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ABSTRACT

AIDAN J. YOUNG: Temporo-Spatial Differentiations
(Under the direction of Idris Assani)

Temporo-spatial differentiation problems were first introduced in (Assani and Young, 2022) under the

name of spatial-temporal differentiation problems. Given a probability space (X,µ) and measurable map

T : X → X , a temporo-spatial differentiation problem is concerned with the limiting behavior of the

sequence
1

µ(Ck)

∫
Ck

1

k

k−1∑
j=0

f ◦ T jdµ,

where f ∈ L1(X,µ) and (Ck)
∞
k=1 is a sequence of measurable subsets of X with positive measure. These

problems were then generalized to the setting of non-autonomous dynamical systems in (Assani and Young,

2023).

We will present several of the basic aspects of temporo-spatial differentiation problems, including their

connections with the field of ergodic optimization. We also present several positive convergence results

for “random temporo-spatial differentiation problems.” We then discuss generalizations of temporo-spatial

differentiation problems to the setting of actions of groups and semigroups other than Z, as well as the

construction of pathological temporo-spatial differentiation problems.
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Introduction

Dynamical systems is classically concerned with the study of some space X equipped with a map

T : X → X that respects some structure of X . Typically, we are especially interested in questions about the

“long-term behavior” of these systems, though exactly what long-term behavior means can vary contextually.

Measure-theoretic dynamical systems is interested in measurable or measure-preserving maps T : X → X

on a measure space X = (X,µ), and topological dynamical systems is interested in continuous maps

T : X → X on a compact metrizable topological space X . As a rule, one could consider a field of dynamical

systems for every kind of structure: a field of smooth dynamical systems that studies Cr maps T : X → X

on Cr manifolds X , a field of algebraic dynamics that studies endomorphisms T : X → X of some

algebraic object (e.g. abstract groups, topological groups, fields) X , a field of complex dynamics that studies

holomorphic maps T : X → X of a complex manifold X , a field of C*-dynamical systems that studies

endomorphisms T : X → X of C*-algebras X , and so on.

Though there are many separate fields within dynamical systems, in practice we’re often interested in

the interplay between the dynamics of different structures on a space. For example, we might consider the

case where X is a compact metrizable space equipped with a continuous map T : X → X , and µ is a

Borel measure on X , making T also measurable; do the measure-theoretic dynamics force certain properties

on the topological dynamics, and vice-versa? Given the frequent interplay between measure-theoretic and

topological dynamics, it benefits us to not be too rigid about where the boundaries between these fields

of dynamics fall. For our purposes, we understand ergodic theory to be the study of measurable maps

T : X → X on a probability space (X,µ) -especially their long-term behaviors- as well as of the interplay

between measurable dynamics and other fields of dynamics.

More generally, dynamical systems are not just concerned with the dynamics of a single map, but with

the dynamics of semigroup actions on spaces. In this broader context, the view of dynamics presented above

can be understood as the study of actions of the additive group N0 of nonnegative integers, where n ·x = Tnx.

At times, we will be interested in the more general case where we allow semigroups other than N0 to act on
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our spaces. However, the study of N0 actions we’ve described above is essentially the classical setting for the

field. When presenting new concepts, we will often describe them in terms of actions of N0 if we feel that

whatever phenomenon we wish to draw attention to can be seen clearly in this classical setting.

One of the classical areas of study in ergodic theory is the study of ergodic averages: Given a measurable

function f : X → C, what can be said about the limiting behavior of the sequence

1

k

k−1∑
j=0

f ◦ T j
∞
k=1

?

These averages k−1
∑k−1

j=0 f ◦ T j are referred to as ergodic averages, and admit a physical intuition: If T

describes the change in a system X over time, and f is a measurement of X , then k−1
∑k−1

j=0 f ◦ T j can be

understood as the average measurement over a period of time k. In light of this physical description of the

ergodic averages, we sometimes call them “temporal averages.”

Two foundational results in ergodic theory, namely the von Neumann and Birkhoff Ergodic Theorems,

describes the limiting behavior of these ergodic averages in the senses ofLp convergence and pointwise-almost

everywhere convergence, respectively.

Theorem 1.0.1 (Von Neumann Ergodic Theorem). (c.f. (Neumann, 1932)) Consider a probability space

X = (X,µ) along with a µ-preserving map T : X → X . Let f ∈ L2(X,µ). Then

lim
k→∞

1

k

k−1∑
j=0

f ◦ T j

exists in the L2(X,µ) norm.

Theorem 1.0.2 (Birkhoff Ergodic Theorem). (c.f. (Birkhoff, 1931)) Consider a probability spaceX = (X,µ)

along with a measure-preserving map T : X → X . Let f ∈ L1(X,µ). Then for µ-almost all x ∈ X , the

limit

lim
k→∞

1

k

k−1∑
j=0

f
(
T jx

)
exists.

We will often write Tnf := f ◦ Tn, i.e. regard composition with T as an operator which we also write

as T .
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Another classical area of study within measure theory is the study of spatial derivatives. Given a measure

space (X,µ), a sequence (Ck)
∞
k=1 of measurable subsets of X satisfying µ(Ck) ∈ (0,∞) for all k ∈ N, and

an integrable function f ∈ L1(X,µ), what can be said about the limiting behavior of the sequence

(
1

µ(Ck)

∫
Ck

fdµ

)∞
k=1

?

One classical result along these lines is the Lebesgue Differentiation Theorem (Folland, 1999, Theorem

3.21). A fuller treatment of the study of local spatial differentiation theorems of this kind can be found in

(De Guzman, 1976).

This is where we situate the problem that interests us, which we call the temporo-spatial differentiation

problem. Consider a probability space (X,µ), and a measurable transformation T : X → X . Consider

further a sequence (Ck)
∞
k=1 of measurable subsets of X such that µ(Ck) > 0 for all k ∈ N, and a function

f ∈ L1(X,µ). What can be said about the limiting behavior of the sequence

 1

µ(Ck)

∫
Ck

1

k

k−1∑
j=0

f ◦ T jdµ

∞
k=1

?

The temporo-spatial differentiation problem was first proposed under the name “spatial-temporal differen-

tiation” in a joint work between the present author and his advisor, I. Assani, in (Assani and Young, 2022). Its

name reflects that it is a synthesis of two averaging processes: the “temporal averaging” f 7→ 1
k

∑k−1
j=0 f ◦ T j

and the “spatial averaging” f 7→ 1
µ(Ck)

∫
Ck
fdµ. The present author and I. Assani agreed to change the name

when we found the older one difficult to pronounce consistently. The nuance of these problems lies in the

potential “conflict” between the tendencies of the temporal and spatial averaging processes.

Chapter 2 of this dissertation discusses the temporo-spatial differentiation problem in the context of

actions of Z on a compact metric space X by homeomorphisms that preserve a Borel probability measure on

X . We provide some characterizations of when a temporo-spatial differentiation can behave well, and also

provide certain convergence results. This chapter is based largely on a joint paper between the present author

and I. Assani (Assani and Young, 2022).

Chapter 3 generalizes some of the general results of Chapter 2 to the setting of actions of topological

groups. We also discuss several instances of what we call a pointwise reduction heuristic: a temporo-spatial

differentiation over a spatial averaging sequence (Ck)
∞
k=1 of sets containing a fixed point with diameter

3



going to 0 sufficiently fast, then the temporo-spatial differentiation will have the same limiting behavior as

an ergodic average at the point. This heuristic then allows us to convert pointwise convergence results into

convergence results for so-called “random temporo-spatial differentiation problems.”

Chapter 4 introduces what we call multi-local temporo-spatial differentiations, i.e. temporo-spatial

differentiations with respect to finite unions of balls. We demonstrate a multi-local form of the pointwise

reduction heuristic from Chapter 3, and then present several constructions of pathological temporo-spatial

differentiations.

In Chapter 5, we discuss a generalization of temporo-spatial differentiations to the setting of non-

autonomous dynamical systems. We consider random temporo-spatial differentiation problems for systems

of endomorphisms of compact abelian metrizable groups, showing that these problems are almost surely

well-behaved. We then demonstrate that under mild conditions, the topologically generic behavior is that

these random temporo-spatial differentiations will diverge. This chapter is based on a joint paper between the

present author and I. Assani (Assani and Young, 2023).

In Chapter 6, we extend the notions of ergodic optimization to the setting of so-called “non-commutative

topological dynamical systems,” i.e. C*-dynamical systems. We consider relative ergodic optimization for

C*-dynamical systems, where we attempt to optimize relative to a constrained family of invariant states, and

extend several elementary results from the classical setting to the relative non-commutative setting. We also

provide alternate proofs of several results using techniques from nonstandard analysis.

4



Temporo-spatial differentiations for actions of Z

This chapter is based on the article (Assani and Young, 2022), a joint work between the author and his

advisor, I. Assani. The only changes made have been as follows:

• The abstract was removed.

• We replaced phrases like “this article” with “this chapter.”

• We replaced the phrase “spatial-temporal differentiation” with “temporo-spatial differentiation,” for

reasons described in Chapter 1.

• In the second paragraph of Section 2.1, we replaced a reference to a secondary source with a reference

to the article in which the result originated.

• We revised Remark 2.1.2. In (Assani and Young, 2022), this remark indicated a future line of

investigation. However, since that article was accepted, we pursued that line of investigation further,

and in fact we pursue that line of investigation further in later chapters of this dissertation. Remark

2.1.2 has been revised to reflect this.

• We added this paragraph to explain the relation between (Assani and Young, 2022) and the current

chapter.

All these changes were made so that the contents of the article would make sense in the context of this

dissertation. Aside from those changes listed, this chapter is identical in content to (Assani and Young, 2022).

Let (X,B, µ, T ) be an ergodic topological dynamical system, where X is a compact metric space, B is

the Borel σ-algebra of X , and T : X → X a homeomorphism that is ergodic with respect to the probability

measure µ. We consider temporo-spatial differentiation problems of the type

lim
k→∞

1

µ(Fk)

∫
Fk

(
1

k

k−1∑
i=0

T if

)
dµ,

5



where (Fk)
∞
k=1 is a sequence of measurable sets Fk ∈ B with positive measure µ(Fk) > 0; specifically, we

consider questions of when this limit exists, and when it exists, what that limit is for f ∈ L∞(X,µ).

Before proceeding, we pause to distinguish these problems from two other kinds of differentiation

problems which we will call temporal and spatial differentiation problems. A temporal differentiation

problem typically considers properties of the sequence
(

1
k

∑k−1
i=0 T

if
)∞
k=1

, especially convergence properties,

and a spatial differentiation problem might consider convergence properties of sequences of the form(
1

µ(Fk)

∫
Fk
fdµ

)
, where Fk are sets of positive measure. What we describe here as temporal differentiation

is the domain of the classical ergodic theorems, and results exist regarding spatial differentiation problems

(e.g. the Lebesgue Differentiation Theorem (Folland, 1999, 3.21), Fundamental Theorem of Calculus). Our

problem, however, fits in neither of these bins, except in trivial cases, and these differentiation problems

might be called ”temporo-spatial” differentiation problems.

A temporo-spatial differentiation problem
(

1
µ(Fk)

∫
Fk

(
1
k

∑k−1
i=0 T

if
)

dµ
)∞
k=1

hinges on three param-

eters: the dynamical system (X,B, µ, T ), the sequence (Fk)
∞
k=1 of measurable sets, and the function

f ∈ L∞(X,µ). For the most part, the questions we consider in this chapter can be understood as ”fixing” two

of these parameters and investigating what can be said about the convergence properties of the differentiation

when the remaining parameter is allowed to ”vary”.

The chapter is organized as follows:

1. In Section 2.1, we consider certain functions which behave particularly well with respect to these

differentiations, called uniform functions, and analyze them with respect to these temporo-spatial

differentiations. We pay special attention to topological dynamical systems and how these temporo-

spatial differentiations interact with unique ergodicity and uniformity.

2. In Section 2.2, we consider a non-expansive topological dynamical system, and consider temporo-

spatial differentiations along certain random nested sequences of subsets, deriving probabilistic results.

3. In Section 2.3, we consider instead a broader class of Lipschitz maps, and differentiate along ran-

domly chosen sequences of sets; in particular, we derive probabilistic results about temporo-spatial

differentiations along random sequences of cylinders in a subshift, as well as find certain pathological

counterexamples.
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4. In Section 2.4, we turn to study differentiations along random cylinders on Bernoulli shifts, but using a

more probabilistic set of tools different from those we employed in the second section. We then use

these techniques to consider a different problem of random cylinders, where we allow the cylinders at

different steps to have different centers.

2.1 Uniform functions and differentiation theorems

In this section, we consider questions of the following forms: Given an appropriate system (X,B, T, µ),

are there f ∈ L∞(X,µ) for which
(

1
µ(Fk)

∫
Fk

(
1
k

∑k−1
i=0 T

if
)

dµ
)∞
k=1

converges for all choices of (Fk)
∞
k=1?

On the other hand, are there restrictions we can place on (X,B, µ, T ) to ensure that(
1

µ(Fk)

∫
Fk

(
1
k

∑k−1
i=0 T

if
)

dµ
)∞
k=1

converges for all choices of (Fk)
∞
k=1 and all f ∈ C(X)? The an-

swer to the former question will be centered around the notion of a uniform function (defined below), and the

answer to the latter question will be centered around unique ergodicity.

Let X be a compact metrizable space with Borel σ-algebra B, and let T : X → X be a homeomorphism.

Then (X,T ) is uniquely ergodic iff the sequence
(

1
k

∑k−1
i=0 T

if
)∞
k=1

converges in C(X) to a constant

function for all f ∈ C(X) (Oxtoby, 1952, (5.3)), and when this happens, the sequence converges to
∫
fdµ,

where µ is the unique ergodic T -invariant Borel probability measure. Thus if (Fk)
∞
k=1 is any sequence

of measurable sets of positive measure, then 1
µ(Fk)

∫
Fk

1
k

∑k−1
i=0 T

ifdµ →
∫
fdµ for all f ∈ C(X), since

αFk : f 7→ 1
µ(Fk)

∫
Fk
fdµ is a state on L∞(X,µ). Fix ε > 0, and choose K ∈ N such that

k ≥ K ⇒

∥∥∥∥∥
∫
fdµ− 1

k

k−1∑
i=0

T if

∥∥∥∥∥
∞

≤ ε.

Then if k ≥ K, we have

∣∣∣∣∣
∫
fdµ− 1

k

k−1∑
i=0

αFk
(
T if

)∣∣∣∣∣ =

∣∣∣∣∣αFk
(∫

fdµ− 1

k

k−1∑
i=0

T if

)∣∣∣∣∣
≤

∥∥∥∥∥
∫
fdµ− 1

k

k−1∑
i=0

T if

∥∥∥∥∥
∞

≤ ε.
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More generally, if we have any dynamical system (Y,A, ν, S), we can call a function g ∈ L∞(Y, ν)

uniform if 1
k

∑k−1
i=0 S

ig →
∫
gdν in L∞. Let U (Y,A, ν, S) ⊆ L∞(Y, ν) denote the space of all uniform

functions on (Y,A, ν, S). If g is uniform, then for any sequence (Gk)
∞
k=1 of measurable sets of positive

measure, we have
1

k

k−1∑
i=0

1

ν(Gk)

∫
Gk

Sigdν →
∫
gdν,

meaning that essentially any differentiation problem of the type that interests us will behave exceptionally

well for that g.

Whenever (X,T ) is a uniquely ergodic system, we have C(X) ⊆ U (X,B, µ, T ), since

∥∥∥∥∥
∫
fdµ− 1

k

k−1∑
i=0

T if

∥∥∥∥∥
∞

≤

∥∥∥∥∥
∫
fdµ− 1

k

k−1∑
i=0

T if

∥∥∥∥∥
C(X)

.

We collect here a few results about some more general differentiation problems. We first demonstrate a

general characterization theorem for uniform functions.

Theorem 2.1.1. Let (Y,A, ν, S) be an ergodic dynamical system, and let g ∈ L∞(Y, ν). Then g is uniform

if and only if for all sequences (Gk)
∞
k=1 in A of measurable sets of positive measure,

1

k

k−1∑
i=0

1

ν(Gk)

∫
Gk

Sigdν →
∫
gdν.

Proof. (⇒) If g is uniform, then

∣∣∣∣∣
∫
gdν − 1

k

k−1∑
i=0

1

ν(Gk)

∫
Gk

Sigdν

∣∣∣∣∣ =

∣∣∣∣∣ 1

ν(Gk)

∫
Gk

(∫
gdν − 1

k

k−1∑
i=0

Sig

)
dν

∣∣∣∣∣
≤ 1

ν(Gk)

∫
Gk

∥∥∥∥∥
∫
gdν − 1

k

k−1∑
i=0

Sig

∥∥∥∥∥
∞

=

∥∥∥∥∥
∫
gdν − 1

k

k−1∑
i=0

Sig

∥∥∥∥∥
∞

→ 0.

(⇐) Suppose that g is not uniform, and set hk =
∫
gdν − 1

k

∑k−1
i=0 S

ig. Then

lim supk→∞ ‖hk‖∞ > 0. Breaking hk into its real part hRe
k and imaginary part hIm

k tells us that ei-
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ther lim supk→∞
∥∥hRe

k

∥∥
∞ > 0, or lim supk→∞

∥∥hIm
k

∥∥
∞ > 0. Suppose without loss of generality that

lim supk→∞
∥∥hRe

k

∥∥
∞ > 0. Then at least one of the inequalities

ν
({
y ∈ Y : hRe

k (y) ≥ ε0
2

})
> 0, ν

({
y ∈ Y : hRe

k (y) ≤ −ε0
2

})
> 0

attains for infinitely many k ∈ N. Assume without loss of generality that

I =
{
k ∈ N : ν

({
y ∈ Y : hRe

k (y) ≥ ε0
2

})
> 0
}

is an infinite set.

Construct a sequence (Gk)
∞
k=1 by letting Gk =

{
y ∈ Y : hRe

k (y) ≥ ε0
2

}
for all k ∈ I , and Gk = Y for

k ∈ N \ I . Then if k ∈ I , then

∣∣∣∣ 1

ν(Gk)

∫
Gk

hkdν

∣∣∣∣ ≥ ∣∣∣∣ 1

ν(Gk)

∫
Gk

hRe
k dν

∣∣∣∣
=

1

ν(Gk)

∫
Gk

hRe
k dν

≥ 1

ν(Gk)

∫
Gk

ε0
2

dν

=
ε0
2
.

Therefore, there exist infinitely many k ∈ N such that

∣∣∣∣∣
∫
gdν − 1

k

k−1∑
i=0

1

ν(Gk)

∫
Gk

Sigdν

∣∣∣∣∣ =

∣∣∣∣ 1

ν(Gk)

∫
Gk

hkdν

∣∣∣∣ ≥ ε0
2
,

meaning that
∣∣∣∫ gdν − 1

k

∑k−1
i=0

1
ν(Gk)

∫
Gk
Sigdν

∣∣∣ 6→ 0.

Remark 2.1.2. In this chapter, we consider averages of the form 1
k

∑k−1
i=0

1
µ(Fk)

∫
Fk
T ifdµ, where T (·) is a

probability measure-preserving action of Z on the probability space (X,B, µ), and Fk ∈ B is a set of positive

measure. We could extend our scope to consider probability measure-preserving actions T (·) of an amenable

group G on (X,B, µ), and consider averages of the form 1
|Ak|

∑
g∈Ak

1
µ(Fk)

∫
Fk
T gfdµ, where (Ak)

∞
k=1 is a

Følner sequence for G. This will be the subject of chapters 3 and 4.

Because we will so frequently be considering averages of functions over sets of positive measures, it will

benefit us to introduce the following notation.
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Notation 2.1.3. Let (X,B, µ) be a probability space. When F ∈ B is a set of positive measure µ(F ) > 0,

we denote by αF the state on L∞(X,µ) given by

αF (f) :=
1

µ(F )

∫
F
fdµ.

Theorem 2.1.1 hints at why we consider temporo-spatial differentiations of L∞ functions instead of,

for example, differentiations of Lp functions for p ∈ [1,∞). One might plausibly propose that if we have a

uniquely ergodic dynamical system (X,B, µ, T ), then we can observe that for all f ∈ C(X), all temporo-

spatial differentiations converge to
∫
fdµ. We could then try to extend this convergence to all of L1(X,µ),

since C(X) is L1-dense in L1(X,µ). However, we know that a uniquely ergodic dynamical system can

still have non-uniform L∞ functions (in fact, any ergodic dynamical system over a non-atomic standard

probability space will have them, as seen in Proposition 2.1.14), so this cannot be right. The catch is that

for measurable F of nonzero measure, the functional αF : f 7→ 1
µ(F )

∫
F fdµ is of norm 1 with respect to

L∞, but the same can’t be said relative to Lp for p ∈ [1,∞). As such, the ”natural” choice of function for a

temporo-spatial differentiation is an L∞ function.

A similarly plausible but misguided attempt to establish convergence results of temporo-spatial dif-

ferentiations for all f ∈ L∞(X,µ) could be through the concept of uniform sets. In (Hansel et al., 1973,

Theorem 1), it was established that if B is separable with respect to the metric (A,B) 7→ µ(A∆B), then

there exists a dense T -invariant subalgebra B′ ⊆ B of sets such that χB is uniform for all B ∈ B′. Again,

one might propose that we could use a density argument to extend convergence results on temporo-spatial

differentiations to functions χA for all A ∈ B ⊇ B′. But again, Theorem 2.1.1 tells us that this would be

tantamount to proving that all L∞ functions are uniform, and we know that there can exist non-uniform L∞

functions.

Other results are possible regarding topological dynamical systems, as we show below.

Lemma 2.1.4. Let f ∈ L∞(X,µ), where (X,B, µ, T ) is a dynamical system. Then the sequence(∥∥∥ 1
k

∑k−1
i=0 T

if
∥∥∥
∞

)∞
k=1

is convergent, and

lim
k→∞

∥∥∥∥∥1

k

k−1∑
i=0

T if

∥∥∥∥∥
∞

= inf
k∈N

∥∥∥∥∥1

k

k−1∑
i=0

T if

∥∥∥∥∥
∞

.
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Proof. Let ak =
∥∥∥∑k−1

i=0 T
if
∥∥∥
∞

. Then the sequence (ak)
∞
k=1 is subadditive. This follows since if k, ` ∈ N,

then

ak+` =

∥∥∥∥∥
k+`−1∑
i=0

T if

∥∥∥∥∥
∞

≤

∥∥∥∥∥
k−1∑
i=0

T if

∥∥∥∥∥
∞

+

∥∥∥∥∥
k+`−1∑
i=k

T if

∥∥∥∥∥
∞

=

∥∥∥∥∥
k−1∑
i=0

T if

∥∥∥∥∥
∞

+

∥∥∥∥∥T k
`−1∑
i=0

T if

∥∥∥∥∥
∞

=

∥∥∥∥∥
k−1∑
i=0

T if

∥∥∥∥∥
∞

+

∥∥∥∥∥
`−1∑
i=0

T if

∥∥∥∥∥
∞

= ak + a`.

The result then follows from the Subadditivity Lemma.

Definition 2.1.5. For f ∈ L∞(X,µ), set

Γ(f) := lim
k→∞

∥∥∥∥∥1

k

k−1∑
i=0

T if

∥∥∥∥∥
∞

.

We call this value Γ(f) the gauge of f .

This Γ(f) satisfies the inequality Γ(f) ≥
∫
fdµ, since

1

k

k−1∑
i=0

T if ≤

∥∥∥∥∥1

k

k−1∑
i=0

T if

∥∥∥∥∥
∞

almost surely, implying that

∫
fdµ =

∫
1

k

k−1∑
i=0

T ifdµ ≤
∫ ∥∥∥∥∥1

k

k−1∑
i=0

T if

∥∥∥∥∥
∞

dµ =

∥∥∥∥∥1

k

k−1∑
i=0

T if

∥∥∥∥∥
∞

.

Therefore ∫
fdµ ≤ inf

k∈N

∥∥∥∥∥1

k

k−1∑
i=0

T if

∥∥∥∥∥
∞

= Γ(f).

Definition 2.1.6. Let X be a compact metric space, and let CR(X) denote the (real) space of real-valued

continuous functions on X endowed with the uniform norm ‖ · ‖C(X). Let T : X → X be a continuous
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homeomorphism, and letMT denote the family of all T -invariant Borel probability measures on X . A

measure µ ∈MT (X) is called f -maximizing for some f ∈ CR(X) if
∫
fdµ = supν∈MT

∫
fdν. We denote

byMmax(f) the set of all f -maximizing measures.

The definition of maximizing measures is due to Jenkinson (Jenkinson, 2006a, Definition 2.3). The

definition is topological in nature, in the sense that it is defined with reference to a homeomorphism on a

compact metric space prior to any other measure that the metric space might possess. A result of Jenkinson

(Jenkinson, 2006a, Proposition 2.4) tells us that for every f ∈ CR(X), we have

1. Mmax(f) 6= ∅,

2. Mmax(f) is a compact metrizable simplex, and

3. the extreme points ofMmax(f) are exactly the ergodic f -maximizing measures. In particular, every

f ∈ CR(X) admits an ergodic f -maximizing measure.

For every nonnegative f ∈ CR(X), let µf denote an ergodic maximizing measure for f . We claim

that Γ(f) ≤
∫
fdµf . To prove this, we note that

∥∥∥ 1
k

∑k−1
i=0 T

if
∥∥∥
∞
≤ maxx∈X

1
k

∑k−1
i=0 T

if(x), where

the maximum exists because X is compact and f ∈ CR(X) is continuous. Choose xk ∈ X such that

maxx∈X
1
k

∑k−1
i=0 T

if(x) = 1
k

∑k−1
i=0 T

if(xk). Let δxk denote the Borel point-mass probability measure

δxk(A) =


1 xk ∈ A

0 xk 6∈ A

Let µk = 1
k

∑k−1
i=0 δT ixk , so that 1

k

∑k−1
i=0 T

if(xk) =
∫
fdµk.

Since the space of Borel probability measures on X is compact in the weak* topology on C(X)∗, there

exists a subsequence (µkn)∞n=1 of (µk)
∞
k=1 converging to a Borel probability measure µ′. It follows from a

classical calculation that µ′ is T -invariant.

Therefore, µ′ is a T -invariant Borel probability measure on X such that
∫
fdµ′ = Γ(f). But if µf is

f -maximal, then

Γ(f) =

∫
fdµ′ ≤

∫
fdµf .

Under certain conditions, however, we can achieve equality here.
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Lemma 2.1.7. Let (X,B, µ) be a probability space, where X is a compact metric space with Borel σ-algebra

on X denoted by B. Let T : X → X be a homeomorphism. If µ is strictly positive, and f ∈ CR(X) is

nonnegative, then

Γ(f) =

∫
fdµf .

Proof. If µ is strictly positive, then the L∞ norm restricted to C(X) agrees with the uniform norm on C(X)

(see the discussion after (Folland, 1999, Theorem 6.8)). Therefore∥∥∥ 1
k

∑k−1
i=0 T

if
∥∥∥
∞

= supx∈X

∣∣∣ 1k∑k−1
i=0 T

if(x)
∣∣∣ for all k ∈ N. However, we can bound

∫
fdµf by

∫
fdµf =

∫
1

k

k−1∑
i=0

T ifdµ

≤ sup
x∈X

1

k

k−1∑
i=0

T if(x)

=

∥∥∥∥∥1

k

k−1∑
i=0

T if

∥∥∥∥∥
∞

⇒
∫
fdµf ≤ inf

k∈N

∥∥∥∥∥1

k

k−1∑
i=0

T if

∥∥∥∥∥
∞

= Γ(f),

establishing the opposite inequality.

Lemma 2.1.8. Suppose that (X,B, µ, T ) consists of a compact metric space X with Borel σ-algebra B and

a strictly positive probability measure µ that is ergodic with respect to a homeomorphism T : X → X . Then

the system (X,T ) is uniquely ergodic if and only if Γ(f) =
∫
fdµ for all nonnegative f ∈ CR(X).

Proof. (⇒) If (X,T ) is uniquely ergodic, then in particular µ = µf for all nonnegative f ∈ CR(X).

Therefore by the previous lemma, we have

∫
fdµ =

∫
fdµf = Γ(f).

(⇐) If (X,T ) is not uniquely ergodic, then we know thatMT (X) is not a singleton, and thus contains

another ergodic measure ν. By a result of Jenkinson (Jenkinson, 2006a, Theorem 3.7), we know that there

exists f ∈ C(X) real-valued such that ν = µf is the unique f -maximizing measure. We may assume without
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loss of generality that f is nonnegative, since otherwise we can replace f with f̃ − infx∈X f(x). Since we

claimed that ν was the unique f -maximizing measure, we can conclude in particular that

∫
fdµ <

∫
fdν

=

∫
fdµf

= Γ(f).

Theorem 2.1.9. Suppose that (X,B, µ, T ) consists of a compact metric space X with Borel σ-algebra B and

a probability measure µ that is ergodic with respect to a homeomorphism T : X → X . Then the following

results are related by the implications (1)⇒(2)⇒(3). Further, if µ is strictly positive, then (3)⇒(1).

1. (X,T ) is uniquely ergodic.

2. For every sequence of Borel-measurable sets (Fk)
∞
k=1 of positive measure, and for every f ∈ C(X),

the limit limk→∞ αFk

(
1
k

∑k−1
i=0 T

if
)

exists and is equal to
∫
fdµ, where α· is as defined in Notation

2.1.3.

3. For every sequence of open sets (Uk)
∞
k=1 of positive measure, and for every f ∈ C(X), the limit

limk→∞ αUk

(
1
k

∑k−1
i=0 T

if
)

exists and is equal to
∫
fdµ, where α· is as defined in Notation 2.1.3.

Proof. (1)⇒(2): If (X,T ) is uniquely ergodic, then
∥∥∥∫ fdµ− 1

k

∑k−1
i=0 T

if
∥∥∥
C(X)

k→∞→ 0, so

∣∣∣∣∣
∫
fdµ− αFk

(
1

k

k−1∑
i=0

T if

)∣∣∣∣∣ =

∣∣∣∣∣αFk
(∫

fdµ− 1

k

k−1∑
i=0

T if

)∣∣∣∣∣
≤

∥∥∥∥∥
∫
fdµ− 1

k

k−1∑
i=0

T if

∥∥∥∥∥
C(X)

k→∞→ 0.

(2)⇒(3): Trivial, since an open set is automatically Borel.

¬(1)⇒ ¬(3): Suppose (X,T ) is not uniquely ergodic, and that µ is strictly positive. Then Lemma

2.1.8 tells us that there exists nonnegative f ∈ CR(X) for which Γ(f) >
∫
fdµ. Let L be such that
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∫
fdµ < L < Γ(f), and consider the open set

Uk =

{
x ∈ X :

1

k

k−1∑
i=0

T if(x) > L

}
.

By the proof of Lemma 2.1.7, we know that

Γ(f) = inf
k∈N

max
x∈X

1

k

k−1∑
i=0

T if(x) = inf
k∈N

1

k

k−1∑
i=0

T if(xk),

where xk ∈ Uk for all k ∈ N. Therefore Uk is a nonempty open set, and since µ is strictly positive, that

means µ(Uk) > 0. Therefore

αUk

(
1

k

k−1∑
i=0

T if

)
≥ αUk (L)

= L

⇒ lim inf
k→∞

αUk(f) ≥ L

>

∫
fdµ.

Theorem 2.1.10. Suppose that (X,B, µ, T ) consists of a compact connected metric space X = (X, ρ) with

Borel σ-algebra B and a probability measure µ that is ergodic with respect to a homeomorphism T : X → X .

Suppose further that µ is strictly positive, but (X,T ) is not uniquely ergodic. Then there exists a sequence

(Uk)
∞
k=1 of nonempty open subsets of X and a nonnegative continuous function f ∈ C(X) such that the

sequence
(
αUk

(
1
k

∑k−1
i=0 T

if
))∞

k=1
is not Cauchy. Furthermore, if µ is atomless, then we can choose the

sequence (Uk)
∞
k=1 such that µ (Uk)↘ 0.
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Proof. Lemma 2.1.8 tells us that there exists nonnegative f ∈ CR(X) for which Γ(f) >
∫
fdµ. Let

L,M ∈ R such that
∫
fdµ < L < M < Γ(f), and consider the open sets

Vk =

{
x ∈ X :

1

k

k−1∑
i=0

T if(x) > M

}
,

Wk =

{
x ∈ X :

∫
fdµ <

1

k

k−1∑
i=0

T if(x) < L

}
.

By the proof of Lemma 2.1.7, we know that Vk 6= ∅, so let xk ∈ Vk. We also know that there exists zk in X

such that f(zk) ≤
∫
fdµ, since if f(z) >

∫
fdµ for all z ∈ X , then

∫
f(z)dµ(z) >

∫
fdµ, a contradiction.

By the Intermediate Value Theorem, there then exists yk ∈Wk. Construct (Uk)
∞
k=1 as

Uk =


Vk, k odd

Wk, k even.

Then

lim sup
k→∞

αU2k−1

(
1

2k − 1

2k−2∑
i=0

T if

)
≥ lim sup

k→∞
αU2k−1

(M)

= M,

lim inf
k→∞

αU2k

(
1

2k

2k−1∑
i=0

T if

)
≤ lim inf

k→∞
αU2k

(L)

= L.

Therefore

lim inf
k→∞

αUk

(
1

k

k−1∑
i=0

T if

)
≤ L < M ≤ lim sup

k→∞
αUk

(
1

k

k−1∑
i=0

T if

)
.

Moreover, if µ is atomless, then we can choose (Uk)
∞
k=1 so that µ (Uk)→ 0 by letting Uk be a ball of

sufficiently small radius contained in Vk (if k is odd) or Wk (if k is even). The above calculations can be

carried out in the same way.

In Theorem 2.3.7, we construct an example of a Bernoulli shift (X,B, µ, T ) where there exists (x, f) ∈

X × C(X) such that the sequence
(
αCk(x)

(
1
k

∑k−1
i=0 T

if
))∞

k=1
not only does not converge to

∫
fdµ, as in
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Theorem 2.1.9, but such that it does not converge at all. Theorem 2.1.10 does not encompass that example,

since subshifts are a priori totally disconnected.

In the next result, we will be making use of the Jewett-Krieger Theorem in a specific formulation. This is

the formulation originally proven by Jewett in (Jewett, 1970) under the assumption that the transformation

was weakly mixing; Bellow and Furstenberg later demonstrated in (Bellow and Furstenberg, 1979) that the

parts of Jewett’s argument which relied on the weakly mixing property could be proven under the weaker

assumption of ergodicity. The version of the Jewett-Krieger Theorem we will be using is as follows.

Jewett-Krieger Theorem. Given an invertible ergodic system (Y,A, ν, S) on a standard probability space

(Y,A, ν), there exists an essential isomorphism h : (Y,A, ν, S) → (2ω,B, µ, T ) (where 2ω denotes the

Cantor space) such that (2ω, T ) is a strictly ergodic system.

The following result provides some structure statements about the space U (Y,A, ν, S) of uniform

functions.

Theorem 2.1.11. Let (Y,A, ν) be a standard probability space, and S : Y → Y an ergodic automorphism.

Then U (Y,A, ν, S) is a closed S-invariant subspace of L∞(Y, ν) that is closed under complex conjugation,

and contains a unital S-invariant C*-subalgebra A which is dense in L1(Y, ν). This A is isomorphic as a

C*-subalgebra to C (2ω).

Proof. First, we prove that U (Y,A, ν, S) is a closed S-invariant subspace of L∞(Y, ν). The fact it is a

subspace of L∞(Y, ν) is clear, so suppose f ∈ cl (U (Y,A, ν, S)). Then there exists g ∈ U (Y,A, ν, S) such

that ‖f − g‖∞ ≤
ε
3 . Choose K ∈ N such that k ≥ K implies

∥∥∥∫ gdµ− 1
k

∑k−1
i=0 T

ig
∥∥∥
∞
≤ ε

3 . Then

∥∥∥∥∥
∫
fdµ− 1

k

k−1∑
i=0

T if

∥∥∥∥∥
∞

≤
∥∥∥∥∫ fdµ−

∫
gdµ

∥∥∥∥
∞

+

∥∥∥∥∥
∫
gdµ− 1

k

k−1∑
i=0

T ig

∥∥∥∥∥
∞

+

∥∥∥∥∥1

k

k−1∑
i=0

T i(g − f)

∥∥∥∥∥
∞

≤ ‖f − g‖∞ +

∥∥∥∥∥
∫
gdµ− 1

k

k−1∑
i=0

T ig

∥∥∥∥∥
∞

+ ‖f − g‖∞

≤ ε

3
+
ε

3
+
ε

3
= ε.
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Thus f ∈ U (Y,A, ν, S). Now, we claim that if f ∈ U (Y,A, ν, S), then Sf, S−1f ∈ U (Y,A, ν, S). We

compute

∥∥∥∥∥
∫
Sfdν − 1

k

k−1∑
i=0

Si(Sf)

∥∥∥∥∥
∞

=

∥∥∥∥∥
∫
fdν − 1

k

k−1∑
i=0

Si(Sf)

∥∥∥∥∥
∞

=

∥∥∥∥∥
∫
fdν −

(
1

k

k−1∑
i=0

Sif

)
+

1

k

(
f − Skf

)∥∥∥∥∥
∞

≤

∥∥∥∥∥
∫
fdν − 1

k

k−1∑
i=0

Sif

∥∥∥∥∥
∞

+
2‖f‖
k

k→∞→ 0.

An analogous argument will show that S−1f ∈ U (Y,A, ν, S). To see that U (Y,A, ν, S) is also closed

under complex conjugation, we see that

∥∥∥∥∥
∫
fdµ− 1

k

k−1∑
i=0

T if

∥∥∥∥∥
∞

=

∥∥∥∥∥∥
∫
fdµ− 1

k

k−1∑
i=0

T if

∥∥∥∥∥∥
∞

=

∥∥∥∥∥
∫
fdµ− 1

k

k−1∑
i=0

T if

∥∥∥∥∥
∞

.

Finally, we prove that U (Y,A, ν, S) contains a unital S-invariant C*-algebra A that’s dense in L1(Y, ν).

By the Jewett-Krieger Theorem, we know there exists an essential isomorphism φ : (Y,A, ν, S) →

(2ω,B, µ, T ), where (2ω,B, µ, T ) is uniquely ergodic. Let A = Φ (C (2ω)), where Φ : L∞ (2ω, µ) →

L∞(Y, ν) is the pullback of φ. Since C (2ω) is dense in L1 (2ω, µ), we can infer that A = Φ (C (2ω)) is

dense in L1(Y, ν). Since continuous functions in a uniquely ergodic system are uniform, it follows that the

functions of A are uniform.

Because µ is strictly positive, we know that C (2ω) is isomorphic as a C*-algebra to its copy in

L∞ (2ω, µ) (see proof of Lemma 2.1.7), so this map Φ is an isomorphism between C (2ω) ( L∞ (2ω, µ) and

A = Φ (C (2ω)).

Proposition 2.1.12. Suppose that (X,B, µ, T ) consists of a compact metric space X = (X, ρ) with Borel

σ-algebra B and a probability measure µ that is ergodic with respect to a homeomorphism T : X → X ,

where X is connected. Suppose further that ∃F ∈ B such that 0 < µ(F ) < 1. Then there exists

f ∈ U (X,B, µ, T ) \ C(X).
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Proof. By the Jewett-Krieger Theorem, there exists an essential isomorphism

h : (X,B, µ, T ) → (X ′,B′, µ′, T ′), where X ′ = 2ω and (X ′, T ′) is uniquely ergodic. The topological

space 2ω admits a basis G of clopen sets. We claim that there exists G ∈ G such that 0 < µ′(G) < 1.

Assume for contradiction that µ′(G) ∈ {0, 1} for all G ∈ G. If (Ek)
∞
k=1 is some sequence in B′ of sets

for which µ′(Ek) ∈ {0, 1}, then

µ′

( ∞⋃
k=1

Ek

)
= max

k∈N
µ′(Ek) ∈ {0, 1},

µ′

( ∞⋂
k=1

Ek

)
= min

k∈N
µ′(Ek) ∈ {0, 1},

µ′(X \ E1) = 1− µ(E1) ∈ {0, 1}.

But since G generates B′, this would imply that µ′(E) ∈ {0, 1} for all E ∈ B′, a contradiction.

Therefore, there exists G0 ∈ B′ clopen such that 0 < µ′(G0) < 1. Set g = χG0 ∈ C (X ′) ⊆

U (X ′,B′, µ′, T ′), and let f = g ◦ h. Then f ∈ U (X,B, µ, T ). But since f takes values in {0, 1}, and

µ({x ∈ X : f(x) = 1}) 6∈ {0, 1}, we must conclude that f ∈ U (X ′,B′, µ′, T ′) \ C(X).

We conclude this section by remarking that in most situations, we’ll have U (Y,A, ν, S) 6= L∞(Y, ν).

We cite here a special case of a result of N. Ormes.

Lemma 2.1.13. Suppose (Y,A, ν) is a non-atomic standard probability space, and S : Y → Y is an ergodic

automorphism. Then there exists a minimal homeomorphism T : 2ω → 2ω and an affine homeomorphism

p : [0, 1] → MT (2ω) for which (2ω,B, p(0), T ) is essentially isomorphic to (Y,A, ν, S), where B here

denotes the Borel σ-algebra on 2ω.

Proof. This is a special case of (Ormes, 1997, Corollary 7.4), where we specifically consider the Choquet

simplex [0, 1].

Since (2ω, T ) is not uniquely ergodic, it follows that there exists f0 ∈ C (2ω) such that
(

1
k

∑k−1
i=0 T

if0

)∞
k=1

does not converge uniformly to the constant
∫
f0d (p(0)). Since (2ω, T ) is minimal, and the support of p(0)

is a nonempty T -invariant compact subset of 2ω, it follows that p(0) is strictly positive, and so the uniform
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norm on C (2ω) coincides with the L∞ (2ω, p(0)) norm on C (2ω). As such, it follows that

∥∥∥∥∥
∫
f0d(p(0))− 1

k

k−1∑
i=0

T if0

∥∥∥∥∥
∞

= sup
x∈2ω

∣∣∣∣∣
∫
f0d(p(0))− 1

k

k−1∑
i=0

T if0(x)

∣∣∣∣∣ k→∞6→ 0.

Let φ : (Y,A, ν, S)→ (2ω,B, p(0), T ) be an essential isomorphism, and let Φ : L∞ (2ω, p(0))→ L∞(Y, ν)

be the pullback of φ. Then

∥∥∥∥∥
∫

(Φf0) dν − 1

k

k−1∑
i=0

Si (Φf0)

∥∥∥∥∥
∞

=

∥∥∥∥∥
∫
f0d(p(0))− 1

k

k−1∑
i=0

T if0

∥∥∥∥∥
∞

k→∞
6→ 0.

Therefore Φf0 ∈ L∞(Y, ν) \U (Y,A, ν, S).

The following proposition summarizes this discussion.

Proposition 2.1.14. Suppose (Y,A, ν) is a non-atomic standard probability space, and S : Y → Y is an

ergodic automorphism. Then U (Y,A, ν, S) 6= L∞(Y, ν).

2.2 Non-expansive maps

In this section, as well as in Section 2.3, we investigate for a certain class of dynamical system (X,B, µ, T )

what can be said about the convergence properties of
(

1
µ(Fk)

∫
Fk

(
1
k

∑k−1
i=0 T

if
)

dµ
)∞
k=1

for f ∈ C(X) when

we consider a ”probabilistically generic” sequence (Fk)
∞
k=1. In other words, we investigate in some sense a

”typical” behavior of
(

1
µ(Fk)

∫
Fk

(
1
k

∑k−1
i=0 T

if
)

dµ
)∞
k=1

for f ∈ C(X), and find sufficient conditions for

this differentiation to converge almost surely to
∫
fdµ for all f ∈ C(X).

Let X = (X, ρ) be a compact metric space, and T : X → X a 1-Lipschitz map, i.e. such that

ρ(Tx, Ty) ≤ ρ(x, y) for all x, y ∈ X . Let B denote the Borel σ-algebra on X , and µ a T -invariant,

ergodic Borel probability measure on X . Then (X,T ) has topological entropy 0, and thus (X,B, µ, T )

is automatically of entropy 0 < ∞ (Goodman, 1971, Lemma 1). By the Krieger Generator Theorem

(Krieger, 1970, 2.1), the ergodic system admits a finite measurable partition E = {Ed}d∈D of X such that{
T iEd : i ∈ Z, d ∈ D

}
generates the σ-algebra B, where D is a finite indexing set. We call E a generator of

(X,B, µ, T ).

Let di : X → D, i ∈ Z be the measurable random variable uniquely determined by the relation

x ∈ T−iEdi(x),

20



or equivalently

T ix ∈ Edi(x).

Given a word a = (a0, a1, . . . , a`−1) ∈ D`, we define the cylinder associated to a by

[a0, a1, . . . , a`−1] :=

`−1⋂
i=0

T−iEai .

We also define the rank-k cylinder associated to x ∈ X by

Ck(x) := [d0(x), d1(x), . . . , dk−1(x)] =
k−1⋂
i=0

T−iEdi(x).

Equivalently, we can define Ck(x) to be the element of ∨k−1
i=0 T

−iE containing x.

We note here that µ(Ck(x)) > 0 for all k ∈ N for almost all x ∈ X , since

{x ∈ X : ∃k ∈ N s.t. µ(Ck(x)) = 0} =
⋃
k∈N
{x ∈ X : µ(Ck(x)) = 0}

=
⋃
k∈N

 ⋃
d∈Dk s.t. µ([d])=0

[d]


is a countable union of null sets.

Suppose further that diam(Ck(x)) → 0 for almost all x ∈ X . Our main result for this section is the

following.

The following result states that when an ergodic system (X,B, µ, T ) is equipped with a generating

partition satisfying certain topological conditions, then temporo-spatial differentiations of a continuous

function f along a nested sequence of cylinders defined with respect to that generating partition will almost

surely converge to the expected value of f .

Theorem 2.2.1. Let X = (X, ρ) be a compact metric space, and T : X → X a 1-Lipschitz map, i.e.

such that ρ(Tx, Ty) ≤ ρ(x, y) for all x, y ∈ X . Let B denote the Borel σ-algebra on X , and µ a T -

invariant, ergodic Borel probability measure on X . Let E = {Ed}d∈D be a finite measurable partition

of X which generates B, and let Ck(x) be the element of ∨k−1
i=0 T

−iE containing x. Suppose further that
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diam(Ck(x))→ 0 for almost all x ∈ X . Then the set of x ∈ X such that

1

µ(Ck(x))

∫
Ck(x)

1

k

k−1∑
i=0

T ifdµ
k→∞→

∫
fdµ

for all f ∈ C(X) is of full measure.

Proof. Since X is compact metrizable, we know that C(X) is a separable vector space, so let {fn}n∈N be a

countable set in C(X) such that span{fn}n∈N = C(X), where the closure is taken in the uniform norm on

C(X). Let

Sn =

{
x ∈ X :

1

k

k−1∑
i=0

αCk(x)

(
T ifn

)
→
∫
fndµ

}
.

We claim that µ(Sn) = 1.

Choose x ∈ X satisfying the following three conditions:

(a) diam(Ck(x))→ 0,

(b) µ(Ck(x)) > 0 for all k ∈ N, and

(c) 1
k

∑k−1
i=0 T

ifn(x)→
∫
fndµ.

The set of x ∈ X satisfying the condition (a) is of full measure by hypothesis, and the set of x ∈ X satisfying

the condition (b) is of full measure by the discussion preceding the statement of this theorem. Finally, the set

of x ∈ X satisfying condition (c) is of full measure by the Birkhoff ergodic theorem (Walters, 2007, Theorem

1.5). Therefore, the set of x ∈ X satisfying all three conditions is of full measure.

Fix ε > 0. Since fn is uniformly continuous, we know there exists δ > 0 such that ρ(x1, x2) ≤ δ ⇒

|fn(x1)− fn(x2)| ≤ ε
2 . Choose K1 ∈ N such that diam(Ck(x)) ≤ δ for all k ≥ K1. Choose K2 ∈ N such
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that k ≥ K2 ⇒
∣∣∣∫ fndµ− 1

k

∑k−1
i=0 T

ifn(x)
∣∣∣ ≤ ε

2 . Let K = max{K1,K2}, and suppose that k ≥ K. Then

∣∣∣∣∣
∫
fndµ− 1

k

k−1∑
i=0

αCk(x)

(
T ifn

)∣∣∣∣∣
≤

∣∣∣∣∣
∫
fndµ− 1

k

k−1∑
i=0

T ifn(x)

∣∣∣∣∣+

∣∣∣∣∣1k
k−1∑
i=0

T ifn(x)− 1

k

k−1∑
i=0

αCk(x)

(
T ifn

)∣∣∣∣∣
≤ ε

2
+

1

k

k−1∑
i=0

∣∣∣∣∣T ifn(x)− 1

µ(Ck(x))

∫
Ck(x)

T if

∣∣∣∣∣
=
ε

2
+

1

k

k−1∑
i=0

∣∣∣∣∣ 1

µ(Ck(x))

∫
Ck(x)

T ifn(x)− T ifndµ

∣∣∣∣∣
=
ε

2
+

1

k

k−1∑
i=0

∣∣∣∣∣ 1

µ (T iCk(x))

∫
T iCk(x)

fn(x)− fndµ

∣∣∣∣∣
≤ ε

2
+

1

k

k−1∑
i=0

1

µ (T iCk(x))

∫
T iCk(x)

|fn(x)− fn|dµ

≤ ε

2
+

1

k

k−1∑
i=0

1

µ (T iCk(x))

∫
T iCk(x)

ε

2
dµ

= ε,

since diam
(
T iCk(x)

)
≤ diam(Ck(x)) ≤ diam(CK(x)) < δ. Thus if µ(Ck(x)) > 0 for all k ∈ N, if

diam(Ck(x))→ 0, and if 1
k

∑k−1
i=0 T

ifn(x)→
∫
fndµ, then x ∈ Sn. Thus µ(Sn) = 1 for all n ∈ N, and so

µ
(⋂

n∈N Sn
)

= 1.

We claim now that if x ∈ S =
⋂
n∈N Sn, then 1

k

∑k−1
i=0 αCk(x)

(
T if

)
→
∫
fdµ for all f ∈ C(X). Fix

x ∈ S, f ∈ C(X), ε > 0. Then there exist N ∈ N and z1, . . . , zN ∈ C such that

∥∥∥∥∥f −
N∑
n=1

znfn

∥∥∥∥∥
∞

<
ε

3
.

Choose L1, . . . , LN ∈ N such that

k ≥ Ln ⇒

∣∣∣∣∣
∫
fndµ− 1

k

k−1∑
i=0

αCk(x)

(
T ifn

)∣∣∣∣∣ < ε

3N max{|z1|, . . . , |zN |, 1}
.
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Abbreviate g =
∑N

n=1 znfn, and let L = max{L1, . . . , LN}. Then if k ≥ L, then

∣∣∣∣∣
∫
fdµ− 1

k

k−1∑
i=0

αCk(x)

(
T if

)∣∣∣∣∣
≤
∣∣∣∣∫ fdµ−

∫
gdµ

∣∣∣∣+

∣∣∣∣∣
∫
gdµ− 1

k

k−1∑
i=0

αCk(x)

(
T ig
)∣∣∣∣∣

+

∣∣∣∣∣1k
k−1∑
i=0

αCk(x)

(
T i(g − f)

)∣∣∣∣∣
≤ ‖f − g‖∞ +

N∑
n=1

|zn|

∣∣∣∣∣
∫
fndµ− 1

k

k−1∑
i=0

αCk(x)

(
T ifn

)∣∣∣∣∣
+

1

k

k−1∑
i=0

‖g − f‖∞

≤ ε.

Thus x ∈ S ⇒ limk→∞
1
k

∑k−1
i=0 αCk(x)

(
T if

)
=
∫
fdµ for all f ∈ C(X). Since µ(S) = 1, this concludes

the proof.

Remark 2.2.2. We remark that the cylindrical structure of the Ck(x) was not essential to our proof of

Theorem 2.2.1. Rather, the important feature of (Ck(x))∞k=1 was that their diameter went to 0 as k →∞. To

demonstrate this fact, we consider the scenario where we replace the Ck(x) with balls around x of radius

decreasing to 0, and note that the technique of proof is remarkably similar to that used to prove Theorem

2.2.1.

Theorem 2.2.3. Let X = (X, ρ) be a compact metric space, and T : X → X a 1-Lipschitz map, i.e. such

that ρ(Tx, Ty) ≤ ρ(x, y) for all x, y ∈ X . Let B denote the Borel σ-algebra on X , and µ a T -invariant,

ergodic Borel probability measure on X . Let (rk)
∞
k=1 be a non-increasing sequence of positive numbers

rk > 0 such that limk→∞ rk = 0. Let Bk(x) = {y ∈ X : ρ(x, y) < rk}. Then the set of x ∈ X such that

1

µ(Bk(x))

∫
Bk(x)

1

k

k−1∑
i=0

T ifdµ
k→∞→

∫
fdµ

for all f ∈ C(X) is of full measure.

Proof. First we will prove that for an arbitrary f ∈ C(X), the set of all x ∈ X such that

1
k

∑k−1
i=0 αBk(x)

(
T if

) k→∞→ ∫
fdµ is of full measure. Fix ε > 0, and choose δ > 0 such that ρ(x, y) < δ ⇒
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|f(x) − f(y)| < ε
2 (where we invoke the uniform continuity of f ). Choose K1 ∈ N such that rK1 < δ.

Then if k ≥ K1, i ∈ [0, k − 1], we have that y ∈ Bk(x) ⇒ ρ(x, y) < δ ⇒ ρ
(
T ix, T iy

)
< δ. Let

x ∈ supp(µ), k ≥ K1. Then

∣∣T if(x)− αBk(x)

(
T if

)∣∣ =

∣∣∣∣∣T if(x)− 1

µ(Bk(x))

∫
Bk(x)

T ifdµ

∣∣∣∣∣
=

∣∣∣∣∣T if(x)− 1

µ (T iBk(x))

∫
T iBk(x)

fdµ

∣∣∣∣∣
=

∣∣∣∣∣ 1

µ (T iBk(x))

∫
T iBk(x)

(
T if(x)− f

)
dµ

∣∣∣∣∣
≤ 1

µ (T iBk(x))

∫
T iBk(x)

∣∣T if(x)− f
∣∣dµ

≤ ε

2
.

Let x ∈ X ∩ supp(µ) such that 1
k

∑k−1
i=0 T

if(x)
k→∞→

∫
fdµ. Choose K2 ∈ N such that

k ≥ K2 ⇒

∣∣∣∣∣
∫
fdµ− 1

k

k−1∑
i=0

T if(x)

∣∣∣∣∣ < ε

2
.

Then if k ≥ max{K1,K2}, then

∣∣∣∣∣
∫
fdµ− 1

k

k−1∑
i=0

αBk(x)

(
T if

)∣∣∣∣∣
≤

∣∣∣∣∣
∫
fdµ− 1

k

k−1∑
i=0

T if(x)

∣∣∣∣∣+

∣∣∣∣∣1k
k−1∑
i=0

T if(x)− 1

k

k−1∑
i=0

αBk(x)

(
T i
)∣∣∣∣∣

≤ ε

2
+
ε

2

= ε.

The Birkhoff Ergodic Theorem then tells us that the set
{
x ∈ X : 1

k

∑k−1
i=0 T

if(x)
k→∞→

∫
fdµ

}
is of full

measure, and so we can intersect it with the support of µ to get another set of full measure.

We can now use an argument almost identical to that used in the proof of Theorem 2.2.1 to prove this

present theorem. Let {fn}n∈N be a countable set in C(X) such that span{fn}n∈N = C(X), where the
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closure is taken in the uniform norm on C(X). Let

Sn =

{
x ∈ X ∩ supp(µ) :

1

k

k−1∑
i=0

αBk(x)(fn)→
∫
fndµ

}
.

As we have already shown, each Sn is of full measure, and thus so is
⋂
n∈N Sn. From here, appealing to the

fact that these {fn}n∈N generate C(X), we can prove the present theorem.

Remark 2.2.4. Assuming that µ({x}) = 0 for all x ∈ X , then µ(Bk(x))→ 0 for all x ∈ X .

Example 2.2.5. Theorem 2.2.3 ceases to be true if we drop the hypothesis that our system is ergodic. Let

X = (X, ρ) be a compact metric space, and let T : X → X be the identity map T = idX on X . Let µ

be any non-atomic Borel probability measure µ on X (which is automatically idX -invariant) that is strictly

positive. Fix x0 ∈ X and let f(x) = ρ(x, x0). Let Bk(x0) = {x ∈ X : ρ(x, x0) < 1/k}.

We claim that
∫
fdµ > 0, but

αBk(x0)

(
1

k

k−1∑
i=0

T if

)
k→∞→ 0.

First, we observe that µ(Bk(x0)) > 0 for all k ∈ N, since x0 ∈ supp(µ). However, since
⋂∞
k=1Bk(x0) =

{x0}, we know that µ(Bk(x0))→ 0. Therefore there exists K ∈ N such that 0 < µ(BK(x0)) < µ(B1(x0)).

Since f is a nonnegative function, we can then conclude that

∫
fdµ ≥

∫
B1(x0)\BK(x0)

fdµ

≥ µ(B1(x0) \BK(x0))
1

K

> 0.

Then

αBk(x0)

(
1

k

k−1∑
i=0

T if

)
= αBk(x0)

(
1

k

k−1∑
i=0

f

)

= αBk(x0)(f)

=
1

µ(Bk(x0))

∫
Bk(x0)

fdµ.
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However, we can also say that
∣∣αBk(x0)(f)

∣∣ ≤ 1/k, since

∣∣αBk(x0)(f)
∣∣ =

∣∣∣∣∣ 1

µ(Bk(x0))

∫
Bk(x0)

fdµ

∣∣∣∣∣
≤ 1

µ(Bk(x0))

∫
Bk(x0)

|f |dµ

≤ 1

µ(Bk(x0))

∫
Bk(x0)

1

k
dµ

=
1

k
.

