
ADVANCING AND LEVERAGING TRACTABLE LIKELIHOOD MODELS

Christopher M. Bender

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department

of Computer Science.

Chapel Hill
2022

Approved by:

Junier B. Oliva

Marc Niethammer

Martin Styner

Michael K. Reiter

Manzil Zaheer

© 2022
Christopher M. Bender

ALL RIGHTS RESERVED

ii

ABSTRACT

Christopher M. Bender: Advancing and Leveraging Tractable Likelihood Models
(Under the direction of Junier B. Oliva)

The past decade has seen a remarkable improvement in a variety of machine learning applica-

tions thanks to numerous advances in deep neural networks (DNN). These models are now the de

facto standard in fields ranging from image/speech recognition to driverless cars and have begun

to permeate aspects of modern science and everyday life.

The deep learning revolution has also resulted in highly effective generative models such

as score matching models [157], diffusion models [81], VAEs [92], GANs [63], and tractable

likelihood models [47, 67, 132]. These models are best known for their ability to create novel

samples of impressive quality but are usually limited to highly structured data modalities. Ex-

panding the capabilities and applications of likelihood models beyond conventional data formats

and generative applications can increase functionality, interpretability, and intuition compared to

conventional methods.

This dissertation addresses shortcomings in likelihood models over less structured data and

explores methods to exploit a learned density as part of a larger application. We begin by advanc-

ing the performance of likelihood models outside the standard, ordered data regime by develop-

ing methods that are applicable to sets, e.g., point clouds. Many data sources contain instances

that are a collection of unordered points, such as points on the surface of scans from human or-

gans, sets of images from a web page, or LiDAR observations commonly used in driverless cars

or (hyper-spectral) aerial surveys. We then explore several applications of density models. First,

we consider generative process over neural networks themselves and show that training over en-

sembles of these sampled models can lead to improved robustness to adversarial attacks. Next,

we demonstrate how to use the transformative portion of a normalizing flow as a feature extractor

iii

in conjunction with a downstream task to estimate expectations over model performance in local

and global regions. Finally, we propose a learnable, continuous parameterization of mixture mod-

els directly on the input space to improve model interpretability while simultaneously allowing

for arbitrary marginalization or conditioning without the need to train new models or develop

complex masking mechanisms.

iv

The past decade has seen a remarkable improvement in a variety of machine learning applica-

tions thanks to numerous advances in deep neural networks (DNN). These models are now the de

facto standard in fields ranging from image/speech recognition to driverless cars and have begun

to permeate aspects of modern science and everyday life.

The deep learning revolution has also resulted in highly effective generative models such as

score matching models, diffusion models, VAEs, GANs, and tractable likelihood models. These

models are best known for their ability to create novel samples of impressive quality but are

usually limited to highly structured data modalities. Expanding the capabilities and applications

of likelihood models beyond conventional data formats and generative applications can increase

functionality, interpretability, and intuition compared to conventional methods.

This dissertation addresses shortcomings in likelihood models over less structured data and

explores methods to exploit a learned density as part of a larger application. We begin by advanc-

ing the performance of likelihood models outside the standard, ordered data regime by develop-

ing methods that are applicable to sets, e.g., point clouds. Many data sources contain instances

that are a collection of unordered points, such as points on the surface of scans from human or-

gans, sets of images from a web page, or LiDAR observations commonly used in driverless cars

or (hyper-spectral) aerial surveys. We then explore several applications of density models. First,

we consider generative process over neural networks themselves and show that training over en-

sembles of these sampled models can lead to improved robustness to adversarial attacks. Next,

we demonstrate how to use the transformative portion of a normalizing flow as a feature extractor

in conjunction with a downstream task to estimate expectations over model performance in local

and global regions. Finally, we propose a learnable, continuous parameterization of mixture mod-

els directly on the input space to improve model interpretability while simultaneously allowing

for arbitrary marginalization or conditioning without the need to train new models or develop

complex masking mechanisms.

v

“To my wife, whose support never fails, and to the rest of my family, without their insanity, I

would surely have gone mad.”.

vi

ACKNOWLEDGEMENTS

When I decided to return to academia to pursue a PhD, I expected the process would be

something of a battle, but one that I was experienced and practiced enough to take with some

time and effort. Due to some combination of an over-estimation of my own abilities, an under-

estimation of the extent of the task, and complications from a global pandemic, the undertaking

was more a war than a battle. In the end, I have only persevered through the extensive advice,

support, and help from family, friends, and colleagues. If not for them, I would still be mired in

the mud. I don’t really have the words to express my gratitude but please accept this as the best I

can offer.

My wife, Sarah, easily deserves the most thanks. She has had complete faith (both times)

when I uprooted us from our family and community to move hundreds (or thousands) of miles

to pursue my goals. She has helped and carried me through the stress, frustrations, and sleepless

nights. I want to say that she walked with me when times were good and carried me when things

were hard, but the analogy is a bit used and it feels a bit sacrilegious... so instead I’ll just borrow

another cliche and say, I couldn’t (and wouldn’t have wanted to) have done it without her. It

hasn’t always been fun and easy, but her (and later our son’s) presence has made life worth living.

My family (both by blood and law) have contributed heavily to my successes. This goes all

the way back to when my parents and siblings encouraged and enabled me to participate in clubs

and extracurricular activities and has continued well into adulthood and across time zones. I am

extremely fortunate to have married into another family that is equally supportive, even when I

took their daughter/sister and grandchild/nephew further away than they had ever hoped. I need

to thank my brother-in-law, Wesley, and sister, Ashley, for putting their lives on hold and helping

to take care of my infant son early in the pandemic when a vaccine was unavailable and daycares

vii

were closed. Without their help and sacrifice, we would have been less safe and this process

would have taken much longer.

My many friends and colleagues at The Johns Hopkins University Applied Physics Labora-

tory have been instrumental in my successes as an engineer and researcher. Without them I would

not have the experience and diligence necessary to participate in today’s fast-paced world. In

particular, I would like to thank Dr. Shane Lani, Dr. CJ Della Porta, and their families for their un-

ceasing friendship and support through the PhD. I am very lucky to have encountered such good

friends and examples. Along these lines, I would like to call out Patrick Emmanuel for letting

me bounce ideas off him and helping me troubleshoot issues whenever I found myself stuck. He

is probably the most impressive hands-on-keyboard ML practitioner that I know and our many

discussions have been very helpful in diversifying my knowledge and understanding.

Finally I would like to thank the many people here at UNC that have helped me along the way

starting with my advisor, Dr. Junier B. Oliva, for all of his support and guidance. Most especially

in the first two years as I transitioned from more of an engineer into a computer and machine

learning scientist. His advice (and patience) were essential to this process and to my growth as a

researcher and scientist. In this vein, the constructive feedback and collaboration from members

of the the Lupa lab was very helpful and instructive. Similarly, the members of my cohort, no-

tably Yifeng “Jack” Shi, provided a much-needed outlet and sympathetic ear. I would also like to

thank the various members of my committee for their patience, comments, and advice. This work

was supported in part by NSF grant IIS2133595 and NIH grant 1R01AA02687901A1.

viii

TABLE OF CONTENTS

LIST OF TABLES . xv

LIST OF FIGURES . xvi

LIST OF ABBREVIATIONS . xix

LIST OF SYMBOLS . xx

CHAPTER 1: INTRODUCTION . 1

1.1 Learning Over Sets . 2

1.2 Applications of Likelihood models . 3

1.3 Thesis Organization . 6

1.4 Contributions . 7

CHAPTER 2: BACKGROUND . 9

2.1 Neural Networks . 9

2.1.1 Convolutional Neural Networks . 10

2.1.2 Neural Ordinary Differential Equations . 11

2.2 Likelihood Models . 12

2.2.1 Gaussian Mixture Models . 12

2.2.2 Normalizing Flows and Bijective Networks . 13

2.2.2.1 Linear and Element-wise Transformations . 14

2.2.2.2 Coupling Transformations . 15

2.2.2.3 Invertible 1×1 Convolutions. 18

2.2.2.4 Continuous Normalizing Flows . 19

2.2.3 Autoregressive Models . 20

ix

CHAPTER 3: FLOWSCANS . 22

3.1 Overview . 22

3.2 Motivation and Challenges . 24

3.3 Methods . 27

3.3.1 Equivariant Flow Transformations . 27

3.1.2 Invariance Through Sorting. 30

3.1.3 Autoregressive Scan Likelihood . 31

3.1.4 Correspondence Flow Transformations . 32

3.1.5 Complete FlowScan Architecture . 33

3.2 Related Work . 34

3.3 Experiments . 34

3.3.1 Shuffled Synthetic Sequential Data . 35

3.3.2 ModelNet . 36

3.3.3 Brain Data . 38

3.3.4 Spatial MNIST . 38

3.3.5 MNIST. 39

3.4 Limitations. 40

3.5 Conclusion . 41

CHAPTER 4: DEFENSE THROUGH DIVERSE DIRECTIONS . 43

4.1 Overview . 43

4.2 Background & Related Work . 45

4.2.1 Bayesian Neural Networks . 45

4.2.2 Adversarial Attack . 47

4.2.3 Adversarial Defense . 48

4.2.3.1 Obfuscated Gradients . 49

4.3 Motivation . 50

x

4.4 Method . 51

4.4.1 Entropy and Variances . 51

4.4.2 Direct Loss . 52

4.4.3 MinVar . 53

4.4.4 Non-Sparse Promoting Losses . 54

4.4.5 Batch Loss . 54

4.4.6 Further Benefits of Adversarial Training . 54

4.5 Experiments . 55

4.5.1 Penalty Shorthand . 55

4.5.2 Practical Considerations . 55

4.5.2.1 Drawing from the Bayesian Network . 55

4.5.2.2 Attack Schemes . 56

4.6 Synthetic Dataset . 57

4.6.1 MNIST. 62

4.6.1.1 MNIST Accuracy Evolution . 63

4.6.2 CIFAR-10 . 64

4.7 Ablation . 65

4.8 Discussion and Limitations . 67

4.9 Conclusions . 68

CHAPTER 5: PRACTICAL INTEGRATION . 69

5.1 Overview . 69

5.2 Motivation . 71

5.3 Background . 73

5.3.1 Separable Functions. 73

5.3.1.1 Additively Separable Functions . 74

5.3.1.2 Multiplicatively Separable Functions . 74

xi

5.4 Method . 74

5.5 Practical Applications . 76

5.5.1 Latent Distributions . 77

5.5.2 Separable Networks . 78

5.5.3 Integrals . 79

5.5.3.1 Out-of-Distribution Supervision . 80

5.5.3.2 Local Consistency . 80

5.5.4 Loss Components . 81

5.6 Related Work . 81

5.7 Experiments . 83

5.7.1 Spirals . 84

5.7.2 Out of Distribution Detection . 84

5.7.3 Semi-Supervised Learning . 85

5.7.4 Interpretability . 85

5.8 Limitations. 87

5.9 Conclusions . 88

CHAPTER 6: CONTINUOUSLY PARAMETERIZED MIXTURE MODELS. 89

6.1 Overview . 89

6.2 Background . 92

6.2.1 Mixture of Factor Analyzers . 92

6.3 Methods . 92

6.3.1 Continuously Parameterized Mixture Models . 93

6.3.2 Hierarchical Mixture of Factor Analyzers . 95

6.3.3 Curriculum Through Spaces . 96

6.4 Related Work . 98

6.5 Experiments . 100

xii

6.5.1 Synthetic Data . 101

6.5.2 Images . 102

6.6 Limitations. 105

6.7 Conclusions . 106

CHAPTER 7: CONCLUSION . 108

APPENDIX A: FLOWSCANS . 110

A.1 Proof of Prop. 1 . 110

A.2 Experiment Details . 110

A.2.1 ModelNet10 Ablation Study . 111

A.3 Synthetic. 111

A.4 Permutation Equivariant Transformations . 111

A.4.1 Linear Permutation Equivariant (L-PEq) . 112

A.4.2 Nonlinear Weighting (NW-PEq) . 113

A.5 Generated Samples for Point Cloud Experiments . 115

A.6 Training Examples for Point Cloud Experiments . 115

APPENDIX B: SUPPORTING INFORMATION FOR DIVERSE DEFENSES 119

B.1 Proof of Proposition 1 . 119

B.2 Additional Results . 120

APPENDIX C: SUPPORTING INFORMATION FOR PRACTICAL INTEGRATION 121

C.1 Proofs . 121

C.1.1 Additively Separable Functions . 121

C.1.2 Multiplicatively Separable Functions . 121

C.2 Additional Experiments . 122

C.2.1 Adversarial Robustness . 122

C.2.2 Toy Semi-supervised Regression . 123

C.2.3 Standard Performance . 125

xiii

C.2.4 Out of Distribution Detection AUROC Comparisons . 125

C.2.5 MNIST Leave-one-out . 126

C.3 Training and Architectures . 127

C.3.1 Spirals . 127

C.3.2 Fashion MNIST . 127

C.4 Approximate Expected Cross-Entropy over a Domain . 128

APPENDIX D: SUPPORTING INFORMATION FOR CONTINUOUSLY PARAM-
ETERIZED MIXTURES . 131

D.1 Numerical Integration . 131

D.2 Augmentations . 131

D.3 MNIST Ablations . 132

D.4 Fashion MNIST Results . 133

REFERENCES . 135

xiv

LIST OF TABLES

Table 3.1 – Per-point log-likelihood (PPLL) of the test set for all point cloud exper-
iments. Higher PPLL indicates better modeling of the test set. 35

Table 4.1 – Adversarial accuracy (%) on MNIST with various combinations of diver-
sity promotion against L∞ attacks. 62

Table 4.2 – Adversarial accuracy (%) under L∞ white and black box attacks on CIFAR-
10 with various methods of diversity promotion. 64

Table 4.3 – Comparison of accuracy (%) under PGD attack with different budget. Re-
sults for “Adv-CNN” and “Adv-BNN,” representing adversarially trained
CNN and BNN, are from [113]. 65

Table 5.1 – Area under the PR curve (percentage). 85

Table 5.2 – Tabular dataset semi-supervised accuracy (%). 86

Table 6.1 – Bits per dimension (BPD) and clustering accuracy (Acc.) for several im-
age datasets. 103

Table 6.2 – OOD Detection via Likelihood Thresholding . 105

Table B.1 – Adversarial accuracy on MNIST with various combinations of diversity
promotion against L∞ attacks. 120

Table C.1 – Std. & Adv. Accuracy . 123

Table C.2 – Semi-supervised integration regularization . 123

Table C.3 – Standard accuracy and bits-per-dimension for different datasets 125

Table C.4 – Area under the ROC curve (percentage) . 125

Table C.5 – MNIST leave one out: AUPR (%) . 126

Table C.6 – MNIST leave one out: AUROC (%) . 127

Table D.1 – MNIST Ablation . 132

xv

LIST OF FIGURES

Figure 2.1 – Example of general coupling for tabular data. Data is split into conditioned
(black) and conditioning (red) partitions. The conditioned data is then
invertibly transformed via a conditional operation given the condition-
ing information. Conditioning information is passed through unaltered. 16

Figure 2.2 – Checkerboard coupling strategy proposed by Dinh et al. [47] to maintain
spatial correlations between conditioned and conditioning information
across an image. 18

Figure 3.1 – A training dataset of sets. Each instance Xi is a set of points Xi = {xi,j ∈
Rd}ni

j=1 (d = 2 shown). We estimate p(Xi), from which we can sam-
ple distinct sets. 23

Figure 3.2 – Illustration of our proposed method. First, input sets are scanned (in a
possibly transformed space). After, the scanned covariates are modeled
(possibly in a autoregressive fashion, as shown). 27

