving that d( f) = a(f).

For each k € N, choose xj, € X such that Avgp, f(x) = sup {Avgp, f(z) : & € X }. Let yu, be the

Borel probability measure on X defined by

/ gl = Aver, f(zp).

Let (y11,), -, be a weak*-convergent subsequence converging to the measure ;.. Then since F is Fglner, it

follows from Lemma 4.3.1 that g is T-invariant. Thus

a(f) > /fdu = KIi)rgo/Angké fdug, = Zli)rgo (sup {AVnge flx):ze€ X}) :
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On the other hand, we know that if v € Mp(X), then

/fdu = /AVnge fdv < sup {AVng[ flx):ze€ X} ,

and thus taking £ — oo tells us that [ fdv < [ fdu. Therefore this measure y is f-maximizing, meaning
that a(f) = [ fdp = limy_,eo <sup {AVnge flz):z€ X}) Since we know this holds true for any
weak*-convergent subsequence (fix,)ye > and (pix),— takes values in the weak*-compact space M (X), we
can conclude that d( f) is well-defined and equal to @( f).

It follows immediately from the definitions that b(f) < &(f), since

() = sup { Jim Ave, ()50 € Rea()}

= sup {lim sup AVng f(z):ze Reg(f)}

k—o0

< sup {limsupAngk f(x) ::EGX} =¢(f).

k—o00

It similarly follows from definitions that ¢( f) < d(f), since

¢(f) =sup {limsupAngk f(z):x e X}

k—o0

< sup {lmsup v, f(o) s (o0)i2, € X7

k—o0

< sup {limsup (sup {Avgp, f(x):z e X}): (z)i2, € XN}

k—o0

= limsup (sup {Avgp, f(z): 2z € X}) =d(f).

k—o00

Next we show that @(f) < ¢(f). Letky < kp < --- suchthat (F},),°, is a tempered Fglner subsequence,
a subsequence which exists by Lemma 4.2.9. Let § € 0.M7(X). Then by the Lindenstrauss Ergodic

Theorem, there exists z € X such that lim/_,., Avg Fi, f(z) = [ fdé. Therefore

/fd@ = Zlim AVngg f(z) <limsup Avgp, f(z) <E(f).

k—o0
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Suppose v € M7 (X), and let (6;)cx be the ergodic decomposition of 7' : G ~ X. Then

[rav=[ ( / fd9z> avle) < [e(p)avte) = o).

Taking the supreumum over v € My (X) confirms that a(f) < ¢(f).

Now assume that for every ergodic measure § € 9. My (X) exists g € X such that [ fdf =
limy 00 Avgp, f(zg). We prove that a(f) < b(f). To begin, we'll prove that [ fdf < b(f) for all
ergodic 0 € d.Mp(X), and then use the ergodic decomposition to extrapolate to the general case.

First, consider the case where 6 is an ergodic measure in M (X). Then there exists g € X such that

[ a6 = i Aveg, £ (@) < B2,

Now suppose v € My (X), and let (6,),cx be the ergodic decomposition of 7' : G ~ X. Then

[rav=[ ( / fd%) avle) < [B)avte) = b0).

Taking the supremum over v € M (X)) confirms that a(f) < b(f). O

What remains unclear to us at this point is whether a(f) < b(f), b(f) < a(f) in general. However,

there are several general cases where we know the answer to be yes.

o Ifa(f) =a(f), thenevery x € X is an (f, F, v)-typical point for all v € My (X). In particular, this
will occur for all f € Cr(X) if T': G ~ X is uniquely ergodic.

 If F is tempered, then the Lindenstrauss Ergodic Theorem implies that the set of (f, F,#)-typical
points is of probability 1 with respect to 6 for ergodic 6, and a fortiori, that the set is nonempty. This
holds in particular if G = Z and F}, = {0,1,...,k — 1} for all £ € N, which is the setting of the

classical Birkhoff Ergodic Theorem.

Corollary 4.3.4. The values ¢(f),c(f),d(f),d(f) are independent of the choice of Fglner sequence F, and

b(f),b(f) are independent of the choice of tempered Fglner sequence.

Proof. The first claim follows from the fact that @(f), a(f) are independent of F, combined with Theorem

4.3.3. The second claim follows from the fact that if F is a tempered Fglner sequence, then by the Linden-
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strauss Ergodic Theorem, every ergodic measure 6 € 0. Mp(X) admits an (f, F, 0)-typical point, meaning

Theorem 4.3.3 tells us that b(f) = a(f), b(f) = a(f). O

4.4 Pathological multi-local temporo-spatial differentiations of individual functions

This section is motivated by the following question: Given a real-valued function f € Cg(X), what

possible sets K can be realized as

K= { lim aB(xyy;TkeﬂskZ) <AVngZ f) tky <ko < -oe ﬁliglo aB(I,y;rkl,ske) (AVngé f) exists}

{—00

through judicious choices of (z; 7)72 ,? If K is non-singleton, then the temporo-spatial differentiation will
of course be divergent.
Before constructing these pathological temporo-spatial differentiations, we define a measure-theoretic

property which will be important to us in this section.

Definition 4.4.1. Let (X, p) be a compact metric space, and let i be a Borel probability measure on X . We

say that p neglects shells if
p({y€ X :p(x,y)=r}) =0 (Vz € X,r € [0,00)).

A probability measure which neglects shells is automatically non-atomic, but the converse is false.
Consider the case of X = {(a, b) eR?:a? +0? < 2} with the standard Euclidean metric. Let y be the
Borel probability measure

1
E)=——HYSNE),
H(E) = g SN E)
where ! is the 1-dimensional Hausdorff measure and S = {(a, b) ER?:a? + b2 = 1} is the unit circle in

R2. Then this y is non-atomic, but does not neglect shells.

Theorem 4.4.2. The following conditions are equivalent.

(i) The function ¢ : X x [0,00) — [0, 1] defined by

¢(z,r) = p(B(w;7))
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1S continuous.
(ii) p neglects shells.

Proof. (i)=(ii): Suppose that ¢ is continuous, and fix z € X, r € [0,00). Letry = r + 1/k for all k € N.

By downward continuity of measures, we know that

Hm ¢z, ) = p({y € X : pla,y) <r}) = d(x,7) + p({y € X : p(z,y) = r}).

k—o00

If limy, o0 ¢(2,7%) = ¢(,7), then p({y € X : p(z,y) = r}) = 0.
(i))=-(i): Suppose that 1 neglects shells, and let (z, )32, be a sequence in X x [0, c0) converging to

(x, 7). Let fr, f € L>(X, p) be the functions

Tk = XB(aypire)

[ = XB(z;r)

We claim that f — f pointwise on {y € X : p(z,y) # r}, which under the assumption that p neglects
shells constitutes convergence pointwise almost everywhere. If we can prove that, then we can appeal
to the Dominated Convergence Theorem (using the constant function 1 as a dominator) to conclude that
H(zg, ) = [ fedp opo J fdp = ¢(z,r), ie. that ¢ is (sequentially) continuous.

First, consider the case where p(z,y) < r. Set e = r — p(x,y). Then there exist K1, K2 € N such that

If k > Ky, thenry > r — 5. Set K = max{K1, K>}, and suppose that £ > K. Then

p(y, zk) < p(y, =) + p(z, z1)

€
<ply,x) + 5
€
=7r - —
2
< Tg.
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Thus if £ > K, then fi(y) = 1 = f(y). Therefore limy_,~ fr(y) = f(y) fory € B(z;r).

Second, consider the case where p(z, z) > r. Set § = min {p(:z:, z)—r,

such that

k> Ly = |rp—7| <

k> Lo = p(zg,x) <

Set L = max{ L1, Ly}, and consider £ > L. Then

p(z, k) 2 [p(2,2) = ple, xx)|

= p(z,) - pla, )

1)
> plzra) —
0
>7‘+5—§
—7‘+§
N 2
> Tk

N N

M}, and choose L1, Ly € N

Thus if £ > L, then f(z) = 0 = f(z). Therefore limy_,~ fix(z) = f(z) for p(z,z) > r. This completes

the proof.

O]

The property of neglecting shells is very important to us in this chapter because of Lemma 4.4.3, which

is a valuable tool for several constructions that will follow in this section and the next.

Lemma 4.4.3. Let 1 be a Borel probability measure on X that neglects shells, and let zV), ... (™ ¢

supp(u). Let W .6 >0, and fix XV, ... A" e (0,1) such that \(V) 4 ... + A" = 1. Then there

exist 7M. (") > 0 such that 0 < r < §(") and

Ju! (B (:Zj(h); T(h))) _®
p (B (zW;rM)) + - 4 (B (a(9; 7))

Proof. Assume without loss of generality that

§M < min (xm, x(a’)) 7

1<i<j<n
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otherwise we can replace each 8™ with min {6(h), % ming<;<j<n P (x(i) , :c(j)) }

Choose real numbers a(V ..., a® (0,1) such that

o

a®) + ...+ q0)
au><,L(B<xw%5wg)

— AP

9

for all h = 1,...,n. The tuple (a(l),...,a(")) € (0,1)™ can be found along the line segment
{(EAD, . eaA) it € (0,1)}. We know that p (B (z(");5("))) > 0 because we assumed that z(") €

supp(u). Then by Theorem 4.4.2 and the Intermediate Value Theorem, there exist rh) e (O, ) (h)) such that

,u(B <x(h);r(h))) =a (h=1,...,n),

and therefore

p (B (a7 ))
10 (B (2057 D)) 4+ p (B (2; 7))

=A%) (h=1,...,n).

Theorem 4.4.4. Letx,y € X such that

u= lim Avgp f(x),
k—o0
v = klim Avgp, f(y)
—00
exist, where u < v. Suppose K C [u,v] is a nonempty compact subset. Let . be a fully supported Borel

probability measure on X that neglects shells. Then there exist sequences (11,)72 ,, (sk)pe, of positive

numbers such that

K =LS ((QB(x,y;rk,sk) (AVng f))?:l)
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Proof. Let P = {p; : i € I} C K be a countable dense subset of /C enumerated by the countable indexing
set I, and let A4 = {N; : i € I} be a partition of N into countably many infinite subsets, also enumerated by
I. For convenience, write (k) for the i € I such that k € N;.

For each i € I, choose \; € [0, 1] such that
pi = Aiu+ (1 — \)v.
For each k € N, choose t;, € (0,1) such that
It — Ny | < 1/k.
Using the uniform continuity of Avgy, f and Lemma 4.4.3, choose (7, s )72, such that

p(w,z) < max{ry,si} = |Avgy, f(w) — Avep, f(2)| <1/k (Vw, z € X),
w(B(z; 7))
p(B(x;ry)) + u(B(y; sk))

forall kK € N.
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For k£ € N, we have that

[Pitk) = @B@yires) (AVER, )]
= pik) — (k@) (Avep, f) + (1 = t)apy.s,) (Aveg, f))|
< |piry — (t (Avep, f(2)) + (1 —t) (Avgg, f(9)))]
+ b1 | QB Avep, (f(2) = /)] + (1 = te) |apy.s) Aves, (f(y) = £
<[pig — (te (v, £(2) + (1~ 1) (Ave, F))] + -
= |pigky — (tew + (1 — tp)v)| + ty |u — Avegp, f(2)| + (1 —t) |[v — Avgp, f(y)|+ %
= Xigu + (1= Xoy)v — (tru + (1 — t5)v)|
+txfu— Aveg, f(@)| + (1= t) [v - Avep, f(y)] + %
<[Py = ) uf + (1= Xigwy) = (1= 1)) ©]
+t|u— Avgp, f(2)] + (1 —tp) v — Avep, f(y)| + %
=iy = ) ul + [ iy — 1) ¥
+ty |u— Avegp, f(z)|+ (1 —te) |[v — Avgp, f(y)] + %
<l o]+t — Aveg, £(@)] + (01— 1) o — Aveg, F)] +
|v]

1
gﬁﬂ—k+w—Am@me+M—A%af@”+k

‘We now claim that

K

= { lim OBz giry s, ) (AVnge f) ik <ka<--o, )E?o OBz yirny s, (AVngZ f) exists} .

£—00

We will prove the two sets contain each other, and thus are equal. First, let ¢ € K, and choose a

sequence (p;,),-, in S such that |¢ — p;,| < 1/¢ for all £ € N. For each ¢ € N, recursively choose
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k¢ > max{ki,...,k¢_1} such that

fu— Avgp, f(z)| < 1/¢,
‘v — Avgp,, f(y)‘ <1/,

szMe.

Then
- aB(x’ym%’Skz) <AVngL’ f) ‘ = ‘q B pié’ + |Pie — aB(z’y;rkwske) (AVngZ f)‘
1 1 1

< 7 + EM + EM + ‘u — AVngz f(x)’
+|v—Avegp, f(y)) +
<1—|-’u‘+m—i-l—i-1+1
4 l A A
A [ul v
N l
Ei}oo 0

Therefore

qeLs ((aB(Iay;TmSk) (AVng f))ZO:J :
Conversely, let k&; < kg < --- be an increasing sequence of natural numbers such that

q = limy s OB 4y iy 7 Wy (AVngé f) exists. Fix € > 0, and choose K € N sufficiently large

that

:>‘u—Angkf(x)1<e (Vk > K),
= |v—Avgp, f(y)| <e (Vk > K),
max{ul, [v], 1}
K b
q- aB(m,y;rke,skZ) (AVnge f)’ <e (VE > K)
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Then if ¢ > K, we have

Pty —d| <

Pi(ke) — aB(m’y?Tke’Skz) (AVgF’W f)‘ * ‘aB(x’y”ké’Skz) (AVgF’“é f) B q‘
1 1 1
< lul+ Clol+ Ju— Avep, f(2)] + v — Avep, f(y)| + 1 + e

< be.

Therefore inf,cx|p — ¢q| < 6e. Since our choice of ¢ > 0 was arbitrary, it follows that

inf,cx |[p — ¢/ = 0, and since K is compact, this implies that ¢ € K. O

Corollary 4.4.5. Suppose G is an amenable group, and F = (F},);2, is a right Fglner sequence for G. Let
f € Cr(X) such that for every ergodic 6§ € 0. Mr(X) exists an (f, F, 6)-typical point. Let K be a compact

subset of the compact interval

[a(f), a(f)]-

Let 1 be a tully supported Borel probability measure on X that neglects shells. Then there exist points

x,y € X and sequences (1) 1, (s)72, of positive numbers such that

IC = LS ((aB(a;,y;’l‘k,Sk) (AVng f))zozl) .

Proof. By (Jenkinson, 2006a, Proposition 2.4-(iii)), there exist ergodic Borel probability measures 61, 62

such that

[ a1 = a(s)
[ rag =at),

By hypothesis, there exist z,y € X such that

Apply Theorem 4.4.4. 0
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Corollary 4.4.6. Suppose G is an amenable group, and F = (F},)?° ; is a right Folner sequence for G. Let

f € Cr(X), and let K be a compact subset of the compact interval

[a(f), a(f)]-

Let 1 be a fully supported Borel probability measure on X that neglects shells. Then there exist points

x,y € X and sequences (1) 1, (s)72, of positive numbers such that

K CLS ((QB(x,y;rk,sk) (AVng f))zozl) '

Proof. Choose a tempered Fglner subsequence (Fy,), -, of F. By (Jenkinson, 2006a, Proposition 2.4-(iii)),

there exist ergodic Borel probability measures 6, 65 such that

By Theorem 4.4.4, there exist (1) 5 ; , (sk)re; € (0,00)Y such that

K =LS ((aB(x’y§rk47skz) (AVngﬁ f))Zl) )

Then

K CLS ((OZB(ac,y;rk,Sk) (AVng f))iozl) )
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Theorem 4.4.7. Suppose G is an amenable group, and F = (F},)?° ; is a tempered Fglner sequence for G.

Let f € Cr(X), and let K be a compact subset of the compact interval

[a(f), a(f)]-

Let 1 be a fully supported Borel probability measure on X that neglects shells. Then there exist points

x,y € X and sequences (1) 1, (s)72, of positive numbers such that

IC = LS ((aB(a;,y;’l‘k,Sk) (AVng f))zozl) :

Proof. The Lindenstrauss Ergodic Theorem implies that for every ergodic 6 € d. M (X) exists an (f, F, 0)-

typical point. Apply Corollary 4.4.5. O

4.5 Pathological multi-local temporo-spatial differentiations on C'(X)

In this section, we consider a temporo-spatial differentiation (ack o Avg Fk)Zil as a sequence in
M7 (X). If G is a discrete amenable group, and F = (F},)?° ; is a Fglner sequence, then Lemma 4.3.1 tells
us that

LS ((ac, o AVng):ozl) C Mp(X)

for all sequences (Cy)32 ; of measurable subsets of X with positive measure.

We are motivated here by the following question: Consider an action 7" : G ~ X of a discrete amenable
group G on a compact metrizable space by X, where X is endowed with a Borel probability measure .
Given a Fglner sequence F = (F},)?° , for G, can we choose a sequence (C},)?° | of measurable subsets of

X with (Cy) > 0 such that

LS ((ac, o Avep,),y) = C.

where C is some prescribed compact subset of M7(X)? If so, then can the (C})72 ; be chosen to fit some
prescribed constraints?

In this section, we provide positive answers for certain classes of C. Throughout this section, assume
that GG is a discrete amenable group and F is a Fglner sequence for G. We also assume that 7 : G ~ X is a

Holder action with MoH6C (H, L).
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Lemma 4.5.1. Let £ C C(X) denote the family of functions f € C(X) for which

|f(z) = f(W)] < p(z,9) (Vz,y € X).

Then L has dense span in C(X).

Proof. For zg € X, set ¢z, (z) = p(x,x0). If ,y € X, then by the Reverse Triangle Inequality we know

|20 (2) = P (W)] = |p(, w0) — p(y, 0)| < pl,y)-

Thus the functions ¢, satisfy the prescribed Lipschitz condition, as does the constant function 1. Furthermore,
we know that {¢4, : o € X} separates points, since if 2,y € X,z # y, then 0 = ¢, (x) # ¢»(y). Therefore
by the Stone-Weierstrass Theorem, we know that C'(X) is densely spanned by finite products of elements
in {¢g, : x € X} U {1} C L. We claim, however, that a product of elements in £ is a scalar multiple of an

element in L. Let fi, fo € L. Then

|f1(z) f2(x) — fr(y) fo(W)] = | f1(z) fo(x) — f1(2) f2(y) + fr(2) f2(y) — f1(y) f2()]
<I[fi@)|-1fa(z) = 2] + [f1(z) = Aiy)] - | f2(v)]
< |fillex) - 1f2(z) = f2()| + 1 f1(z) = Ai»)] - I f2llccx

< (Ifillex) + 1f2llecn) pla, y).-

— f1f —
Let h = oo ifloon s Thenh € Loso fifs = ([filleo + I f2lex) + 1) h € CL. By an
inductive argument, we can show that any finite product of elements of £ is an element of CL. Therefore, the

Stone-Weierstrass Theorem tells us that C'(X) is densely spanned by L. O

Theorem 4.5.2. Let 01 ... 0" ¢ 9. My (X) be a finite collection of ergodic measures on X, and let C

be a compact subset of the convex hull of {9(1), 00 } Suppose F is a tempered Fglner sequence, and

that 11 is a Borel probability measure on X that neglects shells. Then there exist points =M 2™ and
(DN (n)\>

sequences of radii (rk )k_l ey (rk )k_l such that

00
LS <<Oé o Av =C.
1) (n) .. (1 (n) gF,
B(IB yeey@ 5 Ty ) b1
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[o.¢]
Moreover, the set of n-tuples (z1), ..., 2(™) € X" which admit such sequences (r,(:), .. ,r,g")> X is of

full probability with respect to the product measure 81 x - .. x o).

Proof. Assume without loss of generality that 81, ... (" are distinct. By the Lindenstrauss Ergodic
Theorem, there exist points (1), ..., (™ & supp(y) such that

lim Avgp f (N)) - /fde<h> (h=1,...,n).

k—o0

In fact, the Lindenstrauss Ergodic Theorem tells us that the set of such (x(l), e ,:L'(”)) € X" is of full
measure with respect to 81 x - - x (™) For the remainder of this proof, let = (:z(l), e ,m(”)) € X" be
such an n-tuple.

Foreachi € I, let \; = (/\gl), . ,)\En)) € [0,1]" be such that v; = ', )\Eh)ﬁ(h).

Let A4 = {N; : i € I} be a partition of N into infinite subsets. For each k € N, set i(k) € I such that

k € N For each k € N, choose #;, = (t,gl), . ,t,(gn)> € (0,1)™ such that

S| =g < 1k,
h=1
Sl =1
h=1
For each k£ € N, choose d;, > 0 such that

_ sH(g)
;IéaF): (L(g) 0 >< 1/k.

Now for each k € N, use Lemma 4.4.3 to choose 7}, = (r,(gl), .. ,rli")) € (0,1)™ such that

p (B (i) _ 4
I (B (m(l);rlgl))> +edp (B (mm);r}j))) =4
T,ih) < Ok,

r,ih) < %min {p (x(hl),x(h2)> 1< hy <hy < n}
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The last condition ensures that the balls {B <w(h);rlih)) th=1,..., n} are pairwise disjoint. Since the

points (" each satisfy

hm Avgp, f /fdﬂ

for all f € C(X), and the measures o) ..., 0" are distinct, it follows that the (1), ..., z(") are also
distinct, meaning that min {p (:c(hl),x(’”)) :1<hy <hg<n}>0.