Thus αBk(x0)

(
1
k

∑k−1
i=0 T

if
)
k→∞→ 0 6=

∫
fdµ.

Thus for every x0 ∈ X exists fx0 ∈ C(X) such that

lim sup
k→∞

∣∣∣∣∣
∫
fx0dµ− αBk(x0)

(
1

k

k−1∑
i=0

T ifx0

)∣∣∣∣∣ > 0.

This example highlights how if the system under consideration is not ergodic, then results like Theorem

2.2.3 can fail.

Remark 2.2.6. In this section, as well as in Sections 2.3 and 2.4, we focus on continuous functions f ∈ C(X).

Our reason for this is that we can study these f in relation to the topological properties of (X,T ).

2.3 Lipschitz maps and subshifts

Let us consider a compact pseudometric space X = (X, p), and T : X → X a map that is Lipschitz

of constant L > 1, i.e. p(Tx, Ty) ≤ L · p(x, y). Recall that a pseudometric is distinguished from a

metric by the fact we do not assume that a pseudometric distinguishes points, i.e. we do not assume that

p(x, y) = 0⇒ x = y. Suppose that (X,B, µ, T ) is of finite entropy, and thus admits a generator E . Suppose

further that for almost all x ∈ X exists a constant γ = γx ∈ [1,∞) such that

diam(Ck(x)) ≤ γ · L−k (∀k ∈ N).

We pause to remark on two points. The first is that our consideration of pseudometric spaces is not

generality for generality’s sake. As we will see later in this section, this consideration of pseudometric

spaces will be useful for studying certain metric spaces. The second is that this class of examples is not
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a direct generalization of the class considered in Section 2.2. Though every 1-Lipschitz map is of course

Lipschitz for every constant L > 1, our condition on diam(Ck(x)) is stronger here, since we ask not just that

diam(Ck(x)) go to 0, but that it do so exponentially.

Since we are working in the slightly unorthodox setting of pseudometric spaces rather than metric spaces,

we will prove that one of the strong properties of compact metric spaces is also true of compact pseudometric

spaces, namely that every continuous function is uniformly continuous. The proof is essentially identical to

the ”textbook” argument for compact metric spaces. We doubt this is a new result, but we could not find a

reference for it, so we prove it here.

Lemma 2.3.1. Let (X, p) be a compact pseudometric space. Then every continuous function f : X → C is

uniformly continuous.

Proof. Fix ε > 0. Then for every x ∈ X exists δx > 0 such that p(x, y) < δx ⇒ |f(x)−f(y)| < ε. Then the

family U =
{
B
(
x, δx2

)}
x∈X is an open cover ofX , so there exists a finite subcover U ′ =

{
B
(
xj ,

δxj
2

)}n
j=1

of X .

Let δ′ = min1≤j≤n
δxj
2 , and suppose that x, y ∈ X such that p(x, y) < δ′. Then there exists xj ∈ X

such that p(x, xj) <
δxj
2 , since U ′ is a cover of X . Then

p(xj , y) ≤ p(xj , x) + p(x, y)

<
δxj
2

+
δxj
2

= δxj .

Therefore p(xj , x) <
δxj
2 < δxj , p(xj , y) < δxj , so |f(x)− f(xj)| < ε

2 , |f(y)− f(xj)| < ε
2 . Thus

|f(x)− f(y)| ≤ |f(x)− f(xj)|+ |f(xj)− f(y)|

<
ε

2
+
ε

2

= ε.

Therefore δ′ > 0 is such that p(x, y) < δ′ ⇒ |f(x)−f(y)| < ε. Thus we have shown that f is uniformly

continuous.

Now we are able to both state and prove the first main result of this section.
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Proposition 2.3.2. Let (X, p) be a compact pseudometric space, and let T : X → X be an L-Lipschitz

homeomorphism on X with respect to p, where L > 1. Suppose µ is a regular Borel probability measure on

X such that T is ergodic with respect to µ. Let E = {Ed}d∈D be a generator of (X,T ) such that for almost

all x ∈ X exists γx ∈ R such that diam(Ck(x)) ≤ γx · L−k for all k ∈ N. Fix f ∈ C(X). Then

1

k

k−1∑
i=0

αCk(x)

(
T if

) k→∞→ ∫
fdµ

for almost all x ∈ X .

Proof. Our goal is to show that for every ε > 0, there exists some K ∈ N such that if k ≥ K, we have

∣∣∣∣∣
∫
fdµ− 1

k

k−1∑
i=0

αCk(x)

(
T if

)∣∣∣∣∣
≤

∣∣∣∣∣
∫
fdµ− 1

k

k−1∑
i=0

(
T if

)
(x)

∣∣∣∣∣+

∣∣∣∣∣1k
k−1∑
i=0

((
T if

)
(x)− αCk(x)

(
T if

))∣∣∣∣∣
≤

∣∣∣∣∣
∫
fdµ− 1

k

k−1∑
i=0

(
T if

)
(x)

∣∣∣∣∣+
1

k

k−1∑
i=0

∣∣(T if) (x)− αCk(x)

(
T if

)∣∣
≤ ε.

We will accomplish this by bounding the terms

∣∣∣∣∣
∫
fdµ− 1

k

k−1∑
i=0

(
T if

)
(x)

∣∣∣∣∣ , 1

k

k−1∑
i=0

∣∣(T if) (x)− αCk(x)

(
T if

)∣∣
by ε.

We will start with bounding the latter term. We claim that if x ∈ X such that µ(Ck(x)) > 0, diam(Ck(x)) ≤

γx · L−k for all k ∈ N, then for every ε > 0, there exists K1 ∈ N such that

k ≥ K1 ⇒
1

k

k−1∑
i=0

∣∣(T if) (x)− αCk(x)

(
T if

)∣∣ < ε

2
.
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To prove this, choose δ > 0 such that p(y, z) < δ ⇒ |f(y)− f(z)| < ε
4 . Let κ ∈ N such that γx · L−κ < δ.

Then if k > κ, then

1

k

k−1∑
i=0

∣∣(T if) (x)− αCk(x)

(
T if

)∣∣ =
1

k

[
k−κ∑
i=0

∣∣(T if) (x)− αCk(x)

(
T if

)∣∣]

+
1

k

[
k−1∑

k−κ+1

∣∣(T if) (x)− αCk(x)

(
T if

)∣∣] .
We will estimate these two terms separately, bounding each by ε

4 . Beginning with the former, we observe that

if x, y ∈ Ck(x), then

p
(
T ix, T iy

)
≤ Lip(x, y) ≤ Li · γx · L−k = γx · Li−k.

In particular, this means that if i− k ≤ −κ, then
∣∣(T if) (x)− f(z)

∣∣ < ε
4 for all z = T iy ∈ T iCk(x), so

1

k

[
k−κ∑
i=0

∣∣(T if) (x)− αCk(x)

(
T if

)∣∣]

=
1

k

[
k−κ∑
i=0

∣∣∣∣∣ 1

µ(Ck(x))

∫
Ck(x)

((
T if

)
(x)
)
− T ifdµ

∣∣∣∣∣
]

=
1

k

[
k−κ∑
i=0

1

µ (T iCk(x))

∫
T iCk(x)

∣∣(T if) (x)− f
∣∣ dµ]

≤ 1

k

[
k−κ∑
i=0

1

µ (T iCk(x))

∫
T iCk(x)

ε

4
dµ

]

=
k − κ+ 1

k

ε

4

≤ ε

4
.

On the other hand, we can estimate

1

k

[
k−1∑

k−κ+1

∣∣(T if) (x)− αCk(x)

(
T if

)∣∣] ≤ 2κ

k
‖f‖.
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Choose K1 > κ such that 2κ‖f‖∞
K1

< ε
4 . Then if k ≥ K1, we have

1

k

k−1∑
i=0

∣∣(T if) (x)− αCk(x)

(
T if

)∣∣ =
1

k

[
k−κ∑
i=0

∣∣(T if) (x)− αCk(x)

(
T if

)∣∣]

+
1

k

[
k−1∑

k−κ+1

∣∣(T if) (x)− αCk(x)

(
T if

)∣∣]

≤ ε

4
+
ε

4

=
ε

2
.

Now suppose further that x ∈ X is such that 1
k

∑k−1
i=0

(
T if

)
(x)

k→∞→
∫
fdµ. Choose K2 ∈ N such that

k ≥ K2 ⇒
∣∣∣∫ fdµ− 1

k

∑k−1
i=0

(
T if

)
(x)
∣∣∣ < ε

2 . Then if k ≥ max{K1,K2}, then we have

1

k

k−1∑
i=0

∣∣(T if) (x)− αCk(x)

(
T if

)∣∣ =
1

k

[
k−κ∑
i=0

∣∣(T if) (x)− αCk(x)

(
T if

)∣∣]

+
1

k

[
k−1∑

k−κ+1

∣∣(T if) (x)− αCk(x)

(
T if

)∣∣]

≤ ε

2
+
ε

2

= ε.

Since the set of x ∈ X for which this calculation could be performed is of full measure, the proposition

follows.

From here, we get the following corollary.

Corollary 2.3.3. Let (X, ρ) be a compact metric space, and let T : X → X be an L-Lipschitz homeomor-

phism on X with respect to ρ, where L > 1. Suppose µ is a regular Borel probability measure on X such that

T is ergodic with respect to µ. Let E = {Ed}d∈D be a generator of (X,T ) such that for almost all x ∈ X

exists γx ∈ R such that diam(Ck(x)) ≤ γx · L−k for all k ∈ N. Then the set of x ∈ X such that

1

k

k−1∑
i=0

αCk(x)

(
T if

) k→∞→ ∫
fdµ

for all f ∈ C(X) is of full measure.
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Proof. Let {fn}n∈N be a countable set in C(X) such that C(X) = span{fn}n∈N. By the previous result,

we can extrapolate that the set of x ∈ X such that 1
k

∑k−1
i=0 αCk(x)

(
T ifn

) k→∞→ ∫
fndµ is of full measure.

We can then extend to all of C(X) in the same manner as we did in the proof of Theorem 2.2.1.

2.3.1 Two-sided subshifts and systems of finite entropy

This brings us to the matter of (two-sided) subshifts. Let D be a finite discrete set, and let T : DZ → DZ

be the map (Tx)n = xn+1, called the left shift. We call X ⊆ DZ a subshift if X is compact and TX = X .

Assume that µ is a Borel probability measure on X with respect to which T is ergodic.

In a shift space, we will always take our generator to be the family E = {Ed}d∈D of sets Ed = {x ∈ X :

x0 = d}, d ∈ D. We claim that for almost all x ∈ X , we have

lim
k→∞

1

k

k−1∑
i=0

αCk(x)

(
T if

)
=

∫
fdµ

for all f ∈ C(X). First, we want to establish the following lemma. This is no doubt a classical result, but we

could not find a reference for it, so we prove it here.

Lemma 2.3.4. Let (X,F , µ, T ) be a subshift, where X ⊂ DZ. The family

F =
{
Tnχ[a0,a1,...,a`−1] : (a0, a1, . . . , a`−1) ∈ D`, ` ∈ N, i ∈ Z

}

generates C(X) in the sense that its span is dense in C(X) with respect to the uniform norm.

Proof. We claim that every f ∈ C(X) can be approximated uniformly by elements of spanF . We will begin

by demonstrating the result for real f ∈ C(X), then extrapolate the result to all complex-valued f ∈ C(X).

For ` ∈ N, set

A(a−`+1, a−`+1, . . . , a−1, a0, a1, . . . , a`−1, a`−1)

= {x ∈ X : xj = aj ∀j ∈ [−`+ 1, `− 1]}

= T−`+1[a−`+1, a−`+2, . . . , a−1, a0, a1, . . . , a`−1, a`−1]
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and let

g` =
∑

a∈D2`−1

min {f(y) : y ∈ A(a)}χA(a)

=
∑

a∈D2`−1

min
{
f(y) : y ∈ T−`+1[a]

}
χT−`[a]

∈ spanF .

We claim that g` → f uniformly. The sequence ` 7→ g` is monotonic increasing. Moreover, we claim that it

converges pointwise to f . To see this, let x ∈ X , and consider g`(x). Fix ε > 0. Then for each ` ∈ N exists

y(`) ∈ X such that g`(x) = f
(
y(`)
)
. However, since y(`)

j = xj for all j ∈ [−`+ 1, `− 1], we can conclude

that y(`) → x, and so by continuity of f , we can conclude that g`(x) = f
(
y(`)
)
→ f(x). Thus g` ↗ f

pointwise. Dini’s Theorem then gives us uniform convergence. Therefore, if f ∈ C(X) is real-valued, then

f ∈ spanF . On the other hand, any complex-valued function f ∈ C(X) can be expressed as the sum of its

real and imaginary parts, and we can apply this argument to both of those parts separately.

Theorem 2.3.5. Let X ⊆ DZ be a subshift, and let µ be a Borel probability measure on X with respect to

which the left shift T is ergodic. Then the set of all x ∈ X such that

1

k

k−1∑
i=0

αCk(x)

(
T if

)
→
∫
fdµ

for all f ∈ C(X) is of full measure.

Proof. Our first step is to show that

1

k

k−1∑
i=0

αCk(x)

(
T iχ[a0,a1,...,a`−1]

)
→
∫
χ[a0,a1,...,a`−1]dµ

for all finite strings a = (a0, a1, . . . , a`−1) ∈ D`. Let p be the pseudometric on X given by p(x, y) =

2−min{n≥0:xn 6=yn}, where min(∅) = +∞ and 2−∞ = 0.

We claim that the function χ[a] is continuous with respect to the topology of p, and that (X,B, µ, T )

satisfies the hypotheses of Proposition 2.3.2 for L = 2. A straightforward calculation shows that T is
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2-Lipschitz and that diam ([a]) ≤ 2 · 2−` for all ` ∈ N,a ∈ D`. Therefore, if

Ra =

{
x ∈ X :

1

k

k−1∑
i=0

αCk(x)

(
T iχ[a0,a1,...,a`−1]

)
→
∫
χ[a0,a1,...,a`−1]dµ

}
,

then µ(Ra) = 1 for all a ∈
⋃∞
`=1D`, and so R =

⋂
a∈
⋃∞
`=1D`

Ra is of full measure. We now claim that if

1
k

∑k−1
i=0 αCk(x)

(
T iχ[a0,a1,...,a`−1]

)
→
∫
χ[a0,a1,...,a`−1]dµ, then

1

k

k−1∑
i=0

αCk(x)

(
T iTnχ[a0,a1,...,a`−1]

)
→
∫
χ[a0,a1,...,a`−1]dµ

for all n ∈ Z.

It will suffice to prove the result for n = ±1 and extend to all n ∈ Z by induction. To prove the claim for

n = 1, we observe that

(
1

k

k−1∑
i=0

αCk(x)

(
T i(Tf)

))
−

(
1

k

k−1∑
i=0

αCk(x)

(
T if

))
=

1

k
αCk(x)

(
T kf − f

)
⇒

∣∣∣∣∣
(

1

k

k−1∑
i=0

αCk(x)

(
T i(Tf)

))
−

(
1

k

k−1∑
i=0

αCk(x)

(
T if

))∣∣∣∣∣ ≤ 2

k
‖f‖∞

→ 0.

A similar calculation tells us that

∣∣∣∣∣
(

1

k

k−1∑
i=0

αCk(x)

(
T i
(
T−1f

)))
−

(
1

k

k−1∑
i=0

αCk(x)

(
T if

))∣∣∣∣∣ ≤ 2

k
‖f‖∞ → 0,

verifying the claim for n = −1. Thus if 1
k

∑k−1
i=0 αCk(x)

(
T if

)
→
∫
fdµ, then a straightforward induction

argument will show that

1

k

k−1∑
i=0

αCk(x)

(
T i (Tnf)

)
→
∫
fdµ =

∫
Tnfdµ

for all n ∈ Z.
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In particular, this means that if x ∈ R, then 1
k

∑k−1
i=0 αCk(x)

(
T if

)
→
∫
fdµ for all f ∈ F . Since the

span of F is dense in C(X), this means that if x ∈ R, then

1

k

k−1∑
i=0

αCk(x)

(
T if

)
→
∫
fdµ

for all f ∈ C(X).

We turn now to apply Theorem 2.3.5 to a slightly broader context. Let (Y,A, ν, S) be an invertible

ergodic system with finite entropy. Then the system admits a finite generator E = {Ed}d∈D. For each

y ∈ Y, i ∈ Z, let ei(y) ∈ D be the element of D such that y ∈ S−iEei(y), or equivalently such that

Siy ∈ Eei(y). Define the k-length cylinder corresponding to y by

Fk(y) =
k−1⋂
i=0

S−iEei(y).

We denote these cylinders by Fk instead of Ck to indicate that they live in Y , not X .

We define a map φ : Y → DZ by

φ(y) = (ei(y))i∈Z.

We call this map φ the itinerary map on Y induced by E . Let T be the standard left shift on DZ. The itinerary

map commutes with the left shift in the sense that the following diagram commutes:

Y Y

DZ DZ

φ

S

φ

T

We can now state the following corollary.

Corollary 2.3.6. Let (Y,A, ν, S) be an invertible ergodic system with finite entropy and finite generator

E = {Ed}d∈D. Let A ⊆ L∞(Y, ν) be the subspace

A = span

{
Snχ⋂`−1

j=0 S
−jEdj

: n ∈ Z, ` ∈ N, dj ∈ D
}
.
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Then the set of y ∈ Y such that

1

k

k−1∑
i=0

1

µ(Fk(y))

∫
Fk(y)

Sigdν →
∫
gdν

for all g ∈ A is of full measure.

Proof. Endow DZ with the pushforward measure µ(B) = ν
(
φ−1B

)
. Since φ−1[d] = Ed ∈ A for all

d ∈ D, we know that µ is Borel. We also observe that Fk(y) = φ−1Ck(φ(y)). Consider f = χ⋂k−1
i=0 Edi

=

χφ−1[d0,d1,...,dk−1]. Let B ⊆ DZ be the set of all x ∈ X such that

1

k

k−1∑
i=0

αCk(x)

(
T if

)
→
∫
fdµ

for all f ∈ C(X), which we know by the previous theorem to be of full measure in X , and let A = φ−1B.

Then if y ∈ A, and d0, d1, . . . , d`−1 ∈ D, then

1

k

k−1∑
i=0

1

ν(Fk(y))

∫
Fk(y)

Siχ⋂`−1
j=0 S

−jEdj
dν

=
1

k

k−1∑
i=0

1

ν(Fk(y))
ν

Fk(y) ∩ S−i
`−1⋂
j=0

S−jEdj


=

1

k

k−1∑
i=0

1

ν (φ−1Ck(φ(y)))
ν
(
φ−1

(
Ck(φ(y)) ∩ T−i[d0, d1, . . . , d`−1]

))
=

1

k

k−1∑
i=0

1

µ(Ck(φ(y)))
µ
(
Ck(φ(y)) ∩ T−i[d0, d1, . . . , d`−1]

)
=

1

k

k−1∑
i=0

1

µ(Ck(φ(y)))

∫
Ck(φ(y)

T iχ[d0,d1,...,d`−1]dµ

→
∫
χ[d0,d1,...,d`−1]dµ

= µ([d0, d1, . . . , d`−1])

= ν

`−1⋂
j=0

S−jEdj


=

∫
χ⋂`−1

j=0 S
−jEdj

dν,
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since χ[d0,d1,...,d`−1] ∈ C
(
DZ). By an argument similar to that employed in the proof of Theorem 2.3.5, we

can extrapolate that if y ∈ A, then

1

k

k−1∑
i=0

1

µ(Fk(y))

∫
Fk(y)

SiSnχ⋂`−1
j=0 S

−jEdj
dν →

∫
Snχ⋂`−1

j=0 S
−jEdj

dν

for n ∈ Z. By density, it follows that if g ∈ A, then 1
k

∑k−1
i=0

1
µ(Fk(y))

∫
Fk(y) S

igdν →
∫
gdν for all y ∈ A,

and A is a set of full measure.

2.3.2 Pathological differentiation problems and relations to symbolic distributions

In Theorem 2.3.5, we demonstrated that

αCk(x)

(
1

k

k−1∑
i=0

T if

)
k→∞→

∫
fdµ (∀f ∈ C(X))

for almost all x ∈ X . We take this opportunity to demonstrate that the ”almost all” caveat is indispensable, as

there can exist x ∈ X for which αCk(x)

(
1
k

∑k−1
i=0 T

if
)
6→
∫
fdµ for certain f ∈ C(X). This is related to

the shift not being uniquely ergodic, which we discussed in more detail in Section 2.1. In fact, we even claim

the sequence
(
αCk(x)

(
1
k

∑k−1
i=0 T

if
))∞

k=1
can fail to be Cauchy for certain pairs (x, f) ∈ X × C(X).

Theorem 2.3.7. Let X = DZ be a Bernoulli shift with symbol space D = {0, 1, . . . , D − 1}, D ≥ 2, a

Borel probability measure µ such that µ([d]) 6= 0 for all d ∈ D. Let f = χ[0], and left shift T . Then there

exists an uncountable subset S ⊆ X such that x, y ∈ S ⇒ xj = yj (∀j ≤ 0), and such that the sequence(
αCk(x)

(
1
k

∑k−1
i=0 T

if
))∞

k=1
is not Cauchy for all x ∈ S.

Proof. We first compute α[x0,x1,...,xk−1]

(
T if

)
for 0 ≤ i ≤ k − 1 as follows. We see

α[x0,x1,...,xk−1]

(
T if

)
=

1

µ([x0, x1, . . . , xk−1])

∫
[x0,x1,...,xk−1]

T iχ[0]dµ

=
1

µ([x0, x1, . . . , xk−1])

∫
⋂k−1
j=0 T

−j [xj ]
χT−i[0]dµ

=
1

µ([x0, x1, . . . , xk−1])
µ

k−1⋂
j=0

T−j [xj ]

 ∩ T−i[0]


= δ(xi, 0),
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where δ(·, ·) refers here to the Kronecker delta. Thus if x = (xj)j∈Z ∈ X , then

αCk(x)

(
1

k

k−1∑
i=0

T if

)
=

#{i ∈ [0, k − 1] : xi = 0}
k

(†)

The identity (†) implies that if there exists x ∈ X such that
(
αCk(x)

(
1
k

∑k−1
i=0 T

if
))∞

k=1
is not

Cauchy, then we can then build our set S. For x, y ∈ X , write x ∼ y if xj = yj for all j ≤ 0,

and the set {j ∈ N : xj 6= yj} has density 0. This is an equivalence relation. We claim that if

x ∼ y, then
∣∣∣αCk(x)

(
1
k

∑k−1
i=0 T

if
)
− αCk(y)

(
1
k

∑k−1
i=0 T

if
)∣∣∣ k→∞→ 0. By (†), we know that

∣∣∣∣∣αCk(x)

(
1

k

k−1∑
i=0

T if

)
− αCk(y)

(
1

k

k−1∑
i=0

T if

)∣∣∣∣∣ =

∣∣∣∣∣1k
k−1∑
i=0

(δ(xi, 0)− δ(yi, 0))

∣∣∣∣∣
≤ 1

k

k−1∑
i=0

|(δ(xi, 0)− δ(yi, 0))|

≤ # {i ∈ [0, k − 1] : xi 6= yi}
k

k→∞→ 0.

Therefore, we can let S be the equivalence class of x under ∼. To see that this S is uncountable, let E ⊆ N

be an infinite subset of density 0. Then every subset F of E has density 0. For each F ⊆ E, let xF ∈ X be a

sequence such that xFj = xj for j 6∈ F and xFj 6= xj for j ∈ F . Since E has uncountably many subsets, and

x ∼ xF for all F ⊆ E, we have shown that the equivalence class of x by ∼ is uncountable. So, assuming

that x ∈ X such that
(
αCk(x)

(
1
k

∑k−1
i=0 f

))∞
k=1

is not Cauchy, then we can let S = {y ∈ X : x ∼ y}.

Our next order of business is to construct some such x. The identity (†) also helps us construct an x ∈ X

for which
(
αCk(x)

(
1
k

∑k−1
i=0 T

if
))∞

k=1
is not Cauchy. Construct x = (xj)j∈Z ∈ X as follows. For brevity,
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let cn =
∑n

p=1 2p. Set

xj =



0 j < 0

1 j = 0

0 0 < j ≤ 2

1 2 < j ≤ 6

0 6 < j ≤ 14

1 14 < j ≤ 30

...

0 c2n < j ≤ c2n+1

1 c2n+1 < j ≤ c2n+2

0 c2n+2 < j ≤ c2n+3

...

In plain language, this sequence begins with 0 for j < 0, a 1 at j = 0, then 21 terms of 0, then 22 terms of 1,

then 23 terms of 0, then 24 terms of 1, and so on. We claim that

lim infk→∞ αCk(x)

(
1
k

∑k−1
i=0 T

if
)
6= lim supαCk(x)

(
1
k

∑k−1
i=0 T

if
)

. Sampling along the subsequence

kn = c2n + 1, we get

αCc2n+1(x)

(
1

c2n + 1

c2n∑
i=0

T if

)
=

2 + 8 + 32 + · · ·+ 22n−1

1 + 2 + 4 + 6 + · · ·+ 22n
=

1
2

∑n
p=1 4p

1 +
∑2n

q=1 2q

=
1

3
· 4n − 1

4n − 1
2

n→∞→ 1

3
,

where the limit is taken using L’Hospital’s Rule. On the other hand, looking at the subsequence kn = c2n−1+1,

we get

αCc2n−1+1(x)

(
1

c2n−1 + 1

c2n−1∑
i=0

T if

)
=

2 + 8 + 32 + · · ·+ 22n−1

1 + 2 + 4 + 6 + · · ·+ 22n−1
=

1
2

∑n
p=1 4p

1 +
∑2n−1

q=1 2q

=
1

3
· 4n − 1

1
24n − 1

2

n→∞→ 2

3
.
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Thus we can say

lim inf
k→∞

αCk(x)

(
1

k

k−1∑
i=0

T if

)
≤ 1

3
<

2

3
≤ lim sup

k→∞
αCk(x)

(
1

k

k−1∑
i=0

T if

)
.

Therefore the sequence
(
αCk(x)

(
1
k

∑k−1
i=0 T

if
))∞

k=1
is divergent, and thus not Cauchy.

Remark 2.3.8. Theorem 2.3.7 is not encompassed by Theorem 2.1.10, since a subshift is a priori totally

disconnected.

This calculation adequately sets up the following result.

Theorem 2.3.9. Let (X,B, µ, T ) be an ergodic subshift, with X ⊆ DZ, and let x ∈ X . Then the following

statements about x ∈ X are equivalent.

1. For all f ∈ C(X), the limit

lim
k→∞

αCk(x)

(
1

k

k−1∑
i=0

T if

)

exists and is equal to
∫
fdµ.

2. For all words (a0, a1, . . . , a`−1) ∈
⋃∞
`=1D`, the limit

lim
k→∞

αCk(x)

(
1

k

k−1∑
i=0

T iχ[a0,a1,...,a`−1]

)

exists and is equal to µ([a0, a1, . . . , a`−1]).

3. For all words (a0, a1, . . . , a`−1) ∈
⋃∞
`=1D`, the limit

lim
k→∞

#{i ∈ [0, k − `] : xi = a0, xi+1 = a1, . . . , xi+`−1 = a`−1}
k

exists and is equal to µ([a0, a1, . . . , a`−1]).

4. For all words (a0, a1, . . . , a`−1) ∈
⋃∞
`=1D`, the limit

lim
k→∞

#{i ∈ [0, k − 1] : xi = a0, xi+1 = a1, . . . , xi+`−1 = a`−1}
k

exists and is equal to µ([a0, a1, . . . , a`−1]).
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Proof. Lemma 2.3.4 tells us that (1) ⇐⇒ (2). That (3) ⇐⇒ (4) comes from the observation that the

absolute difference between the two sequences is at most `−1
k . To establish (2) ⇐⇒ (3), we compute

αCk(x)

(
T iχ[a0,a1,...,a`−1]

)
for i ∈ [0, k − `] as follows.

αCk(x)

(
T iχ[a0,a1,...,a`−1]

)
=

1

µ([x0, x1, . . . , xk−1])

∫
[x0,x1,...,xk−1]

χT−i[a0,a1,...,a`−1]dµ

=


1 ai = x0, ai+1 = x1, . . . , ai+`−1 = x`−1,

0 otherwise
.

Therefore

1

k

k−∑̀
i=0

αCk(x)

(
T iχ[a0,a1,...,a`−1]

)
=

#{i ∈ [0, k − `] : xi = a0, xi+1 = a1, . . . , xi+`−1 = a`−1}
k

.

Finally, we observe that

∣∣∣∣∣αCk(x)

(
1

k

k−1∑
i=0

T if

)
− αCk(x)

(
1

k

k−∑̀
i=0

T if

)∣∣∣∣∣ =

∣∣∣∣∣αCk(x)

(
1

k

k−1∑
i=k−`+1

T if

)∣∣∣∣∣
≤ `− 1

k
‖f‖∞.

Therefore the end behaviors of
(
αCk(x)

(
1
k

∑k−1
i=0 T

iχ[a0,a1,...,a`−1]

))∞
k=1

and(
αCk(x)

(
1
k

∑k−`
i=0 T

iχ[a0,a1,...,a`−1]

))∞
k=1

are identical, i.e. one converges iff the other converges, and

if they converge, then they converge to the same value. But then, as has already been established, we know

that

(
αCk(x)

(
1

k

k−∑̀
i=0

T iχ[a0,a1,...,a`−1]

))∞
k=1

=

(
#{i ∈ [0, k − 1] : xi = a0, xi+1 = a1, . . . , xi+`−1 = a`−1}

k

)∞
k=1

,

demonstrating that (2)⇐⇒ (3).
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Theorem 2.3.9 gives us an alternate proof of Theorem 2.3.5. Applying the Birkhoff Ergodic Theorem

to the functions χ[a] tells us that almost all x ∈ X satisfy 1
k

∑k−1
i=0 T

iχ[a](x)
k→∞→ µ([a]) for all strings

a ∈
⋃∞
`=1D`. But this is exactly condition (4) from Theorem 2.3.9. Moreover, this result gives us a more

concrete characterization of the ”set of full measure” that Theorem 2.3.5 alludes to.

Before concluding, we demonstrate that Proposition 2.3.2 does not hinge on the cylinder structure of X .

Theorem 2.3.10. Let (X, ρ) be a compact metric space, and let T : X → X be an L-Lipschitz homeomor-

phism on X with respect to ρ, where L > 1. Suppose µ is a regular Borel probability measure on X such that

T is ergodic with respect to µ. Let (rk)
∞
k=1 be a sequence of positive numbers rk > 0 such that there exists a

constant γ ∈ R such that rk ≤ γ · L−k for all k ∈ N. Fix f ∈ C(X). Let Bk(x) = {y ∈ X : ρ(x, y) < rk}.

Then the set of x ∈ X such that
1

k

k−1∑
i=0

αBk(x)

(
T if

) k→∞→ ∫
fdµ

for all f ∈ C(X) is of full measure.

Proof. Since C(X) is separable, it will suffice to show that given some fixed f ∈ C(X), we have

1

k

k−1∑
i=0

αBk(x)

(
T if

) k→∞→ ∫
fdµ

for almost all x ∈ X . Our method of proof will closely resemble our proof of Proposition 2.3.2.

Our goal is to show that for every ε > 0 exists some K ∈ N such that if k ≥ K(ε), we have

∣∣∣∣∣
∫
fdµ− 1

k

k−1∑
i=0

αBk(x)

(
T if

)∣∣∣∣∣
≤

∣∣∣∣∣
∫
fdµ− 1

k

k−1∑
i=0

(
T if

)
(x)

∣∣∣∣∣+

∣∣∣∣∣1k
k−1∑
i=0

((
T if

)
(x)− αBk(x)

(
T if

))∣∣∣∣∣
≤

∣∣∣∣∣
∫
fdµ− 1

k

k−1∑
i=0

(
T if

)
(x)

∣∣∣∣∣+
1

k

k−1∑
i=0

∣∣(T if) (x)− αBk(x)

(
T if

)∣∣
≤ ε.

We will accomplish this by bounding the terms

∣∣∣∣∣
∫
fdµ− 1

k

k−1∑
i=0

(
T if

)
(x)

∣∣∣∣∣ , 1

k

k−1∑
i=0

∣∣(T if) (x)− αBk(x)

(
T if

)∣∣
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by ε.

We will start with bounding the latter term. We claim that if x ∈ X such that µ(Bk(x)) > 0, diam(Bk(x)) ≤

γx · L−k for all k ∈ N, then for every ε > 0, there exists K1 ∈ N such that

k ≥ K1 ⇒
1

k

k−1∑
i=0

∣∣(T if) (x)− αBk(x)

(
T if

)∣∣ < ε

2
.

To prove this, choose δ > 0 such that p(y, z) < δ ⇒ |f(y)− f(z)| < ε
4 . Let κ ∈ N such that γx · L−κ < δ.

Then if k > κ, then

1

k

k−1∑
i=0

∣∣(T if) (x)− αBk(x)

(
T if

)∣∣ =
1

k

[
k−κ∑
i=0

∣∣(T if) (x)− αBk(x)

(
T if

)∣∣]

+
1

k

[
k−1∑

k−κ+1

∣∣(T if) (x)− αBk(x)

(
T if

)∣∣] .
We will estimate these two terms separately, bounding each by ε

4 . Beginning with the former, we observe that

if x, y ∈ Bk(x), then

p
(
T ix, T iy

)
≤ Lip(x, y) ≤ Li · γx · L−k = γx · Li−k.

In particular, this means that if i− k ≤ −κ, then
∣∣(T if) (x)− f(z)

∣∣ < ε
4 for all z = T iy ∈ T iCk(x), so

1

k

[
k−κ∑
i=0

∣∣(T if) (x)− αBk(x)

(
T if

)∣∣]

=
1

k

[
k−κ∑
i=0

∣∣∣∣∣ 1

µ(Bk(x))

∫
Bk(x)

((
T if

)
(x)
)
− T ifdµ

∣∣∣∣∣
]

=
1

k

[
k−κ∑
i=0

1

µ (T iBk(x))

∫
T iBk(x)

∣∣(T if) (x)− f
∣∣ dµ]

≤ 1

k

[
k−κ∑
i=0

1

µ (T iBk(x))

∫
T iBk(x)

ε

4
dµ

]

=
k − κ+ 1

k

ε

4

≤ ε

4
.
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On the other hand, we can estimate

1

k

[
k−1∑

k−κ+1

∣∣(T if) (x)− αBk(x)

(
T if

)∣∣] ≤ 2κ

k
‖f‖.

Choose K1 > κ such that 2κ‖f‖∞
K1

< ε
4 . Then if k ≥ K1, we have

1

k

k−1∑
i=0

∣∣(T if) (x)− αBk(x)

(
T if

)∣∣ =
1

k

[
k−κ∑
i=0

∣∣(T if) (x)− αBk(x)

(
T if

)∣∣]

+
1

k

[
k−1∑

k−κ+1

∣∣(T if) (x)− αBk(x)

(
T if

)∣∣]

≤ ε

4
+
ε

4

=
ε

2
.

Now suppose further that x ∈ X is such that 1
k

∑k−1
i=0

(
T if

)
(x)

k→∞→
∫
fdµ. Choose K2 ∈ N such that

k ≥ K2 ⇒
∣∣∣∫ fdµ− 1

k

∑k−1
i=0

(
T if

)
(x)
∣∣∣ < ε

2 . Then if k ≥ max{K1,K2}, then we have

1

k

k−1∑
i=0

∣∣(T if) (x)− αBk(x)

(
T if

)∣∣ =
1

k

[
k−κ∑
i=0

∣∣(T if) (x)− αBk(x)

(
T if

)∣∣]

+
1

k

[
k−1∑

k−κ+1

∣∣(T if) (x)− αBk(x)

(
T if

)∣∣]

≤ ε

2
+
ε

2

= ε.

Before looking at a more general family of differentiation problems, we want to take a moment to

observe that if (X,B, T, µ) is an ergodic system, then if the (measure-theoretic) entropy h(T, µ) of the

system is positive, then we automatically have that µ(Ck(x))
k→∞→ 0: by the Shannon-McMillan-Breiman

Theorem (Dajani and Kraaikamp, 2002, Theorem 6.2.1), it follows that for µ-almost every x ∈ X there exists

K = Kx ∈ N such that

k ≥ K ⇒ −1

k
logµ(Ck(x)) ≥ h(T, µ)

2
.
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Then if k ≥ K, we have

−1

k
logµ(Ck(x)) ≥ h(T, µ)

2

⇒ logµ(Ck(x)) ≤ −h(T, µ)

2
k < 0

⇒ µ(Ck(x)) ≤
(
e−

h(T,µ)
2

)k k→∞→ 0.

On the other hand, whether µ(Bk(x))
k→∞→ 0 depends on where (X,B, µ) contains atoms. If µ({x}) = 0

for all x ∈ X , then µ(Bk(x))
k→∞→ 0.

2.4 Random cylinders in a Bernoulli shift - a probabilistic approach

In this section, we consider problems similar to those addressed in Sections 2.2 and 2.3, where we take

some (X,B, µ, T ) with specified properties (in this case, we assume the system is Bernoulli), and seek to

establish conditions under which for a randomly chosen sequence (Fk)
∞
k=1 of sets of positive measure, the

sequence
(

1
µ(Fk)

∫
Fk

(
1
k

∑k−1
i=0 T

if
)

dµ
)∞
k=1

converges almost surely to
∫
fdµ for all f ∈ C(X).

We provide now an alternate proof of a special case of Theorem 2.3.5. Though the result proved is lesser

in scope, we include it for the reason that the proof provided here has a decidedly more probabilistic flavor

than the proof provided of Theorem 2.3.5 in Section 2.3. This method of proof also proves slightly more

versatile, as it allows us to consider randomly chosen sequences of cylinders which are not necessarily nested.

In this section, X = DZ is a Bernoulli shift on a finite alphabetD with probability vector p = (p(d))d∈D,

and µ is the Borel probability measure on X induced by p. We begin by proving a lemma to which we assign

a whimsical title.

Lemma 2.4.1 (The Even Stronger Law of Large Numbers). Let (Y,A, ν) be a probability space, and let

(kn)∞n=1 be a sequence in N such that
∑∞

n=1 k
−2
n < ∞. Let (ζi,n)0≤i≤kn−1,n∈N be a family of L∞ real

random variables satisfying the following conditions.

1. There exists C ∈ [1,∞) such that ‖ζi,n‖∞ ≤ C for all 0 ≤ i ≤ kn − 1, n ∈ N.

2.
∫
ζi,ndν = m for all 0 ≤ i ≤ kn − 1, n ∈ N, where m is a constant.

3. For each n ∈ N, the subfamily {ζi,n}kn−1
i=0 is mutually independent.
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Then
1

kn

kn−1∑
i=0

ζi,n
n→∞→ m

almost surely.

Proof. For the sake of brevity, abbreviate

Sn =

kn−1∑
i=0

ζi,n,

and assume without loss of generality that m = 0 (else, we can just consider ζ̂i,n = ζi,n −m). Given ε > 0,

set

En,ε = {y ∈ Y : |Sn(y)|/kn ≥ ε} = {y ∈ Y : |Sn(y)| ≥ knε}.

Then Chebyshev’s inequality tells us that

µ(En,ε) ≤
1

(knε)4

∫
S4
ndν.

Then ∫
S4
ndν =

kn−1∑
r,s,t,u=0

∫
ζr,nζs,nζt,nζu,ndν.

This sum consists of terms of the forms

1.
∫
ζ4
r,ndν

2.
∫
ζ2
r,nζ

2
s,ndν

3.
∫
ζ3
r,nζs,ndν

4.
∫
ζ2
r,nζs,nζt,ndν

5.
∫
ζr,nζs,nζt,nζu,ndν

where r, s, t, u are distinct. We assert that the terms of the third, fourth, and fifth forms all vanish by virtue of

independence. This leaves kn terms of the first form and 3kn(kn − 1) terms of the second form. Thus there
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are kn + 3kn(kn − 1) terms of absolute value ≤ C4. Thus

∫
S4
ndν ≤

(
3k2

n − 2kn
)2
C4

≤ 3k2
nC

4

⇒ µ(En,ε) ≤
3k2

nC
4

(knε)4

⇒
∞∑
n=1

µ(En,ε) ≤
3C4

ε4

∞∑
n=1

k−2
n

<∞.

By the Borell-Cantelli Lemma, it follows that µ (
⋂∞
N=1

⋃∞
n=N En,ε) = 0. But

∞⋂
N=1

∞⋃
n=N

En,ε =

{
y ∈ Y : lim sup

n→∞

∣∣∣∣Sn(y)

kn

∣∣∣∣ ≥ ε} ,
so we can conclude that

µ

({
y ∈ Y : lim sup

n→∞

∣∣∣∣Sn(y)

kn

∣∣∣∣ > 0

})
= µ

( ∞⋃
K=1

( ∞⋂
N=1

∞⋃
n=N

En, 1
K

))
= 0.

Thus Sn
kn
→ m almost surely.

Now we apply this to estimating

1

k

k−1∑
i=0

1

µ(Ck(x))

∫
Ck(x)

T iχ[a0,a1,...,a`−1],

where Ck(x) is the rank-k cylinder associated to x (see the discussion near the beginning of Section 2.2). Fix

a word a = (a0, a1, . . . , a`−1) ∈ D`. We are going to consider a sequence of families of discrete random

variables in X given by

ξai,k(x) =
1

µ(Ck(x))

∫
Ck(x)

T iχ[a]dµ

=
µ
(
Ck(x) ∩ T−i[a]

)
µ(Ck(x))

. (0 ≤ i ≤ k − 1)
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Each random variable is bounded in L∞(X,µ) by 1. We claim that they also have a shared mean
∫
ξai,kdµ =

µ([a]).

∫
ξai,kdµ

=
∑
~d∈Dk

(
k−1∏
h=0

p(dh)

)
α[d0,d1,...,dk−1]

(
T iχ[a0,a1,...,a`−1]

)
=
∑
~d∈Dk

(
k−1∏
h=0

p(dh)

)
1∏k−1

h=0 p(dh)

∫
[d0,d1,...,dk−1]

T iχ[a0,a1,...,a`−1]dµ

=
∑
~d∈Dk

∫
[d0,d1,...,dk−1]

T iχ[a0,a1,...,a`−1]dµ

=
∑
~d∈Dk

∫
[d0,d1,...,dk−1]

χT−i[a0,a1,...,a`−1]dµ

=
∑
~d∈Dk

µ
(
[d0, d1, . . . , dk−1] ∩ T−i[a0, a1, . . . , a`−1]

)

=
∑
~d∈Dk

µ

[d0, d1, . . . , dk−1] ∩
⋃

c0,c1,...,ci−1

[c0, c1, . . . , ci−1, a0, a1, . . . , a`−1]


=
∑
~d∈Dk

µ ([d0, d1, . . . , dk−1] ∩ [d0, d1, . . . , di−1, a0, a1, . . . , a`−1])

To compute this value, we look at two cases: where i+ ` ≤ k, and where i+ ` ≥ k.

If i+ ` ≤ k, then

[d0, d1, . . . , dk−1] ∩ [d0, d1, . . . , di−1, a0, a1, . . . , a`−1]

=


[d0, d1, . . . , dk−1] di = a0, di+1 = a1, . . . , di+`−1 = a`−1

∅ otherwise
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This means that d0, d1, . . . , di−1, as well as di+`, . . . , dk−1 are ”free”. Thus

∑
~d∈Dk

µ ([d0, d1, . . . , dk−1] ∩ [d0, d1, . . . , di−1, a0, a1, . . . , a`−1])

=
∑
~d∈Dl

µ([d0, d1, . . . , di−1, a0, a1, . . . , a`−1, di+`, . . . , dk−1])

=
∑
~d∈Dk

(p(d0)p(d1) · · · p(di−1)) (p(a0)p(a1) · · · p(a`−1)) (p(di+`) · · · p(dk−1))

= µ([a0, a1, . . . , a`−1]).

On the other hand, if i+ ` ≥ k, then

[d0, d1, . . . , dk−1] ∩ [d0, d1, . . . , di−1, a0, a1, . . . , a`−1]

=


[d0, d1, . . . , di−1, a0, a1, . . . , a`−1] di = a0, . . . , dk−1 = ak−i−1

∅ otherwise

leaving d0, d1, . . . , di−1 ”free”. Thus

∑
~d∈Dk

µ ([d0, d1, . . . , dk−1] ∩ [d0, d1, . . . , di−1, a0, a1, . . . , a`−1])

=
∑
~d∈Dk

µ([d0, d1, . . . , di−1, a0, a1, . . . , a`−1])

=
∑
~d∈Dk

p(d0)p(d1) · · · p(di−1)p(a0)p(a1) · · · p(a`−1)

= µ([a0, a1, . . . , a`−1]).

Thus in either case, we have
∫
ξai,kdµ = µ([a]).

Now, for fixed k, the family
{
ξai,k

}k−1

i=0
is not necessarily independent, but we can break it up into arith-

metic subsequences which are. Consider the families
{
ξam`+j,k

}bk/`c−1

m=0
for j ∈ {0, 1, . . . , `−1}. Then these

subfamilies are independent, so the Even Stronger Law Of Large Numbers tells us that 1
bk/`c

∑k−1
m=0 ξ

a
m`+j,k →

49



µ([a]) almost surely. Now we calculate

1

k

k−1∑
i=0

1

µ(Ck(x))

∫
Ck(x)

T iχ[a]dµ

=
1

k

k−1∑
i=0

ξai,k(x)

=
`bk/`c
k

[
1

`bk/`c

k−1∑
i=0

ξai,k(x)

]

=
`bk/`c
k

1

`

`−1∑
j=0

1

bk/`c

bk/`c−1∑
m=0

ξam`+j,k(x)

+

∑k−1
i=`bk/`c ξ

a
i,k(x)

`

almost surely→ (1)

1

`

`−1∑
j=0

µ([a])

+ 0

= µ([a])

=

∫
χ[a]dµ.

Taking a countable intersection over a ∈
⋃∞
`=1D`, we can conclude that the set B of all x ∈ X such

that 1
k

∑k−1
i=0

1
µ(Ck(x))

∫
Ck(x) T

iχ[a]dµ →
∫
χ[a]dµ for all words a is of full measure. We can further

conclude that if x ∈ B, we have 1
µ(Ck(x))

∫
Ck(x) T

iTnχ[a]dµ→
∫
Tnχ[a] for all words a and n ∈ Z. Since

span
{
Tnχ[a] : a ∈

⋃∞
`=1D`, n ∈ Z

}
is dense in C(X), we can conclude the following special case of

Theorem 2.3.5.

Proposition 2.4.2. Let X = DZ be a Bernoulli shift, and let µ be the associated measure. Endow X with the

generator E = {Ed}d∈D, where Ed = {x ∈ X : x0 = d}. Then the set of all x ∈ X such that

αCk(x)

(
1

k

k−1∑
i=0

T if

)
→
∫
fdµ

for all f ∈ C(X) is of full measure.

However, this technique lends itself to another result that is not encompassed by Theorem 2.3.5. We have

looked at temporo-spatial differentiation problems where we are differentiating with respect to the cylinders

Ck(x) of a randomly chosen x ∈ X . The next result considers instead the situation where we randomly

choose a sequence (xk)
∞
k=1 in X and differentiating with respect to the sequence (Ck(xk))

∞
k=1.
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Theorem 2.4.3. Let X = DZ be a Bernoulli shift, and let µ be the associated measure. Endow X with

the generator E = {Ed}d∈D, where Ed = {x ∈ X : x0 = d}. Consider the countably infinite product

probability space (X∞,B∞, µ∞) =
∏
k∈N(X,B, µ). Then the set of all (xk)

∞
k=1 ∈ X∞ such that

αCk(xk)

(
1

k

k−1∑
i=0

T if

)
→
∫
fdµ

for all f ∈ C(X) is of full µ∞-measure.

Proof. Our method is very similar to the method used for Proposition 2.4.2. Let x = (xk)
∞
k=1 ∈ X∞ denote

a sequence in X .

Fix a word a = (a0, a1, . . . , a`−1) ∈ D`. We are going to consider a sequence of families of discrete

random variables in X given by

ζai,k(x) =
1

µ(Ck(xk))

∫
Ck(xk)

T iχ[a]dµ

=
µ (Ck(xk) ∩ [a])

µ(Ck(xk))
. (0 ≤ i ≤ k − 1)

Each random variable ζai,k is bounded in L∞(X,µ) by 1. By a calculation identical to the one used to prove

Proposition 2.4.2, we can conclude that
∫
ζai,kdµ = µ([a]).

As before, for fixed k, the family
{
ζai,k

}k−1

i=0
is not necessarily independent, but we can break it up

into arithmetic subsequences which are. Consider the families
{
ζam`+j,k

}bk/`c−1

m=0
for j ∈ {0, 1, . . . , ` −

1}. Then these families are independent, and so the Even Stronger Law Of Large Numbers tells us that
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1
bk/`c

∑k−1
m=0 ζ

a
m`+j,k → µ([a]) almost surely. Now we calculate

1

k

k−1∑
i=0

1

µ(Ck(xk))

∫
Ck(xk)

T iχ[a]dµ

=
1

k

k−1∑
i=0

ζai,k(x)

=
`bk/`c
k

[
1

`bk/`c

k−1∑
i=0

ζai,k(x)

]

=
`bk/`c
k

1

`

`−1∑
j=0

1

bk/`c

bk/`c−1∑
m=0

ζam`+j,k(x)

+

∑k−1
i=`bk/`c ζ

a
i,k(x)

`

almost surely→ (1)

1

`

`−1∑
j=0

µ([a])

+ 0

= µ([a])

=

∫
χ[a]dµ.

Again, taking a countable intersection over a ∈
⋃∞
`=1D`, we can conclude that the set B of all x ∈ X∞

such that 1
k

∑k−1
i=0

1
µ(Ck(xk))

∫
Ck(xk) T

iχ[a]dµ→
∫
χ[a]dµ for all words a is of full measure. We can further

conclude that if x ∈ B, we have 1
µ(Ck(xk))

∫
Ck(xk) T

iTnχ[a]dµ →
∫
Tnχ[a] for all words a and n ∈ Z.

Since span
{
Tnχ[a] : a ∈

⋃∞
`=1D`, n ∈ Z

}
is dense in C(X), we can conclude that if x ∈ B, then

αCk(xk)

(
1

k

k−1∑
i=0

T if

)
→
∫
fdµ

for all f ∈ C(X).
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Temporo-spatial differentiations for actions of topological groups and the pointwise reduction heuristic

Our primary goal with this chapter is to extend some of the results in Chapter 2 to the setting of actions

of amenable groups. In particular, we demonstrate several special cases of a general heuristic: that a temporo-

spatial differentiation relative to a family of sets containing a point x with diameter going to 0 sufficiently

fast will be equivalent to a pointwise ergodic average at the point x. This heuristic applies to many kinds of

ergodic averages.

In Section 3.1, we provide some general results about temporo-spatial differentiations. In particular, we

provide a characterization in terms of ergodic optimization of a kind of “best-case scenario” behavior, where

temporo-spatial averages of continuous functions always converge to the integral.

In Section 3.2, we provide convergence theorems for two special cases of temporo-spatial differentiation

averages: where the spatial averaging sets have measure going to 1, and where they are constant.

In Section 3.3, we show that in the case where the spatial averaging sets share a common fixed point x and

have diameter going to 0 sufficiently fast, then the associated temporo-spatial differentiations can be reduced

to a pointwise temporal average at that fixed point x. This then provides us a means to prove convergence

results for suitable “random temporo-spatial differentiation problems.” In particular, these reduction results

can be applied even when the temporal averaging sets are not Følner.

In Section 3.4, we generalize some of the results of Section 3.3 to the setting of weighted temporo-spatial

ergodic averages. These include equicontinuous families of continuous weight functions of modulus 1, as

well as potentially unbounded weight sequences of complex constants.

3.1 General results and unique ergodicity

Throughout this chapter, by a topological dynamical system, we will mean a continuous action T of a

locally compact unimodular topological group G on a compact metrizable space X , denoted T : Gy X .

We will use m to refer to a left- and right-invariant Haar measure on the group G, hereafter referred to simply

as a Haar measure. Our consideration of unimodular groups is primarily to simplify some bookkeeping about
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when we are invoking a left-invariant Haar measure and when we are invoking a right-invariant Haar measure.

Of course, the class of unimodular groups includes all abelian groups, all discrete groups, and all compact

groups, thus encompassing many of the groups ergodic theory classically considers actions of.

Definition 3.1.1. Let T : Gy X be a topological dynamical system, where G is an amenable group, and let

f ∈ CR(X) be a real-valued continuous function on X . The gauge of f is the value

Γ(f) := sup

{∫
fdµ : µ ∈MT (X)

}
,

whereMT (X) denotes the family of T -invariant Borel probability measures on X . We say that µ ∈MT (X)

is f -maximizing if
∫
fdµ = Γ(f), and denote the class of all f -maximizing measures on X by

Mmax(f) :=

{
µ ∈MT (X) :

∫
fdµ = Γ(f)

}
.

The gauge is well-defined, since if G is amenable, thenMT (X) is a nonempty Choquet simplex in the

weak*-topology. SinceMT (X) is compact, it follows thatMmax(f) is nonempty.

We now wish to provide an alternative description of the gauge for nonnegative-valued functions.

Lemma 3.1.2. Let T : Gy X be a topological dynamical system, and let K ⊆ G be a compact subset of a

locally compact group G. Let f ∈ C(X). Then the function x 7→
∫
K f(Tgx)dm(g) is continuous, where m

is a Haar measure on G.

Proof. We can assume that K is of positive Haar measure, and in particular nonempty, since otherwise this

would be trivial.

Fix ε > 0, and let ρ be a compatible metric for X . We know a priori that the function G×X → C given

by (g, x) 7→ f(Tgx) is continuous, so for each g ∈ K, choose an open neighborhood Ug ⊆ G of g and a

positive number δg > 0 such that if (g′, x′) ∈ Ug × B (x, δg), then
∣∣f (Tg′x′)− f(Tgx)

∣∣ < ε
2m(K) . Then

{Ug}g∈K is an open cover of the compact K, so there exist g1, . . . , gn ∈ K such that K ⊆ Ug1 ∪ · · · ∪ Ugn .

Let δ = min {δg1 , . . . , δgn}. Then if ρ(x, y) < δ, and g ∈ K, then g ∈ Ugj for some j ∈ {1, . . . , n}.

Therefore (g, x), (g, y) ∈ Ugj ×B(x, δ) ⊆ Ugj ×B(x, δj), so

|f(Tgx)− f(Tgy)| ≤
∣∣f(Tgx)− f

(
Tgjx

)∣∣+
∣∣f (Tgjx)− f (Tgy)

∣∣ < ε

2m(K)
+

ε

2m(K)
=

ε

m(K)
.
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Thus there exists δ > 0 such that if ρ(x, y) < δ, then |f(Tgx)− f(Tgy)| < ε
m(K) . Therefore, it follows

that if ρ(x, y) < δ, then

∣∣∣∣∫
K
f(Tgx)dm(g)−

∫
K
f(Tgy)dm(g)

∣∣∣∣ =

∣∣∣∣∫
K

(f(Tgx)− f(Tgy)) dm(g)

∣∣∣∣
≤
∫
K
|f(Tgx)− f(Tgy)|dm(g)

≤
∫
K

ε

m(K)
dm(g)

= ε.

Therefore the function x 7→
∫
k f(Tgx)dm(g) is continuous.

Notation 3.1.3. (a) Let T : G y X be a continuous action of a locally compact group G with Haar

measure m on a topological space X , and let f be a continuous function X → C. Let K be a compact

subset of G with positive Haar measure. We define AvgK f : X → C to be the continuous function

AvgK f(x) =
1

m(K)

∫
K
f(Tgx)dm(g).

The continuity of AvgK f follows from Lemma 3.1.2. In the event where G is a discrete group, we

will also define AvgK f for all nonempty compact subsets K of G and f ∈ L1(X,µ) by

AvgK f =
1

|K|
∑
g∈K

f ◦ Tg.

(b) Let (X,µ) be a probability space, and let f ∈ L1(X,µ). Let C be a measurable subset of X with

µ(C) > 0. We define the functional αC : L1(X,µ)→ C by

αC(f) :=
1

µ(C)

∫
fdµ.

Although the functionals αC are defined here on L1, we will almost always be interested in their action

on L∞, where they are considerably better behaved.
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Definition 3.1.4. Let G be a locally compact topological group. A net (Fi)i∈I of compact subsets of G is

called Følner if m(Fi) > 0 for all i ∈ I , and

lim
i

m(gFi∆Fi)

m(Fi)
= 0 (∀g ∈ G),

where ∆ denotes the symmetric difference A∆B = (A \B) ∪ (B \A).

Theorem 3.1.5. Let T : G y X be a topological dynamical system, where G is an amenable group with

Haar measure m. Let (Fi)i∈I be a left Følner net for G, and let f ∈ CR(X) be a nonnegative-valued

continuous function on X . Then the net
(∥∥AvgFi f

∥∥
C(X)

)
i∈I

converges, and

Γ(f) = lim
i

∥∥AvgFi f
∥∥ .

Proof. For each i ∈ I , let σi be a Borel probability measure on X such that

∫
AvgFi fdσi =

∥∥AvgFi f
∥∥
C(X)

.

For each i ∈ I , define the Borel probability measure µi on X by

∫
fdµi =

∫
X

(
AvgFi f

)
dσi =

1

m(Fi)

∫
Fi

(∫
X
Tgf(x)dσi(x)

)
dm(g),

where the latter equality follows from Fubini’s Theorem.

In order to prove that the net
(∫
fdµi

)
i∈I

converges to Γ(f), it will suffice to prove that for any

convergent sub-net
(
µij
)
j∈J

, the sub-net
(∫
fdµij

)
j∈J

converges to Γ(f), because if
(∫
fdµi

)
i∈I

didn’t

converge to Γ(f), then we could extract some subnet
(
µij
)
j∈J

along which
(∫
fdµij

)
j∈J

converged to

some other point (because the net is contained in a compact subset of R), then take a weak*-convergent

subnet of that, yielding a contradiction.