Figure 3.3 – An illustration of how set-coupling transformations act on a set. The first
plot shows the input data to be transformed. In the subsequent plots, the
set is transformed in an invertible, equivariant fashion by stacking set-
coupling transformations. Iteratively transforming dimensions of a set
in this way yields a set with simpler structure that may be modeled more
easily, as shown in the last plot. 29

Figure 3.4 – Left: true samples; markers and colors indicate instances and sequential
order, respectively. Right: FlowScan samples. 36

Figure 3.5 – Synthetic plane samples from trained models . 37

Figure 3.6 – FlowScan ModelNet10 samples . 37

Figure 3.7 – FlowScan Caudate and Thalamus samples . 38

Figure 3.8 – SpatialMNIST samples from each model. 39

Figure 3.9 – Single digit set samples from FlowScan, Set-Coupling, and BRUNO trained
on MNIST. Each row corresponds to a single set of 20 images generated
by one model. Sets generated from BRUNO often contain unidentifiable
or multiple digits whereas FlowScan samples are relatively homogeneous
and representative of the training set. 42

xvi

Figure 4.1 – Standard and adversarial accuracy for various models compared to the
upper bound. Each dot represents the model performance at the end of
different epochs across the training process. Note, some negative jitter
was introduced to Case 2 to enhance visualization. 58

Figure 4.2 – Standard and adversarial accuracy for various models compared to the
upper bound with increased plotting range. Each dot represents the model
performance at the end of different epochs across the training process.
Note, some negative jitter was introduced to Case 2 to enhance visual-
ization. 60

Figure 4.3 – Standard and adversarial accuracy evolution for the test set with various
models. 61

Figure 4.4 – Evolving white box attack accuracy after each epoch. 63

Figure 4.5 – Varying attack budgets with 40 step PGD attacks against MNIST defenses. 65

Figure 4.6 – Varying attack budgets with 40 step PGD attacks against CIFAR-10 defenses. . . 66

Figure 5.1 – Depiction of the overall network with intervening distributions over the
latent space, Z . 73

Figure 5.2 – Separable functions need O(G) latent samples (red) instead of O(GM)
input samples (blue). Integration regions emphasized. 76

Figure 5.3 – Data and contrastive distributions . 77

Figure 5.4 – Three-arm spirals results . 83

Figure 5.5 – Each subplot corresponds to a single latent feature. The top and middle
rows contain the unnormalized logit components and distributions per
class, with matching colors. The bottom row compares the distribution
of Fashion MNIST (blue) and MNIST (red). x-axis shared across all rows. 87

Figure 6.1 – We illustrate how a continuously parameterized mixture model can evolve
components to model the data distribution (samples in blue). Each ellipse
corresponds to equal likelihood contours for a different component. Col-
ors across components implicitly indicates the arrow of pseudotime. (a)
A single trajectory through the space provides a smooth probabilistic model.
(b) A hierarchy of three different partitions allows for different manifolds
and enables flexible clustering or classification. 91

xvii

Figure 6.2 – Evenly distributed transitions through different spaces. The data begins
in a latent space as a standard Gaussian (top left) and ends in the true space
(bottom right). 96

Figure 6.3 – Two synthetic datasets designed to assess the limitations of the CPMM.
. 101

Figure 6.4 – Means from a hierarchical CPMM trained on MNIST with a space-based
curriculum. Each trajectory is evaluated at evenly spaced pseudotimes
between zero and one and displayed from left to right. Despite the 3/8
and 4/9 confusion, the model does an excellent job of learning smoothly-
varying transitions between digits. The initial component (far left cases)
are never the most likely component and could be discarded. 102

Figure A.1 – Chair Samples . 116

Figure A.2 – ModelNet10 Samples . 116

Figure A.3 – ModelNet10a Samples . 116

Figure A.4 – Caudate Samples . 117

Figure A.5 – Thalamus Samples . 117

Figure A.6 – Training examples . 118

Figure B.1 – White box attack accuracy after each epoch. 120

Figure D.1 – Means from a hierarchical CPMM trained on Fashion-MNIST with a space-
based curriculum. Each trajectory is evaluated at evenly spaced pseudo-
times between zero and one and displayed from left to right. The initial
component (far left cases) are never the most likely component and could
be discarded. 134

xviii

LIST OF ABBREVIATIONS AND INITIALIZATIONS

AI Artificial Intelligence

AR Autoregressive model

BNN Bayesian Neural Network

CNF Continuous Normalizing Flow

CNN Convolutional Neural Network

DL Deep Learning

GAN Generative Adversarial Network

GMM Gaussian Mixture Model

MFA Mixture of Factor Analyzers

ML Machine Learning

MLP Multi-Layer Perceptron

NICE Non-linear independent components estimation

NF Normalizing Flow

NN Neural Network

NODE Neural Ordinary Differential Equation

ODE Ordinary Differential Equation

RNVP Real Non-Volume Preserving

VAE Variational Autoencoder

xix

LIST OF SYMBOLS

N Number of examples

M Number of dimensions

R Rank

f(x) Generic functions or neural networks

h(x) Bijective functions or normalizing flows

x Input data

y Labels

z Latent/Transformed data

µ Mean

σ Standard deviation

σ(x) Sigmoid or Soft-max function

θ Network parameters

Σ Covariance Matrix

xx

CHAPTER 1: INTRODUCTION

Machine learning has exhibited incredible advances in recent years, achieving human (and

even super-human) performance in applications ranging from image recognition [102], object

detection [144], machine translation [127], drug discovery [91], augmented reality [60], etc.,

through the use of large, deep neural networks. These improvements have revolutionized the

way we interact with technology in our daily lives [? 69] and have begun to change the way we

learn [133], explore, and process the world using computational mathematics [56] and advanced

sciences [91, 148]. The deep learning revolution has also resulted in highly-effective generative

models such as VAEs [92], GANs [63], energy machines [129], score matching models [157],

diffusion models [81], and tractable likelihood models [47, 67, 132]. These models are most fa-

mously used to generate novel samples of impressive quality. Despite the increasing number and

effectiveness of these models, they are still largely utilized primarily for generative purposes in

and of themselves and are trained over fairly simple, highly-structured data modalities. Likeli-

hood models in particular provide access to a principled estimate of a dataset’s underlying proba-

bility density function. This function should enable a huge number of alternative processes, e.g.,

likelihood ratio tests, but these possibilities have largely been ignored or have proven surprisingly

brittle. Similarly, many real-world observations are better represented using unordered collec-

tions, namely sets, without resorting to presuming some predefined, and possibly arbitrary, order.

Existing methods to construct likelihood models over exchangeable (orderless) data largely rely

on i.i.d. assumptions that can over-simplify or ignore the complex inter-dependencies between

points within a given set.

1

1.1 Learning Over Sets

Modeling unordered, non-i.i.d. data is an important problem in machine learning and data

science. Collections of data objects with complicated intrinsic relationships are ubiquitous. These

collections include sets of 3d points sampled from the surface of complicated shapes like human

organs, sets of images shared within the same web page, or point cloud LiDAR data observed

by driverless cars. In any of these cases, the collections of data objects do not possess any in-

herent ordering of their elements. Thus, any generative model which takes these data as input

should not depend on the order in which the elements are presented and must be flexible enough

to capture the dependencies between co-occurring elements. As a simple example, one may triv-

ially generate a set of exchangeable points by drawing them i.i.d. from some distribution. More

commonly, however, elements within an exchangeable set share information with one another,

providing structure and inter-element dependencies. Despite the abundance of such data, the bulk

of existing approaches either ignore the relation between points (i.i.d. methods) or model depen-

dencies in a manner that depends on inherent orderings (sequential methods) [145, 183]. In order

to accurately learn the structure of a set whilst preserving the exchangeability of its likelihood,

one cannot rely solely on either approach. In this dissertation, we propose a tractable, non-i.i.d.

density estimator for exchangeable sets that is suitable for a variety of cardinalities (number of

points) and dimensionalities. Our method utilizes the composition of an invertible, permutation

equivariant transform, a sorted scan, and a conventional, sequential density model such as an

autoregressive methods. The utilization of the sorted scan is the first method that enables the ap-

plication of fixed-order density models to exchangeable data in a principled way without relying

on impractical averaging over permutations.

2

1.2 Applications of Likelihood models

Despite their impressive performance and successes, neural networks suffer from several

shortcomings such as brittle out-of-distribution behavior [80] where models fail to recognize that

a sample does not belong to the same distribution as the data from the training corpus; adversarial

weakness [64] which allows a bad agent to influence the decision that a neural network makes

for nefarious reasons; and a complete lack of explainability [120] which makes it difficult to

understand why a network produces any given output or decision. These failures erode trust in

trained agents and severely limit the deployment of ML solutions in environments related to

safety and security. This is particularly relevant to the large-scale industrial push into driverless

cars [10] and automated medicine [5]. How can we put our lives in the hands of an agent that we

don’t understand, cannot make any theoretical guarantees about their performance, and might

behave erratically due to a unexpected (but otherwise minor) situation? We propose that a good

estimator of the underlying data distribution can address many of these shortcomings.

The adversarial problem is the tendency of performant machine learning algorithms to fail un-

der the addition of specially crafted perturbations. Generally, these perturbations are sufficiently

small as to be unobservable to a human agent. Worse, a bad-actor is often capable of constructing

attacks that do not just render the machine learning model incorrect or uncertain but the model

will produce a specific (wrong) output at extremely high confidence levels. For example, you

could imagine a hacker trivially bypassing the facial recognition locks on your phone or com-

puter without any difficulty or raising any red flags. Researchers have even demonstrated that

specially-designed stickers can be added to street signs that can trick a driverless car into think-

ing that a stop-sign is a 75 mile-per-hour sign with potentially devastating consequences [54].

A variety of hardening methods exist. We explore the utility of constructing a distribution over

neural networks as a form of defense. Specifically, we train a Bayesian neural network (BNN)

on classification tasks. This results in sampling a new neural network from the trained, posterior

distribution over networks on each model execution. Unlike most BNNs, we train and evaluate

3

each example over an ensemble of randomly drawn networks, where we have encouraged output

diversity across network draws to reduce the chance of ensemble degeneration.

While the BNN is reasonably successful at inducing adversarial resilience, it accomplishes

its goals somewhat indirectly. What we would really like the network to do, is to maintain local

consistency within some hypervolume around the training data so that no perturbation within

that volume leads to bad results. Unfortunately, neural networks operate inherently on single

examples, so even just evaluating a network’s average performance or variation within some

high-dimensional region is completely impractical. In fact, the problem of estimating high-

dimensional integrals is difficult in general, let alone with all the complexities inherent in a neural

network. However, there are special cases where these complex integrals become tractable. We

develop one of these cases, where the neural network is composed of separable functions in

conjunction with a bijective feature extractor. This combination allows to perform tractable inte-

gration in a latent space that is matched to a relevant integral in the input space. We utilize this

idea to improve out-of-distribution performance in the global setting and somewhat improved

adversarial performance in the local setting.

Finally, while modern machine learning algorithms achieve incredible performance on a

variety of tasks, it is difficult to impossible to explain why a machine made a particular deci-

sion. A variety of methods exist to heuristically explain these decisions [?] based on gradient

propogations and activations back to individual input features on any given example. However,

these methods don’t provide any description on how much expected variation might exist for

any feature or how robust the model is to said variation. Simpler models, on the other hand, are

often interpretable but generally have notably inferior performance. We propose to combine the

complexities of modern ML models with the explainability and simplicity of mixture models by

parameterizing a mixture model using a learnable, neural ordinary differential equation. This

model provides an exact likelihood estimate directly over the input features. We combine several

different continuously parameterized mixtures together in a heirarchical form to enable classifi-

cation and clustering through Bayes rule. This combination allows us to perform interpretable

4

clustering (or classification) since we can isolate specific components for each decision and ex-

plain how a component was chosen based on the component mean and covariance. Unfortunately,

training these models can be extremely difficult and the models tend to be very reliant on initial-

ization. We offset this difficulty by creating a curriculum over data representations from a simple,

known distribution to the more complex data distribution.

In conclusion, this dissertation demonstrates a variety of methods to exploit generative mod-

els to offset many of the shortcomings of modern machine learning by constructing flexible

densities over sets, exploiting a generative process to jointly train ensembles of networks, re-

late integrals in the input space to a latent space, and by constructing a strong density estimator

directly over the input space.

5

1.3 Thesis Organization

This dissertation is organized into the following chapters:

• Chapter 2: Background We provide a brief overview of relevant topics utilized in this

dissertation from the open literature.

• Chapter 3: FlowScans We design a novel approach to density estimation of exchangeable,

non-i.i.d. data which combines invertible transformations with a sorted scan to model data.

FlowScans are the only method that creates a link between invertible, sequential transfor-

mations and exchangeable data without relying on naive averaging over permutations.

• Chapter 4: Defense Through Diverse Directions We augment the training process of

Bayesian neural networks to require that the model maintain some expected uncertainty

over all input features. We show that this augmentation naturally increases the adversarial

resilience of the network.

• Chapter 5: Practical Integration In this chapter we construct a hybrid network as the

composition of the transformative portion of a normalizing flow followed by a learned, sep-

arable function. This composition enables us to create tractable estimates of the expected

performance of the total network by simplifying the high-dimensional integral over the

input space in a collection of one-dimensional integrals.

• Chapter 6: Continuously Parameterized Mixture Models We parameterize mixture

models using a learnable, ordinary differential equation. This parameterization allows

us to construct a robust density estimator over the input space and allows for increased

interpretability.

• Chapter 7: Discussion and Future Work We conclude with a general discussion of the

contributions of the dissertation and possible future directions.

6

1.4 Contributions

This dissertation makes advances in the following ways:

1. We introduce a scanning-based method for modeling exchangeable data in a manner that

relates the exchange likelihood to that of the sorted features. This connection enables us to

utilize traditional density estimators without resorting to simple i.i.d. assumptions or naive

averages over permutations.

2. We demonstrate that transforming points with an invertible, permutation-equivariant

change of variables allows for modeling sets in an alternative space. This transformation

provides the model with the flexibility to identify the appropriate scanning representation

without relying on arbitrary, a priori decisions.

3. We propose several general penalties to augment the training of a Bayesian neural network

and diversify the output variation relative to the input features.

4. We show that increasing output diversity leads to natural adversarial robustness without

necessarily requiring online adversarial training and that this resilience generalizes to a

variety of attack schemes.

5. We propose a general architecture that enables tractable integration over the high-dimensional

input space by combining a bijective feature extractor with a separable, learnable function.

This allows us to introduce supervision and regularization over hyper volumes.

6. We develop penalties over classification decisions in global and local regions to encourage

consistency and offset shortcomings in out-of-distribution decisions. This application illus-

trates a method to overcome complications from the combination of a separable function

and a constrained output vector by optimizing a bound to the desired objective in place of

the objective itself.

7

7. We propose a parameterization of mixture models through the output a neural ordinary

differential equation. This formulation induces a smoothly-varying trajectory through the

data, learning a probabilistic sheath across the data manifold.

8. We demonstrate a curriculum-based training method to significantly improve model per-

formance by offsetting difficulties from bad initializations. The curriculum allows us to

define an annealing scheme from a simple, well-known distribution to the more-complex

data manifold.

8

CHAPTER 2: BACKGROUND

In this chapter we briefly review several topics that are useful for using learnable, likelihood

models and will be used throughout this dissertation.