Let £ C C(X) denote the family of all continuous functions f on X such that

|f(x) = f(y)] < p(x,y) (Vz,y € X),

i.e. the 1-Lipschitz functions X — C, and let f € L. Then

[ n w (B (2™, (h)
[Lem. 4.2.6] = Z - ( EB (x(“];;r)(z)))aB(x(h)?Tz(ch)> (AVng f) - /deZ'(k)

h 121/, 1M
= h
= Zté)a ((h) (h)> AVng ] /fdl/z(k
Lh=1

Il
[]=
7N\
H‘A
=
Q
~
=
=
~——
—~
>
<
0]
;*1
3
kﬁ
o,
<b
v

h=1
<3 |00 oy (A, 1) - / fao®
h=1
gh [tlp ((h) (h)) (Avgp, f) —tk /fde(h ‘ /fd9 }
=1
- Hfll
z:: (h (x<h> )(Angk / fdo ]f

We can then estimate

VB (amir M) (Avgp, f) — / fdot

<

oy 80 )]

Avep, f(x(h)> — / Fdo™
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Since r,(c ) < 0 for all k € N, it follows that if p (x ( (h), y) < r,(ch), then p (Tgx(h), Tgy) < 1/k for g € Fy.
Since f is 1-Lipschitz, it follows that | f (T,z™)) — f (T,y)| < 1/k forall g € Fy. Thus

O (01 (Avep, f) — Avep, f (x(m)’

B 1 (B (a:(tﬂ r,gh))) -/B<a:( ) yplky ;k (f(Tgy) f (T :E“”)) du(y)
) oy 1 35 150 () st

1 , 1
< (B (q:(h);r](ch))) /B(gc(h);n(ch)) |Fy| Zk Ed'u(y)

Therefore

I fllex
< Zth) o (h) AVng /fdg(h _‘_%
< ka ( sy (Aven, f)—Avgpkf<x‘h))‘+‘Avgpkf<w(h)) - / fdot )]
=
N Hf”lj(X)
_ (h)\ _ (h) HfHC(X)
Zt ( Avgp, f (33 ) /fd9 > + A
7+ Zt(h Ave /fde(h N Il
— k Fk Lk

Let {f,, : m € N} be a countable family of functions in £ that densely span C'(X), and let dist :

1}

M(X) x M(X) — [0, 1] be the metric

dist(B1, f2) = Z 2 mmin{‘/fmd(ﬁl — B2)],
m=1
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This dist metric is compatible with the weak*-topology on M (X ). We can also say that for all M € N, we

have

dist (ozB(i,,,:k) o AVnga Vz‘(k))

r M 0
< Z 27" |op (@) (AVEE, fm) _/fmdyi(k) Z 2

L1 m=M+1
<:_§§2‘m St | Ave, 7 Cﬂm>‘]/f’d¢“ 4 e ||y g
B Lm=1 h=1 ’ B : "

1+ maxj<m<mr ||fm||C(X) -
< — "
< : +2 m [Ave, i (o) = [ ot

We claim that LS ((aB(:E,'Fk) o Angk)Zozl) =C.
First, let v € C. Choose a sequence (v;,),-, such that dist (v,;,) < 1/£. Choose k1 < k2 < --- such

that

1
kE>k = gz (m=1,....,6;h=1,...,n),

Avgp, f (+0) = [ fnao®

>
ky > 0 <1 + mex, Hfm”C(X)> ;

kf € -/\/ie
for all / € N. Then

dist (O‘B(f,v"k[) N AVngza V)

< dist (OZB(:@F;W) o AVngz’ Vi(kg)) + dist (Viea V)

1+ maxi<mer || fmllox) M
< — v
< 7 #2 m a [aven, f () = [
L1

‘

1 ¢ 1 1
<l po Tty

7 LR

€—>ooo

Therefore v € LS ((OéB(i,fk) o AVng)ZO:1>’ meaning that C C LS ((aB(f,,;k) o Angk):o:J.
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To prove the opposite containment, suppose v € LS (( Bz, © AVER ) e ) andlet k1 < ko < - -

such that v = limy_, g (zm,) © AVngz‘ Fix f € L. Then

/fd’Y—/dei(kg)

[y ()

IN

OB(z74,) AVng / fdvie,)

1
<|[ 11 angen, (Avgm JIRS-
— (h Hch X
+ > Avep, f h> / Fdo® || 4 e
h=1
1
< ‘/fdfy - aB(jij) (1AVngZ f)‘ + E
(h)\ _ (h) HfHC(X)
+ Lrg}?gn Avep, [ (93 ) / fdo ] A
2.
Therefore v = limy_, o vj(1,), meaning that v € C. Thus LS ((aB(i,fk) o Angk)zO:1> cc. O

In Theorem 4.5.2, our assumption that C live in a finite-dimensional subset of M (X ) helps us place an
upper bound on LS (ap(z7,) © Avgp, ), ,» i.e. show that LS (ap () © Avep, ) .-, C C. In general, it is

possible to construct (C )32 ; for which LS (avp(z7,) © Avgp, )1, is “maximally large.” as the following

k=1

theorem shows.

Theorem 4.5.3. Suppose j1 is a Borel probability measure on X . Then there exists a sequence (Cj)3° , of

multi-balls in X such that

LS ((ac;, 0 Avgg, ) ,) = Mz (X).

Proof. Since LS ((ack o Avg Fk):;ozl) is always a closed subset of M7 (X), it will suffice to construct
(Cr)72, such that LS ((ac, o Avgg, ), ,) is dense in My (X).

Let £ = {H(h) che N} C 9eMp(X) be a countable dense subset of J. M (X), and set

F= {ZAWW) tneNAe0,1]"nQ" > AW = 1} :
h=1

h=1
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i.e. F is the set of all rational convex combinations of elements of £. Assume that the 8", h € N are distinct.
By the Krein-Millman Theorem, the set F is a countable dense subset of M7(X). Let {; : i € I} be an
enumeration of 7, where I is some countable indexing set, and let 4" = {N; : i € I} be a partition of N
into countably infinitely many infinite subsets.

For each i € I, let (k(4,¢));2, be a strictly increasing sequence such that

k(i,0) € Nj,

(F,ﬁ(ivg));ilis tempered,

which exists by Lemma 4.2.9.

We are going to construct (Cy)32; such that limy_,, ¢ o Avg Fope = Vi for all = € I. For each

K (2,0)

k € N, seti(k) € I suchthat k € Nj.

For each i € I, choose ); € ([0,1] N Q)" and n; € N such that

S0
h=1
Z )‘z(h) =1,
h=1
AW — for all h > n;.

(2

By the Lindenstrauss Ergodic Theorem, there exists for each #(") a point z(® € X such that
lim Avep . f (x(h)> - / Fdo® (Vf € C(X), Vi € I).
PN w(ir0)

For each k € N, choose t;, = (tg), ... ,tlgni(k))) € (0,1)™i® such that

(k)
S = AG | < 1w
h=1

Ti(k)

S =1,
h=1
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For each k € N, choose ;. > 0 such that

max (L(g) : 5}1:1@)) <1/k.

gEFY
Now for each k € N, use Lemma 4.4.3 to choose r,gl), .. ,r,gn“k)) € (0,1) such that
(R). ,.(h)
(5 ()
M<B(ﬂuﬁg§>+.”+M(B<x@mgmymﬂ>>
’I”lih) < (5k7
1
r,&h) < 3 min {p (:z:(hl),x(h2)) 1< hy <he < ni(k)} .

The last condition ensures that the balls {B (x(h); r,@) th=1,... ,ni(k)} are pairwise disjoint. Since the

points (" each satisfy

- () — (»)
lim Avgp,  f («®) = / fdo

forall f € C(X),i € I, and the measures 0 are distinct, it follows that the 2" are also distinct, meaning
that min {p (x(hl),:v(hQ)) 1< hy < hy < nl(k)} > 0.

For each k € N, set
@:B(wyuwmmmgwwéwwy

‘We now show that

lim ac,,, (Aver,,,, ) = [ 1 (¥ € O(X), vie ).

In light of Lemma 4.5.1, it will suffice to prove the convergence for f € L, where

L={peCX):VzeXVyecX (|¢(x) - o(y)| < p(z,y))}
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is the family of all 1-Lipschitz functions. We see

_ni(k) U (B (m(h),r](gh)))
[Lem. 4.2.6] = 1; ETICICCRO) B (o051 (Aveg, f) /deZ(k

i (k)
h
= Z t,(€ )aB(ac(h);r,(ch)> (AVng f)] - /fdl/l-(k)
Lh=1
(k)
(h (h) h
= Z <tk )OéB(z(h)?T/(gh)) (AVng f) )\i(k) /de( )>
h=1
(k)
() (h) h
S Z b aB<x(h>;r,<€h)) (AVng f) - /\i(k) /fdﬁ( )
h=1
(k)
: [t'ﬁh’%< o) (s )= [ 100 (12 23) [ sa0
h=1
S |, wll . e
h=1

We can then estimate

@B (a0 (™) (Avep, f) / fag®

<

aB(ﬂng§(Avgm“ﬂ<—Aygﬂfogm)‘+

Am&f@w)—/ﬁmm
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Since r,(c ) < 0 for all k € N, it follows that if p (x ( (h), y) < r,(ch), then p (Tgx(h), Tgy) < 1/k for g € Fy.

Since f is 1-Lipschitz, it follows that | f (T,z ™) - f (Tyy)| < 1/k forall g € Fy,. Thus

O (01 (Avep, f) — Avep, f (x(m)’

SM (B (m(h);r,ih))> /B<1'(h);r(h> ZI;
1 Ly
) ;T /B(g;(h>;r(h> ZF E

Therefore

HfHC(X

Yp (2000 (Aveg, f) / fdot

IN

)

Avgp f (2 - / Fdo™

(20 (Avgp, f) — Avgg, f (x(h))‘ 1

1fllex
* k

+ |Avep, f / fdo™

)

(k)

Hon

Hch

Avgp f / Fdo®
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In particular, this tells us that for fixed 7 € I, we have

ACli (AVgFW,@ f) - /fd”i(k)

= |QCpiy0) (AVgFMM)f - / JWik(i0))

1 Hch
< " Ay 1o
_/Q('L’E) Z K(1,0) VEF, (i, Z) /f ( g)
1 1fllcx)
=7 (+) - wl] . 1flleeo
=t Lg}i}; AVBE, 1) f z /fd9 ] +=—
f—>ooo'

Therefore v; = limo ac,, ,, AVep,, - Thus LS ((acy © AVng) ) D Fis dense in Mp(X), and

since LS (o, 0 Avgp, ), ) is a closed subset of M(X), it follows that

k=1

LS (a0, o Avep,)i2y) = Mr(X).

We conclude this section by proving a result that does not rely on the measure u neglecting shells.

Proposition 4.5.4. There exists a sequence (xy);° , of points in X and a sequence (1,)72 , of radii such that

Proof. Let {v; : i € I} be a countable dense subset of J. M (X ), where I is some countable indexing set,
and let A4 = {N; : i € I} be a partition of N into countably infinitely many infinite subsets. For each k € N,
seti(k) € I such that k € Ny,

For each i € I, let (k(i,£)),2, be astrictly increasing sequence such that

K(i,0) € N,

(Fi(ie)) o, is tempered,
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which exists by Lemma 4.2.9. By the Lindenstrauss Ergodic Theorem, for each ¢ € I exists y; € X such that

hm AvEE .y f(yi) /fduz (Vf e C(X)).

Set xj, = Yi(k)-

For each k € N, choose d;, > 0 such that

. sH(g)
max (L(g) Op >< 1/k,

and let r, € (0,0y) forall k € N. If f € £L(X), then

aB(”n(M)””n(i ) ( V8i(if) f) /dei

S \YB(piyraiin)) ( V8i(i ) f) AvEie) f (l‘n(i,e))‘ +

Avg,in [ (2ap) — /dei

OB (1 sy etiny) ( VEr(i,f) f) AVgn(i,é)f(CCm(i,Z))’ +

A8 [ (i) — / fdv;

+ | Avenn £ (40) / fdv,

Therefore v; € LS ((aB(xk;rk) o Angk)iozl) foralli € I. Since {v; : i € I} is dense in O M7 (X),

and LS ((QB(%M) ) Angk)zoﬂ) is always closed, it follows that

OeM7(X) C LS ((O‘B(mk;m) ° AVng)ZO:J :

4.6 Weak specification and maximal oscillation

Specification properties were initially introduced by R. Bowen in (Bowen, 1971) in the course of studying
Axiom A diffeomorphisms. In the intervening decades, a considerable amount of effort has been put into the
study of other specification-like properties -typically weaker than the Specification Property considered by

Bowen- and the connections between them. For a broad overview of these specification-like properties and
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the relations between them, we refer the reader to (Kwietniak et al., 2016), whose terminology we will be
following.

Throughout this section, let (X, p) be a compact metric space, and let 7' : Ny ~ X be an action of Ny on
X by continuous (not necessarily invertible) maps. For x € X, k € N, we define the kth empirical measure

of = to be the Borel probability measure

k—1
IU’I,’C = Z 5Tj.1}7
J=0

where d, denotes the point mass at y, i.e. dy(A) = xa(y). In light of Lemma 4.2.5, the study of local
temporo-spatial differentiations is closely tied to the study of pointwise ergodic averages.

A point z € X is said to have maximal oscillation with respect to 7' : Ng ~ X if

LS ((Hap)py) = Mr(X).

This could be understood as the worst possible divergence for the sequence (fi; ), ;- M. Denker, C.

1
Grillenberger, and K. Sigmund demonstrated the following prevalence result for points of maximal oscillation.

Recall that a subset S of X is called residual if S contains a dense G set.

Theorem 4.6.1. (Denker et al., 2006, Proposition 21.18) If T' has the Periodic Specification Property, then
the set of points x € X with maximal oscillation is residual in X.

Remark 4.6.2. In (Denker et al., 2006), what the authors call the Specification Property (defined there as
Definition 21.1) is what (Kwietniak et al., 2016) calls the Periodic Specification Property, which is slightly
stronger than what (Kwietniak et al., 2016) -and consequently we- call the Specification Property in Definition
4.6.5.

We introduce here a variation on and strengthening of the definition of maximal oscillation.

Definition 4.6.3. A sampling family is a family II of functions N — N such that limy_, ., m(k) = +oc for
all k € N. Given a sampling family 11, we say that a point x € X has maximal oscillation relative to 11 if for

every m € 11, we have that

LS ((Mm,w(m)f:l) = Mr(X).
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Maximal oscillation can then be recovered as the case where I = {k +— k} consists solely of the identity
function on N.

Maximal oscillation describes the situation where not only does the sequence (/Lz7k)z<):1 diverge, but it
diverges to the greatest extent possible. However, because (/1 k)zil takes values in the compact space M (X),
we know it will always have convergent subsequences, meaning this divergence will always “disappear” if we
restrict our attention to an appropriate subsequence. Our notion of maximal oscillation relative to a sampling
family allows us to strengthen the notion of maximal oscillation by prescribing the “worst-case scenario”
divergence along a family of subsequences.

We now define a hierarchy of specification-like properties.

Definition 4.6.4. A specification is a finite sequence § = {([a;, b;], z;)};_, of finite subintervals [a;, b;] of
N and points z; € X. Given a function M : N — N, we say that the specification { = {([a;, b;], xj)}?zl is

M-spaced if a; — bj_1 > M(j) forall j = 2,...,n. If M is the constant function N € N, then we say an

M-spaced specification is N-spaced.

Definition 4.6.5. Let £ = {([a;, bj],mj)}?zl be a specification, and let § > 0. We call a pointy € X a

d-tracing of & if
p(Tia:j,Taij) <6 (Vji=1,...,n;i=0,1,...,b; —a;).

(I) We call a family of functions (M : N — N);_ (0,1) & modulus of specification for (X, T) if every M-
spaced specification £ admits a d-tracing, and say that 7' : Ng ~ X has the Very Weak Specification

Property.

(IT) If T admits a modulus of specification (M) 5€(0,1) with the additional property that

lim LI&(”)

n—00 n

=0 (Vo € (0,1)),

then we say that 1" has the Weak Specification Property.

() If T admits a modulus of specification (M) 5€(0,1) with the additional property that each My is a

constant function, then we say that 7" has the Specification Property.
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Intuitively, these specification-like properties mean that if we have some orbit segments that we want
to approximate within 9, then we can find a point whose orbits are close to those segments as long as the
segments are spaced far enough apart from each other. Clearly these specification properties are listed in
ascending order of strength.

What we call the Weak Specification Property and Specification Property both have precedents in the
literature. The Specification Property goes back to R. Bowen’s original work (Bowen, 1971), and what we
call here the Weak Specification Property can be found in (Marcus, 1980). See (Kwietniak et al., 2016) for a
fuller historical discussion. However, to our knowledge, there is no precedent for what we term here the Very
Weak Specification Property in the literature. Regardless, our results in this section do not rely on a modulus
of specification (M) s (o 1 satisfying the condition that Ms(n) = o(n) for all § € (0, 1), so we see fit to
introduce this weaker specification-like property.

Our main theorem of this section is the following.

Theorem 4.6.6. Let II be a countable sampling family. Suppose T' : Ng ~ X has the Very Weak

Specification Property. Then the set

T {;U €X:LS ((%m(k));‘;l) — Myp(X) forall 7 € H} .

is residual.

Let £ denote a countable dense subset of 9. M7 (X), and let
F = {Z)\iei neN G €& NeQn [071]72/\1‘ = 1}7
= i=1

i.e. F is the set of all rational convex combinations of elements of £. Then F is a countable dense subset of

M7 (X) by the Krein-Millman Theorem. Further, let { f; }7° ; be an enumerated dense subset of C(X).

Lemma 4.6.7. Let Il be a sampling family. Forv € F,e > 0, H € N, kg € N, 7 € II, set

H m(k)—1
E(V,E,H,ko,ﬂ): ﬂ a:EX:akao m E ijh(.%') —/fth <e€
™
h=1 J=0

If T has the Very Weak Specification Property, then E (v, €, H, ko, ) is a dense open subset of X .
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Proof. Fix H e Nyv € Mp(X),e > 0,7 € II. Set

w(k)—1
1
A, ={zeX: = ;0 Tj fn(z) —/fhdu <eforh=1,...,H

Then E(v, ¢, H, ko) = Uz ko Ak Clearly Une ko Ak 1s open, leaving us to show it is dense.

Choose 0y, 01,...,01_1 € E; X0, M,..., A\[_1 € [0, 1] N Q such that

I-1
v=>Y_ \bi,
i=0
where we can assume without loss of generality that A; > 0 for all ¢ = 1,...,1. Let
P0, P15 - - ->PI-1,9 € N such that
N=Y (i=0,1,...,1 —1).

Let yo,y1,...,yr—1 € X such that limg_, % Zf;é T fn(yi) = [ fdo; fori =0,1,...,I — 1, which exist

by the Birkhoff Ergodic Theorem. Choose kg € N such that

k> k= ;liijh(yi) —/fhdé?i <e/3 (=01, 1—1ih=1,... H)
j=
Fix x € X,n > 0. We will show that there exists k > kg and y € Ay, such that
p(x,y) < 1.
Since f1, ..., fg are uniformly continuous, there exists § > 0 such that
Vz1,20 € X Vhe {1,...,H} (p(z1,22) < d = |fn(z1) — fr(z2)| < €/3).

Assume without loss of generality that & < 7.

Let (Mé)ée(o,l) be a modulus of specification for 7" : Ng ~ X. Fix

N =max{M;(1),...,Ms(I +1)}.
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For K € N, define a sequence

o) < b)) <ol <) < 0l < b < ol < << alF) < Bl
by
at) =0, b =0,
a(()K):N, b(()K)zao—i-Kpo—l,
o 4 — ) 4 iy 1,
i) =) 4 N, oS = ol + Kpy — 1,
a{™) =) + N, o) = al™) + Kpro1 — 1.
Written explicitly, we have
i—1
o™ =i+ )N+ K p,
£=0

b =i+ )N -1+ K> .
=0

Set

r ifi=—1,
T; =

yi if0<i<I-—1

Let £ be the specification
e = ([ ] )}

Then ¢5) is Ms-spaced, so by the Weak Specification Property, for each K € N exists y = y5) € X
such that y(K )is a d-tracing of & (E) . In particular, since a(_li) =0 = b(_li),m,l = gz, this means that
plx,y) < & < n. We claim that y5) € E(v, e, H, ko, ) for sufficiently large K .

For k € N, set

KoK r(k)—IN—lJ’

q
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SO

B 41 =IN+Kq+1<n(k) <IN+ (K + 1)q.

The following sketch of our argument motivates our definition of (). Let f € C (X). Then

2 ()

%AVg[a(()K)b(()K)]U[agK),b(lK)] a5 )] In ( )

I 1
1 I-1 b<K>
-1 o
b; + 1) Av ( ))
Kpo +Kp1 +---Kpr — ( g[ (5) (K)] In
| =
“Kq ZKpi Avg (o) 40] In (y(K)>
i=0 i Y
I_lp-
—N"Pip B[, 49 fh( (K))
i=0 q
I_lp-
zz JAVg[O ) (K)] In (zi)
=0 q g
-1
=30 [ e
1=0 q

where we write that s(k) ~ t(k) if |s(k) — t(k)| < €/3 for sufficiently large & € N. So it will suffice to
verify those three claims.