Therefore, we need to show that every weak*-limit point of the net (µi)i∈I is f -maximizing.

Since the spaceM(X) of Borel probability measures on X is weak*-compact, it follows that there exists

a weak*-convergent sub-net
(
µij
)
j∈J

, converging to some µ. It follows then that µ is T -invariant, since if
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f0 ∈ C(X), g0 ∈ G, then

∣∣∣∣∫ Tg0f0dµ−
∫
f0dµ

∣∣∣∣ =

∣∣∣∣∫ (Tg0f0 − f0) dµ

∣∣∣∣
= lim

j

∣∣∣∣∫ (Tg0f0 − f0) dµij

∣∣∣∣ ,
where

∣∣∣∣∣
∫
X

1

m
(
Fij
) ∫

Fij

(Tg0f0(x)− f0(x)) dm(g)dσij (x)

∣∣∣∣∣
=

∣∣∣∣∣
∫
X

1

m
(
Fij
) ((∫

Fij g0\Fij
Tgf0(x)dm(g)

)
−

(∫
Fij \Fij g0

Tgf0(x)dm(g)

))
dσij (x)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
X

1

m
(
Fij
) ∫

g0Fij \Fij
Tgf0(x)dm(g)dσij (x)

∣∣∣∣∣
+

∣∣∣∣∣
∫
X

1

m
(
Fij
) ∫

Fij \g0Fij
Tgf0(x)dm(g)dσij (x)

∣∣∣∣∣
≤
m
(
g0Fij \ Fij

)
+m

(
Fij \ g0Fij

)
m
(
Fij
) ‖f0‖C(X)

=
m
(
Fijg0∆Fij

)
m
(
Fij
) ‖f0‖C(X)

j→∞→ 0.

Therefore
∫
Tg0f0dµ =

∫
f0dµ, meaning µ is T -invariant.

We claim that µ is f -maximizing. On one hand, we know that
∫
fdµ ≤ Γ(f), because µ ∈ MT (X).

Now, suppose that ν ∈MT (X). Then

∫
fdν =

∫
X

1

m
(
Fij
)Tgf(x)dm(g)dν(x)

≤

∥∥∥∥∥ 1

m
(
Fij
)Tgfdm(g)

∥∥∥∥∥
C(X)

=

∫
fdµij

⇒
∫
fdν ≤ lim

j

∫
fdµij

=

∫
fdµ.
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Therefore
∫
fdµ ≥

∫
fdν for all ν ∈ MT (X), meaning that

∫
fdµ = supν∈MT (X)

∫
fdν, i.e. µ is

f -maximizing, so
∫
fdµ = Γ(f).

From this, we can use the gauge to provide a characterization of uniquely ergodic systems.

Theorem 3.1.6. Let T : G y X be a topological dynamical system, where G is amenable, and let

µ ∈ MT (X) be a T -invariant Borel probability measure on X that is fully supported on X , i.e. gives

positive measure to every nonempty open subset of X . Then T : Gy X is uniquely ergodic if and only if

Γ(f) =
∫
fdµ for all nonnegative-valued f ∈ CR(X).

Proof. Clearly
∫
fdµ ≤ Γ(f) for all f ∈ CR(X).

(⇒) If T : G y X is uniquely ergodic, then µ is f -maximizing for all f ∈ CR(X), so in particular∫
fdµ = Γ(f) for all nonnegative f ∈ CR(X).

(⇐) We’ll prove the contrapositive. Suppose that T : Gy X is not uniquely ergodic. Then there exists

an ergodic T -invariant Borel probability measure ν 6= µ. By (Jenkinson, 2006b, Theorem 1), there exists a

continuous real-valued function f ∈ CR(X) such thatMmax(f) = {ν}. By possibly adding a nonnegative

constant to f , we can assume that f is nonnegative. But Γ(f) =
∫
fdν 6=

∫
fdµ.

Finally, we want to provide a connection between unique ergodicity and temporo-spatial differentiation

problems. Before stating the main theorem relating these, we prove the following lemma that relates the αC

functionals to the L∞ norm.

Lemma 3.1.7. Let (X,µ) be a probability space, and let f ∈ L∞(X,µ). Then

1

2
‖f‖∞ ≤ sup {|αC (f)| : C ⊆ X measurable, µ(C) > 0} ≤ ‖f‖∞ ,

and in particular, if f is real-valued, then

sup {|αC(f)| : C ⊆ X measurable, µ(C) > 0} = ‖f‖∞ .

Proof. In either case, it’s clear that |αC(f)| ≤ ‖f‖∞ for all C ⊆ X measurable with µ(C) > 0, since αC is

a state on L∞(X,µ)

Consider now the case that f is real-valued. If ‖f‖∞ = 0, then the equality is immediate, so suppose

that ‖f‖∞ > 0. Set f+ = max(f, 0), f− = max(−f, 0). Then ‖f‖∞ = max {‖f+‖∞ , ‖f−‖∞}. Assume
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without loss of generality that ‖f‖∞ = ‖f+‖∞. For each k ∈ N, set

Ck =

{
x ∈ X : f+(x) >

k

k + 1

∥∥f+
∥∥
∞

}
=

{
x ∈ X : f(x) >

k

k + 1
‖f‖∞

}
.

Then µ(Ck) > 0 and αCk (f) ≥ k
k+1 ‖f‖∞ for all k ∈ N, meaning in particular that

sup {|αC (f)| : C ⊆ X measurable, µ(C) > 0} ≥ ‖f‖∞ .

Now suppose that f is not necessarily real-valued. Let h1, h2 ∈ L∞R (X,µ) be the real and imaginary

parts of f , respectively. Then ‖f‖∞ ≤ ‖h1‖∞ + ‖h2‖∞. Therefore max {‖h1‖∞, ‖h2‖∞} ≥ 1
2‖f‖∞.

Assume without loss of generality that ‖h1‖∞ ≥ ‖h2‖∞, so ‖h1‖∞ ≥ 1
2‖f‖∞. For each k ∈ N, choose

C ′k ⊆ X measurable such that µ (C ′k) > 0, and αC′k(h1) ≥ k
k+1‖h1‖∞, which is possible if we appeal to the

real case. Then

∣∣∣αC′k(f)
∣∣∣ =

∣∣∣αC′k(h1) + iαC′k(h2)
∣∣∣

≥
∣∣∣αC′k(h1)

∣∣∣
≥ k

k + 1
‖h1‖∞

≥ k

k + 1

(
1

2
‖f‖∞

)
.

Taking the limit as k →∞ verifies that

sup {|αC (f)| : C ⊆ X measurable, µ(C) > 0} ≥ 1

2
‖f‖∞.

In the case that X is a compact metrizable space, the measure µ is Borel, and the f is continuous, Lemma

3.1.7 can be sharpened as follows.

Lemma 3.1.8. Let (X,µ) be a probability space, where X is a compact metrizable space and µ is a Borel

probability measure. Let f ∈ C(X). Then

1

2
‖f‖∞ ≤ sup {|αC (f)| : C ⊆ X open, µ(C) > 0} ≤ ‖f‖∞ ,
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and in particular, if f is real-valued, then we have

sup {|αC(f)| : C ⊆ X open, µ(C) > 0} = ‖f‖∞ .

Proof. Under these conditions, all the Ck and C ′k in the proof of Lemma 3.1.7 are open. The result follows

from the same proof.

A natural corollary of Lemma 3.1.7 is the following qualitative statement.

Theorem 3.1.9. Let T : Gy (X,µ) be a measure-preserving action of a discrete (not necessarily amenable)

group G on a probability space (X,µ). Let (Fi)i∈I be a net of compact subsets of G with positive measure.

Let f ∈ L∞(X,µ). Then the following conditions are equivalent.

(i) AvgFi f →
∫
fdµ in the norm topology on L∞.

(ii) αCi
(
AvgFi f

)
→
∫
fdµ for all nets of measurable subsets Ci of X with positive measure.

Proof. This equivalence follows from the estimates in Lemma 3.1.7. For each i ∈ I , set

fi = AvgFi f −
∫
fdµ.

(i)⇒(ii) Suppose that fi →
∫
fdµ in L∞, and let (Ci)i∈I be a net of measurable subsets Ci of X with

positive measure. Then

∣∣∣∣αCi (AvgFi f
)
−
∫
fdµ

∣∣∣∣ = |αCi (fi)| ≤ ‖fi‖∞
i→∞→ 0.

(ii)⇒(i) We’ll prove ¬(i)⇒ ¬(ii). Suppose that lim supi ‖fi‖∞ > 0. For each i ∈ I , choose Ci ⊆ X

measurable with positive measure such that

|αCi (fi)| ≥
1

2
sup {|αC (fi)| : C ⊆ X measurable, µ(C) > 0} ≥ 1

4
‖fi‖∞ .

Then lim supi
∣∣αCi (AvgFi f

)
−
∫
fdµ

∣∣ = lim supi |αCi (fi)| ≥ 1
4 lim supi ‖fi‖∞ > 0.

Theorem 3.1.9 gives a qualitative description of the conditions under which we get the “best possible”

behavior for a temporo-spatial differentiation problem, i.e. conditions under which αCi
(
AvgFi f

)
→
∫
fdµ
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independent of the choice of Ci. However, Lemma 3.1.7 provides a potential avenue for quantitative

estimates on the rate of convergence for temporo-spatial averages by “importing” estimates on the rate of

L∞-convergence for AvgFi →
∫
fdµ.

In general, the classical ergodic theorems don’t give us estimates on the rate of convergence they promise,

and this convergence can in fact be very slow. See the “Speed of Convergence” discussion in §1.2 of (Krengel,

2011) for a survey of relevant counterexamples. However, some authors have studied situations where

effective estimates on the convergence of certain ergodic averages can be obtained. For a rudimentary

example of this type, consider the case where α ∈ R \ Q is an irrational real, and T : Z y (R/Z) is an

action of Z on the circle by Tx = α+ x, where R/Z is endowed with its Haar probability measure µ. Then

by appealing to the unique ergodicity of (X,T ), we can say that 1
k

∑k−1
j=0 T

jf →
∫
fdµ in L∞(X,µ) for

all f ∈ C(X). However, if f(x) = e2πinx for some n ∈ Z \ {0}, i.e. if f is a nontrivial character on R/Z,

then using a geometric series, we can see that
∥∥∥ 1
k

∑k−1
j=0 T

jf −
∫
fdµ

∥∥∥
∞
≤ Aα,nk

−1 for some constant

Aα,n ∈ (0,∞), yielding a quantitative estimate on that convergence rate. In particular, Lemma 3.1.7 tells us

that under those circumstances, we’d have that∣∣∣∣∣∣αCk
1

k

k−1∑
j=0

T jf

∣∣∣∣∣∣ ≤ k−1Aα,n

for all choices of (Ck)
∞
k=1. In this dissertation, we will say no more on this topic, which is linked to the study

of effective equidistribution (see (Einsiedler, 2010)).

Lemma 3.1.10. Let T : Gy X be a topological dynamical system, where G is amenable. Let (Fi)i∈I be a

Følner net for G, and let f ∈ C(X), λ ∈ C. Then the following conditions are related by the implications

(i)⇐⇒ (ii)⇒(iii). If in addition we have that I = N, i.e. that (Fi)i∈N is a Følner sequence, then (iii)⇒(i).

(i)
∫
fdµ = λ for all T -invariant Borel probability measures µ on X .

(ii) AvgFi f → λ uniformly.

(iii) AvgFi f(x)→ λ for all x ∈ X .
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Proof. (i)⇒(ii): Suppose that
∫
fdµ = λ for all T -invariant Borel probabiliy measures µ on X , and let

(xi)i∈I be a net in X such that

∣∣AvgFi f(xi)− λ
∣∣ =

∥∥AvgFi f − λ
∥∥
C(X)

(∀i ∈ I ).

Let (µi)i∈I be the net of Borel probability measures on X given by

∫
gdµi = AvgFi g(xi) (∀g ∈ C(X), i ∈ I ).

Appealing to compactness, let
(
µij
)
j∈J

be a weak*-convergent subnet along which

lim
j

∣∣∣∣∫ fdµij − λ
∣∣∣∣ = lim sup

i

∣∣∣∣∫ fdµi − λ
∣∣∣∣ .

Let µ = limj µij . Since (Fij )j∈J is Følner, it follows from a classical argument that µ is T -invariant, and

∣∣∣∣∫ fdµ− λ
∣∣∣∣ = lim sup

i

∣∣∣∣∫ fdµi − λ
∣∣∣∣ = lim sup

i

∥∥AvgFi f − λ
∥∥
C(X)

.

But
∫
fdµ = λ by (i), so it follows that lim supi

∥∥AvgFi f − λ
∥∥
C(X)

= 0, meaning that AvgFi f → λ

uniformly.

(ii)⇒(i): Trivial.

(ii)⇒(iii): Trivial.

(iii)⇒(i): (Fi)i∈N is a Følner sequence, and let µ be a Borel probability measure on X . Then

AvgFi f
i→∞→ λ pointwise-almost everywhere, and the functions AvgFi f are dominated by the constant

function ‖f‖C(X), so we can appeal to the Dominated Convergence Theorem to say that

∫
fdµ =

∫
AvgFi fdµ

i→∞→
∫
λdµ = λ.

Remark 3.1.11. The reason we add the caveat that I = N to ensure that (iii)⇒(i) in our proof of Lemma

3.1.10 is that there is in general no Dominated Convergence Theorem for arbitrary nets. For an elementary

example, let I = PF ([0, 1]) be the net of finite subsets of [0, 1], and define for each i ∈ I , and for each
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S ∈ I , let fi ∈ C(X) be a continuous function such that fi|i ≡ 1 and
∫
fidµ ≤ 1/2, where µ is the

Lebesgue probability measure on [0, 1]. Then limi fi(x) = 1 for all x ∈ [0, 1], but lim supi
∫
fidµ ≤ 1/2.

The equivalence (i) ⇐⇒ (ii) of Lemma 3.1.10 in the case where G = Z, Fk = {0, 1, . . . , k − 1} can

be found in (Herman, 1983, Lemme on pg. 487). This result generalizes the classical result of Oxtoby

(Oxtoby, 1952, (5.3)) relating unique ergodicity and uniform convergence of temporal averages, as unique

ergodicity is equivalent to
{∫

fdν : ν ∈MT (X)
}

being singleton for all f ∈ C(X). Since this property

will be important for the remainder of this section, we introduce the following definition.

Definition 3.1.12. Let T : Gy X be a topological dynamical system, and let f ∈ C(X). We say that f is

T -Herman (or simply Herman, when T is clear from context) if
{∫

fdν : ν ∈MT (X)
}

is singleton.

As Lemma 3.1.10 shows, this Herman property is equivalent to a certain definition of uniformity in

terms of uniform convergence of ergodic averages. However, since we used the term “uniform function” in

Chapter 2 to refer to a function whose ergodic averages converged in an L∞ norm, whereas Herman functions

converge in the uniform norm, we saw fit to distinguish these two terms, keeping the terminology between

chapters more consistent.

The following theorem tells us that the best kind of convergence for temporo-spatial differentiations can

be characterized in terms of ergodic optimization.

Theorem 3.1.13. Let T : Gy X be a topological dynamical system, whereG is amenable. Let µ ∈MT (X)

be a T -invariant Borel probability measure on X . Let (Fi)i∈I be a Følner net for G, and let f ∈ C(X).

Then the following conditions are related by the implications (1)⇒(2)⇒(3), and if µ is fully supported on X ,

then (3)⇒(1).

1. f is Herman.

2. For every net (Ci)i∈I of Borel-measurable sets Ci of positive measure, the net

(
αCi

(
AvgFi f

))
i∈I

converges to
∫
fdµ.

3. For every net (Ui)i∈I of open sets Ui of positive measure, the net

(
αUi

(
AvgFi f

))
i∈I
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converges to
∫
fdµ.

Proof. (1)⇒(2) Suppose that f is Herman, and let (Fi)i∈I be a Følner net for G. Then by Lemma 3.1.10,

the net
(
AvgFi f

)
i∈I

converges in C(X)-norm to
∫
fdµ, and since ‖ · ‖∞ ≤ ‖ · ‖C(X), it follows that

AvgFi f →
∫
fdµ in L∞(X,µ). Therefore (1)⇒(2) follows from Theorem 3.1.9.

(2)⇒(3) Trivial.

¬(1)⇒ ¬(3) Suppose that µ is fully supported. For this direction, we can assume that f is real-valued,

since otherwise we can break f into its real and imaginary parts and consider those parts separately. So for

the remainder of this proof, we can assume that f is real-valued.

Suppose that f is not Herman, and that µ is strictly positive. Set

m1 = min

{∫
fdν : ν ∈MT (X)

}
,

m2 = max

{∫
fdν : ν ∈MT (X)

}
.

If
{∫

fdµ :MT (X)
}

is not singleton, then m1 < m2, and in particular this tells us that at least one of the

inequalities
∫
fdµ < m2,

∫
fdµ > m1 is true. We consider two cases:

Case (i): Consider the case where m2 >
∫
fdµ. Set g = f + ‖f‖C(X), which is a nonnegative-valued

function with

Γ(g) = m2 + ‖f‖C(X) >

∫
fdµ+ ‖f‖C(X) =

∫
gdµ.

Choose L ∈
(∫
gdµ,Γ(g)

)
. For each i ∈ I , set

Ui =


{
x ∈ X : AvgFi g(x) > L

}
if
∥∥AvgFi g

∥∥
C(X)

> L,

X if
∥∥AvgFi g

∥∥
C(X)

≤ L.

Because each Ui is a nonempty open set, and µ is fully supported, we know that each Ui has positive measure.

By Theorem 3.1.5, we know that

lim
i

∥∥AvgFi g
∥∥ = Γ(g) > L >

∫
gdµ.
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Thus lim supi αUi
(
AvgFi g

)
≥ L >

∫
gdµ =

∫
fdµ+ ‖f‖C(X), so

lim sup
i

αUi
(
AvgFi f

)
= lim sup

i
αUi

(
AvgFi g − ‖f‖C(X)

)
>

∫
fdµ.

Case (ii): Suppose m1 <
∫
fdµ. Consider g = ‖f‖C(X) − f , a nonnegative-valued function. Then for

ν ∈MT (X), we have

∫
gdν = ‖f‖C(X) −

∫
fdν

⇒ Γ(g) = ‖f‖C(X) −m1

> ‖f‖C(X) −
∫
fdµ

=

∫
gdµ.

Choose L ∈ (
∫
gdµ,Γ(g)). Construct open subsets Ui of X by

Ui =


{
x ∈ X : AvgFi g(x) > L

}
if
∥∥AvgFi g

∥∥ > L,

X if
∥∥AvgFi g

∥∥ ≤ L.
Then by a similar argument to that used in Case (i), we know that

lim supi αUi
(
AvgFi g

)
≥ L >

∫
gdµ. It then follows that

lim inf
i

αUi
(
AvgFi f

)
= lim inf

i
αUi

(
AvgFi

(
‖f‖C(X) − g

))
= ‖f‖C(X) − lim sup

i
αUi(AvgFi g)

< ‖f‖C(X) −
∫
gdµ

=

∫
fdµ.

We now come to a theorem which provides a qualitative connection between unique ergodicity and

temporo-spatial differentiation problems.
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Theorem 3.1.14. Let T : Gy X be a topological dynamical system, whereG is amenable. Let µ ∈MT (X)

be a T -invariant Borel probability on X . Let (Fi)i∈I be a Følner net for G. Then the following conditions

are related by the implications (1)⇒(2)⇒(3), and if µ is fully supported on X , then (3)⇒(1).

1. T : Gy X is uniquely ergodic.

2. For every net (Ci)i∈I of Borel-measurable sets Ci of positive measure, the net

(
αCi

(
AvgFi f

))
i∈I

converges to
∫
fdµ for all f ∈ C(X).

3. For every net (Ui)i∈I of open sets Ui of positive measure, the net

(
αUi

(
AvgFi f

))
i∈I

converges to
∫
fdµ for all f ∈ C(X).

Proof. (1)⇒(2) The unique ergodicity of T : Gy X is equivalent to every f ∈ C(X) being Herman. Apply

Theorem 3.1.13.

(2)⇒(3) Trivial.

¬(1)⇒ ¬(3) Suppose that T : G y X is not uniquely ergodic, and that µ is strictly positive. By

Theorem 3.1.6, there exists a nonnegative-valued f ∈ CR(X) such that
∫
fdµ < Γ(f) = limi

∥∥AvgFi f
∥∥.

Let L ∈
(∫
fdµ,Γ(f)

)
. For each i ∈ I , set

Ui =


{
x ∈ X : AvgFi f(x) > L

}
if
∥∥AvgFi f

∥∥ > L,

X if
∥∥AvgFi f

∥∥ ≤ L.
Because each Ui is a nonempty open set, and µ is fully supported, we know that each Ui has positive measure.

Thus lim supi αUi
(
AvgFi f

)
≥ L >

∫
fdµ.

In the event that we’re dealing not just with a Følner net, but instead a Følner sequence, we can make a

stronger claim: that unique ergodicity is equivalent to all the temporo-spatial differentiations of continuous

functions by that temporal averaging sequence converging.
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Theorem 3.1.15. Let T : Gy X be a topological dynamical system, whereG is amenable. Let µ ∈MT (X)

be a T -invariant Borel probability measure on X , and let (Fk)
∞
k=1 be a Følner sequence. Let f ∈ C(X).

Then the following conditions are related by the implications (1)⇒(2)⇒(3)⇒(4), and if µ is fully supported

on X , then (4)⇒(1).

1. f is Herman.

2. For every sequence (Ck)
∞
k=1 of Borel-measurable sets Ck of positive measure, the sequence

(
αCk

(
AvgFk f

))∞
k=1

converges to
∫
fdµ.

3. For every sequence (Uk)
∞
k=1 of open sets Uk of positive measure, the sequence

(
αUk

(
AvgFk f

))∞
k=1

converges to
∫
fdµ.

4. For every sequence (Uk)
∞
k=1 of open sets Uk of positive measure, the sequence

(
αUk

(
AvgFk f

))∞
k=1

converges to some complex number.

Furthermore, if
{∫

fdν : ν ∈MT (X)
}

is not singleton, the measure µ is fully supported, and the space

(X,µ) is atomless, then we can choose a sequence (U ′k)
∞
k=1 of open subsets of X with positive measure and

a continuous f ∈ C(X) such that
(
αU ′k

(
AvgFk f

))∞
k=1

diverges and µ (U ′k)↘ 0.

Proof. That (1)⇒(2)⇒(3) follows immediately from Theorem 3.1.13, and (3)⇒(4) is trivial. Now we’ll

show that if µ is fully supported, then ¬(1)⇒ ¬(4). Suppose that f is not Herman. We can consider the case

where f is real-valued, since otherwise we can break f into its real and imaginary parts. Moreover, we can

assume that f is nonnegative-valued, since otherwise we can just replace f with f + ‖f‖C(X). So for the

remainder of this proof, we assume that f is nonnegative-valued.
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Set

m1 = min

{∫
fdν : ν ∈MT (X)

}
,

m2 = max

{∫
fdν : ν ∈MT (X)

}
.

If
{∫

fdµ :MT (X)
}

is not singleton, then m1 < m2, and in particular this tells us that at least one of the

inequalities
∫
fdµ < m2,

∫
fdµ > m1 is true.

Case (i): Consider first the case where m2 >
∫
fdµ. Choose L,M ∈ R such that

∫
fdµ < L < M <

Γ(f). Define open sets Vk,Wk ⊆ X for k ∈ N by

Vk =
{
x ∈ X : AvgFk f(x) > M

}
,

Wk =
{
x ∈ X : AvgFk f(x) < L

}
.

Both sets are obviously open, since they’re preimages of open subsets of R under the continuous functions

AvgFk f ∈ CR(X).

First, we know that there exists K ∈ N such that Vk 6= ∅ for all k ≥ K. This is because we know there

exists K ∈ N in X such that
∥∥AvgFk f

∥∥
C(X)

> M for all k ≥ K, and by the Extreme Value Theorem, we

know there exists a sequence (xk)
∞
k=1 such that

∥∥AvgFk f(x)
∥∥
C(X)

= AvgFk f(xk)

for all k ∈ N. In particular, if k ≥ K, then xk ∈ Vk. Therefore Vk 6= ∅ for all k ≥ K.

Secondly, we claim that Wk is nonempty for all k ∈ N. To see this, suppose to the contrary that Wk = ∅

for some k ∈ N. Then f(x) ≥ L >
∫
fdµ for all x ∈ X , meaning that

∫
fdµ ≥ L >

∫
fdµ, a clear

contradiction. So Wk 6= ∅ for all k ∈ N.

Now, define a sequence (Uk)
∞
k=1 of nonempty open subsets of X by

Uk =


X if k < K,

Vk if k ≥ K is odd,

Wk if k ≥ K is even.
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Then

lim sup
k→∞

αUk
(
AvgFk f

)
≥ lim sup

k→∞
αU2k+1

(
AvgF2k+1

f
)

= lim sup
k→∞

αV2k+1

(
AvgF2k+1

f
)

≥ lim sup
k→∞

αV2k+1
(M)

= M,

lim inf
k→∞

αUk
(
AvgFk f

)
≤ lim inf

k→∞
αU2k

(
AvgF2k

f
)

= lim inf
k→∞

αW2k

(
AvgF2k

f
)

≤ lim inf
k→∞

αW2k
(L)

= L.

Therefore

lim inf
k→∞

αUk
(
AvgFk f

)
≤ L < M ≤ lim sup

k→∞
αUk

(
AvgFk f

)
,

meaning the sequence diverges.

Case (ii): Consider now the case where m1 <
∫
fdµ. Replacing f with f ′ = ‖f‖C(X) − f , another

nonnegative-valued continuous function, we see that

∫
f ′dµ = ‖f‖C(X) −

∫
fdµ < ‖f‖C(X) −m1 = max

{∫
f ′dν : ν ∈MT (X)

}
.

We can now carry out the construction from Case (i) on f ′ instead of f to get a sequence (Uk)
∞
k=1 of open

sets along which
(
αUk

(
AvgFk f

′))∞
k=1

diverges, and thus along which
(
αUk

(
AvgFk f

))∞
k=1

diverges.

Furthermore, if in addition, we assume that (X,µ) is atomless, then we can replace our Uk with subsets

U ′k such that µ (U ′k) ↘ 0. This can be done by recursively constructing a sequence of balls U ′k contained

in Uk with sufficiently small radius that µ
(
U ′k+1

)
≤ min {µ (U ′k) , 1/k} for all k ∈ N. This is possible by

virtue of the atomlessness of (X,µ), since 0 = µ({yk}) = limn→∞ µ(B(yk, 1/n)). The above calculation

will proceed the same way with the Uk replaced by U ′k.
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Theorem 3.1.16. Let T : Gy X be a topological dynamical system, whereG is amenable. Let µ ∈MT (X)

be a T -invariant Borel probability onX , and let (Fk)
∞
k=1 be a Følner sequence. Then the following conditions

are related by the implications (1)⇒(2)⇒(3)⇒(4), and if µ is fully supported on X , then (4)⇒(1).

1. T : Gy X is uniquely ergodic.

2. For every sequence (Ck)
∞
k=1 of Borel-measurable sets Ck of positive measure, the sequence

(
αCk

(
AvgFk f

))∞
k=1

converges to
∫
fdµ for all f ∈ C(X).

3. For every sequence (Uk)
∞
k=1 of open sets Uk of positive measure, the sequence

(
αUk

(
AvgFk f

))∞
k=1

converges to
∫
fdµ for all f ∈ C(X).

4. For every sequence (Uk)
∞
k=1 of open sets Uk of positive measure, the sequence

(
αUk

(
AvgFk f

))∞
k=1

converges to some complex number for all f ∈ C(X).

Furthermore, if (X,T ) is not uniquely ergodic, the measure µ is fully supported, and the space (X,µ)

is atomless, then we can choose a sequence (U ′k)
∞
k=1 of open subsets of X with positive measure and a

continuous f ∈ C(X) such that
(
αU ′k

(
AvgFk f

))∞
k=1

diverges and µ (U ′k)↘ 0.

Proof. That (1)⇒(2)⇒(3) follows immediately from Theorem 3.1.14, and (3)⇒(4) is trivial. Now we’ll show

that if µ is fully supported, then ¬(1)⇒ ¬(4). Suppose that T : Gy X is not uniquely ergodic. By Theorem

3.1.5, there exists a nonnegative-valued f ∈ CR(X) such that
∫
fdµ < Γ(f) = limk→∞

∥∥AvgFk f
∥∥, i.e.

for which
{∫

fdν : ν ∈MT (X)
}

is non-singleton. Appeal to Theorem 3.1.15.

Remark 3.1.17. Our Theorem 3.1.15 generalizes Theorem 2.1.10. We thank Benjamin Weiss for pointing

out that connectedness was not necessary for that result.
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3.2 Special cases of temporo-spatial differentiation problems

We digress here quickly to consider certain special classes of temporo-spatial differentiation problems:

where the sequence of spatial averaging sets are constant, and where the spatial averaging sets have measure

going to 1.

Proposition 3.2.1. Let T : Gy (X,µ) be a measure-preserving action of a discrete groupG on a probability

space (X,µ). Let f ∈ L1(X,µ), and let (Fk)
∞
k=1 be a sequence of nonempty finite subsets of G such that

the sequence
(
AvgFk f

)
converges to a function f∗ ∈ L1(X,µ) in the weak topology on L1(X,µ). Then

for every measurable subset C of X with positive measure, we have

αC
(
AvgFk f

) k→∞→ αC (f∗) .

Proof. We know µ(C)−1χC ∈ L∞(X,µ) =
(
L1(X,µ)

)′, so

αC
(
AvgFk f

)
=

∫
µ(C)−1χC AvgFk fdµ

=
〈
AvgFk f, µ(C)−1χC

〉
[
AvgFk f

k→∞→ f∗ in the weak topology on L1(X,µ)
]
k→∞→

〈
f∗, µ(C)−1χC

〉
= αC (f∗) .

We note that Proposition 3.2.1 is exceptional among all our temporo-spatial convergence results to date,

in that it can be applied to a function f which is not L∞, but merely L1. It also brings us to the following

corollary.

Corollary 3.2.2. Let T : Gy (X,µ) be a measure-preserving action of a discrete amenable group G on a

probability space (X,µ). Let f ∈ L1(X,µ), and let (Fk)
∞
k=1 be a Følner sequence for G. Then for every

measurable subset C of X of positive measure, we have

αC
(
AvgFk f

) k→∞→ αC (f∗) ,

where f∗ is the projection of f onto the subspace of invariant functions in L1(X,µ).
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Proof. This is a corollary of Proposition 3.2.1 and the Mean Ergodic Theorem for actions of amenable groups

(Kerr and Li, 2016, Theorem 4.23), since the norm topology on L1 is stronger than the weak topology.

Proposition 3.2.3. Let T : Gy (X,µ) be a measure-preserving action of a discrete groupG on a probability

space (X,µ), and let (Ck)
∞
k=1 be a sequence of measurable subsets of X such that µ(Ck)→ 1. Let (Fk)

∞
k=1

be a sequence of nonempty finite subsets of G. Then

lim
k→∞

αCk
(
AvgFk f

)
=

∫
fdµ

for all f ∈ L∞(X,µ).

Proof. Fix f ∈ L∞(X,µ). Then

∣∣∣∣∫ fdµ− αCk
(
AvgFk f

)∣∣∣∣
=

∣∣∣∣∫
X

AvgFk dµ−
∫
Ck

AvgFk fdµ+

∫
Ck

AvgFk fdµ− µ(Ck)
−1

∫
Ck

AvgFk fdµ

∣∣∣∣
≤
∣∣∣∣∫
X

AvgFk fdµ−
∫
Ck

AvgFk fdµ

∣∣∣∣+

∣∣∣∣∫
Ck

AvgFk fdµ− µ(Ck)
−1

∫
Ck

AvgFk fdµ

∣∣∣∣
=

∣∣∣∣∣
∫
X\Ck

AvgFk fdµ

∣∣∣∣∣+
(
1− µ(Ck)

−1
) ∣∣∣∣∫

Ck

AvgFk fdµ

∣∣∣∣
≤ (1− µ(Ck)) ‖f‖∞ +

(
1− µ(Ck)

−1
)
µ(Ck)‖f‖∞

k→∞→ ∞.

In light of Proposition 3.2.3, we can see that temporo-spatial differentiation problems become trivial in the

case where µ(Ck)→ 1 for f ∈ L∞(X,µ). The result, however, fails for any unbounded integrable function.

Let f ∈ L1(X,µ) \ L∞(X,µ), i.e. an unbounded integrable function, and let Ek = {x ∈ X : |f(x)| ≥ k}

for all k ∈ N. Then by Chebyshev’s inequality, it follows that 0 < µ(Ek) ≤ k−1‖f‖1 for all k ∈ N, and
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µ(Ek)↘ 0. Then if T : Gy (X,µ) is the trivial action, i.e. Tg = idX for all g ∈ G, then

αEk
(
AvgFk |f |

)
= αEk(|f |)

≥ k

⇒ αEk
(
AvgFk |f |

) k→∞→ +∞.

Based on this example, we can see that in contrast with Proposition 3.2.1, there’s no hope for improving

Proposition 3.2.3 to even the case where f ∈ L∞−(X,µ) =
⋂
p∈[1,∞) L

p(X,µ).

3.3 Temporo-spatial differentiation theorems around sets of rapidly vanishing diameter

In this section, we’ll be concerned with the following general setup and question: Let (X, p) be a

compact pseudometric space, and let T : Gy X be a continuous action of a locally compact group G on

X which preserves a Borel probability measure µ on X . Now fix some point x0 ∈ X , and consider a net

of positive-measure subsets Ci of X containing x0. When will the temporo-spatial derivative relative to Ci

(and some averaging net Fi) resemble the pointwise temporal average at x0? Theorem 3.3.2 establishes a

powerful sufficient condition: If f : X → C is uniformly continuous and bounded, and the diameter of the

elements of the net Ci go to 0 sufficiently fast, then we’ll have that
(
AvgFi f

)
(x0) ≈ αCi

(
AvgFi f

)
, where

”sufficiently fast” depends upon the (pseudo)metric properties of the continuous action, the averaging net

(Fi)i∈I , and the point x0. In this situation, we can reduce the temporo-spatial problem to a problem of taking

a pointwise ergodic average. We then consider cases where narrowing our focus (e.g. considering Hölder

actions instead of general continuous actions) allow us to improve the diameter decay rate. We then move on

to make statements about the ”probabilistically generic” behavior of these temporo-spatial derivatives by

appealing to pointwise convergence results from ergodic theory. Finally, we extend this pointwise reduction

to the setting of nonconventional ergodic averages with Theorem 3.3.12.

Several results in this section will be quite general in their statement, and as such will sometimes require

a number of additional hypotheses that are satisfied automatically in many reasonable situations. We make

notes after the proofs of some results to note that certain hypotheses stated explicitly in the results in question

are satisfied a priori in certain reasonable cases.
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Our first result of this section describes a sufficient condition for the temporo-spatial averages to reduce

to pointwise averages.

Lemma 3.3.1. Let (X, p) be a compact pseudometric space, and let T : Gy X be a continuous action of a

locally compact topological group G (not necessarily amenable) on X . Let µ be a regular Borel probability

measure on X . Fix a point x0 ∈ X .

Let (Fi)i∈I be a net of compact subsets of G with positive Haar measure m. Let (Ci)i∈I be a net of

measurable subsets of X such that µ(Ci) > 0 and x0 ∈ Ci for all i ∈ I . Suppose that for every δ > 0, there

exists a net (Ai)i∈I of measurable subsets of G such that

Ai ⊆ {g ∈ Fi : diam(Ci) ≤ δ} , (∀i ∈ I )

lim
i

m(Ai)

m(Fi)
= 1.

Let f : X → C be a continuous function. Then

lim
i

∣∣(AvgFi f
)

(x0)− αCi
(
AvgFi f

)∣∣ = 0.

Proof. Fix ε > 0. Since f is uniformly continuous (by Lemma 2.3.1), there exists δ > 0 such that if

y1, y2 ∈ X , and p(y1, y2) ≤ δ, then |f(y1)− f(y2)| ≤ ε
2λ . Let (Ai)i∈I be as in the lemma statement, and

set Bi = Fi \Ai for all i ∈ I , so limim(Bi)/m(Fi) = 0.

Now, we estimate

∣∣(AvgFi f
)

(x0)− αCi(AvgFi f)
∣∣

=
∣∣αCi ((AvgFi f

)
(x0)−AvgFi f

)∣∣
=

∣∣∣∣αCi ( 1

m(Fi)

∫
Fi

(f(Tgx0)− (f ◦ Tg))
)

dm(g)

∣∣∣∣
≤
∣∣∣∣αCi ( 1

m(Fi)

∫
Ai

(f(Tgx0)− (f ◦ Tg))dm(g)

)∣∣∣∣
+

∣∣∣∣αCi ( 1

m(Fi)

∫
Bi

(f(Tgx0)− (f ◦ Tg))dm(g)

)∣∣∣∣
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Our goal now is to bound both

∣∣∣∣αCi ( 1

m(Fi)

∫
Ai

(f(Tgx0)− (f ◦ Tg))dm(g)

)∣∣∣∣ ,∣∣∣∣αCi ( 1

m(Fi)

∫
Bi

(f(Tgx0)− (f ◦ Tg))dm(g)

)∣∣∣∣
by ε

2 .

First, we estimate the term
∣∣∣αCi ( 1

m(Fi)

∫
Ai

(f(Tgx0)− (f ◦ Tg))dm(g)
)∣∣∣. We see that if g ∈ Ai, then

∣∣∣∣αCi ( 1

m(Fi)

∫
Ai

(f(Tgx0)− (f ◦ Tg))dm(g)

)∣∣∣∣
=

∣∣∣∣ 1

µ(Ci)

∫
Ci

1

m(Fi)

∫
Ai

(f(Tgx0)− f(Tgx))dm(g)dµ(x)

∣∣∣∣
≤ 1

µ(Ci)

∫
Ci

1

m(Fi)

∫
Ai

|f(Tgx0)− f(Tgx)|dm(g)dµ(x)

But if y ∈ TgCi, and Dx0(g,diam(Ci)) ≤ δ, then x0, Tg−1y ∈ Ci, meaning that

ρ(Tgx0, y) = ρ(Tgx0, Tg(Tg−1y)) ≤ Dx0(g, Tg−1y) ≤ Dx0(g,diam(Ci)) ≤ δ.

Therefore

1

µ(Ci)

∫
Ci

1

m(Fi)

∫
Ai

|f(Tgx0)− f(Tgx)|dm(g)dµ(x) ≤ 1

µ(Ci)

∫
Ci

1

m(Fi)

∫
Ai

ε

2
dm(g)dµ(x)

=
ε

2
.

Now, we bound the term
∣∣∣αCi ( 1

m(Fi)

∫
Bi

(f(Tgx0)− (f ◦ Tg))dm(g)
)∣∣∣. By estimates similar to those

used to approximate the former term, we have that

∣∣∣∣ 1

µ(Ci)

∫
Ci

1

m(Fi)

∫
Bi

(f(Tgx0)− f(Tgx))dm(g)dµ(x)

∣∣∣∣
≤ 1

µ(Ci)

∫
Ci

1

m(Fi)

∫
Bi

|f(Tgx0)− f(Tgx)|dm(g)dµ(x)

≤ 1

µ(Ci)

∫
Ci

1

m(Fi)

∫
Bi

(2‖f‖u) dm(g)dµ(x)

Choose I ∈ I such that if i ≥ I , then m(Bi)
m(Fi)

≤ ε
4 max{1,‖f‖u} . Then if i ≥ I , then m(Bi)

m(Fi)
(2‖f‖u) ≤ ε

2 .
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Therefore, if i ≥ I , then
∣∣(AvgFi f

)
(x0)− αCi(AvgFi f)

∣∣ ≤ ε
2 + ε

2 = ε.

We have stated Lemma 3.3.1 for pseudometric spaces, rather than just metric spaces. In Chapter 2,

we found that looking at certain pseudometric spaces helped us to establish convergence results for certain

temporo-spatial averages. For example, Proposition 2.3.2 was useful in proving Theorem 2.3.5. For this

reason, we state several results of this section in terms of compact pseudometric spaces.

We also observe that Lemma 3.3.1 does not assume that the action T : Gy (X,µ) is measure-preserving,

only continuous.

Lemma 3.3.1 as stated is a powerful tool for achieving the kind of reduction to the pointwise setting that

we aim for, but we desire still a sufficient condition for the hypotheses of the lemma to attain. The following

result states that, under appropriate conditions, we can find an x0-dependent diameter decay condition on

(Ci)i∈I for this reduction to attain.

Theorem 3.3.2. Let (X, p) be a compact pseudometric space, and let T : Gy X be a continuous action of

a locally compact topological group G (not necessarily amenable) on X . Let µ be a regular Borel probability

measure on X . Fix a point x0 ∈ X , and for each g ∈ G, r ∈ (0,∞), let Dx0(g, r) be the value

Dx0(g, r) = sup {p(Tgx0, Tgx) : x ∈ X, p(x0, x) ≤ r} ,

and assume that Dx0(·, r) : G→ (0,∞) is measurable for each r ∈ (0,∞).

Let (Fi)i∈I be a net of compact subsets of G with positive Haar measure m. Let (Ci)i∈I be a net of

measurable subsets of X such that µ(Ci) > 0 and x0 ∈ Ci for all i ∈ I . Suppose that for every δ > 0, we

have

lim
i

m ({g ∈ Fi : Dx0(g,diam(Ci)) > δ})
m(Fi)

= 0.

Let f : X → C be a continuous function. Then

lim
i

∣∣(AvgFi f
)

(x0)− αCi
(
AvgFi f

)∣∣ = 0.

Proof. For each δ > 0, set

Ai = {g ∈ Fi : Dx0(g,diam(Ci)) ≤ δ} .

The result follows from Lemma 3.3.1.
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The assumption that Dx0(·, r) : G→ (0,∞) be a measurable function in G for all r ∈ (0,∞), though

relevant to make sure the sets Ai in our proof are measurable, is satisfied automatically in the case where G

is discrete. Our use of this function Dx0 ensures that the condition being imposed is in fact a decay condition

on diam(Ci), in the sense that if (Ci)i∈I is a net satisfying the condition

lim
i

m ({g ∈ Fi : Dx0(g,diam(Ci)) > δ})
m(Fi)

= 0 (∀δ > 0),

and (C ′i)i∈I is a net of measurable subsets of X containing x0 with positive measure, and diam (C ′i) ≤

diam(Ci) for all i ∈ I , then (C ′i)i∈I will also satisfy the condition. However, this decay rate depends on

x0, a shortcoming which can be overcome with some additional conditions on the action T , as will be seen in

Theorem 3.3.4.

Definition 3.3.3. Let (X, p) be a pseudometric space (not necessarily compact), and let T : Gy X be an

action of a group G on X . We call the action Hölder if for every g ∈ G exist H(g), L(g) ∈ (0,∞) such that

p (Tgx, Tgy) ≤ L(g) · p(x, y)H(g) (∀g ∈ G, x ∈ X, y ∈ X).

Our next result shows that if we assume that our action is Hölder, and the Hölder parameters of Tg satisfy

certain measurability properties as functions of G, then this diameter decay rate can be chosen independent

of x0. We remark now that our statement of the result is quite wordy, with several hypotheses, but as we’ll

explain shortly, several of these hypotheses are satisfied automatically in many cases.

Theorem 3.3.4. Let (X, p) be a compact pseudometric space, and let T : Gy X be a continuous action of

a locally compact topological group G (not necessarily amenable) on X . Let µ be a regular Borel probability

measure on X . Assume further that there exist measurable functions H,L : G→ (0,∞) such that

p (Tgx, Tgy) ≤ L(g) · p(x, y)H(g) (∀g ∈ G, x ∈ X, y ∈ X).

Let (Fi)i∈I be a net of compact subsets of G with positive Haar measure m. Let (Ci)i∈I be a net of

measurable subsets of X such that µ(Ci) > 0 and x ∈ Ci for all i ∈ I . Suppose that for every δ > 0, we

have

lim
i

m
({
g ∈ Fi : L(g) · diam(Ci)

H(g) > δ
})

m(Fi)
= 0.
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Let x0 ∈ X be a point in X , and let f : X → C be a uniformly bounded continuous function. Then

lim
i

∣∣(AvgFi f
)

(x0)− αCi
(
AvgFi f

)∣∣ = 0.

Proof. We first observe that if p(Tgx, Tgy) ≤ L(g)p(x, y)H(g), then Dx0(g, r) ≤ L(g)rH(g) for all x0 ∈ X ,

so diam(TgCi) ≤ L(g) · diam(Ci)
H(g). Given δ > 0, set

Ai =
{
g ∈ Fi : L(g) · diam(Ci)

H(g) ≤ δ
}
,

and apply Lemma 3.3.1.

Remark 3.3.5. • If G is discrete, then the measurability assumptions on H,L are automatically fulfilled.

• If Tg is Lipschitz for all g ∈ G, then we can take H to be the constant function 1. This is the case in

particular if T is an action on a compact Riemannian manifold X by diffeomorphisms.

• In the special case where G = Z, if both T1, T−1 are Hölder with exponent α0 and coefficient L0, then

for n ≥ 0, we can take H(n) = α
|n|
0 , L(n) = L

|n|
0 .

• If G acts by isometries, then we can take H,L to both be the constants 1.

Theorem 3.3.4 says that given a Hölder action T of a groupG (subject to certain measurability conditions)

on a compact pseudometric probability space, and an averaging net (Fi)i∈I , there exists a diameter decay

rate such that if (Ci)i∈I is a net of positive-measure sets containing a fixed point x0, then the temporo-spatial

derivative at Ci will resemble the temporal pointwise average. Notably, this decay rate depends only on the

averaging net and the Hölder condition on T , and not on the point x0 or the function f .

Theorem 3.3.4 cannot be called sharp in the strictest sense, since given any net (Ci) satisfying the

hypotheses of Theorem 3.3.4, we could replace all the Ci with Ci ∪ E, where E is some fixed subset of X

with positive diameter but measure 0. A truly sharp Theorem 3.3.4 would -at the very least- have to account

for a notion of “essential diameter.”

Under an additional assumption on the function being averaged, we can provide quantitative estimates

on the approximation in Theorem 3.3.4.

Proposition 3.3.6. Let (X, p) be a compact pseudometric space, and let T : G y X be a continuous

action of a locally compact topological group G (not necessarily amenable) on X . Let µ be a regular Borel
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probability measure on X . Assume further that there exist measurable functions H,L : G→ (0,∞) such

that

p (Tgx, Tgy) ≤ L(g) · p(x, y)H(g) (∀g ∈ G, x ∈ X, y ∈ X).

Let F be a compact subset of G with positive Haar measure m, and let C be a measurable subset of X such

that µ(C) > 0.

Let x0 ∈ X be a point in X , and let f : X → C be a Hölder function with constants c, β for which

|f(x)− f(y)| ≤ c · ρ(x, y)β (∀x, y ∈ X).

Then

|(AvgF f) (x0)− αC (AvgF f)| ≤ c

m(F )

∫
F
L(g)β · diam(C)βH(g)dm(g).

Proof.

|(AvgF f) (x0)− αC (AvgF f)|

=

∣∣∣∣αC ( 1

m(F )

∫
F

(f (Tgx0)− (f ◦ Tg)) dm(g)

)∣∣∣∣
=

∣∣∣∣ 1

m(C)

∫
C

1

m(F )

∫
F

(f(Tgx0)− (f(Tgx))) dm(g)dµ(x)

∣∣∣∣
≤ 1

m(C)

∫
C

1

m(F )

∫
F
|f (Tgx0)− f (Tgx)|dm(g)dµ(x)

≤ 1

m(C)

∫
C

1

m(F )

∫
F
c · ρ (Tgx0, Tgx)β dm(g)dµ(x)

≤ 1

m(C)

∫
C

1

m(F )

∫
F
c ·
(
L(g) · ρ (x0, x)H(g)

)β
dm(g)dµ(x)

≤ 1

m(C)

∫
C

1

m(F )

∫
F
c ·
(
L(g) · diam(C)H(g)

)β
dm(g)dµ(x)

=c
1

m(C)

∫
C

1

m(F )

∫
F
L(g)β · diam(C)βH(g)dm(g)dµ(x)

=
c

m(F )

∫
F
L(g)β · diam(C)βH(g)dm(g)
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Our next result takes us in the direction of a “random temporo-spatial differentiation problem,” where we

consider a temporo-spatial problem in which the spatial averaging net is considered to be chosen “randomly”

according to some scheme or constraints.

Corollary 3.3.7. Let T : G y X be a continuous action of a locally compact topological group G on a

compact pseudometric space X = (X, p), and let µ be a regular Borel probability measure on X , and let

(Fi)i∈I be a net in G. Let H,L : G→ (0,∞) be measurable functions such that

p (Tgx, Tgy) ≤ L(g) · p(x, y)H(g) (∀g ∈ G, x ∈ X, y ∈ X).

Suppose that for each x ∈ X , the net (Ci(x))i∈I is a net of measurable subsets Ci(x) of X containing the

point x such that µ(Ci(x)) > 0 for all x ∈ X , as well as that for almost all x ∈ X , we have

lim
i

m
({
g ∈ Fi : L(g) · diam(Ci(x))H(g) > δ

})
m(Fi)

= 0

for all δ > 0. Let f : X → C be a continuous function, and suppose that for almost all x ∈ X , we have that

limi AvgFi f(x) = f∗(x), where f∗ is a measurable function X → C. Then

lim
i
αCi(x)

(
AvgFi f

)
= f∗(x)

for almost all x ∈ X .

Remark 3.3.8. Corollary 3.3.7 is a tool that turns almost-sure pointwise convergence results from ergodic

theory into almost-sure convergence results for classes of random temporo-spatial differentiations. Corollaries

3.3.10 and 3.3.11, corresponding to the Lindenstrauss pointwise ergodic theorem and Bourgain’s theorem on

pointwise convergence of averages along polynomials, respectively, are special cases of Corollary 3.3.7. In

principle, there is a special case of Corollary 3.3.7 corresponding to any result that ensures the almost-sure

pointwise convergence of an ergodic average.
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Proof of Corollary 3.3.7. Let

A =
∞⋂
k=1

{
x ∈ X : lim

i

m
({
g ∈ Fi : L(g) · diam(Ci(x))H(g) > 1/k

})
m(Fi)

= 0

}
,

B =

{
x ∈ X : lim

i
AvgFi f(x) = f∗(x)

}
.

Both A,B are of full measure by hypothesis, and thus so is A ∩B. Let x ∈ A ∩B. Then

∣∣αCi(x)

(
AvgFi f

)
− f∗(x)

∣∣ ≤ ∣∣αCi(x)

(
AvgFi f

)
−AvgFi f(x)

∣∣+
∣∣AvgFi f(x)− f∗(x)

∣∣
i→∞→ 0,

where the first summand goes to 0 (by Theorem 3.3.4) because x ∈ A and the second summand goes to 0

because x ∈ B.

As a rule, results like Theorem 3.3.4 lead naturally to results like Corollary 3.3.7, and we’ll see several

other examples of this in this chapter. Theorem 3.3.4 provides a sufficient condition for a spatial averaging net

(Ci)i∈I around a point x to induce a temporo-spatial differentiation problem that’s reducible to a pointwise

temporal problem at that point x; it then follows that if we have some scheme for associating to every point

x a spatial averaging net (Ci(x))i∈I around x, and we know that AvgFi f(x) → f∗(x) almost surely for

f ∈ C(X) continuous, then we have a convergence result for the “random temporo-spatial differentiation

problem”
(
αCi(x)

(
AvgFi f

))
i∈I

. There will be several other examples of results like Corollary 3.3.7 in

various contexts, taking some temporal pointwise reduction result like Theorem 3.3.4 and extrapolating a

statement about random temporo-spatial problems.

It should be noted, however, that the convergence in Corollary 3.3.7 will in general be only for almost

every x ∈ X , rather than all x ∈ X . If there exists a point x ∈ X where
(
AvgFi f(x)

)
i∈I

does not converge

to f∗(x), then Theorem 3.3.4 tells us that
(
αCi(x)

(
AvgFi f

))
i∈I

won’t either.

Corollary 3.3.9. Let T : G y X be an action of a locally compact topological group G on a compact

metric space X = (X, ρ) that preserves a Borel probability measure µ on X , and let (Fi)i∈I be a net. Let

H,L : G→ (0,∞) be measurable functions such that

p (Tgx, Tgy) ≤ L(g) · p(x, y)H(g) (∀g ∈ G, x ∈ X, y ∈ X).
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Suppose that for each x ∈ X , the net (Ci(x))i∈I is a net of measurable subsets Ci(x) of X containing the

point x such that µ(Ci(x)) > 0 for all x ∈ X , and

lim
i

m
({
g ∈ Fi : L(g) · diam(Ci(x))H(g) > δ

})
m(Fi)

= 0

for almost all x ∈ X . Suppose that for µ-almost all x ∈ X , we have

lim
i

AvgFi f(x) =

∫
fdµ (∀f ∈ C(X))

Then for almost all x ∈ X , we have

lim
i
αCi(x)

(
AvgFi f

)
=

∫
fdµ.

Proof. Since X is compact metrizable, it follows that C(X) is separable, so let {fn : n ∈ N} be a subset of

C(X) with dense span. For each n ∈ N, set

An =

{
x ∈ X : lim

i
αCi(x)

(
AvgFi fn

)
=

∫
fdµ

}
.

Each An is of full measure.

Let f ∈ C(X), and fix N ∈ N. Choose JN ∈ N and a sequence z1,N , . . . , zJN ,N ∈ C such that

lim
N→∞

∥∥∥∥∥∥f −
JN∑
j=1

zj,Nfj

∥∥∥∥∥∥
C(X)

≤ 1

3N
.

For convenience, set φN =
∑JN

j=1 zj,Nfj . Then
∥∥∫ fdµ−

∫
φNdµ

∥∥
L∞(X,µ)

≤ ‖f − φN‖C(X) ≤ ε
3 .

Now for j ∈ {1, . . . , JN}, choose ij,N ∈ I such that if i ≥ ij,N , then

∣∣∣∣αCi (AvgFi fj(x)
)
−
∫
fdµ

∣∣∣∣ ≤ 1

3N2 max{zj,N , 1}
.
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Choose IN ∈ I such that IN ≥ ij,N for all j ∈ {1, . . . , JN}, and let x ∈
⋂
n∈NAn. Then if i ≥ IN , we

have

∣∣∣∣αCi (AvgFi f
)
−
∫
fdµ

∣∣∣∣ ≤ ∣∣αCi (AvgFi f
)
− αCi

(
AvgFi φN

)∣∣
+

∣∣∣∣αCi (AvgFi φN
)
−
∫
φNdµ

∣∣∣∣
+

∣∣∣∣∫ φNdµ−
∫
fdµ

∣∣∣∣ .
We bound each of the three summands by 1

3N in turn. Firstly, we can see that

∣∣αCi (AvgFi f
)
− αCi

(
AvgFi φN

)∣∣ =
∣∣αCi (AvgFi (f − φN )

)∣∣ ≤ ‖f − φN‖C(X) ≤
1

3N
,

which addresses the first summand. For the second summand, we have

∣∣∣∣αCi (AvgFi φN
)
−
∫
φNdµ

∣∣∣∣ =

∣∣∣∣∣∣
JN∑
j=1

zj,N

(
αCi

(
AvgFi fj

)
−
∫
fjdµ

)∣∣∣∣∣∣
≤

N∑
j=1

|zj,N | ·
∣∣∣∣αCi (AvgFi fj

)
−
∫
fjdµ

∣∣∣∣
≤

N∑
j=1

|zj,N |
1

3N2 max{|zj,N |, 1}

≤ 1

3N
.

Finally, for the third summand, we have that

∣∣∣∣∫ φNdµ−
∫
fdµ

∣∣∣∣ ≤ ‖φN − f‖C(X) ≤
1

3N
.

Taken together, these tell us that for every N ∈ N, x ∈
⋂
n∈NAn, there exists I ∈ I such that if i ≥ I , then∣∣αCi (AvgFi f

)
−
∫
fdµ

∣∣ ≤ 1
N . Therefore limi αCi

(
AvgFi f

)
=
∫
fdµ for all x ∈

⋂
n∈NAn. Since each

An is of full measure, it follows that their countable intersection
⋂∞
n=1An is of full measure, yielding our

desired almost-sure convergence.
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This result tells us that if to (almost) every x ∈ X we assign a net (Ci(x)) of sets of positive measure

with rapidly decaying diameter, and AvgFi f →
∫
fdµ for all f ∈ C(X) then the ”probabilistically generic”

behavior is that αCi
(
AvgFi f

)
→
∫
fdµ.

Corollary 3.3.9 encompasses several results from Chapter 2, including Theorem 2.2.1, Theorem 2.2.3,

and Corollary 2.3.3. Proposition 2.3.2 can also be recovered from our Corollary 3.3.7. Corollary 3.3.9 is

motivated by the desire to find positive convergence results for temporo-spatial differentiations relative to

actions of groups other than Z, as well as to find to find positive convergence results for temporo-spatial

differentiations relative to averages over other subsequences of Z. Moreover, Corollary 3.3.9 opens the door

to temporo-spatial differentiations along subsequences. We present here a few examples.

Corollary 3.3.10. Let T : G y X be an action of a locally compact amenable topological group G on a

compact pseudometric space X = (X, p) that preserves a regular Borel probability measure µ on X , and let

(Fk)k∈N be a tempered Følner sequence for G. Let H,L : G→ (0,∞) be measurable functions such that

p (Tgx, Tgy) ≤ L(g) · p(x, y)H(g) (∀g ∈ G, x ∈ X, y ∈ X).

Suppose that for each x ∈ X , the sequence (Ck(x))k∈N is a sequence of measurable subsets Ck(x) of X

containing the point x such that µ(Ck(x)) > 0 for all x ∈ X , and

lim
k→∞

m
({
g ∈ Fk : L(g) · diam(Ck(x))H(g) > δ

})
m(Fk)

= 0

for almost all x ∈ X .