2.1 Neural Networks

Neural networks (NNs) are at the heart of most modern machine learning algorithms. These

algorithms are constructed as compositions of many different parameterized functions such that

f(x) = fn ◦ fn−1 ◦ . . . ◦ f1(x) (2.1)

and each fi is parameterized by some learnable variables, θ. The parameters of the network are

updated through stochastic gradient descent and its various derivatives [93] by evaluating the

network performance on mini-batches of a training set against some loss function. The training

process introduces some light requirements on the choices of fi, namely that the operations must

be differentiable. The choice of the loss function depends on the goal of the network and the

availability of target predictions. Common choices are cross-entropies for classification problems

and mean squared errors for regression problems. However, both of these tasks are supervised

and require matched outputs for each training input. In this dissertation, we will consider compo-

sitions of supervised tasks and unsupervised tasks where the unsupervised tasks are governed by

a generative process and typically use maximum likelihood estimation.

9

2.1.1 Convolutional Neural Networks

A huge number of different architectures exist based on different choices of each fi. One of

the oldest constructions, known as the multi-layer perceptron (MLP), intersperses linear opera-

tions with nonlinear, element-wise activation functions. The linear operator allows the network

to learn cross-feature dependencies while the activation function determine the importance of

(hidden) representation. However, while the MLP is extremely flexible they can be difficult to

train (and often exhibit difficulties in generalizing to held-out data)[149]. Some of these diffi-

culties caused many researchers to despair that neural networks were capable of realizing their

theoretical capacity. It was not until the advent of large-scale data, compute, and the introduction

of convolutional neural networks (CNNs) that neural networks became mainstream and started to

produce the super-human performance on spatial-temporal data they are now famous for.

The effectiveness of CNNs is typically attributed to their inductive bias for image and image-

like data. This essentially means that convolutions are well-suited to processing gridded data.

Convolutions are a subset of more general linear operators and are defined as a translating inner

product between some kernel or filter, k[n], and the data, x[n], e.g., in the 1D case,

z[n] = k[n] ∗ x[n] =
∑
j

k[j]x[n− j] (2.2)

where we have explicitly included the grid index, n. The convolutional layer used in CNNs simul-

taneously performs convolutions over different input channels, c, before summing over channels.

This convolve-and-sum operation is applied some pre-determined number of times using different

filters to construct a variety of output channels, i,

zi[n] =
∑
c

kc,i[n] ∗ xc[n] =
∑
c

∑
j

kc[j]xc[n− j]. (2.3)

CNNs are trained using gradient descent where the taps in the filters are the learnable variables

and the number of taps (size of the kernel) is chosen during network construction. We will make

10

extensive use of CNNs in this work, both for constructing likelihood models and as part of other

task networks.

2.1.2 Neural Ordinary Differential Equations

Most neural network architectures are defined explicitly, one layer at a time. Recently, new

methods have emerged that allow us to define our architectures implicitly. In particular, we are

interested in defining networks as the solution to an ordinary differential equation

df(s)

ds
= g (f(s), s; θ) , f(s0) = fs0 , (2.4)

where we have explicitly defined the learnable function, g, but the network is still represented by

the function, f , which must be solved for and cannot, in general, be represented in closed-form.

Chen et al. proposed a computationally and memory efficient method for solving these ODEs

using the adjoint method and any black-box solver to compute

f(si+1) = f(si) +

∫ si+1

si

g (f(s), s; θ) ds . (2.5)

across many time steps. Prior to their work, similar attempts maintained gradients through the

iterative solver and were prohibitively expensive [115]. Alternatively, solving this equation using

a single step with the Euler discretization leads to the famous Residual Networks [75].

In theory, it is possible to choose any network architecture and activation functions for g,

however, in practice, some choices can cause the learned ODE to become increasingly stiff (nu-

merically unstable) [20], resulting in an ever-decreasing step size and correspondingly increased

computational cost or integration failures. In this dissertation, for tabular data, we set the archi-

tecture of g to be a multi-layer perceptron with an explicit dependence on t and use either tanh

or sin as the activation function. We find that when using sin, the ODE seems to be less prone

to becoming stiff and is easier to numerically integrate. When using image data, we utilize a

convolutional neural network with the same activation functions.

11

We utilize Neural ODEs for two purposes.

1. As the transformative operation within a normalizing flow, see Sec. 2.2.2.4 and 6.3.3.

2. To parameterize a Gaussian mixture model, see Chap. 6.

2.2 Likelihood Models

In this section we explore several different types of likelihood models.

2.2.1 Gaussian Mixture Models

Traditional (finite) mixture models model the presence of sub-populations within a dataset

through a convex combination of distinct components of a chosen distribution. Gaussian mixture

models (GMMs), the most common class of mixture models, restrain the set of chosen distribu-

tions that constitutes the mixture to the Gaussian family:

p(x) =
K∑
k=1

πk N (x;µk,Σk) , (2.6)

where x ∈ RM is the input data, π is the component weight, µ ∈ RM is the mean, Σ ∈ RM×M

is the covariance matrix, and K is the number of components in the mixture. Despite the seem-

ingly stringent simplification GMMs make, they encompass a broad set of distributions. In effect,

they are universal approximators to any smooth probability distribution given enough mixture

components [65]. This offers us an insight when deploying GMMs for data modeling: the more

complex (and high-dimensional) the data distribution is, the more components the GMM would

likely require to yield a reasonable approximation. Motivated by this insight, analogous to defin-

ing an integral as an infinite sum, we take the limit K → ∞ in Eq. 2.6 to arrive at the following

continuous representation of GMMs

p(x) = (2π)−M/2

∫ 1

0

|Σ(s)|−0.5
exp

(
− (x−µ(s))T Σ

−1
(s) (x−µ(s)) /2

)
π(s) ds (2.7)

12

where the set of parameters, {πk, µk,Σk}k, for the finite GMMs become the set of functions,

{π(s), µ(s),Σ(s)}, that is parametrized by the variable s whose meaning depends on the specific

context of the problem. Eq. 2.6 can then be reversely seen as a discretized formulation of Eq. 2.7.

2.2.2 Normalizing Flows and Bijective Networks

Bijective networks are the key component in flow-based likelihood models. A bijective net-

work, h : D → Z , has a known forward and inverse operation so that data can be exactly recon-

structed (inverted) after the transformation. This allows for exact likelihood estimation via the

change of variables formula:

z = h(x; θ), x = h−1(z; θ), log pX(x) = log pZ(h(x; θ)) + log

∣∣∣∣∂h∂x
∣∣∣∣ (2.8)

where pZ is a predefined distribution over the latent space, often a standard Gaussian.

These models are trained via Eq. 2.8 to maximize the likelihood of the examples in the train-

ing set, T . Once trained, flow-based likelihood models are commonly used as a generative pro-

cess where samples are drawn from pZ and are then inverted through h to arrive at an example in

D.

The requirement for bijectivity places a strong constraint on network design, eliminating

many common choices due to the need to maintain dimension or invert element-wise activations.

Even naive convolutional operations become unavailable since they are not generally invertible.

Modern advances have demonstrated methods to work around these limitations through the use

of clever partitioning and coupling tricks [47] or the use of constraints [30]. However, the field

of learnable bijective functions is less advanced than its injective counterparts which results in

reduced performance on auxiliary tasks. We briefly discuss a few common learnable, bijective

functions that are used in this dissertation.

13

2.2.2.1 Linear and Element-wise Transformations

Possibly the most obvious choices for invertible transformations is to borrow the form of the

common multilayer perceptron where we compose linear operators with nonlinear (element-wise)

activation functions. Unlike standard MLPs we must place additional constraints on both the

linear maps and the nonlinear functions.

Linear Transformations: If we define the linear map as

z = Ax+ b (2.9)

with x ∈ RM then A ∈ RM×M and rank(A) = M such that the inverse of A exists. This simple

transformation is extremely useful and appears in some form in most modern flow architectures

due to its ability to reorganize the data prior to other operations.

Also unlike their use in an MLP, we require an estimate of the determinant of the Jacobian

for this operation. This is trivial during inference, where the determinant of the A can be pre-

calculated and cached, but can result in an O(M3) cost for each batch when implemented naively.

Similarly, when we utilize a normalizing flow for sampling, we would require an O(M3) cost

for inversion. There are two common tricks to offset this cost, both of which amount to repa-

rameterizing A. The most popular method is to utilize the LU decomposition, A = LU , and

learn both triangular matrices L and U directly instead of A [132]. This allows us to calculate the

log-determinant of A as log |A| =
∑

m logUm,m with O(M) cost. Similarly, the inverse can be

calculated in O(M2) by solving two triangular matrix equations.

Element-wise Transformations: Like the linear transform, the space of available element-wise

nonlinear functions is somewhat restricted when constructing a normalizing flow. For our pur-

poses, it is sufficient that the function produces unique outputs for unique inputs and is (at least)

C1 continuous. This immediately eliminates some common activation functions used in other

ML applications, most notably, the rectified linear unit (ReLU) is not allowed since it maps all

non-positive inputs to zero. Leaky-ReLU is allowable and is a simple substitute. Leaky-ReLU is

14

defined as

f(x) =

x, if x ≥ 0

αx, otherwise
(2.10)

and 0 < α < 1. Other common activation functions such as sigmoid, the hyperbolic tangent,

or soft-plus are also permissible activations. However, in practice, functions whose codomain

does not span R can be problematic when inverting the network, especially early in the training

process. For example, if sigmoid is chosen as the activation function, the values passed in for in-

version must be between zero and one or the inversion will be undefined. If the preceding process

does not ensure this range, it will result in bad (NaN) samples and training collapse. A similar

issue occurs as the values approach zero or one due to numerical errors.

2.2.2.2 Coupling Transformations

The familiar composition of linear operations and nonlinear activations requires either O(M3)

cost for determinant and inverse calculations or limited parameterizations via triangular decompo-

sitions and a reduced set of activations functions, see Sec. 2.2.2.1 [45]. This limitation has led to

the development of alternative architectures that allow for more complex dependencies. Probably

the most common architecture developed specifically for normalizing flows revolves around the

idea of cross-dimension “coupling.”

This method partitions the data into two groups. The first group undergoes some transforma-

tion conditioned on the second group while the second group remains untransformed. The second

group is left untransformed to ease the inversion process but be modified in a downstream oper-

ation. For example, with tabular data the first half of the data, x1 ∈ RK undergoes an invertible

transformation conditioned on the second half, x2 ∈ R(M−K), such that z1 = f(x1 | x2), z2 = x2,

and z = [z1, z2], see Fig. 2.1 for an illustration. This idea was originally proposed by Dinh et al.

as NICE with f(x1 | x2) = x1 +m(x2; θ) where m(x2; θ) is a learnable, nonlinear function, e.g., a

neural network, parameterized by θ. Since m(x2) is not used to get z2, it does not have the same

requirements that the other flow operations have, most especially, there is no need for m to be

15

Figure 2.1: Example of general coupling for tabular data. Data is split into conditioned (black)
and conditioning (red) partitions. The conditioned data is then invertibly transformed via a condi-
tional operation given the conditioning information. Conditioning information is passed through
unaltered.

invertible which means that we can use any architecture we want when constructing m. This rela-

tively simple form performs surprisingly well and has the advantage that it is volume preserving

so the determinant is identity and the inverse only requires executing the network, m, on z2 and

subtracting the result from z1, e.g., x1 = z1 −m(z2).

Real-NVP [47] extends NICE by modifying f(x1 | x2) to include an element-wise multipli-

cation: f(x1 | x2) = exp (a(x2);ϕ)) ⊙ x1 +m(x2; θ) where a(x2;ϕ) is a learnable function and

the exp is applied to guarantee non-degenerate solutions. It is important to note that while m and

s operate linearly with respect to the first partition, they behave nonlinearly relative to the sec-

ond partition. Inversion is only slightly more complex than for NICE and proceeds in a similar

manner, e.g., x1 = z1−m(z2)
a(z2)

. The log-determinant of the Jacobian is still identity for the second

group but must account for the rescaling of the first group and is given by log
∣∣∣ ∂z1∂x1

∣∣∣ =∑k sk. The

general idea of coupling has been further extended in a variety of ways. The current state-of-the-

art coupling methods construct f as a spline operator (of fixed order) whose knots are derived

16

from the second group [50, 123]. We refer the interested reader to the associated references for

additional information. For the sake of simplicity and expediency, the work in this dissertation

limits itself to Real-NVP coupling transformations unless otherwise stated.

An obvious difficulty when formulating coupling transformations is how to partition the

dimensions. Arbitrarily partitioning the data into the first K features and then the rest of the fea-

tures can introduce some strong biases into how transformations are conditioned and are likely

to miss the appropriate combinations. A convenient way to offset this difficulty is to intersperse

linear transformations between coupling transformations. At full flexibility, linear transforma-

tions can learn any ordering or the features to create optimal partitions for each stage. In this case,

we can essentially consider that our architecture is akin to an MLP except that we have replaced

the element-wise activations with nonlinear, conditioning functions. Given the added flexibility

of the linear layers, it is more reasonable to arbitrarily partition the data, though the choice of

K is still arbitrary. A flexible alternative to the bifurcation of the data as discussed so far is to

create a separate partition for each dimension and construct the conditioning networks in such a

way that all previous dimensions are used in an autoregressive form. This does notably improve

performance by allowing more complex functions at later dimensions, it is considerably more

expensive and time consuming than simpler splitting schemes [50].

For tabular data, we utilize arbitrary splits of the data into front and latter partitions and rely

on previous, fully-connected layers to organize the features into conditioned and conditioning

partitions. For higher-dimensional grids, like images, a simple scheme might take left/right or

top/bottom splits or perhaps split by channels. Dinh et al. [47] proposed to extract pixels in an

even/odd form using a chess board pattern and kept all channels for each pixel together as in

Fig. 2.2. They argue that this split allows for better consistency of both global and local infor-

mation when constructing the conditioning transforms and they demonstrate better performance

empirically over other splits.

Practical Considerations It can be helpful to consider that the conditioning functions are a type

of hypernetwork [72], where we derive the parameters of a transformation from the data using

17

Figure 2.2: Checkerboard coupling strategy proposed by Dinh et al. [47] to maintain spatial
correlations between conditioned and conditioning information across an image.

a neural network. These conditioning networks are often fairly large and can be very resource

intensive, especially with respect to GPU RAM during training for backpropagation. In practice,

we can reduce the memory footprint by wrapping each conditioning network with a gradient

checkpointing operation [32]. This trick does not save the internal gradients during the initial

forward pass of each conditioning network. Instead, we re-perform the forward operation of each

hypernetwork during the backwards pass and save and apply the gradients then. When many

coupling operations are utilized in one flow, we can significantly decrease our maximum RAM

requirements. In our experiments, we often reduced RAM usage by nearly an order of magnitude

and only incurred a 10-20% increase in training time, allowing us to train larger models or utilize

larger (higher-dimensional) data.

2.2.2.3 Invertible 1×1 Convolutions

The primary instigator of the deep learning rush was the advent of convolutional neural net-

works (CNNs). Ideally, we would like to make use of this strong inductive biases (when appro-

18

priate) when constructing our normalizing flow models. Unfortunately, convolutions are not

generally invertible. Specialized constructions of invertible convolutions do exist in 1D in the

form of wavelets [39] but these ideas do not extend easily to higher dimensions and the additional

trappings for invertibility reduce the number of free parameters available for learning.

Glow [96] exploit the use of stacked convolutions common in CNNs to maintain many of

the advantages of the convolutional layers while still maintaining invertibility when processing

image data. Specifically, Glow utilizes 1×1 convolutional kernels that maintain channel depth.

This means that Glow enjoys the extreme parameter efficiency and inductive bias of convolutions

at the expense of the smallest possible kernel. In essence, Glow is performing the same matrix

multiplication operation over channels for each pixel. As a result Glow keeps some of the ad-

vantages of invertible linear operations while maintaining the advantages of convolutions. They

additionally propose to gain some spatial dependencies by reshaping local neighborhoods into

new channels, resulting in larger matrix operations and increased flexibility. For example, if an

image is H×W×C prior the reshaping operation, it might be H/2×W/2×4C after the operation.