Claim (i): We first argue that

7w 2 () | ooy 5 )] <5
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for sufficiently large £ € N. We know that

1 w(k)—1
- oy (KO
L [ b ol
~ (k) D2 fn (ij(K)) Tl S hu (ij( >>
T i=0 j:agK) ™ o
1-2 i w(k)—1
L Y (K) 7.0
(k) ; % £ (T9") |+ 2 (ZKI) I (T9™)
) 1 =) 41
K 1 af®
q
=8y AV Yoo ) 7 (0°0) + 5 (jZO i (ij<K>))
L[ el . IR .
+7T(k) ; % I (TJy ) +@ - Io Thy )
Jj=b,""+1 j=b%) 41
:Avg[aé’(),bém]U[aﬁm,by(’}um[agfjg,by_fg] fh (y(K))
Kq—7(k)
T nk) Avg (6 65| a0 [ 4 fn (y(K’)
a(()K) 1o a(i(l)
1 1
+% th (ij(K)>) 7 (Z Z fh( ]y ))
J=0 =0 b(K)+1

1 m(k)—1
—l—m Z fn <ij(K)) )

=0 +1
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Therefore

w(k)—1
1
(k) = In <ij(K))) B AVg[agK>,bgK>]U{ambgm}u...[ag)l,bﬁ] In (Z/(K))
Kq—7(k
< sl iy 5 ()

()
13
. )
+ (8 jz;fh <ijK)

(K)

1 I-2 %41
+ =5 o (T
(k) ZZ;' %{:) h( j )
m(k)—1
1
— ()
+ =08 %{:) fh(T]y )
]:b1_1+1
_7(k) — Kq o
‘wa“%wwwwmwwﬁmmﬁ@ )
1 N
— o (K)
+ ~8) ]Z_%fh<T]y )
1 (22 b +N L TR
= () 1 %)
NEIR> A (1) MECERS i (")
b 4 j=IN+Kq+1
m(k) — Kq N+1
SWH]C}LHC(X)+WWI¢HC(X)
- N (k) — IN + Kq+1
+ W HthC(X) + ) ”thC(X)

IN+1 N+1 (I-1)N

S| w TR T k)

+ | Ul

k—
=0.

This establishes our estimate for large k.

Claim (ii): We next argue that

<

Wl ™

I-1 =
‘ ( bi Avg[a<_x> ] In (y(K)>> - (Z % Avg[o b —a (] In (xi)>
: o b =0 o
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for all £ € N. To see this, we can note that

I
(Zz; Dbi Avg[ (K) b(K)] fh< )) <zgquvg b(K Z(K)] In (wz)>|
I 1 bEK)—U«,EK>
P
T1E B W JZB (0 (08 ™) = £ (T
I-1 Kp;—1
= % Z <fh( Ha(K)y ) In (T%)>
1=0
I-1 Kp;—1
< % > ‘fh( : K)y )—fh(ijUi)
i=0 j=0
ey KZ
1=0 q
_6
=3

where the estimate (}) follows from the fact that y is a J-tracing of £ (K)

Claim (iii): Our third step is to show that

I-1 D; I-1 »;
(Z ZAVg[ B9 a1 In (ﬂb‘z)) - (Z;/fhd0i>

=0

for sufficiently large & € N. This follows because

(121 b AV yo0_ 001 T :v) (Z b /fhd0>

=0

-1,

=D = (AVg{O IO —al)] o (@) — /fhdei)|
im0 ¢ o :
1,

SZEZ AVg[O’b(_K)_a(K)] fn () —/fhdai
Z:O K2 1
I-1 ) Kp;—1

= % Z fn (Tjz;) _/fhdei
1=0
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If £ is sufficiently large that

Kp;—1
1
>t (D) —/fhdﬁi << (fori =0,1,...,1—1),
Kpi =0 3
then
I—lp‘ 1 Kp;—1 I—lp ¢ ¢
rr T / do 7= _ -
2 Kzz_gfh(m Fudli <3703
= J]= 1=

Taking these three claims together, we can say that

m(k)—1
=opY fu (T ) | = [ rav
1 7rl<:) 1
< =R Z fh( iy ) _AVg[aéK)ybéK)]U[agK)’bgK)]Um[aglfi’b§lfi] Iu (y(K)>
I 1p4 -1,
7 (K) _ 7
+ (io . AVg{(ém’bgm} Jn (y >> <i0 A 80,69 —a1] fn (ﬂfz)>‘
-1 -1
+ &AVgOb(m_ ) o (@i) | — Zpl/fhd&'
i—0 ¢ { “ ] i—0 ¢
€ € €
<§ + § + §
—€
for sufficiently large £ € N.
Foreach h € {1,..., H}, choose kj, € N such that
1 w(k)—1
bz b= oo ; fh(ij(K)) —/fdu <e

Then if k > max {ko, k1, ..., ky}, it follows that ) € E(v, e, H, ko, 7). O

Proof of Theorem 4.6.6. We can metrize M (X) with the metric dist : M (X) x M(X)

).

— [0, 1] defined by

dist(B1, f2) Zmln? h {‘/fhd(ﬁl — [2)
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Forv € F, kg € Nyn € N, 7 € II, write
B(v,n, ko) ={zx € X : 3k > ko (dist(pzr,v) < 1/n)}.
Choose H,, € N such that 2=» < 1/(2n). We claim that
B(v,n, ko, m) 2 E(v,1/(2n), Hp, ko).

If z € E(v,1/(2n), Hy, ko, ), then there exists k > ko such that

dist(pe,x(r), v 22 hmin{/fhd (M) —y),l}
h=1

1 1

<27l 4022 4. +2‘H" —+ Z 2"
n 2n o

< 1 + 1

2n  2n
=1/n.
Thus z € B(v,n, ko, 7).
We  claim  that X' D Nrent Nver Mozt Nig=1 B(wsn, ko, ). Let

2 € et Nver Mzt Nig—1 B, n, ko, 7), and consider some v € M7 (X ). Choose a sequence (v¢)72,

in F such that dist(v, v,) < 1/¢ for all ¢ € N. Construct a sequence (k;)72, in N recursively as follows:
* Basis step: Choose k1 € N such that dist (Mx,w(kl)a Vl) < 1, which exists because = € B(vp,n,1,7).

* Recursive step: Suppose we've chosen ky < kg < --- < kg such that dist (15 x(,), Vn) < 1/n
forn =1,...,¢. Chose kg1 > k¢ + 1 such that dist (Nm,w(ke+1)v 1/4+1) < 1/(£ 4+ 1), which exists

because = € B(vpy1, 0+ 1, kg + 1, 7).

It follows then that
. . . f—00
dist (peg k,, v) < dist (g k,, ve) + dist (vp,v) < 2/07570,

ie. v € LS ((fak) ey )-

154



But (N, Moe1 Nro—1 B(v,n, ko) is a countable intersection of residual sets, and thus itself residual.

O]

Corollary 4.6.8. LetF = ({0,1,...,k — 1})72,, and suppose that T : No ~ X is a Holder action on X that

has the Very Weak Specification Property. Suppose 11 is a countable sampling family. Then the set of x € X
o

such that LS ((a Blar) © Aver, (k)>k:1) — Myp(X) for all ()., that decay (X, p, H, L, F)-fast and

m € 1l is a residual subset of X .
Proof. Lemma 4.2.5 tells us that this is exactly the set considered in Theorem 4.6.6. O

Our Theorem 4.6.6 strengthens the following result of J. Li and M. Wu, since the Specification Property

implies the Very Weak Specification Property.

Corollary 4.6.9. (Li and Wu, 2016, Theorem 1.3) Suppose T' : Ny ~ X has the Specification Property, and

let f € Cr(X) be a real-valued continuous function on X . Then the set

k—

k—
1 1
re X: hmlnszgf(zj): hgi)sipkz(:) (f)

is residual.

Proof. Let Il = {k — k} be the sampling family consisting solely of the identity function N — N, and
consider z € X', Since the Specification Property implies the Very Weak Specification Property, Theorem

4.6.6 tells us that X' is residual. Let 61,05 € 9. M7 (X) such that
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Then there exist k:gi) < k:éi) < k:z(,,i) -+« for¢ = 1,2 such that limy_, , ut

a(f) <liminf — Zf (Tjx)

k—o0

lk

a(f) > limsup — Tjx)

k
k—oo =0

Therefore

k—
1
II 1
X" C{xe X : liminf z E_O

k—o0

meaning the latter is residual.
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x,ké” = 91 Thus
k§ -1
li (Tjx) =
< Jim L Z fT) = alf)
=
= hkrglnfE ‘ f(Tz) = a(f),
7=0
k$P -1
2 m k(2 Z f (Tw) =a(f)
¢ j=0
=
= limsup — Z f (Tﬂf) =a(f)
k—o0 k j:[)

e‘v

(s L 7 () =200

k—o00 =0



Non-autonomous temporo-spatial differentiations for group endomorphisms

The remainder of this chapter is a reproduction of the article (Assani and Young, 2023), a joint work

between the author and his advisor, 1. Assani. It is presented without any changes.

In (Assani and Young, 2022), we introduced the notion of a spatial-temporal differentiation problem.

Here, we introduce a generalization of this concept to the setting of non-autonomous dynamical systems, and

prove probabilistic and topological results about certain random spatial-temporal differentiations on compact

abelian metrizable groups.

This paper is organized as follows:

In Section 5.1, we provide a definition of non-autonomous dynamical systems for our purposes. We
also describe what a spatial-temporal differentiation problem would look like in this non-autonomous

setting.

¢ In Section 5.2, we introduce the notion of uniform distribution, and describe how uniform distribution in
a compact group is related to the representation theory of that group. We end in proving a metric result
about the uniform distribution of the trajectory of a point under a sequence of group endomorphisms

under the hypothesis that the group endomorphisms satisfy a property we call the Difference Property.

* In Section 5.3, we consider questions about when the Difference Property makes the group endo-
morphisms surjective, and whether a sequence with the Difference Property can exist on a given

group.

* In Section 5.4, we prove a probabilistic result about non-autonomous spatial-temporal differentiations
relative to a sequence of group endomorphisms with the Difference Property and a sequence of
concentric balls with rapidly decaying radii, demonstrating that the set of z € G which generate

well-behaved spatial-temporal differentiations is of full measure.

* In Section 5.5, we prove a probabilistic result about uniformly distributed sequences of the form

(T - - Tign,, )pep> Where (g5,)22, € GNo and (Ay,)22 is an increasing sequence of natural numbers.
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* In Section 5.6, we prove a topological counterpoint to Theorem 5.4.2, demonstrating that the set of

x € G which generate pathological spatial-temporal differentiations is comeager.

We thank the referee for their careful reading of this paper.

5.1 Introducing non-autonomous dynamical systems

Our definition of a non-autonomous dynamical system is inspired by the ~’process formulation” found in
(Kloeden and Rasmussen, 2011), though adapted for our ergodic-theoretic purposes. We state the definition in
excess generality, because it is more important to us that the definition capture the concept of non-autonomys;
the study of (autonomous) dynamical systems comes in many diverse flavors, so we would like our definition
of non-autonomous dynamical systems to reflect that diversity.

Let Ng = Z N [0, 00) be the semigroup of nonnegative integers (distinguished from the set N of strictly
positive integers), and let X be an object in a category C. Let Hom¢ (X, X) denote the semigroup of
endomorphisms on X in the category C. A non-autonomous dynamical system is a pair (X, 7), where 7 is a

family of maps {7(s,t) € Home (X, X)}s ten, s>+ satisfying the following conditions.
1. 7(s,s) =idx forall s € Ny
2. 7(s,u) = 7(s,t)7(t,u) forall s,t,u € Ng, s >t > u,

where the composition of endomorphisms of X is abbreviated as multiplication. We refer to 7 as the process.

The essential difference between an autonomous and a non-autonomous system is that the transition map
7(s,t) is dependent on both the “starting time” ¢ and the “ending time” s. The system would be autonomous
if it had the additional property that 7(s,t) = 7(s —t,0) for all s,¢ € Ny, s > ¢, indicating that the transition
map depends only on the elapsed time between ¢ and s.

Similar to how an autonomous dynamical system can be treated in terms of either an action of Ny on a
phase space, or equivalently in terms of its generating transformation 7", a non-autonomous dynamical system
as we have formulated it above can be understood in terms of a family of generators T; = 7(¢,t — 1), € N.

Likewise, a family of generators {7} € Hom¢ (X, X) }en can be understood as generating a non-autonomous
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dynamical system by

T(s,t) =7(s,s = 1)1(s — 1,8 —2)---7(t + 1,¢1)

=TTs - Tt+1-

The approaches are equivalent, but we will typically be approaching these non-autonomous systems from the
perspective of starting with the generators (7},)2° ; and building 7(-, -) from that sequence.

For our purposes, that category C will be the category whose objects are compact topological spaces X
endowed with Borel probability measures ., and whose morphisms are continuous maps. We will not in
general assume these maps are measure-preserving. Though the assumption that maps are measure-preserving
is typically vital in the autonomous setting, we will eventually be considering situations where interesting
results are possible without the explicit assumption that the maps in question are measure-preserving. For
measurable sets F' with p(F') > 0, set ap(f) = ﬁ [ fdp. We are interested in questions of the following

forms:

* Let (F})2, be a sequence of Borel subsets of X for which p(F}) > 0, and let f € L*°(X, u). Then

what can be said about the limiting behavior of

k—1 o0
1
(aFk (kZTz‘Ti—l“'Tlf>> ?
1=0 k=1

* Suppose the Fy, = Fi(x) are "indexed” by = € X. Then can we make any probabilistic claims about
o
the generic behavior of the sequence (a Fi(x) <% Zf:_ol TTi—q--- T f) > i 1?
* Under the same conditions, can we make any topological claims about the generic behavior of the

ssence (o) (1513 T+ 717))

o0

?
k=1
Theorem 5.4.2 is a result of the second type, describing the probabilistically generic behavior of a spatial-
temporal differentiation along the sequence By (x), where By (x) is a ball centered at = with radius decaying
rapidly to 0. Theorems 5.6.2 and 5.6.7 are of the third type, describing the topologically generic behavior of

a spatial-temporal differentiation along the sequence By(z).
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5.2 Uniform distribution and harmonic analysis

Before proceeding, we define the notion of uniform distribution. The study of uniformly distributed
sequences began with Weyl’s investigation of “uniform distribution modulo 17, expanding on Kronecker’s
Theorem in Diophantine approximation (Weyl, 1968). This notion was then extended by Hlawka to apply to
compact probability spaces (Hlawka, 1956). The study of uniform distribution in compact groups in particular
was first initiated by Eckmann in (Eckmann, 1943); though Eckmann’s initial definition of uniform distribution
for compact groups contained a significant error, the initial paper still contained several foundational results
in the theory, including the Weyl Criterion for Compact Groups (Proposition 5.2.5). For a more through

history of the topic, the reader is referred to the note at the end of 4.1 in (Kuipers and Niederreiter, 2012).

Definition 5.2.1. Let X be a compact Hasudorff topological space endowed with a regular Borel probability

measure /. A sequence ()0 in X is called uniformly distributed with respect to the measure . if

B

-1

fla) F5° / fdu

x| =
-
I
o

forall f € C(X).

Let G denote a compact topological group with identity element 1 and Haar probability measure
w. Throughout this section, we will be dealing only with the dynamics of compact groups, so G' will
always denote a compact group, p will always refer to the Haar probability measure on the compact group
G, and Bo(X) will always refer to the Borel o-algebra on a topological space X. We will also write
LP(G) := LP(G, ), taking the measure y to be understood.

When it comes to topological groups, the uniform distribution of topological groups can be characterized
in terms of the representation theory of the group. We review here some important concepts from the
representation theory of topological groups so that we may state this relation. Our brisk summary of the basic
representation theory of compact groups mostly follows (Folland, 2016).

Let U(H) denote the group of unitary operators on a Hilbert space #H, where we endow U(H) with
the strong operator topology. A unitary representation of G on H is a continuous group homomorphism
7 : G — U(H). Though non-unitary representations exist, we will be dealing here exclusively with unitary

representations, so we do not bother to define non-unitary representations.
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We call a closed subspace M of H an invariant subspace for a unitary representation 7 : G — U(H)
if ()M C M forall x € G. Since 7(z)|p : M — M is unitary on M, we call 7™ : z + 7(x)|p €
U(M) the subrepresentation of 7 corresponding to M. A unitary representation 7 : G — U(H) is
called irreducible if its only invariant subspaces are H and {0}. Two unitary representations 7 : G —
U(H1), 7 : G — U(Hz) are called unitarily equivalent if there exists a unitary map U : H; — Ha such
that o (x) = Uy (z)U ! for all z € G. We denote by [r] the unitary equivalence class of a representation

m:G— UH).

Fact 5.2.2. If G is a compact group, then for every irreducible unitary representation w : G — U(H), the

space H is of finite dimension.
Proof. (Folland, 2016, Theorem 5.2). O

Given a unitary representation 7 : G — U(H), we define the dimension dim 7 of 7 to be dim(H);
since a unitary equivalence of representations induces a unitary isometry between the spaces they act on,
we can conclude that the dimension of a representation is invariant under unitary equivalence. We use G to
denote the family of unitary equivalence classes of irreducible unitary representations of G. We note that this
notation is consistent with the use of G to refer to the Pontryagin dual of a locally compact abelian group G,
since when G is locally compact abelian, the irreducible unitary representations are exactly the continuous
homomorphisms G — S! C C.

In particular, there will always exist at least one irreducible representation of dimension 1, specifically
the map x — 1 € C. We call this the trivial representation of G.

Given an irreducible unitary representation 7 : G — U(H), we define the matrix elements of 7 to be the

functions G — C given by

x = (m(z)u,v) (u,v € H).

Because 7 is continuous with respect to the strong operator topology on H, it follows that the matrix elements

are continuous. Given an orthonormal basis {e; }_; of H, we define the functions {; ;}',_; by

mi () = (7(x)es, e5) -
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These 7; ; in fact define matrix entries for 7 in the basis {e;}" ;.
In particular, the trivial representation will have constant matrix elements.

This is sufficient framework to state the results we will be drawing on.

Fact 5.2.3. [Peter-Weyl Theorem] Let G be a compact group, and let V' C C(G) be the subspace of C(G)

spanned by

{ﬂp’q :p,q=1,...,dim7; 7] € @}
Then V is dense in C(G) with respect to the uniform norm. Furthermore,

{\/dimmrpﬂ :p,q=1,...,dimm; 1] € G}

is an orthonormal basis for L*(G).
Proof. (Folland, 2016, Theorem 5.12). ]

Corollary 5.2.4. If 7 : G — U(H) is a nontrivial irreducible unitary representation, then [ 7, ;du = 0 for

all (p,q) € {1,2,...,dim7}2.

Proof.

/qud/‘ = /Wp,q ldp = (mpq, 1>L2(G) =0,
since the constant function 1 is a normalized matrix term of the trivial representation. O

Finally, we return to the subject of uniform distribution.

Proposition 5.2.5 (Wey! Criterion for Compact Groups). Let G be a compact group, and (x,,):>, a sequence

in GG. Then the following are equivalent.
1. The sequence (x,,);2, is uniformly distributed in G.

2. For all nontrivial irreducible unitary representations v : G — U(H), and all (p, q) € {1,2,...,dim7}?

we have
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3. For all nontrivial irreducible unitary representations  : G — U(H), we have

e
|
—_

7r(xz) kz;)o 07

x| =
-
Il
o

where 0 denotes the zero operator on ‘H, and the convergence is meant in the operator norm.

Proof. (Kuipers and Niederreiter, 2012, Chapter 4, Theorem 1.3). O

Lemma 5.2.6. Let ¢ : G — G be a continuous surjective group homomorphism, and let (x,)2> | be a

uniformly distributed sequence in G. Then (p(xy,)), - is uniformly distributed in G1.

Proof. Let m: G1 — U(H) be a nontrivial unitary representation of G;. Then 7 o ¢ is a nontrivial unitary

representation of (G, since ¢ is surjective. Therefore

= = i
_>
7 2 mlela)) =+ ) (mop)(i) = 0.
=0 =0
We can thus apply Proposition 5.2.5. O

Remark 5.2.7. Lemma 5.2.6 is listed as Theorem 1.6 in Chapter 4 of (Kuipers and Niederreiter, 2012).
We include the proof here for the sake of self-containment. Lemma 5.2.6 will be important when proving

Theorem 5.5.9.

We will be interested specifically in the case where the Weyl Criterion only requires us to ’check”
countably many matrix element functions, or equivalently where G is countable. It turns out that this is

tantamount to a metrizability assumption.
Lemma 5.2.8. Let G be a compact topological group. Then the following are equivalent.
1. C(Q) is separable as a vector space with the uniform norm.
2. L?(G) is separable as a Hilbert space.
3. The family G is countable.
4. G is metrizable.

Proof. (1)=(2) If C(G) admits a countable set with dense span in C(G), then that same set has dense span

in L2(G). Thus L?(G) is separable.
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(2)=(1) If L?(G) is separable, then every orthonormal basis of L?(G) is countable, including the family
of matrix terms. But these matrix terms have dense span in C(G), so C(G) is separable.