Then given f ∈ C(X), for almost all x ∈ X , we have

lim
k→∞

αCk(x)

(
AvgFk f

)
= Ef(x),

where E is the projection onto the space of T -invariant functions in L∞(X,µ).

Proof. The Lindenstrauss Ergodic Theorem (Lindenstrauss, 2001, Theorem 3.3) tells us that AvgFk f → Ef

almost surely, so we can apply Corollary 3.3.9.

Corollary 3.3.11. Let P ∈ R[t] be a polynomial with real coefficients, and let T : Z y X be an action of Z

on a compact pseudometric space X = (X, p) that preserves a regular Borel probability measure µ on X .
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Let Fk = {bP (1)c, bP (2)c, . . . , bP (k)c} for all k ∈ N, and let H,L : G→ (0,∞) be functions such that

p (Tnx, Tny) ≤ L(n) · p(x, y)H(n) (∀n ∈ Z, x ∈ X, y ∈ X).

Suppose that for each x ∈ X , the sequence (Ck(x))k∈N is a sequence of measurable subsets Ck(x) of X

containing the point x such that µ(Ck(x)) > 0 for all x ∈ X , and

lim
k→∞

m
({
n ∈ Fk : L(n) · diam(Ck(x))H(n) > δ

})
m(Fk)

= 0

for almost all x ∈ X . Let f ∈ C(X). Then there exists a function f∗ ∈ L∞(X,µ) such that for almost all

x ∈ X , we have

lim
k→∞

αCk(x)

(
AvgFk f

)
= f∗(x).

Proof. By (Bourgain, 1989, Theorem 2), there exists f∗ ∈ L∞(X,µ) such that AvgFk f(x)→ f∗(x) almost

surely. Apply Corollary 3.3.7.

Finally, we remark that a form of the pointwise reduction in Theorem 3.3.2 can be recovered in the

context of nonconventional ergodic averages. In order to make the statement of this result a bit more readable,

we use slightly different notation for the remainder of this section than we used in previous parts of this

article, using T` to refer to an `th homeomorphism, rather than an action of the integer ` ∈ Z.

Theorem 3.3.12. Let (X, p) be a compact pseudometric space, and let T1, . . . , TL be a family of homeo-

morphisms T` : X → X . Let µ be a regular Borel probability measure on X invariant under each T`. Let(
n

(1)
j

)∞
j=1

, . . . ,
(
n

(L)
j

)∞
j=1

be sequences of integers.

Fix a point x0 ∈ X , and let (Ck)
∞
k=1 be a sequence of measurable subsets of X with positive measure

for which x0 ∈ Ck and suppose that for each ` = 1, . . . , `, and every δ ∈ (0,∞), we have that

∣∣∣∣{j ∈ {0, 1, . . . , k − 1} : diam

(
T
n
(`)
j

` Ck

)
≥ δ
}∣∣∣∣

k
→ 0.
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Let f0, f1, . . . , fL ∈ C(X). Then

lim
k→∞

∣∣∣∣∣∣
1

k

k−1∑
j=0

f0(x0)

L∏
`=1

T
n
(`)
j

` f`(x0)

− αCk
1

k

k−1∑
j=0

f0

L∏
`=1

T
n
(`)
j

` f`

∣∣∣∣∣∣ = 0.

Proof. For the sake of making some notation in this proof more concise, we’ll write

T0 = idX ,

n
(0)
j = 1 (∀j ≥ 0),

meaning that f0
∏L
`=1 T

n
(`)
j

` f` =
∏L
`=0 T

n
(`)
j

` f`. We also use ‖ · ‖u to denote the uniform norm on C(X).

Fix M = max {1, ‖f0‖u, ‖f1‖u, . . . , ‖fL‖u}, and fix ε > 0. By appealing to the uniform continuity of

the functions f0, f1, . . . , fL, choose δ0, δ1, . . . , δL > 0 such that

∀x ∈ X ∀y ∈ X
[
(p(x, y) ≤ δ`)⇒

(
|f`(x)− f`(y)| ≤ ε

2(L+ 1)ML

)]
(` = 0, 1, . . . , L).

Set δ = min {δ0, δ1, . . . , δL} > 0, and set

A
(`)
k =

{
j ∈ {0, 1, . . . , k − 1} : diam

(
T
n
(`)
j

` Ck

)
< δ

}
(` = 1, . . . , L, k ∈ N),

Ak =

L⋂
`=1

A
(`)
k .

Then

|{0, 1, . . . , k − 1} \Ak|
k

=

∣∣∣⋃L
`=1

(
{0, 1, . . . , k − 1} \A(L)

k

)∣∣∣
k

≤
L∑
`=1

∣∣∣({0, 1, . . . , k − 1} \A(L)
k

)∣∣∣
k

=

L∑
`=1

∣∣∣∣{j ∈ {0, 1, . . . , k − 1} : diam

(
T
n
(`)
j

` Ck

)
≥ δ
}∣∣∣∣

k

k→∞→ 0.
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We now turn to estimating

∣∣∣∣∣∣
k−1∑
j=0

f0(x0)
∏̀
`=1

T
n
(`)
j

` f`(x0)

− αCk
k−1∑
j=0

f0

∏̀
`=1

T
n
(`)
j

` f`

∣∣∣∣∣∣
≤1

k

k−1∑
j=0

∣∣∣∣∣
(
f0(x0)

∏̀
`=1

T
n
(`)
j

` f`(x0)

)
− αCk

(
f0

∏̀
`=1

T
n
(`)
j

` f`

)∣∣∣∣∣
=

1

k

k−1∑
j=0

∣∣∣∣∣αCk
((

f0(x0)
∏̀
`=1

T
n
(`)
j

` f`(x0)

)
− f0

∏̀
`=1

T
n
(`)
j

` f`

)∣∣∣∣∣
=

1

k

∑
j∈Ak

∣∣∣∣∣αCk
((

f0(x0)
∏̀
`=1

T
n
(`)
j

` f`(x0)

)
− f0

∏̀
`=1

T
n
(`)
j

` f`

)∣∣∣∣∣


+
1

k

 ∑
j∈{0,1,...,k−1}\Ak

∣∣∣∣∣αCk
((

f0(x0)
∏̀
`=1

T
n
(`)
j

` f`(x0)

)
− f0

∏̀
`=1

T
n
(`)
j

` f`

)∣∣∣∣∣
 .

In light of this decomposition, we make separate estimates on

∣∣∣∣∣αCk
((

f0(x0)
∏̀
`=1

T
n
(`)
j

` f`(x0)

)
− f0

∏̀
`=1

T
n
(`)
j

` f`

)∣∣∣∣∣
based on whether j ∈ Ak or j ∈ {0, 1, . . . , k − 1} \Ak.

If j ∈ Ak, and x ∈ Ak, then p
(
T
n
(`)
j

` x, T
n
(`)
j

` x0

)
< δ. Using an elementary “telescoping” estimate, it

follows that

∣∣∣∣∣
(
f0(x)

∏̀
`=1

T
n
(`)
j

` f`(x)

)
−

(
f0(x0)

∏̀
`=1

T
n
(`)
j

` f`(x0)

)∣∣∣∣∣
≤

L∑
h=0

(
h−1∏
`=0

∣∣∣∣f`(Tn(`)
j

` x

)∣∣∣∣
) ∣∣∣∣fh(Tn(h)

j

h x

)
− fh

(
T
n
(h)
j

h x0

)∣∣∣∣
(∣∣∣∣∣

L∏
`=h+1

f`

(
T
n
(`)
j

` x0

)∣∣∣∣∣
)

≤
L∑
h=0

Mh ε

2(L+ 1)ML
ML−h

= ε/2.
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On the other hand, if j ∈ Bk, then

∣∣∣∣∣αCk
((

f0(x0)
∏̀
`=1

T
n
(`)
j

` f`(x0)

)
− f0

∏̀
`=1

T
n
(`)
j

` f`

)∣∣∣∣∣
≤

∥∥∥∥∥
(
f0(x0)

∏̀
`=1

T
n
(`)
j

` f`(x0)

)
− f0

∏̀
`=1

T
n
(`)
j

` f`

∥∥∥∥∥
≤(2M)L+1

=2L+1ML+1.

Now, choose K ∈ N such that if k ≥ K, then

|{0, 1, . . . , k − 1} \Ak|
k

≤ ε

2L+2ML+1
.

Then for all k ≥ K, we have∣∣∣∣∣∣
k−1∑
j=0

f0(x0)
∏̀
`=1

T
n
(`)
j

` f`(x0)

− αCk
k−1∑
j=0

f0

∏̀
`=1

T
n
(`)
j

` f`

∣∣∣∣∣∣
≤1

k

k−1∑
j=0

∣∣∣∣∣
(
f0(x0)

∏̀
`=1

T
n
(`)
j

` f`(x0)

)
− αCk

(
f0

∏̀
`=1

T
n
(`)
j

` f`

)∣∣∣∣∣
=

1

k

k−1∑
j=0

∣∣∣∣∣αCk
((

f0(x0)
∏̀
`=1

T
n
(`)
j

` f`(x0)

)
− f0

∏̀
`=1

T
n
(`)
j

` f`

)∣∣∣∣∣
=

1

k

∑
j∈Ak

∣∣∣∣∣αCk
((

f0(x0)
∏̀
`=1

T
n
(`)
j

` f`(x0)

)
− f0

∏̀
`=1

T
n
(`)
j

` f`

)∣∣∣∣∣


+
1

k

 ∑
j∈{0,1,...,k−1}\Ak

∣∣∣∣∣αCk
((

f0(x0)
∏̀
`=1

T
n
(`)
j

` f`(x0)

)
− f0

∏̀
`=1

T
n
(`)
j

` f`

)∣∣∣∣∣


≤|Ak|
k

ε

2
+
|{0, 1, . . . , k − 1} \Ak|

k
2L+1ML+1.

≤ ε
2

+
ε

2L+2ML+1
2L+1ML+1

=ε.

Therefore

lim
k→∞

∣∣∣∣∣∣
k−1∑
j=0

f0(x0)
∏̀
`=1

T
n
(`)
j

` f`(x0)

− αCk
k−1∑
j=0

f0

∏̀
`=1

T
n
(`)
j

` f`

∣∣∣∣∣∣ = 0.
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Theorem 3.3.12 can be used to convert pointwise convergence results for nonconventional ergodic

averages into convergence results for random temporo-spatial averages, as shown by the following result.

Corollary 3.3.13. Let (X, p) be a compact pseudometric space, and let T1, . . . , TL be a family of homeo-

morphisms T` : X → X . Let µ be a regular Borel probability measure on X invariant under each T`. Let(
n

(1)
j

)∞
j=1

, . . . ,
(
n

(L)
j

)∞
j=1

be sequences of integers.

For each point x ∈ X , let (Ck(x))∞k=1 be a sequence of measurable subsets of X with positive measure

for which x ∈ Ck(x) and suppose that for each ` = 1, . . . , `, and every δ ∈ (0,∞), we have that

∣∣∣∣{j ∈ {0, 1, . . . , k − 1} : diam

(
T
n
(`)
j

` Ck(x)

)
≥ δ
}∣∣∣∣

k
→ 0.

Let f0, f1, . . . , fL ∈ C(X), and suppose that f∗ ∈ L∞(X,µ) such that

lim
k→∞

1

k

k−1∑
j=0

f0(x)
∏̀
`=1

T
n
(`)
j

` f`(x) = f∗(x)

for almost all x ∈ X . Then

lim
k→∞

αCk(x)

1

k

k−1∑
j=0

f0

∏̀
`=1

T
n
(`)
j

` f`

 = f∗(x)

for almost all x ∈ X .

Proof. Set

E =

x ∈ X : lim
k→∞

1

k

k−1∑
j=0

f0(x)
∏̀
`=1

T
n
(`)
j

` f`(x) = f∗(x)

 .

If x ∈ E, then Theorem 3.3.12 tells us that

lim
k→∞

αCk(x)

1

k

k−1∑
j=0

f0

∏̀
`=1

T
n
(`)
j

` f`

 = f∗(x).
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3.4 Weighed temporo-spatial differentiation theorems

For the duration of this section, we narrow our attention to the case where G = Z, and introduce a

generalized form of a temporo-spatial differentiation problem. We also adopt the common notation that the

action of the integer n ∈ Z be written as Tn. Let (X,µ) consist of a compact pseudometrizable space X

endowed with a Borel probability measure µ, and let T : X → X be a homeomorphism. A weight on X is a

measurable function X → T, where T = {z ∈ C : |z| = 1}. For convenience, write

AvgξF f :=
1

|F |
∑
j∈F

ξj ·
(
f ◦ T j

)
,

where F is a finite nonempty subset of Z. Let (Ck)
∞
k=1 be a sequence of measurable subsets of X with

µ(Ck) > 0 for all k ∈ N, and let f ∈ L∞(X,µ). What can be said of the limiting behavior of the sequence

αCk

(
AvgξFk f

)∞
k=1

?

Moreover, suppose Ξ is some family of measurable functions X → T. What can be said about the limiting

behavior of the sequence

αCk

(
AvgξFk f

)∞
k=1

for all ξ ∈ Ξ?

We consider this problem in analogy with a classical problem of pointwise weighted temporal averages.

Wiener-Wintner pointwise ergodic theorem. Let (X,µ) be a standard probability space, and let T be an

automorphism of the probability space (X,µ). Set [k] = {0, 1, . . . , k − 1} ⊆ Z. Then for each f ∈ L1(µ)

exists a set Xf ⊆ X of full measure such that for all x ∈ Xf , and all θ ∈ T, the sequence

(
Avgθ[k] f(x)

)∞
k=1

converges, where we identify the unimodular complex number θ with the constant function x 7→ θ on X .

The first alleged proof of the Wiener-Wintner Theorem was presented in (Wiener and Wintner, 1941), but

the argument presented was found to be incorrect. However, several proofs of the result have been presented

since then. See (Assani, 2003, Chapter 2) for a discussion of several different approaches to the result.
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As in Section 3.3, we present a very general result that allows us to reduce certain temporo-spatial

problems to certain pointwise temporal problems. Afterwards, we provide specific examples of this reduction.

Before we can prove Proposition 3.4.3, we introduce some terminology and prove an elementary technical

lemma.

Definition 3.4.1. Let ξ : (X, p) → C be a complex-valued function on a pseudometric space (X, p). A

modulus of uniform continuity for ξ is a function ∆ : (0, 1)→ (0,∞) such that

∀ε ∈ (0, 1) ∀x1, x2 ∈ X [(p(x1, x2) ≤ ∆(ε))⇒ |ξ(x1)− ξ(x2)| ≤ ε] .

Given a family Ξ of functions (X, p) → C, we call a function ∆ : (0, 1) → (0,∞) a modulus of uniform

equicontinuity for Ξ if ∆ is a modulus of uniform continuity for all ξ ∈ Ξ.

A function ξ is of course uniformly continuous if and only if it admits a modulus of uniform continuity,

and a family Ξ is uniformly equicontinuous if and only if it admits a modulus of uniform equicontinuity.

Note we make no assumption that a modulus of uniform continuity or modulus of uniform equicontinuity is

the “best possible” choice. For example, if Ξ = {1} consists solely of the constant function 1, then any map

(0, 1)→ (0, 1) would be both a modulus of uniform continuity for 1 and a modulus of uniform equicontinuity

for Ξ.

Lemma 3.4.2. Let (X, ρ) be a compact pseudometric space, and let Ξ be a uniformly equicontinuous family

of functions (X, p)→ T with modulus of uniform equicontinuity ∆. Then Ξj =
{
ξj : ξ ∈ Ξ

}
is a uniformly

equicontinuous family for all j ∈ Z, and if j 6= 0, then ε 7→ ∆ (ε/|j|) is a modulus of uniform equicontinuity

for Ξj .

Proof. If j = 0, then Ξj = {1}, which is trivially uniformly equicontinuous, and in fact any map (0, 1)→

(0, 1) whatsoever will be a modulus of uniform equicontinuity for Ξ0. Now assume that j 6= 0.
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We prove this first for j ∈ N, i.e. j = |j| > 0. Let x1, x2 ∈ X, ξ ∈ Ξ. We set up a telescoping sum

∣∣ξj(x1)− ξj(x2)
∣∣ =

∣∣∣∣∣∣(ξ(x1)− ξ(x2))

j−1∑
p=0

ξp(x1)ξj−p−1(x2)

∣∣∣∣∣∣
= |ξ(x1)− ξ(x2)| ·

∣∣∣∣∣∣
j−1∑
p=0

ξp(x1)ξj−p−1(x2)

∣∣∣∣∣∣
≤ |ξ(x1)− ξ(x2)| ·

p−1∑
j=0

∣∣ξp(x1)ξj−p−1(x2)
∣∣

= |ξ(x1)− ξ(x2)| · j.

Now, in the case where j < 0, i.e. j = −|j|, we observe that Ξj =
(
Ξ|j|
)−1

=
{
ζ : ζ ∈ Ξj

}
, and

conjugation is an isometry.

Proposition 3.4.3. Let (X, p) be a compact pseudometric space, and let T : X y X be a homeomorphism of

X . Let µ be a regular Borel probability measure on X . Fix a point x0 ∈ X , and for each n ∈ Z, r ∈ (0,∞),

let Dx0(j, r) be the value

Dx0(j, r) = sup
{
p
(
T jx0, T

jx
)

: x ∈ X, p(x0, x) ≤ r
}
.

Let (Fk)
∞
k=1 be a sequence of finite nonempty subsets of Z. Let Ξ be a uniformly equicontinuous family

of continuous functions X → T, and for each j ∈ Z, let ∆j be a modulus of uniform equicontinuity for

Ξj . Let (Ck)
∞
k=1 be a sequence of measurable subsets of X such that µ(Ck) > 0 and x0 ∈ Ck for all k ∈ N.

Suppose that for every δ > 0, ε > 0, we have

lim
k→∞

|{j ∈ Fk : Dx0(g,diam(Ck)) > δ}|
|Fk|

= 0,

lim
k→∞

∣∣{j ∈ Fk : diam (Ck) > ∆j(ε)
}∣∣

|Fk|
= 0.

Let f ∈ C(X). Finally, suppose there exists a constant λ > 0 such that µ
(
T jCk

)
≤ λµ(Ck) for all j ∈ N.

Then for all ξ ∈ Ξ, we have

lim
k→∞

∣∣∣(AvgξFk f
)

(x0)− αCk
(

AvgξFk f
)∣∣∣ = 0,
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and the convergence is uniform in ξ ∈ Ξ.

Proof. Our proof of this result is similar in structure to our proof of Lemma 3.3.2, but with the added wrinkle

of accounting for how the weight affects our averages.

Fix ε > 0, and let ξ ∈ Ξ. Since f is uniformly continuous, there exists δ1 > 0 such that if y1, y2 ∈ X ,

and p(y1, y2) ≤ δ, then |f(y1)− f(y2)| ≤ ε
4λmax{1,‖f‖u} , where ‖ · ‖u denotes the uniform norm on C(X).

Write

Ak =

{
j ∈ Fk : Dx0(j,diam(Ck)) ≤ δ, diam

(
T jCk

)
≤ ∆j

(
ε

4λmax{1, ‖f‖u}

)}
,

Bk = Fk \Ak.

Our hypothesis tells us that |Ak|/|Fk| → 1, |Bk|/|Fk| → 0. We estimate

∣∣∣(AvgξFk f
)

(x0)− αCk
(

AvgξFk

)∣∣∣
=
∣∣∣αCk ((AvgξFk f

)
(x0)−AvgξFk f

)∣∣∣
=

∣∣∣∣∣∣αCk
 1

|Fk|
∑
j∈Fk

[
ξ(x0)jf

(
T jx0

)
− ξj

(
f ◦ T j

)]∣∣∣∣∣∣
≤

∣∣∣∣∣∣αCk
 1

|Fk|
∑
j∈Ak

[
ξ(x0)jf

(
T jx0

)
− ξj

(
f ◦ T j

)]∣∣∣∣∣∣
+

∣∣∣∣∣∣αCk
 1

|Fk|
∑
j∈Bk

[
ξ(x0)jf

(
T jx0

)
− ξj

(
f ◦ T j

)]∣∣∣∣∣∣
We estimate these two terms separately, starting with the first.
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If j ∈ Ak, then

∣∣αCk (ξ(x0)jf
(
T jx0

)
− ξj

(
f ◦ T j

))∣∣
=

∣∣∣∣ 1

µ(Ck)

∫
Ck

(
ξj(x0)f

(
T jx0

)
− ξj(x)f

(
T jx

))
dµ(x)

∣∣∣∣
≤ 1

µ(Ck)

∫
Ck

∣∣ξj(x0)f
(
T jx0

)
− ξj(x)f

(
T jx

)∣∣ dµ(x)

=
1

µ(Ck)

∫
T jCk

∣∣ξj (x0) f
(
T jx0

)
− ξj

(
T−jy

)
f (y)

∣∣dµ(y)

≤ λ

µ (T jCk)

∫
T jCk

∣∣ξj (x0) f
(
T jx0

)
− ξj

(
T−jy

)
f (y)

∣∣ dµ(y)

≤ λ

µ (T jCk)

∫
T jCk

∣∣ξj (x0) f
(
T jx0

)
− ξj(x0)f (y)

∣∣ dµ(y)

+
λ

µ (T jCk)

∫
T jCk

∣∣ξj (x0) f (y)− ξj
(
T−jy

)
f (y)

∣∣dµ(y)

=
λ

µ (T jCk)

∫
T jCk

∣∣ξj(x0)
∣∣ ∣∣f (T jx0

)
− f (y)

∣∣dµ(y)

+
λ

µ (T jCk)

∫
T jCk

∣∣ξj (x0)− ξj
(
T−jy

)∣∣ · |f(y)| dµ(y)

≤ λ

µ (T jCk)

∫
T jCk

∣∣f (T jx0

)
− f (y)

∣∣ dµ(y)

+
λ

µ (T jCk)

∫
T jCk

∣∣ξj (x0)− ξj
(
T−jy

)∣∣ · ‖f‖∞ dµ(y).

First, if y ∈ T jCk, and Dx0 (j,diam(Ck) ≤ δ), then p
(
T jx0, y

)
≤ δ, meaning that

λ

µ (T jCk)

∫
T jCk

∣∣f (T jx0

)
− f (y)

∣∣dµ(y) ≤ ε

4
,

and y ∈ T jCk ⇒ T−jy ∈ Ck, meaning that p
(
x0, T

−jy
)
≤ diam(Ck) ≤ ∆j

(
ε

4λmax{1,‖f‖u}

)
, so

λ

µ (T jCk)

∫
T jCk

∣∣ξj (x0)− ξj
(
T−jy

)∣∣ · ‖f‖∞ dµ(y) ≤ ε

4
.

Thus ∣∣∣∣∣∣αCk
 1

|Fk|
∑
j∈Ak

[
ξ(x0)jf

(
T jx0

)
− ξj

(
f ◦ T j

)]∣∣∣∣∣∣ ≤ ε

2
.
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Suppose now that j ∈ Bk. By a computation similar to the one performed for the case where j ∈ Ak, we

get

∣∣ξ(x0)jf
(
T jx0

)
− ξj

(
f ◦ T j

)∣∣
≤ λ

µ (T jCk)

∫
T jCk

∣∣ξj (x0) f
(
T jx0

)
− ξj

(
T−jy

)
f (y)

∣∣dµ(y)

≤ λ

µ (T jCk)

∫
T jCk

(∣∣ξj (x0) f
(
T jx0

)∣∣+
∣∣ξj (T−jy) f (y)

∣∣) dµ(y)

≤ λ

µ (T jCk)
µ
(
T jCk

)
(2‖f‖u)

=2λ‖f‖u.

Choose K ∈ N such that if k ≥ K, then |Bk||Fk| ≤
ε

4λmax{1,‖f‖u} . Then if k ≥ K, we have

∣∣∣(AvgξFk f
)

(x0)− αCk
(

AvgξFk

)∣∣∣
≤

∣∣∣∣∣∣αCk
 1

|Fk|
∑
j∈Ak

[
ξ(x0)jf

(
T jx0

)
− ξj

(
f ◦ T j

)]∣∣∣∣∣∣
+

∣∣∣∣∣∣αCk
 1

|Fk|
∑
j∈Bk

[
ξ(x0)jf

(
T jx0

)
− ξj

(
f ◦ T j

)]∣∣∣∣∣∣
≤ ε

2
+
ε

2

= ε.

We note that our estimates on K were independent of our choice of ξ ∈ Ξ, meaning the convergence is

uniform in ξ.

With this in mind, we can state the following.

Theorem 3.4.4. Let (X, p) be a compact pseudometric space, and let T : X y X be a homeomorphism of

X . Let µ be a regular Borel probability measure on X . Suppose there exist functions H,L : Z → (0,∞)

such that

p (T gx, T gy) ≤ L(j) · p(x, y)H(j) (∀j ∈ Z, x ∈ X, y ∈ X) .
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Let (Fk)
∞
k=1 be a sequence of finite nonempty subsets of Z. Let Ξ be a uniformly equicontinuous family

of continuous functions X → T, and for each j ∈ Z, let ∆j be a modulus of uniform equicontinuity for

Ξj . Let (Ck)
∞
k=1 be a sequence of measurable subsets of X such that µ(Ck) > 0 and x0 ∈ Ck for all k ∈ N.

Suppose that for every δ > 0, ε > 0, we have

lim
k→∞

∣∣{j ∈ Fk : L(j) · diam(Ck)
H(j) > δ

}∣∣
|Fk|

= 0,

lim
k→∞

∣∣{j ∈ Fk : diam (Ck) > ∆j(ε)
}∣∣

|Fk|
= 0.

Let x0 ∈ X be a point in X , and let f : X → C be a uniformly bounded continuous function Finally, suppose

there exists a constant λ > 0 such that µ
(
T jCk

)
≤ λµ(Ck) for all j ∈ N. Then for all ξ ∈ Ξ, we have

lim
k→∞

∣∣∣(AvgξFk f
)

(x0)− αCk
(

AvgξFk f
)∣∣∣ = 0,

and the convergence is uniform in ξ ∈ Ξ.

Proof. We have the bound Dx0(j, r) ≤ L(j) · rH(j). We can thus apply Lemma 3.4.3.

Corollary 3.4.5. Let (X, ρ) be a compact metric space, and let T : X → X be a homeomorphism. Let µ

be a Borel probability measure on X that’s T -invariant. Let f ∈ C(X). For each x ∈ X , let Ck(x) be a

measurable subset of X with positive measure such that

lim
k→∞

|{j ∈ [k] : Dx(j,diam(Ck(x))) > δ}|
k

= 0,

lim
k→∞

∣∣{j ∈ [k] : diam (Ck(x)) > ∆j(ε)
}∣∣

k
= 0.

Then for every f ∈ C(X) exists a set Xf ⊆ X of full measure such that for all x ∈ Xf , and all θ ∈ T, the

sequence (
αCk(x)

(
Avgθ[k]

))∞
k=1

converges.
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Proof. By the Wiener-Wintner pointwise ergodic theorem, there exists a set Xf ⊆ X of full measure such

that for all x ∈ Xf , and all θ ∈ T, the sequence

(
Avgθ[k] f(x)

)∞
k=1

converges. By Lemma 3.4.3, it follows that limk→∞

∣∣∣αCk(x)

(
Avgθ[k] f

)
−
(

Avgθ[k] f(x)
)∣∣∣ = 0. Thus the

sequence converges.

We now consider a different class of weighting sequences, where we choose our weights to be constant

functions, but loosen our assumptions about boundedness. Given a sequence F = (Fk)
∞
k=1 of finite subsets

of Z, set

MF :=

(ak)k∈Z ∈ CZ : sup
`∈N

1

|F`|
∑
j∈F`

|aj | <∞

 .

We also introduce the notation

AvgaF :=
1

|F |
∑
j∈F

ajf ◦ T j ,

where F is a finite subset of Z.

Our next result establishes that under a rapidly decaying diameter condition, temporo-spatial differen-

tiations involving weighted ergodic means for continuous functions can be reduced to pointwise temporal

averages. The twist here is that the diameter decay condition also hinges on the weighting sequence.

Proposition 3.4.6. Let (X, p) be a compact pseudometric space, and let T : X y X be a homeomorphism of

X . Let µ be a regular Borel probability measure on X . Fix a point x0 ∈ X , and for each n ∈ Z, r ∈ (0,∞),

let Dx0(j, r) be the value

Dx0(j, r) = sup
{
p
(
T jx0, T

jx
)

: x ∈ X, p(x0, x) ≤ r
}
.

Let F = (Fk)
∞
k=1 be a sequence of finite nonempty subsets of Z. Let (ak)

∞
k=0 ∈MF, and let (Ck)

∞
k=1

be a sequence of measurable subsets of X such that µ(Ck) > 0 and x0 ∈ Ck for all k ∈ N. Suppose that for

every δ > 0, we have

lim
k→∞

1

|Fk|
∑

j∈Fk, Dx0 (j,diam(Ck))>δ

|aj | = 0,
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Let f : X → C be a continuous function. Finally, suppose there exists a constant λ > 0 such that

µ
(
T jCk

)
≤ λµ(Ck) for all j ∈ N. Then we have

lim
k→∞

∣∣(AvgaFk f
)

(x0)− αCk
(
AvgaFk f

)∣∣ = 0.

Proof. Fix ε > 0. Appealing to the uniform continuity and boundedness of f , choose δ > 0 such that

p(y1, y2) ≤ δ ⇒ |f(y1)− f(y2)| ≤ ε.

Set

Ak = {j ∈ Fk : Dx0(j,diam(Ck)) ≤ δ} ,

Bk = {j ∈ Fk : Dx0(j,diam(Ck)) > δ} .

Then |Ak||Fk| ≤ 1, and 1
|Fk|

∑
j∈Bk |aj | → 0. Using a calculation similar to that used in our proof of Proposition

3.4.3, we get

∣∣(AvgaFk f
)

(x0)− αCk
(
AvgaFk

)∣∣ ≤
∣∣∣∣∣∣αCk

 1

|Fk|
∑
j∈Ak

[
ajf

(
T jx0

)
− aj

(
f ◦ T j

)]∣∣∣∣∣∣
+

∣∣∣∣∣∣αCk
 1

|Fk|
∑
j∈Bk

[
ajf

(
T jx0

)
− aj

(
f ◦ T j

)]∣∣∣∣∣∣ .
As before, we’ll estimate these two terms separately. Many of the calculations done here are quite similar to

those used in our proof of Proposition 3.4.3, so we will be terser in our presentation here.
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First, suppose j ∈ Ak. Then

∣∣αCk (ajf (T jx0

)
− aj

(
f ◦ T j

))∣∣ =
|aj |
µ(Ck)

∣∣∣∣∫
Ck

(
f
(
T jx0

)
− f

(
T jx

))
dµ(x)

∣∣∣∣
≤ |aj |
µ(Ck)

∫
Ck

∣∣f (T jx0

)
− f

(
T jx

)∣∣ dµ(x)

≤ λ|aj |
1

µ (T jCk)

∫
T jCk

∣∣f (T jx0

)
− f (y)

∣∣ dµ(y)

≤ λ|aj |ε.

Therefore ∣∣∣∣∣∣αCk
 1

|Fk|
∑
j∈Ak

[
ajf

(
T jx0

)
− aj

(
f ◦ T j

)]∣∣∣∣∣∣
≤ 1

|Fk|
∑
j∈Ak

∣∣αCk (ajf (T jx0

)
− aj

(
f ◦ T j

))∣∣
≤ 1

|Fk|
∑
j∈Ak

λ|aj |ε

≤ 1

|Fk|
∑
j∈Fk

|aj |λε

≤

sup
`∈N
|F`|−1

∑
j∈F`

|aj |

λε.

Now, consider the case where j ∈ Bk. Then

∣∣αCk (ajf (T jx0

)
− aj

(
f ◦ T j

))∣∣ ≤ λ|aj | 1

µ (T jCk)

∫
T jCk

∣∣f (T jx0

)
− f (y)

∣∣ dµ(y)

≤ λ|aj | (2‖f‖u) .

99



Choose K ∈ N such that if k ≥ K, then 1
|Fk|

∑
j∈Bk |aj | ≤ ε. Then

∣∣∣∣∣∣αCk
 1

|Fk|
∑
j∈Ak

[
ajf

(
T jx0

)
− aj

(
f ◦ T j

)]∣∣∣∣∣∣ ≤ 1

|Fk|
∑
j∈Bk

λ|aj |(2‖f‖u)

≤ 2λ‖f‖u
1

|Fk|
∑
j∈Bk

|aj |

Therefore, if k ≥ K, we have

∣∣(AvgaFk f
)

(x0)− αCk
(
AvgaFk

)∣∣
≤

∣∣∣∣∣∣αCk
 1

|Fk|
∑
j∈Ak

[
ajf

(
T jx0

)
− aj

(
f ◦ T j

)]∣∣∣∣∣∣
+

∣∣∣∣∣∣αCk
 1

|Fk|
∑
j∈Bk

[
ajf

(
T jx0

)
− aj

(
f ◦ T j

)]∣∣∣∣∣∣
≤

sup
`∈N
|F`|−1

∑
j∈F`

|aj |

λε+ 2λ‖f‖uε

=λ

sup
`∈N
|F`|−1

∑
j∈F`

|aj |

+ 2‖f‖u

 ε.

This coefficient on ε is independent of our choice of k, so we can conclude that

lim
k→∞

∣∣(AvgaFk f
)

(x0)− αCk
(
AvgaFk f

)∣∣ = 0.
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Multi-local temporo-spatial differentiations

In this chapter, we focus on the case where the spatial averaging sequence (Ck)
∞
k=1 consists of finite

unions of balls, a setting we call “multi-local.” We study sufficient conditions for these corresponding

temporo-spatial differentiations to converge, as well as the existence and prevalence of pathological multi-

local temporo-spatial differentiations.

In Section 4.1, we establish several notations that will be used throughout the chapter, as well as some

standing assumptions and conventions.

In Section 4.2, we provide sufficient conditions for multi-local temporo-spatial differentations to converge.

We also show how these convergence results can fail if certain assumptions are relaxed.

In Section 4.3, we briefly present the theory of ergodic optimization. In particularly, we characterize the

maximum ergodic average in the context of continuous actions of amenable groups.

In Section 4.4, we construct multi-local temporo-spatial differentiations for a given real-valued con-

tinuous function f which have a prescribed compact set K as the set of limit points of the temporo-spatial

differentiation.

In Section 4.5, we consider temporo-spatial differentiations as sequences of measures

f 7→ 1

µ(Ck)

∫
µ(Ck)

k−1∑
j=0

T jfdµ

∞
k=1

,

and consider how to construct sequences (Ck)
∞
k=1 for which

LS
((
f 7→ 1

µ(Ck)

∫
Ck

∑k−1
j=0 T

jfdµ
)∞
k=1

)
is some prescribed subset of the Choquet simplex of T -invariant

Borel probability measures onX , where LS ((zk)
∞
k=1) denotes the set of all limits of convergent subsequences

of (zk)
∞
k=1 (defined in more detail in Section 4.1). In particular, we construct examples of (Ck)

∞
k=1 for which

LS
((
f 7→ 1

µ(Ck)

∫
Ck

∑k−1
j=0 T

jfdµ
)∞
k=1

)
is the entire Choquet simplex of T -invariant measures.

In Section 4.6, we show that for a system (X,T ) with a specification-like property that we call the

Very Weak Specification Property, there exists a residual set of x ∈ X that exhibit a strong form of the

101



maximal Birkhoff average oscillation property. Specifically, there exists a residual set of x ∈ X such that

LS
((
µx,π(k)

)∞
k=1

)
is the entire Choquet simplex of T -invariant measures for all non-constant polynomials

π(t) ∈ Q[t] such that π(N) ⊆ N, where µx,k are the the empirical measures µx,k = 1
k

∑k−1
j=0 δx ◦ T j for

x ∈ X . Consequently, for sequences (rk)
∞
k=1 of radii decaying to 0 sufficiently fast, we have for a residual

set of x ∈ X that LS
((
f 7→ 1

µ(B(x;rk))

∫
B(x;rk)

∑π(k)−1
j=0 T jfdµ

)∞
k=1

)
is the entire Choquet simplex of

T -invariant measures for all non-constant integer-valued polynomials π(t) that send nonnegative integers to

nonnegative integers.

4.1 Notations and conventions

Here we identify particular notations and conventions we adopt throughout this chapter. Individual

sections might place additional assumptions on some of the objects we define here. We also place more novel

definitions in the later sections of the chapter.

We will let (X, ρ) be a compact metric space, and T : Gy X will be a continuous monoidal left-action

of a discrete monoid G on X by continuous maps (Tg)g∈G (not necessarily invertible). That is to say, the

maps (Tg)g∈G will satisfy the laws

Tg1 ◦ Tg2 = Tg1g2 (∀g1, g2 ∈ G),

T1G = idX ,

where 1G denotes the identity element of G. We will use µ to denote a Borel probability measure on X ,

though we will not in general assume that µ is T -invariant. The support of µ will be denoted supp(µ).

Given a finite subset F of G, and a function f : X → C, we write

AvgF f :=
1

|F |
∑
g∈F

Tgf,

where Tgf := f ◦ Tg. Similarly, if β is a Borel probability measure on X , and E ⊆ X is a Borel subset of

X , we will write

(β ◦AvgF ) (E) :=
1

|F |
∑
g∈F

β
(
T−1
g E

)
.
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These notations are consistent with each other in the sense that if f ∈ C(X), then

∫
X
fd (β ◦AvgF ) =

∫
X

AvgF fdβ.

If no domain is specified for an integral
∫

, then the integral is assumed to be over X , i.e.
∫

:=
∫
X .

We will denote the space of all Borel probability measures on X byM(X). We will always consider

M(X) with the weak*-topology, makingMT (X) a Choquet simplex. We useMT (X) to denote the space

of T -invariant Borel probability measures on X , also equipped with the weak*-topology to makeMT (X) a

Choquet simplex.

We use ∂eS to denote the set of extreme points of a subset S of a real topological vector space, i.e. ∂eS

denotes the set of all points in S which cannot be expressed nontrivially as a convex combination of points in

S.

We will use N to denote the set of positive integers, and N0 to denote the set of nonnegative integers.

A sequence (Fk)
∞
k=1 of finite subsets of a group G is called Følner if

lim
k→∞

|Fk∆gFk|
|Fk|

= 0 (∀g ∈ G),

where | · | denotes cardinality and ∆ is the symmetric difference, i.e. A∆B = (A \B) ∪ (B \A).

Given a sequence (zk)
∞
k=1 in a topological space Z, we write

LS ((zk)
∞
k=1) :=

{
lim
`→∞

zk` : k1 < k2 < · · · , lim
`→∞

zk` exists
}

to denote the set of limit points of (zk)
∞
k=1, called the limit set of (zk)

∞
k=1.

4.2 Convergence results and their limitations

Definition 4.2.1. Let x̄ =
(
x(1), . . . , x(n)

)
∈ Xn, r̄ =

(
r(1), . . . , r(n)

)
∈ (0,∞)n. We write

B (x̄; r̄) :=

n⋃
h=1

B
(
x(h), r(h)

)
,

where B (x; r) := {y ∈ X : ρ(x, y) < r} is the open ball with center x and radius r. We refer to sets of the

form B(x̄; r̄) as multi-balls.
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Lemma 4.2.2. Every multi-ball B
(
x(1), . . . , x(n); r(1), . . . , r(n)

)
can be expressed in the form

B
(
y(1), . . . , y(m); s(1), . . . , s(m)

)
,

where y(1), . . . , y(m) are distinct.

Proof. If x(1), . . . , x(n) are not already distinct, then we can write{
x(1), . . . , x(n)

}
=
{
x(h1), . . . , x(hm)

}
, where h1, . . . , hm ∈ {1, . . . , n}, and x(h1), . . . , x(hm) are distinct.

Then

B
(
x(1), . . . , x(n); r(1), . . . , r(n)

)
= B

(
y(1), . . . , y(p); s(1), . . . , s(m)

)
,

where y(p) = x(hp), s(p) = max
{
r(h) : x(h) = y(p)

}
.

Definition 4.2.3. Let (X, ρ) be a compact metric space, and let T : G y X be an action of a discrete

semigroup G by Hölder maps Tg equipped with functions H,L : G→ (0,∞) such that

ρ (Tgx, Tgy) ≤ L(g) · ρ(x, y)H(g) (∀g ∈ G, x ∈ X, y ∈ X).

We refer to the pair (H,L) as a modulus of Hölder continuity (abbreviated MoHöC) for T . Let F =

(Fk)
∞
k=1 be a sequence of nonempty finite subsets of G. We say that a sequence (r̄k)

∞
k=1 of n-tuples

r̄k =
(
r

(1)
k , . . . , r

(n)
k

)∞
k=1

of positive numbers decays (X, ρ,H,L,F)-fast if

lim
k→∞

∣∣∣∣{g ∈ Fk : L(g) ·
(
r

(h)
k

)H(g)
> δ

}∣∣∣∣
|Fk|

= 0 (∀δ ∈ (0,∞), h ∈ {1, . . . , n}),

lim
k→∞

r
(h)
k = 0 (∀h ∈ {1, . . . , n}).

An immediate observation about this definition is that if (r̄k)
∞
k=1 is a sequence of n-tuples of positive

numbers that decay (X, ρ,H,L,F)-fast, and (s̄k)
∞
k=1 is another sequence of n-tuples of positive numbers

for which there exists K ∈ N such that s(h)
k ≤ r

(h)
k for all h ∈ {1, . . . , n}, k ≥ K, then (s̄k)

∞
k=1 decays

(X, ρ,H,L,F)-fast. So we have in fact described a rapid decay condition. Moreover, any system of Hölder

maps with MoHöC (H,L) will admit a sequence (rk)
∞
k=1 that decays (X, ρ,H,L,F)-fast.
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Our assumption that limk→∞ r
(h)
k = 0 ensures that if x(1), . . . , x(h) are distinct points in X , then the

balls
{
B
(
x(h); r

(h)
k

)}n
h=1

are pairwise disjoint for sufficiently large k, since for sufficiently large k we’ll

have that

max
{
r

(1)
k , . . . , r

(n)
k

}
<

1

2
min

{
ρ
(
x(h1), x(h2)

)
: 1 ≤ h1 < h2 ≤ n

}
.

For the remainder of this section, T : Gy X will be an action of a discrete group G on X by Hölder

homoeomorphisms with MoHöC (H,L), and F = (Fk)
∞
k=1 will be a sequence of nonempty finite subsets of

G.

Notation 4.2.4. Let µ be a Borel probability measure on X , and let E ⊆ X be a µ-measurable set such that

µ(E) > 0. The functional αE : C(X)→ C is defined as

αE(f) :=
1

µ(E)

∫
E
fdµ.

We will sometimes also treat αE instead as a Borel probability measure αE : A 7→ µ(A|E). These

interpretations are consistent with each other in the sense that αE(f) =
∫
fdαE for all f ∈ C(X).

Lemma 4.2.5. Let x ∈ X , and let (rk)
∞
k=1 be a sequence of positive numbers that decays

(X, ρ,H,L,F)-fast, and suppose f ∈ C(X). Let µ be a Borel probability measure on X , and let

x ∈ supp(µ). Then

lim
k→∞

(
αB(x;rk)

(
AvgFk f

)
−AvgFk f(x)

)
= 0.

Moreover, if f satisfies the Hölder condition

|f(y)− f(z)| ≤ c · ρ(y, z)β (∀y, z ∈ X),

for some constants c, β ∈ (0,∞), then

∣∣αB(x;rk)

(
AvgFk f

)
−AvgFk f(x)

∣∣ ≤ c

|Fk|
∑
g∈Fk

L(g)β · rβH(g)
k .
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Proof. Fix ε > 0. Since f is continuous and X is compact, we know that f is uniformly continuous, meaning

that there exists δ > 0 such that

ρ(y, z) ≤ δ ⇒ |f(y)− f(z)| ≤ ε.

Set

Ak =
{
g ∈ Fk : L(g) · rH(g)

k ≥ δ
}
.

By the hypothesis that (rk)
∞
k=1 decays (X, ρ,H,L,F)-fast, we know that limk→∞

|Ak|
|Fk| = 0.

We estimate

∣∣αB(x;rk)

(
AvgFk f

)
−AvgFk f(x)

∣∣
=

∣∣∣∣∣∣ 1

µ(B(x; rk))

∫
B(x;rk)

1

|Fk|
∑
g∈Fk

(f(Tgy)− f(Tgx)) dµ(y)

∣∣∣∣∣∣
≤ 1

|Fk|
∑
g∈Fk

1

µ(B(x; rk))

∫
B(x;rk)

|f(Tgy)− f(Tgx)|dµ(y) (†)

=

 1

|Fk|
∑
g∈Ak

1

µ(B(x; rk))

∫
B(x;rk)

|f(Tgy)− f(Tgx)| dµ(y)


+

 1

|Fk|
∑

g∈Fk\Ak

1

µ(B(x; rk))

∫
B(x;rk)

|f(Tgy)− f(Tgx)|dµ(y)

 .

We will return to the line marked (†) when we compute the estimate for the case where f is Hölder. For now,

we estimate these two terms separately.

1

|Fk|
∑
g∈Ak

1

µ(B(x; rk))

∫
B(x;rk)

|f(Tgy)− f(Tgx)| dµ(y)

≤ 1

|Fk|
∑
g∈Ak

1

µ(B(x; rk))

∫
B(x;rk)

‖2f‖C(X) dµ(y)

=
2|Ak|
|Fk|

‖f‖C(X).

Choose K ∈ N sufficiently large that |Ak||Fk| ≤ ε. Then for k ≥ K, we have that

2|Ak|
|Fk|

‖f‖C(X) ≤ 2‖f‖C(X)ε.
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For the other of second of the two aforementioned terms, we observe that if g ∈ Fk \Ak, then

ρ(Tgy, Tgx) ≤ L(g) · ρ(x, y)H(g)

≤ δ

⇒ |f(Tgy)− f(Tgx)| ≤ ε.

Thus

1

|Fk|
∑

g∈Fk\Ak

1

µ(B(x; rk))

∫
B(x;rk)

|f(Tgy)− f(Tgx)|dµ(y)

≤ 1

|Fk|
∑

g∈Fk\Ak

1

µ(B(x; rk))

∫
B(x;rk)

εdµ(y)

=
|Fk| − |Ak|
|Fk|

ε

≤ε.

Therefore, if k ≥ K, then

∣∣αB(x;rk)

(
AvgFk f

)
−AvgFk f(x)

∣∣ ≤ (2‖f‖C(X) + 1
)
ε.
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Finally, in the case where we have the additional hypothesis that f is (c, β)-Hölder, we can instead

estimate the earlier (†) as

1

|Fk|
∑
g∈Fk

1

µ(B(x; rk))

∫
B(x;rk)

|f(Tgy)− f(Tgx)| dµ(y)

≤ 1

|Fk|
∑
g∈Fk

1

µ(B(x; rk))

∫
B(x;rk)

c · ρ(Tgy, Tgx)βdµ(y)

≤ 1

|Fk|
∑
g∈Fk

1

µ(B(x; rk))

∫
B(x;rk)

c ·
(
L(g) · ρ(x, y)H(g)

)β
dµ(y)

≤ 1

|Fk|
∑
g∈Fk

1

µ(B(x; rk))

∫
B(x;rk)

c ·
(
L(g) · rH(g)

k

)β
dµ(y)

=
1

|Fk|
∑
g∈Fk

1

µ(B(x; rk))

∫
B(x;rk)

c ·
(
L(g)β · rβH(g)

k

)
dµ(y)

=
c

|Fk|
∑
g∈Fk

L(g)β · rβH(g)
k .

The upshot of Lemma 4.2.5 is that when we consider temepero-spatial differentiations with respect to

balls of radius decaying sufficiently fast centered at a fixed point x0, this temporo-spatial differentiation is

equivalent to a pointwise (temporal) ergodic average. On one hand, this means that we can consider certain

“random” temepero-spatial differentiations by appealing to pointwise convergence theorems, as in Corollary

4.2.10. On another hand, this means that we can use pathological pointwise ergodic averages to generate

pathological temporo-spatial differentiations, as we will see in Section 4.6.

The following lemma lets us describe temporo-spatial averages over multi-balls in terms of temporo-

spatial averages over balls, and will be useful going forward.

Lemma 4.2.6. Let µ be a Borel probability measure on X , and let

x(1), . . . , x(n) ∈ supp(µ); r(1), . . . , r(n) ∈ (0, 1) such that the balls
{
B
(
x(h); r(h)

)}n
h=1

are pairwise dis-

joint. Let f ∈ L1(X,µ). Then

αB(x̄,r̄)(f) =

n∑
h=1

µ
(
B
(
x(h); r(h)

))
µ
(
B
(
x(1); r(1)

))
+ · · ·+ µ

(
B
(
x(n); r(n)

))αB(x(h);r(h))(f).
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Proof.

αB(x̄;,r̄)(f) =
1

µ(B(x̄; , r̄))

∫
B(x̄;r̄)

fdµ

=

n∑
h=1

1∑n
u=1 µ

(
B
(
x(u); r(u)

)) ∫
B(x(h);r(h))

fdµ

=

n∑
h=1

µ
(
B
(
x(h); r(h)

))∑n
u=1 µ

(
B
(
x(u); r(u)

)) 1

µ
(
B
(
x(h); r(h)

)) ∫
B(x(h);r(h))

fdµ

=
n∑
h=1

µ
(
B
(
x(h); r(h)

))
µ
(
B
(
x(1); r(1)

))
+ · · ·+ µ

(
B
(
x(n); r(n)

))αB(x(h);r(h))(f)

Theorem 4.2.7. Let (r̄k)
∞
k=1 be a sequence that decays (X, ρ,H,L,F)-fast, and let f ∈ C(X). Suppose

x̄ =
(
x(1), . . . , x(n)

)
is an n-tuple in X such that

lim
k→∞

AvgFk f
(
x(h)

)
= C (∀h ∈ {1, . . . , n}),

where C is independent of h, and let µ be a Borel probability measure on X for which x(1), . . . , x(n) ∈

supp(µ). Then

lim
k→∞

αB(x̄;r̄k)

(
AvgFk f

)
= C.

Proof. By Lemma 4.2.2, we can assume without loss of generality that x(1), . . . , x(n) are distinct. Because

r
(h)
k → 0, we know that for sufficiently large k, we’ll have

B (x̄; r̄k) =

n⊔
h=1

B
(
x(h); r

(h)
k

)
,
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where B (x; r) := {y ∈ X : ρ(x, y) < r} is the open ball with center x and radius r, and t denotes disjoint

union. We therefore estimate that

∣∣αB(x̄;r̄k)

(
AvgFk f

)
− C

∣∣
=

∣∣∣∣∣∣ 1

µ(B(x̄; r̄k))

∫
B(x̄;r̄k)

1

|Fk|
∑
g∈Fk

(f(Tgy)− C) dµ(y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

µ(B(x̄; r̄k))

n∑
h=1

∫
B
(
x(h);r

(h)
k

) 1

|Fk|
∑
g∈Fk

(f(Tgy)− C) dµ(y)

∣∣∣∣∣∣
≤

n∑
h=1

∣∣∣∣∣∣ 1

µ(B(x̄; r̄k))

∫
B
(
x(h);r

(h)
k

) 1

|Fk|
∑
g∈Fk

(f(Tgy)− C) dµ(y)

∣∣∣∣∣∣
≤

n∑
h=1

∣∣∣∣∣∣ 1

µ
(
B
(
x(h); r

(h)
k

)) ∫
B
(
x(h);r

(h)
k

) 1

|Fk|
∑
g∈Fk

(f(Tgy)− C) dµ(y)

∣∣∣∣∣∣
=

n∑
h=1

∣∣∣∣αB(x(h);r(h)k

) (AvgFk f − C
)∣∣∣∣

≤
n∑
h=1

(∣∣∣∣αB(x(h);r(h)k

) (AvgFk f −AvgFk(x)
)∣∣∣∣+

∣∣∣∣αB(x(h);r(h)k

) (AvgFk f(x)− C
)∣∣∣∣)

=

n∑
h=1

(∣∣∣∣αB(x(h);r(h)k

) (AvgFk f −AvgFk

(
x(h)

))∣∣∣∣+
∣∣∣AvgFk f

(
x(h)

)
− C

∣∣∣)
k→∞→ 0,

where the limit in the last line follows from Lemma 4.2.5.

We recall here the following definition.

Definition 4.2.8. Let (Fk)
∞
k=1 be a sequence of nonempty finite subsets of a group G. We say that (Fk)

∞
k=1

is tempered if there exists a constant c > 0 such that

∣∣∣∣∣∣
k−1⋃
j=1

F−1
j Fk

∣∣∣∣∣∣ ≤ c|Fk| (∀k ≥ 2).

Lemma 4.2.9. Every Følner sequence (Fk)
∞
k=1 has a tempered subsequence. In particular, every amenable

group admits a tempered Følner sequence.

Proof. (Lindenstrauss, 2001, Proposition 1.4)
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The existence of tempered subsequences will be relevant to us in later sections.

Corollary 4.2.10. Suppose G is an amenable group, and F is a tempered Følner sequence. Suppose further

that µ is a Borel probability measure on X that is T -invariant and ergdic. Then for almost all x̄ ∈ Xn, we

have for all f ∈ C(X) and all sequences (r̄k)
∞
k=1 that decay (X, ρ,H,L,F)-fast that

lim
k→∞

αB(x̄;r̄k)

(
AvgFk f

)
=

∫
fdµ.

Proof. Since X is compact metrizable, it follows that C(X) is separable, so let {f`}`∈N be a countable dense

subset of C(X). For each ` ∈ N, set

X` =

{
x ∈ X : AvgFk f`(x) =

∫
f`dµ

}
.

By the Lindenstrauss ergodic theorem (Lindenstrauss, 2001, Theorem 3.3), each of these sets X` has full

probability, and so X ′ =
⋂
`∈NX` also has full probability. Thus (X ′)n is of full probability in Xn with

respect to the product measure µ× · · · × µ︸ ︷︷ ︸
n

.

Let x̄ ∈ (X ′)n, and let (r̄k)
∞
k=1 be a sequence of n-tuples of positive numbers that decay (X, ρ,H,L,F)-

fast. By Theorem 4.2.7, we know that limk→∞ αB(x̄;r̄k)

(
AvgFk f`

)
=
∫
f`dµ for all ` ∈ N. Now it remains

to prove that this convergence occurs for all f ∈ C(X).

Let f ∈ C(X), and fix ε > 0. Choose f` such that ‖f − f`‖C(X) ≤ ε. Then

∣∣∣∣∫ fdµ− αB(x̄;r̄k)

(
AvgFk f

)∣∣∣∣
≤
∣∣∣∣∫ fdµ−

∫
f`dµ

∣∣∣∣+

∣∣∣∣∫ f`dµ− αB(x̄;r̄k)

(
AvgFk f`

)∣∣∣∣+
∣∣αB(x̄,r̄k)

(
AvgFk(f` − f)

)∣∣
≤‖f − f`‖C(X) +

∣∣∣∣∫ f`dµ− αB(x̄;r̄k)

(
AvgFk f`

)∣∣∣∣+ ‖f − f`‖C(X)

≤2ε+

∣∣∣∣∫ f`dµ− αB(x̄;r̄k)

(
AvgFk f`

)∣∣∣∣ .
Now choose K ∈ N such that if k ≥ K, then

∣∣∫ f`dµ− αB(x̄;r̄k)

(
AvgFk f`

)∣∣ ≤ ε. Then for k ≥ K, we

have that ∣∣∣∣∫ fdµ− αB(x̄;r̄k)

(
AvgFk f

)∣∣∣∣ ≤ 3ε.

This demonstrates the convergence.

111



Theorem 4.2.7 tells us that if we look at a sequence of concentric multiballs with rapidly vanishing radii,

and if the pointwise Birkhoff averages at the centers converge to the same limit, then the temporo-spatial

average with respect to these sequences of multiballs will inherit the limiting behavior f the pointwise Birkhoff

averages. We might wonder whether Theorem 4.2.7 could be generalized by replacing the assumption that

limk→∞AvgFk f
(
x(h)

)
= C with lim supk→∞AvgFk f

(
x(h)

)
= C, assuming of course that f was real-

valued. It turns out this generalization fails, as the next example demonstrates.

Example 4.2.11. Let X = {0, 1}N, and let µ be the Borel probability measure on X generated by

µ ([a1, . . . , a`]) = 2−`

for all a1, . . . , a` ∈ {0, 1}, ` ∈ N, where [a1, . . . , a`] = {x ∈ X : x(1) = a1, . . . , x(`) = a`}. Let Tj :

N0 y X be the left shift (Tx)(i) = x(i + j), where N0 denotes the semigroup of nonnegative integers,

making (X,µ, T ) a one-sided Bernoulli shift. Equip X with the compatible metric

ρ(x, y) =


0 if x = y,

2−` if ` = min{i ∈ N : x(i) 6= y(i)}.

Then B
(
x; 2−k

)
= [x(1), . . . , x(k)], and Tk is 2k-Lipschitz, i.e. ρ (Tkx, Tky) ≤ 2k · ρ(x, y). Set L(j) =

2j , H(j) = 1. We can check that
(
2−k
)∞
k=1

decays (X, ρ,H,L,F)-fast for F = ({0, 1, . . . , k − 1})∞k=1 by

observing that for any δ > 0, if 2j−k ≥ δ for δ ∈ (0, 1), 0 ≤ j ≤ k − 1, then j − k ≥ log2 δ ⇐⇒ j ≥

k + log2 δ. Therefore L(j) ·
(
2−k
)H(j)

< δ for all but at most d| log2 δ|e of j ∈ {0, 1, . . . , k − 1}, so

∣∣∣{j ∈ Fk : L(j) ·
(
2−k
)H(j) ≥ δ

}∣∣∣
|Fk|

≤ d| log2 δ|e
k

k→∞→ 0.