The full Glow network architecture composes their 1×1 convolutional layers with coupling

operations using the checker board partitioning scheme and CNN-based conditioning networks.

Reshaping operations are performed intermittently to help introduce multi-resolution and cross-

pixel dependencies.

2.2.2.4 Continuous Normalizing Flows

Neural ordinary differential equations (NODEs) create a novel perspective on constructing

networks implicitely as the solution to a differential equation. Normalizing flows that utilize

NODEs for the transformation are known as continuous normalizing flows (CNFs) [67] and have

demonstrated remarkable performance, especially for tabular data, and allows us to bypass some

of the limitations we required in discrete normalizing flows, somewhat akin to conditioning net-

works in coupling transforms. This good performance and somewhat less-restricted construction

comes at the cost of significantly increased compute.

19

Utilizing a continuous transformation instead of a composition of discrete transformation

requires that we modify Eq. 2.8 to

log p(z(s0)) = log p(z(s1)) +

∫ s1

s0

Tr

(
∂f

∂z
(s)

)
ds (2.11)

where z(s0) = x. Equation 2.11 must be solved concurrently with the transformation from x

to z as a system on ODEs within the same black-box ODE solver. The trace operation can be

computationally expensive to calculate and integrate over. FFJORD [67] proposes to reduce

this complexity through the use of the unbiased Hutchinson trace estimator [85]. This process

approximates the trace as the expectation of a bilinear product of the Jacobian with standard

Gaussian (or Rademacher) noise such that Eq. 2.11 becomes

log p(z(s0)) = log p(z(s1)) + EN (v)

[∫ s1

s0

vT
∂f

∂z
(s) v ds

]
(2.12)

Due to their expense, we primarily use CNFs to construct smoothly-varying curriculums and not

as a layer within our normalizing flows.

2.2.3 Autoregressive Models

Autoregressive (AR) methods exploit the probabilistic chain rule to model the data one dimen-

sion at a time, conditioned on the observations of the previously seen dimensions

log p(x1, . . . , xM) =
M∑

m=1

log p(xm | xm−1, . . . , x1) (2.13)

in an inherently iterative process. For example, we can learn a flexible likelihood for each dimen-

sion using a Gaussian mixture model where the parameters of the GMM depend on the specific

values of the previously seen dimensions such that

p(xm|x<m) =
∑
k

πk(x<m)N
(
µk(x<m), σ

2
k(x<m)

)
(2.14)

20

and [
πk(x<m), µk(x<m), σ

2
k(x<m)

]
= fm,k(x<m; θm,k) (2.15)

where x<m represents the set of all features with index less than m, e.g., x<m = (x1, x2, ..., xm−1).

A variety of methods exist for choosing fm,k to construct sufficiently powerful models based

on different inductive biases and efficiencies, [7, 61, 131, 167]. Autoregressive models typically

achieve better performance than normalizing flows but come at the expense of increased evalu-

ation and sampling cost due to the sequential nature of the models. AR models can more easily

handle missing data than normalizing flows since flows typically require all the data be available

at every stage, though recent efforts have reduced this difficulty [110]. An obvious shortcoming

of AR models is the order of the conditionals is fixed and may be arbitrary, e.g., it may be easy to

model x1 given x2 whereas the inverse distribution may be more difficult. Akin to TANS [131],

we will use AR models in conjunction with normalizing flows to model the latent performance,

relieving some of the shortcomings of both methods and allowing for a more flexible model.

21

CHAPTER 3: FLOWSCANS

We begin by developing expanding the capabilities of deep learning density estimation to

exchangeable, non-i.i.d. data. This method, FlowScan, combines invertible flow transformations

with a sorted scan to flexibly model the data while preserving exchangeability. Unlike most exist-

ing methods, FlowScan exploits the intradependencies within sets to learn both global and local

structure and represents the first approach that is able to apply sequential methods to exchange-

able density estimation without resorting to averaging over all possible permutations.

3.1 Overview

Modeling unordered, non-i.i.d. data is an important problem in machine learning and data

science. Collections of data objects with complicated intrinsic relationships are ubiquitous. These

collections include sets of 3d points [176] sampled from the surface of complicated shapes like

human organs, sets of images shared within the same web page, or point cloud LiDAR data ob-

served by driverless cars [172]. In any of these cases, the collections of data objects do not pos-

sess any inherent ordering of their elements. Thus, any generative model which takes these data

as input should not depend on the order in which the elements are presented and must be flexible

enough to capture the dependencies between co-occurring elements.

The unorderedness of these kinds of collections is captured probabilistically by the notion

of exchangeability. Formally, a set of points {xj}nj=1 ⊂ Rd with cardinality n, dimension d, and

probability density p(·) is called exchangeable if

p(x1, ..., xn) = p(xπ1 , ..., xπn) (3.1)

22

Figure 3.1: A training dataset of sets. Each instance Xi is a set of points Xi = {xi,j ∈ Rd}ni
j=1

(d = 2 shown). We estimate p(Xi), from which we can sample distinct sets.

for every permutation π. In practice {xj}nj=1 often represent 2d or 3d spatial points (see Fig. 3.1)

in which case we refer to the set as a point cloud. In other settings, the points of interest may be

more complex like images represented as very high-dimensional vectors.

As a simple example, one may trivially generate a set of exchangeable points by drawing

them i.i.d. from some distribution. More commonly, elements within an exchangeable set share

information with one another, providing structure. Despite the abundance of such data, the bulk

of existing approaches either ignore the relation between points (i.i.d. methods) or model depen-

dencies in a manner that depends on inherent orderings (sequential methods) [145, 183]. In order

to accurately learn the structure of a set whilst preserving the exchangeability of its likelihood,

one cannot rely solely on either approach.

In this chapter, we focus on the task of tractable, non-i.i.d. density estimation for exchange-

able sets. We explore both low cardinality sets of high dimension (10-20 points with many hun-

dreds of dimensions each, e.g.,collections of images) and high cardinality sets of low dimension

(hundreds of points with 2-7 dimensions each, e.g.,point clouds). We develop a generative model

suitable for exchangeable sets in either regime, called FlowScan, which does not rely on i.i.d.

assumptions and is provably exchangeable. Contrary to intuition, we show that one can preserve

exchangeability while scanning over the data in a sorted manner. FlowScan is the first method to

achieve a tractable, non-i.i.d., exchangeable likelihood by leveraging traditional (e.g.,sequential),

non-exchangeable density estimators. This chapter is adapted from our original work, “Exchange-

able Generate Model with Flow Scans,” [14].

23

Main Contributions. 1) We show that transforming points with an equivariant change of

variables allows for modeling sets in a different space. 2) We introduce a scanning-based tech-

nique for modeling exchangeable data, relating the underlying exchangeable likelihood to that of

the sorted covariates. 3) We demonstrate how traditional density estimators may be used for the

task of principled and feasible exchangeable density estimation via a scanning-based approach. 4)

We show empirically that FlowScan achieves the state-of-the-art for density estimation tasks in

both synthetic and real-world point cloud and image set datasets.

3.2 Motivation and Challenges

We motivate our problem with a simple, yet common, set generative process that requires a

non-i.i.d., exchangeable density estimator. Consider the following generative process for a set: 1)

generate latent “parameters” ϕ ∼ pΦ(·) and then 2) generate a set X ∼ p(· | ϕ). Here p(· | ϕ)

may be as simple as a Gaussian model (where ϕ is the mean and covariance parameters) or as

complex as a nonparametric model (where ϕ may be infinite-dimensional).

This simple set generative process requires a non-i.i.d. approach, even for the case when

the ground truth conditional set likelihood, p(X | ϕ), is conditionally i.i.d.. Somewhat akin to

De Finetti’s theorem [17], we show this by first noting that with conditionally i.i.d. p(X | ϕ) =∏n
j=1 p(xj | ϕ), the complete set likelihood is:

p(X) =

∫
pΦ(ϕ)

n∏
j=1

p(xj | ϕ) dϕ. (3.2)

24

One can show dependency (non-i.i.d.) with the conditional likelihood of a single point xk given a

disjoint subset S ⊂ X \ {xk}:

p(xk | S) =
∫
pΦ(ϕ | S) p(xk | S, ϕ) dϕ

=

∫
pΦ(ϕ | S) p(xk | ϕ) dϕ

̸=
∫
pΦ(ϕ) p(xk | ϕ) dϕ = p(xk).

That is, the conditional likelihood p(xk | S) depends on other points in X via the posterior

pΦ(ϕ | S), which accounts for what ϕ was likely to have generated S and not through S directly,

e.g., p(xk | S, ϕ) = p(xk | ϕ). As a consequence, the complete generative process Eq. 3.2 is

not marginally i.i.d., notwithstanding the conditional i.i.d. p(X | ϕ). Thus, any model built on an

i.i.d. assumption may be severely biased.

The generative process in Eq. 3.2 is especially applicable for surface point cloud data. For

such sets, Xi, points are drawn i.i.d. from (conditioned on) the surface of a shape with (un-

known) parameters ϕi (e.g.,object class, length, orientation, noise, etc.), resulting in the dataset

D = {Xi ∼ p(· | ϕi)}Ni=1 of N sets. As shown above, modeling such point cloud set data requires

a non-i.i.d. approach even though points may be drawn independently given the surface param-

eters. FlowScan will not only yield an exchangeable, non-i.i.d. generative model, but will also

directly model elements in sets without latent parameters. In effect, FlowScan will automatically

marginalize out dependence on latent parameters of a given set, and is thus capable of handling

complicated p(· | ϕ).

Broadly, the primary challenge in direct exchangeable density estimation is designing a flex-

ible, invariant architecture which yields a valid likelihood. As explained above, using an i.i.d.

assumption to enforce this property will severely hamper the performance of a model. To avoid

this simplification, techniques often shoehorn invariances to observed orderings by feeding ran-

domly permuted data into sequential models [145, 183]. Such approaches attempt to average out

25

the likelihood of the model over all permutations:

p(X) =
1

n!

∑
π

ps(xπ1 , . . . , xπn), (3.3)

where ps is some sequential model. Of course, the observation of all potential orderings for even

a modest collection of points is infeasible. Furthermore, there are often no guarantees that the

sequential model pseq will learn to ignore orderings, especially for unseen test data [170].

Given that an i.i.d. assumption is not robust and averaging over all permutations is infeasible,

what operation should be used to ensure permutation invariance of the architecture? Instead of

attempting to wash out the effect of order in an architecture as in 3.3, we propose to enforce

invariance by adopting a prespecified ordering and scanning over elements in this order. As will

be discussed in the Methods section, the benefit of estimating a likelihood over sorted data is

that it frees us from the restriction of exchangeability. Given the sorted data, we can apply any

number of traditional density estimators. However, such an approach presents its own challenges:

• Determining a suitable way to scan through an exchangeable sequence. That is, one must

map the set X = {xj}nj=1 to a sequence X 7→ (x[1], . . . , x[n]) where x[j] denotes the j’th point

in the sorted order.

• Relating the likelihood of the scanned sequence to likelihood of the exchangeable set.

Modeling the exchangeable likelihood through a scanned likelihood is not immediately obvi-

ous; a simple equality of the two does not hold, p(X) ̸= p(x[1], . . . , x[n]).

• Scanning in a space that is beneficial for modeling. The native input space may not be best

suited for modeling or scanning, hence it would be constructive to transform the exchangeable

input prior to the scan.

• Developing an architecture that exploits the structure gained in the scan. The scanning

operation will introduce sequential correlations among elements which need to be modeled

successfully.

26

Scan Model

Figure 3.2: Illustration of our proposed method. First, input sets are scanned (in a possibly trans-
formed space). After, the scanned covariates are modeled (possibly in a autoregressive fashion, as
shown).

Next, we develop the FlowScan model while addressing each of these challenges.

3.3 Methods

FlowScan consists of three components: 1) a sequence of equivariant flow transformations,

q̂e, to map the data to a space that is easier to model; 2) a sort with correction factor to allow for

the use of non-exchangeable density estimators; 3) a density estimator (p̂s) (e.g.,an autoregressive

model which may utilize sequential flow transformations, q̂c), to estimate the likelihood while

accounting for correlations induced by sorting (see Fig. 3.2). In this section, we motivate each

piece of the architecture and detail how they combine to yield a highly flexible, exchangeable

density estimator.

3.3.1 Equivariant Flow Transformations

FlowScan first utilizes a sequence of equivariant flow transformations. So-called “flow mod-

els” rely on the change of variables formula to build highly effective models for traditional non-

exchangeable generative tasks (like image modeling) [97]. Using the change of variables formula,

flow models approximate the likelihood of a d-dimensional distribution over real-valued covari-

ates x = (x(1), ..., x(d)) ∈ Rd, by applying an invertible (flow) transformation q̂(x) to an estimated

base distribution f̂ :

p̂(x(1), ..., x(d)) =

∣∣∣∣det
dq̂

dx

∣∣∣∣f̂(q̂(x)), (3.4)

27

where |det dq̂
dx
| is the Jacobian of the transformation q̂. Often, the base distribution is a standard

Gaussian. However, [131] recently showed that performance may be improved with a more flex-

ible base distribution on transformed covariates such as an autoreggressive density [? 68, 103,

166, 165].

There are a myriad of possible invertible transformations, q̂, that one may apply to inputs x ∈

Rn×d in order to model elements in a more expressive space, where x is the set X represented

as a matrix, see Sec. 2.2.2. However, in our case one must take care to preserve exchangeability

of the inputs when transforming the data. For example, a simple affine change of variables will

be sensitive to the order in which the elements of x were observed, resulting in a space which is

no longer exchangeable. One can circumvent this problem by requiring that any transformation,

q̂, used is equivariant. That is, for all permutation operators, Γ, we have that q̂(Γx) = Γq̂(x).

Proposition 1 states that equivariance of the transformations in conjunction with invariance of the

base distribution is enough to ensure that exchangeability is preserved, allowing one to model set

data in a transformed space. The proof is straightforward and relegated to the Appendix.

Proposition 1. Let q̂ : Rn×d 7→ Rn×d be a permutation equivariant, invertible transformation

and the base distribution, f̂ , be exchangeable. Then the likelihood, p̂(x) =
∣∣det dq̂

dx

∣∣f̂(q̂(x)), is

exchangeable.

Given an invertible transformation, q : Rd → Rd, one may construct a simple permutation

equivariant transformation by applying it to each point in a set independently: (x1, ..., xn) 7→

(q(x1), ..., q(xn)). However, it is possible to engineer equivariant transformations which utilize

information from other points in the set while still preserving equivariance. Proposition 1 shows

that FlowScan is compatible with any combination of these transformations.

Set-Coupling Among others, we propose a novel set-level scaling and shifting coupling trans-

formation akin to those used in Real-NVP [47], see Sec. 2.2.2.2. For d-dimensional points, the

coupling transformation scales and shifts one subset, S ⊂ {1, . . . , d} of the d covariates given the

28

rest, Sc, as (letting superscripts index point dimensions):

x(S) 7→ x(S) exp
(
f
(
x(S

c)
))

+ g
(
x(S

c)
)

x(S
c) 7→ x(S

c), (3.5)

for learned functions f, g : R|Sc| 7→ R|S|. We propose a set-coupling transformation as follows:

x
(S)
i 7→ x

(S)
i exp

(
f
(
φ(x(Sc)), x

(Sc)
i

))
+ g

(
φ(x(Sc)), x

(Sc)
i

)
x
(Sc)
i 7→ x

(Sc)
i , (3.6)

where x(Sc) ∈ Rn×|Sc| is the set of unchanged covariates, φ(x(Sc)) ∈ Rr are general, learnable

permutation invariant set embeddings. We utilize embeddings from DeepSet architectures [184];

however, other embeddings are possible, e.g.,prescribed statistics [88], and f, g : Rr+|Sc| →

R|S| are learned functions. The embedding φ is responsible for capturing set-level information

from other covariates. This is combined with each point x(S
c)

i to yield shifts and scales with both

point- and set-level dependence (see Fig. 3.3). The log-determinant and inverse are detailed in the

Appendix along with several other examples of flexible, equivariant transformations.