(2) <= (3) If there are only countably many unitary equivalence classes of irreducible unitary representa-
tions of G (which are all necessarily finite-dimensional), then L?(G) is separable by the Peter-Weyl Theorem.
Conversely, if G is uncountable, then Peter-Weyl tells us that L?(G) admits an uncountable orthonormal
basis, meaning that L?((G) is not separable.

4)=(1)If G = (G, p) is compact metrizable, then G is separable, admitting a countable dense subset
{z;}jer Let fj = p(-,x;). Then {f;},cs separates points, since if fj(x) = f;(y) for all j € J, then
p(z,x;) = p(y,x;) forall j € I. For each n € N exists j,, € I such that p(z,z;,) < 5, since {z;};e/ is

dense in G. Thus p(z,y) < p(z,z;) + p(x;,y) < L. Thus z = y. By Stone-Weierstrass, this implies that

N
Span{HfjnZjl,...,jNGJ,NENU{O}}:C(G),

n=1

where the empty product is the constant function 1.

(2)=(@) Let A : G — U (L*(G)) be the left regular representation

MNz): (= f@) = (t— f(z7't)).

Then A is a faithful representation of G on H, meaning ) is an embedding of G into U (Lz(G)). Therefore
MG) = G is a closed subgroup of U (L*(G)). But U(H) is metrizable when H is separable, so G is

therefore metrizable. O

When G is compact abelian, the family G is exactly the family Hom (G, Sl) of continuous group
homomorphisms ¢ — S', where S' = {z € C : 2z = 1}. Then ( has the structure of a locally compact
abelian topological group under pointwise multiplication (Rudin, 1962, 1.2.6(d)).

The following results describes a condition under which certain sequences will be almost surely uniformly
distributed. We remark that the result is a direct generalization of Theorem 4.1 from Chapter 1 of (Kuipers
and Niederreiter, 2012), which proves the result (albeit in different language) for the particular case where
G = R/Z, and our method of proof is essentially the same, except expressed in the language of harmonic

analysis.
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Theorem 5.2.9. Let G be a compact abelian metrizable group, and let (), . be a sequence of distinct
continuous group endomorphisms of G' such that ®,, — ®,,, is a surjection of G onto itself for all n # m.

Then for almost all © € G, the sequence (®, )5, is uniformly distributed.

Proof. Fix some nontrivial irreducible unitary representation y € G. Set

Then

Sy (k.2 = 15 S A @)(@57)
4,7=0

1 k—1
2 Y(®; — @5)x)
i,j=0
;x/ys (k,z))?du(z kQ”ZO/ ((®; — ®;)x)du(z)
- %,

This cancellation is possible because if i # j, then ®; — ®; is surjective, meaning that y o (®; — ®;) isa
nontrivial character on G. Therefore [ ((®; — ®;)x)du(x) = 0 for i # j, meaning only the terms of i = j
contribute to the sum.

This tells us that 352_, ]S, (K2, 2)|* du(z) = 33_, K2 < 00, so by Fatou’s Lemma we know
that [ Y %_; [Sy (K2, ) }2 du(z) < oco. In particular, this tells us that > %_, |5y (K2, z) ‘2 < oo for
almost all x € G, and so for almost all x € G, we have S, (KQ, x) Kioo 0.

Let z € G such that S, (K2, z) K2 (). We want to show that Sy (k,x) "2 ). For any k € N, we

have
2

WVE)2<k< (L\/EJH) .
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So

=
1S3k 2)| = |1 S (@)
i=0
1 [VE]2-1 1 k—1
<|z V(@ix)| + | D (@5a)
=0 j=Vvk]?
2_

IA
=
(Y]
\'M
=
s
+
x5

Let £, = {93 €G:Sy(k,x) Fope O}, and let £ = nyeé\{l} E.,. Since G is countable, we know

w(E) = 1, proving the theorem. O

5.3 The Difference Property

We will be interested especially in the situation where the sequence (®,,),, . is generated by a sequence
(T})nen of continuous group endomorphisms. Motivated by Theorem 5.2.9, we introduce the following

definition.

Definition 5.3.1. Let G be a compact abelian metrizable group, and let (77,)5° ; be a sequence of continuous
group endomorphisms of G. Set ®,, = T,, T, - - - T} for n € N. We say that the sequence (7,)°; has the
Difference Property if ®,, — ®,, is surjective for all n,m € N, n # m.

It is not obvious that the Difference Property places any particular restrictions on the individual ®,,
themselves. We have a special interest in when the maps {77, }° ; are surjective -or perhaps more interestingly,
when they are not surjective- because a continuous group endomorphism on a compact group is measure-

preserving if and only if it is surjective.

Proposition 5.3.2. LetT : G — G be a continuous group endomorphism of a compact group G. Then T is

surjective if and only if T' is measure-preserving.
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Proof. (=) Suppose T is surjective. Define a Borel measure v on G by v(E) = pu (T 'E). Letz € G, and

choose y € G such that z = T’y Then the measure v satisfies

meaning that v is left-invariant. It also satisfies v(G) = p (T7'G) = u(G) = 1, so v is a probability
measure. Therefore v is a Haar probability measure on G, but by the uniqueness of the Haar measure, this
implies that v = p.

(<) If T'is not surjective, then there exists € G'\ T'G. Since G is compact and Hausdorff, the map 7'
is necessarily closed, so T'G is closed in G, and a fortiori is measurable. If 1 (T'G) # 1, then we know that
p(T7HTG)) = w(G) # W(TG), so consider the case where 1(TG) = 1. We claim that T~ (zT'G) = 0,

since if Ty = Tz for some y, z € G, then

T (yz_l) = (Ty) (Tz_l)

= 2T2(Tz)~ !
= :C’
a contradiction. Thus 11 (T! (2TG)) =0 # 1 = p(TG) = p(2TG). O

We note that our argument for the forward direction can be found in (Walters, 2007, §1.2). We include it
here for the sake of a self-contained treatment.

The possibility that in the non-autonomous case, rich results like Theorem 5.2.9 could be achieved where
a nontrivial number of the {7}, }5° | are not even measure-preserving intrigues us. The following results show

that under certain conditions, the Difference Property imposes surjectivity on the 7;, individually.
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Proposition 5.3.3. Let G be a compact abelian metrizable group, and let (T,,)7°_; be a sequence of continuous
group endomorphisms on G with the Difference Property such that T,,T,, = T,,T,, for allm,n € N. Then

each T, is surjective.

Proof. For each n € N, we have that

q)n+1 - q)n - n—l—lq)n - CI)TL
= (Tn+1 - 1)@n

= (I)n(TnJrl - 1)

is surjective, meaning that ®,, is surjective. Since ®,, = T;,®,,_; (where we let ¢y = idg), we can conclude

that T, is surjective. O

This result applies in the autonomous setting, where 7,, = T for all n € N, but not in general. Even
in the case of R?/Z2, endomorphisms need not commute. The next example addresses the situation of

finite-dimensional tori.

Fact 5.3.4. If G is a compact connected abelian Lie group, then G = R" /Z" for some h € N. In general,
if G is a compact abelian Lie group, then G = Gy ® B, where Gy is the identity component of GG, and

B = A =G/Gy.

Proof. For a characterization of the compact connected Lie groups, see (Procesi, 2006, §4.2). We now argue
that this implies that any compact abelian Lie group can be expressed in the way described above.

We want to prove that G is isomorphic to a direct sum of Gy and A = G/Gy. The embedding
t1 : Go — G is just the canonical embedding, so it remains to find an embedding ¢z : A — G.

Since A is finite abelian, there exist aq,...,a,, € A, aswell as ¢1,..., ¢, > 2 such that

A={(a1)py @ @ (am),

m

Let 7 : G — G/G) be the canonical projection. For each j € {1,...,m}, choose y; € G such that
m(y;) = a;. Then £;y; € ker m = Gy. Since Gy is divisible, there exists y; € G such that Ejyé- = {;y;. Set
bj = yj — y;, so that £;b; = 0. However, because 7(kb;) = km(a;) fork =1,...,¢; — 1, we know that b,

has order ¢; in G.
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Let B = &7, (b;),, denote the subgroup of G generated by {by,...,bn}. Thenm : B — Aisan
isomorphism. Let 1o = 1. A—> B<QG.

We claim now that ¢1 : Gg — G, 19 : A — G generate G as a direct sum of G and A. First, we observe
that Go N B = {0}, since if * € Gy N B, then 7(z) = 0, because Gy = ker 7, but also z = 7~ (0) = 0,
since 7|p : B — A is an isomorphism. Therefore, the sum G + B is direct.

Now, we have to show that G = Gy + B. If € G, then choose b € B such that 7(b) = 7(z). Then
x —b e kerm =Gy Thus x = (v — b) + b.

Therefore G = Gy & B = Gy & A. O

Proposition 5.3.5. Let G be a compact connected abelian Lie group, and let (T,,)>°, be a sequence of

continuous group endomorphisms on G with the Difference Property. Then each T, is surjective.

Proof. Let G = R"/Z". We can express T}, as an h x h integer matrix. The maps ®,, — ®,,, are surjective if

and only if det(®,, — ®,,,) # 0. We can conclude that each T, is invertible because

(I)n—i—l - o, = (Tn+1 - I)q)n
= (To1 — DT Thr---Th
= det(®py1 — D) = det(Ty41 — I) det(T,) det(Th,—1) - - - det(T1)

£ 0.

This implies in particular that det(7;,) # 0, meaning that T, is surjective. O

We can, however, provide negative results on when a sequence with the Difference Property might exist.

Lemma 5.3.6. Let G = Gy & A be a compact abelian group, where G is a compact connected abelian

group and A is a finite abelian group. Let ¢ : G — A be a continuous group homomorphism. Then

P(G) =¢v(0® A) ={(0,a) : a € A}.

Proof. Since Gy is connected, we know that ¢|g, : Go — A is the zero map. Clearly (0 & A) C ¥ (G).
Now suppose that a € ¢(G). Then there exist xg € G, ag € A such that ¥ (zg, ag) = a. But 1(0,a9) =

¥ (o, ao) — ¥(20,0) = ¥(z0, ag). Thus a € (0 & A).

O
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Proposition 5.3.7. Let G = G @ A, where G is a compact connected abelian group, and A a finite group
with more than one element. Then there does not exist a sequence (17,)22; on G with the Difference Property.
In particular, there does not exist a sequence with the Difference Property on any compact abelian Lie group

that is not connected.

Proof. Assume for contradiction that (77,)° ; has the Difference Property. Let A,, ,, = ®,, — ®,,,. Let
t: A — Go ® A be the canonical embedding. Then by the previous lemma, the maps A, ,, ot =
(®y, 0t) — (P, 0 1) are surjective. But this is a contradiction, since n — ®,, o ¢ is a mapping from N to the
finite set A, which cannot be injective. Therefore there exist n, m € N, n % m such that ®,, o . = ®,, o ¢,
meaning that A,, ,,(G) = Ay, ,,, 0 t(A) = {0} # A, a contradiction.

The special case of compact abelian Lie groups comes from Fact 5.3.4. O

5.4 A random non-autonomous spatial-temporal differentiation problem

Lemma 5.4.1. Let G = (G, p) be a compact metrizable group with metric p. Let (T,,)2° , be a family of
Lipschitz-continuous maps 1, : G — G, where T, is L,-Lipschitz. Let ®, = T,,T,—1--- 11, P9 = idg.
Then there exists a sequence (1), of positive numbers n, > 0,1 "29° 0 such that if (ri), is a
sequence of positive numbers 0 < ri, < ny, and By(x) = B(x,ry), then for every f € C(G), and every

sequence (x,,)°%; € GV, we have

k—
=0.

= =
QB () <I<: Z ‘I%‘f) % Z D; f(wr)
1=0 =0

Proof. Let Ly, = max{1, L1, Lo, ..., Lp_1}. Set

N, = fj;(kfl)kfli
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Let ()72, be a sequence such that 0 < 7, < n,. Theneach 11, ..., Ty is IN/k—Lipschitz, soif y € Bi(z),

ie. if p(z,y) < rg,and if i € [0,k — 1], then

p( @iz, ®;y) = p(TiTi—q - - Thae, ;T - - - Thy)

< LijLi—y---Lip(x,y)

Now let f € C(G), and fix ¢ > 0. By uniform continuity of f, there exists K € N such that

p(z,w) < + = |f(z) — f(w)| < e Thenif k > K, then

1 k—1 1 k—1 1 k—1 1

By (ay) (k Zz;‘bif) % Zz;‘l’zf(fk) =7 2 D f(xk) — w(Brlan)) /Bk(xk) @, fdp
= i B0~ L] oy P
- llf]g M(Bkl(ka)) /Bk(a;k) (@ef(@r) = 2uf) dp
< ,ﬁzj KB oy, (@iF 0 — @il

k—1

= % pa M(Bkl(xk)) /Bk(xk) edu
_

Therefore

O]

Our assumption that the {7}, }>° ; are Lipschitz is not overly restrictive. In particular, if G has the structure
of a Lie group with a Riemannian metric, and the maps 7T}, are C'!, then the maps 7}, are automatically

Lipschitz in that Riemannian metric.
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Theorem 5.4.2. Let G = (G, p) be a compact abelian metrizable group with metric p. Let (T,,)7%,
be a family of Lipschitz-continuous group homomorphisms with the Difference Property, where T), is
Ly, -Lipschitz. Then there exists a Borel subset E of full measure and a sequence (1), of positive

numbers 1, > 0, =9° 0 such that if (rk)zozl is a sequence of positive numbers 0 < 1, < ng, and

By (x) = B(z, ), then for all x € E, we have

1 = k—o0
A, (z) (kZ‘I)if> — /fd,u (Vf € C(G)).
=0

Proof. Let E = {x € G : (Ppx),_, is uniformly distributed in G}. By Theorem 5.2.9, this set is of full
measure. Now let (7;)7°, be as in Lemma 5.4.1. Then if 0 < r;, < g, and if © € E, then for every

f € C(G) we have

1 k—1
o) (k <I>¢f> - [ fau
1=0
1 k—1 1 k—1 1 k—1
<|opo |72 ®if | =7 2 @if@)|+]| 3 d_@if(2) ) = [ fdu
=0 =0 =0
If~_>>ooo7

where the first term goes to 0 by Lemma 5.4.1, and the second term goes to 0 by the fact that (®,,z),”  is

uniformly distributed in G. O

5.5 Further probabilistic results about uniformly distributed sequences

We now consider the distribution properties of randomly chosen sequences ()%, € GNo = I G

in G.

Lemma 5.5.1. Let (X,,),cn be a sequence of separable metrizable topological spaces. Then

Bo (H Xn> = ) Bo(Xy).

neN neN

Proof. (Kallenberg, 2021, Lemma 1.2) O

Definition 5.5.2. Let X be a nonempty set. We call A C P(X) a semi-algebra if
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@ e A
(b) fA,B e A,then ANB € A.
(c) Forevery A € A, the set X \ A can be written as a disjoint union of finitely many elements of .A.

Lemma 5.5.3. Let (X, B,), oy be a sequence of measurable spaces, and let

A:{le---xBNx H Xn:NeN,BleBl,...,BNeBN}.
n=N-+1

Then A is a semi-algebra that generates Q),, . Bn.

Proof. Forn € N, let 7; : [[,cy Xn — X; be the map 7; : (25 )nen — ;. Then A can be written as

N
A:{ﬂnnl(Bn):NeN,BleBl,...,BNeBN}.
n=1

Written this way, it is clear that () € A and that A is closed under finite intersections. Finally, we will prove
that the complement of every set in A can be expressed as the disjoint union of finitely many elements of A.

Let A = ﬂnN:1 7,1 (By), where By € By, ..., By € By. Then

_ (ﬂwf(Bz-)“)ﬂ N (@)

IeP({1,2,...,N}) | \iel je{1,....N}\I

- (ﬂ ! (BE)) a N =B

I1eP({1,2,...N}) | \iel je{1,...N\I

Therefore, we have written AC as a disjoint union of elements of A.
Finally, to justify our claim that A generates (X),, .y Br as a o-algebra, we note that ), B, is generated

as a g-algebraby {7, !(B,) :n € N, B, € By}, and

{m,'(B,) :n €N,B, € By} € AC (X)Bn.
neN
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We go to the trouble of proving Lemma 5.5.3 because when checking whether a map between probability
spaces is measure-preserving, it suffices to see how the map behaves on a generating semi-algebra, as in the

following result.

Lemma 5.54. Let (X1, By, p11), (X2, B2, u2) be probability spaces, and let T : X1 — X9 be a map. Let
Ay C By be a semi-algebra which generates the o-algebra By. Then T is measurable and measure-preserving

iff T~ A € By forall A € Ay, and iy (T'A) = po(A).
Proof. (Dajani and Dirksin, 2008, Theorem 1.2.2) O]

With all of this out of the way, we are ready to demonstrate a characterization of the Haar measure of a

countable product of compact metrizable groups.

Theorem 5.5.5. Let (H,),en be a sequence of compact metrizable groups, and let v,, be the left-invariant
(resp. right-invariant) Haar probability measure of H,. Then ji = [],cx Vn is the left-invariant (resp.

right-invariant) Haar probability measure on G = [ ], .y Hn.

Proof. We will demonstrate the claim for left-invariant Haar measures, since the proof for the right-invariant
claim is essentially identical.

We will show that y is a G-invariant Borel probability measure on G, and then conclude from the
uniqueness of the Haar measure that ¢ must be the Haar probability measure on G. By Lemma 5.5.1, we

know that Bo(G) = @), Bo(H,,). Set

o0
A= {Bl X .- X By % H Hn:NEN,BlGBO(Hl),...,BNEBo(HN)}.
n=N-+1

Then by Lemma 5.5.3, this A is a generating semi-algebra for Q),, .y Bo(Hy,).
Now, fix ¢ = (hp)neny € G. We want to prove that left multiplication on G by ¢ is a u-preserving

transformation. By Lemma 5.5.4, it will suffice to prove that p(gA) = p(A) for all A € A. So fix sets
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By € Bo(H1),...,By € Bo(Hn), N € N. Then

M(g(le---xBNx H Hn>):p<h131x~--thBN>< H han>

:M<hlle---thBN>< 11 Hn>

n=N-+1

=vi(h1B1)---vN(hnBn)

= Vl(Bl)“'VN(BN)

—u(le-.-xBNx H Hn>

n=N+1
We have thus established that y is G-invariant on A, and so we can infer that y is G-invariant for all of

Bo(G). O

For the remainder of this section, let G be a compact abelian metrizable group. Let S : GNo — GMNo be

the left shift

S(gn)nzo0 = (9n+1)n=0-
Then S is a continuous surjective group endomorphism of G°, and given a continuous group homomorphism
T:G— G, letT : GNo — GNo be the map

T: (gn)%ozo = (Tgn)%o:()'

We can observe that .S and 7' commute, since

~

ST(Q”)?LO:O =5 (Tgn)zo:o

= (Tgn-‘rl );L.OIO

)

= (gn+1 );L’OZO

S(9gn)n=o-

~)

Lemma 5.5.6. LetT : G — G be a continuous surjective group endomorphism of G, and fix £ € N. Then

idom —S*T is also surjective.
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n)n=o € G™No recursively as follows. First,

Proof. Fix g = (91)5%, € G, and construct a sequence g’ = (g
set g, = gn forn = 0,...,¢ — 1. Then for N > ¢ — 1, assuming that g;, g, g5, - - -, gy € G have been

chosen such that
g;—qullJre:gn (forn=0,1,2,...,N — ),

choose gy, € G such that

! /
TN 1 = 9gN+1—0 — N1t

which exists because 7' is surjective. Then
Ins1—¢— Tgni1 = gn+1—c.
Continuing this process gives us a sequence ¢’ = (g},),—, such that
(idGNO —SZT\> Jd=g.

O]

Lemma 5.5.7. Let (T,,)2°, be a sequence of surjective group homomorphisms T,, : G — G, and let (£,,)5% 4

~ oo
be a sequence of natural numbers. Then the sequence (SK" Tn> has the Difference Property on GMNo.

n=1

Proof. Set A, =41+ ---+£,. Let m,n € N, m < n. Then
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where 7(n,m) = T;,T,,—1 - - - Tyn+1. By Lemma 5.5.6, it follows that id ;r, —T(/n,?z)SA"_Am is surjective.

Therefore

((8Tm) - ($"T1)) = ((87T0) -+ (89T1) ) = (idgg =™ r(n,m) ) §%
is surjective, since it is a composition of surjections. O

Corollary 5.5.8. Let (T,,)22, be a sequence of surjective group homomorphisms T,, : G — G, and let
(£n)22 be a sequence of natural numbers. Set A,, = {1 + --- + {,. Then for almost every g € G, the

~ o~ [o.¢]
sequence (S AnTo ooy g) . is uniformly distributed in GNo

n—

Proof. Apply Lemma 5.5.7 and Theorem 5.2.9. O

Theorem 5.5.9. Let (T,)72, be a sequence of surjective group homomorphisms T,, : G — G, and let
(£n,)22, be a sequence of natural numbers. Set A, = {; + --- + £,. Then for almost every sequence

(9n)52 € GNo, the sequence (T}, - - - Tiga,, o is uniformly distributed in G.