Let (cn)∞n=1 be a sequence of natural numbers chosen to grow fast enough that

cn
c1 + · · ·+ cn

≥ n− 1

n
(∀n ∈ N).
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Set sn = c1 + · · ·+ cn, so our growth condition states that cnsn ≥
n−1
n . Now construct x ∈ X by

x(i) =



0 1 ≤ i ≤ s1

1 s1 < i ≤ s2,

0 s2 < i ≤ s3,

· · ·

0 s2n < i ≤ s2n+1

1 s2n+1 < i ≤ s2n+2.

· · ·

In plain language, this x consists of c1 terms of 0, then c2 terms of 1, then c3 terms of 0, then c4 terms of 1,

etc. We then define y ∈ X by

y(i) = 1− x(i) (∀i ∈ N),

i.e. replacing all 0’s with 1’s and vice-versa. Set f = χ[0]. We claim that lim supk→∞AvgFk f(x) =

lim supk→∞AvgFk(y) = 1.

Consider the case where we sample along (s2n−1)∞n=1. Then

AvgFs2n−1
f(x) =

c1 + c3 + c5 + · · ·+ c2n−1

c1 + c2 + c3 + c4 + c5 + c6 + · · ·+ c2n−1
≥ c2n−1

s2n−1
≥ 2n− 2

2n− 1

n→∞→ 1.

But AvgFk f(z) ∈ [0, 1] for all k ∈ N, z ∈ X , so we can conclude that lim supk→∞AvgFk f(x) = 1.

Likewise, sampling along s2n, we see that

AvgFs2n f(y) =
c2 + c4 + · · ·+ c2n

s2n
≥ c2n

s2n
≥ 2n− 1

2n

n→∞→ 1.

Thus lim supk→∞AvgFk(y) = 1.
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Computing the temporo-spatial averages, we can see that

αB(x,y;2−k,2−k)
(
AvgFk f

)
=

1

µ (B (x, y; 2−k, 2−k))

∫
B(x,y;2−k,2−k)

1

k

k−1∑
j=0

χ[0](Tjz)dµ(z)

=
1

2−k + 2−k
1

k

k−1∑
j=0

χ[0](Tjz)dµ(z)

=2k−1

∫
[x(1),...,x(k)]t[y(1),...,y(k)]

1

k

k−1∑
j=0

χ[0](Tjz)dµ(z)

=2k−1

∫
1

k

k−1∑
j=0

(
χ[x(1),...,x(k)](z) + χ[y(1),...,y(k)](z)

)
χ[0](Tjz)dµ(z)

=2k−1

∫
1

k

k−1∑
j=0

(
χ[x(1),...,x(k)](z) + χ[y(1),...,y(k)](z)

)
χT−j [0](z)dµ(z)

=2k−1

∫
1

k

k−1∑
j=0

(
χ[x(1),...,x(k)]∩T−j [0](z) + χ[y(1),...,y(k)]∩T−j [0](z)

)
dµ(z)

We know that

χ[x(1),...,x(k)]∩T−j [0](z) =


1 if z(1 + j) = x(1 + j) = 0,

0 otherwise,

χ[y(1),...,y(k)]∩T−j [0](z) =


1 if z(1 + j) = y(1 + j) = 0,

0 otherwise.

Thus

∫
χ[x(1),...,x(k)]∩T−j [0](z)dµ(z) =


2−k if x(1 + j) = 0,

0 if ,

∫
χ[y(1),...,y(k)]∩T−j [0](z) =


2−k if z(1 + j) = y(1 + j) = 0,

0 otherwise.
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But since x(1 + j) = 0 ⇐⇒ y(i+ j) = 1, it follows that

∫ (
χ[x(1),...,x(k)]∩T−j [0](z) + χ[y(1),...,y(k)]∩T−j [0](z)

)
dµ(z) = 2−k

for all j = 0, 1, . . . , k − 1. Therefore

αB(x,y;2−k,2−k)
(
AvgFk f

)
=2k−1

∫
1

k

k−1∑
j=0

(
χ[x(1),...,x(k)]∩T−j [0](z) + χ[y(1),...,y(k)]∩T−j [0](z)

)
dµ(z)

=2k−1 1

k

k−1∑
j=0

2−k

=
1

2
.

So lim supk→∞ αB(x,y;2−k,2−k)
(
AvgFk f

)
= 1/2 6= 1.

Example 4.2.12. Looking at Theorem 4.2.7, we could also ask whether the result could be generalized to

somehow accommodate the case where limk→∞AvgFk f
(
x(h)

)
exists for all h = 1, . . . , n, but is allowed to

vary with h. However, we can construct examples of points x, y ∈ X , sequences of radii (rk)
∞
k=1, (sk)

∞
k=1 ∈

(0, 1)N decaying (X, ρ,H,L,F)-fast, and a function f ∈ C(X) where

limk→∞AvgFk f (x) , limk→∞AvgFk f (y) both exist, but limk→∞ αB(x,y;2−k,2−k)
(
AvgFk f

)
does not.

Let X, ρ, T, µ,F be as in Example 4.2.11, but choose x, y to be

x(i) =


0 if i is even,

1 if i is odd,
y(i) =


0 if i is divisible by 3,

1 otherwise.

Let f = χ[0]. Then limk→∞AvgFk f(x) = 1/2, limk→∞AvgFk f(y) = 1/3. Construct sequences of

natural numbers (pk)
∞
k=1, (qk)

∞
k=1 strictly increasing such that

2−pk

2−pk + 2−qk
≥ k

k + 1
(for k odd),

2−qk

2−pk + 2−qk
≥ k

k + 1
(for k even).
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Therefore

lim
n→∞

2−p2n−1

2−p2n−1 + 2−q2n−1
=

2−q2n

2−p2n + 2−q2n
= 1.

Set rk = 2−pk , sk = 2−qk . We can see that (rk, sk)
∞
k=1 decays (X, ρ,H,L,F)-fast. By Lemma 4.2.6, we

have

αB(x,y;rk,sk)

(
AvgFk f

)
=

2−pk

2−pk + 2−qk
αB(x;rk)

(
AvgFk f

)
+

2−qk

2−pk + 2−qk
αB(y;sk)

(
AvgFk f

)
.

Sampling along even k, we see that

lim
n→∞

αB(x,y;r2n,s2n)

(
AvgF2n

f
)

= lim
n→∞

2−p2n

2−p2n + 2−q2n
αB(x;r2n)

(
AvgF2n

f
)

+
2−q2n

2−p2n + 2−q2n
αB(y;s2n)

(
AvgF2n

f
)

=0
(

lim
n→∞

αB(x;r2n)

(
AvgF2n

f
))

+ 1
(

lim
n→∞

αB(y;s2n)

(
AvgF2n

f
))

=
1

3
,

where the limits in the last step are taken using Lemma 4.2.5. On the other hand, sampling along odd k, we

see that

lim
n→∞

αB(x,y;r2n−1,s2n−1)

(
AvgF2n−1

f
)

= lim
n→∞

2−p2n−1

2−p2n−1 + 2−q2n−1
αB(x;r2n−1)

(
AvgF2n−1

f
)

+ lim
n→∞

2−q2n−1

2−p2n−1 + 2−q2n−1
αB(y;s2n−1)

(
AvgF2n−1

f
)

=1
(

lim
n→∞

αB(x;r2n−1)

(
AvgF2n−1

f
))

+ 0
(

lim
n→∞

αB(y;s2n−1)

(
AvgF2n−1

f
))

=
1

2
,

where we again appeal to Lemma 4.2.5 to take the limits at the end. Thus the sequence

(
αB(x,y;rk,sk)

(
AvgFk f

))∞
k=1

is divergent.
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The argument employed in Example 4.2.12, where we control the “weight” we give several points at

different points in the temporo-spatial differentiation, will have applications in Sections 4.4 and 4.5. However,

the following result also demonstrates that absent such tricks, we have predictable convergence behaviors.

Theorem 4.2.13. Let (r̄k)
∞
k=1 be a sequence that decays (X, ρ,H,L,F)-fast, and let f ∈ C(X). Suppose

x̄ =
(
x(1), . . . , x(n)

)
is an n-tuple in X such that

Ch = lim
k→∞

AvgFk f
(
x(h)

)

exists for all h = 1, . . . , n. Let µ be a Borel probability measure on X for which x(1), . . . , x(n) ∈ supp(µ).

Suppose further that

Dh = lim
k→∞

µ
(
B
(
x(h); r

(h)
k

))
µ
(
B
(
x(1); r

(1)
k

))
+ · · ·+ µ

(
B
(
x(n); r

(n)
k

))
exists for all h = 1, . . . , n. Then

lim
k→∞

αB(x̄;r̄k)

(
AvgFk f

)
=

n∑
h=1

DhCh.

Proof. This follows immediately from Lemmas 4.2.5, 4.2.6.

4.3 Preliminaries from ergodic optimization

Here we prove a generalization of a result of O. Jenkinson (Jenkinson, 2006a, Proposition 2.1) to the

setting of actions of amenable topological groups. Our method of proof closely resembles Jenkinson’s, but

requires that we attend to a few extra details.

Throughout this section, T : G y X will be an action of a discrete amenable group G on a compact

metrizable space X by homeomorphisms, and f ∈ CR(X) will be a real-valued continuous function on X .

Let F = (Fk)
∞
k=1 be a Følner sequence for G. Define the set Reg(f) by

Reg(f) =

{
x ∈ X : lim

k→∞
AvgFk f(x) exists

}
.
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We define the following values:

a(f) := sup

{∫
fdν : ν ∈MT (X)

}
,

a(f) := inf

{∫
fdν : ν ∈MT (X)

}
,

b(f) := sup

{
lim
k→∞

AvgFk f(x) : x ∈ Reg(f)

}
,

b(f) := inf

{
lim
k→∞

AvgFk f(x) : x ∈ Reg(f)

}
,

c(f) := sup

{
lim sup
k→∞

AvgFk f(x) : x ∈ X
}
,

c(f) := inf

{
lim sup
k→∞

AvgFk f(x) : x ∈ X
}
,

d(f) := lim
k→∞

(
sup

{
AvgFk f(x) : x ∈ X

})
d(f) := lim

k→∞

(
inf
{

AvgFk f(x) : x ∈ X
})
.

We write b(f) = −∞, b(f) = +∞ if Reg(f) = ∅. We will show in Theorem 4.3.3 that d(f), d(f) are

well-defined.

The following result is elementary, but will be relevant for much of this chapter, so we state and prove it

here.

Lemma 4.3.1. Let (Fk)
∞
k=1 be a Følner sequence for a group G, and let (βk)

∞
k=1 be a sequence of Borel

probability measures on X . Then if k1 < k2 < · · · is a sequence of natural numbers such that ν =

lim`→∞ βk` ◦AvgFk`
exists, then ν ∈MT (X). In particular, if G is amenable, thenMT (X) 6= ∅.

Proof. Assume WLoG that k` = ` for all ` ∈ N. Let f ∈ C(X), g ∈ G.

∣∣∣∣∫ fdν −
∫
Tgfdν

∣∣∣∣ = lim
k→∞

∣∣∣∣∣∣
 1

|Fk|
∑
h∈Fk

∫
Thfdβk

−
 1

|Fk|
∑

h′∈gFk

∫
Th′fdβk

∣∣∣∣∣∣
= lim

k→∞

1

|Fk|

∣∣∣∣∣∣
 ∑
h∈Fk\gFk

Thf

−
 ∑
h′∈gFk\Fk

Th′f

∣∣∣∣∣∣
≤ lim sup

k→∞

|Fk∆gFk|
|Fk|

‖f‖C(X)

= 0.
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To prove that MT (X) 6= ∅, consider any Borel probability measure β on X , and use the weak*-

compactness of M(X) to extract a convergent subsequence from
(
β ◦AvgFk

)∞
k=1

. The limit of that

convergent subsequence will be T -invariant.

Definition 4.3.2. Let ν ∈ MT (X), and f ∈ C(X). A point x ∈ X is called (f,F, ν)-typical if

limk→∞AvgFk f(x) =
∫
fdν.

Theorem 4.3.3. Suppose f ∈ CR(X). Then the values a(f), a(f), c(f), c(f), d(f), d(f) are all well-defined

real numbers, and

b(f) ≤ c(f) = a(f) = d(f),

b(f) ≥ c(f) = a(f) = d(f).

Furthermore, if for every ergodic measure θ ∈ ∂eMT (X) exists an (f,F, θ)-typical point, then

a(f) = b(f) = c(f) = d(f), a(f) = b(f) = c(f) = d(f).

Proof. We will only prove the inequalities and identities for a, b, c, d, since the analogous relations between

a, b, c, d can be proven in a parallel fashion.

The well-definedness of a(f) follows from the weak*-compactness ofMT (X). We also know a priori

that c(f) ≤ ‖f‖C(X), and thus c(f) is well-defined.

It still remains to prove that d(f) is well-defined, which we will accomplish by proving that d(f) = a(f).

For each k ∈ N, choose xk ∈ X such that AvgFk f(xk) = sup
{

AvgFk f(x) : x ∈ X
}

. Let µk be the

Borel probability measure on X defined by

∫
gdµk = AvgFk f(xk).

Let (µk`)
∞
`=1 be a weak*-convergent subsequence converging to the measure µ. Then since F is Følner, it

follows from Lemma 4.3.1 that µ is T -invariant. Thus

a(f) ≥
∫
fdµ = lim

`→∞

∫
AvgFk`

fdµk` = lim
`→∞

(
sup

{
AvgFk`

f(x) : x ∈ X
})

.
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On the other hand, we know that if ν ∈MT (X), then

∫
fdν =

∫
AvgFk`

fdν ≤ sup
{

AvgFk`
f(x) : x ∈ X

}
,

and thus taking `→∞ tells us that
∫
fdν ≤

∫
fdµ. Therefore this measure µ is f -maximizing, meaning

that a(f) =
∫
fdµ = lim`→∞

(
sup

{
AvgFk`

f(x) : x ∈ X
})

. Since we know this holds true for any

weak*-convergent subsequence (µk`)
∞
`=1, and (µk)

∞
k=1 takes values in the weak*-compact spaceM(X), we

can conclude that d(f) is well-defined and equal to a(f).

It follows immediately from the definitions that b(f) ≤ c(f), since

b(f) = sup

{
lim
k→∞

AvgFk f(x) : x ∈ Reg(f)

}
= sup

{
lim sup
k→∞

AvgFk f(x) : x ∈ Reg(f)

}
≤ sup

{
lim sup
k→∞

AvgFk f(x) : x ∈ X
}

= c(f).

It similarly follows from definitions that c(f) ≤ d(f), since

c(f) = sup

{
lim sup
k→∞

AvgFk f(x) : x ∈ X
}

≤ sup

{
lim sup
k→∞

AvgFk f(xk) : (xk)
∞
k=1 ∈ XN

}
≤ sup

{
lim sup
k→∞

(
sup

{
AvgFk f(x) : x ∈ X

})
: (xk)

∞
k=1 ∈ XN

}
= lim sup

k→∞

(
sup

{
AvgFk f(x) : x ∈ X

})
= d(f).

Next we show that a(f) ≤ c(f). Let k1 < k2 < · · · such that (Fk`)
∞
`=1 is a tempered Følner subsequence,

a subsequence which exists by Lemma 4.2.9. Let θ ∈ ∂eMT (X). Then by the Lindenstrauss Ergodic

Theorem, there exists x ∈ X such that lim`→∞AvgFk`
f(x) =

∫
fdθ. Therefore

∫
fdθ = lim

`→∞
AvgFk`

f(x) ≤ lim sup
k→∞

AvgFk f(x) ≤ c(f).
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Suppose ν ∈MT (X), and let (θx)x∈X be the ergodic decomposition of T : Gy X . Then

∫
fdν =

∫ (∫
fdθx

)
dν(x) ≤

∫
c(f)dν(x) = c(f).

Taking the supreumum over ν ∈MT (X) confirms that a(f) ≤ c(f).

Now assume that for every ergodic measure θ ∈ ∂eMT (X) exists xθ ∈ X such that
∫
fdθ =

limk→∞AvgFk f(xθ). We prove that a(f) ≤ b(f). To begin, we’ll prove that
∫
fdθ ≤ b(f) for all

ergodic θ ∈ ∂eMT (X), and then use the ergodic decomposition to extrapolate to the general case.

First, consider the case where θ is an ergodic measure inMT (X). Then there exists xθ ∈ X such that

∫
fdθ = lim

k→∞
AvgFk f (xθ) ≤ b(f).

Now suppose ν ∈MT (X), and let (θx)x∈X be the ergodic decomposition of T : Gy X . Then

∫
fdν =

∫ (∫
fdθx

)
dν(x) ≤

∫
b(f)dν(x) = b(f).

Taking the supremum over ν ∈MT (X) confirms that a(f) ≤ b(f).

What remains unclear to us at this point is whether a(f) ≤ b(f), b(f) ≤ a(f) in general. However,

there are several general cases where we know the answer to be yes.

• If a(f) = a(f), then every x ∈ X is an (f,F, ν)-typical point for all ν ∈MT (X). In particular, this

will occur for all f ∈ CR(X) if T : Gy X is uniquely ergodic.

• If F is tempered, then the Lindenstrauss Ergodic Theorem implies that the set of (f,F, θ)-typical

points is of probability 1 with respect to θ for ergodic θ, and a fortiori, that the set is nonempty. This

holds in particular if G = Z and Fk = {0, 1, . . . , k − 1} for all k ∈ N, which is the setting of the

classical Birkhoff Ergodic Theorem.

Corollary 4.3.4. The values c(f), c(f), d(f), d(f) are independent of the choice of Følner sequence F, and

b(f), b(f) are independent of the choice of tempered Følner sequence.

Proof. The first claim follows from the fact that a(f), a(f) are independent of F, combined with Theorem

4.3.3. The second claim follows from the fact that if F is a tempered Følner sequence, then by the Linden-
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strauss Ergodic Theorem, every ergodic measure θ ∈ ∂eMT (X) admits an (f,F, θ)-typical point, meaning

Theorem 4.3.3 tells us that b(f) = a(f), b(f) = a(f).

4.4 Pathological multi-local temporo-spatial differentiations of individual functions

This section is motivated by the following question: Given a real-valued function f ∈ CR(X), what

possible sets K can be realized as

K =

{
lim
`→∞

αB(x,y;rk` ,sk`)

(
AvgFk`

f
)

: k1 < k2 < · · · , lim
`→∞

αB(x,y;rk` ,sk`)

(
AvgFk`

f
)

exists
}

through judicious choices of (x̄; r̄k)
∞
k=1? If K is non-singleton, then the temporo-spatial differentiation will

of course be divergent.

Before constructing these pathological temporo-spatial differentiations, we define a measure-theoretic

property which will be important to us in this section.

Definition 4.4.1. Let (X, ρ) be a compact metric space, and let µ be a Borel probability measure on X . We

say that µ neglects shells if

µ ({y ∈ X : ρ(x, y) = r}) = 0 (∀x ∈ X, r ∈ [0,∞)).

A probability measure which neglects shells is automatically non-atomic, but the converse is false.

Consider the case of X =
{

(a, b) ∈ R2 : a2 + b2 ≤ 2
}

with the standard Euclidean metric. Let µ be the

Borel probability measure

µ(E) =
1

H1(S)
H1(S ∩ E),

whereH1 is the 1-dimensional Hausdorff measure and S =
{

(a, b) ∈ R2 : a2 + b2 = 1
}

is the unit circle in

R2. Then this µ is non-atomic, but does not neglect shells.

Theorem 4.4.2. The following conditions are equivalent.

(i) The function φ : X × [0,∞)→ [0, 1] defined by

φ(x, r) = µ(B(x; r))
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is continuous.

(ii) µ neglects shells.

Proof. (i)⇒(ii): Suppose that φ is continuous, and fix x ∈ X, r ∈ [0,∞). Let rk = r + 1/k for all k ∈ N.

By downward continuity of measures, we know that

lim
k→∞

φ(x, rk) = µ ({y ∈ X : ρ(x, y) ≤ r}) = φ(x, r) + µ({y ∈ X : ρ(x, y) = r}).

If limk→∞ φ(x, rk) = φ(x, r), then µ({y ∈ X : ρ(x, y) = r}) = 0.

(ii)⇒(i): Suppose that µ neglects shells, and let (xk, rk)
∞
k=1 be a sequence in X × [0,∞) converging to

(x, r). Let fk, f ∈ L∞(X,µ) be the functions

fk = χB(xk;rk),

f = χB(x;r).

We claim that fk → f pointwise on {y ∈ X : ρ(x, y) 6= r}, which under the assumption that µ neglects

shells constitutes convergence pointwise almost everywhere. If we can prove that, then we can appeal

to the Dominated Convergence Theorem (using the constant function 1 as a dominator) to conclude that

φ(xk, rk) =
∫
fkdµ

k→∞→
∫
fdµ = φ(x, r), i.e. that φ is (sequentially) continuous.

First, consider the case where ρ(x, y) < r. Set ε = r − ρ(x, y). Then there exist K1,K2 ∈ N such that

k ≥ K1 ⇒ |rk − r| <
ε

2
,

k ≥ K2 ⇒ ρ(xk, x) <
ε

2
.

If k ≥ K1, then rk > r − ε
2 . Set K = max{K1,K2}, and suppose that k ≥ K. Then

ρ(y, xk) ≤ ρ(y, x) + ρ(x, xk)

< ρ(y, x) +
ε

2

= r − ε

2

< rk.
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Thus if k ≥ K, then fk(y) = 1 = f(y). Therefore limk→∞ fk(y) = f(y) for y ∈ B(x; r).

Second, consider the case where ρ(x, z) > r. Set δ = min
{
ρ(x, z)− r, ρ(x,z)

2

}
, and choose L1, L2 ∈ N

such that

k ≥ L1 ⇒ |rk − r| <
δ

2
,

k ≥ L2 ⇒ ρ(xk, x) <
δ

2
.

Set L = max{L1, L2}, and consider k ≥ L. Then

ρ(z, xk) ≥ |ρ(z, x)− ρ(x, xk)|

= ρ(z, x)− ρ(x, xk)

> ρ(z, x)− δ

2

> r + δ − δ

2

= r +
δ

2

> rk.

Thus if k ≥ L, then fk(z) = 0 = f(z). Therefore limk→∞ fk(z) = f(z) for ρ(z, x) > r. This completes

the proof.

The property of neglecting shells is very important to us in this chapter because of Lemma 4.4.3, which

is a valuable tool for several constructions that will follow in this section and the next.

Lemma 4.4.3. Let µ be a Borel probability measure on X that neglects shells, and let x(1), . . . , x(n) ∈

supp(µ). Let δ(1), . . . , δ(n) > 0, and fix λ(1), . . . , λ(n) ∈ (0, 1) such that λ(1) + · · ·+ λ(n) = 1. Then there

exist r(1), . . . , r(n) > 0 such that 0 < r(h) < δ(h), and

µ
(
B
(
x(h); r(h)

))
µ
(
B
(
x(1); r(1)

))
+ · · ·+ µ

(
B
(
x(n); r(n)

)) = λ(h) (h = 1, . . . , n).

Proof. Assume without loss of generality that

δ(h) < min
1≤i<j≤n

ρ
(
x(i), x(j)

)
,
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otherwise we can replace each δ(h) with min
{
δ(h), 1

4 min1≤i<j≤n ρ
(
x(i), x(j)

)}
.

Choose real numbers a(1), . . . , a(h) ∈ (0, 1) such that

a(h)

a(1) + · · ·+ a(n)
= λ(h),

a(1) < µ
(
B
(
x(h); δ(h)

))

for all h = 1, . . . , n. The tuple
(
a(1), . . . , a(n)

)
∈ (0, 1)n can be found along the line segment{(

tλ(1), . . . , tλ(n)
)

: t ∈ (0, 1)
}

. We know that µ
(
B
(
x(h); δ(h)

))
> 0 because we assumed that x(h) ∈

supp(µ). Then by Theorem 4.4.2 and the Intermediate Value Theorem, there exist r(h) ∈
(
0, δ(h)

)
such that

µ
(
B
(
x(h); r(h)

))
= a(h) (h = 1, . . . , n),

and therefore

µ
(
B
(
x(h); r(h)

))
µ
(
B
(
x(1); r(1)

))
+ · · ·+ µ

(
B
(
x(n); r(n)

)) = λ(h) (h = 1, . . . , n).

Theorem 4.4.4. Let x, y ∈ X such that

u = lim
k→∞

AvgFk f(x),

v = lim
k→∞

AvgFk f(y)

exist, where u ≤ v. Suppose K ⊆ [u, v] is a nonempty compact subset. Let µ be a fully supported Borel

probability measure on X that neglects shells. Then there exist sequences (rk)
∞
k=1, (sk)

∞
k=1 of positive

numbers such that

K = LS
((
αB(x,y;rk,sk)

(
AvgFk f

))∞
k=1

)
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Proof. Let P = {pi : i ∈ I} ⊆ K be a countable dense subset of K enumerated by the countable indexing

set I , and let N = {Ni : i ∈ I} be a partition of N into countably many infinite subsets, also enumerated by

I . For convenience, write i(k) for the i ∈ I such that k ∈ Ni.

For each i ∈ I , choose λi ∈ [0, 1] such that

pi = λiu+ (1− λi)v.

For each k ∈ N, choose tk ∈ (0, 1) such that

|tk − λi(k)| ≤ 1/k.

Using the uniform continuity of AvgFk f and Lemma 4.4.3, choose (rk, sk)
∞
k=1 such that

ρ (w, z) ≤ max{rk, sk} ⇒
∣∣AvgFk f (w)−AvgFk f (z)

∣∣ ≤ 1/k (∀w, z ∈ X) ,

µ(B(x; rk))

µ(B(x; rk)) + µ(B(y; sk))
= tk

for all k ∈ N.
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For k ∈ N, we have that

∣∣pi(k) − αB(x,y;rk,sk)

(
AvgFk f

)∣∣
=
∣∣pi(k) −

(
tkαB(x;rk)

(
AvgFk f

)
+ (1− tk)αB(y;sk)

(
AvgFk f

))∣∣
≤
∣∣pi(k) −

(
tk
(
AvgFk f(x)

)
+ (1− tk)

(
AvgFk f(y)

))∣∣
+ tk

∣∣αB(x;rk) AvgFk(f(x)− f)
∣∣+ (1− tk)

∣∣αB(y;sk) AvgFk(f(y)− f)
∣∣

≤
∣∣pi(k) −

(
tk
(
AvgFk f(x)

)
+ (1− tk)

(
AvgFk f(y)

))∣∣+
1

k

=
∣∣pi(k) − (tku+ (1− tk)v)

∣∣+ tk
∣∣u−AvgFk f(x)

∣∣+ (1− tk)
∣∣v −AvgFk f(y)

∣∣+
1

k

=
∣∣λi(k)u+ (1− λi(k))v − (tku+ (1− tk)v)

∣∣
+ tk

∣∣u−AvgFk f(x)
∣∣+ (1− tk)

∣∣v −AvgFk f(y)
∣∣+

1

k

≤
∣∣(λi(k) − tk

)
u
∣∣+
∣∣((1− λi(k))− (1− tk)

)
v
∣∣

+ tk
∣∣u−AvgFk f(x)

∣∣+ (1− tk)
∣∣v −AvgFk f(y)

∣∣+
1

k

=
∣∣(λi(k) − tk

)
u
∣∣+
∣∣(λi(k) − tk

)
v
∣∣

+ tk
∣∣u−AvgFk f(x)

∣∣+ (1− tk)
∣∣v −AvgFk f(y)

∣∣+
1

k

≤1

k
|u|+ 1

k
|v|+ tk

∣∣u−AvgFk f(x)
∣∣+ (1− tk)

∣∣v −AvgFk f(y)
∣∣+

1

k

≤|u|
k

+
|v|
k

+
∣∣u−AvgFk f(x)

∣∣+
∣∣v −AvgFk f(y)

∣∣+
1

k

We now claim that

K

=

{
lim
`→∞

αB(x,y;rk` ,sk`)

(
AvgFk`

f
)

: k1 < k2 < · · · , lim
`→∞

αB(x,y;rk` ,sk`)

(
AvgFk`

f
)

exists
}
.

We will prove the two sets contain each other, and thus are equal. First, let q ∈ K, and choose a

sequence (pi`)
∞
`=1 in S such that |q − pi` | < 1/` for all ` ∈ N. For each ` ∈ N, recursively choose
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k` > max{k1, . . . , k`−1} such that

∣∣∣u−AvgFk`
f(x)

∣∣∣ < 1/`,∣∣∣v −AvgFk`
f(y)

∣∣∣ < 1/`,

k` ∈ Ni` .

Then

∣∣∣q − αB(x,y;rk` ,sk`)

(
AvgFk`

f
)∣∣∣ ≤ |q − pi` |+ ∣∣∣pi` − αB(x,y;rk` ,sk`)

(
AvgFk`

f
)∣∣∣

≤ 1

`
+

1

k`
|u|+ 1

k`
|v|+

∣∣∣u−AvgFk`
f(x)

∣∣∣
+
∣∣∣v −AvgFk`

f(y)
∣∣∣+

1

k`

≤ 1

`
+
|u|
`

+
|v|
`

+
1

`
+

1

`
+

1

`

=
4 + |u|+ |v|

`
`→∞→ 0.

Therefore

q ∈ LS
((
αB(x,y;rk,sk)

(
AvgFk f

))∞
k=1

)
.

Conversely, let k1 < k2 < · · · be an increasing sequence of natural numbers such that

q = lim`→∞ αB(xk` ,yk` ;rk` ,yk`)

(
AvgFk`

f
)

exists. Fix ε > 0, and choose K ∈ N sufficiently large

that

⇒
∣∣u−AvgFk f(x)

∣∣ < ε (∀k ≥ K),

⇒
∣∣v −AvgFk f(y)

∣∣ < ε (∀k ≥ K),

max{|u|, |v|, 1}
K

< ε,∣∣∣q − αB(x,y;rk` ,sk`)

(
AvgFk`

f
)∣∣∣ < ε (∀` ≥ K).
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Then if ` ≥ K, we have

∣∣pi(k`) − q∣∣ ≤ ∣∣∣pi(k`) − αB(x,y;rk` ,sk`)

(
AvgFk`

f
)∣∣∣+

∣∣∣αB(x,y;rk` ,sk`)

(
AvgFk`

f
)
− q
∣∣∣

≤ 1

k
|u|+ 1

k
|v|+

∣∣u−AvgFk f(x)
∣∣+
∣∣v −AvgFk f(y)

∣∣+
1

k
+ ε

< 6ε.

Therefore infp∈K |p − q| < 6ε. Since our choice of ε > 0 was arbitrary, it follows that

infp∈K |p− q| = 0, and since K is compact, this implies that q ∈ K.

Corollary 4.4.5. Suppose G is an amenable group, and F = (Fk)
∞
k=1 is a right Følner sequence for G. Let

f ∈ CR(X) such that for every ergodic θ ∈ ∂eMT (X) exists an (f,F, θ)-typical point. Let K be a compact

subset of the compact interval

[a(f), a(f)] .

Let µ be a fully supported Borel probability measure on X that neglects shells. Then there exist points

x, y ∈ X and sequences (rk)
∞
k=1, (sk)

∞
k=1 of positive numbers such that

K = LS
((
αB(x,y;rk,sk)

(
AvgFk f

))∞
k=1

)
.

Proof. By (Jenkinson, 2006a, Proposition 2.4-(iii)), there exist ergodic Borel probability measures θ1, θ2

such that

∫
fdθ1 = a(f),∫
fdθ2 = a(f).

By hypothesis, there exist x, y ∈ X such that

lim
`→∞

AvgFk`
f(x) =

∫
fdθ1,

lim
`→∞

AvgFk`
f(y) =

∫
fdθ2.

Apply Theorem 4.4.4.
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Corollary 4.4.6. Suppose G is an amenable group, and F = (Fk)
∞
k=1 is a right Følner sequence for G. Let

f ∈ CR(X), and let K be a compact subset of the compact interval

[a(f), a(f)] .

Let µ be a fully supported Borel probability measure on X that neglects shells. Then there exist points

x, y ∈ X and sequences (rk)
∞
k=1, (sk)

∞
k=1 of positive numbers such that

K ⊆ LS
((
αB(x,y;rk,sk)

(
AvgFk f

))∞
k=1

)
.

Proof. Choose a tempered Følner subsequence (Fk`)
∞
`=1 of F. By (Jenkinson, 2006a, Proposition 2.4-(iii)),

there exist ergodic Borel probability measures θ1, θ2 such that

∫
fdθ1 = a(f),∫
fdθ2 = a(f).

By the Lindestrauss Ergodic Theorem, there exist x, y ∈ X such that

lim
`→∞

AvgFk`
f(x) =

∫
fdθ1,

lim
`→∞

AvgFk`
f(y) =

∫
fdθ2.

By Theorem 4.4.4, there exist (rk)
∞
k=1 , (sk)

∞
k=1 ∈ (0,∞)N such that

K = LS
((
αB(x,y;rk` ,sk`)

(
AvgFk`

f
))∞

`=1

)
.

Then

K ⊆ LS
((
αB(x,y;rk,sk)

(
AvgFk f

))∞
k=1

)
.
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Theorem 4.4.7. Suppose G is an amenable group, and F = (Fk)
∞
k=1 is a tempered Følner sequence for G.

Let f ∈ CR(X), and let K be a compact subset of the compact interval

[a(f), a(f)] .

Let µ be a fully supported Borel probability measure on X that neglects shells. Then there exist points

x, y ∈ X and sequences (rk)
∞
k=1, (sk)

∞
k=1 of positive numbers such that

K = LS
((
αB(x,y;rk,sk)

(
AvgFk f

))∞
k=1

)
.

Proof. The Lindenstrauss Ergodic Theorem implies that for every ergodic θ ∈ ∂eMT (X) exists an (f,F, θ)-

typical point. Apply Corollary 4.4.5.

4.5 Pathological multi-local temporo-spatial differentiations on C(X)

In this section, we consider a temporo-spatial differentiation
(
αCk ◦AvgFk

)∞
k=1

as a sequence in

MT (X). If G is a discrete amenable group, and F = (Fk)
∞
k=1 is a Følner sequence, then Lemma 4.3.1 tells

us that

LS
((
αCk ◦AvgFk

)∞
k=1

)
⊆MT (X)

for all sequences (Ck)
∞
k=1 of measurable subsets of X with positive measure.

We are motivated here by the following question: Consider an action T : Gy X of a discrete amenable

group G on a compact metrizable space by X , where X is endowed with a Borel probability measure µ.

Given a Følner sequence F = (Fk)
∞
k=1 for G, can we choose a sequence (Ck)

∞
k=1 of measurable subsets of

X with µ(Ck) > 0 such that

LS
((
αCk ◦AvgFk

)∞
k=1

)
= C,

where C is some prescribed compact subset ofMT (X)? If so, then can the (Ck)
∞
k=1 be chosen to fit some

prescribed constraints?

In this section, we provide positive answers for certain classes of C. Throughout this section, assume

that G is a discrete amenable group and F is a Følner sequence for G. We also assume that T : Gy X is a

Hölder action with MoHöC (H,L).
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Lemma 4.5.1. Let L ⊆ C(X) denote the family of functions f ∈ C(X) for which

|f(x)− f(y)| ≤ ρ(x, y) (∀x, y ∈ X).

Then L has dense span in C(X).

Proof. For x0 ∈ X , set φx0(x) = ρ(x, x0). If x, y ∈ X , then by the Reverse Triangle Inequality we know

|φx0(x)− φx0(y)| = |ρ(x, x0)− ρ(y, x0)| ≤ ρ(x, y).

Thus the functions φx0 satisfy the prescribed Lipschitz condition, as does the constant function 1. Furthermore,

we know that {φx0 : x0 ∈ X} separates points, since if x, y ∈ X,x 6= y, then 0 = φx(x) 6= φx(y). Therefore

by the Stone-Weierstrass Theorem, we know that C(X) is densely spanned by finite products of elements

in {φx0 : x ∈ X} ∪ {1} ⊆ L. We claim, however, that a product of elements in L is a scalar multiple of an

element in L. Let f1, f2 ∈ L. Then

|f1(x)f2(x)− f1(y)f2(y)| = |f1(x)f2(x)− f1(x)f2(y) + f1(x)f2(y)− f1(y)f2(y)|

≤ |f1(x)| · |f2(x)− f2(y)|+ |f1(x)− f1(y)| · |f2(y)|

≤ ‖f1‖C(X) · |f2(x)− f2(y)|+ |f1(x)− f1(y)| · ‖f2‖C(X)

≤
(
‖f1‖C(X) + ‖f2‖C(X)

)
ρ(x, y).

Let h = f1f2
‖f1‖C(X)+‖f2‖C(X)+1 . Then h ∈ L, so f1f2 =

(
‖f1‖C(X) + ‖f2‖C(X) + 1

)
h ∈ CL. By an

inductive argument, we can show that any finite product of elements of L is an element of CL. Therefore, the

Stone-Weierstrass Theorem tells us that C(X) is densely spanned by L.

Theorem 4.5.2. Let θ(1), . . . , θ(n) ∈ ∂eMT (X) be a finite collection of ergodic measures on X , and let C

be a compact subset of the convex hull of
{
θ(1), . . . , θ(n)

}
. Suppose F is a tempered Følner sequence, and

that µ is a Borel probability measure on X that neglects shells. Then there exist points x(1), . . . , x(n) and

sequences of radii
(
r

(1)
k

)∞
k=1

, . . . ,
(
r

(n)
k

)∞
k=1

such that

LS

((
α
B
(
x(1),...,x(n);r

(1)
k ,...,r

(n)
k

) ◦AvgFk

)∞
k=1

)
= C.
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Moreover, the set of n-tuples
(
x(1), . . . , x(n)

)
∈ Xn which admit such sequences

(
r

(1)
k , . . . , r

(n)
k

)∞
k=1

is of

full probability with respect to the product measure θ(1) × · · · × θ(n).

Proof. Assume without loss of generality that θ(1), . . . , θ(n) are distinct. By the Lindenstrauss Ergodic

Theorem, there exist points x(1), . . . , x(n) ∈ supp(µ) such that

lim
k→∞

AvgFk f
(
x(h)

)
=

∫
fdθ(h) (h = 1, . . . , n).

In fact, the Lindenstrauss Ergodic Theorem tells us that the set of such
(
x(1), . . . , x(n)

)
∈ Xn is of full

measure with respect to θ(1) × · · · × θ(n). For the remainder of this proof, let x̄ =
(
x(1), . . . , x(n)

)
∈ Xn be

such an n-tuple.

For each i ∈ I , let λ̄i =
(
λ

(1)
i , . . . , λ

(n)
i

)
∈ [0, 1]n be such that νi =

∑n
h=1 λ

(h)
i θ(h).

Let N = {Ni : i ∈ I} be a partition of N into infinite subsets. For each k ∈ N, set i(k) ∈ I such that

k ∈ Ni(k). For each k ∈ N, choose t̄k =
(
t
(1)
k , . . . , t

(n)
k

)
∈ (0, 1)n such that

n∑
h=1

∣∣∣t(h)
k − λ

(h)
i(k)

∣∣∣ < 1/k,

n∑
h=1

t
(h)
k = 1.

For each k ∈ N, choose δk > 0 such that

max
g∈Fk

(
L(g) · δH(g)

k

)
< 1/k.

Now for each k ∈ N, use Lemma 4.4.3 to choose r̄k =
(
r

(1)
k , . . . , r

(n)
k

)
∈ (0, 1)n such that

µ
(
B
(
x(h); r

(h)
k

))
µ
(
B
(
x(1); r

(1)
k

))
+ · · ·+ µ

(
B
(
x(n); r

(n)
k

)) = t
(h)
k ,

r
(h)
k < δk,

r
(h)
k <

1

3
min

{
ρ
(
x(h1), x(h2)

)
: 1 ≤ h1 < h2 ≤ n

}
.
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The last condition ensures that the balls
{
B
(
x(h); r

(h)
k

)
: h = 1, . . . , n

}
are pairwise disjoint. Since the

points x(h) each satisfy

lim
k→∞

AvgFk f
(
x(h)

)
=

∫
fdθ(h),

for all f ∈ C(X), and the measures θ(1), . . . , θ(h) are distinct, it follows that the x(1), . . . , x(n) are also

distinct, meaning that min
{
ρ
(
x(h1), x(h2)

)
: 1 ≤ h1 < h2 ≤ n

}
> 0.

Let L ⊆ C(X) denote the family of all continuous functions f on X such that

|f(x)− f(y)| ≤ ρ(x, y) (∀x, y ∈ X),

i.e. the 1-Lipschitz functions X → C, and let f ∈ L. Then

∣∣∣∣αB(x̄,r̄k)

(
AvgFk f

)
−
∫
fdνi(k)

∣∣∣∣
[Lem. 4.2.6] =

∣∣∣∣∣∣
 n∑
h=1

µ
(
B
(
x(h); r

(h)
k

))
∑n

u=1 µ
(
B
(
x(u); r(u)

))α
B
(
x(h);r

(h)
k

) (AvgFk f
)− ∫ fdνi(k)

∣∣∣∣∣∣
=

∣∣∣∣∣
[

n∑
h=1

t
(h)
k α

B
(
x(h);r

(h)
k

) (AvgFk f
)]
−
∫
fdνi(k)

∣∣∣∣∣
=

∣∣∣∣∣
n∑
h=1

(
t
(h)
k α

B
(
x(h);r

(h)
k

) (AvgFk f
)
− λ(h)

i(k)

∫
fdθ(h)

)∣∣∣∣∣
≤

n∑
h=1

∣∣∣∣t(h)
k α

B
(
x(h);r

(h)
k

) (AvgFk f
)
− λ(h)

i(k)

∫
fdθ(h)

∣∣∣∣
≤

n∑
h=1

[∣∣∣∣t(h)
k α

B
(
x(h);r

(h)
k

) (AvgFk f
)
− t(h)

k

∫
fdθ(h)

∣∣∣∣+

∣∣∣∣(t(h)
k − λ

(h)
i(k)

)∫
fdθ(h)

∣∣∣∣]

≤

[
n∑
h=1

t
(h)
k

∣∣∣∣αB(x(h);r(h)k

) (AvgFk f
)
−
∫
fdθ(h)

∣∣∣∣
]

+
‖f‖C(X)

k
.

We can then estimate

∣∣∣∣αB(x(h);r(h)k

) (AvgFk f
)
−
∫
fdθ(h)

∣∣∣∣
≤
∣∣∣∣αB(x(h);r(h)k

) (AvgFk f
)
−AvgFk f

(
x(h)

)∣∣∣∣+

∣∣∣∣AvgFk f
(
x(h)

)
−
∫
fdθ(h)

∣∣∣∣
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Since r(h)
k < δk for all k ∈ N, it follows that if ρ

(
x(h), y

)
< r

(h)
k , then ρ

(
Tgx

(h), Tgy
)
< 1/k for g ∈ Fk.

Since f is 1-Lipschitz, it follows that
∣∣f (Tgx(h)

)
− f (Tgy)

∣∣ < 1/k for all g ∈ Fk. Thus

∣∣∣∣αB(x(h);r(h)k

) (AvgFk f
)
−AvgFk f

(
x(h)

)∣∣∣∣
=

∣∣∣∣∣∣ 1

µ
(
B
(
x(h); r

(h)
k

)) ∫
B
(
x(h);r

(h)
k

) 1

|Fk|
∑
g∈Fk

(
f(Tgy)− f

(
Tgx

(h)
))

dµ(y)

∣∣∣∣∣∣
≤ 1

µ
(
B
(
x(h); r

(h)
k

)) ∫
B
(
x(h);r

(h)
k

) 1

|Fk|
∑
g∈Fk

∣∣∣f(Tgy)− f
(
Tgx

(h)
)∣∣∣ dµ(y)

<
1

µ
(
B
(
x(h); r

(h)
k

)) ∫
B
(
x(h);r

(h)
k

) 1

|Fk|
∑
g∈Fk

1

k
dµ(y)

=
1

k
.

Therefore

∣∣∣∣αB(x̄,r̄k)

(
AvgFk f

)
−
∫
fdνi(k)

∣∣∣∣
≤

[
n∑
h=1

t
(h)
k

∣∣∣∣αB(x(h);r(h)k

) (AvgFk f
)
−
∫
fdθ(h)

∣∣∣∣
]

+
‖f‖C(X)

k

≤

[
n∑
h=1

t
(h)
k

(∣∣∣∣αB(x(h);r(h)k

) (AvgFk f
)
−AvgFk f

(
x(h)

)∣∣∣∣+

∣∣∣∣AvgFk f
(
x(h)

)
−
∫
fdθ(h)

∣∣∣∣)
]

+
‖f‖C(X)

k

=

[
n∑
h=1

t
(h)
k

(
1

k
+

∣∣∣∣AvgFk f
(
x(h)

)
−
∫
fdθ(h)

∣∣∣∣)
]

+
‖f‖C(X)

k

=
1

k
+

[
n∑
h=1

t
(h)
k

∣∣∣∣AvgFk f
(
x(h)

)
−
∫
fdθ(h)

∣∣∣∣
]

+
‖f‖C(X)

k
.

Let {fm : m ∈ N} be a countable family of functions in L that densely span C(X), and let dist :

M(X)×M(X)→ [0, 1] be the metric

dist(β1, β2) =

∞∑
m=1

2−m min

{∣∣∣∣∫ fmd(β1 − β2)

∣∣∣∣ , 1} .
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This dist metric is compatible with the weak*-topology onM(X). We can also say that for all M ∈ N, we

have

dist
(
αB(x̄,r̄k) ◦AvgFk , νi(k)

)
≤

[
M∑
m=1

2−m
∣∣∣∣αB(x̄,r̄k)

(
AvgFk fm

)
−
∫
fmdνi(k)

∣∣∣∣
]

+

∞∑
m=M+1

2−m

≤

[
M∑
m=1

2−m

[
1

k
+

[
n∑
h=1

t
(h)
k

∣∣∣∣AvgFk fm

(
x(h)

)
−
∫
fmdθ(h)

∣∣∣∣
]

+
‖fm‖C(X)

k

]]
+ 2−M

≤
1 + max1≤m≤M ‖fm‖C(X)

k
+ 2−M + max

1≤m≤M
max

1≤h≤n

∣∣∣∣AvgFk fm

(
x(h)

)
−
∫
fmdθ(h)

∣∣∣∣
We claim that LS

((
αB(x̄,r̄k) ◦AvgFk

)∞
k=1

)
= C.

First, let ν ∈ C. Choose a sequence (νi`)
∞
`=1 such that dist (ν, νi`) < 1/`. Choose k1 < k2 < · · · such

that

k ≥ k` ⇒
∣∣∣∣AvgFk fm

(
x(h)

)
−
∫
fmdθ(h)

∣∣∣∣ ≤ 1

`
(m = 1, . . . , `;h = 1, . . . , n),

k` ≥ `
(

1 + max
1≤m≤`

‖fm‖C(X)

)
,

k` ∈ Ni`

for all ` ∈ N. Then

dist
(
αB(x̄,r̄k`)

◦AvgFk`
, ν
)

≤dist
(
αB(x̄,r̄k`)

◦AvgFk`
, νi(k`)

)
+ dist (νi` , ν)

≤
[

1 + max1≤m≤` ‖fm‖C(X)

k`
+ 2−M + max

1≤m≤`
max

1≤h≤n

∣∣∣∣AvgFk`
fm

(
x(h)

)
−
∫
fmdθ(h)

∣∣∣∣]
+

1

`

≤1

`
+ 2−` +

1

`
+

1

`
`→∞→ 0.

Therefore ν ∈ LS
((
αB(x̄,r̄k) ◦AvgFk

)∞
k=1

)
, meaning that C ⊆ LS

((
αB(x̄,r̄k) ◦AvgFk

)∞
k=1

)
.
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To prove the opposite containment, suppose γ ∈ LS
((
αB(x̄,r̄k) ◦AvgFk

)∞
k=1

)
, and let k1 < k2 < · · ·

such that γ = lim`→∞ αB(x̄,r̄k`)
◦AvgFk`

. Fix f ∈ L. Then

∣∣∣∣∫ fdγ −
∫
fdνi(k`)

∣∣∣∣
≤
∣∣∣∣∫ fdγ − αB(x̄,r̄k`)

(
AvgFk`

f
)∣∣∣∣+

∣∣∣∣αB(x̄,r̄k`)

(
AvgFk`

f
)
−
∫
fdνi(k`)

∣∣∣∣
≤
∣∣∣∣∫ fdγ − αB(x̄,r̄k`)

(
AvgFk`

f
)∣∣∣∣+

1

k`

+

[
n∑
h=1

t
(h)
k`

∣∣∣∣AvgFk`
f
(
x(h)

)
−
∫
fdθ(h)

∣∣∣∣
]

+
‖f‖C(X)

k`

≤
∣∣∣∣∫ fdγ − αB(x̄,r̄k`)

(
AvgFk`

f
)∣∣∣∣+

1

k`

+

[
max

1≤h≤n

∣∣∣∣AvgFk`
f
(
x(h)

)
−
∫
fdθ(h)

∣∣∣∣]+
‖f‖C(X)

k`

`→∞→ 0.

Therefore γ = lim`→∞ νi(k`), meaning that γ ∈ C. Thus LS
((
αB(x̄,r̄k) ◦AvgFk

)∞
k=1

)
⊆ C.

In Theorem 4.5.2, our assumption that C live in a finite-dimensional subset ofMT (X) helps us place an

upper bound on LS
(
αB(x̄;r̄k) ◦AvgFk

)∞
k=1

, i.e. show that LS
(
αB(x̄;r̄k) ◦AvgFk

)∞
k=1
⊆ C. In general, it is

possible to construct (Ck)
∞
k=1 for which LS

(
αB(x̄;r̄k) ◦AvgFk

)∞
k=1

is “maximally large,” as the following

theorem shows.

Theorem 4.5.3. Suppose µ is a Borel probability measure on X . Then there exists a sequence (Ck)
∞
k=1 of

multi-balls in X such that

LS
((
αCk ◦AvgFk

)∞
k=1

)
=MT (X).

Proof. Since LS
((
αCk ◦AvgFk

)∞
k=1

)
is always a closed subset of MT (X), it will suffice to construct

(Ck)
∞
k=1 such that LS

((
αCk ◦AvgFk

)∞
k=1

)
is dense inMT (X).

Let E =
{
θ(h) : h ∈ N

}
⊆ ∂eMT (X) be a countable dense subset of ∂eMT (X), and set

F =

{
n∑
h=1

λ(h)θ(h) : n ∈ N, λ̄ ∈ [0, 1]n ∩Qn,
n∑
h=1

λ(h) = 1

}
,
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i.e. F is the set of all rational convex combinations of elements of E . Assume that the θ(h), h ∈ N are distinct.

By the Krein-Millman Theorem, the set F is a countable dense subset ofMT (X). Let {νi : i ∈ I} be an

enumeration of F , where I is some countable indexing set, and let N = {Ni : i ∈ I} be a partition of N

into countably infinitely many infinite subsets.

For each i ∈ I , let (κ(i, `))∞`=1 be a strictly increasing sequence such that

κ(i, `) ∈ Ni,(
Fκ(i,`)

)∞
`=1

is tempered,

which exists by Lemma 4.2.9.

We are going to construct (Ck)
∞
k=1 such that lim`→∞ αCκ(i,`) ◦ AvgFκ(i,`) = νi for all i ∈ I . For each

k ∈ N, set i(k) ∈ I such that k ∈ Ni(k).

For each i ∈ I , choose λ̄i ∈ ([0, 1] ∩Q)N and ni ∈ N such that

ni∑
h=1

λ
(h)
i θ(h) = νi,

ni∑
h=1

λ
(h)
i = 1,

λ
(h)
i = 0 for all h > ni.

By the Lindenstrauss Ergodic Theorem, there exists for each θ(h) a point x(h) ∈ X such that

lim
`→∞

AvgFκ(i,`) f
(
x(h)

)
=

∫
fdθ(h) (∀f ∈ C(X), ∀i ∈ I).

For each k ∈ N, choose t̄k =

(
t
(1)
k , . . . , t

(ni(k))
k

)
∈ (0, 1)ni(k) such that

ni(k)∑
h=1

∣∣∣t(h)
k − λ

(h)
i(k)

∣∣∣ < 1/k,

ni(k)∑
h=1

t
(h)
k = 1.
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For each k ∈ N, choose δk > 0 such that

max
g∈Fk

(
L(g) · δH(g)

k

)
< 1/k.

Now for each k ∈ N, use Lemma 4.4.3 to choose r(1)
k , . . . , r

(ni(k))
k ∈ (0, 1) such that

t
(j)
k =

µ
(
B
(
x(h); r

(h)
k

))
µ
(
B
(
x(1); r

(1)
k

))
+ · · ·+ µ

(
B

(
x(ni(k)); r

(ni(k))
k

)) ,
r

(h)
k < δk,

r
(h)
k <

1

3
min

{
ρ
(
x(h1), x(h2)

)
: 1 ≤ h1 < h2 ≤ ni(k)

}
.

The last condition ensures that the balls
{
B
(
x(h); r

(h)
k

)
: h = 1, . . . , ni(k)

}
are pairwise disjoint. Since the

points x(h) each satisfy

lim
`→∞

AvgFκ(i,`) f
(
x(h)

)
=

∫
fdθ(h)

for all f ∈ C(X), i ∈ I , and the measures θ(h) are distinct, it follows that the x(h) are also distinct, meaning

that min
{
ρ
(
x(h1), x(h2)

)
: 1 ≤ h1 < h2 ≤ ni(k)

}
> 0.

For each k ∈ N, set

Ck = B

(
x(1), . . . , x(ni(k)); r

(1)
k , . . . , r

(ni(k))
k

)
.

We now show that

lim
`→∞

αCκ(i,`)

(
AvgFκ(i,`) f

)
=

∫
fdνi (∀f ∈ C(X), ∀i ∈ I).

In light of Lemma 4.5.1, it will suffice to prove the convergence for f ∈ L, where

L = {φ ∈ C(X) : ∀x ∈ X ∀y ∈ X (|φ(x)− φ(y)| ≤ ρ(x, y))}

139



is the family of all 1-Lipschitz functions. We see

∣∣∣∣αCk (AvgFk f
)
−
∫
fdνi(k)

∣∣∣∣
[Lem. 4.2.6] =

∣∣∣∣∣∣
ni(k)∑
h=1

µ
(
B
(
x(h); r

(h)
k

))
∑n

u=1 µ
(
B
(
x(u); r(u)

))α
B
(
x(h);r

(h)
k

) (AvgFk f
)− ∫ fdνi(k)

∣∣∣∣∣∣
=

∣∣∣∣∣
[ni(k)∑
h=1

t
(h)
k α

B
(
x(h);r

(h)
k

) (AvgFk f
)]
−
∫
fdνi(k)

∣∣∣∣∣
=

∣∣∣∣∣
ni(k)∑
h=1

(
t
(h)
k α

B
(
x(h);r

(h)
k

) (AvgFk f
)
− λ(h)

i(k)

∫
fdθ(h)

)∣∣∣∣∣
≤
ni(k)∑
h=1

∣∣∣∣t(h)
k α

B
(
x(h);r

(h)
k

) (AvgFk f
)
− λ(h)

i(k)

∫
fdθ(h)

∣∣∣∣
≤
ni(k)∑
h=1

[∣∣∣∣t(h)
k α

B
(
x(h);r

(h)
k

) (AvgFk f
)
− t(h)

k

∫
fdθ(h)

∣∣∣∣+

∣∣∣∣(t(h)
k − λ

(h)
i(k)

)∫
fdθ(h)

∣∣∣∣]

≤

[ni(k)∑
h=1

t
(h)
k

∣∣∣∣αB(x(h);r(h)k

) (AvgFk f
)
−
∫
fdθ(h)

∣∣∣∣
]

+
‖f‖C(X)

k
.

We can then estimate

∣∣∣∣αB(x(h);r(h)k

) (AvgFk f
)
−
∫
fdθ(h)

∣∣∣∣
≤
∣∣∣∣αB(x(h);r(h)k

) (AvgFk f
)
−AvgFk f

(
x(h)

)∣∣∣∣+

∣∣∣∣AvgFk f
(
x(h)

)
−
∫
fdθ(h)

∣∣∣∣
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Since r(h)
k < δk for all k ∈ N, it follows that if ρ

(
x(h), y

)
< r

(h)
k , then ρ

(
Tgx

(h), Tgy
)
< 1/k for g ∈ Fk.

Since f is 1-Lipschitz, it follows that
∣∣f (Tgx(h)

)
− f (Tgy)

∣∣ < 1/k for all g ∈ Fk. Thus

∣∣∣∣αB(x(h);r(h)k

) (AvgFk f
)
−AvgFk f

(
x(h)

)∣∣∣∣
=

∣∣∣∣∣∣ 1

µ
(
B
(
x(h); r

(h)
k

)) ∫
B
(
x(h);r

(h)
k

) 1

|Fk|
∑
g∈Fk

(
f(Tgy)− f

(
Tgx

(h)
))

dµ(y)

∣∣∣∣∣∣
≤ 1

µ
(
B
(
x(h); r

(h)
k

)) ∫
B
(
x(h);r

(h)
k

) 1

|Fk|
∑
g∈Fk

∣∣∣f(Tgy)− f
(
Tgx

(h)
)∣∣∣ dµ(y)

<
1

µ
(
B
(
x(h); r

(h)
k

)) ∫
B
(
x(h);r

(h)
k

) 1

|Fk|
∑
g∈Fk

1

k
dµ(y)

=
1

k
.