Figure 3.3: An illustration of how set-coupling transformations act on a set. The first plot shows
the input data to be transformed. In the subsequent plots, the set is transformed in an invertible,
equivariant fashion by stacking set-coupling transformations. Iteratively transforming dimensions
of a set in this way yields a set with simpler structure that may be modeled more easily, as shown
in the last plot.

29

3.1.2 Invariance Through Sorting

After applying a series of equivariant flow transformations, FlowScan performs a sort op-

eration and corrects the likelihood with a factor of 1/n!. Sorting in a prespecified fashion en-

sures that different permutations of the input map to the same output. In this section, we prove

that this yields an analytically correct likelihood and comment on the advantages of such an ap-

proach. Specifically, we show that the exchangeable (unordered) likelihood of a set of n points

pe(x1, . . . xn) (where xj ∈ Rd) can be written in terms of the non-exchangeable (ordered) likeli-

hood of the points in a sorted order ps(x[1], . . . , x[n]) as stated in Prop. 2 below.

Proposition 2. Let pe be an exchangeable likelihood which is continuous and non-degenerate

(e.g.,∀j ∈ {1, . . . , d} Pr[x(j)1 ̸= x
(j)
2 ̸= . . . ̸= x

(j)
n] = 1 — that is, all values will be unique with

probability one). Then,

pe(x1, . . . xn) =
1

n!
ps(x[1], . . . , x[n]), (3.7)

where x[j] is the jth point in the sorted order.

Proof. We derive 3.7 from a variant of the change of variables formula [27]. It states that if we

have a partition of our input space, {Aj}Mj=1, such that a transformation of variables q is invertible

in each partition Aj with inverse q−1
j , then we may write the likelihood f of z = q(u) in terms of

the likelihood p of the input data u as:

f(z) =
M∑
j=1

∣∣∣∣∣det dq−1
j

dz

∣∣∣∣∣ p(q−1
j (z)). (3.8)

For the moment, suppose that the points {xj}nj=1 are sorted according to the first dimension.

That is, x[1], . . . , x[n] in 3.7 are such that x(1)[1] < . . . < x
(1)
[n] . The act of sorting these points

amounts to a transformation of variables s : Rn×d 7→ Rn×d, s(x1, . . . , xn) = (x[1], . . . , x[n]). The

transformation s is one-to-one on the partitions of the input space Rn×d defined by the relative

order of points. In other words, we may partition the input space according to the permutation

30

that would sort the data: Aπ = {x ∈ Rn×d | x(1)π1 < x
(1)
π2 < . . . < x

(1)
πn }. We may invert s in Aπ via

the inverse permutation matrix of π, Γ−1
π . Letting Π be the set of all permutations, 3.8 yields:

ps(s(x))
∗
=
∑
π∈Π

∣∣Γ−1
π

∣∣ pe(Γ−1
π s(x))

∗∗
= n! pe(x), (3.9)

where (*) follows from 3.8 and (**) follows from the exchangeability of pe. Thus, we may com-

pute the exchangeable likelihood pe(x) using the likelihood of the sorted points, as in 3.7. Triv-

ially, similar arguments also hold when sorting according to a dimension other than the first.

Furthermore, it is possible to sort according to any appropriately transformed space of xj , rather

than any native dimension itself (as this is equivalent to applying a transformation, sorting, and

inverting said transformation).

Consequently, the exchangeable likelihood may be estimated via an approximation of the

scanned covariates: pe(x) ≈ 1
n!
p̂s(s(x)). Since the density of sorted scan is not exchangeable,

we may estimate p̂s using traditional density estimation techniques. This gives a principled ap-

proach to reduce the problem of exchangeable likelihood estimation to a flat vector (or sequence)

likelihood estimation task.

3.1.3 Autoregressive Scan Likelihood

After performing equivariant flow transformations and sorting, FlowScan applies a non-

exchangeable density estimator to model the transformed and sorted data. Let z = s(q̂(x)) ∈

Rn×d be the sorted covariates. Since z is not exchangeable, one can apply any traditional likeli-

hood estimator on its covariates, e.g., one may treat z as a vector and model p̂s(vec(z)) using a

flat density estimator. However, flattening in this way suffers from several disadvantages. First,

it is inflexible to varying cardinalities. Furthermore, the total number of covariates, nd, may be

large for sets with large cardinality or dimensionality. Finally, a general flat model loses the con-

text that covariates are from multiple points in some shared set. To address these challenges, we

31

use an autoregressive likelihood:

p̂(zk) =
n∏

k=1

p̂(zk | h<k), (3.10)

where p̂(zk | h<k) is itself a d-dimensional density estimator (such as 3.4) conditioned on a recur-

rent state h<k = h(z1, . . . , zk−1). This proposed approach is capable of sharing parameters across

the n d-dimensional likelihoods and is more amenable to large, possibly varying, cardinalities.

3.1.4 Correspondence Flow Transformations

In much the same way that nearby pixels are correlated in image space, points with neighbor-

ing indices will be correlated in a scan space. Thus, we also propose a coupling [45] invertible

transformation to transform adjacent points, exploiting existing correlations among points as

follows. We note that it is straightforward to use a sequential coupling transformation to shift

and scale points zi as in 3.5, but based on inputting a recurrent output h<i to f and g functions.

In addition, it is also possible to split individual points for coupling as follows. First, split the

scanned points z = s(q̂(x)) = (z1, . . . , zn) into two groups depending on the parity (even/odd)

of their respective index. Second, transform each even point, with a scale and shift based on the

corresponding odd point. That is for pairs of points (z2j, z2j+1) we perform the following trans-

formation: (z2j, z2j+1) 7→ (s(z2j+1)z2j +m(z2j+1), z2j+1), where s : Rd 7→ Rd,m : Rd 7→ Rd

are scale and shifting functions, respectively, parameterized by a learnable fully connected net-

work. This correspondence coupling transformation z 7→ z′ is easily invertible and has analytical

Jacobian determinant
∣∣detdz

′

dz

∣∣ = ∏n/2−1
j=0 |s(z2j+1)|. Several of these transformations may be

stacked before the autoregressive likelihood by alternating between shifting and scaling even

points based on odd and vice-versa odd points based on even. We shall also make use of a similar

splitting scheme to split sets of images into 3d tensors that are fed into 3d convolution networks

for shifting and scaling.

32

3.1.5 Complete FlowScan Architecture

Since the scanned likelihood in 3.7 yields an exchangeable likelihood, one may use as the

base likelihood following a permutation equivariant transformation as in Prop. 1. This enables us

to apply the sorting step after performing any number of equivariant transformations and improve

the flexibility of the model as a result. As no generality is lost, we choose to sort on the first

dimension in our experiments detailed below. Combining the three components detailed above,

we arrive at the complete FlowScan architecture: a sequence of equivariant flow transformations,

a sort with correction factor, and an autoregressive scan likelihood. The estimated exchangeable

likelihood that results is:

p̂fs(x) =
1

n!

∣∣∣∣det
dq̂e
dx

∣∣∣∣p̂s(s(q̂e(x))), (3.11)

where q̂e and p̂s are the estimated (via maximum likelihood) equivariant flow transformation and

sorted flow scan covariate likelihood, respectively. When correspondence flow transformations

are included after the sort operation, we obtain an estimated exchangeable likelihood:

p̂fs(x) =
1

n!

∣∣∣∣det
dq̂e
dx

∣∣∣∣∣∣∣∣det
dq̂c
dx

∣∣∣∣ n∏
k=1

p̂(zk | h(z<k)), (3.12)

where z is the resulting covariates from corresponding coupling transforming the flow scanned

covariates. In both cases, FlowScan gives a valid, provably exchangeable density estimate relying

neither on variational lower bounds of the likelihood nor averaging over all possible permutations

of the inputs. Furthermore, FlowScan is easily adapted to input sets with varying cardinalities, as

is commonly observed in practice. In the Experiments section, we demonstrate empirically that

FlowScan is highly flexible and capable of modeling sets of both points clouds and images.

33

3.2 Related Work

Unlike the recent surge in flexible density estimation for flat vectors with deep architectures

[45, 47? , 68, 96, 103, 132, 165, 166], few efforts cover exchangeable treatments of data in ML

with some notable exceptions. Some recent work [108, 143, 184] has explored neural architec-

tures for constructing a permutation invariant set embeddings. They featurize input sets exchange-

ably in a way that is useful for (typically supervised) downstream tasks; but the embeddings

themselves will not result in valid likelihoods. In other work, Generative Adversarial Networks

(GAN) have been explored as a means of sampling point clouds [185]. However, none of these

methods provide a valid exchangeable likelihood estimate as is our focus.

A recently proposed model, BRUNO [99], preserves exchangeability by performing indepen-

dent point-wise changes of variables, a simple equivariant linear transformation, and an i.i.d. base

exchangeable process in the latent space. The Neural Statistician (NS) [51] estimates a permu-

tation invariant code produced by an exchangeable VAE. That is, the Neural Statistician uses an

encoder, called a statistics network, on the entire exchangeable set to get an approximate poste-

rior on the latent code. Given the success of a point cloud autoencoder with a DeepSet network as

the statistics network in [131], we consider this architecture for the variational Neural Statistician

which is an especially strong baseline, representing the state-of-the-art likelihood method for

point cloud data.

3.3 Experiments

In this section, we compare the performance of FlowScan to that of BRUNO and NS in a

variety of exchangeable point cloud and image modeling tasks. In each experiment, our goal is

to estimate an exchangeable likelihood p(x) for x ∈ Rn×d which models the inputs well. As

is standard in density estimation tasks, we measure the success of the model via the estimated

likelihood of a held out test set for each experiment. For readability, we report the estimated log

likelihood divided by the number of points (per point log likelihoods, PPLL): 1
n
log p̂(x). The

34

PPLL provides a set-level likelihood that eases comparison across dataset and cardinality. As NS

does not yield a likelihood, we report its estimated variational lower bound on the PPLL. Results

for each datasets can be found in Tab. 3.1.

As a qualitative assessment of each model’s performance, we also include samples generated

by each trained model. Those which are not reported in the main text can be found in the Ap-

pendix. Unless stated explicitly, the figures included are not reconstructions, but completely syn-

thetic point clouds or images generated by each model. Further implementation details (including

code and Appendices) can be found at https://github.com/lupalab/flowscan.

3.3.1 Shuffled Synthetic Sequential Data

We begin with a synthetic point cloud experiment to test FlowScan’s ability to learn a known,

ground truth likelihood. To allow for complex interactions between points, we study a common

scenario that leads to exchangeable data: sequential data with time marginalized out. In other

words, we suppose that all time-points xj ∈ Rd of a sequence (x1, . . . , xn) are put into an un-

ordered set {x1, . . . , xn}. Effectively, this yields observations of sequences in matrices that are

randomly shuffled from the sequential order. Hence, exchangeable instances are x = Γπxs, for

permutations Γπ ∈ Rn×n (drawn uniformly at random) and sequential data xs = (x1, . . . , xn) ∈

Rn×d (drawn via a sequential likelihood pseq). Here we consider a synthetic ground truth sequen-

tial model pseq where the likelihood of an instance is computed by marginalizing out the permu-

tation: p(x) =
∑

π′ Pr(π = π′) pseq(Γ
−1
π′ x) = 1

n!

∑
π pseq(Γπx). To obtain interesting non-linear

Dataset BRUNO NS FlowScan
Synthetic -2.28 -1.07 0.14
Airplanes 2.71 4.09 4.81
Chairs 0.75 2.02 2.58

ModelNet10 0.49 2.12 3.01
ModelNet10a 1.20 2.82 3.58

Caudate 1.29 4.49 4.87
Thalamus -0.815 2.69 3.12

SpatialMNIST -5.68 -5.37 -5.26

Table 3.1: Per-point log-likelihood (PPLL) of the test set for all point cloud experiments. Higher
PPLL indicates better modeling of the test set.

35

dependencies we consider a sinusoidal sequence (see Fig. 3.4 and Appendix for details). To allow

for computing the ground truth likelihood in a timely manner, we consider n = 8, leading to a

large number, 8! = 40320, of summands in the likelihood of the data.

Figure 3.4: Left: true samples; markers and colors indicate instances and sequential order, respec-
tively. Right: FlowScan samples.

Table 3.1 illustrates the per point log likelihood (PPLL) estimates across the synthetic sets

using BRUNO, the NS, and FlowScan. The FlowScan model outperforms the other methods,

achieving nearly the same PPLL as the ground truth (0.23) despite not averaging over all n! per-

mutations. For further comparison, we also trained a sequential model on the randomly permuted

instances (and marginalizing out the permutation as in 3.3). However, randomly permuting the

input sequence proved to be ineffective and resulted in low test PPLLs (with severe overfitting).

3.3.2 ModelNet

Next, we illustrate the efficacy of our model on real world point cloud data. We consider

object classes from the ModelNet dataset [177], which contains CAD models of common real

world objects. Point clouds were created by randomly sampling 512 points from the surface of

each object. All point cloud sets are modeled in an unsupervised fashion. That is, we estimate

p(x), where x ∈ R512×3. Models are compared on the following datasets comprised of differ-

ent subsets of point cloud classes: airplanes, chairs, ModelNet10, and ModelNet10a.

ModelNet10 is the standard subset [177] consisting of bathtub, bed, chair, desk, dresser, mon-

36

(a) FlowScan (b) NS (c) BRUNO

Figure 3.5: Synthetic plane samples from trained models

Figure 3.6: FlowScan ModelNet10 samples

itor, night stand, sofa, table, and toilet classes. Since ModelNet10 is composed largely of

furniture-like objects, we also select a more diverse, ten-class subset that we will refer to as

ModelNet10a, containing airplane, bed, car, chair, guitar, lamp, laptop, plant, stairs, and

table classes.

Results can be found in Tab. 3.1 and four samples from FlowScan are included in Fig. 3.6.

For each of the four datasets tested, we find that FlowScan achieves the highest average test log-

likelihood. Qualitatively, we also observe superior samples from the FlowScan model as can be

seen in Fig. 3.5 and in the Appendix. In addition to training on these ModelNet datasets, we also

performed an ablation study (see the Appendix) where we see that our full architecture yields the

best performance over alternatives.

37

3.3.3 Brain Data

We test FlowScan’s performance on a medical imaging task in a higher dimensional setting

using samples of the Caudate and Thalamus [35]. Each set contains 512 randomly sampled 7d

points. The first three dimensions contain the Cartesian coordinates of the surface boundary

(as in ModelNet). The next two dimensions represent the normal direction at the boundary in

terms of angles. The final two dimensions represent the local curvature (expressed as shape index

and curvedness [98]). Table 3.1 enumerates the PPLL for both datasets across all three methods.

Comparing samples from FlowScan (see Fig. 3.7) to that of NS and BRUNO (included in the

Appendix) we see that FlowScan better captures the geometric features of the data than NS. Over-

all, superior PPLLs and samples suggest that FlowScan seamlessly incorporates the additional

geometric information to model point clouds more accurately than baseline methods.