Proof. Let 7 : GNo — G be the projection onto the first term 7 : (gn)o o +— go. By Corollary 5.5.8, for

~ ~ oo
almost every (g,,)%°, € G, the sequence (SA" T, T g) o is uniformly distributed in G™°.

n—=
o

Now let (g,)2%, € G0 be such that the sequence (SA" Tp---Th g) . is uniformly distributed in GNo.
n=
o0

Then by Lemma 5.2.6, the sequence (77 (S An fn T 1 g)) o is uniformly distributed in GG. But

n=»

5.6 Topologically generic behaviors of random spatial-temporal differentiation problems

We can interpret Theorem 5.2.9 as saying that if (7,)°°; is a sequence of continuous group endo-
morphisms of G with the Difference Property, and ®,, = T;,T;,_1 - - - T, then the property of x € G that
(®pnx),” is uniformly distributed is ”probabilistically generic”, in the sense that the set of such z has full

measure. In light of Theorem 5.4.2, we can infer that if By(x) is a sequence of balls around x with radii
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going to 0 sufficiently fast, then it is probabilistically generic that

1 = k—o00
A, (z) (kz@if> - /fd,u (Vf € C(G)).
=0

In other words, we can see Theorem 5.4.2 as a statement about a probabilistically generic spatial-temporal
differentiation of a certain kind.

However, if we try to look at fopologically generic behaviors, the story changes. Instead, in a
sense that we will make precise momentarily, the topologically generic behavior is that the sequence
(aBk(x) (% Zf:_ol @J)):l is divergent for some f € C(G).

Definition 5.6.1. Let X be a compact metrizable space, and S C X a subset. We say that A C X is nowhere
dense if for every nonempty open O C X, there exists a nonempty open subset W C O such that WNA = ().
A subset A C X is called meager if there exists a sequence (Ay,),cn of nowhere dense subsets of X such
that A C J,,cny An. We call a subset B C X comeager if X \ B is meager. A comeager set is sometimes

called Baire generic.

Our goal here is to show that the behavior described in Theorem 5.2.9 is -from this topological perspective-

exceptional in the sense that the set of such x € G is meager.

Theorem 5.6.2. Let G = (G, p) be a compact abelian metrizable group with infinitely many elements and
metric p. Let (T,,)5°, be a sequence of continuous, surjective group endomorphisms T,, : G — G. Let
&, =T,1,_1--T1, P9 = idg. Suppose that U%C’:l ker ®@,, is dense in G. Then the set of x € (G such that

(®,z),7, is uniformly distributed is meager.

Before we can prove Theorem 5.6.2, we need to prove a few technical lemmas.

Lemma 5.6.3. Let G = (G, p) be a compact metrizable group with infinitely many elements and € > 0.

Then there exists 6 > 0 such that u(B(0,0)) < e.

Proof. Consider the sequence (B(0,1/n))>2 ;. Then B(0,1) 2> B(0,1/2) 2 B(0,1/3) 2 ---, and

n=1"

N2, B(0,1/n) = {0}. But u({0}) = 0, so by continuity of measure, it follows that lim,,_,~, (B(0,1/n))

0. Thus in particular there exists N € N such that x(B(0,1/N)) < e. Letd = 1/N. O

Lemma 5.6.4. Let G = (G, p) be a compact abelian metrizable group with infinitely many elements and

metric p. Let (T,,)22 be a sequence of continuous, surjective group endomorphisms T,, : G — G. Let
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¢, =T, T—1---T1,P0 = idg. Suppose that | J;_, ker ®,, is dense in G. Lete,d > 0, N7 € N, and let
O C G be a nonempty open set. Then there exists a nonempty open set W C O and L > Nj such that if

x € W, then
#{j<L-1:P;z€ B(0,§/2)}
L

>1—ce.

Proof. Choose m € N, a € ker ®,, such that a € O. Choose N5 € N such that

m
m + Ny

< €.

Set Lo = max{Ni, Na}. Let U C G be the open neighborhood of 0 given by

Lo—1
U= () r(m+¢m)'B(0,5/2).
=0

Finally set
W= (2,'U)NnO.

Then a € W, and @, /W C B(0,6/2) forall ¢ € {0,1,2,...,Lo — 1}. Let L = Ly + m. Then

#{j<L-1:®z€B0,6/2)} Lo m

_ >1_
Lo+m — Lo+m m+ Lo — m + No

>1—e.

Proof of Theorem 5.6.2. Let f : G — [0, 1] be the continuous function

where § > 0 is chosen such that 1 (B(0,9)) < %, which exists by Lemma 5.6.3. Then xp(s/2) < f <
XB(0,5)> SO

DN | =

W(B(0,5/2) < / fdu < n(B(0,8)) <

179



For K € N, let Ak be the set

=

Ag = {:UGG: l:zzéf(@x)<§forallk>K}.
We claim the set A is nowhere dense. But the set of € G such that (®,x), - is uniformly distributed is
contained in U?zl A, so if we can show that A g is nowhere dense for all K € N, then the theorem will be
proven. Now fix K € N.

Let O C G be a nonempty open subset of G. By Lemma 5.6.4, there exists a nonempty open subset

W C O such that

#{j<L—1:92¢B(0,§/2)} _ 2
L -3
forx € W, where L > K. So
k—1 k—1
1 1 2
z f(®iz) > T 2 XB(0,6/2) (Pix) > 3
=0 =0
Therefore W C O\ Ak. O

Our proof of Theorem 5.6.2 is based off of (Mance, 2010, Theorem 8.3.1). That theorem can be
interpreted as a special case of Theorem 5.6.2 in the case where G = R/Z, though it is stated there in the
language of normality with respect to a Cantor series.

However, this result can be strengthened under some mild additional assumptions. Theorem 5.6.2 states
that the family of = € G for which } Zf;ol (P;x) Fpe [ fdpforall f € C(G) is meager. However, it

can by shown that under some additional assumptions, there exists f € C'(G) such that the family of x € G

for which limy, o 7 Zf:_ol (®;x) exists is meager.
Lemma 5.6.5. Let f € C(G), and let (x,,)72, be a sequence in G such that

o
—

e
Il
o

%

for some A € C. Let I C Ny be a subset of density 0, i.e. such that

N
—_

x1(i) F252 0.

| =
.
I
()
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Let (yn)22 be a sequence in G such that {n € Ng : z, # y,} C I. Then

Ed
|
-

Flyn) "2

e
-
Il
=

In particular, if (xy,)5°, is uniformly distributed, then (yy, )22, is uniformly distributed.

Proof. First, fix f € C(G), and suppose that % Efz_ol (24) 29 \. Then

= = =
% - flyi) = (k: ' f(fﬁi)) + (kiz:%XI(i)(f(yi) - f(%‘)))

k—

<2 S a el

=0

0.

Now, suppose that (z,,)° , is uniformly distributed. Then the first part of this lemma tells us that for every

g € C(G), we have that limkﬁm%Zf;Ol g(y;) exists and is equal to

lim oo £ 3070 9(i) = [ gd. N

Lemma 5.6.6. Let G be a compact abelian metizable group. If the set
F={ze€G:(P,x),", is uniformly distributed}

is nonempty, and | J,7_, ker ®,,, is dense in G, then F is dense in G.

Proof. Let U C G be a nonempty open subset, and let ag € F. Then there exists m € N and p €
Uy ker @,,, such thaty € U — p, so ag +p € U. Then ®,a¢ = @, (ag + p) for n > m, so it follows from

Lemma 5.6.5 that (®,,(ag + p)),— is also uniformly distributed, i.e. ag +p € FNU. O

Theorem 5.6.7. Let G = (G, p) be a compact abelian metrizable group with infinitely many elements and
metric p. Let (T,,)02, be a sequence of continuous, surjective group endomorphisms T,, : G — G. Let

&, =T,1,_1---T1,P9 = idg, and suppose that Uﬁzl ker ®,, is dense in G. Suppose further that the set
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F={z € G:(P,x),", is uniformly distributed} is nonempty. Then there exists f € C(G) such that the

set of z € G such that limy_, o 1 Zf:_ol (®;x) exists is meager.

Proof. Choose § > 0 such that 1« (B(0,6)) < %, which exists by Lemma 5.6.3. Set

For each K € N, let A be the set
k‘l 1 k‘2 1
AK:{xeG:|< chM)—( Zf <1>x>

Since the set of z € G such that limy_, o 7 Zi':ol (®;x) exists is contained in | Jj_; Ak, it will suffice to

1
<Zf0rallk1,k2 EK}.

prove that each A is nowhere dense. Now fix K € N.

Let O be a nonempty open subset of G. By Lemma 5.6.4, there exists . > K and a nonempty open
subset Wy C O such that + Zf;ol (Piz) > % By Lemma 5.6.6, there exists a € F' N Wj. Since a € F,
there exists N > L such that

k—1

k>N:>‘/fd,u—Zf (®;a) L

< -
-8

But since [ fdu < 3, it follows that

2

-1

1 1

%

1§
=)

Since % Zivz _01 o ®; is uniformly continuous, it follows that there exists an open neighborhood W5 of

1N—l N-1
=g ren) (3o

a such that

Z\H
oo‘\H

Then if © € W5, then
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Therefore, if x € W7 N Ws, then

L—-1
1 Z 1 3 1
(L i=0 ! ((I)ix)> B (N i=0 ! (‘I)z‘ﬂ?)) EERE
ThusaEWlﬂWgQ(’),and(WlﬂWg)ﬂAK:(Z). O

Throughout this section, we have relied heavily on the assumption that | J;,_, ker ®,, is dense in G. This
assumption still encompasses a wide class of interesting examples when G = R%/Z¢ d € N. Endow G with

the metric
d
t et +Z8 (51, . Zd>: in |t — s+ h.
p (b ta) + 2 (51, 50) + 2ty =+
Note that the metric p is invariant under addition by elements of G.

Lemma 5.6.8. Let G = R%/Z%, and let T : G — G be a continuous surjective group endomorphism. Let

A € 79%? be the d x d integer matrix such that

Then for every x € G exists y € ker T such that p(z,y) < d* || A~ Hop, where the operator norm is taken

relative to the standard Euclidean norm on R¢,

Proof. Letey, ..., ey be the standard basis of the real vector space R?, and let f; = A*Iej forj=1,....,d.

Then

kerT = Zf, + - - - + Zf,.

Letx = (t1,...,tq) + Z% € G. Since A is invertible, we know that {f{, ..., f;} is a basis for R?, so there

exist A1,...,A\g € R such that Z?:1 tiej = 2?21 Ajfj. Let £; = | A;], and lety = Z;lzl 0;f; + 7. Set
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kj =A; —{; € [0,1). Theny € ker T', and

d
plx.y) =p 0,y —z)=p (0, (N = 4) 5 + Zd) =p (Q,Z@fj + Zd)
j=1
1
<p (O, Z/ﬁjfj + Zd) +p (
j=1
d—1
+Fp (Zﬁjfj—FZd,Zﬁjfj—FZd)
j=1 j=1
d
:Zp (O, kit + Zd> .

j=1

1=
MH

2
/ijfj + Zd, Z Kjfj + Zd)

1 j=1

o
Il

Foreach j € {1,...,d}, letf; = ZZ 1 bije;. Then

M=

>0 (0m85 +27) =

d
P 0, Rj Z bm'ei + Zd>
j=1 1 i=1

.
Il

d
Z A 1%1 |h - Hjbi’j’

1
M=

<
—_

i=
d

M=

1
rij |bi 5]
1

j=11

M-
M&

<
Il
—
-
Il

|bi (0<k; <1)
=1

M-
M=

<
I
—
.
Il

147 e
1

M=
M&

147 o
%

=d*[|A7,,

1

<.
Il
-

184



Proposition 5.6.9. Let G = R?/Z9, and let (T},)°>_, be a sequence of continuous surjective group endomor-

phisms of G onto itself. For eachn € N, let A,, € Z%*? be the d x d integer matrix such that

Then if lim inf,,_ o H(AnAn_l o A)7H| =0, then U°_, ker @, is dense in G.

op

< d%. Then ®,, is
op

implemented by the matrix A,,A;,—1--- A1, so Lemma 5.6.8 tells us there exists y € ker ®,, such that

Proof. Letx € GG, and let 6 > 0. Choose m € N such that H(AmAm,l .- ~A1)71

p(x,y) < & H(AmAm_1 L AT!

< 6. Therefore | J;°_, ker ®,,, is dense in G. O
p

O
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Noncommutative ergodic optimization

One of the guiding questions of the field of ergodic optimization is the following: Given a topological
dynamical system (X, G, U), and a real-valued continuous function f € C(X), what values can [ fdu take
when g is an invariant Borel probability measure on X, and in particular, what are the extreme values it
can take? In a joint work with I. Assani (Assani and Young, 2022, Section 3), we noticed that the field of
ergodic optimization was relevant to the study of certain temporo-spatial differentiation problems. Hoping to
extend these tools to the study of temporo-spatial differentiation problems in the setting of operator-algebraic
dynamical systems, this chapter develops an operator-algebraic formalization of this question of ergodic
optimization, re-interpreting it as a question about the values of invariant states on a C*-dynamical system.
This framework is then applied to provide a characterization of certain uniquely ergodic C*-dynamical
systems with respect to ergodic optimizations.

Section 6.1 develops the theory of ergodic optimization in the context of C*-dynamical systems, where
the role of “maximizing measures” is instead played by invariant states on a C*-algebra. The framework
we adopt is in fact somewhat more general than the classical framework of maximizing measures, since
we consider ergodic optimizations relative to a restricted class of invariant states, which we call relative
ergodic optimizations. We also demonstrate that some of the basic results of that classical theory of ergodic
optimization extend to the C*-dynamical setting.

In Section 6.2, we define a value called the gauge of a singly generated C*-dynamical system, a non-
commutative generalization of the functional of the same name defined in (Assani and Young, 2022), and
describe its connections to questions of ergodic optimization, as well as the ways in which it can be used to
“detect” the unique ergodicity of C*-dynamical systems under certain Choquet-theoretic assumptions.

In Section 6.3, we extend the results of the previous section to the case where the phase group is a
countable discrete amenable group. We also provide a characterization of uniquely ergodic C*-dynamical

systems of countable discrete amenable groups in terms of various notions of convergence of ergodic averages.
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In Section 6.4, we relate the convergence properties of certain ergodic averages to relative ergodic
optimizations.
Finally, in Section 6.5, we provide alternate proofs of several results from this chapter using the toolbox

of nonstandard analysis.

6.1 Ergodic Optimization in C*-Dynamical Systems

Given a unital C*-algebra 2, let Aut(2() denote the family of all *-automorphisms of 2. We endow

Aut(2() with the point-norm topology, i.e. the topology induced by the pseudometrics
(®,¥) = [[®(a) — ¥(a)| (a €2A).

This topology makes Aut(2l) a topological group (Blackadar, 2006, I1.5.5.4).
We define a C*-dynamical system to be a triple (2, G, ©) consisting of a unital C*-algebra 2, a

topological group G (called the phase group), and a point-continuous left group action © : G — Aut(2).

Notation 6.1.1. Let (2, G, O) be a C*-dynamical system, and let ' C G be a nonempty finite subset. We
define Avgy : A — A by

1
AVgF xr = W Z @ga.
geF

Denote by S the family of all states on 2 endowed with the weak*-topology, and by T the subfamily of
all tracial states on 2. A state ¢ on 2 is called O-invariant (or simply invariant if the action © is understood
in context) if ¢ = ¢ o0 O, for all g € G. Denote by 8¢ C S the family of all O-invariant states on 2, and
by 7¢ C T the family of all O-invariant tracial states on 2. The set S (resp. 7¢) is weak*-compact in S
(resp. in 7). Unless otherwise stated, whenever we deal with subspaces of S, we consider these subspaces
equipped with the weak*-topology.

We will assume for the remainder of this section that (A, G, ©) is a C*-dynamical system such that 2 is
separable, and also that S # (). This framework will include every system of the form (C'(Y'), G, ©), where
Y is a compact metrizable topological space, the group G is countable, discrete, and amenable, and O is of
the form O, : f +— foU, forallg € G, where U : G ~ Y is a right action of G on Y by homeomorphisms.

Because of the correspondence between topological dynamical systems as we’ve defined them previously in
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Section 3.1 and C*-dynamical systems over commutative C*-algebras, it is customary to call a C*-dynamical
system a “non-commutative topological dynamical systems.”
Before proceeding, we prove the following Krylov—Bogolyubov-type result, which will be useful to

establish the ©-invariance of certain states later.

Lemma 6.1.2. Let (%, G, ©O) be a C*-dynamical system, and let G’ be an amenable group. If (¢1,)72 | is a
sequence in S, and F = (F},)72 , is a right Fplner sequence for G, then any weak*-limit point of the sequence
(qﬁk oAvg Fk):o:1 is O-invariant. In particular, if K is a nonempty, ©-invariant, weak*-compact, convex

subset of S, then K N S # .

Proof. Let (¢1,)72, be a sequence of states, and fix go € G,z € 2. Then

|6r (Aver, Ogo) — bk (Avep, )|

1

k 9€Fkgo gEFY
1 1
< 7¢k Z ng + |5 Pk Z @gm
| F| | F|
9€Fkgo\Fi 9EFK\FLg90
| Frgo AFy|
<z
| F|
F2900.

Therefore, if k1 < ko < --- is such that ¢ = lim/_, ¢y, © Avg Fy, exists, then

(@) — p(x)] < lim sup T hef0A ]

|z|| = 0.
{—00 |Fki|

Finally, let K be a nonempty, O-invariant, weak*-compact, convex subset of S. Let ¢ be any state in
K, and consider the sequence (qb oAvg Fk);o:r By the convexity and ©-invariance of K, every term of this
sequence is an element of K, and since K is compact, there exists a subsequence of this sequence which

converges in K. As has already been shown, that limit must be an element of S©. O

Remark 6.1.3. Lemma 6.5.1 can be seen as a nonstandard-analytic analogue to Lemma 6.1.2.

Although our manner of proof of Lemma 6.1.2 is scarcely novel, the result as we have stated it here

can be used to ensure the existence of invariant states with specific properties that might interest us, as seen
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for example in Corollary 6.1.4 and Proposition 6.1.14. Our standing hypothesis that 2 be separable is not

necessary for this proof of Lemma 6.1.2.

Corollary 6.1.4. If T # 0, and G is amenable, then TC # 0.
Proof. Apply Lemma 6.1.2 to the case where K = 7. O

Definition 6.1.5. We denote by R the real Banach space of all self-adjoint elements of 2, and denote by SR”
the space of all real self-adjoint bounded linear functionals on .

Definition 6.1.6. Let V' be a locally convex topological real vector space, and let K be a compact subset of
V which is contained in a hyperplane that does not contain the origin. We call K a simplex if the positive
cone P = {ck : c € R>¢, k € K} defines a lattice ordering on P — P = {p; — p2 : p1,p2 € P} C V with
respect to the partial ordera < b <= b—a € P.

Remark 6.1.7. In Definition 6.1.6, the assumption that K lives in a hyperplane that does not contain the
origin is technically superfluous, but simplifies the theory somewhat (see (Phelps, 2001, Section 10)), and is
satisfied by all the simplices that interest us here. Specifically, we know that S (and by extension S¢, T, 7¢)

lives in the real hyperplane {¢ € ;" : ¢(1) = 1} defined by the evaluation at 1.

We begin with the following lemma.

Lemma 6.1.8. (i) The spaces S,S¢, T, T are compact and metrizable.

(i) If T # 0, then the space TC is a simplex.

Before proving this lemma, we need to introduce some terminology. Let ¢, 1) be two positive linear
functionals on a unital C*-algebra 2(. We say that the two positive functionals are orthogonal, notated ¢ L ),

if they satisfy either of the following two equivalent conditions:

@) [[o+ ¢l = llell + [l
(b) For every € > 0 exists positive z € 2 of norm < 1 such that ¢(1 — z) < €,9(2) < €.

It is well-know that these conditions are equivalent (Pedersen, 1979, Lemma 3.2.3). For every ¢ € 9‘{“, there
exist unique positive linear functionals ¢, ¢~ such that ¢ = ¢™ — ¢, and ¢ L ¢, called the Jordan
decomposition of ¢ (Blackadar, 2006, 11.6.3.4).

Before proving Lemma 6.1.8, we demonstrate the following property of the Jordan decomposition of a

tracial functional.
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Lemma 6.1.9. Let 2 be a unital C*-algebra, and ¢ € R?. Suppose that ¢(zy) = ¢(yx) for all 2,y € 2.

Then ¢ (xy) = ¢ (yx) forall z,y € 2.

Proof. Let U(2() denote the group of unitary elements in 2. For a unitary element v € U (), let Ad,, €
Aut(2l) denote the inner automorphism

Ad, z = uzu®.

Let ) € 2. We claim that ¢ is tracial if and only if ¢ o Ad,, = 1 for all unitaries u € U ().

Let v € U(2) be unitary, and « € 2 an arbitrary element. Then

P(ux) = 1 (u(zu)u®)
= P(Ady(zu)).