Therefore

∣∣∣∣αCk (AvgFk f
)
−
∫
fdνi(k)

∣∣∣∣
≤

[ni(k)∑
h=1

t
(h)
k

∣∣∣∣αB(x(h);r(h)k

) (AvgFk f
)
−
∫
fdθ(h)

∣∣∣∣
]

+
‖f‖C(X)

k

≤

[ni(k)∑
h=1

t
(h)
k

(∣∣∣∣αB(x(h);r(h)k

) (AvgFk f
)
−AvgFk f

(
x(h)

)∣∣∣∣+

∣∣∣∣AvgFk f
(
x(h)

)
−
∫
fdθ(h)

∣∣∣∣)
]

+
‖f‖C(X)

k

=

[ni(k)∑
h=1

t
(h)
k

(
1

k
+

∣∣∣∣AvgFk f
(
x(h)

)
−
∫
fdθ(h)

∣∣∣∣)
]

+
‖f‖C(X)

k

=
1

k
+

[ni(k)∑
h=1

t
(h)
k

∣∣∣∣AvgFk f
(
x(h)

)
−
∫
fdθ(h)

∣∣∣∣
]

+
‖f‖C(X)

k
.
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In particular, this tells us that for fixed i ∈ I , we have

∣∣∣∣αCκ(i,`) (AvgFκ(i,`) f
)
−
∫
fdνi(k)

∣∣∣∣
=

∣∣∣∣αCκ(i,`) (AvgFκ(i,`) f
)
−
∫
fdνi(κ(i,`))

∣∣∣∣
≤ 1

κ(i, `)
+

[
ni∑
h=1

t
(h)
κ(i,`)

∣∣∣∣AvgFκ(i,`) f
(
x(h)

)
−
∫
fdθ(h)

∣∣∣∣
]

+
‖f‖C(X)

κ(i, `)

≤1

`
+

[
max

1≤h≤ni

∣∣∣∣AvgFκ(i,`) f
(
x(h)

)
−
∫
fdθ(h)

∣∣∣∣]+
‖f‖C(X)

`

`→∞→ 0.

Therefore νi = lim`→∞ αCκ(i,`) AvgFκ(i,`) . Thus LS
((
αCk ◦AvgFk

)∞
k=1

)
⊇ F is dense inMT (X), and

since LS
((
αCk ◦AvgFk

)∞
k=1

)
is a closed subset ofMT (X), it follows that

LS
((
αCk ◦AvgFk

)∞
k=1

)
=MT (X).

We conclude this section by proving a result that does not rely on the measure µ neglecting shells.

Proposition 4.5.4. There exists a sequence (xk)
∞
k=1 of points in X and a sequence (rk)

∞
k=1 of radii such that

LS
((
αB(xk;rk) ◦AvgFk

)∞
k=1

)
⊇ ∂eMT (X).

Proof. Let {νi : i ∈ I} be a countable dense subset of ∂eMT (X), where I is some countable indexing set,

and let N = {Ni : i ∈ I} be a partition of N into countably infinitely many infinite subsets. For each k ∈ N,

set i(k) ∈ I such that k ∈ Ni(k).

For each i ∈ I , let (κ(i, `))∞`=1 be a strictly increasing sequence such that

κ(i, `) ∈ Ni,(
Fκ(i,`)

)∞
`=1

is tempered,
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which exists by Lemma 4.2.9. By the Lindenstrauss Ergodic Theorem, for each i ∈ I exists yi ∈ X such that

lim
`→∞

AvgFκ(i,`) f(yi) =

∫
fdνi (∀f ∈ C(X)).

Set xk = yi(k).

For each k ∈ N, choose δk > 0 such that

max
g∈Fk

(
L(g) · δH(g)

k

)
< 1/k,

and let rk ∈ (0, δk) for all k ∈ N. If f ∈ L(X), then

∣∣∣∣αB(xκ(i,`);rκ(i,`))

(
Avgκ(i,`) f

)
−
∫
fdνi

∣∣∣∣
≤
∣∣∣αB(xκ(i,`);rκ(i,`))

(
Avgκ(i,`) f

)
−Avgκ(i,`) f

(
xκ(i,`)

)∣∣∣+

∣∣∣∣Avgκ(i,`) f
(
xκ(i,`)

)
−
∫
fdνi

∣∣∣∣
=
∣∣∣αB(xκ(i,`);rκ(i,`))

(
Avgκ(i,`) f

)
−Avgκ(i,`) f

(
xκ(i,`)

)∣∣∣+

∣∣∣∣Avgκ(i,`) f (yi)−
∫
fdνi

∣∣∣∣
≤ 1

κ(i, `)
+

∣∣∣∣Avgκ(i,`) f (yi)−
∫
fdνi

∣∣∣∣
`→∞→ 0.

Therefore νi ∈ LS
((
αB(xk;rk) ◦AvgFk

)∞
k=1

)
for all i ∈ I . Since {νi : i ∈ I} is dense in ∂eMT (X),

and LS
((
αB(xk;rk) ◦AvgFk

)∞
k=1

)
is always closed, it follows that

∂eMT (X) ⊆ LS
((
αB(xk;rk) ◦AvgFk

)∞
k=1

)
.

4.6 Weak specification and maximal oscillation

Specification properties were initially introduced by R. Bowen in (Bowen, 1971) in the course of studying

Axiom A diffeomorphisms. In the intervening decades, a considerable amount of effort has been put into the

study of other specification-like properties -typically weaker than the Specification Property considered by

Bowen- and the connections between them. For a broad overview of these specification-like properties and
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the relations between them, we refer the reader to (Kwietniak et al., 2016), whose terminology we will be

following.

Throughout this section, let (X, ρ) be a compact metric space, and let T : N0 y X be an action of N0 on

X by continuous (not necessarily invertible) maps. For x ∈ X, k ∈ N, we define the kth empirical measure

of x to be the Borel probability measure

µx,k :=

k−1∑
j=0

δTjx,

where δy denotes the point mass at y, i.e. δy(A) = χA(y). In light of Lemma 4.2.5, the study of local

temporo-spatial differentiations is closely tied to the study of pointwise ergodic averages.

A point x ∈ X is said to have maximal oscillation with respect to T : N0 y X if

LS
(
(µx,k)

∞
k=1

)
=MT (X).

This could be understood as the worst possible divergence for the sequence (µx,k)
∞
k=1. M. Denker, C.

Grillenberger, and K. Sigmund demonstrated the following prevalence result for points of maximal oscillation.

Recall that a subset S of X is called residual if S contains a dense Gδ set.

Theorem 4.6.1. (Denker et al., 2006, Proposition 21.18) If T has the Periodic Specification Property, then

the set of points x ∈ X with maximal oscillation is residual in X .

Remark 4.6.2. In (Denker et al., 2006), what the authors call the Specification Property (defined there as

Definition 21.1) is what (Kwietniak et al., 2016) calls the Periodic Specification Property, which is slightly

stronger than what (Kwietniak et al., 2016) -and consequently we- call the Specification Property in Definition

4.6.5.

We introduce here a variation on and strengthening of the definition of maximal oscillation.

Definition 4.6.3. A sampling family is a family Π of functions N→ N such that limk→∞ π(k) = +∞ for

all k ∈ N. Given a sampling family Π, we say that a point x ∈ X has maximal oscillation relative to Π if for

every π ∈ Π, we have that

LS
((
µx,π(k)

)∞
k=1

)
=MT (X).
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Maximal oscillation can then be recovered as the case where Π = {k 7→ k} consists solely of the identity

function on N.

Maximal oscillation describes the situation where not only does the sequence (µx,k)
∞
k=1 diverge, but it

diverges to the greatest extent possible. However, because (µx,k)
∞
k=1 takes values in the compact spaceM(X),

we know it will always have convergent subsequences, meaning this divergence will always “disappear” if we

restrict our attention to an appropriate subsequence. Our notion of maximal oscillation relative to a sampling

family allows us to strengthen the notion of maximal oscillation by prescribing the “worst-case scenario”

divergence along a family of subsequences.

We now define a hierarchy of specification-like properties.

Definition 4.6.4. A specification is a finite sequence ξ = {([aj , bj ], xj)}nj=1 of finite subintervals [aj , bj ] of

N and points xj ∈ X . Given a function M : N→ N, we say that the specification ξ = {([aj , bj ], xj)}nj=1 is

M-spaced if aj − bj−1 ≥M(j) for all j = 2, . . . , n. If M is the constant function N ∈ N, then we say an

M-spaced specification is N -spaced.

Definition 4.6.5. Let ξ = {([aj , bj ], xj)}nj=1 be a specification, and let δ > 0. We call a point y ∈ X a

δ-tracing of ξ if

ρ
(
Tixj , Taj+iy

)
< δ (∀j = 1, . . . , n; i = 0, 1, . . . , bj − aj) .

(I) We call a family of functions (Mδ : N→ N)δ∈(0,1) a modulus of specification for (X,T ) if every Mδ-

spaced specification ξ admits a δ-tracing, and say that T : N0 y X has the Very Weak Specification

Property.

(II) If T admits a modulus of specification (Mδ)δ∈(0,1) with the additional property that

lim
n→∞

Mδ(n)

n
= 0 (∀δ ∈ (0, 1)),

then we say that T has the Weak Specification Property.

(III) If T admits a modulus of specification (Mδ)δ∈(0,1) with the additional property that each Mδ is a

constant function, then we say that T has the Specification Property.
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Intuitively, these specification-like properties mean that if we have some orbit segments that we want

to approximate within δ, then we can find a point whose orbits are close to those segments as long as the

segments are spaced far enough apart from each other. Clearly these specification properties are listed in

ascending order of strength.

What we call the Weak Specification Property and Specification Property both have precedents in the

literature. The Specification Property goes back to R. Bowen’s original work (Bowen, 1971), and what we

call here the Weak Specification Property can be found in (Marcus, 1980). See (Kwietniak et al., 2016) for a

fuller historical discussion. However, to our knowledge, there is no precedent for what we term here the Very

Weak Specification Property in the literature. Regardless, our results in this section do not rely on a modulus

of specification (Mδ)δ∈(0,1) satisfying the condition that Mδ(n) = o(n) for all δ ∈ (0, 1), so we see fit to

introduce this weaker specification-like property.

Our main theorem of this section is the following.

Theorem 4.6.6. Let Π be a countable sampling family. Suppose T : N0 y X has the Very Weak

Specification Property. Then the set

XΠ =
{
x ∈ X : LS

((
µx,π(k)

)∞
k=1

)
=MT (X) for all π ∈ Π

}
.

is residual.

Let E denote a countable dense subset of ∂eMT (X), and let

F =

{
n∑
i=1

λiθi : n ∈ N, θi ∈ E , λi ∈ Q ∩ [0, 1],

n∑
i=1

λi = 1

}
,

i.e. F is the set of all rational convex combinations of elements of E . Then F is a countable dense subset of

MT (X) by the Krein-Millman Theorem. Further, let {fh}∞h=1 be an enumerated dense subset of C(X).

Lemma 4.6.7. Let Π be a sampling family. For ν ∈ F , ε > 0, H ∈ N, k0 ∈ N, π ∈ Π, set

E(ν, ε,H, k0, π) =

H⋂
h=1

x ∈ X : ∃k ≥ k0

∣∣∣∣∣∣
 1

π(k)

π(k)−1∑
j=0

Tjfh(x)

− ∫ fhdν

∣∣∣∣∣∣ < ε

 .

If T has the Very Weak Specification Property, then E(ν, ε,H, k0, π) is a dense open subset of X .
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Proof. Fix H ∈ N, ν ∈MT (X), ε > 0, π ∈ Π. Set

Ak =

x ∈ X :

∣∣∣∣∣∣
 1

π(k)

π(k)−1∑
j=0

Tjfh(x)

− ∫ fhdν

∣∣∣∣∣∣ < ε for h = 1, . . . ,H

 .

Then E(ν, ε,H, k0) =
⋃∞
k=k0

Ak. Clearly
⋃∞
k=k0

Ak is open, leaving us to show it is dense.

Choose θ0, θ1, . . . , θI−1 ∈ E ;λ0, λ1, . . . , λI−1 ∈ [0, 1] ∩Q such that

ν =

I−1∑
i=0

λiθi,

where we can assume without loss of generality that λi > 0 for all i = 1, . . . , I . Let

p0, p1, . . . , pI−1, q ∈ N such that

λi =
pi
q

(i = 0, 1, . . . , I − 1).

Let y0, y1, . . . , yI−1 ∈ X such that limk→∞
1
k

∑k−1
j=0 Tjfh(yi) =

∫
fdθi for i = 0, 1, . . . , I − 1, which exist

by the Birkhoff Ergodic Theorem. Choose k0 ∈ N such that

k ≥ k0 ⇒

∣∣∣∣∣∣
1

k

k−1∑
j=0

Tjfh(yi)

− ∫ fhdθi

∣∣∣∣∣∣ < ε/3 (i = 0, 1, . . . , I − 1;h = 1, . . . ,H).

Fix x ∈ X, η > 0. We will show that there exists k ≥ k0 and y ∈ Ak such that

ρ(x, y) ≤ η.

Since f1, . . . , fH are uniformly continuous, there exists δ > 0 such that

∀z1, z2 ∈ X ∀h ∈ {1, . . . ,H} (ρ(z1, z2) < δ ⇒ |fh(z1)− fh(z2)| < ε/3) .

Assume without loss of generality that δ < η.

Let (Mδ)δ∈(0,1) be a modulus of specification for T : N0 y X . Fix

N = max {Mδ(1), . . . ,Mδ(I + 1)} .
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For K ∈ N, define a sequence

a
(K)
−1 ≤ b

(K)
−1 < a

(K)
0 ≤ b(K)

0 < a
(K)
1 ≤ b(K)

1 < a
(K)
2 ≤ b(K)

2 < · · · < a
(K)
I−1 ≤ b

(K)
I−1

by

a
(K)
−1 = 0, b

(K)
−1 = 0,

a
(K)
0 = N, b

(K)
0 = a0 +Kp0 − 1,

a
(K)
1 = b

(K)
0 +N, b

(K)
1 = a

(K)
1 +Kp1 − 1,

a
(K)
2 = b

(K)
1 +N, b

(K)
2 = a

(K)
2 +Kp2 − 1,

...

a
(K)
I−1 = b

(K)
I−2 +N, b

(K)
I−1 = a

(K)
I−1 +KpI−1 − 1.

Written explicitly, we have

a
(K)
i = (i+ 1)N +K

i−1∑
`=0

p`,

b
(K)
i = (i+ 1)N − 1 +K

i∑
`=0

p`.

Set

xi =


x if i = −1,

yi if 0 ≤ i ≤ I − 1

Let ξ(K) be the specification

ξ(K) =
{([

a
(K)
i , b

(K)
i

]
, xi

)}I−1

i=−1
.

Then ξ(K) is Mδ-spaced, so by the Weak Specification Property, for each K ∈ N exists y = y(K) ∈ X

such that y(K) is a δ-tracing of ξ(K). In particular, since a(K)
−1 = 0 = b

(K)
−1 , x−1 = x, this means that

ρ(x, y) < δ < η. We claim that y(K) ∈ E(ν, ε,H, k0, π) for sufficiently large K.

For k ∈ N, set

K = Kk =

⌊
π(k)− IN − 1

q

⌋
,
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so

b
(K)
I−1 + 1 = IN +Kq + 1 ≤ π(k) ≤ IN + (K + 1)q.

The following sketch of our argument motivates our definition of y(K). Let f ∈ C(X). Then

1

π(k)

π(k)−1∑
j=0

fh

(
Tjy

(K)
)

≈Avg[
a
(K)
0 ,b

(K)
0

]
∪
[
a
(K)
1 ,b

(K)
1

]
∪···
[
a
(K)
I−1,b

(K)
I−1

] fh (y(K)
)

=
1

Kp0 +Kp1 + · · ·KpI−1

I−1∑
i=0

b
(K)
i∑

j=a
(K)
i

fh

(
Tjy

(K)
)

=
1

Kp0 +Kp1 + · · ·KpI−1

I−1∑
i=0

(
b
(K)
i − a(K)

i + 1
)

Avg[
a
(K)
i ,b

(K)
i

] fh (y(K)
)

=
1

Kq

I−1∑
i=0

Kpi Avg[
a
(K)
i ,b

(K)
i

] fh (y(K)
)

=

I−1∑
i=0

pi
q

Avg[
a
(K)
i ,b

(K)
i

] fh (y(K)
)

≈
I−1∑
i=0

pi
q

Avg[
0,b

(K)
i −a(K)

i

] fh (xi)

≈
I−1∑
i=0

pi
q

∫
fhdθi

=

∫
fhdν,

where we write that s(k) ≈ t(k) if |s(k) − t(k)| < ε/3 for sufficiently large k ∈ N. So it will suffice to

verify those three claims.

Claim (i): We first argue that

∣∣∣∣∣∣
 1

π(k)

π(k)−1∑
j=0

fh

(
Tjy

(K)
)−Avg[

a
(K)
0 ,b

(K)
0

]
∪
[
a
(K)
1 ,b

(K)
1

]
∪···
[
a
(K)
I−1,b

(K)
I−1

] fh (y(K)
)∣∣∣∣∣∣ ≤ ε

3
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for sufficiently large k ∈ N. We know that

1

π(k)

π(k)−1∑
j=0

fh

(
Tjy

(K)
)

=
1

π(k)

I−1∑
i=0

b
(K)
i∑

j=a
(K)
i

fh

(
Tjy

(K)
)+

1

π(k)

a
(K)
0∑
j=0

fh

(
Tjy

(K)
)

+
1

π(k)

I−2∑
i=0

a
(K)
i+1∑

j=b
(K)
i +1

fh

(
Tjy

(K)
)+

1

π(k)

 π(k)−1∑
j=b

(K)
I−1+1

fh

(
Tjy

(K)
)

=
Kq

π(k)
Avg[

a
(K)
0 ,b

(K)
0

]
∪
[
a
(K)
1 ,b

(K)
1

]
∪···
[
a
(K)
I−1,b

(K)
I−1

] fh (y(K)
)

+
1

π(k)

a
(K)
0∑
j=0

fh

(
Tjy

(K)
)

+
1

π(k)

I−2∑
i=0

a
(K)
i+1∑

j=b
(K)
i +1

fh

(
Tjy

(K)
)+

1

π(k)

 π(k)−1∑
j=b

(K)
I−1+1

fh

(
Tjy

(K)
)

= Avg[
a
(K)
0 ,b

(K)
0

]
∪
[
a
(K)
1 ,b

(K)
1

]
∪···
[
a
(K)
I−1,b

(K)
I−1

] fh (y(K)
)

+
Kq − π(k)

π(k)
Avg[

a
(K)
0 ,b

(K)
0

]
∪
[
a
(K)
1 ,b

(K)
1

]
∪···
[
a
(K)
I−1,b

(K)
I−1

] fh (y(K)
)

+
1

π(k)

a
(K)
0∑
j=0

fh

(
Tjy

(K)
)+

1

π(k)

I−2∑
i=0

a
(K)
i+1∑

j=b
(K)
i +1

fh

(
Tjy

(K)
)

+
1

π(k)

 π(k)−1∑
j=b

(K)
I−1+1

fh

(
Tjy

(K)
) .
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Therefore ∣∣∣∣∣∣
 1

π(k)

π(k)−1∑
j=0

fh

(
Tjy

(K)
)−Avg[

a
(K)
0 ,b

(K)
0

]
∪
[
a
(K)
1 ,b

(K)
1

]
∪···
[
a
(K)
I−1,b

(K)
I−1

] fh (y(K)
)∣∣∣∣∣∣

≤
∣∣∣∣Kq − π(k)

π(k)
Avg[

a
(K)
0 ,b

(K)
0

]
∪
[
a
(K)
1 ,b

(K)
1

]
∪···
[
a
(K)
I−1,b

(K)
I−1

] fh (y(K)
)∣∣∣∣

+

∣∣∣∣∣∣∣
1

π(k)

a
(K)
0∑
j=0

fh

(
Tjy

(K)
)
∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣
1

π(k)

I−2∑
i=0

a
(K)
i+1∑

j=b
(K)
i +1

fh

(
Tjy

(K)
)
∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣
1

π(k)

π(k)−1∑
j=b

(K)
I−1+1

fh

(
Tjy

(K)
)∣∣∣∣∣∣∣

=
π(k)−Kq

π(k)

∣∣∣∣Avg[
a
(K)
0 ,b

(K)
0

]
∪
[
a
(K)
1 ,b

(K)
1

]
∪···
[
a
(K)
I−1,b

(K)
I−1

] fh (y(K)
)∣∣∣∣

+

∣∣∣∣∣∣ 1

π(k)

 N∑
j=0

fh

(
Tjy

(K)
)∣∣∣∣∣∣

+

∣∣∣∣∣∣∣
1

π(k)

I−2∑
i=0

b
(K)
i +N∑

j=b
(K)
i +1

fh

(
Tjy

(K)
)
∣∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

π(k)

π(k)−1∑
j=IN+Kq+1

fh

(
Tjy

(K)
)∣∣∣∣∣∣

≤π(k)−Kq
π(k)

‖fh‖C(X) +
N + 1

π(k)
‖fh‖C(X)

+
(I − 1)N

π(k)
‖fh‖C(X) +

π(k)− IN +Kq + 1

π(k)
‖fh‖C(X)

≤
[
IN + 1

π(k)
+
N + 1

π(k)
+

(I − 1)N

π(k)
+

q

π(k)

]
· ‖fh‖C(X)

k→∞→ 0.

This establishes our estimate for large k.

Claim (ii): We next argue that

∣∣∣∣∣
(
I−1∑
i=0

pi
q

Avg[
a
(K)
i ,b

(K)
i

] fh (y(K)
))
−

(
I−1∑
i=0

pi
q

Avg[
0,b

(K)
i −a(K)

i

] fh (xi)

)∣∣∣∣∣ < ε

3
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for all k ∈ N. To see this, we can note that

∣∣∣∣∣
(
I−1∑
i=0

pi
q

Avg[
a
(K)
i ,b

(K)
i

] fh (y(K)
))
−

(
I−1∑
i=0

pi
q

Avg[
0,b

(K)
i −a(K)

i

] fh (xi)

)∣∣∣∣∣
=

∣∣∣∣∣∣∣
I−1∑
i=0

pi
q

1

b
(K)
i − a(K)

i + 1

b
(K)
i −a(K)

i∑
j=0

(
fh

(
T
j+a

(K)
i

y(K)
)
− fh (Tjxi)

)∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
I−1∑
i=0

pi
q

1

Kpi

Kpi−1∑
j=0

(
fh

(
T
j+a

(K)
i

y(K)
)
− fh (Tjxi)

)∣∣∣∣∣∣
≤
I−1∑
i=0

pi
q

1

Kpi

Kpi−1∑
j=0

∣∣∣fh (Tj+a(K)
i

y(K)
)
− fh (Tjxi)

∣∣∣
(†) <

I−1∑
i=0

pi
q

1

Kpi

Kpi−1∑
j=0

ε

3

=
ε

3
,

where the estimate (†) follows from the fact that y is a δ-tracing of ξ(K).

Claim (iii): Our third step is to show that

∣∣∣∣∣
(
I−1∑
i=0

pi
q

Avg[
0,b

(K)
i −a(K)

i

] fh (xi)

)
−

(
I−1∑
i=0

pi
q

∫
fhdθi

)∣∣∣∣∣ < ε

3

for sufficiently large k ∈ N. This follows because

∣∣∣∣∣
(
I−1∑
i=0

pi
q

Avg[
0,b

(K)
i −a(K)

i

] fh (xi)

)
−

(
I−1∑
i=0

pi
q

∫
fhdθi

)∣∣∣∣∣
=

∣∣∣∣∣
I−1∑
i=0

pi
q

(
Avg[

0,b
(K)
i −a(K)

i

] fh (xi)−
∫
fhdθi

)∣∣∣∣∣
≤
I−1∑
i=0

pi
q

∣∣∣∣Avg[
0,b

(K)
i −a(K)

i

] fh (xi)−
∫
fhdθi

∣∣∣∣
=
I−1∑
i=0

pi
q

∣∣∣∣∣∣
 1

Kpi

Kpi−1∑
j=0

fh (Tjxi)

− ∫ fhdθi

∣∣∣∣∣∣
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If k is sufficiently large that

∣∣∣∣∣∣
 1

Kpi

Kpi−1∑
j=0

fh (Tjxi)

− ∫ fhdθi

∣∣∣∣∣∣ < ε

3
(for i = 0, 1, . . . , I − 1),

then
I−1∑
i=0

pi
q

∣∣∣∣∣∣
 1

Kpi

Kpi−1∑
j=0

fh (Tjxi)

− ∫ fhdθi

∣∣∣∣∣∣ <
I−1∑
i=0

pi
q

ε

3
=
ε

3
.

Taking these three claims together, we can say that

∣∣∣∣∣∣
 1

π(k)

π(k)−1∑
j=0

fh

(
Tjy

(K)
)− ∫ fdν

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
 1

π(k)

π(k)−1∑
j=0

fh

(
Tjy

(K)
)−Avg[

a
(K)
0 ,b

(K)
0

]
∪
[
a
(K)
1 ,b

(K)
1

]
∪···
[
a
(K)
I−1,b

(K)
I−1

] fh (y(K)
)∣∣∣∣∣∣

+

∣∣∣∣∣
(
I−1∑
i=0

pi
q

Avg[
a
(K)
i ,b

(K)
i

] fh (y(K)
))
−

(
I−1∑
i=0

pi
q

Avg[
0,b

(K)
i −a(K)

i

] fh (xi)

)∣∣∣∣∣
+

∣∣∣∣∣
(
I−1∑
i=0

pi
q

Avg[
0,b

(K)
i −a(K)

i

] fh (xi)

)
−

(
I−1∑
i=0

pi
q

∫
fhdθi

)∣∣∣∣∣
<
ε

3
+
ε

3
+
ε

3

=ε

for sufficiently large k ∈ N.

For each h ∈ {1, . . . ,H}, choose kh ∈ N such that

k ≥ kh ⇒

∣∣∣∣∣∣
 1

π(k)

π(k)−1∑
j=0

fh

(
Tjy

(K)
)− ∫ fdν

∣∣∣∣∣∣ < ε.

Then if k ≥ max {k0, k1, . . . , kH}, it follows that y(K) ∈ E(ν, ε,H, k0, π).

Proof of Theorem 4.6.6. We can metrizeM(X) with the metric dist :M(X)×M(X)→ [0, 1] defined by

dist(β1, β2) =
∞∑
h=1

min 2−h
{∣∣∣∣∫ fhd(β1 − β2)

∣∣∣∣ , 1} .
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For ν ∈ F , k0 ∈ N, n ∈ N, π ∈ Π, write

B(ν, n, k0) = {x ∈ X : ∃k ≥ k0 (dist(µx,k, ν) < 1/n)} .

Choose Hn ∈ N such that 2−Hn < 1/(2n). We claim that

B(ν, n, k0, π) ⊇ E(ν, 1/(2n), Hn, k0).

If x ∈ E(ν, 1/(2n), Hn, k0, π), then there exists k ≥ k0 such that

dist(µx,π(k), ν) =
∞∑
h=1

2−h min

{∫
fhd

(
µx,π(j) − ν

)
, 1

}

< 2−1 1

2n
+ 2−2 1

2n
+ · · ·+ 2−Hn

1

2n
+

∞∑
h=Hε+1

2−h

<
1

2n
+

1

2n

= 1/n.

Thus x ∈ B(ν, n, k0, π).

We claim that X ′ ⊇
⋂
π∈Π

⋂
ν∈F

⋂∞
n=1

⋂∞
k0=1B(ν, n, k0, π). Let

x ∈
⋂
π∈Π

⋂
ν∈F

⋂∞
n=1

⋂∞
k0=1B(ν, n, k0, π), and consider some ν ∈MT (X). Choose a sequence (ν`)

∞
`=1

in F such that dist(ν, ν`) < 1/` for all ` ∈ N. Construct a sequence (k`)
∞
`=1 in N recursively as follows:

• Basis step: Choose k1 ∈ N such that dist
(
µx,π(k1), ν1

)
< 1, which exists because x ∈ B(νn, n, 1, π).

• Recursive step: Suppose we’ve chosen k1 < k2 < · · · < k` such that dist
(
µx,π(kn), νn

)
< 1/n

for n = 1, . . . , `. Chose k`+1 ≥ k` + 1 such that dist
(
µx,π(k`+1), ν`+1

)
< 1/(` + 1), which exists

because x ∈ B(ν`+1, `+ 1, k` + 1, π).

It follows then that

dist (µx,k` , ν) ≤ dist (µx,k` , ν`) + dist (ν`, ν) < 2/`
`→∞→ 0,

i.e. ν ∈ LS
(
(µx,k)

∞
k=1

)
.
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But
⋂
ν∈F

⋂∞
n=1

⋂∞
k0=1B(ν, n, k0) is a countable intersection of residual sets, and thus itself residual.

Corollary 4.6.8. Let F = ({0, 1, . . . , k − 1})∞k=1, and suppose that T : N0 y X is a Hölder action onX that

has the Very Weak Specification Property. Suppose Π is a countable sampling family. Then the set of x ∈ X

such that LS
((
αB(x;rπ(k)) ◦AvgFπ(k)

)∞
k=1

)
=MT (X) for all (rk)

∞
k=1 that decay (X, ρ,H,L,F)-fast and

π ∈ Π is a residual subset of X .

Proof. Lemma 4.2.5 tells us that this is exactly the set considered in Theorem 4.6.6.

Our Theorem 4.6.6 strengthens the following result of J. Li and M. Wu, since the Specification Property

implies the Very Weak Specification Property.

Corollary 4.6.9. (Li and Wu, 2016, Theorem 1.3) Suppose T : N0 y X has the Specification Property, and

let f ∈ CR(X) be a real-valued continuous function on X . Then the set

x ∈ X : lim inf
k→∞

1

k

k−1∑
j=0

f (Tjx) = a(f), lim sup
k→∞

1

k

k−1∑
j=0

f (Tjx) = a(f)


is residual.

Proof. Let Π = {k 7→ k} be the sampling family consisting solely of the identity function N → N, and

consider x ∈ XΠ. Since the Specification Property implies the Very Weak Specification Property, Theorem

4.6.6 tells us that XΠ is residual. Let θ1, θ2 ∈ ∂eMT (X) such that

∫
fdθ1 = a(f),∫
fdθ2 = a(f).
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Then there exist k(i)
1 < k

(i)
2 < k

(i)
3 · · · for i = 1, 2 such that lim`→∞ µx,k(i)`

= θi. Thus

a(f) ≤ lim inf
k→∞

1

k

k−1∑
j=0

f (Tjx) ≤ lim
`→∞

1

k
(1)
`

k
(1)
` −1∑
j=0

f (Tjx) = a(f)

⇒ lim inf
k→∞

1

k

k−1∑
j=0

f (Tjx) = a(f),

a(f) ≥ lim sup
k→∞

1

k

k−1∑
j=0

f (Tjx) ≥ lim
`→∞

1

k
(2)
`

k
(2)
` −1∑
j=0

f (Tjx) = a(f)

⇒ lim sup
k→∞

1

k

k−1∑
j=0

f (Tjx) = a(f).

Therefore

XΠ ⊆

x ∈ X : lim inf
k→∞

1

k

k−1∑
j=0

f (Tjx) = a(f), lim sup
k→∞

1

k

k−1∑
j=0

f (Tjx) = a(f)

 ,

meaning the latter is residual.
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Non-autonomous temporo-spatial differentiations for group endomorphisms

The remainder of this chapter is a reproduction of the article (Assani and Young, 2023), a joint work

between the author and his advisor, I. Assani. It is presented without any changes.

In (Assani and Young, 2022), we introduced the notion of a spatial-temporal differentiation problem.

Here, we introduce a generalization of this concept to the setting of non-autonomous dynamical systems, and

prove probabilistic and topological results about certain random spatial-temporal differentiations on compact

abelian metrizable groups.

This paper is organized as follows:

• In Section 5.1, we provide a definition of non-autonomous dynamical systems for our purposes. We

also describe what a spatial-temporal differentiation problem would look like in this non-autonomous

setting.

• In Section 5.2, we introduce the notion of uniform distribution, and describe how uniform distribution in

a compact group is related to the representation theory of that group. We end in proving a metric result

about the uniform distribution of the trajectory of a point under a sequence of group endomorphisms

under the hypothesis that the group endomorphisms satisfy a property we call the Difference Property.

• In Section 5.3, we consider questions about when the Difference Property makes the group endo-

morphisms surjective, and whether a sequence with the Difference Property can exist on a given

group.

• In Section 5.4, we prove a probabilistic result about non-autonomous spatial-temporal differentiations

relative to a sequence of group endomorphisms with the Difference Property and a sequence of

concentric balls with rapidly decaying radii, demonstrating that the set of x ∈ G which generate

well-behaved spatial-temporal differentiations is of full measure.

• In Section 5.5, we prove a probabilistic result about uniformly distributed sequences of the form

(Tn · · ·T1gΛn)∞n=0, where (gn)∞n=0 ∈ GN0 and (Λn)∞n=1 is an increasing sequence of natural numbers.

157



• In Section 5.6, we prove a topological counterpoint to Theorem 5.4.2, demonstrating that the set of

x ∈ G which generate pathological spatial-temporal differentiations is comeager.

We thank the referee for their careful reading of this paper.

5.1 Introducing non-autonomous dynamical systems

Our definition of a non-autonomous dynamical system is inspired by the ”process formulation” found in

(Kloeden and Rasmussen, 2011), though adapted for our ergodic-theoretic purposes. We state the definition in

excess generality, because it is more important to us that the definition capture the concept of non-autonomy;

the study of (autonomous) dynamical systems comes in many diverse flavors, so we would like our definition

of non-autonomous dynamical systems to reflect that diversity.

Let N0 = Z ∩ [0,∞) be the semigroup of nonnegative integers (distinguished from the set N of strictly

positive integers), and let X be an object in a category C. Let HomC(X,X) denote the semigroup of

endomorphisms on X in the category C. A non-autonomous dynamical system is a pair (X, τ), where τ is a

family of maps {τ(s, t) ∈ HomC(X,X)}s,t∈N0,s≥t satisfying the following conditions.

1. τ(s, s) = idX for all s ∈ N0

2. τ(s, u) = τ(s, t)τ(t, u) for all s, t, u ∈ N0, s ≥ t ≥ u,

where the composition of endomorphisms of X is abbreviated as multiplication. We refer to τ as the process.

The essential difference between an autonomous and a non-autonomous system is that the transition map

τ(s, t) is dependent on both the ”starting time” t and the ”ending time” s. The system would be autonomous

if it had the additional property that τ(s, t) = τ(s− t, 0) for all s, t ∈ N0, s ≥ t, indicating that the transition

map depends only on the elapsed time between t and s.

Similar to how an autonomous dynamical system can be treated in terms of either an action of N0 on a

phase space, or equivalently in terms of its generating transformation T , a non-autonomous dynamical system

as we have formulated it above can be understood in terms of a family of generators Tt = τ(t, t− 1), t ∈ N.

Likewise, a family of generators {Tt ∈ HomC(X,X)}t∈N can be understood as generating a non-autonomous
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dynamical system by

τ(s, t) = τ(s, s− 1)τ(s− 1, s− 2) · · · τ(t+ 1, t)

= TsTs−1 · · ·Tt+1.

The approaches are equivalent, but we will typically be approaching these non-autonomous systems from the

perspective of starting with the generators (Tn)∞n=1 and building τ(·, ·) from that sequence.

For our purposes, that category C will be the category whose objects are compact topological spaces X

endowed with Borel probability measures µ, and whose morphisms are continuous maps. We will not in

general assume these maps are measure-preserving. Though the assumption that maps are measure-preserving

is typically vital in the autonomous setting, we will eventually be considering situations where interesting

results are possible without the explicit assumption that the maps in question are measure-preserving. For

measurable sets F with µ(F ) > 0, set αF (f) = 1
µ(F )

∫
F fdµ. We are interested in questions of the following

forms:

• Let (Fk)
∞
k=1 be a sequence of Borel subsets of X for which µ(Fk) > 0, and let f ∈ L∞(X,µ). Then

what can be said about the limiting behavior of

(
αFk

(
1

k

k−1∑
i=0

TiTi−1 · · ·T1f

))∞
k=1

?

• Suppose the Fk = Fk(x) are ”indexed” by x ∈ X . Then can we make any probabilistic claims about

the generic behavior of the sequence
(
αFk(x)

(
1
k

∑k−1
i=0 TiTi−1 · · ·T1f

))∞
k=1

?

• Under the same conditions, can we make any topological claims about the generic behavior of the

sequence
(
αFk(x)

(
1
k

∑k−1
i=0 TiTi−1 · · ·T1f

))∞
k=1

?

Theorem 5.4.2 is a result of the second type, describing the probabilistically generic behavior of a spatial-

temporal differentiation along the sequence Bk(x), where Bk(x) is a ball centered at x with radius decaying

rapidly to 0. Theorems 5.6.2 and 5.6.7 are of the third type, describing the topologically generic behavior of

a spatial-temporal differentiation along the sequence Bk(x).

159



5.2 Uniform distribution and harmonic analysis

Before proceeding, we define the notion of uniform distribution. The study of uniformly distributed

sequences began with Weyl’s investigation of ”uniform distribution modulo 1”, expanding on Kronecker’s

Theorem in Diophantine approximation (Weyl, 1968). This notion was then extended by Hlawka to apply to

compact probability spaces (Hlawka, 1956). The study of uniform distribution in compact groups in particular

was first initiated by Eckmann in (Eckmann, 1943); though Eckmann’s initial definition of uniform distribution

for compact groups contained a significant error, the initial paper still contained several foundational results

in the theory, including the Weyl Criterion for Compact Groups (Proposition 5.2.5). For a more through

history of the topic, the reader is referred to the note at the end of 4.1 in (Kuipers and Niederreiter, 2012).

Definition 5.2.1. Let X be a compact Hasudorff topological space endowed with a regular Borel probability

measure µ. A sequence (xn)∞n=0 in X is called uniformly distributed with respect to the measure µ if

1

k

k−1∑
i=0

f(xi)
k→∞→

∫
fdµ

for all f ∈ C(X).

Let G denote a compact topological group with identity element 1 and Haar probability measure

µ. Throughout this section, we will be dealing only with the dynamics of compact groups, so G will

always denote a compact group, µ will always refer to the Haar probability measure on the compact group

G, and Bo(X) will always refer to the Borel σ-algebra on a topological space X . We will also write

Lp(G) := Lp(G,µ), taking the measure µ to be understood.

When it comes to topological groups, the uniform distribution of topological groups can be characterized

in terms of the representation theory of the group. We review here some important concepts from the

representation theory of topological groups so that we may state this relation. Our brisk summary of the basic

representation theory of compact groups mostly follows (Folland, 2016).

Let U(H) denote the group of unitary operators on a Hilbert space H, where we endow U(H) with

the strong operator topology. A unitary representation of G on H is a continuous group homomorphism

π : G→ U(H). Though non-unitary representations exist, we will be dealing here exclusively with unitary

representations, so we do not bother to define non-unitary representations.
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We call a closed subspaceM of H an invariant subspace for a unitary representation π : G→ U(H)

if π(x)M ⊆M for all x ∈ G. Since π(x)|M :M→M is unitary onM, we call πM : x 7→ π(x)|M ∈

U(M) the subrepresentation of π corresponding to M. A unitary representation π : G → U(H) is

called irreducible if its only invariant subspaces are H and {0}. Two unitary representations π1 : G →

U(H1), π2 : G → U(H2) are called unitarily equivalent if there exists a unitary map U : H1 → H2 such

that π2(x) = Uπ1(x)U−1 for all x ∈ G. We denote by [π] the unitary equivalence class of a representation

π : G→ U(H).

Fact 5.2.2. If G is a compact group, then for every irreducible unitary representation π : G→ U(H), the

spaceH is of finite dimension.

Proof. (Folland, 2016, Theorem 5.2).

Given a unitary representation π : G → U(H), we define the dimension dimπ of π to be dim(H);

since a unitary equivalence of representations induces a unitary isometry between the spaces they act on,

we can conclude that the dimension of a representation is invariant under unitary equivalence. We use Ĝ to

denote the family of unitary equivalence classes of irreducible unitary representations of G. We note that this

notation is consistent with the use of Ĝ to refer to the Pontryagin dual of a locally compact abelian group G,

since when G is locally compact abelian, the irreducible unitary representations are exactly the continuous

homomorphisms G→ S1 ⊆ C.

In particular, there will always exist at least one irreducible representation of dimension 1, specifically

the map x 7→ 1 ∈ C. We call this the trivial representation of G.

Given an irreducible unitary representation π : G→ U(H), we define the matrix elements of π to be the

functions G→ C given by

x 7→ 〈π(x)u, v〉 (u, v ∈ H).

Because π is continuous with respect to the strong operator topology onH, it follows that the matrix elements

are continuous. Given an orthonormal basis {ei}ni=1 ofH, we define the functions {πi,j}ni,j=1 by

πi,j(x) = 〈π(x)ei, ej〉 .
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These πi,j in fact define matrix entries for π in the basis {ei}ni=1.

In particular, the trivial representation will have constant matrix elements.

This is sufficient framework to state the results we will be drawing on.

Fact 5.2.3. [Peter-Weyl Theorem] Let G be a compact group, and let V ⊆ C(G) be the subspace of C(G)

spanned by {
πp,q : p, q = 1, . . . ,dimπ; [π] ∈ Ĝ

}
.

Then V is dense in C(G) with respect to the uniform norm. Furthermore,

{√
dimππp,q : p, q = 1, . . . ,dimπ; [π] ∈ Ĝ

}

is an orthonormal basis for L2(G).

Proof. (Folland, 2016, Theorem 5.12).

Corollary 5.2.4. If π : G→ U(H) is a nontrivial irreducible unitary representation, then
∫
πp,qdµ = 0 for

all (p, q) ∈ {1, 2, . . . ,dimπ}2.

Proof. ∫
πp,qdµ =

∫
πp,q · 1dµ = 〈πp,q, 1〉L2(G) = 0,

since the constant function 1 is a normalized matrix term of the trivial representation.

Finally, we return to the subject of uniform distribution.

Proposition 5.2.5 (Weyl Criterion for Compact Groups). Let G be a compact group, and (xn)∞n=0 a sequence

in G. Then the following are equivalent.

1. The sequence (xn)∞n=0 is uniformly distributed in G.

2. For all nontrivial irreducible unitary representations π : G→ U(H), and all (p, q) ∈ {1, 2, . . . ,dimπ}2

we have
1

k

k−1∑
i=0

πp,q(xi)
k→∞→ 0.
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3. For all nontrivial irreducible unitary representations π : G→ U(H), we have

1

k

k−1∑
i=0

π(xi)
k→∞→ 0,

where 0 denotes the zero operator onH, and the convergence is meant in the operator norm.

Proof. (Kuipers and Niederreiter, 2012, Chapter 4, Theorem 1.3).

Lemma 5.2.6. Let ϕ : G � G1 be a continuous surjective group homomorphism, and let (xn)∞n=1 be a

uniformly distributed sequence in G. Then (ϕ(xn))∞n=1 is uniformly distributed in G1.

Proof. Let π : G1 → U(H) be a nontrivial unitary representation of G1. Then π ◦ ϕ is a nontrivial unitary

representation of G, since ϕ is surjective. Therefore

1

k

k−1∑
i=0

π(ϕ(xi)) =
1

k

k−1∑
i=0

(π ◦ ϕ)(xi)
k→∞→ 0.

We can thus apply Proposition 5.2.5.

Remark 5.2.7. Lemma 5.2.6 is listed as Theorem 1.6 in Chapter 4 of (Kuipers and Niederreiter, 2012).

We include the proof here for the sake of self-containment. Lemma 5.2.6 will be important when proving

Theorem 5.5.9.

We will be interested specifically in the case where the Weyl Criterion only requires us to ”check”

countably many matrix element functions, or equivalently where Ĝ is countable. It turns out that this is

tantamount to a metrizability assumption.

Lemma 5.2.8. Let G be a compact topological group. Then the following are equivalent.

1. C(G) is separable as a vector space with the uniform norm.

2. L2(G) is separable as a Hilbert space.

3. The family Ĝ is countable.

4. G is metrizable.

Proof. (1)⇒(2) If C(G) admits a countable set with dense span in C(G), then that same set has dense span

in L2(G). Thus L2(G) is separable.
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(2)⇒(1) If L2(G) is separable, then every orthonormal basis of L2(G) is countable, including the family

of matrix terms. But these matrix terms have dense span in C(G), so C(G) is separable.

(2)⇐⇒ (3) If there are only countably many unitary equivalence classes of irreducible unitary representa-

tions of G (which are all necessarily finite-dimensional), then L2(G) is separable by the Peter-Weyl Theorem.

Conversely, if Ĝ is uncountable, then Peter-Weyl tells us that L2(G) admits an uncountable orthonormal

basis, meaning that L2(G) is not separable.

(4)⇒(1) If G = (G, ρ) is compact metrizable, then G is separable, admitting a countable dense subset

{xj}j∈I Let fj = ρ(·, xj). Then {fj}j∈J separates points, since if fj(x) = fj(y) for all j ∈ J , then

ρ(x, xj) = ρ(y, xj) for all j ∈ I . For each n ∈ N exists jn ∈ I such that ρ(x, xjn) ≤ 1
2n , since {xj}j∈J is

dense in G. Thus ρ(x, y) ≤ ρ(x, xj) + ρ(xj , y) ≤ 1
n . Thus x = y. By Stone-Weierstrass, this implies that

span

{
N∏
n=1

fjn : j1, . . . , jN ∈ J,N ∈ N ∪ {0}

}
= C(G),

where the empty product is the constant function 1.

(2)⇒(4) Let λ : G→ U
(
L2(G)

)
be the left regular representation

λ(x) : (t 7→ f(t)) 7→
(
t 7→ f

(
x−1t

))
.

Then λ is a faithful representation of G onH, meaning λ is an embedding of G into U
(
L2(G)

)
. Therefore

λ(G) ∼= G is a closed subgroup of U
(
L2(G)

)
. But U(H) is metrizable when H is separable, so G is

therefore metrizable.

When G is compact abelian, the family Ĝ is exactly the family Hom
(
G, S1

)
of continuous group

homomorphisms G → S1, where S1 = {z ∈ C : zz = 1}. Then Ĝ has the structure of a locally compact

abelian topological group under pointwise multiplication (Rudin, 1962, 1.2.6(d)).

The following results describes a condition under which certain sequences will be almost surely uniformly

distributed. We remark that the result is a direct generalization of Theorem 4.1 from Chapter 1 of (Kuipers

and Niederreiter, 2012), which proves the result (albeit in different language) for the particular case where

G = R/Z, and our method of proof is essentially the same, except expressed in the language of harmonic

analysis.
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Theorem 5.2.9. Let G be a compact abelian metrizable group, and let (Φn)n∈N be a sequence of distinct

continuous group endomorphisms of G such that Φn − Φm is a surjection of G onto itself for all n 6= m.

Then for almost all x ∈ G, the sequence (Φnx)∞n=0 is uniformly distributed.

Proof. Fix some nontrivial irreducible unitary representation γ ∈ Ĝ. Set

Sγ(k, x) =
1

k

k−1∑
i=0

γ(Φix).

Then

|Sγ(k, x)|2 =
1

k2

k−1∑
i,j=0

γ(Φix)γ(Φjx)

=
1

k2

k−1∑
i,j=0

γ((Φi − Φj)x)

⇒
∫
|Sγ(k, x)|2dµ(x) =

1

k2

k−1∑
i,j=0

∫
γ((Φi − Φj)x)dµ(x)

=
1

k
.

This cancellation is possible because if i 6= j, then Φi − Φj is surjective, meaning that γ ◦ (Φi − Φj) is a

nontrivial character on G. Therefore
∫
γ((Φi − Φj)x)dµ(x) = 0 for i 6= j, meaning only the terms of i = j

contribute to the sum.

This tells us that
∑∞

K=1

∫ ∣∣Sγ (K2, x
)∣∣2 dµ(x) =

∑∞
K=1K

−2 < ∞, so by Fatou’s Lemma we know

that
∫ ∑∞

K=1

∣∣Sγ (K2, x
)∣∣2 dµ(x) < ∞. In particular, this tells us that

∑∞
K=1

∣∣Sγ (K2, x
)∣∣2 < ∞ for

almost all x ∈ G, and so for almost all x ∈ G, we have Sγ
(
K2, x

) K→∞→ 0.

Let x ∈ G such that Sγ
(
K2, x

) K→∞→ 0. We want to show that Sγ (k, x)
k→∞→ 0. For any k ∈ N, we

have

b
√
kc2 ≤ k ≤

(
b
√
kc+ 1

)2
.
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So

|Sγ(k, x)| =

∣∣∣∣∣1k
k−1∑
i=0

γ(Φix)

∣∣∣∣∣
≤

∣∣∣∣∣∣1k
b
√
kc2−1∑
i=0

γ(Φix)

∣∣∣∣∣∣+

∣∣∣∣∣∣1k
k−1∑

j=b
√
kc2

γ(Φjx)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

b
√
kc2

b
√
kc2−1∑
i=0

γ(Φix)

∣∣∣∣∣∣+
2b
√
kc

k

=
∣∣∣Sγ (b√kc2, x)∣∣∣+

2b
√
kc

k

≤
∣∣∣Sγ (b√kc2, x)∣∣∣+

2√
k

k→∞→ 0.

Let Eγ =
{
x ∈ G : Sγ(k, x)

k→∞→ 0
}

, and let E =
⋂
γ∈Ĝ\{1}Eγ . Since Ĝ is countable, we know

µ(E) = 1, proving the theorem.

5.3 The Difference Property

We will be interested especially in the situation where the sequence (Φn)n∈N is generated by a sequence

(Tn)n∈N of continuous group endomorphisms. Motivated by Theorem 5.2.9, we introduce the following

definition.

Definition 5.3.1. Let G be a compact abelian metrizable group, and let (Tn)∞n=1 be a sequence of continuous

group endomorphisms of G. Set Φn = TnTn−1 · · ·T1 for n ∈ N. We say that the sequence (Tn)∞n=1 has the

Difference Property if Φn − Φm is surjective for all n,m ∈ N, n 6= m.

It is not obvious that the Difference Property places any particular restrictions on the individual Φn

themselves. We have a special interest in when the maps {Tn}∞n=1 are surjective -or perhaps more interestingly,

when they are not surjective- because a continuous group endomorphism on a compact group is measure-

preserving if and only if it is surjective.

Proposition 5.3.2. Let T : G→ G be a continuous group endomorphism of a compact group G. Then T is

surjective if and only if T is measure-preserving.
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Proof. (⇒) Suppose T is surjective. Define a Borel measure ν on G by ν(E) = µ
(
T−1E

)
. Let x ∈ G, and

choose y ∈ G such that x = Ty Then the measure ν satisfies

ν (xE) = µ
(
T−1 (xE)

)
= µ

(
T−1 ((Ty)E)

)
= µ

(
yT−1E

)
= µ

(
T−1E

)
= ν(E),

meaning that ν is left-invariant. It also satisfies ν(G) = µ
(
T−1G

)
= µ(G) = 1, so ν is a probability

measure. Therefore ν is a Haar probability measure on G, but by the uniqueness of the Haar measure, this

implies that ν = µ.

(⇐) If T is not surjective, then there exists x ∈ G \ TG. Since G is compact and Hausdorff, the map T

is necessarily closed, so TG is closed in G, and a fortiori is measurable. If µ(TG) 6= 1, then we know that

µ
(
T−1(TG)

)
= µ(G) 6= µ(TG), so consider the case where µ(TG) = 1. We claim that T−1(xTG) = ∅,

since if Ty = xTz for some y, z ∈ G, then

T
(
yz−1

)
= (Ty)

(
Tz−1

)
= xTz(Tz)−1

= x,

a contradiction. Thus µ
(
T−1 (xTG)

)
= 0 6= 1 = µ (TG) = µ(xTG).

We note that our argument for the forward direction can be found in (Walters, 2007, §1.2). We include it

here for the sake of a self-contained treatment.

The possibility that in the non-autonomous case, rich results like Theorem 5.2.9 could be achieved where

a nontrivial number of the {Tn}∞n=1 are not even measure-preserving intrigues us. The following results show

that under certain conditions, the Difference Property imposes surjectivity on the Tn individually.
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Proposition 5.3.3. LetG be a compact abelian metrizable group, and let (Tn)∞n=1 be a sequence of continuous

group endomorphisms on G with the Difference Property such that TnTm = TmTn for all m,n ∈ N. Then

each Tn is surjective.

Proof. For each n ∈ N, we have that

Φn+1 − Φn = Tn+1Φn − Φn

= (Tn+1 − 1)Φn

= Φn(Tn+1 − 1)

is surjective, meaning that Φn is surjective. Since Φn = TnΦn−1 (where we let Φ0 = idG), we can conclude

that Tn is surjective.

This result applies in the autonomous setting, where Tn = T for all n ∈ N, but not in general. Even

in the case of R2/Z2, endomorphisms need not commute. The next example addresses the situation of

finite-dimensional tori.

Fact 5.3.4. If G is a compact connected abelian Lie group, then G = Rh/Zh for some h ∈ N. In general,

if G is a compact abelian Lie group, then G = G0 ⊕ B, where G0 is the identity component of G, and

B ∼= A = G/G0.

Proof. For a characterization of the compact connected Lie groups, see (Procesi, 2006, §4.2). We now argue

that this implies that any compact abelian Lie group can be expressed in the way described above.

We want to prove that G is isomorphic to a direct sum of G0 and A = G/G0. The embedding

ι1 : G0 ↪→ G is just the canonical embedding, so it remains to find an embedding ι2 : A ↪→ G.

Since A is finite abelian, there exist a1, . . . , am ∈ A, as well as `1, . . . , `m ≥ 2 such that

A = 〈a1〉`1 ⊕ · · · ⊕ 〈am〉`m .

Let π : G → G/G0 be the canonical projection. For each j ∈ {1, . . . ,m}, choose yj ∈ G such that

π(yj) = aj . Then `jyj ∈ kerπ = G0. Since G0 is divisible, there exists y′j ∈ G0 such that `jy′j = `jyj . Set

bj = yj − y′j , so that `jbj = 0. However, because π(kbj) = kπ(aj) for k = 1, . . . , `j − 1, we know that bj

has order `j in G.
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Let B = ⊕mj=1 〈bj〉`1 denote the subgroup of G generated by {b1, . . . , bm}. Then π : B → A is an

isomorphism. Let ι2 = π−1 : A→ B ≤ G.

We claim now that ι1 : G0 ↪→ G, ι2 : A ↪→ G generate G as a direct sum of G0 and A. First, we observe

that G0 ∩ B = {0}, since if x ∈ G0 ∩ B, then π(x) = 0, because G0 = kerπ, but also x = π−1(0) = 0,

since π|B : B → A is an isomorphism. Therefore, the sum G0 +B is direct.

Now, we have to show that G = G0 + B. If x ∈ G, then choose b ∈ B such that π(b) = π(x). Then

x− b ∈ kerπ = G0. Thus x = (x− b) + b.

Therefore G = G0 ⊕B ∼= G0 ⊕A.

Proposition 5.3.5. Let G be a compact connected abelian Lie group, and let (Tn)∞n=1 be a sequence of

continuous group endomorphisms on G with the Difference Property. Then each Tn is surjective.

Proof. Let G = Rh/Zh. We can express Tn as an h× h integer matrix. The maps Φn −Φm are surjective if

and only if det(Φn − Φm) 6= 0. We can conclude that each Tn is invertible because

Φn+1 − Φn = (Tn+1 − I)Φn

= (Tn+1 − I)TnTn−1 · · ·T1

⇒ det(Φn+1 − Φn) = det(Tn+1 − I) det(Tn) det(Tn−1) · · · det(T1)

6= 0.

This implies in particular that det(Tn) 6= 0, meaning that Tn is surjective.

We can, however, provide negative results on when a sequence with the Difference Property might exist.

Lemma 5.3.6. Let G = G0 ⊕ A be a compact abelian group, where G0 is a compact connected abelian

group and A is a finite abelian group. Let ψ : G→ A be a continuous group homomorphism. Then

ψ(G) = ψ(0⊕A) = {ψ(0, a) : a ∈ A}.

Proof. Since G0 is connected, we know that ψ|G0 : G0 → A is the zero map. Clearly ψ(0 ⊕ A) ⊆ ψ(G).

Now suppose that a ∈ ψ(G). Then there exist x0 ∈ G0, a0 ∈ A such that ψ(x0, a0) = a. But ψ(0, a0) =

ψ(x0, a0)− ψ(x0, 0) = ψ(x0, a0). Thus a ∈ ψ(0⊕A).
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Proposition 5.3.7. Let G = G0 ⊕A, where G0 is a compact connected abelian group, and A a finite group

with more than one element. Then there does not exist a sequence (Tn)∞n=1 on G with the Difference Property.

In particular, there does not exist a sequence with the Difference Property on any compact abelian Lie group

that is not connected.

Proof. Assume for contradiction that (Tn)∞n=1 has the Difference Property. Let ∆n,m = Φn − Φm. Let

ι : A ↪→ G0 ⊕ A be the canonical embedding. Then by the previous lemma, the maps ∆n,m ◦ ι =

(Φn ◦ ι)− (Φm ◦ ι) are surjective. But this is a contradiction, since n 7→ Φn ◦ ι is a mapping from N to the

finite set AA, which cannot be injective. Therefore there exist n,m ∈ N, n 6= m such that Φn ◦ ι = Φm ◦ ι,

meaning that ∆n,m(G) = ∆n,m ◦ ι(A) = {0} 6= A, a contradiction.

The special case of compact abelian Lie groups comes from Fact 5.3.4.

5.4 A random non-autonomous spatial-temporal differentiation problem

Lemma 5.4.1. Let G = (G, ρ) be a compact metrizable group with metric ρ. Let (Tn)∞n=1 be a family of

Lipschitz-continuous maps Tn : G → G, where Tn is Ln-Lipschitz. Let Φn = TnTn−1 · · ·T1,Φ0 = idG.

Then there exists a sequence (ηk)
∞
k=1 of positive numbers ηk > 0, ηk

k→∞→ 0 such that if (rk)
∞
k=1 is a

sequence of positive numbers 0 < rk ≤ ηk, and Bk(x) = B(x, rk), then for every f ∈ C(G), and every

sequence (xn)∞n=1 ∈ GN, we have

∣∣∣∣∣αBk(xk)

(
1

k

k−1∑
i=0

Φif

)
− 1

k

k−1∑
i=0

Φif(xk)

∣∣∣∣∣ k→∞→ 0.