3.3.4 Spatial MNIST

For a direct comparison to NS, we also trained our model on the SpatialMNIST dataset,

used by [51]. Each set consists of 50 points sampled uniformly at random from active pixels of a

single MNIST [106] image with uniform noise added to ensure non-degeneracy. The dataset that

results consists of 2-dimensional point clouds each representing a digit from 0 to 9. PPLLs for

each model can be found in Tab. 3.1 and a random selection of samples from each can be found

(a) Caudate
(b) Thalamus

Figure 3.7: FlowScan Caudate and Thalamus samples

38

(a) FlowScan

(b) NS

(c) BRUNO

Figure 3.8: SpatialMNIST samples from each model.

in Fig. 3.8. Both the (unconditioned) likelihoods and the samples indicate that FlowScan gives

superior performance in this task.

3.3.5 MNIST

Finally, we show that FlowScan exhibits superior likelihoods and samples in a high-dimensional,

low-cardinality setting. Following [99], sets are composed of 20 random images corresponding

to the same digit class from the MNIST dataset. After training, PPLLs are evaluated on held out

39

test sets constructed from unseen images. Our baseline is BRUNO, which achieves a PPLL of

−643.6. BRUNO’s unconditional samples (Fig. 3.9c) often contain elements from different digits,

indicating a lack of intra-set dependency in the resulting model. We improve upon BRUNO by

first adding convolution-based Set-Coupling transformations (but keeping the i.i.d. base likeli-

hood), which achieves a PPLL of −634.8. Still, sample sets (Fig. 3.9b) show mixed digit classes.

Finally, we consider a full FlowScan model that adds a sort, scan, and 3d convolution-based cor-

respondence coupling transformations, which achieves the best PPLL of −621.7. Furthermore,

FlowScan samples consistently contain the same digit class (Fig. 3.9a), showing that we are able

to fully model the intra-set dependencies of elements.

3.4 Limitations

While FlowScan are demonstrably powerful likelihood models for exchangeable data, they

suffer from a few shortcomings. First, these models require that the input data must be continu-

ous so that we do not violate the assumptions in Proposition 2, e.g., that the we will not have ties

with probability one and that we cannot deterministically recover any subset of features given the

remaining features. In a precise sense, this limits the types of data that our model is capable of

consuming. This limitation is shared with common, fixed-order likelihood models such as nor-

malizing flows. However, it is standard practice when training these classes of models to add a

small amount of (continuous) random noise. This introduces a continuous component to the data

that meets the conditions required to utilize our, and other, methods.

The second shortcoming pertains to the use of the sorting operation itself. This operation

enables the critical bridge from the exchangeable to sequential spaces and, while we can perform

backpropogation through the operation via the appropriate permutation matrix, the operation

itself cannot be updated via gradient descent. The model must implicitly learn how to organize

information such that the scan will construct a pertinent ordering that the downstream sequential

model can most easily model. Our results demonstrate the effectiveness of this implicit learning

40

process, however, it would likely improve training efficiency and overall performance if the

importance of the sorting dimension was explicit in the learning process.

3.5 Conclusion

In this chapter, we expanded the capabilities of modern deep learning density estimation to ex-

changeable, non-i.i.d. data by introducing FlowScan and demostrated considerable improvements

over alternate methods that rely on simpler transformations, latent distributions, or approxima-

tions. This is a difficult task, where models were previously limited to either exchangeable base

likelihoods such as Bruno [99], or conditionally i.i.d. restrictions with variational approximations

of the likelihood like the Neural Statistician [51]. We explored how to map inputs to a space that

is easier to model whilst preserving exchangeability via equivariant flow transformations. Among

others, we proposed the Set-Coupling transformation which extends existing pointwise coupling

transformations [45] to sets. Additionally, we demonstrated how to apply non-exchangeable den-

sity estimators to this task via sorting and scanning. This is the first tractable approach to achieve

this, avoiding averaging over any permutations of the data while unlocking a much larger class of

base likelihoods for exchangeable density estimation. Finally, we argued for the use of an autore-

gressive base likelihood with sequential transformations to exploit the sequential structure gained

in the sort and scan. Combining equivariant flow transformations, sorting and scanning, and an

autoregressive likelihood, we arrived at FlowScan. We showed empirically that FlowScan’s abil-

ity to model intradependencies within sets surpassed that of other state-of-the-art methods in both

high-cardinality, low-dimensionality and low-cardinality, high-dimensionality settings. Quantita-

tively FlowScan’s likelihoods were a substantial improvement (see Tab. 3.1). Furthermore, there

was a clear qualitative improvement in samples from FlowScan.

41

(a) FlowScan

(b) Set-Coupling

(c) BRUNO

Figure 3.9: Single digit set samples from FlowScan, Set-Coupling, and BRUNO trained on
MNIST. Each row corresponds to a single set of 20 images generated by one model. Sets gener-
ated from BRUNO often contain unidentifiable or multiple digits whereas FlowScan samples are
relatively homogeneous and representative of the training set.

42

CHAPTER 4: DEFENSE THROUGH DIVERSE DIRECTIONS

In this chapter, we utilize learned distributions over network parameters to construct a Bayesian

neural network and demonstrate strong adversarial robustness without the need for expensive on-

line adversarial training. Unlike previous efforts in this direction, we do not rely solely on the

stochasticity of network weights by minimizing the divergence between the learned parameter

distribution and a prior. Instead, we additionally require that the model maintain some expected

uncertainty with respect to all input covariates. We demonstrate that by encouraging the network

to distribute evenly across inputs, the network becomes less susceptible to localized, brittle fea-

tures which imparts a natural robustness to targeted perturbations. We show empirical robustness

on several benchmark datasets.

4.1 Overview

Neural networks currently achieve greater-than-human performance in a variety of tasks

such as object recognition [76], language understanding [41, 168], and game playing [154, 156].

Despite their incredible successes, these same networks are easily fooled by seemingly-trivial per-

turbations that humans overcome with minimal difficulty [?]. This weakness poses considerable

concern in a world that is increasingly reliant on machines from the perspectives of both security

(e.g., face recognition) and safety (driverless cars). Despite considerable effort to overcome these

difficulties, the problem persists [8, 53].

The most successful methods for improving adversarial robustness utilize online adversarial

training [116]. Online adversarial training requires an iterative training procedure where adversar-

ial examples are produced based on a particular attack scheme with respect to the current network

state and the model is updated to resist the particular attack. Unfortunately, this method is compu-

43

tationally expensive, as attacks must be generated and the model updated multiple times. Zhang

et al. and Sharma and Chen have demonstrated that while this process makes the model robust to

the particular type of attack used in the training process, the model can be susceptible to attacks

from alternate schemes.

To scale adversarial training, researchers have tried to transfer adversarial examples from

another model. Tramèr et al. [160] has found that this offline adversarial training scheme can

perform equally well in practice but can be much more efficient since it decouples the adversarial

examples generation from the training process.

Alternative lines of research introduce randomness into the model. Early attempts include

adding Gaussian noise to the inputs [186] and randomly pruning the network [173, 42]. Liu

et al. propose to add Gaussian noise to all the intermediate activations. Wang et al. train multiple

copies for each block of the network and randomly select one during inference. Along these lines,

we utilize Bayesian neural networks (BNNs) as a principled way to inject noise into the model.

Recent work [112, 113] has incorporated stochasticity by utilizing BNNs. Similar to our

method, they demonstrate that randomness of BNNs alone is not sufficient for robust classifica-

tion. They turn to an online adversarial training scheme to implicitly boost the randomness.

We instead choose to explicitly penalize the model so that it evenly distributes the sensitivity

of the output w.r.t. the input elements. We estimate the output sensitivity for each input through a

first order Taylor approximation and exploit the inherent ensembling of BNNs to evaluate statis-

tics for each input example. These statistics become the basis for a defense-promoting regulariza-

tion scheme by diversifying the directions of the output. This chapter is adapted from our original

work, “Defense through Diverse Directions,” [13].

Our contributions are as follows:

• We propose several general penalties that can be added to the loss function of any Bayesian

neural network to diversify the output variation with respect to the input covariates.

• We demonstrate that increased output diversity leads to natural adversarial robustness,

without requiring online adversarial training.

44

• We show that models trained with our diversity inducing penalties generalize to a variety of

attack schemes.

This work begins with a review of Bayesian neural networks and the adversarial problem.

We then discuss our motivations and methods for improving model robustness. Finally, we il-

lustrate our methods on several datasets and discuss the implications. Particularly, we show that

our method improves robustness over state-of-the-art BNN methods [113], all without online

adversarial training.

4.2 Background & Related Work

In this section we provide an overview of background material and related work.

4.2.1 Bayesian Neural Networks

In the context of supervised deep learning, a conventional neural network seeks to perform

some variant of a classical functional estimation task, to learn a point estimate of the optimal

function in the chosen functional space that maps each input from the input space to its corre-

sponding output in the output space. However, such an estimate does not consider, and thus

cannot effectively adapt to, the inherent uncertainty throughout the training procedure (e.g., data

collection, random initialization of network weights). Such deficiency leads to problems includ-

ing over-fitting and overly confident predictions.

To remedy this deficiency, a Bayesian neural network (BNN), introduced in the same vein

as continuous stochastic processes such as the Gaussian process, seeks to directly model the

distribution, whose density we denote as p, over random functions

f ∼ p(f), f : X 7→ O

where X and O denote the input and the output spaces, respectively. However, directly learning

such a distribution can be arduous as functional spaces are usually infinite-dimensional. Utilizing

45

the fact that neural networks can be regarded as universal approximators for functions [84], a

distribution over random functions can be thought of as a choice over of neural networks. We

materialize such connection through learning a distribution over the network weights. More

specifically, in assuming that the network weights are random and distributed according to a prior

distribution P (w), a BNN seeks to learn the posterior distribution of the network weights, w,

given the available data, i.e. P (w|D).

While a clever idea, learning P (w|D) is prohibitively expensive even for moderately sized

networks since utilizing Bayes rule would require integrating over all the probabilistic parameters

in the network:

p(w|D) =
p(D|w)p(w)

p(D)

p(D) =

∫
w
p(D|w)p(w)dw

Borrowing ideas from variational inference and the recent success of unsupervised methods

like the variational auto-encoder [94], Blundell et al. propose to learn a variational posterior

distribution, q(w|θ), to approximate the true posterior by optimizing the following objective

max
θ

Eq(w|θ) (logP ((D|w))− KL (q(w|θ)||p(w)) (4.1)

which is the evidence lower bound (ELBO) for the data likelihood. The expectation term ensures

the learnt variational posterior distribution is informed by the data, and the KL divergence acts as

a regularizer over the weights. Although technically any choice of the variational posterior and

prior distributions pair is possible, the convention, which we adopt in this work, is to choose both

to be independent Gaussians where we learn the mean and variances of the variational posterior

distribution. One benefit of deploying a BNN, which we exploit in our proposed framework, is

that for one input one can draw multiple functions f , which in practice is actualized by draw-

ing a set of different weights from the posterior distribution P (w|D), to form an ensemble of

46

inferences for various purposes, such as assessing the uncertainties in predictions, gradient eval-

uations, etc. In this work, we exploit the network’s variation to control how much sensitivity we

expect from each input element.

4.2.2 Adversarial Attack

Adversarial examples are constructed by making small perturbations to the input that induce

a dramatic change in the output. Attacks are typically broken down into two categories: white

and black box attacks. The exact definition of both methods vary, but we will use the following

definition in this work. In the white box setting, the attack has access to the training data set,

the fully specified underlying model, and the loss functions. Attacks are found by performing

gradient ascent with respect to the input. In the black box setting, the attacker has access to the

training data and the loss functions but does not have access to the underlying model parameters.

A black box attack can then be constructed by using a stand-in network trained on the same data

with the same loss. Previous works have shown that these examples are still effective against a

variety of other models [114, 161].

The attacker’s goal is:

max
∥ε∥p<εmax

E [L (f(x+ ε; θ),y)] (4.2)

where ε is the attack perturbation, p is the norm (typically taken to be ∞), εmax is the attack bud-

get (the maximum perturbation), L is the loss, f is the network, x is the input, θ is the network

parameters, and y is the truth.

Typically the attack methods generate the adversarial examples by leveraging the gradient

of the loss function with respect to the inputs. The Fast Gradient Sign Method (FGSM) [64], for

instance, takes one step along the gradient direction to perturb an input by the amount ε:

xadv = x+ ε · sign(∇xL(f(x; θ),y)). (4.3)

47

Projected Gradient Descent (PGD) [116] generalizes FGSM by taking multiple gradient

updates:

xk = xk−1 + α · sign(∇xL(f(x; θ),y)), (4.4)

where α is the step size. After each update, PGD projects the perturbed inputs back into the ε-ball

of the normal inputs.

There are also other types of attacks, such as C&W attack [25], Jacobian Saliency Map At-

tack (JSMA) [136] and DeepFool [121]. Among all the attack methods, PGD is regarded as the

strongest attack in terms of the L∞ norm.

4.2.3 Adversarial Defense

The goal of adversarial defense is to render all (bounded) perturbations ineffective against a

model. It is necessary to bound the perturbation or the attack could simply replace an input with

an example from a different distribution or class. A simple intuition to achieve this would be to

require that the model be Lipschitz smooth such that

∥f(x+ ε; θ)− f(x; θ)∥ < C ∥ε∥ . (4.5)

Unfortunately, estimating the Lipschitz coefficient C for an arbitrary network can be extremely

difficult, making optimizing over it nontrivial. Cissé et al. has attempted to control the Lipschitz

coefficient of each layer in the network and, therefore, the network as a whole.

Recent works have introduced a number of defense methods, such as distillation [136], label

smoothing [74], input denoising [158], feature denoising [179], gradient regularization [147], and

preprocessing based approaches [38, 70, 24]. Most of these defenses have unfortunately been

defeated by subsequent attacks.

The most popular adversarial defense technique incorporates adversarial examples in the

training process [116]. Online adversarial training requires generating new examples throughout

the training process to map out the local region around known examples and require that the

48

region map to the expected output. Unfortunately, while this approach does produce a robust

defense, it is computationally expensive.

Pang et al. utilize a diversity promotion scheme across several, independently-trained, non-

Bayesian networks. They promote diversity by encouraging the distribution of the probabilities

across all classes, excluding the true class, should be different for each independent model. Our

method could be considered a generalization that uses a diversity promotion penalty that is not

unique to the classification problem and that uses a stochastic ensembling scheme instead of a

deterministic scheme. The stochastic scheme allows access to a potentially unlimited number

of models instead of the fixed number chosen at the outset of the training process. Several other

methods utilize different forms of ensembling to improve robustness, e.g., [152].

Most similar to our work, ADV-BNN [113] attempts to use BNN to combat adversarial attack.

Their proposed method is dependent on online adversarial training and aims to incorporate it

into the standard ELBO objective, Eq. 4.1, as a min-max problem. In contrast, our proposed

methodology does not require online adversarial training, and achieves better performance on

CIFAR-10 compared to ADV-BNN.

4.2.3.1 Obfuscated Gradients

Athalye et al. [8] warn of a failure mode in defense methods that they term “obfuscated gra-

dients,” where seemingly high adversarial accuracy is only superficial. Networks that achieve

apparent improvements in white box attacks through obfuscated gradients do so by making it dif-

ficult for an attacker to find ε. However, successful ε still exist, which indicates that the network

has not increased adversarial accuracy despite its improved adversarial test accuracy. Distin-

guishing between whether a defense mechanism has increased adversarial accuracy or merely

increased attack difficulty is nontrivial. Typical methods rely on comparing white-box and black-

box attacks. A strong indication that a defense is obfuscating gradients is when black-box attacks

are successful while white-box attacks fail (low black-box accuracy and high white-box accu-

49

racy). A defense with high-white box accuracy and fair black-box accuracy is indicative of a

mixture of obfuscated gradients and substantive adversarial accuracy improvement.