So ¢(ux) = ¢ (zu) if and only if Y (Ady,(zu)) = Y (zu).
In one direction, suppose that ¢ = 1 o Ad, for all u € U(A). Fix z,y € 2A. Then we can write

Y= Z?Zl cjuj for some cq, ..., cs € C and unitaries uy, ..., us € U () unitary. Then

4
blay) = |z cjuy
j=1

4
= Z Cjw(xu]‘)

Thus ¢ is tracial.
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In the other direction, suppose there exists u € U(2l) such that ) o Ad,, # 1. Let y € 2 such that

P(y) # ¥ (Ady y), and let z = yu*. Then

# Y(Ady y)
= ¢ (uyu”)

Therefore 1) is not tracial.

Now, if ¢ € PR is tracial, then ¢ o Ad, = ¢ for all u € U(A). Then ¢ = ¢ o Ad, = (¢ 0 Ad,) —

(¢~ o Ady). But ||¢*F o Ad,|| = ||¢F|, so it follows that ||¢| = |[¢T o Ady|| + [|¢~ o Ad,||. Therefore

¢ = (¢t o Ad,) — (¢~ o Ad,) is an orthogonal decomposition of ¢, and so it is the Jordan decomposition.

This means that ¢ = ¢* o Ad,. Since this is true for all v € U (2A), it follows that ¢T are tracial. O

Proof of Lemma 6.1.8. (i) This all follows because S is a weak*-closed real subspace of the unit ball

(ii)

in the continuous dual of the separable Banach space 9%, and the spaces S¢, T, TC are all closed

subspaces of S.

It is a standard fact that if 7 # (), then 7T is a simplex (Blackadar, 2006, 11.6.8.11). Let
CG = {C¢ RS R20,¢ S TG}

be the positive cone of 7, and let P! denote the (real) space of all bounded self-adjoint tracial
linear functionals on 2. Let EC denote the (real) space of all bounded self-adjoint ©-invariant linear
functionals on 2. We already know that 7 lives in a hyperplane of Si? defined by the evaluation
functional ¢ + ¢(1). It will therefore suffice to show that E¢ = C% — C%, and that E¢ is a

sub-lattice of R,

Let ¢, ¢~ > 0 be positive functionals on 2 such that ¢ = ¢ — ¢~ is tracial, and ¢ L ¢~. By
Lemma 6.1.9, we know that ¢T, ¢~ are tracial. We claim that if ¢ € EC, then ¢, ¢~ € C¢. To

prove this, let g € G, and consider that ¢ 0 ©4, ¢~ o O, are both positive linear functionals such that

¢ =(¢"00y) = (¢7 0 Oy).
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We claim that (¢ 0©,) L (¢~ 0Oy). Fix e > 0. We know that there exists z € 2 such that
|2]| < 1,0 < 2, and such that ¢ (1 — 2) < €,¢™(2) < e. Then ©,-1(2) is a positive element of

norm < 1 such that

Therefore (¢ 0 ©4) — (¢~ 0 O,) is a Jordan decomposition of ¢, and since the Jordan decomposition
is unique, it follows that ™ = ¢+ 0 Oy, ¢~ = ¢~ 0 O, ie. that ¢, ¢~ € C%. This means that

EG =(C¢ — 06,

We now want to show that EC = C¢ — OC is a sublattice of E, i.e. that it is closed under the lattice
operations. Let ¢,v) € EC. For this calculation, we draw on the identities listed in (Aliprantis and

Burkinshaw, 2006, Theorem 1.3). Then

oV =(((¢—v)+¥)V(0+4))
=((¢—¥)v0)+¥
= (o =)+,
PAY=((¢—v)+¥)A(0+)
=((¢—Y)N0)+ ¥
=—((=(¢—%)v0)+2
=W —-9)" +¢.

Therefore, if EC is a real linear space and is closed under the operations ¢ — ¢1, ¢ — ¢, then it is

also closed under the lattice operations. Thus E< is a sublattice of 27

Hence, the subset 7 is a compact metrizable simplex.

O

In order to keep our treatment relatively self-contained, we define here several elementary concepts from

Choquet theory that will be relevant in this section.
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Definition 6.1.10. Let S, S2 be convex spaces. We call amap 7' : S; — S2 an affine map if for every

v,w € Sy; t €0,1], we have
T(tv+ (1 —t)w) =tT(v) + (1 —t)T(w).

In the case where S C R, we call T an affine functional.

Definition 6.1.11. Let K be a convex subset of a locally convex real topological vector space V.

(a) A point k € K is called an extreme point of K if for every pair of points k1, ko € K and parameter
t € [0,1] such that k = tky + (1 — t)ko, either k; = ko or ¢t € {0, 1}. In other words, we call k

extreme if there is no nontrivial way of expressing k as a convex combination of elements of K.
(b) The set of all extreme points of K is denoted 0. K.

(c) A subset F' of K is called a face if for every pair k1, ko € K,t € (0,1) such that tky + (1 — t)ks € F,

we have that k1, ko € F.

(d) A face F of K is called an exposed face of K if there exists a continuous affine functional £ : K — R

such that £(z) = Oforallz € F,and {(y) < Oforally € K \ F.
(e) A point k € K is called an exposed point of K if {k} is an exposed face of K.
(f) Given a subset £ of K, the closed convex hull of £ is written as ¢o(&).

We now introduce the basic concepts in our treatment of ergodic optimization.

Definition 6.1.12. Let x € R be a self-adjoint element, and let K C S G bea compact convex subset of S G,

Define a value m (z|K') by

m (z|K) := sup ¢¥(x).
YeK

We say a state ¢ € K is (x| K)-maximizing if ¢(x) = m(z|K). Let Kpax(z) € K denote the set of all
(x| K)-maximizing states. A state ¢ € K is called uniquely (x| K )-maximizing if Kyax(x) = {¢}.
Remark 6.1.13. We note here a trivial inequality: If K; C Ko are compact convex subsets of S, then

m (z|K1) < m (z|K>), and in particular, we will always have m (z|K1) < m (z|S%).
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We will single out one type of compact convex subset of S& which will prove important later. Given a
subset A C 2, set

Ann(A) :={¢ € SY: A Cker o}

When J C 2l is a O-invariant closed ideal of 2(, we have a bijective correspondence between the states in
Ann(7J) and the states on 2/J invariant under the action induced by ©. We will be referring to this set again
in Sections 6.2 and 6.3, when values of the form m (a| Ann(A)) come up in reference to certain ergodic
averages. We observe that Ann({0}) = S¢, and that A C B C A = Ann(A) D Ann(B). There is also no
a priori guarantee that Ann(A) # (), since for example Ann({1}) = (). However, Proposition 6.1.14 gives

sufficient conditions for Ann(A) to be nonempty.

Proposition 6.1.14. Let A C 2 be such that ©4,A C A for all g € G. Suppose there exists a state on 21
which vanishes on A. Then Ann(A) # (. In particular, if 3 C 2 is a proper closed two-sided ideal of 2 for
which ©,3 = J for all g € G, then Ann(3J) # 0.

Proof. Let K C S denote the family of all (not necessarily invariant) states on 2( which vanish on A. Then if
¢ € Kanda € A, then O4a € A, so ¢ o Oy vanishes on A. Therefore ©,K C K forall g € G. It follows
from Lemma 6.1.2 that K NS¢ = Ann(A) # 0.

Suppose J C 2l is a proper closed two-sided ideal of 2l for which ©,3 = J for all ¢ € G, and let
7 : 2 — 2/ be the canonical quotient map. Let © : G — Aut(2/J) be the induced action of G on 2/J by
Oy(a+73) = ©4a + 7. Let 1 be a O-invariant state on 2A/J. Then ¢ o 7 is a O-invariant state on 2 which

vanishes on J, i.e. ) o m € Ann(7J). O

Proposition 6.1.15. Let K C S© be a nonempty compact convex subset of S@, and let = € 9. Then

Kax(x) is a nonempty, compact, exposed face of K.

Proof. To see that Knax(x) is nonempty, for each n € N, let ¢, € K such that ¢y, (x) > m(z|K) — . Then
since K is compact, the sequence (¢, ) ; has a convergent subsequence. Let ¢ be the limit of a convergent
subsequence of (¢,,)0° ;. Then ¢ is (z|K)-maximizing.

To see that K, (x) is compact, consider that

Kax(z) = {¢ € K : ¢(z) = m(z|K)},
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which is a closed subset of K. As for being an exposed face, consider the continuous affine functional
¢: K — R given by

L) = ¢d(x) — m(z|K).
Then the functional ¢ exposes Kax(z|K), since it is nonpositive on all of K and vanishes exactly on

Kmax(x)- ]

The following result describes the ways in which some ergodic optimizations interact with equivariant

*-homomorphisms of C*-dynamical systems.

Theorem 6.1.16. Let (A, G, 0), (Ql, G, é) be two C*-dynamical systems, and let 7w : 2 — 2 be a surjective

*-homomorphism such that

Ogom =700, (Vg € G).

Let S¢ denote the space of O-invariant states on ©. Then m (TI'(CL) \S’G) = m (a| Ann(kerm)).

Proof. Let SE denote the space of ©-invariant states on 2. We claim that there is a natural bijective
correspondence between S¢ and Ann(kern). If pisa O-invariant state on 2I, then we can pull it back to a

O-invariant state ¢g on 2 by

$o=¢or.

This ¢g obviously vanishes on ker 7, and is ©-invariant by virtue of the equivariance property of w. Con-
versely, if we start with a ©-invariant state ) on 2 that vanishes on ker 7, then we can push it to a O-invariant

state ¢ on A by

We claim now that

m (a| Ann(ker 7)) = m (W(Q)]SG) .

Let ¢ be a <7r(a) ISG) -maximizing state on 2. Then ¢ o m € Ann(ker ), so

m (w(a)|5G) — ¢(r(a)) < m (a| Ann(ker 7)) .
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On the other hand, if ¢» € Ann(ker7) is (a| Ann(ker 7))-maximizing, then let ¢ be such that ¢) o T = ).
Then @ZNJ e 8%, s0

m (a Ann(ker 7)) = ¥(a) = P(r(a)) < m (aySG) .
O

The assumption in Theorem 6.1.16 that 7 is surjective is actually superfluous, as shown in Corollary
6.3.8. We will later provide a proof of this stronger claim that uses the gauge functional, introduced in the
context of actions of Z in Section 6.2 and in the context of actions of amenable groups in Section 6.3.

Moreover, the proof of Theorem 6.1.16 can be extended to establish a correspondence between ergodic
optimization over certain compact convex subsets of S¢ and certain compact convex subsets of Ann(ker 7).
For example under the same hypotheses, if 7 # (), then the proof could be modified in a simple manner to
establish that m (ﬂ(a) |7'G) = m (a| Ann(ker 7) N T¢), where TE denotes the ©-invariant tracial states
on 2. In lieu of stating Theorem 6.1.16 in greater generality, we content ourselves to state this special case
(which we will use in future sections) and remark that the argument can be generalized further.

The following characterization of exposed faces in compact metrizable simplices will prove useful.

Lemma 6.1.17. Let K be a compact metrizable simplex. Then every closed face of K is exposed.
Proof. See (Davies, 1967, Theorem 7.4). ]

The theorem we are building to in this section is as follows.
Theorem 6.1.18. Let K C S¢ be a compact simplex. Then the closed faces of K are exactly the sets of the
form K pax(x) for some x € R.

Before we can prove our main theorem of this section, we will need to prove the following result, which
gives us a means by which to build an important linear functional.
Theorem 6.1.19. Let K C S¢ be a compact simplex, and let ¢ : K — R be a continuous affine functional.
Then there exists a continuous linear functional { : spang (K) — R such that 0| = .

To prove this theorem, we break it up into several parts, attaining the extension ? as the final step of a few

subsequent extensions of /.
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Lemma 6.1.20. Let K C SY be a compact metrizable simplex, and let { : K — R be a continuous
affine functional. Let P = {c¢ : ¢ € R>, ¢ € K}. Then there exists a continuous functional {1 : P — R

satisfying the following conditions for all fi, fo € P;c € R>q:
(@) i(cfr) = cli(fr),
(b) lL(f1+ f2) = b(f1) + L2(f2),
(©) li|lg = 1.

Proof. Note that every nonzero element of P can be expressed uniquely as c¢ for some ¢ € R>o\ {0}, ¢ € K.

As such we define

cl(p) ¢>0
El(C(b) =
0 c

Il
o

It is immediately clear that this ¢; satisfies conditions (a) and (c), leaving only (b) to check.
Now, suppose that fi = c1¢1, fo = cago for some @1, 92 € K;c1,co € R>g. Consider first the case

where at least one of cq, co are nonzero. Then

f1+ fo =c1o1 + 202

C1 C9
=(c1+c +
(e 2) <01+02¢1 C1+Cz¢2>

= L1(f1 + f2) = b1 (c11 + c202)
= (c1 + c2)¢ ( a o1+ @ (bg)

c1 + ¢y c1+ ¢

U(p1) + = €(¢2)>

c1 +c2 c1 + ¢

[because ¢ is affine] = (¢1 + ¢2) (
= c1l($1) + c2l(¢2)
= li(c191) + l1(c292)

= (1(f1) + L (f2).

In the event that c; = co = 0, then the additivity property attains trivially.
It remains now to show that ¢; is continuous. We will check continuity at nonzero points in P, and then

at 0 € P. First, consider the case where c € P\ {0}, and ¢ € R>g,¢ € K. Suppose that (¢, ¢, ), is a
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sequence in P converging in the weak*-topology to c¢. We claim that ¢, — cin R, and ¢,, — ¢ in the
weak*-topology.

We first observe that (¢, ¢p)(1) = ¢y, s0 (cn)n converges in R>q to ¢, meaning in particular that for

sufficiently large n, we have that c,, € [%, %} Now, if A : R — R is a norm-continuous linear functional,

then

Therefore ¢, — ¢, ¢, — ¢. Thus we can compute

61(60) — tr(endn)| < V2(c6) = Er(cad)| + |61 (cnd) = Er(cndn)
= [c = cal - J()| + lenl  16(6) — £(6n)
<ol (sup ww) +20106) — £(00)]

peEK

n—o0

— 0,

where sup e i [£(4)| must be finite because K is weak*-compact, and |£(¢) — £(¢y,)| "% 0 because £ is
weak*-continuous.
Now, suppose that (¢, @5, )02 ; converges to 0. Then again we have that ¢,, — 0 by the same argument

used above (i.e. ¢, = (¢p ¢y )(1)). Therefore

1 (cndo)] = leal - (60)] < lel <sup ,g(@,) .
peK

We can thus conclude that ¢; is weak*-continuous. O

Lemma 6.1.21. Let {1, P be as in Lemma 6.1.20, and let V = P — P. Then there exists a continuous linear

functional ¢ : V — R such that {|p = (1.
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Proof. Define / : V — R by
l(v) =10 (vF) =t (v7),

where v, v~ are meant in the sense of the lattice structure V' possesses by virtue of K being a simplex.
Our first claim is that if f, g € P such thatv = f — g, then £(v) = £1(f) —¢1(g). To see this, we observe

that f + v~ = g +v"™ € P. Therefore

b+ =t (g + o)

=0(f)+0 (v7) =l(g) + 4o (vT)

This makes linearity fairly straightforward to check. First, to confirm additivity, let v,w € V. Then

v+w= (vt +wh)— (v~ +w"),where vt +wt, v~ +w™ € P. Thus

l(v+w) =6 (v +wt) =t (v +w)
1(07) +o (wh) =l (v7) = b (wT)

— 0 () =0 (07) + 6 () — 6 (w7)

Il
~

To check homogeneity, let ¢ € R. If ¢ > 0, then cvT,cv™ € P,and cv™ — cv™ = cv; on the other hand, if
¢ <0, then —cv™, —cvt € P,and cv = —cv™ + cv™. In both cases, homogeneity is straightforward to
show. This proves that /i linear.

It is also quick to show that £|p = £y, since if v € P, then v = v, s0 £(v) = £1 (vT) — 0 = £1(v).

It remains now to show that £ is continuous. By (Rudin, 1991, Theorem 1.18), it will suffice to show
that ker ¢ is weak*-closed. To prove the kernel is closed, let (v,)2° ; be a sequence in ker 1 converging in
the weak*-topology to v € V. By the Uniform Boundedness Principle, it follows that sup,, ||v,| < co. By
rescaling, we can assume without loss of generality that ||v,|| < 1 for all n € N, and since the unit ball

B C V is weak*-closed by Banach-Alaoglu, we can infer that ||v|| < 1.
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Since the unit ball B is weak*-compact, it follows that the sequences (v )2 . , (v )>-_, have convergent
p q n /n=1 n/n=1 g

subsequences. Let (1), be a subsequence along which v;" — mi € P,v, — mo € P. Thenif 2 € R,
q ¥l j—l q g nj n;

then

v(z) = nh%n;o U ()

= lim (v} (z) - v, (z))

n—00

= lim (v;fj () — v;J_(w))

J]—00

_ (jlggo o <m>> - (}E& oy <”“")>

=my(x) — ma(x).

Therefore v = m1 — ms, so

Therefore, we can conclude that ? is weak*-continuous. O
Proof of Theorem 6.1.19. This follows from Lemmas 6.1.20 and 6.1.21. O
Proof of Theorem 6.1.18. Let F' C K be a closed face of K. By Lemma 6.1.17, the face F' is exposed, so let

¢ : K — R be a weak*-continuous affine functional such that

(k) =0 (Vk € F),

0(k) <0 (Vk € K\ F).
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Set

V={c1¢1 — cagpa : c1,¢2 € R>p; 1,02 € K},

and let £ : V — R be a continuous linear extension of £ to V whose existence is promised by Theorem
6.1.19. We can then extend ¢ : V — R to a weak*-continuous linear functional ¢ : %1% — R (Aliprantis
and Burkinshaw, 2006, Theorem 3.6). There thus exists some 2 € R such that #/(¢) = ¢(z) for all ¢ € R
(Baggett, 1992, Theorem 5.2). In particular, we have ¢'(v) = v(x) for all v € V. Therefore F = Kpax ().

The converse is contained in Proposition 6.1.15. O

In particular, we can recover the following corollary.

Corollary 6.1.22. If ¢ € 0. K, then there exists x € R such that ¢ is uniquely (z|K )-maximizing, i.e. such

that {¢} = Kpax(z).

Proof. The singleton {¢} is a closed face, and by Lemma 6.1.17 is therefore an exposed face. Apply Theorem
6.1.18. O

We have developed the language of ergodic optimization here in a somewhat atypical way, where
we speak not of z-maximizing states simpliciter, but of a state that is maximizing relative to a compact
convex subset K of S¢, especially a compact simplex & . This notion of relative ergodic optimization has
precedent in (Zhao, 2016). For our purposes, this relative ergodic optimization means we can consider ergodic
optimization problems over different fypes of states. In Section 6.4, we will broaden our scope somewhat to
consider ergodic optimization in the noncommutative setting relative to a set of states that aren’t necessarily
O-invariant.

Since Theorem 6.1.18 applies in cases where K is a simplex, we will conclude this section by describing
some situations where S is a compact metrizable simplex.

For each ¢ € 8%, let 7y : A — HB(I;) be the GNS representation corresponding to ¢. Define a unitary

representation ug : G — U(J4) of G by

ug(9)me(a) = my (6971(a)) ,
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extending this from 74 () to J7. Set
Ey={ve Ay uy(v) =vforallg e G}.

Let Py : ¢, — E4 be the orthogonal projection (in the functional-analytic sense) of 7 onto E4. We
call the C*-dynamical system (2, G, ©) a G-abelian system if for every ¢ € S, the family of operators
{Pymy(a)Py € B() : a € A} is mutually commutative.

We record here a handful of germane facts about G-abelian systems.

Proposition 6.1.23. If (2, G, ©) is G-abelian, then S is a simplex.
Proof. See (Sakai, 2012, Theorem 3.1.14). O

Definition 6.1.24. We call a system (2(, G, ©) asymptotically abelian if there exists a sequence (g )o> ; in
G such that

[©4,a,b] "0

for all a,b € A, where [+, ] is the Lie bracket [z, y] = 2y — yx on 2.

Proposition 6.1.25. If (A, G, ©) is asymptotically abelian, then it is also G-abelian.

Proof. See (Sakai, 2012, Proposition 3.1.16). O

6.2 Unique ergodicity and gauges: the singly generated setting

So far we have spoken about C*-dynamical systems, a noncommutative analog of a topological dynamical
systems. But just as classical ergodic theory is often interested in the interplay between topological dynamical
systems and the measure-theoretic dynamical systems they can be realized in, we are interested in questions
about the interplay between C*-dynamical systems and the non-commutative measure-theoretic dynamical
systems they can be realized in. To make this more precise, we introduce the notion of a W*-dynamical
system.

A W-probability space is a pair (90, p) consisting of a von Neumann algebra 9t and a faithful tracial
normal state p on 9. An automorphism of a W*-probability space (901, p) is a *-automorphism 7" : 9t — 9N

such that p o T' = p, i.e. an automorphism of 9t which preserves p. A W*-dynamical system is a quadruple
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(M, p, G, =), where (M, p) is a W*-probability space, and = : G — Aut(9, p) is a left action of a discrete
topological group G (called the phase group) on 1 by p-preserving automorphisms of 9, i.e. such that
p(Eqz) = p(x) for all g € G,z € M. Importantly, if (9N, p,G,=) is a W*-dynamical system, then
(M, G, Z) is automatically a W*-dynamical system.