Proof. Let L̃k = max{1, L1, L2, . . . , Lk−1}. Set

ηk = L̃
−(k−1)
k k−1.
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Let (rk)
∞
k=1 be a sequence such that 0 < rk ≤ ηk. Then each T1, . . . , Tk−1 is L̃k-Lipschitz, so if y ∈ Bk(x),

i.e. if ρ(x, y) < rk, and if i ∈ [0, k − 1], then

ρ (Φix,Φiy) = ρ (TiTi−1 · · ·T1x, TiTi−1 · · ·T1y)

≤ LiLi−1 · · ·L1ρ(x, y)

≤
(
L̃k

)i
ρ(x, y)

≤
(
L̃k

)i−(k−1)
k−1

≤ k−1.

Now let f ∈ C(G), and fix ε > 0. By uniform continuity of f , there exists K ∈ N such that

ρ(z, w) ≤ 1
K ⇒ |f(z)− f(w)| ≤ ε. Then if k ≥ K, then

∣∣∣∣∣αBk(xk)

(
1

k

k−1∑
i=0

Φif

)
− 1

k

k−1∑
i=0

Φif(xk)

∣∣∣∣∣ =
1

k

∣∣∣∣∣
k−1∑
i=0

Φif(xk)−
1

µ(Bk(xk))

∫
Bk(xk)

Φifdµ

∣∣∣∣∣
≤ 1

k

k−1∑
i=0

∣∣∣∣∣Φif(xk)−
1

µ(Bk(xk))

∫
Bk(xk)

Φifdµ

∣∣∣∣∣
=

1

k

k−1∑
i=0

∣∣∣∣∣ 1

µ(Bk(xk))

∫
Bk(xk)

(Φif(xk)− Φif) dµ

∣∣∣∣∣
≤ 1

k

k−1∑
i=0

1

µ(Bk(xk))

∫
Bk(xk)

|(Φif(xk)− Φif)|dµ

≤ 1

k

k−1∑
i=0

1

µ(Bk(xk))

∫
Bk(xk)

εdµ

= ε.

Therefore ∣∣∣∣∣αBk(xk)

(
1

k

k−1∑
i=0

Φif

)
− 1

k

k−1∑
i=0

Φif(xk)

∣∣∣∣∣ k→∞→ 0.

Our assumption that the {Tn}∞n=1 are Lipschitz is not overly restrictive. In particular, ifG has the structure

of a Lie group with a Riemannian metric, and the maps Tn are C1, then the maps Tn are automatically

Lipschitz in that Riemannian metric.

171



Theorem 5.4.2. Let G = (G, ρ) be a compact abelian metrizable group with metric ρ. Let (Tn)∞n=1

be a family of Lipschitz-continuous group homomorphisms with the Difference Property, where Tn is

Ln-Lipschitz. Then there exists a Borel subset E of full measure and a sequence (ηk)
∞
k=1 of positive

numbers ηk > 0, ηk
k→∞→ 0 such that if (rk)

∞
k=1 is a sequence of positive numbers 0 < rk ≤ ηk, and

Bk(x) = B(x, rk), then for all x ∈ E, we have

αBk(x)

(
1

k

k−1∑
i=0

Φif

)
k→∞→

∫
fdµ (∀f ∈ C(G)).

Proof. Let E = {x ∈ G : (Φnx)∞n=0 is uniformly distributed in G}. By Theorem 5.2.9, this set is of full

measure. Now let (ηk)
∞
k=1 be as in Lemma 5.4.1. Then if 0 < rk ≤ ηk, and if x ∈ E, then for every

f ∈ C(G) we have

∣∣∣∣∣αBk(x)

(
1

k

k−1∑
i=0

Φif

)
−
∫
fdµ

∣∣∣∣∣
≤

∣∣∣∣∣αBk(x)

(
1

k

k−1∑
i=0

Φif

)
− 1

k

k−1∑
i=0

Φif(x)

∣∣∣∣∣+

∣∣∣∣∣
(

1

k

k−1∑
i=0

Φif(x)

)
−
∫
fdµ

∣∣∣∣∣
k→∞→ 0,

where the first term goes to 0 by Lemma 5.4.1, and the second term goes to 0 by the fact that (Φnx)∞n=0 is

uniformly distributed in G.

5.5 Further probabilistic results about uniformly distributed sequences

We now consider the distribution properties of randomly chosen sequences (xn)∞n=0 ∈ GN0 =
∏∞
n=0G

in G.

Lemma 5.5.1. Let (Xn)n∈N be a sequence of separable metrizable topological spaces. Then

Bo

(∏
n∈N

Xn

)
=
⊗
n∈N

Bo(Xn).

Proof. (Kallenberg, 2021, Lemma 1.2)

Definition 5.5.2. Let X be a nonempty set. We call A ⊆ P(X) a semi-algebra if
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(a) ∅ ∈ A

(b) If A,B ∈ A, then A ∩B ∈ A.

(c) For every A ∈ A, the set X \A can be written as a disjoint union of finitely many elements of A.

Lemma 5.5.3. Let (Xn,Bn)n∈N be a sequence of measurable spaces, and let

A =

{
B1 × · · · ×BN ×

∞∏
n=N+1

Xn : N ∈ N, B1 ∈ B1, . . . , BN ∈ BN

}
.

Then A is a semi-algebra that generates
⊗

n∈N Bn.

Proof. For n ∈ N, let πi :
∏
n∈NXn � Xi be the map πi : (xn)n∈N 7→ xi. Then A can be written as

A =

{
N⋂
n=1

π−1
n (Bn) : N ∈ N, B1 ∈ B1, . . . , BN ∈ BN

}
.

Written this way, it is clear that ∅ ∈ A and that A is closed under finite intersections. Finally, we will prove

that the complement of every set in A can be expressed as the disjoint union of finitely many elements of A.

Let A =
⋂N
n=1 π

−1
n (Bn), where B1 ∈ B1, . . . , BN ∈ BN . Then

A{ =

(
N⋂
n=1

π−1
n (Bn)

){

=
N⋃
n=1

π−1
n

(
B{n

)

=
⊔

I∈P({1,2,...,N})

(⋂
i∈I

π−1
i (Bi)

{

)
∩

 ⋂
j∈{1,...,N}\I

(
π−1
j (B){

){
=

⊔
I∈P({1,2,...,N})

(⋂
i∈I

π−1
i

(
B{i

))
∩

 ⋂
j∈{1,...,N}\I

π−1
i (Bj)

 .
Therefore, we have written A{ as a disjoint union of elements of A.

Finally, to justify our claim thatA generates
⊗

n∈N Bn as a σ-algebra, we note that
⊗

n∈N Bn is generated

as a σ-algebra by
{
π−1
n (Bn) : n ∈ N, Bn ∈ Bn

}
, and

{
π−1
n (Bn) : n ∈ N, Bn ∈ Bn

}
⊆ A ⊆

⊗
n∈N
Bn.
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We go to the trouble of proving Lemma 5.5.3 because when checking whether a map between probability

spaces is measure-preserving, it suffices to see how the map behaves on a generating semi-algebra, as in the

following result.

Lemma 5.5.4. Let (X1,B1, µ1), (X2,B2, µ2) be probability spaces, and let T : X1 → X2 be a map. Let

A2 ⊆ B2 be a semi-algebra which generates the σ-algebra B2. Then T is measurable and measure-preserving

iff T−1A ∈ B1 for all A ∈ A2, and µ1

(
T−1A

)
= µ2(A).

Proof. (Dajani and Dirksin, 2008, Theorem 1.2.2)

With all of this out of the way, we are ready to demonstrate a characterization of the Haar measure of a

countable product of compact metrizable groups.

Theorem 5.5.5. Let (Hn)n∈N be a sequence of compact metrizable groups, and let νn be the left-invariant

(resp. right-invariant) Haar probability measure of Hn. Then µ =
∏
n∈N νn is the left-invariant (resp.

right-invariant) Haar probability measure on G =
∏
n∈NHn.

Proof. We will demonstrate the claim for left-invariant Haar measures, since the proof for the right-invariant

claim is essentially identical.

We will show that µ is a G-invariant Borel probability measure on G, and then conclude from the

uniqueness of the Haar measure that µ must be the Haar probability measure on G. By Lemma 5.5.1, we

know that Bo(G) =
⊗

n∈N Bo(Hn). Set

A =

{
B1 × · · · ×BN ×

∞∏
n=N+1

Hn : N ∈ N, B1 ∈ Bo(H1), . . . , BN ∈ Bo(HN )

}
.

Then by Lemma 5.5.3, this A is a generating semi-algebra for
⊗

n∈N Bo(Hn).

Now, fix g = (hn)n∈N ∈ G. We want to prove that left multiplication on G by g is a µ-preserving

transformation. By Lemma 5.5.4, it will suffice to prove that µ(gA) = µ(A) for all A ∈ A. So fix sets
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B1 ∈ Bo(H1), . . . , BN ∈ Bo(HN ), N ∈ N. Then

µ

(
g

(
B1 × · · · ×BN ×

∞∏
n=N+1

Hn

))
= µ

(
h1B1 × · · · × hNBN ×

∞∏
n=N+1

hnHn

)

= µ

(
h1B1 × · · · × hNBN ×

∞∏
n=N+1

Hn

)

= ν1(h1B1) · · · νN (hNBN )

= ν1(B1) · · · νN (BN )

= µ

(
B1 × · · · ×BN ×

∞∏
n=N+1

Hn

)
.

We have thus established that µ is G-invariant on A, and so we can infer that µ is G-invariant for all of

Bo(G).

For the remainder of this section, let G be a compact abelian metrizable group. Let S : GN0 � GN0 be

the left shift

S(gn)∞n=0 = (gn+1)∞n=0.

Then S is a continuous surjective group endomorphism ofGN0 , and given a continuous group homomorphism

T : G→ G, let T̂ : GN0 → GN0 be the map

T̂ : (gn)∞n=0 7→ (Tgn)∞n=0.

We can observe that S and T̂ commute, since

ST̂ (gn)∞n=0 = S (Tgn)∞n=0

= (Tgn+1)∞n=0

= T̂ (gn+1)∞n=0

= T̂ S(gn)∞n=0.

Lemma 5.5.6. Let T : G� G be a continuous surjective group endomorphism of G, and fix ` ∈ N. Then

idGN0 −S`T̂ is also surjective.
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Proof. Fix g = (gn)∞n=0 ∈ GN0 , and construct a sequence g′ = (g′n)∞n=0 ∈ GN0 recursively as follows. First,

set g′n = gn for n = 0, . . . , ` − 1. Then for N > ` − 1, assuming that g′0, g
′
1, g
′
2, . . . , g

′
N ∈ G have been

chosen such that

g′n − Tg′n+` = gn (for n = 0, 1, 2, . . . , N − `),

choose g′N+1 ∈ G such that

Tg′N+1 = gN+1−` − g′N+1−`,

which exists because T is surjective. Then

g′N+1−` − Tg′N+1 = gN+1−`.

Continuing this process gives us a sequence g′ = (g′n)∞n=0 such that

(
idGN0 −S`T̂

)
g′ = g.

Lemma 5.5.7. Let (Tn)∞n=1 be a sequence of surjective group homomorphisms Tn : G� G, and let (`n)∞n=1

be a sequence of natural numbers. Then the sequence
(
S`n T̂n

)∞
n=1

has the Difference Property on GN0 .

Proof. Set Λn = `1 + · · ·+ `n. Let m,n ∈ N,m < n. Then

((
S`m T̂m

)
· · ·
(
S`1 T̂1

))
−
((
S`n T̂n

)
· · ·
(
S`1 T̂1

))
=
(
SΛm T̂m · · · T̂1

)
−
(
SΛn T̂n · · · T̂1

)
=
(
T̂m · · · T̂1S

Λm
)
−
(
T̂n · · · T̂1S

Λn
)

=
(

idGN0 −T̂nT̂n−1 · · · T̂m+1S
Λn−Λm

)
SΛmΦ̂m

=
(

idGN0 − ̂τ(n,m)SΛn−Λm
)
SΛmΦ̂m

=
(

idGN0 −SΛn−Λm ̂τ(n,m)
)
SΛmΦ̂m
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where τ(n,m) = TnTn−1 · · ·Tm+1. By Lemma 5.5.6, it follows that idGN0 − ̂τ(n,m)SΛn−Λm is surjective.

Therefore

((
S`m T̂m

)
· · ·
(
S`1 T̂1

))
−
((
S`n T̂n

)
· · ·
(
S`1 T̂1

))
=
(

idGN0 −SΛn−Λm ̂τ(n,m)
)
SΛm

is surjective, since it is a composition of surjections.

Corollary 5.5.8. Let (Tn)∞n=1 be a sequence of surjective group homomorphisms Tn : G � G, and let

(`n)∞n=1 be a sequence of natural numbers. Set Λn = `1 + · · · + `n. Then for almost every g ∈ G, the

sequence
(
SΛn T̂n · · · T̂1g

)∞
n=0

is uniformly distributed in GN0 .

Proof. Apply Lemma 5.5.7 and Theorem 5.2.9.

Theorem 5.5.9. Let (Tn)∞n=1 be a sequence of surjective group homomorphisms Tn : G � G, and let

(`n)∞n=1 be a sequence of natural numbers. Set Λn = `1 + · · · + `n. Then for almost every sequence

(gn)∞n=0 ∈ GN0 , the sequence (Tn · · ·T1gΛn)∞n=0 is uniformly distributed in G.

Proof. Let π : GN0 � G be the projection onto the first term π : (gn)∞n=0 7→ g0. By Corollary 5.5.8, for

almost every (gn)∞n=0 ∈ GN0 , the sequence
(
SΛn T̂n · · · T̂1g

)∞
n=0

is uniformly distributed in GN0 .

Now let (gn)∞n=0 ∈ GN0 be such that the sequence
(
SΛn T̂n · · · T̂1g

)∞
n=0

is uniformly distributed in GN0 .

Then by Lemma 5.2.6, the sequence
(
π
(
SΛn T̂n · · · T̂1g

))∞
n=0

is uniformly distributed in G. But

π
(
SΛn T̂n · · · T̂1g

)
= Tn · · ·T1gΛn .

5.6 Topologically generic behaviors of random spatial-temporal differentiation problems

We can interpret Theorem 5.2.9 as saying that if (Tn)∞n=1 is a sequence of continuous group endo-

morphisms of G with the Difference Property, and Φn = TnTn−1 · · ·T1, then the property of x ∈ G that

(Φnx)∞n=0 is uniformly distributed is ”probabilistically generic”, in the sense that the set of such x has full

measure. In light of Theorem 5.4.2, we can infer that if Bk(x) is a sequence of balls around x with radii
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going to 0 sufficiently fast, then it is probabilistically generic that

αBk(x)

(
1

k

k−1∑
i=0

Φif

)
k→∞→

∫
fdµ (∀f ∈ C(G)).

In other words, we can see Theorem 5.4.2 as a statement about a probabilistically generic spatial-temporal

differentiation of a certain kind.

However, if we try to look at topologically generic behaviors, the story changes. Instead, in a

sense that we will make precise momentarily, the topologically generic behavior is that the sequence(
αBk(x)

(
1
k

∑k−1
i=0 Φif

))∞
k=1

is divergent for some f ∈ C(G).

Definition 5.6.1. Let X be a compact metrizable space, and S ⊆ X a subset. We say that A ⊆ X is nowhere

dense if for every nonempty openO ⊆ X , there exists a nonempty open subset W ⊆ O such that W ∩A = ∅.

A subset A ⊆ X is called meager if there exists a sequence (An)n∈N of nowhere dense subsets of X such

that A ⊆
⋃
n∈NAn. We call a subset B ⊆ X comeager if X \B is meager. A comeager set is sometimes

called Baire generic.

Our goal here is to show that the behavior described in Theorem 5.2.9 is -from this topological perspective-

exceptional in the sense that the set of such x ∈ G is meager.

Theorem 5.6.2. Let G = (G, ρ) be a compact abelian metrizable group with infinitely many elements and

metric ρ. Let (Tn)∞n=1 be a sequence of continuous, surjective group endomorphisms Tn : G → G. Let

Φn = TnTn−1 · · ·T1,Φ0 = idG. Suppose that
⋃∞
m=1 ker Φm is dense in G. Then the set of x ∈ G such that

(Φnx)∞n=0 is uniformly distributed is meager.

Before we can prove Theorem 5.6.2, we need to prove a few technical lemmas.

Lemma 5.6.3. Let G = (G, ρ) be a compact metrizable group with infinitely many elements and ε > 0.

Then there exists δ > 0 such that µ(B(0, δ)) < ε.

Proof. Consider the sequence (B(0, 1/n))∞n=1. Then B(0, 1) ⊇ B(0, 1/2) ⊇ B(0, 1/3) ⊇ · · · , and⋂∞
n=1B(0, 1/n) = {0}. But µ({0}) = 0, so by continuity of measure, it follows that limn→∞ µ(B(0, 1/n)) =

0. Thus in particular there exists N ∈ N such that µ(B(0, 1/N)) < ε. Let δ = 1/N .

Lemma 5.6.4. Let G = (G, ρ) be a compact abelian metrizable group with infinitely many elements and

metric ρ. Let (Tn)∞n=1 be a sequence of continuous, surjective group endomorphisms Tn : G → G. Let
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Φn = TnTn−1 · · ·T1,Φ0 = idG. Suppose that
⋃∞
m=1 ker Φm is dense in G. Let ε, δ > 0, N1 ∈ N, and let

O ⊆ G be a nonempty open set. Then there exists a nonempty open set W ⊆ O and L ≥ N1 such that if

x ∈W , then
# {j ≤ L− 1 : Φjx ∈ B(0, δ/2)}

L
≥ 1− ε.

Proof. Choose m ∈ N, a ∈ ker Φm such that a ∈ O. Choose N2 ∈ N such that

m

m+N2
< ε.

Set L0 = max{N1, N2}. Let U ⊆ G be the open neighborhood of 0 given by

U =

L0−1⋂
`=0

τ(m+ `,m)−1B(0, δ/2).

Finally set

W =
(
Φ−1
m U

)
∩ O.

Then a ∈W , and Φm+`W ⊆ B(0, δ/2) for all ` ∈ {0, 1, 2, . . . , L0 − 1}. Let L = L0 +m. Then

# {j ≤ L− 1 : Φjx ∈ B(0, δ/2)}
L0 +m

≥ L0

L0 +m
= 1− m

m+ L0
≥ 1− m

m+N2
≥ 1− ε.

Proof of Theorem 5.6.2. Let f : G→ [0, 1] be the continuous function

f(x) =


1 ρ(x, 0) ≤ δ

2 ,

2− 2
δρ(x, 0) δ

2 ≤ ρ(x, 0) ≤ δ,

0 ρ(x, 0) ≥ δ,

where δ > 0 is chosen such that µ(B(0, δ)) < 1
2 , which exists by Lemma 5.6.3. Then χB(0,δ/2) ≤ f ≤

χB(0,δ), so

µ(B(0, δ/2)) ≤
∫
fdµ ≤ µ(B(0, δ)) <

1

2
.
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For K ∈ N, let AK be the set

AK =

{
x ∈ G :

1

k

k−1∑
i=0

f (Φix) <
2

3
for all k ≥ K

}
.

We claim the set AK is nowhere dense. But the set of x ∈ G such that (Φnx)∞n=0 is uniformly distributed is

contained in
⋃∞
K=1AK , so if we can show that AK is nowhere dense for all K ∈ N, then the theorem will be

proven. Now fix K ∈ N.

Let O ⊆ G be a nonempty open subset of G. By Lemma 5.6.4, there exists a nonempty open subset

W ⊆ O such that
# {j ≤ L− 1 : Φjx ∈ B(0, δ/2)}

L
≥ 2

3

for x ∈W , where L ≥ K. So

1

k

k−1∑
i=0

f (Φix) ≥ 1

k

k−1∑
i=0

χB(0,δ/2) (Φix) ≥ 2

3
.

Therefore W ⊆ O \AK .

Our proof of Theorem 5.6.2 is based off of (Mance, 2010, Theorem 8.3.1). That theorem can be

interpreted as a special case of Theorem 5.6.2 in the case where G = R/Z, though it is stated there in the

language of normality with respect to a Cantor series.

However, this result can be strengthened under some mild additional assumptions. Theorem 5.6.2 states

that the family of x ∈ G for which 1
k

∑k−1
i=0 f (Φix)

k→∞→
∫
fdµ for all f ∈ C(G) is meager. However, it

can by shown that under some additional assumptions, there exists f ∈ C(G) such that the family of x ∈ G

for which limk→∞
1
k

∑k−1
i=0 f (Φix) exists is meager.

Lemma 5.6.5. Let f ∈ C(G), and let (xn)∞n=0 be a sequence in G such that

1

k

k−1∑
i=0

f(xi)
k→∞→ λ

for some λ ∈ C. Let I ⊆ N0 be a subset of density 0, i.e. such that

1

k

k−1∑
i=0

χI(i)
k→∞→ 0.
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Let (yn)∞n=0 be a sequence in G such that {n ∈ N0 : xn 6= yn} ⊆ I . Then

1

k

k−1∑
i=0

f(yi)
k→∞→ λ.

In particular, if (xn)∞n=0 is uniformly distributed, then (yn)∞n=0 is uniformly distributed.

Proof. First, fix f ∈ C(G), and suppose that 1
k

∑k−1
i=0 f(xi)

k→∞→ λ. Then

1

k

k−1∑
i=0

f(yi) =

(
1

k

k−1∑
i=0

f(xi)

)
+

(
1

k

k−1∑
i=0

χI(i)(f(yi)− f(xi))

)

⇒

∣∣∣∣∣
(

1

k

k−1∑
i=0

f(yi)

)
−

(
1

k

k−1∑
i=0

f(xi)

)∣∣∣∣∣ ≤ 1

k

k−1∑
i=0

χI(i) |f(xi)− f(yi)|

≤ 1

k

k−1∑
i=0

χI(i) (2 ‖f‖)

k→∞→ 0.

Now, suppose that (xn)∞n=0 is uniformly distributed. Then the first part of this lemma tells us that for every

g ∈ C(G), we have that limk→∞
1
k

∑k−1
i=0 g(yi) exists and is equal to

limk→∞
1
k

∑k−1
i=0 g(xi) =

∫
gdµ.

Lemma 5.6.6. Let G be a compact abelian metizable group. If the set

F = {x ∈ G : (Φnx)∞n=0 is uniformly distributed}

is nonempty, and
⋃∞
m=1 ker Φm is dense in G, then F is dense in G.

Proof. Let U ⊆ G be a nonempty open subset, and let a0 ∈ F . Then there exists m ∈ N and p ∈⋃∞
m=1 ker Φm such that y ∈ U − p, so a0 + p ∈ U . Then Φna0 = Φn(a0 + p) for n ≥ m, so it follows from

Lemma 5.6.5 that (Φn(a0 + p))∞n=0 is also uniformly distributed, i.e. a0 + p ∈ F ∩ U .

Theorem 5.6.7. Let G = (G, ρ) be a compact abelian metrizable group with infinitely many elements and

metric ρ. Let (Tn)∞n=1 be a sequence of continuous, surjective group endomorphisms Tn : G → G. Let

Φn = TnTn−1 · · ·T1,Φ0 = idG, and suppose that
⋃∞
m=1 ker Φm is dense in G. Suppose further that the set
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F = {x ∈ G : (Φnx)∞n=0 is uniformly distributed} is nonempty. Then there exists f ∈ C(G) such that the

set of x ∈ G such that limk→∞
1
k

∑k−1
i=0 f (Φix) exists is meager.

Proof. Choose δ > 0 such that µ (B(0, δ)) < 1
8 , which exists by Lemma 5.6.3. Set

f(x) =


1 ρ(x, 0) ≤ δ

2 ,

2− 2
δρ(x, 0) δ

2 ≤ ρ(x, 0) ≤ δ,

0 ρ(x, 0) ≥ δ,

For each K ∈ N, let AK be the set

AK =

{
x ∈ G :

∣∣∣∣∣
(

1

k1

k1−1∑
i=0

f (Φix)

)
−

(
1

k2

k2−1∑
i=0

f (Φix)

)∣∣∣∣∣ < 1

4
for all k1, k2 ≥ K

}
.

Since the set of x ∈ G such that limk→∞
1
k

∑k−1
i=0 f (Φix) exists is contained in

⋃∞
K=1AK , it will suffice to

prove that each AK is nowhere dense. Now fix K ∈ N.

Let O be a nonempty open subset of G. By Lemma 5.6.4, there exists L ≥ K and a nonempty open

subset W1 ⊆ O such that 1
L

∑L−1
i=0 f (Φix) ≥ 7

8 . By Lemma 5.6.6, there exists a ∈ F ∩W1. Since a ∈ F ,

there exists N ≥ L such that

k ≥ N ⇒

∣∣∣∣∣
∫
fdµ− 1

k

k−1∑
i=0

f (Φia)

∣∣∣∣∣ ≤ 1

8
.

But since
∫
fdµ < 1

8 , it follows that

1

N

N−1∑
i=0

f (Φia) <
1

4
.

Since 1
N

∑N−1
i=0 f ◦ Φi is uniformly continuous, it follows that there exists an open neighborhood W2 of

a such that

x ∈W2 ⇒

∣∣∣∣∣
(

1

N

N−1∑
i=0

f (Φix)

)
−

(
1

N

N−1∑
i=0

f (Φia)

)∣∣∣∣∣ < 1

8
.

Then if x ∈W2, then

1

N

N−1∑
i=0

f (Φix) <

(
1

N

N−1∑
i=0

f (Φia)

)
+

1

8
<

1

4
+

1

8
=

3

8
.
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Therefore, if x ∈W1 ∩W2, then

(
1

L

L−1∑
i=0

f (Φix)

)
−

(
1

N

N−1∑
i=0

f (Φix)

)
>

7

8
− 3

8
=

1

2
.

Thus a ∈W1 ∩W2 ⊆ O, and (W1 ∩W2) ∩AK = ∅.

Throughout this section, we have relied heavily on the assumption that
⋃∞
m=1 ker Φm is dense in G. This

assumption still encompasses a wide class of interesting examples when G = Rd/Zd, d ∈ N. Endow G with

the metric

ρ
(

(t1, . . . , td) + Zd, (s1, . . . , sd) + Zd
)

=
d∑
j=1

min
h∈Z
|tj − sj + h| .

Note that the metric ρ is invariant under addition by elements of G.

Lemma 5.6.8. Let G = Rd/Zd, and let T : G→ G be a continuous surjective group endomorphism. Let

A ∈ Zd×d be the d× d integer matrix such that

T :


t1
...

td

+ Zd 7→ A


t1
...

td

+ Zd.

Then for every x ∈ G exists y ∈ kerT such that ρ(x, y) ≤ d2
∥∥A−1

∥∥
op

, where the operator norm is taken

relative to the standard Euclidean norm on Rd.

Proof. Let e1, . . . , ed be the standard basis of the real vector space Rd, and let fj = A−1ej for j = 1, . . . , d.

Then

kerT = Zf1 + · · ·+ Zfd.

Let x = (t1, . . . , td) + Zd ∈ G. Since A is invertible, we know that {f1, . . . , fd} is a basis for Rd, so there

exist λ1, . . . , λd ∈ R such that
∑d

j=1 tjej =
∑d

j=1 λjfj . Let `j = bλjc, and let y =
∑d

j=1 `jfj + Zd. Set
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κj = λj − `j ∈ [0, 1). Then y ∈ kerT , and

ρ(x, y) = ρ (0, y − x) = ρ

0,

d∑
j=1

(λj − `j) fj + Zd
 = ρ

0,

d∑
j=1

κjfj + Zd


≤ρ

0,

1∑
j=1

κjfj + Zd
+ ρ

 1∑
j=1

κjfj + Zd,
2∑
j=1

κjfj + Zd


+ · · ·+ ρ

d−1∑
j=1

κjfj + Zd,
d∑
j=1

κjfj + Zd


=
d∑
j=1

ρ
(

0, κjfj + Zd
)
.

For each j ∈ {1, . . . , d}, let fj =
∑d

i=1 bi,jej . Then

d∑
j=1

ρ
(

0, κjfj + Zd
)

=
d∑
j=1

ρ

(
0, κj

d∑
i=1

bi,jei + Zd
)

=
d∑
j=1

d∑
i=1

min
h∈Z
|h− κjbi,j |

≤
d∑
j=1

d∑
i=1

κj |bi,j |

≤
d∑
j=1

d∑
i=1

|bi,j | (0 ≤ κj < 1)

≤
d∑
j=1

d∑
i=1

∥∥A−1ej
∥∥

≤
d∑
j=1

d∑
i=1

∥∥A−1
∥∥

op

= d2
∥∥A−1

∥∥
op
.
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Proposition 5.6.9. Let G = Rd/Zd, and let (Tn)∞n=1 be a sequence of continuous surjective group endomor-

phisms of G onto itself. For each n ∈ N, let An ∈ Zd×d be the d× d integer matrix such that

Tn :


t1
...

td

+ Zd 7→ An


t1
...

td

+ Zd.

Then if lim infn→∞

∥∥∥(AnAn−1 · · ·A1)−1
∥∥∥

op
= 0, then

⋃∞
m=1 ker Φm is dense in G.

Proof. Let x ∈ G, and let δ > 0. Choose m ∈ N such that
∥∥∥(AmAm−1 · · ·A1)−1

∥∥∥
op
< δ

d2
. Then Φm is

implemented by the matrix AmAm−1 · · ·A1, so Lemma 5.6.8 tells us there exists y ∈ ker Φm such that

ρ(x, y) ≤ d2
∥∥∥(AmAm−1 · · ·A1)−1

∥∥∥
op
< δ. Therefore

⋃∞
m=1 ker Φm is dense in G.
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Noncommutative ergodic optimization

One of the guiding questions of the field of ergodic optimization is the following: Given a topological

dynamical system (X,G,U), and a real-valued continuous function f ∈ C(X), what values can
∫
fdµ take

when µ is an invariant Borel probability measure on X , and in particular, what are the extreme values it

can take? In a joint work with I. Assani (Assani and Young, 2022, Section 3), we noticed that the field of

ergodic optimization was relevant to the study of certain temporo-spatial differentiation problems. Hoping to

extend these tools to the study of temporo-spatial differentiation problems in the setting of operator-algebraic

dynamical systems, this chapter develops an operator-algebraic formalization of this question of ergodic

optimization, re-interpreting it as a question about the values of invariant states on a C*-dynamical system.

This framework is then applied to provide a characterization of certain uniquely ergodic C*-dynamical

systems with respect to ergodic optimizations.

Section 6.1 develops the theory of ergodic optimization in the context of C*-dynamical systems, where

the role of “maximizing measures” is instead played by invariant states on a C*-algebra. The framework

we adopt is in fact somewhat more general than the classical framework of maximizing measures, since

we consider ergodic optimizations relative to a restricted class of invariant states, which we call relative

ergodic optimizations. We also demonstrate that some of the basic results of that classical theory of ergodic

optimization extend to the C*-dynamical setting.

In Section 6.2, we define a value called the gauge of a singly generated C*-dynamical system, a non-

commutative generalization of the functional of the same name defined in (Assani and Young, 2022), and

describe its connections to questions of ergodic optimization, as well as the ways in which it can be used to

“detect” the unique ergodicity of C*-dynamical systems under certain Choquet-theoretic assumptions.

In Section 6.3, we extend the results of the previous section to the case where the phase group is a

countable discrete amenable group. We also provide a characterization of uniquely ergodic C*-dynamical

systems of countable discrete amenable groups in terms of various notions of convergence of ergodic averages.
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In Section 6.4, we relate the convergence properties of certain ergodic averages to relative ergodic

optimizations.

Finally, in Section 6.5, we provide alternate proofs of several results from this chapter using the toolbox

of nonstandard analysis.

6.1 Ergodic Optimization in C*-Dynamical Systems

Given a unital C*-algebra A, let Aut(A) denote the family of all *-automorphisms of A. We endow

Aut(A) with the point-norm topology, i.e. the topology induced by the pseudometrics

(Φ,Ψ) 7→ ‖Φ(a)−Ψ(a)‖ (a ∈ A).

This topology makes Aut(A) a topological group (Blackadar, 2006, II.5.5.4).

We define a C*-dynamical system to be a triple (A, G,Θ) consisting of a unital C*-algebra A, a

topological group G (called the phase group), and a point-continuous left group action Θ : G→ Aut(A).

Notation 6.1.1. Let (A, G,Θ) be a C*-dynamical system, and let F ⊆ G be a nonempty finite subset. We

define AvgF : A→ A by

AvgF x :=
1

|F |
∑
g∈F

Θga.

Denote by S the family of all states on A endowed with the weak*-topology, and by T the subfamily of

all tracial states on A. A state φ on A is called Θ-invariant (or simply invariant if the action Θ is understood

in context) if φ = φ ◦Θg for all g ∈ G. Denote by SG ⊆ S the family of all Θ-invariant states on A, and

by T G ⊆ T the family of all Θ-invariant tracial states on A. The set SG (resp. T G) is weak*-compact in S

(resp. in T ). Unless otherwise stated, whenever we deal with subspaces of S, we consider these subspaces

equipped with the weak*-topology.

We will assume for the remainder of this section that (A, G,Θ) is a C*-dynamical system such that A is

separable, and also that SG 6= ∅. This framework will include every system of the form (C(Y ), G,Θ), where

Y is a compact metrizable topological space, the group G is countable, discrete, and amenable, and Θ is of

the form Θg : f 7→ f ◦Ug for all g ∈ G, where U : Gy Y is a right action of G on Y by homeomorphisms.

Because of the correspondence between topological dynamical systems as we’ve defined them previously in
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Section 3.1 and C*-dynamical systems over commutative C*-algebras, it is customary to call a C*-dynamical

system a “non-commutative topological dynamical systems.”

Before proceeding, we prove the following Krylov–Bogolyubov-type result, which will be useful to

establish the Θ-invariance of certain states later.

Lemma 6.1.2. Let (A, G,Θ) be a C*-dynamical system, and let G be an amenable group. If (φk)
∞
k=1 is a

sequence in S , and F = (Fk)
∞
k=1 is a right Følner sequence for G, then any weak*-limit point of the sequence(

φk ◦AvgFk
)∞
k=1

is Θ-invariant. In particular, if K is a nonempty, Θ-invariant, weak*-compact, convex

subset of S, then K ∩ SG 6= ∅.

Proof. Let (φk)
∞
k=1 be a sequence of states, and fix g0 ∈ G, x ∈ A. Then

∣∣φk (AvgFk Θg0x
)
− φk

(
AvgFk x

)∣∣
=

∣∣∣∣∣∣ 1

|Fk|

φk
 ∑
g∈Fkg0

Θgx

− φk
∑
g∈Fk

Θgx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

|Fk|
φk

 ∑
g∈Fkg0\Fk

Θgx

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

|Fk|
φk

 ∑
g∈Fk\Fkg0

Θgx

∣∣∣∣∣∣
≤|Fkg0∆Fk|

|Fk|
‖x‖

k→∞→ 0.

Therefore, if k1 < k2 < · · · is such that ψ = lim`→∞ φk` ◦AvgFk`
exists, then

|ψ(Θgx)− ψ(x)| ≤ lim sup
`→∞

|Fk`g0∆Fk` |
|Fk` |

‖x‖ = 0.

Finally, let K be a nonempty, Θ-invariant, weak*-compact, convex subset of S. Let φ be any state in

K, and consider the sequence
(
φ ◦AvgFk

)∞
k=1

. By the convexity and Θ-invariance of K, every term of this

sequence is an element of K, and since K is compact, there exists a subsequence of this sequence which

converges in K. As has already been shown, that limit must be an element of SG.

Remark 6.1.3. Lemma 6.5.1 can be seen as a nonstandard-analytic analogue to Lemma 6.1.2.

Although our manner of proof of Lemma 6.1.2 is scarcely novel, the result as we have stated it here

can be used to ensure the existence of invariant states with specific properties that might interest us, as seen
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for example in Corollary 6.1.4 and Proposition 6.1.14. Our standing hypothesis that A be separable is not

necessary for this proof of Lemma 6.1.2.

Corollary 6.1.4. If T 6= ∅, and G is amenable, then T G 6= ∅.

Proof. Apply Lemma 6.1.2 to the case where K = T .

Definition 6.1.5. We denote by R the real Banach space of all self-adjoint elements of A, and denote by R\

the space of all real self-adjoint bounded linear functionals on A.

Definition 6.1.6. Let V be a locally convex topological real vector space, and let K be a compact subset of

V which is contained in a hyperplane that does not contain the origin. We call K a simplex if the positive

cone P = {ck : c ∈ R≥0, k ∈ K} defines a lattice ordering on P − P = {p1 − p2 : p1, p2 ∈ P} ⊆ V with

respect to the partial order a ≤ b ⇐⇒ b− a ∈ P .

Remark 6.1.7. In Definition 6.1.6, the assumption that K lives in a hyperplane that does not contain the

origin is technically superfluous, but simplifies the theory somewhat (see (Phelps, 2001, Section 10)), and is

satisfied by all the simplices that interest us here. Specifically, we know that S (and by extension SG, T , T G)

lives in the real hyperplane
{
φ ∈ R\ : φ(1) = 1

}
defined by the evaluation at 1.

We begin with the following lemma.

Lemma 6.1.8. (i) The spaces S,SG, T , T G are compact and metrizable.

(ii) If T 6= ∅, then the space T G is a simplex.

Before proving this lemma, we need to introduce some terminology. Let φ, ψ be two positive linear

functionals on a unital C*-algebra A. We say that the two positive functionals are orthogonal, notated φ ⊥ ψ,

if they satisfy either of the following two equivalent conditions:

(a) ‖φ+ ψ‖ = ‖φ‖+ ‖ψ‖.

(b) For every ε > 0 exists positive z ∈ A of norm ≤ 1 such that φ(1− z) < ε, ψ(z) < ε.

It is well-know that these conditions are equivalent (Pedersen, 1979, Lemma 3.2.3). For every φ ∈ R\, there

exist unique positive linear functionals φ+, φ− such that φ = φ+ − φ−, and φ+ ⊥ φ−, called the Jordan

decomposition of φ (Blackadar, 2006, II.6.3.4).

Before proving Lemma 6.1.8, we demonstrate the following property of the Jordan decomposition of a

tracial functional.
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Lemma 6.1.9. Let A be a unital C*-algebra, and φ ∈ R\. Suppose that φ(xy) = φ(yx) for all x, y ∈ A.

Then φ±(xy) = φ±(yx) for all x, y ∈ A.

Proof. Let U(A) denote the group of unitary elements in A. For a unitary element u ∈ U(A), let Adu ∈

Aut(A) denote the inner automorphism

Adu x = uxu∗.

Let ψ ∈ A′. We claim that ψ is tracial if and only if ψ ◦Adu = ψ for all unitaries u ∈ U(A).

Let u ∈ U(A) be unitary, and x ∈ A an arbitrary element. Then

φ(ux) = ψ (u(xu)u∗)

= ψ(Adu(xu)).

So ψ(ux) = ψ(xu) if and only if ψ(Adu(xu)) = ψ(xu).

In one direction, suppose that ψ = ψ ◦ Adu for all u ∈ U(A). Fix x, y ∈ A. Then we can write

y =
∑4

j=1 cjuj for some c1, . . . , c4 ∈ C and unitaries u1, . . . , u4 ∈ U(A) unitary. Then

ψ(xy) = ψ

x 4∑
j=1

cjuj


=

4∑
j=1

cjψ(xuj)

=
4∑
j=1

cjψ(Aduj (xuj))

=

4∑
j=1

cjψ(ujx)

= ψ

 4∑
j=1

cjuj

x


= ψ(yx).

Thus ψ is tracial.
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In the other direction, suppose there exists u ∈ U(A) such that ψ ◦ Adu 6= ψ. Let y ∈ A such that

ψ(y) 6= ψ(Adu y), and let x = yu∗. Then

ψ(xu) = ψ(y)

6= ψ(Adu y)

= ψ (uyu∗)

= ψ(ux).

Therefore ψ is not tracial.

Now, if φ ∈ R\ is tracial, then φ ◦ Adu = φ for all u ∈ U(A). Then φ = φ ◦ Adu = (φ+ ◦Adu) −

(φ− ◦Adu). But ‖φ± ◦Adu‖ = ‖φ±‖, so it follows that ‖φ‖ = ‖φ+ ◦Adu‖ + ‖φ− ◦Adu‖. Therefore

φ = (φ+ ◦Adu)− (φ− ◦Adu) is an orthogonal decomposition of φ, and so it is the Jordan decomposition.

This means that φ± = φ± ◦Adu. Since this is true for all u ∈ U(A), it follows that φ± are tracial.

Proof of Lemma 6.1.8. (i) This all follows because S is a weak*-closed real subspace of the unit ball

in the continuous dual of the separable Banach space R, and the spaces SG, T , T G are all closed

subspaces of S .

(ii) It is a standard fact that if T 6= ∅, then T is a simplex (Blackadar, 2006, II.6.8.11). Let

CG =
{
cφ : c ∈ R≥0, φ ∈ T G

}
be the positive cone of T G, and let R\ denote the (real) space of all bounded self-adjoint tracial

linear functionals on A. Let EG denote the (real) space of all bounded self-adjoint Θ-invariant linear

functionals on A. We already know that T lives in a hyperplane of R\ defined by the evaluation

functional φ 7→ φ(1). It will therefore suffice to show that EG = CG − CG, and that EG is a

sub-lattice of R\.

Let φ+, φ− ≥ 0 be positive functionals on A such that φ = φ+ − φ− is tracial, and φ+ ⊥ φ−. By

Lemma 6.1.9, we know that φ+, φ− are tracial. We claim that if φ ∈ EG, then φ+, φ− ∈ CG. To

prove this, let g ∈ G, and consider that φ+ ◦Θg, φ
− ◦Θg are both positive linear functionals such that

φ = (φ+ ◦Θg)− (φ− ◦Θg).
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We claim that (φ+ ◦Θg) ⊥ (φ− ◦Θg). Fix ε > 0. We know that there exists z ∈ A such that

‖z‖ ≤ 1, 0 ≤ z, and such that φ+ (1− z) < ε, φ−(z) < ε. Then Θg−1(z) is a positive element of

norm ≤ 1 such that

φ+
(
Θg

(
Θg−1(1− z)

))
= φ+(1− z) < ε,

φ−
(
Θg

(
Θg−1(z)

))
= φ−(z) < ε.

Therefore (φ+ ◦Θg)− (φ− ◦Θg) is a Jordan decomposition of φ, and since the Jordan decomposition

is unique, it follows that φ+ = φ+ ◦ Θg, φ
− = φ− ◦ Θg, i.e. that φ+, φ− ∈ CG. This means that

EG = CG − CG.

We now want to show that EG = CG − CG is a sublattice of E, i.e. that it is closed under the lattice

operations. Let φ, ψ ∈ EG. For this calculation, we draw on the identities listed in (Aliprantis and

Burkinshaw, 2006, Theorem 1.3). Then

φ ∨ ψ = (((φ− ψ) + ψ) ∨ (0 + ψ))

= ((φ− ψ) ∨ 0) + ψ

= (φ− ψ)+ + ψ,

φ ∧ ψ = ((φ− ψ) + ψ) ∧ (0 + ψ)

= ((φ− ψ) ∧ 0) + ψ

= − ((−(φ− ψ)) ∨ 0) + ψ

= −(ψ − φ)+ + ψ.

Therefore, if EG is a real linear space and is closed under the operations φ 7→ φ+, φ 7→ φ−, then it is

also closed under the lattice operations. Thus EG is a sublattice of R\.

Hence, the subset T G is a compact metrizable simplex.

In order to keep our treatment relatively self-contained, we define here several elementary concepts from

Choquet theory that will be relevant in this section.
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Definition 6.1.10. Let S1, S2 be convex spaces. We call a map T : S1 → S2 an affine map if for every

v, w ∈ S1; t ∈ [0, 1], we have

T (tv + (1− t)w) = tT (v) + (1− t)T (w).

In the case where S2 ⊆ R, we call T an affine functional.

Definition 6.1.11. Let K be a convex subset of a locally convex real topological vector space V .

(a) A point k ∈ K is called an extreme point of K if for every pair of points k1, k2 ∈ K and parameter

t ∈ [0, 1] such that k = tk1 + (1 − t)k2, either k1 = k2 or t ∈ {0, 1}. In other words, we call k

extreme if there is no nontrivial way of expressing k as a convex combination of elements of K.

(b) The set of all extreme points of K is denoted ∂eK.

(c) A subset F of K is called a face if for every pair k1, k2 ∈ K, t ∈ (0, 1) such that tk1 + (1− t)k2 ∈ F ,

we have that k1, k2 ∈ F .

(d) A face F of K is called an exposed face of K if there exists a continuous affine functional ` : K → R

such that `(x) = 0 for all x ∈ F , and `(y) < 0 for all y ∈ K \ F .

(e) A point k ∈ K is called an exposed point of K if {k} is an exposed face of K.

(f) Given a subset E of K, the closed convex hull of E is written as co(E).

We now introduce the basic concepts in our treatment of ergodic optimization.

Definition 6.1.12. Let x ∈ R be a self-adjoint element, and let K ⊆ SG be a compact convex subset of SG.

Define a value m (x|K) by

m (x|K) := sup
ψ∈K

ψ(x).

We say a state φ ∈ K is (x|K)-maximizing if φ(x) = m(x|K). Let Kmax(x) ⊆ K denote the set of all

(x|K)-maximizing states. A state φ ∈ K is called uniquely (x|K)-maximizing if Kmax(x) = {φ}.

Remark 6.1.13. We note here a trivial inequality: If K1 ⊆ K2 are compact convex subsets of SG, then

m (x|K1) ≤ m (x|K2), and in particular, we will always have m (x|K1) ≤ m
(
x|SG

)
.
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We will single out one type of compact convex subset of SG which will prove important later. Given a

subset A ⊆ A, set

Ann(A) :=
{
φ ∈ SG : A ⊆ kerφ

}
.

When I ⊆ A is a Θ-invariant closed ideal of A, we have a bijective correspondence between the states in

Ann(I) and the states on A/I invariant under the action induced by Θ. We will be referring to this set again

in Sections 6.2 and 6.3, when values of the form m (a|Ann(A)) come up in reference to certain ergodic

averages. We observe that Ann({0}) = SG, and that A ⊆ B ⊆ A⇒ Ann(A) ⊇ Ann(B). There is also no

a priori guarantee that Ann(A) 6= ∅, since for example Ann({1}) = ∅. However, Proposition 6.1.14 gives

sufficient conditions for Ann(A) to be nonempty.

Proposition 6.1.14. Let A ⊆ A be such that ΘgA ⊆ A for all g ∈ G. Suppose there exists a state on A

which vanishes on A. Then Ann(A) 6= ∅. In particular, if I ( A is a proper closed two-sided ideal of A for

which ΘgI = I for all g ∈ G, then Ann(I) 6= ∅.

Proof. Let K ⊆ S denote the family of all (not necessarily invariant) states on A which vanish on A. Then if

φ ∈ K and a ∈ A, then Θga ∈ A, so φ ◦Θg vanishes on A. Therefore ΘgK ⊆ K for all g ∈ G. It follows

from Lemma 6.1.2 that K ∩ SG = Ann(A) 6= ∅.

Suppose I ( A is a proper closed two-sided ideal of A for which ΘgI = I for all g ∈ G, and let

π : A� A/I be the canonical quotient map. Let Θ̃ : G→ Aut(A/I) be the induced action of G on A/I by

Θ̃g(a+ I) = Θga+ I. Let ψ be a Θ̃-invariant state on A/I. Then ψ ◦ π is a Θ-invariant state on A which

vanishes on I, i.e. ψ ◦ π ∈ Ann(I).

Proposition 6.1.15. Let K ⊆ SG be a nonempty compact convex subset of SG, and let x ∈ R. Then

Kmax(x) is a nonempty, compact, exposed face of K.

Proof. To see that Kmax(x) is nonempty, for each n ∈ N, let φn ∈ K such that φn(x) ≥ m(x|K)− 1
n . Then

since K is compact, the sequence (φn)∞n=1 has a convergent subsequence. Let φ be the limit of a convergent

subsequence of (φn)∞n=1. Then φ is (x|K)-maximizing.

To see that Kmax(x) is compact, consider that

Kmax(x) = {φ ∈ K : φ(x) = m(x|K)} ,
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which is a closed subset of K. As for being an exposed face, consider the continuous affine functional

` : K → R given by

`(φ) = φ(x)−m(x|K).

Then the functional ` exposes Kmax(x|K), since it is nonpositive on all of K and vanishes exactly on

Kmax(x).

The following result describes the ways in which some ergodic optimizations interact with equivariant

*-homomorphisms of C*-dynamical systems.

Theorem 6.1.16. Let (A, G,Θ) ,
(
Ã, G, Θ̃

)
be two C*-dynamical systems, and let π : A→ Ã be a surjective

*-homomorphism such that

Θ̃g ◦ π = π ◦Θg (∀g ∈ G).

Let S̃G denote the space of Θ̃-invariant states on Θ̃. Then m
(
π(a)|S̃G

)
= m (a|Ann(kerπ)).

Proof. Let S̃G denote the space of Θ̃-invariant states on Ã. We claim that there is a natural bijective

correspondence between S̃G and Ann(kerπ). If φ is a Θ̃-invariant state on Ã, then we can pull it back to a

Θ-invariant state φ0 on A by

φ0 = φ ◦ π.

This φ0 obviously vanishes on kerπ, and is Θ-invariant by virtue of the equivariance property of π. Con-

versely, if we start with a Θ-invariant state ψ on A that vanishes on kerπ, then we can push it to a Θ̃-invariant

state ψ̃ on Ã by

ψ̃ ◦ π = ψ.

We claim now that

m (a|Ann(kerπ)) = m
(
π(a)|S̃G

)
.

Let φ be a
(
π(a)|S̃G

)
-maximizing state on Ã. Then φ ◦ π ∈ Ann(kerπ), so

m
(
π(a)|S̃G

)
= φ(π(a)) ≤ m (a|Ann(kerπ)) .
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On the other hand, if ψ ∈ Ann(kerπ) is (a|Ann(kerπ))-maximizing, then let ψ̃ be such that ψ̃ ◦ π = ψ.

Then ψ̃ ∈ S̃G, so

m (a|Ann(kerπ)) = ψ(a) = ψ̃(π(a)) ≤ m
(
a|S̃G

)
.

The assumption in Theorem 6.1.16 that π is surjective is actually superfluous, as shown in Corollary

6.3.8. We will later provide a proof of this stronger claim that uses the gauge functional, introduced in the

context of actions of Z in Section 6.2 and in the context of actions of amenable groups in Section 6.3.

Moreover, the proof of Theorem 6.1.16 can be extended to establish a correspondence between ergodic

optimization over certain compact convex subsets of S̃G and certain compact convex subsets of Ann(kerπ).

For example under the same hypotheses, if T 6= ∅, then the proof could be modified in a simple manner to

establish that m
(
π(a)|T̃ G

)
= m

(
a|Ann(kerπ) ∩ T G

)
, where T̃ G denotes the Θ̃-invariant tracial states

on Ã. In lieu of stating Theorem 6.1.16 in greater generality, we content ourselves to state this special case

(which we will use in future sections) and remark that the argument can be generalized further.

The following characterization of exposed faces in compact metrizable simplices will prove useful.

Lemma 6.1.17. Let K be a compact metrizable simplex. Then every closed face of K is exposed.

Proof. See (Davies, 1967, Theorem 7.4).

The theorem we are building to in this section is as follows.

Theorem 6.1.18. Let K ⊆ SG be a compact simplex. Then the closed faces of K are exactly the sets of the

form Kmax(x) for some x ∈ R.

Before we can prove our main theorem of this section, we will need to prove the following result, which

gives us a means by which to build an important linear functional.

Theorem 6.1.19. Let K ⊆ SG be a compact simplex, and let ` : K → R be a continuous affine functional.

Then there exists a continuous linear functional ˜̀ : spanR(K)→ R such that ˜̀|K = `.

To prove this theorem, we break it up into several parts, attaining the extension ˜̀as the final step of a few

subsequent extensions of `.
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Lemma 6.1.20. Let K ⊆ SG be a compact metrizable simplex, and let ` : K → R be a continuous

affine functional. Let P = {cφ : c ∈ R≥0, φ ∈ K}. Then there exists a continuous functional `1 : P → R

satisfying the following conditions for all f1, f2 ∈ P ; c ∈ R≥0:

(a) `1(cf1) = c`1(f1),

(b) `1(f1 + f2) = `1(f1) + `2(f2),

(c) `1|K = `.

Proof. Note that every nonzero element of P can be expressed uniquely as cφ for some c ∈ R≥0\{0}, φ ∈ K.

As such we define

`1(cφ) =


c`(φ) c > 0

0 c = 0

It is immediately clear that this `1 satisfies conditions (a) and (c), leaving only (b) to check.

Now, suppose that f1 = c1φ1, f2 = c2φ2 for some φ1, φ2 ∈ K; c1, c2 ∈ R≥0. Consider first the case

where at least one of c1, c2 are nonzero. Then

f1 + f2 = c1φ1 + c2φ2

= (c1 + c2)

(
c1

c1 + c2
φ1 +

c2

c1 + c2
φ2

)
⇒ `1(f1 + f2) = `1 (c1φ1 + c2φ2)

= (c1 + c2)`

(
c1

c1 + c2
φ1 +

c2

c1 + c2
φ2

)
[because ` is affine] = (c1 + c2)

(
c1

c1 + c2
`(φ1) +

c2

c1 + c2
`(φ2)

)
= c1`(φ1) + c2`(φ2)

= `1(c1φ1) + `1(c2φ2)

= `1(f1) + `1(f2).

In the event that c1 = c2 = 0, then the additivity property attains trivially.

It remains now to show that `1 is continuous. We will check continuity at nonzero points in P , and then

at 0 ∈ P . First, consider the case where cφ ∈ P \ {0}, and c ∈ R≥0, φ ∈ K. Suppose that (cnφn)n is a
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sequence in P converging in the weak*-topology to cφ. We claim that cn → c in R, and φn → φ in the

weak*-topology.

We first observe that (cnφn)(1) = cn, so (cn)n converges in R≥0 to c, meaning in particular that for

sufficiently large n, we have that cn ∈
[
c
2 ,

3c
2

]
. Now, if λ : R→ R is a norm-continuous linear functional,

then

λ(φn) =
1

cn
λ(cnφn)

→ 1

c
λ(cφ)

= λ(φ).

Therefore cn → c, φn → φ. Thus we can compute

|`1(cφ)− `1(cnφn)| ≤ |`1(cφ)− `1(cnφ)|+ |`1(cnφ)− `1(cnφn)|

= |c− cn| · |`(φ)|+ |cn| · |`(φ)− `(φn)|

≤ |c− cn|

(
sup
φ∈K
|`(φ)|

)
+

3c

2
|`(φ)− `(φn)|

n→∞→ 0,

where supφ∈K |`(φ)| must be finite because K is weak*-compact, and |`(φ)− `(φn)| n→∞→ 0 because ` is

weak*-continuous.

Now, suppose that (cnφn)∞n=1 converges to 0. Then again we have that cn → 0 by the same argument

used above (i.e. cn = (cnφn)(1)). Therefore

|`1(cnφn)| = |cn| · |`(φn)| ≤ |cn|

(
sup
φ∈K
|`(φ)|

)
n→∞→ 0.

We can thus conclude that `1 is weak*-continuous.

Lemma 6.1.21. Let `1, P be as in Lemma 6.1.20, and let V = P − P . Then there exists a continuous linear

functional ˜̀ : V → R such that ˜̀|P = `1.
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Proof. Define ˜̀ : V → R by

˜̀(v) = `1
(
v+
)
− `1

(
v−
)
,

where v+, v− are meant in the sense of the lattice structure V possesses by virtue of K being a simplex.

Our first claim is that if f, g ∈ P such that v = f −g, then ˜̀(v) = `1(f)− `1(g). To see this, we observe

that f + v− = g + v+ ∈ P . Therefore

`1
(
f + v−

)
= `1

(
g + v+

)
= `1(f) + `1

(
v−
)

= `1(g) + `1
(
v+
)

⇒ `1(f)− `1(g) = `1
(
v+
)
− `1

(
v−
)

= ˜̀(v).

This makes linearity fairly straightforward to check. First, to confirm additivity, let v, w ∈ V . Then

v + w = (v+ + w+)− (v− + w−), where v+ + w+, v− + w− ∈ P . Thus

˜̀(v + w) = `1
(
v+ + w+

)
− `1

(
v− + w−

)
= `1

(
v+
)

+ `1
(
w+
)
− `1

(
v−
)
− `1

(
w−
)

= `1
(
v+
)
− `1

(
v−
)

+ `1
(
w+
)
− `1

(
w−
)

= ˜̀(v) + ˜̀(w).

To check homogeneity, let c ∈ R. If c ≥ 0, then cv+, cv− ∈ P , and cv+ − cv− = cv; on the other hand, if

c ≤ 0, then −cv−,−cv+ ∈ P , and cv = −cv− + cv+. In both cases, homogeneity is straightforward to

show. This proves that ˜̀ is linear.

It is also quick to show that ˜̀|P = `1, since if v ∈ P , then v = v+, so ˜̀(v) = `1 (v+)− 0 = `1(v).

It remains now to show that ˜̀ is continuous. By (Rudin, 1991, Theorem 1.18), it will suffice to show

that ker ˜̀ is weak*-closed. To prove the kernel is closed, let (vn)∞n=1 be a sequence in ker ˜̀converging in

the weak*-topology to v ∈ V . By the Uniform Boundedness Principle, it follows that supn ‖vn‖ <∞. By

rescaling, we can assume without loss of generality that ‖vn‖ ≤ 1 for all n ∈ N, and since the unit ball

B ⊆ V is weak*-closed by Banach-Alaoglu, we can infer that ‖v‖ ≤ 1.
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Since the unit ball B is weak*-compact, it follows that the sequences (v+
n )
∞
n=1 , (v

−
n )
∞
n=1 have convergent

subsequences. Let (nj)
∞
j=1 be a subsequence along which v+

nj → m1 ∈ P, v−nj → m2 ∈ P . Then if x ∈ R,

then

v(x) = lim
n→∞

vn(x)

= lim
n→∞

(
v+
n (x)− v−n (x)

)
= lim

j→∞

(
v+
nj (x)− v−nj (x)

)
=

(
lim
j→∞

v+
nj (x)

)
−
(

lim
j→∞

v−nj (x)

)
= m1(x)−m2(x).