4.3 Motivation

Our primary motivation comes from the observation that the fewer inputs an attack needs to

perturb, the less robust a model is. Therefore, we wish to diversify the importance of each input

to the output. Alternatively, we wish to reduce the sensitivity of the output to variations in each

input, possibly weighted by some foreknowledge of input uncertainty.

Since adversarial examples are best known for image recognition due to the dramatic differ-

ence in human robustness versus machine robustness, we attempt to provide some intuition in this

setting. For the general image setting, the object of interest may exist anywhere in image, and

there is no way to know ahead of time which pixels are more reliable. Therefore, we assume that,

on average, the sensitivity due to any single pixel should be roughly equal. So, we estimate the

sensitivity per pixel, normalize across pixels, and penalize any divergence from our expectation.

We can estimate the sensitivity of the mth output, δym, with respect to the expected sensitivity

of the dth input, δxd, through a truncated Taylor series

δym,d(x) ≡ ym(x− δxd)− ym(x) (4.6)

≈ δxT
d

∂ym(x)

∂x
= δxd

∂ym(x)

∂xd
(4.7)

and collecting across inputs

δym(x) ≈ δx⊙∇ym(x) (4.8)

where δym is a length D vector corresponding to the sensitivity of the mth output with respect to

each input. For simplicity, we assume there is only one output and drop the dependence on m.

There are several ways to normalize the result across inputs. We choose to normalize by

the L2 norm. For datasets where each input is equitably important/reliable, δxd = δx and the

50

normalized result becomes

uy(x) = δy/||δy||2 = ∇y/ ∥∇y∥2 (4.9)

where uy(x) is the direction of the gradient of the the output with respect to the input, x.

This means that we expect the direction of the output gradient to be uniformly distributed

over the unit hypersphere. In terms of the loss surface, all directions become equally likely,

uy ∼ Usph(u). (4.10)

In the event where the input uncertainty varies, the distribution would be uniformly distributed

over a hyper-ellipsoid.

4.4 Method

Typically, neural networks are supervised to map an input to an output. We use the approx-

imation from Sec. 5.2 to further supervise the uncertainty of the output. However, all networks

have some inherent uncertainty (e.g., from random initializations) that changes the expected sen-

sitivity. We execute K draws of the BNN and include additional penalties that attempt to main-

tain the expected distribution of the output sensitivity. We experiment with a variety of penalties

based on this premise. For the sake of brevity, we drop the dependence of uy on x.

4.4.1 Entropy and Variances

As motivated previously, in order to increase the network’s robustness against adversarially

perturbed input, we encourage the network to maintain, and hence to evenly distribute, some

expected sensitivity with respect to all input covariates. We materialize this idea by encouraging

the normalized gradient in Eq. 4.9 to be uniformly distributed over the unit hypersphere, which

in turn is equivalent to maximizing the entropy of uy, denoted as H(uy), because uy is bounded

51

within the unit hypersphere. However, as a function of the network weights w, the density of uy

is intractable even for moderate-sized network, making maximizing H(uy) directly prohibitively

expensive and impractical in practice.

In a simplified setting where the elements are independent, maximizing the sum of the vari-

ances of each element is equivalent to maximizing the entropy of the random vector.

Proposition 3. Given a random vector X = (X1, X2, · · · , XD)
T where its elements are indepen-

dent and Xi ∈ [ai, bi] for all i, there exists a monotonically increasing relationship between the

entropy of X, H(X), and the sum of the variances of each element of X,
∑

i Var(Xi).

Proposition 1 indicates that maximizing the entropy of X is equivalent to maximizing
∑

i Var(Xi).

See Appendix A for the proof. While uy is not independent in our case, we use Prop. 1 as an anal-

ogy and adopt the sum of the variances of the elements of uy as a surrogate for H(uy).

4.4.2 Direct Loss

A simple method might be to maximize the sum over inputs of the variance of uy across the

K draws
D∑

d=1

Var [uy,d] . (4.11)

However, since uy is a unit vector, this loss degenerates and only serves to minimize the average

value of the output sensitivity

D∑
d=1

Var [uy,d] = E

[
D∑

d=1

u2y,d

]
−

D∑
d=1

E [uy,d]
2 (4.12)

= 1−
D∑

d=1

E [uy,d]
2 . (4.13)

Since we wish to maximize the variances w.r.t. uy(x) we consider the mean penalty ΩM(x):

ΩM(x) =
D∑

d=1

E [uy,d]
2 . (4.14)

52

4.4.3 MinVar

While Eq. 4.14 increases the total variance across inputs, it does not necessarily encourage

diversity. We consider several additional penalties to include with Eq. 4.14 that do increase diver-

sity.

A simple penalty to increase the minimum variance over dimensions is

ΩV,1(x) = −min
d

Var [uy,d] . (4.15)

Equation 4.15 exploits the fact that the sum (over dimensions) of the variance is fixed. Therefore,

increasing the minimum necessarily decreases the other values. In theory, as the network trains,

the minimum element changes and eventually all the elements converge to the same variance.

Unfortunately, since the loss only supervises one pixel at a time, the minimum shifts across a

few elements and never influences the pixels with the largest variance. We consider two simple

methods to correct this difficulty. One is to supervise all the pixels simultaneously by replacing

the min operation with a soft-min weighted sum so that Eq. 4.15 becomes

ΩV,2(x) = −
D∑

d=1

softmin(αuy,d) · Var [uy,d] (4.16)

where α corresponds to the temperature. However, since the sum of the variances is fixed and this

loss attempts to increase the variance of all pixels simultaneously, we find that it can result in a

counterproductive competition across pixels.

A more direct method to supervise the variance is to minimize the distance between the ob-

served variance and the expected variance of 1/N . Using the Euclidean distance, Eq. 4.15 be-

comes

ΩV,3(x) =
D∑

d=1

(Var [uy,d]− 1/D)2 . (4.17)

We find that this final representation yields the best results amongst the variance encouraging

losses and choose it as the variance penalty ΩV (x).

53

4.4.4 Non-Sparse Promoting Losses

Directly encouraging the model to match a specific distribution’s second order moment may

be too strict a requirement. As an alternative to matching the second moment of the uniform

hypersphere, we consider penalizing small L1 norms of uy. By requiring that the L1 norm be

large, we bias the network away from over reliance on a few features and encourage greater

diversity across the input covariates. Unlike in the variance-based losses, the network does not

have to match each input direction to the same value. This allows for increased flexibility while

still maintaining the same intuitive effect on the diversity of dependence. The added penalty

becomes

ΩS(x) = −E
[
∥uy∥1

]
. (4.18)

4.4.5 Batch Loss

We summarize the full possible loss of our model with respect to posterior parameters, L(θ),

with all the above penalties, a supervised loss l and a batch of data {(xn, yn)}Nn=1:

L(θ) = 1

N

N∑
n=1

[
l(xn, yn) + λMΩM(xn)

+λVΩV (xn) + λSΩS(xn)
]
.

(4.19)

We vary Eq. 4.19 below, by setting various penalty weights λ to zero.

4.4.6 Further Benefits of Adversarial Training

Finally, we test the benefits of offline adversarial training [160] in addition to the diversity

inducing penalties. Adversarial examples are pre-computed from a trained, non-Bayesian neural

network of a matching architecture and then added statically to the training set. Thus, this form

of defense is more efficient than online adversarial training, which requires on-the-fly computa-

tion of adversarial examples.

54

4.5 Experiments

In this section we explore the effect of inducing diversity on a variety of open-source datasets.

4.5.1 Penalty Shorthand

We present our results by adding different combinations of the diversity-encouraging penal-

ties in Sec. 6.3. To declutter the results, we use the following shorthand to refer to the different

penalties we apply to the model. The unit gradient mean penalty, Eq. 4.14, is given as “M;” the

variance penalty, Eq. 4.17, by “V;” the non-sparse penalty, Eq. 4.18, by “S;” and any offline train-

ing by “Off.” We additionally denote when a network is Bayesian by prepending the network

name with a “B.” For example, the case where we use a Bayesian VGG16 with the mean and

variance penalty is shorthanded as “BVGG16-M-V.”

As mentioned previously, all adversarial examples appended to the training set for offline

training were constructed using conventional networks with matching architectures. Aside from

the models trained with offline adversaries, we do not include any form of data augmentation.

4.5.2 Practical Considerations

In this section we discuss several practical steps taken to implement various networks and

diversity-promoting penalties. We utilize TensorFlow [1] and Tensorflow Probability [43] to

implement the general and probabilistic components of our models, respectively. During training,

the classification loss is assessed per network draw and then averaged. During inference and

attack, ensembling is performed by averaging the logits over draws.

4.5.2.1 Drawing from the Bayesian Network

Since we optimize over statistics of the probabilistic network, we require multiple network

samples for the same input data. A simple method to exploit extant parallelisms in most neural

network frameworks would be to duplicate each element in the batch K (the number of draws)

55

times. Unfortunately, Bayesian networks implement the Bayesian layers using either FlipOut

[175] or the reparameterization trick [94] to efficiently draw parameters that are shared across

each element in the batch. While this shortcut is sufficient to decorrelate training gradients, it is

not sufficient to obtain the level of independence required to inform our methods. As a result, we

resort to executing the network K times for each batch.

This becomes prohibitively expensive for networks of sufficient depth. To offset some of

this cost, we break our networks into two parts. In the first part, the layers are constructed in

the conventional fashion without Bayesian components. We will refer to this component of our

models as the deterministic network. After the deterministic network, we construct a Bayesian

network. The deterministic component is executed once per batch and the Bayesian component,

K times. The gradient that informs diversity promotion is still taken with respect to the input

of the full network. This means that while the deterministic component does not directly add

variation it is still trained to encourage overall network diversity. The specifics of where the

transition between determinism and Bayesian can be found in each experiment’s section. In

general, we found that it was sufficient to set the last quarter of the network as Bayesian and use

K = 10 draws.

4.5.2.2 Attack Schemes

We test our defense against two types of common attacks: the Fast-Gradient Sign Method

(FGSM) and Projected Gradient Descent (PGD). We deploy both L∞ and L2 attacks. Black box

attacks are performed using examples from external sources when available. All attacks are

performed using the Adversarial Robustness Toolbox [130] and use the same number of network

draws as are used in training.

56

4.6 Synthetic Dataset

We consider the synthetic dataset constructed by (Tsipras et al., 2018) In this dataset, adver-

sarial examples are constructed analytically (without gradients) such that one feature is adversari-

ally robust but all others are not.

Tsipras et al. prove that any classifier that achieves arbitrarily high standard accuracy on this

dataset necessarily has poor adversarial accuracy. See the original work for a detailed discussion.

The dataset is constructed as a binary classification problem over y with input features x such

that

y ∼ {−1,+1}

x1 =

 +y, w.p. p

−y, w.p. 1− p

x2, ..., xD ∼ N (ηy, 1) ,

for the standard dataset. Adversarial examples are constructed by sampling x2, ..., xD from a

distribution that is inversely correlated with the label y, i.e.

x2, ..., xD ∼ N (−ηy, 1) . (4.20)

To better match this toy dataset to our assumptions, we construct the data (including adver-

sarial examples) as described and then orthonormally project the features into a new space. We

construct the orthonormal matrix, W, by choosing the ones vector for the first column and the

remaining columns as any orthogonal space and then normalizing, i.e., for the d-th column vector,

wd, in W , ∥wd∥ = 1, wd · wk = 0 for k ̸= d, and w0 = [1, 1, ..., 1]/
√
D.

It is easy to show that the bounds given in [162] hold through this process and that the impor-

tance of features in this new space are more evenly distributed by considering that, in the original

57

formulation, the adversarially-robust weight matrix, v, corresponds to a the standard basis vector

in the first dimension and calculating how this vector is modified when the data is transformed by

W . If we let vu be the new robust classification weights, W be the orthonormal transformation

matrix, and u be the transformed space, then

u = Wx

y = vTx

= vTWTWx

= vTWTu

vu = Wv.

And since v is the standard basis for the first dimension, vu = w1, which was selected as the

ones vector.

The choice of W can be generalized to any invertible matrix to achieve the same bounds.

We choose to use a constant vector for the first column as it best matches our expectations for

Figure 4.1: Standard and adversarial accuracy for various models compared to the upper bound.
Each dot represents the model performance at the end of different epochs across the training
process. Note, some negative jitter was introduced to Case 2 to enhance visualization.

58

practical data. In our experiment, we set p = 0.95 and η = 2√
D−1

. A robust classifier, which

only depends on x1, would achieve 95% standard and adversarial accuracy whereas a classifier

which depends on all covaraites can achieve arbitrarility good accuracy but with low adversarial

accuracy. (see Eq. 4 in (Tsipras et al., 2018)).

We train a simple model on this dataset and test the standard and adversarial accuracies

throughout the training procedure. Figure 4.1 illustrates the standard and adversarial accuracy

with respect to the adversarial upper bound for three different Bayesian networks: with no de-

fense, with M = 100, V = 120, S = 10 (Case 1), and with M = 0, V = 0, S = 40 (Case

2). Points in the figure are collected at different epochs to assess how the adversarial accuracy

compares to the upper bound throughout the training process.

As expected, the Bayesian network achieves strong standard accuracy with poor adversarial

accuracy and does not even achieve the adversarial upper bound. Both models penalized by our

methods consistently achieve the upper bound and influence the model so that it is less prone to

achieving arbitrary accuracy. Case 1 showcases good standard accuracy and strong adversarial

accuracy, corresponding to the theoretical upper bound, after a warm up period. Case 2 achieves

the maximum adversarial accuracy possible. Additional details can be found in Fig. 4.3 and

Fig. 4.2.

These two cases are representative of the behavior of a variety of different hyperparameter

choices. We observe that our penalties cause the model to either achieve and sustain maximum

adversarial accuracy or increase adversarial accuracy to a point before decaying to arbitrary

standard accuracy.

We take this as encouragement that, since adversarial examples in this setting are constructed

analytically (without model gradients), this indicates that our method is capable of creating gen-

eral adversarial robustness and does not simply obfuscate gradients. The tendency towards the

upper bound is striking because we have not directly informed the model about the adversarial

problem — there is no adversarial training we only require a diverse ensembling based on inher-

ent properties of Bayesian networks and some diversity encouraging penalties.

59

Figure 4.2: Standard and adversarial accuracy for various models compared to the upper bound
with increased plotting range. Each dot represents the model performance at the end of different
epochs across the training process. Note, some negative jitter was introduced to Case 2 to en-
hance visualization.

Figure 4.3 provides additional context of the accuracies over the training process. As ex-

pected, the undefended model converges rapidly to a high standard accuracy but with adversarial

robustness well below the upper bound. In the first case, once the model has achieved the robust,

standard accuracy, the adversarial accuracy gradually increases before it ultimately peaks and de-

grades. While this degradation is unfortunate, it is noteworthy that the adversarial accuracy stays

near the upper bound throughout the decay process. In the other case, the model appears to un-

dergo a phase change and quickly converges to and maintains the maximum possible adversarial

accuracy.

60

Figure 4.3: Standard and adversarial accuracy evolution for the test set with various models.

61

Table 4.1: Adversarial accuracy (%) on MNIST with various combinations of diversity promotion
against L∞ attacks.

Method FGSM PGD Black-Box

CNN 36.8 2.6 57.8
BNN 55.2 0.9 56.4

BNN-Off 40.0 2.1 93.6
M 93.0 55.2 60.1

M-V 94.0 70.0 61.8
M-S 96.3 94.0 54.3

M-V-S 97.2 95.8 59.8
M-S-Off 97.6 95.8 89.9

M-V-S-Off 97.4 94.5 90.6

4.6.1 MNIST

We test our diversity induced models on MNIST [105]. For these tests we use a simple CNN

with three convolutional layers followed by two fully connected layers. Since this network is

fairly shallow, we compose the deterministic part of the network using the first two convolutional

layers and use Bayesian layers for the final convolutional and both fully connected layers. When

the corresponding penalty is used, the loss hyperparameters are: λM = 20, λV = 40, and λS =

40.