Remark 6.2.1. In the literature, the term “W*-dynamical system” is sometimes used to refer to a more
general construction, where the group G is assumed to satisfy some topological conditions, and the action is
assumed to be continuous in the strong operator topology, e.g. (Bannon et al., 2018). Other authors use a yet
more general definition, e.g. (Blackadar, 2006, I11.3.2). Since we are only interested in actions of discrete

groups, we adopt a narrower definition.
Definition 6.2.2. Given a W*-probability space, we define £2(90, p) to be the Hilbert space defined by
completing M with respect to the inner product (z,y), = p (y*), i.e. the Hilbert space associated with the
faithful GNS representation of 9t induced by p.

Finally, we introduce the notion of a C*-model, intending to generalize the notion of a topological model
from classical ergodic theory to this noncommutative setting.
Definition 6.2.3. Let (9, p, G, =) be a W*-dynamical system. A C*-model of (I, p, G, Z) is a quadruple

(A, G, O; 1) consisting of a C*-dynamical system (2, G, ©) and a *-homomorphism ¢ : 2L — 9% such that
(a) ¢(2) is dense in the weak operator topology of I,
(b) Z4 (¢(A)) = ¢(A) forall g € G, and
(c) Egor=100,forallg € G.

We call the C*-model (2, G, ©; 1) faithful if ¢ is also injective.

We remark that we can turn any C*-model into a faithful C*-model through a quotienting process. If ¢
was not injective, then we could instead consider z : 2/ ker . < 901. In the case where 2( is commutative, this
quotienting process corresponds (via the Gelfand-Naimark Theorem) to taking a measure-theoretic dynamical
system and restricting to the support of the resident probability measure. To see this, let 2 = C'(X), where
X is a compact metrizable topological space, and let 90t = L°°(X, ) for some Borel probability measure .
Let.: C(X) — L% (X, u) be the (not necessarily injective) map that maps a continuous function on X to its
equivalence class in L>° (X, p1). It can be seen that f € ker ¢ if and only if the open set {z € X : f(x) # 0}

is of measure 0, or equivalently if f|s.p,p(,) = 0, and in particular that ¢ is injective if and only if y is strictly
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positive (i.e. p assigns positive measure to all nonempty open sets). As such, we can identify C'(X )/ ker¢
with C(supp(u)). Let Y = supp(p) denote the support of 1 on X, and let 7 : C'(X) — C(Y) be the
quotient map (which corresponds to a restriction from X to Y, i.e. mf = f|y). Then algebraically, we have a

commutative diagram
C(X) —— C(Y)

\ Y
1°(X, 1)
So in the commutative case, we can make ¢ : C(X) — L°°(X, u) injective by looking at i : C(Y) —
L>(Y, p) =2 L*®(X, p), i.e. by using the support Y to model (Y, u) = (X, u).

Importantly, so long as £2(9M, p) is separable, any W*-dynamical system (90, p, G, =) will admit a
faithful separable C*-model. To construct such a C*-model, it suffices to take some separable C*-subalgebra
B C I which is dense in 9T with respect to the weak operator topology, then let 2 be the norm-closure of
the span of {J ¢ (E4%B). We then define ©, = =gy and let ¢ : 2 — 9T be the inclusion map.

One last important concept in this section and the next will be unique ergodicity. A C*-dynamical system
(A, G, ©) is called uniquely ergodic if S is a singleton. As in the commutative setting, unique ergodicity can
be equivalently characterized in terms of convergence properties of ergodic averages. To our knowledge, the
strongest such characterization of unique ergodicity for singly generated C*-dynamical systems can be found
in (Abadie and Dykema, 2009, Theorem 3.2), which describes unique ergodicity relative to the fixed point
subalgebra. This characterization was then generalized to characterize unique ergodicity relative to the fixed
point subalgebra for C*-dynamical systems over amenable phase groups in (Duvenhage and Stroh, 2011,
Theorem 5.2); however, in Corollary 6.3.6, we provide a characterization of uniquely ergodic C*-dynamical
systems in terms of ergodic averages that is not encompassed by (Duvenhage and Stroh, 2011, Theorem 5.2).

Given a C*-dynamical system (2(, Z, ©), let a € 2 be a positive element. We define the gauge of a to be
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[e. 9]
To prove this limit exists, it suffices to observe that the sequence (HZ?;& G)jaH) i is subadditive, since
=1

k+4—1 k—1 k+0—1
Z Ojal| < Ojall + Z Oja
Jj=0 Jj=0 j=k
k—1 -1
=[>_6ja| +||6x D> _65a
j=0 Jj=0
k—1 -1
= Ojall + Oja
j=0 Jj=0

o
Therefore, by the Subadditivity Lemma, the sequence (E Hzlté Oja Dk . converges, and we have the

equality
k—oo k

1|1t 1
lim — ;@ja = inf z O©ja

We have the following characterization of I" in the language of ergodic optimization.

Theorem 6.2.4. Let (2,7Z,0) be a C*-dynamical system. Then if a € 2 is a positive element, then

I'(a) = m (a|S%).

Proof. For each k € N, choose a state o, on 2l such that

k—1 k—1
1 1
g % : @ja = E : @ja
7=0 7=0
Let wy, = % Zf;é o1 0 Oj, 50
1 k—1
wrl@) = £ 0 (6;2)
§=0
k—1
1
= Ok (kj : G)ja; 5
7=0
1 k-1
wi(a) = o Z Oja
7=0
k—1
1
j=0
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Let w € S be a weak*-limit point of (w; : k € N), and let k&; < k2 < --- be a subsequence such that

n—00

wk, — w inthe weak*-topology. By Lemma 6.1.2, we know that w is O-invariant. Therefore w(a) = I'(a),

n

and w is a ©-invariant state on 2, so
T(a) = w(a) < m (a\SZ) .
Now, we prove the opposite inequality. Let ¢ € SZ. Then

¢(a) = ¢ (Avga)

< [|Avey, al
k-1
1
j=0
1 k—1
= Oja (Vk € N)
j=0
=
= ¢(a) < jnf > &ja
7=0
=T(a)
= sup ¢¥(a) <T'(a)
YpeS?
Therefore
m (alS*) = sup ¥(a) < T(a)
PYeSZ
This establishes the identity. O

Corollary 6.2.5. Let (M, p,Z,=Z) be a W*-dynamical system, and let (A,7Z,0;.) be a C*-model of

(M, p, Z,=). If a € A is a positive element, then
I'(e(a)) = m (a| Ann(kere)) .

Proof. Write A = t(2A) C M, and let ©:7 — Aut (ﬁ[) be the action ©,, = E,|g obtained by restricting =

to 2. Write SZ for the space of ©-invariant states on 2.
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We can write I'gy(:(a)) = I'g(c(a)). By Theorem 6.2.4, we know that I'g (c(a)) = m <L(a)]52>, and
by Theorem 6.1.16, we know that m (L(a) |SZ> = m (a| Ann(ker)). O

Remark 6.2.6. Corollary 6.2.5 can be regarded as an operator-algebraic extension of Lemma 2.3 from
(Assani and Young, 2022). The assumption that (A, G, ©; ¢) is faithful can be understood as analogous to the

assumption of strict positivity in that paper.

This I' value provides an alternative characterization of unique ergodicity, at least under some additional

Choquet-theoretic hypotheses.

Theorem 6.2.7. Let (M, p,Z, =) be a W*-dynamical system, and let (2, Z, O; ) be a faithful C*-model of

(9, p, Z, =). Then the following conditions are related by the implications (i) <= (ii)=-(iii).
(i) The C*-dynamical system (2,7, ©) is uniquely ergodic.
(ii) The C*-dynamical system (21,7, ©) is strictly ergodic.
(iii) T'(¢(a)) = p(t(a)) for all positive a € 2.
Further, if S” is a simplex, then (iii)=(i).

Proof. (i)=-(ii) Suppose that (2, Z, ©) is uniquely ergodic. Then p o ¢ is an invariant state on 2, so it follows
that p o ¢ is the unique invariant state on 2. But p o ¢ is also a faithful state on 2, so it follows that (2, Z, ©)
is strictly ergodic.

(i1)=(i) Trivial.

(1)=(iii) Suppose that (2, Z, ©) is uniquely ergodic, and let a € 2 be positive. Let ¢ be a SZ-maximizing
state for a. Then ¢ = p o «, since both ¢ and p o ¢ are invariant states on 2, and (2, Z, ©) is uniquely ergodic.
Thus ¢ = po,soT'(u(a)) = ¢(a) = p(i(a)).

(iii)=-(i) Suppose that SZ is a simplex, but that (2, Z, ©) is not uniquely ergodic. By the Krein-Milman
Theorem, there exists two distinct extreme points of S%, and in particular there exists an extreme point ¢ € S”
of SZ distinct from p o +. Then by Corollary 6.1.22, there exists a € 2 self-adjoint such that {¢} = SZ__(a).
We can assume that a is positive, since otherwise we could replace a with a + r for a sufficiently large

positive real number r > 0, and SZ,__(a) = SZ

max

(a + 7). Then I'(¢(a)) = ¢(a). But by the assumption that
¢ is uniquely (a|S?%)-maximizing, it follows that p(¢(a)) < ¢(a). Therefore I'(c(a)) # p(i(a)), meaning

that (iii) does not attain. Thus —(1)= —(iii). [
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6.3 Unique ergodicity and gauge: the amenable setting

For the duration of this section, we assume that (9, p, G, Z) is a W*-dynamical system with £2(90, p)
separable. Assume further that (2(, G, ©) is a C*-dynamical system such that 2l is separable, and that G is
amenable. It follows from Corollary 6.1.4 that S& # (.

In this section, we expand upon some of the ideas presented in Section 6.2, generalizing from the case of
actions of Z to actions of a countable discrete amenable group G. We separate these two sections because our
treatment of the more general amenable setting has some additional nuances to it.

Our first result of this section is a generalization of a classical result from ergodic theory regarding unique
ergodicity, which is that a (singly generated) topological dynamical system is uniquely ergodic if and only
if the averages of the continuous functions converge to a constant. This classical result is well-known, and
can be found in many standard texts on ergodic theory, e.g. (Dajani and Dirksin, 2008, Thm 6.2.1), (Eisner
et al., 2015, Thm 10.6), (Walters, 2007, Thm 5.17), but the earliest example of a result like this that we could
find was (Oxtoby, 1952, 5.3). Theorem 6.3.1 generalizes this classical result not only to the noncommutative
setting, but to the setting where the phase group G is amenable.

We define the weak topology on a C*-algebra 2l to be the topology generated by the states on 24, i.e.

In other words, the weak topology is the topology in which a net (z;);c » converges to x if and only if
(¥(x;));e.s converges to ¢(x) for every state 1) on 2. We say the net (x;);c.» converges weakly to z if it

converges in the weak topology.

Theorem 6.3.1. Let (2, G, ©) be a C*-dynamical system. Then the following conditions are equivalent.
(i) (A, G, 0O) is uniquely ergodic.

(i) There exists a right Fglner sequences (F};)3° , for G and a linear functional ¢ : 24 — C such that for

o0

all x € 2, the sequence (AVng a:)kzl

converges in norm to ¢(x)1 € C1.

(iii) There exists a left Folner sequences (F},);°, for G and a linear functional ¢ : 2 — C such that for all

x € 2, the sequence (Avgp, x),_ converges weakly to ¢(x)1 € C1.

00
k=1
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(iv) There exists a state ¢ on 2 such that for every right Folner sequence (F},);° , for G, the sequence

(AVng :U)zozl converges in norm to gb(x)l c C1.

(v) There exists a state ¢ on 24 such that for every left Folner sequence (F},)?° | for G, the sequence

(Avgp, =), converges weakly to ¢(x)1 € CL.

Proof. Assume throughout that any « € 2{ is nonzero.

(i1)=-(iii) Follows from the existence of two-sided Fglner sequence.

(iv)=-(v) Follows from the existence of two-sided Fglner sequence.

(iv)=-(ii) Trivial.

(v)=-(iii) Trivial.

(iii)=(i) Suppose that Avgp, © — ¢(x)1 € C1 weakly for all z € 2. We claim that ¢ is the unique
invariant state of (2, G, ©). First, we demonstrate that ¢ is O-invariant. Fix gy € G, and fix € > 0. Choose

K1, Ko, K3 € N such that

€
k> K = |(¢(2)1) — ¢ (Avep, )| < 3
€
k> Ky = ‘d)(@goqb(ac)l) — 9(Og, Avgp, x)‘ < 3
|90 F A F| €
k> K < .
’ | Fy| 3]
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The K, K> exist because we know that in the weak topology, the functionals ¢, ¢ o ©,, are both continuous,

and K3 exists by the amenability of G. Let K = max{ K1, K2, K3}. Then if £ > K, then

‘(b(@gox) - ¢(x)| S }¢(@gox)

+ |p(Ogo Avep, @) — d(Avey,

z)| +|¢(Avgp, ) — ¢(z)|

€ €
<3 + |p(Og, Avep, @) — d(Avey, z)| + 3
26
g + |¢ @.90 AVng ) d’(AVng x)‘
26 1
+1o | T Z Ogog® Z Ogx
3 | | |Fk|
gEFy geFy,
2 1
1 IR GCE:
3 | | |Fk|
9g€go Fr. geFy,
2¢ 1 1
=—+|0| O4 — O
3 | F| Z I | Fy| Z I
9€go Fi\ Fr, 9EFL\go Fy,
2 1 1
<Tlol o Y e|+e| = Y ey
9€90 Fi\ Fi, EFL\go Fy,
|goFRAF|
<5+ 2o

Therefore ¢ is ©-invariant. To see that it is positive, it suffices to observe that z > 0 = Avg mT =0,

meaning that ¢(z) = limy_ ¢(Avgp, x) > 0. To see that ¢(1) = 1, we just observe that Avgp, 1 =1 for

all k € N.

Now we show that ¢ is the unique O-invariant state. Let 1) be any invariant state. Then

¥(x) = p(Avgp, 7)
(o)1)
= (2)3(1)
= ¢(x).

Therefore ) = ¢, and so (2, G, ©) is uniquely ergodic.
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(i)=-(iv) Fix a right Fglner sequence (F});2 ,, and assume for contradiction that (2, G, ©) is uniquely
ergodic with O-invariant state ¢, but that there exists x € 2 such that (Avg o :n) Zozl does not converge in
norm to a scalar, and in particular does not converge in norm to ¢(x)1. Since we can decompose z into its
real and imaginary parts, we can assume that x € 2s,. Fix ¢9 > 0 for which there exists an infinite sequence
k1 < ko < --- such that HAngkn T — qb(:c)lH > ¢o. Then for each n € N exists a state 1/, on 2 such that
Un (Aver, @ = 0(0)1)| = |Avep,, @ - o)1

Set

wn = Yn 0 Avgp,

$0 wp(x — @(x)1) = ¥y, (Angkn x — ¢(x)1). Then (wn )52, has a subsequence, call it (wp,)72; which
converges in the weak*-topology to some w. This w is also a state on 2[, and by Lemma 6.1.2, we know w is
O-invariant. But w # ¢, since
w(z) — ¢(x)] = lim |wy, (z) — ¢(z)]
j—00

= lim |wy, (z — ¢(z)1)|

J—00

U, (Avep, o= o)1)

= lim
Jj—o0

= lim HAVng T — qﬁ(m)lH
J—00 g

Z €0.

This contradicts (2, G, ©) being uniquely ergodic. O

Remark 6.3.2. Although (Duvenhage and Stroh, 2011, Theorem 5.2) describes conditions under which
unique ergodicity of an action of an amenable group on a C*-algebra can be related to the convergence of

ergodic averages, that result is not a direct generalization of our Theorem 6.3.1.

In order to develop the gauge machinery from the previous section in the context of actions of amenable
groups, we will need to use slightly different techniques, since we do not have access to the Subadditivity

Lemma. The main results of the remainder of this section can be summarized as follows.

Main results 6.3.3. Let F = (F},);°, be a right Fglner sequence.
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(a) Let (A, G, 0O) be a C*-dynamical system, and let F = (F},)3° , be a right Fglner sequence for G. Then

. . .- 1 G
if a € A is a positive element, then the sequence (H TFr] deFk @QaH) converges tom (a|S )

[o.¢]
k=1
(b) Let (A, G, O; 1) be a faithful C*-model of (9N, p, G, Z). Then the following conditions are related by

the implications (i) <= (ii)=>(iii).
(i) The C*-dynamical system (2, G, ©) is uniquely ergodic.
(ii) The C*-dynamical system (2, G, ©) is strictly ergodic.

(iii) I'(¢v(a)) = p(c(a)) for all positive a € .
Further, if S€ is a simplex, then (iii)=(i).

Theorem 6.3.4. Let (A, G, ©) be a C*-dynamical system, and let F = (F},)?° ; be a right Fglner sequence
for G. Then if a € 2 is a positive element, then the sequence (Hﬁ > gEF, @gaH> converges to

m (a|lSY).

o0
k=1
Proof. For each k € N, choose a state o on 2{ such that

1 1
Ok WZ@QQ = @Z@ga .

geF gEF},

_ 1
Let wy, = el deFk ok 0 Oy, SO

This means that in order to show that (H Ilel pppe @gaH> converges to m (a|S%), it suffices to show

[e.9]
k=1
that wy(a) "2 m (a\SG). So for the remainder of this proof, we are going to be looking instead at the

sequence (wg)2 ;.
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Let ky < kg < --- be some sequence such that (wy,, )~ ; converges in the weak*-topology to some w. It
follows from  Lemma 6.1.2 that w is O-invariant. To see that
o0
(wr(a), = (H ﬁ > gec Ogt(a) H>k:1 converges to m (a|S%), it will suffice to show that every limit
point w of (wy, : k € N) satisfies

w € Sgax(a).

This follows because if there existed a subsequence k; < ky < --- of (wy)?2, such that wy, (a) " 2 £
m (a!S G), then by compactness, that subsequence (wy,, : n € N) would have some subsequence converging
to some w’ for which w’(a) = z # m (a|S%), meaning in particular that ' & S&,. ().

Soletky < ko < --- be some sequence such that (wy,, ).~ ; converges in the weak*-topology to some w.
As has already been remarked, we have that w € S¢, so w(a) < m (a\SG). We prove the opposite inequality.

Let ¢ € S@. Then

¢(a) = ¢ 1 Z O4a (¢ is O-invariant)

n

1
< F|Z@ga

| F,, el

= W, (a)

= ¢(a) < lim wy, (a)

n—oo

=w(a).

Therefore w(a) > supyesc ¥ (a) = m (a|SE). This establishes the desired identity. O

Remark 6.3.5. An alternate proof of Theorem 6.3.4 using nonstandard analysis is presented in Section 6.5.

Corollary 6.3.6. Let (2, G, ©) be a C*-dynamical system, and let F = (F},)}2, be a right Fglner sequence

for G. Let ¢ € SC. Then (A, G, ©) is uniquely ergodic if and only if for every positive element a € 2, the

[e.e]
sequence (H ﬁ > geF, @gaH>k:1 converges to ¢(a).

Proof. (=) Suppose (2, G, ©) is uniquely ergodic. Then ¢(a) = m (a\SG) for all positive a € 2, so by

Theorem 6.3.4 Hﬁ > ®gaH Fope ¢(a).

geF

213



(<) We’ll prove the contrapositive. Suppose (2, G, ©) is not uniquely ergodic. Then there exists an
extreme point 1) of S¢ different from ¢. By Corollary 6.1.22, there exists a € 2 self-adjoint such that
{¢} =SS, (a). We can assume that a is positive, replacing a by a -+ r for a sufficiently large positive real

number r > 0 otherwise. Thus limy_, H|F71k| > geF, @QQH =Y(a) > ¢(a). O

Definition 6.3.7. Given a C*-dynamical system (2, G, ©), a positive element a € 2, and a right Fglner

sequence F' = (F},)?2 ; for G, we define the gauge of a to be the limit

Theorem 6.3.4 shows that the gauge exists, but Theorem 6.3.9 demonstrates the way that the gauge
interacts with a W*-dynamical system and a C*-model. Moreover, the gauge is dependent only on (2, G, ©),
and independent of the right Fglner sequence F = (F})7° . As such, even though the gauge as we have
described it is computed using a right Fglner sequence F = (F},)?° ;, we do not need to include F in our

notation for I'.

Corollary 6.3.8. Let (2,G,0), (QNl, G, @) be two C*-dynamical systems, and let m : 2 — 2 be a *-

homomorphism (not necessarily surjective) such that
Qgom =700, (Vg € Q).

Let S¢ denote the space of O-invariant states on ©. Then m (7’[’((1) \S’G) =m (a| Ann(kerm)).

Proof. Let® = (), and let H : G — Aut(B) be the action H, = ©,4|. Let K denote the space of all

H-invariant states on 8. Then

m (w(a)|SG) = Iy (n(a)) (Theorem 6.3.4)
— T (r(a))
= m (n(a)|K) (Theorem 6.3.4)
= m (a] Ann(ker 7)) (Theorem 6.1.16) .
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Corollary 6.3.9. Let (M, p,G,=) be a W*-dynamical system, and let (2,G,©;.) be a C*-model of

(M, p,Z,=). Then if a € A is a positive element, then
I'(c(a)) = m (a| Ann(kere)) .