Therefore v = m1 −m2, so

˜̀(v) = ˜̀(m1)− ˜̀(m2)

=

(
lim
j→∞

˜̀
(
v+
nj

))
−
(

lim
j→∞

˜̀
(
v−nj

))
= lim

j→∞

(
˜̀
(
v+
nj

)
− ˜̀

(
v−nj

))
= lim

j→∞
˜̀
(
vnj
)

= lim
j→∞

0

= 0.

Therefore, we can conclude that ˜̀ is weak*-continuous.

Proof of Theorem 6.1.19. This follows from Lemmas 6.1.20 and 6.1.21.

Proof of Theorem 6.1.18. Let F ⊆ K be a closed face of K. By Lemma 6.1.17, the face F is exposed, so let

` : K → R be a weak*-continuous affine functional such that

`(k) = 0 (∀k ∈ F ),

`(k) < 0 (∀k ∈ K \ F ).
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Set

V = {c1φ1 − c2φ2 : c1, c2 ∈ R≥0;φ1, φ2 ∈ K} ,

and let ˜̀ : V → R be a continuous linear extension of ` to V whose existence is promised by Theorem

6.1.19. We can then extend ˜̀ : V → R to a weak*-continuous linear functional `′ : R\ → R (Aliprantis

and Burkinshaw, 2006, Theorem 3.6). There thus exists some x ∈ R such that `′(φ) = φ(x) for all φ ∈ R\

(Baggett, 1992, Theorem 5.2). In particular, we have `′(v) = v(x) for all v ∈ V . Therefore F = Kmax(x).

The converse is contained in Proposition 6.1.15.

In particular, we can recover the following corollary.

Corollary 6.1.22. If φ ∈ ∂eK, then there exists x ∈ R such that φ is uniquely (x|K)-maximizing, i.e. such

that {φ} = Kmax(x).

Proof. The singleton {φ} is a closed face, and by Lemma 6.1.17 is therefore an exposed face. Apply Theorem

6.1.18.

We have developed the language of ergodic optimization here in a somewhat atypical way, where

we speak not of x-maximizing states simpliciter, but of a state that is maximizing relative to a compact

convex subset K of SG, especially a compact simplex K. This notion of relative ergodic optimization has

precedent in (Zhao, 2016). For our purposes, this relative ergodic optimization means we can consider ergodic

optimization problems over different types of states. In Section 6.4, we will broaden our scope somewhat to

consider ergodic optimization in the noncommutative setting relative to a set of states that aren’t necessarily

Θ-invariant.

Since Theorem 6.1.18 applies in cases where K is a simplex, we will conclude this section by describing

some situations where SG is a compact metrizable simplex.

For each φ ∈ SG, let πφ : A→ B(Hφ) be the GNS representation corresponding to φ. Define a unitary

representation uφ : G→ U(Hφ) of G by

uφ(g)πφ(a) = πφ
(
Θg−1(a)

)
,
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extending this from πφ(A) to Hφ. Set

Eφ = {v ∈Hφ : uφ(v) = v for all g ∈ G} .

Let Pφ : Hφ � Eφ be the orthogonal projection (in the functional-analytic sense) of Hφ onto Eφ. We

call the C*-dynamical system (A, G,Θ) a G-abelian system if for every φ ∈ SG, the family of operators

{Pφπφ(a)Pφ ∈ B(Hφ) : a ∈ A} is mutually commutative.

We record here a handful of germane facts about G-abelian systems.

Proposition 6.1.23. If (A, G,Θ) is G-abelian, then SG is a simplex.

Proof. See (Sakai, 2012, Theorem 3.1.14).

Definition 6.1.24. We call a system (A, G,Θ) asymptotically abelian if there exists a sequence (gn)∞n=1 in

G such that

[Θgna, b]
n→∞→ 0

for all a, b ∈ A, where [·, ·] is the Lie bracket [x, y] = xy − yx on A.

Proposition 6.1.25. If (A, G,Θ) is asymptotically abelian, then it is also G-abelian.

Proof. See (Sakai, 2012, Proposition 3.1.16).

6.2 Unique ergodicity and gauges: the singly generated setting

So far we have spoken about C*-dynamical systems, a noncommutative analog of a topological dynamical

systems. But just as classical ergodic theory is often interested in the interplay between topological dynamical

systems and the measure-theoretic dynamical systems they can be realized in, we are interested in questions

about the interplay between C*-dynamical systems and the non-commutative measure-theoretic dynamical

systems they can be realized in. To make this more precise, we introduce the notion of a W*-dynamical

system.

A W*-probability space is a pair (M, ρ) consisting of a von Neumann algebra M and a faithful tracial

normal state ρ on M. An automorphism of a W*-probability space (M, ρ) is a *-automorphism T : M→M

such that ρ ◦ T = ρ, i.e. an automorphism of M which preserves ρ. A W*-dynamical system is a quadruple
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(M, ρ,G,Ξ), where (M, ρ) is a W*-probability space, and Ξ : G→ Aut(M, ρ) is a left action of a discrete

topological group G (called the phase group) on M by ρ-preserving automorphisms of M, i.e. such that

ρ(Ξgx) = ρ(x) for all g ∈ G, x ∈ M. Importantly, if (M, ρ,G,Ξ) is a W*-dynamical system, then

(M, G,Ξ) is automatically a W*-dynamical system.

Remark 6.2.1. In the literature, the term “W*-dynamical system” is sometimes used to refer to a more

general construction, where the group G is assumed to satisfy some topological conditions, and the action is

assumed to be continuous in the strong operator topology, e.g. (Bannon et al., 2018). Other authors use a yet

more general definition, e.g. (Blackadar, 2006, III.3.2). Since we are only interested in actions of discrete

groups, we adopt a narrower definition.

Definition 6.2.2. Given a W*-probability space, we define L2(M, ρ) to be the Hilbert space defined by

completing M with respect to the inner product 〈x, y〉ρ = ρ (y∗x), i.e. the Hilbert space associated with the

faithful GNS representation of M induced by ρ.

Finally, we introduce the notion of a C*-model, intending to generalize the notion of a topological model

from classical ergodic theory to this noncommutative setting.

Definition 6.2.3. Let (M, ρ,G,Ξ) be a W*-dynamical system. A C*-model of (M, ρ,G,Ξ) is a quadruple

(A, G,Θ; ι) consisting of a C*-dynamical system (A, G,Θ) and a *-homomorphism ι : A→M such that

(a) ι(A) is dense in the weak operator topology of M,

(b) Ξg (ι(A)) = ι(A) for all g ∈ G, and

(c) Ξg ◦ ι = ι ◦Θg for all g ∈ G.

We call the C*-model (A, G,Θ; ι) faithful if ι is also injective.

We remark that we can turn any C*-model into a faithful C*-model through a quotienting process. If ι

was not injective, then we could instead consider ι̃ : A/ ker ι ↪→M. In the case where A is commutative, this

quotienting process corresponds (via the Gelfand-Naimark Theorem) to taking a measure-theoretic dynamical

system and restricting to the support of the resident probability measure. To see this, let A = C(X), where

X is a compact metrizable topological space, and let M = L∞(X,µ) for some Borel probability measure µ.

Let ι : C(X)→ L∞(X,µ) be the (not necessarily injective) map that maps a continuous function on X to its

equivalence class in L∞(X,µ). It can be seen that f ∈ ker ι if and only if the open set {x ∈ X : f(x) 6= 0}

is of measure 0, or equivalently if f |supp(µ) = 0, and in particular that ι is injective if and only if µ is strictly
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positive (i.e. µ assigns positive measure to all nonempty open sets). As such, we can identify C(X)/ ker ι

with C(supp(µ)). Let Y = supp(µ) denote the support of µ on X , and let π : C(X) � C(Y ) be the

quotient map (which corresponds to a restriction from X to Y , i.e. πf = f |Y ). Then algebraically, we have a

commutative diagram
C(X) C(Y )

L∞(X,µ)

π

ι
ι̃

So in the commutative case, we can make ι : C(X) → L∞(X,µ) injective by looking at ι̃ : C(Y ) →

L∞(Y, µ) ∼= L∞(X,µ), i.e. by using the support Y to model (Y, µ) ∼= (X,µ).

Importantly, so long as L2(M, ρ) is separable, any W*-dynamical system (M, ρ,G,Ξ) will admit a

faithful separable C*-model. To construct such a C*-model, it suffices to take some separable C*-subalgebra

B ⊆M which is dense in M with respect to the weak operator topology, then let A be the norm-closure of

the span of
⋃
g∈G (ΞgB). We then define Θg = Ξg|A and let ι : A ↪→M be the inclusion map.

One last important concept in this section and the next will be unique ergodicity. A C*-dynamical system

(A, G,Θ) is called uniquely ergodic if SG is a singleton. As in the commutative setting, unique ergodicity can

be equivalently characterized in terms of convergence properties of ergodic averages. To our knowledge, the

strongest such characterization of unique ergodicity for singly generated C*-dynamical systems can be found

in (Abadie and Dykema, 2009, Theorem 3.2), which describes unique ergodicity relative to the fixed point

subalgebra. This characterization was then generalized to characterize unique ergodicity relative to the fixed

point subalgebra for C*-dynamical systems over amenable phase groups in (Duvenhage and Stroh, 2011,

Theorem 5.2); however, in Corollary 6.3.6, we provide a characterization of uniquely ergodic C*-dynamical

systems in terms of ergodic averages that is not encompassed by (Duvenhage and Stroh, 2011, Theorem 5.2).

Given a C*-dynamical system (A,Z,Θ), let a ∈ A be a positive element. We define the gauge of a to be

Γ(a) := lim
k→∞

1

k

∥∥∥∥∥∥
k−1∑
j=0

Θja

∥∥∥∥∥∥ .
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To prove this limit exists, it suffices to observe that the sequence
(∥∥∥∑k−1

j=0 Θja
∥∥∥)∞

k=1
is subadditive, since

∥∥∥∥∥∥
k+`−1∑
j=0

Θja

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
k−1∑
j=0

Θja

∥∥∥∥∥∥+

∥∥∥∥∥∥
k+`−1∑
j=k

Θja

∥∥∥∥∥∥
=

∥∥∥∥∥∥
k−1∑
j=0

Θja

∥∥∥∥∥∥+

∥∥∥∥∥∥Θk

`−1∑
j=0

Θja

∥∥∥∥∥∥
=

∥∥∥∥∥∥
k−1∑
j=0

Θja

∥∥∥∥∥∥+

∥∥∥∥∥∥
`−1∑
j=0

Θja

∥∥∥∥∥∥ .
Therefore, by the Subadditivity Lemma, the sequence

(
1
k

∥∥∥∑k−1
j=0 Θja

∥∥∥)∞
k=1

converges, and we have the

equality

lim
k→∞

1

k

∥∥∥∥∥∥
k−1∑
j=0

Θja

∥∥∥∥∥∥ = inf
k∈N

1

k

∥∥∥∥∥∥
k−1∑
j=0

Θja

∥∥∥∥∥∥ .
We have the following characterization of Γ in the language of ergodic optimization.

Theorem 6.2.4. Let (A,Z,Θ) be a C*-dynamical system. Then if a ∈ A is a positive element, then

Γ(a) = m
(
a|SG

)
.

Proof. For each k ∈ N, choose a state σk on A such that

σk

1

k

k−1∑
j=0

Θja

 =

∥∥∥∥∥∥1

k

k−1∑
j=0

Θja

∥∥∥∥∥∥ .
Let ωk = 1

k

∑k−1
j=0 σk ◦Θj , so

ωk(x) =
1

k

k−1∑
j=0

σk (Θjx)

= σk

1

k

k−1∑
j=0

Θjx

 ,

ωk(a) = σk

1

k

k−1∑
j=0

Θja


=

∥∥∥∥∥∥1

k

k−1∑
j=0

Θja

∥∥∥∥∥∥ .
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Let ω ∈ S be a weak*-limit point of (ωk : k ∈ N), and let k1 < k2 < · · · be a subsequence such that

ωkn
n→∞→ ω in the weak*-topology. By Lemma 6.1.2, we know that ω is Θ-invariant. Therefore ω(a) = Γ(a),

and ω is a Θ-invariant state on A, so

Γ(a) = ω(a) ≤ m
(
a|SZ

)
.

Now, we prove the opposite inequality. Let φ ∈ SZ. Then

φ(a) = φ (Avgk a)

≤ ‖Avgk a‖

=
1

k

∥∥∥∥∥∥
k−1∑
j=0

Θja

∥∥∥∥∥∥
=

1

k

∥∥∥∥∥∥
k−1∑
j=0

Θja

∥∥∥∥∥∥ (∀k ∈ N)

⇒ φ(a) ≤ inf
k∈N

1

k

∥∥∥∥∥∥
k−1∑
j=0

Θja

∥∥∥∥∥∥
= Γ(a)

⇒ sup
ψ∈SZ

ψ(a) ≤ Γ(a).

Therefore

m
(
a|SZ

)
= sup

ψ∈SZ
ψ(a) ≤ Γ(a).

This establishes the identity.

Corollary 6.2.5. Let (M, ρ,Z,Ξ) be a W*-dynamical system, and let (A,Z,Θ; ι) be a C*-model of

(M, ρ,Z,Ξ). If a ∈ A is a positive element, then

Γ(ι(a)) = m (a|Ann(ker ι)) .

Proof. Write Ã = ι(A) ⊆M, and let Θ̃ : Z→ Aut
(
Ã
)

be the action Θ̃n = Ξn|Ã obtained by restricting Ξ

to Ã. Write S̃Z for the space of Θ̃-invariant states on Ã.
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We can write ΓM(ι(a)) = ΓÃ(ι(a)). By Theorem 6.2.4, we know that ΓÃ(ι(a)) = m
(
ι(a)|S̃Z

)
, and

by Theorem 6.1.16, we know that m
(
ι(a)|S̃Z

)
= m (a|Ann(ker ι)).

Remark 6.2.6. Corollary 6.2.5 can be regarded as an operator-algebraic extension of Lemma 2.3 from

(Assani and Young, 2022). The assumption that (A, G,Θ; ι) is faithful can be understood as analogous to the

assumption of strict positivity in that paper.

This Γ value provides an alternative characterization of unique ergodicity, at least under some additional

Choquet-theoretic hypotheses.

Theorem 6.2.7. Let (M, ρ,Z,Ξ) be a W*-dynamical system, and let (A,Z,Θ; ι) be a faithful C*-model of

(M, ρ,Z,Ξ). Then the following conditions are related by the implications (i)⇐⇒ (ii)⇒(iii).

(i) The C*-dynamical system (A,Z,Θ) is uniquely ergodic.

(ii) The C*-dynamical system (A,Z,Θ) is strictly ergodic.

(iii) Γ(ι(a)) = ρ(ι(a)) for all positive a ∈ A.

Further, if SZ is a simplex, then (iii)⇒(i).

Proof. (i)⇒(ii) Suppose that (A,Z,Θ) is uniquely ergodic. Then ρ ◦ ι is an invariant state on A, so it follows

that ρ ◦ ι is the unique invariant state on A. But ρ ◦ ι is also a faithful state on A, so it follows that (A,Z,Θ)

is strictly ergodic.

(ii)⇒(i) Trivial.

(i)⇒(iii) Suppose that (A,Z,Θ) is uniquely ergodic, and let a ∈ A be positive. Let φ be a SZ-maximizing

state for a. Then φ = ρ ◦ ι, since both φ and ρ ◦ ι are invariant states on A, and (A,Z,Θ) is uniquely ergodic.

Thus φ = ρ ◦ ι, so Γ(ι(a)) = φ(a) = ρ(ι(a)).

(iii)⇒(i) Suppose that SZ is a simplex, but that (A,Z,Θ) is not uniquely ergodic. By the Krein-Milman

Theorem, there exists two distinct extreme points of SZ, and in particular there exists an extreme point φ ∈ SZ

of SZ distinct from ρ ◦ ι. Then by Corollary 6.1.22, there exists a ∈ A self-adjoint such that {φ} = SZmax(a).

We can assume that a is positive, since otherwise we could replace a with a + r for a sufficiently large

positive real number r > 0, and SZmax(a) = SZmax(a+ r). Then Γ(ι(a)) = φ(a). But by the assumption that

φ is uniquely
(
a|SZ

)
-maximizing, it follows that ρ(ι(a)) < φ(a). Therefore Γ(ι(a)) 6= ρ(ι(a)), meaning

that (iii) does not attain. Thus ¬(i)⇒ ¬(iii).

207



6.3 Unique ergodicity and gauge: the amenable setting

For the duration of this section, we assume that (M, ρ,G,Ξ) is a W*-dynamical system with L2(M, ρ)

separable. Assume further that (A, G,Θ) is a C*-dynamical system such that A is separable, and that G is

amenable. It follows from Corollary 6.1.4 that SG 6= ∅.

In this section, we expand upon some of the ideas presented in Section 6.2, generalizing from the case of

actions of Z to actions of a countable discrete amenable group G. We separate these two sections because our

treatment of the more general amenable setting has some additional nuances to it.

Our first result of this section is a generalization of a classical result from ergodic theory regarding unique

ergodicity, which is that a (singly generated) topological dynamical system is uniquely ergodic if and only

if the averages of the continuous functions converge to a constant. This classical result is well-known, and

can be found in many standard texts on ergodic theory, e.g. (Dajani and Dirksin, 2008, Thm 6.2.1), (Eisner

et al., 2015, Thm 10.6), (Walters, 2007, Thm 5.17), but the earliest example of a result like this that we could

find was (Oxtoby, 1952, 5.3). Theorem 6.3.1 generalizes this classical result not only to the noncommutative

setting, but to the setting where the phase group G is amenable.

We define the weak topology on a C*-algebra A to be the topology generated by the states on A, i.e.

x 7→ ψ(x) (ψ ∈ S).

In other words, the weak topology is the topology in which a net (xi)i∈I converges to x if and only if

(ψ(xi))i∈I converges to ψ(x) for every state ψ on A. We say the net (xi)i∈I converges weakly to x if it

converges in the weak topology.

Theorem 6.3.1. Let (A, G,Θ) be a C*-dynamical system. Then the following conditions are equivalent.

(i) (A, G,Θ) is uniquely ergodic.

(ii) There exists a right Følner sequences (Fk)
∞
k=1 for G and a linear functional φ : A→ C such that for

all x ∈ A, the sequence
(
AvgFk x

)∞
k=1

converges in norm to φ(x)1 ∈ C1.

(iii) There exists a left Følner sequences (Fk)
∞
k=1 for G and a linear functional φ : A→ C such that for all

x ∈ A, the sequence
(
AvgFk x

)∞
k=1

converges weakly to φ(x)1 ∈ C1.
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(iv) There exists a state φ on A such that for every right Følner sequence (Fk)
∞
k=1 for G, the sequence(

AvgFk x
)∞
k=1

converges in norm to φ(x)1 ∈ C1.

(v) There exists a state φ on A such that for every left Følner sequence (Fk)
∞
k=1 for G, the sequence(

AvgFk x
)∞
k=1

converges weakly to φ(x)1 ∈ C1.

Proof. Assume throughout that any x ∈ A is nonzero.

(ii)⇒(iii) Follows from the existence of two-sided Følner sequence.

(iv)⇒(v) Follows from the existence of two-sided Følner sequence.

(iv)⇒(ii) Trivial.

(v)⇒(iii) Trivial.

(iii)⇒(i) Suppose that AvgFk x → φ(x)1 ∈ C1 weakly for all x ∈ A. We claim that φ is the unique

invariant state of (A, G,Θ). First, we demonstrate that φ is Θ-invariant. Fix g0 ∈ G, and fix ε > 0. Choose

K1,K2,K3 ∈ N such that

k ≥ K1 ⇒
∣∣φ(φ(x)1)− φ

(
AvgFk x

)∣∣ < ε

3
,

k ≥ K2 ⇒
∣∣φ(Θg0φ(x)1)− φ(Θg0 AvgFk x)

∣∣ < ε

3
,

k ≥ K3 ⇒ |g0Fk∆Fk|
|Fk|

<
ε

3‖x‖
.
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The K1,K2 exist because we know that in the weak topology, the functionals φ, φ ◦Θg0 are both continuous,

and K3 exists by the amenability of G. Let K = max{K1,K2,K3}. Then if k ≥ K, then

|φ(Θg0x)− φ(x)| ≤
∣∣φ(Θg0x)− φ(Θg0 AvgFk x)

∣∣
+
∣∣φ(Θg0 AvgFk x)− φ(AvgFk x)

∣∣+
∣∣φ(AvgFk x)− φ(x)

∣∣
≤ ε

3
+
∣∣φ(Θg0 AvgFk x)− φ(AvgFk x)

∣∣+
ε

3

=
2ε

3
+
∣∣φ(Θg0 AvgFk x)− φ(AvgFk x)

∣∣
=

2ε

3
+

∣∣∣∣∣∣φ
 1

|Fk|

∑
g∈Fk

Θg0gx

−
 1

|Fk|
∑
g∈Fk

Θgx

∣∣∣∣∣∣
=

2ε

3
+

∣∣∣∣∣∣φ
 1

|Fk|

 ∑
g∈g0Fk

Θgx

−
 1

|Fk|
∑
g∈Fk

Θgx

∣∣∣∣∣∣
=

2ε

3
+

∣∣∣∣∣∣φ
 1

|Fk|

 ∑
g∈g0Fk\Fk

Θgx

−
 1

|Fk|
∑

g∈Fk\g0Fk

Θgx

∣∣∣∣∣∣
≤2ε

3
+

∣∣∣∣∣∣φ
 1

|Fk|
∑

g∈g0Fk\Fk

Θgx

∣∣∣∣∣∣+

∣∣∣∣∣∣φ
 1

|Fk|
∑

g∈Fk\g0Fk

Θgx

∣∣∣∣∣∣
<

2ε

3
+
|g0Fk∆Fk|
|Fk|

‖x‖

=ε.

Therefore φ is Θ-invariant. To see that it is positive, it suffices to observe that x ≥ 0 ⇒ AvgFk x ≥ 0,

meaning that φ(x) = limk→∞ φ(AvgFk x) ≥ 0. To see that φ(1) = 1, we just observe that AvgFk 1 = 1 for

all k ∈ N.

Now we show that φ is the unique Θ-invariant state. Let ψ be any invariant state. Then

ψ(x) = ψ(AvgFk x)

k→∞→ ψ(φ(x)1)

= φ(x)ψ(1)

= φ(x).

Therefore ψ = φ, and so (A, G,Θ) is uniquely ergodic.
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(i)⇒(iv) Fix a right Følner sequence (Fk)
∞
k=1, and assume for contradiction that (A, G,Θ) is uniquely

ergodic with Θ-invariant state φ, but that there exists x ∈ A such that
(
AvgFk x

)∞
k=1

does not converge in

norm to a scalar, and in particular does not converge in norm to φ(x)1. Since we can decompose x into its

real and imaginary parts, we can assume that x ∈ Asa. Fix ε0 > 0 for which there exists an infinite sequence

k1 < k2 < · · · such that
∥∥∥AvgFkn x− φ(x)1

∥∥∥ ≥ ε0. Then for each n ∈ N exists a state ψn on A such that∣∣∣ψn (AvgFkn x− φ(x)1
)∣∣∣ =

∥∥∥AvgFkn x− φ(x)1
∥∥∥.

Set

ωn = ψn ◦AvgFkn ,

so ωn(x − φ(x)1) = ψn

(
AvgFkn x− φ(x)1

)
. Then (ωn)∞n=1 has a subsequence, call it (ωnj )

∞
j=1 which

converges in the weak*-topology to some ω. This ω is also a state on A, and by Lemma 6.1.2, we know ω is

Θ-invariant. But ω 6= φ, since

|ω(x)− φ(x)| = lim
j→∞

∣∣ωnj (x)− φ(x)
∣∣

= lim
j→∞

∣∣ωnj (x− φ(x)1)
∣∣

= lim
j→∞

∣∣∣ψnj (AvgFknj
x− φ(x)1)

∣∣∣
= lim

j→∞

∥∥∥AvgFknj
x− φ(x)1

∥∥∥
≥ ε0.

This contradicts (A, G,Θ) being uniquely ergodic.

Remark 6.3.2. Although (Duvenhage and Stroh, 2011, Theorem 5.2) describes conditions under which

unique ergodicity of an action of an amenable group on a C*-algebra can be related to the convergence of

ergodic averages, that result is not a direct generalization of our Theorem 6.3.1.

In order to develop the gauge machinery from the previous section in the context of actions of amenable

groups, we will need to use slightly different techniques, since we do not have access to the Subadditivity

Lemma. The main results of the remainder of this section can be summarized as follows.

Main results 6.3.3. Let F = (Fk)
∞
k=1 be a right Følner sequence.
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(a) Let (A, G,Θ) be a C*-dynamical system, and let F = (Fk)
∞
k=1 be a right Følner sequence for G. Then

if a ∈ A is a positive element, then the sequence
(∥∥∥ 1
|Fk|

∑
g∈Fk Θga

∥∥∥)∞
k=1

converges to m
(
a|SG

)
.

(b) Let (A, G,Θ; ι) be a faithful C*-model of (M, ρ,G,Ξ). Then the following conditions are related by

the implications (i)⇐⇒ (ii)⇒(iii).

(i) The C*-dynamical system (A, G,Θ) is uniquely ergodic.

(ii) The C*-dynamical system (A, G,Θ) is strictly ergodic.

(iii) Γ(ι(a)) = ρ(ι(a)) for all positive a ∈ A.

Further, if SG is a simplex, then (iii)⇒(i).

Theorem 6.3.4. Let (A, G,Θ) be a C*-dynamical system, and let F = (Fk)
∞
k=1 be a right Følner sequence

for G. Then if a ∈ A is a positive element, then the sequence
(∥∥∥ 1
|Fk|

∑
g∈Fk Θga

∥∥∥)∞
k=1

converges to

m
(
a|SG

)
.

Proof. For each k ∈ N, choose a state σk on A such that

σk

 1

|Fk|
∑
g∈Fk

Θga

 =

∥∥∥∥∥∥ 1

|Fk|
∑
g∈Fk

Θga

∥∥∥∥∥∥ .
Let ωk = 1

|Fk|
∑

g∈Fk σk ◦Θg, so

ωk(x) =
1

|Fk|
∑
g∈Fk

σk(Θgx)

= σk

 1

|Fk|
∑
g∈Fk

Θgx

 ,

ωk(a) = σk

 1

|Fk|
∑
g∈Fk

Θga


=

∥∥∥∥∥∥ 1

|Fk|
∑
g∈Fk

Θga

∥∥∥∥∥∥ .
This means that in order to show that

(∥∥∥ 1
|Fk|

∑
g∈G Θga

∥∥∥)∞
k=1

converges to m
(
a|SG

)
, it suffices to show

that ωk(a)
k→∞→ m

(
a|SG

)
. So for the remainder of this proof, we are going to be looking instead at the

sequence (ωk)
∞
k=1.
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Let k1 < k2 < · · · be some sequence such that (ωkn)∞n=1 converges in the weak*-topology to some ω. It

follows from Lemma 6.1.2 that ω is Θ-invariant. To see that

(ωk(a)∞k=1 =
(∥∥∥ 1
|Fk|

∑
g∈G Θgι(a)

∥∥∥)∞
k=1

converges to m
(
a|SG

)
, it will suffice to show that every limit

point ω of (ωk : k ∈ N) satisfies

ω ∈ SGmax(a).

This follows because if there existed a subsequence k1 < k2 < · · · of (ωk)
∞
k=1 such that ωkn(a)

n→∞→ z 6=

m
(
a|SG

)
, then by compactness, that subsequence (ωkn : n ∈ N) would have some subsequence converging

to some ω′ for which ω′(a) = z 6= m
(
a|SG

)
, meaning in particular that ω′ 6∈ SGmax(a).

So let k1 < k2 < · · · be some sequence such that (ωkn)∞n=1 converges in the weak*-topology to some ω.

As has already been remarked, we have that ω ∈ SG, so ω(a) ≤ m
(
a|SG

)
. We prove the opposite inequality.

Let φ ∈ SG. Then

φ(a) = φ

 1

|Fkn |
∑
g∈Fkn

Θga

 (φ is Θ-invariant)

≤

∥∥∥∥∥∥ 1

|Fkn |
∑
g∈Fkn

Θga

∥∥∥∥∥∥
= ωkn(a)

⇒ φ(a) ≤ lim
n→∞

ωkn(a)

= ω(a).

Therefore ω(a) ≥ supψ∈SG ψ(a) = m
(
a|SG

)
. This establishes the desired identity.

Remark 6.3.5. An alternate proof of Theorem 6.3.4 using nonstandard analysis is presented in Section 6.5.

Corollary 6.3.6. Let (A, G,Θ) be a C*-dynamical system, and let F = (Fk)
∞
k=1 be a right Følner sequence

for G. Let φ ∈ SG. Then (A, G,Θ) is uniquely ergodic if and only if for every positive element a ∈ A, the

sequence
(∥∥∥ 1
|Fk|

∑
g∈Fk Θga

∥∥∥)∞
k=1

converges to φ(a).

Proof. (⇒) Suppose (A, G,Θ) is uniquely ergodic. Then φ(a) = m
(
a|SG

)
for all positive a ∈ A, so by

Theorem 6.3.4
∥∥∥ 1
|Fk|

∑
g∈Fk Θga

∥∥∥ k→∞→ φ(a).
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(⇐) We’ll prove the contrapositive. Suppose (A, G,Θ) is not uniquely ergodic. Then there exists an

extreme point ψ of SG different from φ. By Corollary 6.1.22, there exists a ∈ A self-adjoint such that

{φ} = SGmax(a). We can assume that a is positive, replacing a by a+ r for a sufficiently large positive real

number r > 0 otherwise. Thus limk→∞

∥∥∥ 1
|Fk|

∑
g∈Fk Θga

∥∥∥ = ψ(a) > φ(a).

Definition 6.3.7. Given a C*-dynamical system (A, G,Θ), a positive element a ∈ A, and a right Følner

sequence F = (Fk)
∞
k=1 for G, we define the gauge of a to be the limit

Γ(x) := lim
k→∞

∥∥∥∥∥∥ 1

|Fk|
∑
g∈Fk

Θgx

∥∥∥∥∥∥ .
Theorem 6.3.4 shows that the gauge exists, but Theorem 6.3.9 demonstrates the way that the gauge

interacts with a W*-dynamical system and a C*-model. Moreover, the gauge is dependent only on (A, G,Θ),

and independent of the right Følner sequence F = (Fk)
∞
k=1. As such, even though the gauge as we have

described it is computed using a right Følner sequence F = (Fk)
∞
k=1, we do not need to include F in our

notation for Γ.

Corollary 6.3.8. Let (A, G,Θ) ,
(
Ã, G, Θ̃

)
be two C*-dynamical systems, and let π : A → Ã be a *-

homomorphism (not necessarily surjective) such that

Θ̃g ◦ π = π ◦Θg (∀g ∈ G).

Let S̃G denote the space of Θ̃-invariant states on Θ̃. Then m
(
π(a)|S̃G

)
= m (a|Ann(kerπ)).

Proof. Let B = π(A), and let H : G→ Aut(B) be the action Hg = Θ̃g|B. Let K denote the space of all

H-invariant states on B. Then

m
(
π(a)|S̃G

)
= ΓÃ(π(a)) (Theorem 6.3.4)

= ΓB(π(a))

= m (π(a)|K) (Theorem 6.3.4)

= m (a|Ann(kerπ)) (Theorem 6.1.16) .
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Corollary 6.3.9. Let (M, ρ,G,Ξ) be a W*-dynamical system, and let (A, G,Θ; ι) be a C*-model of

(M, ρ,Z,Ξ). Then if a ∈ A is a positive element, then

Γ(ι(a)) = m (a|Ann(ker ι)) .

Proof. Write Ã = ι(A) ⊆M, and let Θ̃ : G→ Aut
(
Ã
)

be the action Θ̃g = Ξg|Ã obtained by restricting Ξ

to Ã. Write S̃G for the space of Θ̃-invariant states on Ã.

We know ΓM(ι(a)) = ΓÃ(ι(a)). By Theorem 6.3.4, we know that

ΓÃ(ι(a)) = m
(
ι(a)|S̃G

)
, and by Theorem 6.1.16, we know that

m
(
ι(a)|S̃G

)
= m (a|Ann(ker ι)) .

This brings us to our characterization of unique ergodicity with respect to the gauge for C*-models.

Theorem 6.3.10. Let (M, ρ,G,Ξ) be a W*-dynamical system, and let (A, G,Θ; ι) be a faithful C*-model

of (M, ρ,G,Ξ). Then the following conditions are related by the implications (i)⇐⇒ (ii)⇒(iii).

(i) The C*-dynamical system (A, G,Θ) is uniquely ergodic.

(ii) The C*-dynamical system (A, G,Θ) is strictly ergodic.

(iii) Γ(a) = ρ(ι(a)) for all positive a ∈ A.

Further, if SG is a simplex, then (iii)⇒(i).

Proof. (i)⇒(ii) Suppose that (A, G,Θ) is uniquely ergodic. Then ρ ◦ ι is an invariant state on A, so it follows

that ρ ◦ ι is the unique invariant state. But ρ ◦ ι is also faithful, so it follows that (A, G,Θ) is strictly ergodic.

(ii)⇒(i) Trivial.

(i)⇒(iii) Suppose that (A, G,Θ) is uniquely ergodic, and let a ∈ A be positive. Let φ be an
(
a|SG

)
-

maximizing state on A. Then φ = ρ ◦ ι, since both are invariant states and (A, G,Θ) is uniquely ergodic.

Then φ = ρ ◦ ι, so Γ(a) = φ(a) = ρ(ι(a)).

(iii)⇒(i) Suppose that SG is a simplex, but that (A, G,Θ) is not uniquely ergodic. Let φ ∈ SG be an

extreme point of SG different from ρ ◦ ι. Then by Corollary 6.1.22, there exists a ∈ A self-adjoint such
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that {φ} = SGmax(a). We can assume that a is positive, since otherwise we could replace a with a+ r for a

sufficiently large positive real number r > 0, and SZmax(a) = SZmax(a+ r). Then Γ(a) = φ(a). But by the

assumption that φ is uniquely
(
a|SG

)
-maximizing, it follows that ρ(ι(a)) < φ(a). Therefore Γ(a) 6= ρ(ι(a)),

meaning that (iii) does not attain. Thus ¬(i)⇒ ¬(iii).

6.4 A noncommutative Herman ergodic theorem

For the duration of this section, we assume that (A, G,Θ) is a C*-dynamical system such that A is

separable, and that G is amenable.

Let F = (Fk)
∞
k=1 be a right Følner sequence for G. Write PF(S) to denote the set of all limit points

of sequences of the form
(
φk ◦AvgFk

)∞
k=1

, where φk ∈ S for all k ∈ N. Because F is right Følner, we

know from Lemma 6.1.2 that if S is nonempty, then PF(S) will be a nonempty compact subset of SG. In

particular, if S ⊇ SG, then PF(S) = SG for any choice of F. Moreover, if S is convex and Θ-invariant,

then PF(S) = S.

Question 6.4.1. Is PF(S) dependent on F in general?

We now define two quantities.

Notation 6.4.2. Let F be a right Følner sequence for G, and S a nonempty subset of S. Let x ∈ R. Define

aF,S(x) := sup
{
ψ(x) : ψ ∈PF(x)

}
,

aF,S(x) := inf
{
ψ(x) : ψ ∈PF(x)

}
,

dF,S(x) := lim
k→∞

(
sup

{
φ
(
AvgFk x

)
: φ ∈ S

})
,

dF,S(x) := lim
k→∞

(
inf
{
φ
(
AvgFk x

)
: φ ∈ S

})
.

The values aF,S , dF,S can be compared to the α and δ quantities presented in Section 2 of (Jenkinson,

2006a), respectively. Ergodic optimization is concerned with finding the extrema of sequences of ergodic av-

erages of real-valued functions, but there are several ways we might attempt to formalize what an “extremum”

of a sequence of ergodic averages would be. In (Jenkinson, 2006a), O. Jenkinson proposes several different

ways we might formalize this notion, then demonstrates that they are equivalent under reasonable conditions

(Jenkinson, 2006a, Proposition 2.1). Our Proposition 6.4.3 is an attempt to extend some part of this result to

the noncommutative and relative setting.
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Proposition 6.4.3. The quantities dF,S(x), dF,S(x) are well-defined when S ⊆ SG is compact, convex, and

Θ-invariant. Moreover, they satisfy

aF,S(x) = dF,S(x), aF,S(x) = dF,S(x).

Proof. We’ll prove that aF,S(x) = dF,S(x), as the proof that aF,S(x) = dF,S(x) is very similar. We know a

priori that PF(S) = S.

Let (φk)
∞
k=1 be a sequence in S such that for each k ∈ N, we have

sup
{
φ
(
AvgFk x

)
: φ ∈ S

}
− 1/k ≤ φk(AvgFk x) ≤ sup

{
φ
(
AvgFk x

)
: φ ∈ S

}
.

We know that any limit point of
(
φk ◦AvgFk

)∞
k=1

is in S. Let k1 < k2 < · · · be chosen such that

lim`→∞ φk`

(
AvgFk`

x
)

= lim supk→∞ φk
(
AvgFk x

)
. We can assume that

(
φk` ◦AvgFk`

)∞
`=1

is weak*-

convergent to a state ψ ∈ S, passing to a subsequence if necessary. Then

lim sup
k→∞

φk
(
AvgFk x

)
= lim

`→∞
φk`

(
AvgFk`

x
)

= ψ(x) ≤ aF,S(x).

Assume for contradiction that lim infk→∞ φk
(
AvgFk x

)
< aF,S(x). Let ψ′ ∈ PF(S) be such that

ψ′(x) > lim infk→∞ φk
(
AvgFk x

)
. Then

ψ′(x) = ψ′
(
AvgFk x

)
≤ φk

(
AvgFk x

)
− 1/k.

Let k′1 < k′2 < · · · such that
(
φk′`

(
AvgF ′k`

x
))∞

`=1
converges to lim infk→∞ φk

(
AvgFk x

)
. Then

ψ′(x) ≤ lim
`→∞

φk′`

(
AvgFk′

`

x

)
= lim inf

k→∞
φk
(
AvgFk x

)
< ψ(x),

a contradiction. Therefore we conclude that lim infk→∞ φk
(
AvgFk x

)
≥ aF,S(x). Thus

aF,S(x) ≤ lim inf
k→∞

φk
(
AvgFk x

)
≤ lim sup

k→∞
φk
(
AvgFk x

)
≤ aF,S(x).

Thus we can conclude that dF,S(x) is well-defined and equal to dF,S(x).
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Remark 6.4.4. An alternate proof of Proposition 6.4.3 using nonstandard analysis is presented in Section

6.5.

To our knowledge, the first result like Theorem 6.4.5 is (Herman, 1983, Lemme on pg. 487). Herman’s

result can be understood as an extension of the classical result that a topological dynamical system is uniquely

ergodic if and only if the ergodic averages of all continuous functions converge uniformly to a constant. To

our knowledge, the first record of this classical result is (Oxtoby, 1952, (5.3)). If Oxtoby’s result can be

understood as relating the uniform convergence properties of ergodic averages of all continuous functions to

the ergodic optimization of all continuous functions, then Herman’s result relates the uniform convergence

properties of ergodic averages of a single continuous function to its ergodic optimization. Our result extends

Herman’s in a few directions. First, it extends Herman’s result to the setting of actions of amenable groups

other than Z. Moreover, it extends the result to C*-dynamical systems. Finally, it allows us to relate

convergence in certain seminorms to relative ergodic optimizations.

Let (A, G,Θ) be a C*-dynamical system, where G is an amenable group. Given a nonempty subset S of

S, define the seminorm ‖ · ‖S on A by

‖x‖S := sup
φ∈S
|ψ(x)| .

Theorem 6.4.5. Let F be a right Følner sequence for G, and S ⊆ S. Let x ∈ R, and λ ∈ R. Then the

following are equivalent.

(i)
{
ψ(x) : ψ ∈PF(S)

}
= {λ}.

(ii) limk→∞
∥∥AvgFk x− λ

∥∥
S

= 0.

Proof. (i)⇒(ii): We prove the contrapositive. Suppose there exists ε0 > 0 and k1 < k2 < · · · such that

∥∥∥AvgFk`
x− λ

∥∥∥
S
> ε0 (∀` ∈ N).

For each k ∈ N, choose φk ∈ S such that
∣∣φk (AvgFk x− λ

)∣∣ ≥ 1
2

∥∥AvgFk x− λ
∥∥
S

. Then in particular we

know that

∣∣∣φk` (AvgFk`
x− λ

)∣∣∣ > ε0/2 (∀` ∈ N).
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By the weak*-compactness of S, there must exist a weak*-convergent subsequence of(
φk` ◦Avgk`

)∞
`=1

. Assume without loss of generality that
(
φk` ◦Avgk`

)∞
`=1

converges in the weak* topology,

and write ψ = lim`→∞ φk` ◦Avgk` . Then

|ψ(x− λ)| =
∣∣∣∣ lim
`→∞

φk`

(
AvgFk`

x− λ
)∣∣∣∣

= lim
`→∞

∣∣∣φk` (AvgFk`
x− λ

)∣∣∣
≥ ε0/2.

Therefore ψ(x) 6= λ, meaning that
{
ψ(x) : ψ ∈PF(S)

}
6= {λ}.

(ii)⇒(i): Suppose that limk→∞
∥∥AvgFk x− λ

∥∥
S

= 0. Let (φk)
∞
k=1 be a sequence in S, and let(

φk` ◦AvgFk`

)∞
`=1

be a weak*-convergent subsequence of
(
φk ◦AvgFk

)∞
k=1

with limit ψ. Then

|ψ(x− λ)| =
∣∣∣∣ lim
`→∞

φk`

(
AvgFk`

x− λ
)∣∣∣∣

= lim
`→∞

∣∣∣φk` (AvgFk`
x− λ

)∣∣∣
≤ lim sup

`→∞

∥∥AvgFk x− λ
∥∥
S

= 0.

Therefore
{
ψ(x) : ψ ∈PF(S)

}
= {λ}.

Remark 6.4.6. An alternate proof of Theorem 6.4.5 using nonstandard analysis is presented in Section 6.5.

Corollary 6.4.7. Let F be a right Følner sequence for G. Let x ∈ R, and λ ∈ R. Then the following are

equivalent.

(i)
{
ψ(x) : ψ ∈ SG

}
= {λ}.

(ii) limk→∞
∥∥AvgFk x− λ

∥∥ = 0.

Proof. Apply Theorem 6.4.5 in the case where S = S , implying that ‖ · ‖S = ‖ · ‖ and PF(S) = SG.

Corollary 6.4.7 strengthens the noncommutative analogue of Oxtoby’s characterization of unique ergod-

icity, as we see below.
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Corollary 6.4.8 (A noncommutative extension of Oxtoby’s characterization of unique ergodicity). Let

F = (Fk)
∞
k=1 be a right Følner sequence for G. A C*-dynamical system (A, G,Θ) is uniquely ergodic if and

only if
(
AvgFk x

)∞
k=1

converges in norm to an element of C1 ⊆ A for all x ∈ A.

Proof. (⇒): By taking real and imaginary parts, we can reduce to the case where x is self-adjoint. If

(A, G,Θ) is uniquely ergodic, then
{
ψ(x) : ψ ∈ SG

}
is singleton, so by Corollary 6.4.7 the averages will

converge to a scalar.

(⇐): Conversely, if (A, G,Θ) is not uniquely ergodic, then there exist two states ψ1, ψ2 ∈ SG for which

there exists y ∈ R such that ψ1(y) 6= ψ2(y), implying that
{
ψ(y) : ψ ∈ SG

}
is not singleton. Corollary

6.4.7 then tells us that
(
AvgFk x

)∞
k=1

doesn’t converge in norm.

6.5 Applications of nonstandard analysis to noncommutative ergodic optimization

The tools of nonstandard analysis can be used to provide alternate proofs of some results in this chapter.

In this section, we assume that the reader is familiar with the basic tools and vocabulary of nonstandard

analysis. See (Goldblatt, 2012) for references. Since some of the terminology of the field is not entirely

universal, we define some of the less universal terms here.

We will assume throughout this section that (A, G,Θ) is a C*-dynamical system, and that U is a universe

that contains A, G,C. Assume that ∗ : U 7→ U′ is a countably saturated universe embedding. We say that

x ∈ ∗C is unlimited if |x| > n for all n ∈ N, and limited otherwise. Let L =
⋃
n∈N {z ∈

∗C : ‖z‖ ≤ n}

denote the external ring of limited elements of ∗C. For z, w ∈ ∗C, we write z ' w if |z − w| < 1/n for

all n ∈ N. This ' is an equivalence relation on ∗C. We define the shadow sh : L � C to be the C-linear

functional mapping z ∈ L to the unique (standard) complex number w ∈ C for which z ' w. The shadow is

also order-preserving on L ∩ ∗R. Let ∗N∞ := {K ∈ ∗N : ∀k ∈ N (K ≥ k)} = ∗N \N denote the unlimited

hypernaturals.

We have the following nonstandard analogue of Lemma 6.1.2.

Lemma 6.5.1. Let (A, G,Θ) be a C*-dynamical system, and let G be an amenable group. Consider a

sequence in (φk)
∞
k=1 in S, and a right Følner sequence F = (Fk)

∞
k=1 for G. Let K ∈ ∗N∞ be an unlimited

hypernatural, and define a state ω : A→ C by

ω(x) = sh
(∗
φK
(
AvgFK x

))
.
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Then ω is a well-defined Θ-invariant state, and is a limit point of the sequence
(
φk ◦AvgFk

)∞
k=1

.

Proof. First, we take up the well-definedness of ω. If x ∈ A, then

∀k ∈ N
(∣∣φk (AvgFk x

)∣∣ ≤ ‖x‖) ,
and so by the Transfer Principle

∀k ∈ ∗N
(∣∣∗φk (AvgFk x

)∣∣ ≤ ‖x‖) .
In particular, it follows that

∣∣∗φK (AvgFK x
)∣∣ ≤ ‖x‖, meaning that ∗φK

(
AvgFK x

)
∈ L. Thus ω(x) is

well-defined. We can similarly prove that ω is positive and unital by applying the Transfer Principle to the

sentences

∀k ∈ N ∀x ∈ A
(
φk
(
AvgFk (x∗x)

)
≥ 0
)
,

∀k ∈ N
(
φk
(
AvgFk 1

)
= 1
)
.

To prove the Θ-invariance of ω, we recall from a familiar argument (see proof of Lemma 6.1.2) that if

g0 ∈ G, x ∈ A, then

∣∣φk (AvgFk Θg0x
)
− φk

(
AvgFk x

)∣∣ ≤ |Fkg0∆Fk|
|Fk|

‖x‖ k→∞→ 0.

It follows from a classical result of nonstandard analysis (Goldblatt, 2012, Theorem 6.1.1) that∣∣∗φK (AvgFK Θg0x
)
− ∗φK

(
AvgFK x

)∣∣ ≤ |FKg0∆FK |
|FK | ‖x‖ ' 0, meaning that ω(x) = ω (Θg0x).

Finally, we argue that ω is a limit point of
(
φk ◦AvgFk

)∞
k=1

. For n, `, k0 ∈ N;x1, . . . , x` ∈ A, consider

the sentence σx1,...,x`;n,k0 given by

∃k ∈ N
[
(k ≥ k0) ∧

(
min

1≤j≤`

∣∣ω(xj)− φk
(
AvgFk xj

)∣∣ < 1/n

)]
.
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Then ∗σx1,...,x`;n,k0 is true for all n, `, k0 ∈ N;x1, . . . , x` ∈ A, witnessed by K. Therefore, it follows from

the Transfer Principle that σx1,...,x`;n,k0 is true for all n, `, k0 ∈ N;x1, . . . , x` ∈ A. We know that

{{
ψ ∈ S : min

1≤j≤`
|ω(xj)− ψ(xj)| < 1/n

}
: n, ` ∈ N;x1, . . . , x` ∈ A

}

is a neighborhood basis for ω in the weak* topology. Thus we have shown that ω is a limit point of the

sequence
(
φk ◦AvgFk

)∞
k=1

.

We might ask whether Lemma 6.5.1 is strictly weaker than Lemma 6.1.2, since Lemma 6.5.1 also asserts

that the state it describes is a limit point of the sequence that generates it. In fact, the two lemmas are

equivalent in the sense that for a sequence (φk)
∞
k=1 in S , every limit point of the sequence

(
φk ◦AvgFk

)∞
k=1

can be written as sh
(∗
φK
(
AvgFK x

))
for some K ∈ ∗N∞. To see this, choose k1 < k2 < · · · such that

ψ = lim`→∞ φk` ◦ AvgFk`
exists. Let N be a countable neighborhood basis for ψ in the weak*-topology,

and for each U ∈ N , k ∈ N, let SU,k be the set

SU,k =
{
k′ ∈ N :

(
k′ ≥ k

)
∧
(
φk′ ◦AvgFk′ ∈ U

)}
.

Then {SU,k}U∈N ,k∈N has the finite intersection property, and so by the countable saturation of our universe

embedding, it follows that there exists K ∈ ∗N such that

K ∈
⋂

U∈N ,k∈N

∗SU,k,

which is necessarily unlimited. Then for any x ∈ A, we have that
∣∣∗φK (AvgFK x

)
− ψ(x)

∣∣ < 1/n for all

n ∈ N, so

sh
(∗φK (AvgFK x

))
= ψ(x).

This correspondence can be generalized in the following result.

Proposition 6.5.2. Let Ω = (Ω, τ) be a compact Hausdorff topological space, and let ∗ : U → U′ be a

countably saturated extension of a universe U containing Ω and N. Let ' be the binary relation on ∗Ω defined
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by

x ' y ⇐⇒ ∀U ∈ τ (x ∈ ∗U ↔ y ∈ ∗U) .

Define a map sh : ∗Ω → Ω that sends x ∈ ∗Ω to the unique y ∈ Ω such that x ' y, and let (xk)
∞
k=1 be a

sequence in Ω. Then the map sh is well-defined.

Further, set

LS ((xk)
∞
k=1)

=
{
ω ∈ Ω : ∀U ∈ τ ∀k ∈ N

[
(ω ∈ U)→

(
∃k′ ∈ N

((
k′ ≥ K

)
∧ (xk′ ∈ U)

))]}
.

Then

{sh (∗xK) : K ∈ ∗N∞} ⊆ LS ((xk)
∞
k=1) .

In addition, if ∗ is κ-saturated for some uncountable cardinal κ > |B|, where B is some topological basis B

of τ , then {sh (∗xK) : K ∈ ∗N∞} = LS ((xk)
∞
k=1) .

Proof. The fact that in a compact topological space, for every x ∈ ∗Ω exists exactly one y ∈ Ω such that

x ' y can be found in (Väth, 2006, Corollary 12.41). Let K ∈ ∗N∞, and consider y = sh (∗xK). Let

Ny = {U ∈ B : y ∈ U}, where B is a topological basis for τ , and consider for k ∈ N, U ∈ Ny the sentence

σU,k defined by

∃k′ ∈ N
[(
k′ ≥ k

)
∧ (xk ∈ U)

]
.

Then ∗σk,U is true for all k ∈ N, U ∈ Ny, since ∗xK ∈ ∗U and K ≥ k for all k ∈ N, so it follows that σk,U

is true for all k ∈ N, U ∈ Ny. Since Ny forms a neighborhood basis for y, it follows that y ∈ LS ((xk)
∞
k=1).

Now suppose that ∗ is κ-saturated for some uncountable cardinal κ > |B|, and let ω ∈ LS ((xk)
∞
k=1).

Let Nω = {U ∈ B : ω ∈ U}. For k ∈ N, U ∈ Nω, consider the set

Sk,U =
{
k′ ∈ N :

(
k′ ≥ k

)
∧ (xk′ ∈ U)

}
.

Then {Sk,U : k ∈ N, U ∈ Nω} has the finite intersection property, and thus there existsK ∈
⋂
k∈N,U∈Nω

∗Sk,U .

Thus ∗xK ∈ ∗U for all U ∈ Nω, and K ∈ ∗N∞. Thus ω = sh (∗xK).
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Remark 6.5.3. Our definitions of ' and sh in the statement of Proposition 6.5.2 is consistent with our

definition of ' on L in the following sense. We can write L =
⋃
n∈N

∗{z ∈ C : |z| ≤ n}. If x, y ∈ L, then

there exists n ∈ N such that max{|x|, |y|} ≤ n. Then x, y ∈ ∗{z ∈ C : |z| ≤ n}. The set {z ∈ C : |z| ≤ n}

is compact, and the definition of ' on that compact space in the sense of Proposition 6.5.2 will agree with

our definition of ' on L from the start of this section.

In light of Theorem 6.5.2, several compactness arguments in this chapter can be proven alternatively in

the language of nonstandard analysis. Here we provide a few examples.

Proof of Theorem 6.3.4 using nonstandard analysis. For each k ∈ N, choose a state φk on A such that

φk
(
AvgFk a

)
=
∥∥AvgFk a

∥∥ .
Fix K ∈ ∗N∞, and let ω : A→ C be the state

ω(x) = sh
(∗φK (AvgFK x

))
.

Lemma 6.5.1 tells us that ω is Θ-invariant. We argue now that ω(a) = m
(
a|SG

)
. This follows because if

ψ ∈ SG, then

ψ(a) = ψ
(
AvgFk a

)
≤
∥∥AvgFk a

∥∥ = φk
(
AvgFk a

)
for all k ∈ N, and thus we can apply the Transfer Principle to the sentence ∀k ∈ N

(
ψ(a) ≤ φk

(
AvgFk a

))
to infer

ψ(a) ≤ ∗φK
(
AvgFK a

)
⇒ ψ(a) ≤ ω(a).

Therefore, we’ve proven that ∗
∥∥AvgFK a

∥∥ ' m
(
a|SG

)
for all K ∈ ∗N∞. Therefore by a classical

result of nonstandard analysis (Goldblatt, 2012, Theorem 6.1.1), it follows that limk→∞
∥∥AvgFk a

∥∥ =

m
(
a|SG

)
.

Proof of Proposition 6.4.3 using nonstandard analysis. We’ll prove that aF,S(x) = dF,S(x), as the proof

that aF,S(x) = dF,S(x) is very similar. We know a priori that PF(S) = S.

Let (φk)
∞
k=1 be a sequence in S such that for each k ∈ N, we have

sup
{
φ
(
AvgFk x

)
: φ ∈ S

}
− 1/k ≤ φk(AvgFk x) ≤ sup

{
φ
(
AvgFk x

)
: φ ∈ S

}
.

224



Let K ∈ ∗N∞, and let ω : A → C be the state ω(y) = sh
(∗φK (AvgFK y

))
. Then ω ∈ PF(S), so

ω(x) ≤ aF,S(x).

To prove the opposite inequality, let ψ ∈PF(S) = S. Then

ψ(x) = ψ
(
AvgFk x

)
≤ sup

{
φ
(
AvgFk x

)
: φ ∈ S

}
≤ φk

(
AvgFk x

)
+ 1/k (∀k ∈ N).

Thus the sentence

∀k ∈ N
(
ψ(x) ≤ φk

(
AvgFk x

)
+ 1/k

)
is true. Applying the Transfer Principle then tells us that ψ(x) ≤ ∗φK

(
AvgFK x

)
+ 1/K, implying that

ψ(x) ≤ ω(x). Taking a supremum over ψ ∈ S = PF(S) tells us that

aF,S(x) ≤ ω(x).

Therefore ∗φK(x) ' aF,S(x) for all K ∈ ∗N. Thus, by a classical result of nonstandard analysis

(Goldblatt, 2012, Theorem 6.1.1), it follows that limk→∞
∥∥AvgFk a

∥∥ = aF,S(x).

Proof of Theorem 6.4.5 using nonstandard analysis. (i)⇒(ii): Suppose
{
ψ(x) : ψ ∈PF(S)

}
= {λ}. For

each k ∈ N, choose φk ∈ S such that
∣∣φk (AvgFk x− λ

)∣∣ ≥ 1
2

∥∥AvgFk x− λ
∥∥
S

. Fix K ∈ ∗N, and let

ω : A→ C be the state

ω(y) = sh
(∗φK (AvgFK y

))
.

Lemma 6.5.1 tells us that ω ∈ PF(S). Thus ω(x) = λ. Therefore
∣∣∗φK (AvgFK x

)
− λ
∣∣ ' 0 for all

K ∈ ∗N∞, meaning a classical result of nonstandard analysis (Goldblatt, 2012, Theorem 6.1.1) tells us that

limk→∞
∣∣φk (AvgFk x

)
− λ

∣∣ = 0. But because
∥∥AvgFk x− λ

∥∥
S
≤ 2

∣∣φk (AvgFk x
)
− λ
∣∣ for all k ∈ N,

we can conclude that limk→∞
∥∥AvgFk x− λ

∥∥
S

= 0.

(ii)⇒(i): Suppose that limk→∞
∥∥AvgFk x− λ

∥∥
S

= 0. Let (φk)
∞
k=1 be a sequence in S, and let ω : A→

C be the state

ω(y) = sh
(∗φK (AvgFK y

))
.
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Then

|ω(x− λ)| '
∣∣∗φK (AvgFK x− λ

)∣∣ ≤ ‖∗AvgFKx− λ‖S ' 0.

Therefore ω(x) = λ. We can then take a supremum to get

sup
(φk)∞k=1∈SN,K∈∗N∞

∣∣sh (∗φK (AvgFK x
))
− λ

∣∣ = 0.

But in light of Proposition 6.5.2, we know that

PF(S) =
{
y 7→ sh

(∗φK (AvgFK y
))

: (φk)
∞
k=1 ∈ SN,K ∈ ∗N∞

}
,

so this shows that ψ(x) = λ for all ψ ∈PF(S).
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