Proof. Write 2 = L(A) C M, and let © : G — Aut (él) be the action (:)g = Ey|g obtained by restricting =
to 2. Write S for the space of O-invariant states on 2.

We know Ton(e(a)) = L5 (c(a)). By Theorem 6.3.4, we know that
Ls(t(a)) =m (L(a)\§G>, and by Theorem 6.1.16, we know that

m (L(a)|g5~’G> =m (a| Ann(ker)).

This brings us to our characterization of unique ergodicity with respect to the gauge for C*-models.

Theorem 6.3.10. Let (M, p, G, =) be a W*-dynamical system, and let (2, G, ©; ) be a faithful C*-model

of (M, p, G, Z). Then the following conditions are related by the implications (i) <= (ii)=-(iii).
(i) The C*-dynamical system (2, G, ©) is uniquely ergodic.
(ii) The C*-dynamical system (2, G, ©) is strictly ergodic.
(iii) T'(a) = p(¢(a)) for all positive a € 2.
Further, if S is a simplex, then (iii)=(i).

Proof. (i)=-(ii) Suppose that (2, G, ©) is uniquely ergodic. Then p o ¢ is an invariant state on 2, so it follows
that p o ¢ is the unique invariant state. But p o ¢ is also faithful, so it follows that (2, G, ©) is strictly ergodic.

(i1)=-(1) Trivial.

(i)=-(iii) Suppose that (2, G, ©) is uniquely ergodic, and let a € 2 be positive. Let ¢ be an (a\SG)—
maximizing state on 2. Then ¢ = p o ¢, since both are invariant states and (2, G, ©) is uniquely ergodic.
Then ¢ = pot,sol(a) = ¢(a) = p(i(a)).

(iii)=(i) Suppose that S is a simplex, but that (2, G, ©) is not uniquely ergodic. Let ¢ € S¢ be an

extreme point of S@ different from p o ¢. Then by Corollary 6.1.22, there exists a € 2 self-adjoint such
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that {¢p} = S&, . (a). We can assume that a is positive, since otherwise we could replace a with a + r for a
sufficiently large positive real number r > 0, and SZ2,_(a) = S%, (a + 7). Then I'(a) = ¢(a). But by the
assumption that ¢ is uniquely (a|S%)-maximizing, it follows that p(¢(a)) < ¢(a). Therefore I'(a) # p(c(a)),

meaning that (iii) does not attain. Thus —(1)= —(iii). [

6.4 A noncommutative Herman ergodic theorem

For the duration of this section, we assume that (2, G, ©) is a C*-dynamical system such that 2 is
separable, and that G is amenable.

Let F = (F})2, be aright Folner sequence for G. Write 2% (9) to denote the set of all limit points
of sequences of the form (gbk oAvg Fk):ozl, where ¢, € S for all £ € N. Because F is right Fglner, we
know from Lemma 6.1.2 that if S is nonempty, then 22¥ (.S) will be a nonempty compact subset of S¢. In
particular, if S © § G then @F(S’ ) = SE for any choice of F. Moreover, if S is convex and ©O-invariant,
then 2¥(9) = S.

Question 6.4.1. Is ¥ (S) dependent on F in general?

We now define two quantities.

Notation 6.4.2. Let F be a right Fglner sequence for (=, and S a nonempty subset of S. Let z € R. Define

ar,s(w) = sup {Y(2) 1 v € P (2)},
ap () = inf {¢(z) : p € ¥ (2)},
dp s(7) := klggo (sup {¢ (AVng x) RS S}) ,

dp g(7) := klirgo (inf {¢ (Avgp ) : ¢ € S1).

The values ar g, EES can be compared to the o and § quantities presented in Section 2 of (Jenkinson,
2006a), respectively. Ergodic optimization is concerned with finding the extrema of sequences of ergodic av-
erages of real-valued functions, but there are several ways we might attempt to formalize what an “extremum”
of a sequence of ergodic averages would be. In (Jenkinson, 2006a), O. Jenkinson proposes several different
ways we might formalize this notion, then demonstrates that they are equivalent under reasonable conditions

(Jenkinson, 2006a, Proposition 2.1). Our Proposition 6.4.3 is an attempt to extend some part of this result to

the noncommutative and relative setting.

216



Proposition 6.4.3. The quantities dp s(x), dp g() are well-defined when S C S @ is compact, convex, and

O-invariant. Moreover, they satisfy

ap,s(z) = dp s(z), ap s(z) = dp (7).

Proof. We'll prove that ap, 5(z) = dp,s(x), as the proof that ap g(x) = dp g(x) is very similar. We know a
priori that ¥ (S) = S.

Let (¢1)72 | be a sequence in .S such that for each & € N, we have

sup {qﬁ (AVng J:) 1€ S} —1/k < ¢k(Angk x) < sup {qﬁ (AVng a:) RS S}.

We know that any limit point of (gf)k o Avgp, )20:1 isin S. Let k; < ks < --- be chosen such that

oo
limy_, o0 Pr, (AVngg m) = lim supy,_, . o (AVng a:) We can assume that (¢kz o AVnge)g ) is weak?*-

convergent to a state 1) € S, passing to a subsequence if necessary. Then

limsup oy (Avep, @) = lim oy, (Avep, @) = ¥() < ars(o).

k—o0

Assume for contradiction that lim inf,_,o ¢ (Avgp, ) < ap s(z). Let ¥/ € PF(S) be such that

' (z) > liminfy_, o g (AVng ). Then
Y (x) =" (Avgp, x) < o1, (Avgp, ) — 1/k.

Let k| < k) < --- such that (¢k2 (Avg Fl :z:))oo converges to lim inf_,o ¢ (Avgp, ). Then
4

(=1

W) < Jim gy (Avg% x) ~ limint oy (Avp, 7) < ().

AT

a contradiction. Therefore we conclude that lim infy, o ¢y, (Avgp, x) > @p (). Thus
ar s(x) < likm inf ¢ (AVng a:) < lim sup ¢ (AVng x) <ars(z).
—00 '

k—o0

Thus we can conclude that dg g(z) is well-defined and equal to dp s(z). O
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Remark 6.4.4. An alternate proof of Proposition 6.4.3 using nonstandard analysis is presented in Section

6.5.

To our knowledge, the first result like Theorem 6.4.5 is (Herman, 1983, Lemme on pg. 487). Herman’s
result can be understood as an extension of the classical result that a topological dynamical system is uniquely
ergodic if and only if the ergodic averages of all continuous functions converge uniformly to a constant. To
our knowledge, the first record of this classical result is (Oxtoby, 1952, (5.3)). If Oxtoby’s result can be
understood as relating the uniform convergence properties of ergodic averages of all continuous functions to
the ergodic optimization of all continuous functions, then Herman’s result relates the uniform convergence
properties of ergodic averages of a single continuous function to its ergodic optimization. Our result extends
Herman’s in a few directions. First, it extends Herman’s result to the setting of actions of amenable groups
other than Z. Moreover, it extends the result to C*-dynamical systems. Finally, it allows us to relate
convergence in certain seminorms to relative ergodic optimizations.

Let (2, G, ©) be a C*-dynamical system, where G is an amenable group. Given a nonempty subset .S of

S, define the seminorm || - [|s on A by

lz]ls = sup |yh(x)] .
pes

Theorem 6.4.5. Let F be a right Fglner sequence for G, and S C S. Letx € R, and A € R. Then the

following are equivalent.
@ {v(x) v € 2F(8)} = {A)
(ii) limy o0 | Avep, 2 — Al g = 0.

Proof. (1)=>(ii): We prove the contrapositive. Suppose there exists ¢y > 0 and k1 < ky < - - - such that
HAngkgm—)\HS > € (V€ e N).

For each k£ € N, choose ¢, € .S such that ‘qbk (AVng T — A)! > % HAVng T — )\HS. Then in particular we

know that
or, (Aver, 7= A)| > e0/2 (Ve e ).
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By the weak*-compactness of S, there must exist a weak*-convergent subsequence of
(qﬁ,ﬂ, o Avg, Z)Zl' Assume without loss of generality that (gbke o Avg, E)Zl converges in the weak™ topology,

and write ¢ = limy oo @k, © Avgy,. Then

oo = | =t o, (Ave, - )]
= Jim |6, (Aver, == )]
> 60/2.

Therefore 1(z) # A, meaning that {¢(z) : ¥ € 2F(9)} # {A}.
(i1)=-(1): Suppose that limg_, HAVng T — )\HS = 0. Let (¢1);2, be a sequence in S, and let

oo
<¢k , 0 Avg Fké)é:l be a weak*-convergent subsequence of (gbk oAvg Fk)zozl with limit ¢». Then

[z = A)| =

Jim o, (Aven, 2 =)

- o s, 53

< lim sup HAVng T — )\HS
£—00

=0.

Therefore {t(z) : ¢ € 2F(5)} = {A}. O
Remark 6.4.6. An alternate proof of Theorem 6.4.5 using nonstandard analysis is presented in Section 6.5.

Corollary 6.4.7. Let F be a right Fglner sequence for G. Let x € R, and A € R. Then the following are

equivalent.
@) {¥(z) v € %) ={A}.
(i) limy_,o0 [|[Avgp, @ — || = 0.
Proof. Apply Theorem 6.4.5 in the case where S = S, implying that || - ||s = || - || and 22F(S) = S¢. O

Corollary 6.4.7 strengthens the noncommutative analogue of Oxtoby’s characterization of unique ergod-

icity, as we see below.
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Corollary 6.4.8 (A noncommutative extension of Oxtoby’s characterization of unique ergodicity). Let

F = (F};)2, be aright Fglner sequence for G. A C*-dynamical system (2(, G, ©) is uniquely ergodic if and

oo

k1 converges in norm to an element of Cl CAforallz € 2.

only if (AVng x)

Proof. (=): By taking real and imaginary parts, we can reduce to the case where x is self-adjoint. If
(A, G, ©) is uniquely ergodic, then {¢(z) : ¢ € S} is singleton, so by Corollary 6.4.7 the averages will
converge to a scalar.

(«): Conversely, if (2, G, ©) is not uniquely ergodic, then there exist two states 1, ¢y € S@ for which
there exists y € PR such that 11 (y) # ¥2(y), implying that {w(y) VNS SG} is not singleton. Corollary

6.4.7 then tells us that (Avg P, az)zil doesn’t converge in norm. U

6.5 Applications of nonstandard analysis to noncommutative ergodic optimization

The tools of nonstandard analysis can be used to provide alternate proofs of some results in this chapter.
In this section, we assume that the reader is familiar with the basic tools and vocabulary of nonstandard
analysis. See (Goldblatt, 2012) for references. Since some of the terminology of the field is not entirely
universal, we define some of the less universal terms here.

We will assume throughout this section that (2(, G, ©) is a C*-dynamical system, and that 4( is a universe
that contains 2, G, C. Assume that x : [ — 4’ is a countably saturated universe embedding. We say that
x € *Cis unlimited if |x| > n for all n € N, and limited otherwise. Let L = J,,cy {2z € "C: ||2]| < n}
denote the external ring of limited elements of *C. For z,w € *C, we write z ~ w if |z — w| < 1/n for
all n € N. This ~ is an equivalence relation on *C. We define the shadow sh : . — C to be the C-linear
functional mapping z € L to the unique (standard) complex number w € C for which z ~ w. The shadow is
also order-preserving on L N *R. Let "N, := {K € *N:Vk € N (K > k)} = *N'\ N denote the unlimited
hypernaturals.

We have the following nonstandard analogue of Lemma 6.1.2.

Lemma 6.5.1. Let (%A, G,0) be a C*-dynamical system, and let G be an amenable group. Consider a
sequence in (¢y,)7° , in S, and a right Fglner sequence F = (F},)?° | for G. Let K € *N, be an unlimited

hypernatural, and define a state w : 24 — C by

w(z) =sh ("px (Avgp, ) -
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Then w is a well-defined O-invariant state, and is a limit point of the sequence (qﬁk o Avg Fk);ozl'

Proof. First, we take up the well-definedness of w. If z € 2, then
Vk e N (‘gﬁk (AVng x)‘ < ||JJH) )
and so by the Transfer Principle
Vk € *N (|*¢r (Avgp, z)| < [|lz]]) -

In particular, it follows that |“¢x (Avegp, z)| < ||z

, meaning that “¢x (Avgp, z) € L. Thus w(x) is
well-defined. We can similarly prove that w is positive and unital by applying the Transfer Principle to the

sentences

Vk € NVz € A (¢, (Avgp, (z*z)) >0),

Vk €N (¢ (Avgp, 1) =1).

To prove the O-invariance of w, we recall from a familiar argument (see proof of Lemma 6.1.2) that if

go € G,x € 2, then

| FlgoAFy|

k—o00
z|| "= 0.
e el

‘Qbk (AVng egom) — Ok (AVng :C)} <

It follows from a classical result of nonstandard analysis (Goldblatt, 2012, Theorem 6.1.1) that
. " FrgoAF .
"6k (Avgr, ©50) — "ok (Avep, o)| < AT 2] = 0, meaning that w(z) = w (€,).

Finally, we argue that w is a limit point of (qbk o AVng)zO:r Forn, 0, kg € N;x1,...,xy € 2, consider
the sentence 04, ... z,:n.k, given by

Jk eN [(k > ko) A < min |w(z;) — ¢ (Avep, z;)] < 1/n>] .

1<j<¢
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Then "oy, . 2,k 18 true for all n, £, kg € N;z1, ..., 2z, € 2, witnessed by K. Therefore, it follows from

the Transfer Principle that 0, .z, k, 18 true for all n, £, kg € N;z1,..., 2, € 2. We know that

{{w eS: 11%1}2[@(:):]') —(z5)| < l/n} nleN;zy, ..., 24 691}

is a neighborhood basis for w in the weak* topology. Thus we have shown that w is a limit point of the

sequence (¢, o AVng)Zil' -

We might ask whether Lemma 6.5.1 is strictly weaker than Lemma 6.1.2, since Lemma 6.5.1 also asserts
that the state it describes is a limit point of the sequence that generates it. In fact, the two lemmas are
equivalent in the sense that for a sequence (¢)32 , in S, every limit point of the sequence (gbk oAvg Fk);i1
can be written as sh (*¢K (AngK a:)) for some K € *Ng,. To see this, choose k; < kg < --- such that
P = limy_yo0 ¢p, © Avg Fi, exists. Let V be a countable neighborhood basis for ¢ in the weak*-topology,

and for each U € N,k € N, let Sy, be the set
Sup = {K €N: (W 2 k) A (éw 0 Avgr, €U }.

Then {Syx}y; e ken has the finite intersection property, and so by the countable saturation of our universe

embedding, it follows that there exists K € *N such that

K e ﬂ *SU,lm
UeN keN

which is necessarily unlimited. Then for any = € 2, we have that ‘*(]5 K (Avg Fr x) — 1/1(3;)‘ < 1/n for all

n € N, so

sh (*ox (Avep, o)) = (@),
This correspondence can be generalized in the following result.

Proposition 6.5.2. Let Q = (2, 7) be a compact Hausdorff topological space, and let x : 1 — $I' be a

countably saturated extension of a universe 41 containing €2 and N. Let ~ be the binary relation on *$) defined
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by
T~y = VWert (ze*U+ye™U).

Define a map sh : *Q0 — ) that sends x € " to the unique y € Q) such that v ~ y, and let (x1,)}>, be a
sequence in ). Then the map sh is well-defined.

Further, set

LS ((zx)k21)

—{weQ:WerVkeN [(weU) = (K eN ((K > K) A(ay € 1)))]}

Then
{sh(*zk): K € "Noo} C LS ((zx)52q) -

In addition, if x is k-saturated for some uncountable cardinal k > |B|, where B is some topological basis B

of 7, then {sh (*z) : K € "Ny} = LS ((z1)72) -

Proof. The fact that in a compact topological space, for every z € *) exists exactly one y € €2 such that
x ~ y can be found in (Vith, 2006, Corollary 12.41). Let K € *N,, and consider y = sh (*zg). Let
Ny ={U € B:y € U}, where B is a topological basis for 7, and consider for k € N, U € N, the sentence
oy, defined by

Jk' €N [(k’ > k) A (zy € U)] .

Then *oy, 17 is true for all k € N, U € N, since *zx € *U and K > k for all k € N, so it follows that oy, 7
is true for all k € N, U € N,,. Since N, forms a neighborhood basis for y, it follows that y € LS ()32 ;).
Now suppose that * is r-saturated for some uncountable cardinal x > |B|, and let w € LS ((x1)72 ).

Let NV, ={U € B:w e U}. Fork € N,U € N, consider the set
Sk’,U: {k/GN (k/Zk') /\(:L'k/ EU)}

Then {Sy,v : k € N,U € N} has the finite intersection property, and thus there exists K € (\,.en penr, “SkU-

Thus *z € *U forall U € N,,, and K € *Ny,. Thus w = sh (*z ). O
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Remark 6.5.3. Our definitions of ~ and sh in the statement of Proposition 6.5.2 is consistent with our
definition of ~ on LL in the following sense. We can write L. = | J,,.y {2z € C : |2| < n}. If 2,y € L, then
there exists n € N such that max{|z|, |y|} <n. Thenz,y € "{z € C: |2| <n}. Theset {z € C: |z| < n}
is compact, and the definition of ~ on that compact space in the sense of Proposition 6.5.2 will agree with

our definition of ~ on LL from the start of this section.

In light of Theorem 6.5.2, several compactness arguments in this chapter can be proven alternatively in

the language of nonstandard analysis. Here we provide a few examples.

Proof of Theorem 6.3.4 using nonstandard analysis. For each k € N, choose a state ¢ on 2l such that

ok (Avep, a) = [|Avep, of .

Fix K € *Ng,, and let w : 2l — C be the state
w(x) =sh (*¢x (Avgp, z)) .

Lemma 6.5.1 tells us that w is ©-invariant. We argue now that w(a) = m (a|S%). This follows because if
(NS SC. then

¥(a) =1 (Avgp, a) < ||Avgp, a| = ¢k (Avep, a)

for all k£ € N, and thus we can apply the Transfer Principle to the sentence Vk € N (w(a) < ¢ (Avg £ a))

to infer

W(a) < "ox (Avgp, a) = ¥(a) < w(a).

Therefore, we’ve proven that *||Avgp, al| = m (a|SY) for all K € *N. Therefore by a classical
result of nonstandard analysis (Goldblatt, 2012, Theorem 6.1.1), it follows that limg_, o HAvg Py aH =

m (a|SY). O
Proof of Proposition 6.4.3 using nonstandard analysis. We’ll prove that @ s(z) = dp s(x), as the proof
that ap g(x) = dg g(x) is very similar. We know a priori that 2F (S) = S.
Let (¢)72 | be a sequence in .S such that for each & € N, we have
sup {¢ (Avgp, @) : ¢ € S} — 1/k < ¢p(Avgp, x) < sup{¢ (Avgp, z) : ¢ € S}.
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Let K € "Ny, and let w : % — C be the state w(y) = sh (*¢x (Avgp, y)). Then w € PF(S), so
w(z) < ars(z).

To prove the opposite inequality, let ¢) € 2 (S) = S. Then

Y(r) = (AVng x)
< sup {qﬁ (AVng :c) NN S}

< ¢n (Avgp, x) +1/k (Vk € N).

Thus the sentence

Vk eN (¢(x) < ¢y (Avgp, z) +1/k)

is true. Applying the Transfer Principle then tells us that ¢(z) < "¢k (Avgy, x) + 1/K, implying that

Y(x) < w(x). Taking a supremum over 1) € S = ¥ (9) tells us that
ar s(r) < w(x).

Therefore *¢x (x) ~ ap s(x) for all K € *N. Thus, by a classical result of nonstandard analysis

(Goldblatt, 2012, Theorem 6.1.1), it follows that limy,_, ||Avgy, al| = ar s(z). O

Proof of Theorem 6.4.5 using nonstandard analysis. (i)=>(ii): Suppose {¢(z) : ¢ € 2¥(S)} = {A}. For
each k € N, choose ¢ € S such that ’gbk (AVng T — )\)‘ > % HAVng T — )\HS. Fix K € *N, and let

w : A — C be the state

w(y) =sh ("¢ (Avep, ) -

Lemma 6.5.1 tells us that w € P¥(S). Thus w(z) = A. Therefore |*¢x (Avgp, x) — A| = 0 for all
K € "Ny, meaning a classical result of nonstandard analysis (Goldblatt, 2012, Theorem 6.1.1) tells us that
limy o0 | ¢k (Avgp, ) — A| = 0. But because ||Avgp, = — )\HS < 2|¢y (Avgp, «) — A| forall k € N,
we can conclude that limy_, o HAVng T — /\HS =0.

(ii)=-(i): Suppose that limy_, . HAVng T — )\HS = 0. Let (¢)72, be a sequence in S, and let w : A —

C be the state

w(y) = sh (*ox (Avgp, v))
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Then

lw(z — N)| ~ ‘*gbK (AngK x— )\)| < |[*Avgpex — A g ~ 0.

Therefore w(x) = \. We can then take a supremum to get

sup }Sh (*qﬁK (AngK x)) - )\‘ =0.
(fr) e €SN, Ke*Neo

But in light of Proposition 6.5.2, we know that

P () = {y > sh (“ox (Aver, v)) : (@17 € ST K € "Nao },

so this shows that ¢(z) = A for all v € ¥ (S).
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