Table 4.1 shows the accuracy of the model when trained using different combinations of diver-

sity inducing penalties and adversarial training against L∞ attacks with a maximum attack budget

of 0.3. All models obtain better than 99% standard accuracy. Black box attacks were obtained

using examples from an open repository (https://github.com/MadryLab/mnist challenge).

When only the mean penalty (Eq. 4.14) is imposed, the model shows modest improvements

in both forms of attack; indicating that the defense has succeeded in improving the robustness

of the model against attack. While this defense has not completely succeeded in overcoming

attacks, it is a positive step. As we include additional penalties, we observe that the white-box

attack improves, most notably with the inclusion of the non-sparse penalty (Sec. 4.4.4). However,

these models generally show a slight decrease in black-box performance. We infer that these

penalties tend to cause the model to over fit the defense by obfuscating gradients. Fortunately,

62

offline adversarial training appears to sufficiently augment the training set so that the defenses

can generalize.

4.6.1.1 MNIST Accuracy Evolution

Figures 4.4a 4.4b illustrates how the adversarial accuracy evolves over the training process

for FGSM and PGD, respectively. Other attack evolutions can be found in Fig. B.1. We chose to

train for 100 epochs to give the defenses adequate opportunity to influence the model. Models

trained with diversity promoting penalties are given in color and models without are given in

gray-scale. Models supplemented with offline adversarially training have “+” symbols in addi-

tion to the matched colors to identify their training penalties. In both cases, attacks are generated

using the test set against the current model state. These figures provide some insight into how

the defense is instilled in the model as it is trained. The mean and variances penalties appear to

slowly (but consistently) influence the model throughout the training process. These penalties

seem to still be improving the adversarial accuracy against PGD attacks even after 100 epochs

have elapsed, well after the standard accuracy has converged.

As speculated in Sec. 4.4.4, the non-sparse penalty appears to give the model greater flexi-

bility and is easier to learn. This quick increase and the disparity between white and black box

performance in Table 4.1 may indicate that the penalty is prone to causing the defense to over fit

by obfuscating gradients. However, this is assuaged with the use of offline adversarial training.

All models converged to a standard accuracy of 99% within the first two epochs.

(a) FGSM L∞ ε = 0.3 (b) PGD L∞ ε = 0.3

Figure 4.4: Evolving white box attack accuracy after each epoch.

63

Table 4.2: Adversarial accuracy (%) under L∞ white and black box attacks on CIFAR-10 with
various methods of diversity promotion.

Loss Std. FGSM PGD Black-Box

VGG16 90.4 14.4 5.9 58.0
BVGG16 89.1 12.9 5.6 24.5

BVGG16-Off 85.8 58.8 57.0 84.3
M 90.1 14.2 6.1 64.1

M-V 87.1 19.6 10.2 55.5
M-S 88.4 50.2 47.7 55.2

M-V-S 88.7 56.6 60.2 55.1
M-S-Off 86.3 73.1 72.3 84.8

M-V-S-Off 85.7 73.8 63.8 83.4

4.6.2 CIFAR-10

In this section, we evaluate our proposed diversity inducing penalties on the CIFAR-10

dataset [100]. The backbone network is VGG16. A Bayesian version of VGG16 is built by re-

placing the last convolutional block and the fully connected layers with variational alternatives.

When training with our proposed penalties, we use the hyparameters: λM = 10 and λS = 20. We

report the L∞ attack with a budget of ε = 0.03 here. PGD attack perform 40 gradient updates

with a step size 0.001. Refer to Sec. 4.7 for ablation experiments on the attack budget. We report

the black box attack accuracy using examples from an open repository.1

Table 4.2 demonstrates the accuracy of the defended models on CIFAR-10. The standard

loss is included in the table since it varies across models. Given the marginal improvements in

adversarial accuracy from the variance-based penalties, we forego their use in this case.

Unlike in the MNIST experiments, the mean penalty is insufficient to overcome white box

attacks; however, it does offer improvements in the black box setting. Also unlike MNIST, these

results do not indicate that our methods suffer from the obfuscated gradients problem as white

box attacks are consistently more effective than black box attacks. The additional data augmenta-

tion from offline adversarial training further improves defense.

1https://github.com/MadryLab/cifar10 challenge

64

Table 4.3: Comparison of accuracy (%) under PGD attack with different budget. Results for
“Adv-CNN” and “Adv-BNN,” representing adversarially trained CNN and BNN, are from [113].

Method/Budget 0.0 0.015 0.035 0.055 0.07

Adv-CNN 80.3 58.3 31.1 15.5 10.3
Adv-BNN 79.7 68.7 45.4 26.9 18.6

M-S 88.4 61.3 47.8 39.8 34.3
BVGG16-Off 85.8 58.2 57.8 57.3 57.3

M-S-Off 86.3 73.2 73.1 73.0 73.0

(a) L∞ attack budgets. (b) L2 attack budgets.

Figure 4.5: Varying attack budgets with 40 step PGD attacks against MNIST defenses.

Table 4.3 juxtaposes several of our proposed defenses against results reported in Liu et al. for

several attack budgets. We observe that our method without any adversarial training maintains

higher standard accuracy and shows improved robustness to higher attacks budgets. Surprisingly,

we observe that a Bayesian VGG16 with offline adversarial training obtains consistent accuracy

above the other methods. We suspect this is because the adversarial examples used in offline

training were constructed using PGD with 40 steps whereas the examples in ADV-BNN were

defended using online training with 10 steps. Including our penalties consistently increases the

performance of the offline model by approximately 15%.

4.7 Ablation

To test our defenses’ efficacy under more diverse attack cases, we vary the PGD attack budget

against models trained on MNIST and CIFAR-10. Figure 4.5 illustrates results from tests on

MNIST and Fig. 4.6 from tests on CIFAR-10. Colors and symbols follow the same conventions

as in Fig. B.1.

65

(a) L∞ attack budgets. (b) L2 attack budgets.

Figure 4.6: Varying attack budgets with 40 step PGD attacks against CIFAR-10 defenses.

Figures 4.5a and 4.6a demonstrates how the various models respond to increases in the at-

tack budget of PGD L∞ attacks. For L∞ attacks against CIFAR-10, we compare against results

reported in [113] instead of a generic CNN or BNN as in other cases. Unsurprisingly, all the

models show decreases in performance as the attack budget is increased. The best model consis-

tently utilizes the mean and non-sparse penalized models with offline adversarial training. The

inclusion of the variance penalty shows a slight improvement on MNIST but significantly worse

performance on CIFAR-10. Against MNIST, the diversity penalties dramatically increase adver-

sarial accuracy over offline training and likewise improve CIFAR-10 accuracy by approximately

15%. The online adversarially trained models outperform diversity-based models that do not in-

clude the non-sparse penalty, but are consistently out-performed by models that do include the

penalty.

Figures 4.5b and 4.6b uses L2 attacks but otherwise demonstrates the same variation as in

Figs. 4.5b and 4.6a (changes in the attack budget of PGD). The most interesting feature is how

well the mean penalty performs without any additional augmentations. It begins with the highest

accuracy and is consistently higher than the model trained with the mean and non-sparse penal-

ties and is primarily outperformed only by the full mean and non-sparse penalized models with

offline training. Otherwise, the results are consistent with those found in the L∞ study.

66

4.8 Discussion and Limitations

We have demonstrated the efficacy of explicitly encouraging diversity of the output with re-

spect to the input. On MNIST, we show that we can obtain strong adversarial robustness without

the need for any form of adversarial training. In this case, our black box accuracy falls short of

the white box accuracy, indicating we may be obfuscating gradients. Fortunately, the black box

performance is still fair, which may mean that our method improves model robustness and ob-

fuscates gradients. Including offline adversarial training in these models improves the black box

accuracy so that it is on par with the white box accuracy. We suspect that the original MNIST

training set is not diverse enough itself and that additional data or augmentations may be suffi-

cient to prevent the defense from over fitting and obfuscating gradients.

Our results on CIFAR-10 are quite encouraging. We demonstrate that our method is capa-

ble of improving adversarial accuracy with only a small reduction in standard accuracy. These

models do not appear to suffer from the obfuscated gradients problem: black box accuracy is

consistently higher than white box performance. Further, the ablation studies show a consistent

reduction in accuracy as attack strength is increased. Finally, our model compares favorably with

other Bayesian defense mechanisms, achieving superior performance in most cases without any

adversarial training. The added use of offline adversarial training improves our models’ perfor-

mance so that they are superior in all cases.

We speculate that it may be possible to further improve our defense results by including addi-

tional forms of standard augmentation, e.g.,the addition of Gaussian noise, shifting, etc. Similarly,

we performed only a small search for the hyperparameters of the diversity penalties, λ, and used

them for all penalty combinations and regardless of the use of offline training. Additional gains

may be possible by performing a finer-grained search over these parameters.

67

4.9 Conclusions

In this chapter, we explored how to utilize learned distributions over neural networks by learn-

ing distributions over network parameters to improve adversarial robustness. This is a daunting

task, where models that utilize the concept of randomness to combat adversarial attack were

previously limited to adding random noise layers to the network [112] or simply applying a

Bayesian neural network to take advantage of the stochasticity of the weights [113]. To the best

of our knowledge, this is the first attempt to attain adversarial robustness through explicitly re-

quiring the network to maintain and evenly distribute expected and sensible uncertainty with

respect to input covariates, achieved by the various penalty terms we introduce. Without the need

for online adversarial training, we demonstrate the effectiveness and robustness of our approach

by achieving the strong adversarial (after-attack) accuracies on various datasets against different

adversarial attacks. This effort provides concrete evidence that we can improve the performance

of machine learning algorithms by taking advantage of learned distributions.

68

CHAPTER 5: PRACTICAL INTEGRATION

We expand our ability to compute integrals (expectations) over deep learning models by

exploiting the approximate density learned by a normalizing flow model (Sec.2.2.2) when com-

posed with a separable function. This allows us to generalize the training procedure from only

evaluating on a finite collection of augmented points to training on continuous hypervolumes.

We explore how to construct architectures and continuous penalties to control/regularize model

behavior in global and local regions.

5.1 Overview

Most supervised learning problems operate by training a model on a finite collection, T , of

N (typically paired) examples, (x, y). The model is updated by comparing its predicted output to

the expected output and performing some flavor of stochastic gradient descent based on the com-

parison and various regularizers. The process is repeated by reexamining the elements of T in a

random order, possibly with augmentation, until the model parameters converge or an iteration

budget is exceeded. This relatively simple procedure has proven to be remarkably effective in a

variety of domains and these models have begun to permeate every aspect of modern science and

everyday life [23, 77, 155].

The deep learning revolution has also resulted in highly effective generative models such as

VAEs [92], GANs [63], and tractable likelihood models [47, 67, 131]. These models are largely

used to create novel samples of impressive quality. In addition to sampling, likelihood models

provide an estimate of the probability density function of the data which can be used for addi-

tional, downstream processes.

69

We augment the training process by constructing neural networks that allow for tractable in-

tegration over the input domain. This differs from implicit layers which utilize integration over a

parameterized variable [29, 67]. Access to fast and differentiable integrals allows us to regularize

a model’s average behavior using metrics that may not be available otherwise. Integration over

the input space also allows us to supervise how the model behaves in continuous regions that are

not directly observed in T and may even be out-of-distribution (OOD).

Alternative methods attempt to supervise examples outside of T by performing random

perturbations [71], along the line between known examples [189], or via a generative process

[6, 187]. However, these methods are only capable of observing a small quantity of the total

space. By integrating over entire regions, it is possible to observe a large portion of the space

based on statistical relevance. This chapter is adapted from our original work, “Practical Integra-

tion via Bijective Networks,” [15].

Main Contributions We propose a general architecture that enables tractable integration over

the input space, enabling supervision and custom regularization over continuous regions. We

demonstrate how to construct this network and how it allows for a reduction in the computation

cost required for dense numeric integration from exponential in the number of dimensions to

linear. We derive several useful integrated formulations over continuous regions. Finally, we

explore the impact of this architecture and regularizers on the standard accuracy and robustness

to OOD examples on several standard classification datasets. The code utilized in this paper can

be found at https://github.com/lupalab/sep bij nets.

Notation Throughout this work, we consider the M dimensional input features, x = [x1, ..., xM] ∈

RM ; the latent features, z ∈ Z ⊆ RM ; and the K-wise classification probability, y. The input

features x in the training set, Tx, are a random subset of the in-distribution data, D ⊆ RM . Sub-

scripts represent a particular dimension, e.g., Dm corresponds to the mth dimension of the space.

Paranthetical superscripts represent the subspace corresponding to a particular class, e.g., D(c) is

the subset of D where the data belongs to class c. The bijective network is given as h such that

h : D → Z . Probability distributions over D and Z are given by p with the corresponding sub-

70

script. Classification networks are given as f and g. Variables with a “hat,” ŷ, are predictions of

the true quantity, y.

5.2 Motivation

Neural networks are highly effective function approximators between two (typically) contin-

uous spaces: f : X → Y . However, networks are typically trained and evaluated using a finite

collection of points without any explicit assessment of the complete hypervolume spanned by

the data. This omission is understandable from an implementation perspective as the number of

samples required to obtain a reasonable estimate over a volume scales exponentially with data

dimensionality. However, human beings often have an understanding of how a process should

behave on average. Ideally, we would like to embed this intuition into the model but currently

cannot assess the average performance of a trained model outside of the held-out test set. Specifi-

cally, we would like to regularize the model by estimating the expected behavior of some metric,

Ω, produced by the model over the training data

Ex∼p(x) [Ω(ŷ(x))] =

∫
X
Ω(ŷ(x))p(x)dx. (5.1)

There are many useful choices of Ω over a variety of applications. If it is known what the model

output should be on average (ȳ), we can construct Ω to encourage that behavior, e.g., Ω(ŷ) =

(ȳ − ŷ)2. Minimizing consistency metrics [181] are a common method to improve learning in label-

starved problems. These encourage the model to produce similar outputs over neighborhoods

around (labeled) examples from Tx where neighborhoods are created by random or domain-

specific augmentations. This process can be viewed as an approximation to an integral over the

neighborhood,

Eϵ∼p(ϵ) [L(y, ŷ(x+ ϵ))] =

∫
L(y, ŷ(x+ ϵ))p(ϵ)dϵ (5.2)

where L is a distance-like metric, and ϵ is the neighborhood. Equation 5.2 can be generalized

to other neighborhoods. We can recast the standard classification problem as a discrete approxi-

71

mation to an integral. Typically, we minimize the cross-entropy between ŷ(x; θ) and y over the

model parameters, θ, for all (x, y) ∈ T which becomes an integral over class-conditioned distri-

butions, p(x|c),

min
θ

−
∑
x,y∈T

∑
k

yk log (ŷk(x; θ)) ⇒ min
θ

−
∑
k

∫
D(k)

yk log (ŷk(x; θ)) p(x|k)dx. (5.3)

Equation 5.3 can be simplified when yk is a one-hot vector by collapsing the sum over k to retain

only the term corresponding to the (single) true class. We choose not to perform this simplifica-

tion to allow for more general cases where there may be some class ambiguity within the volume,

such as when label smoothing is in use.

Unfortunately, integration in high dimension is difficult. Naive gridded solutions require an

exponential number of points with error decreasing as O(G−M), for G, M -dimensional points.

Monte Carlo (MC) methods theoretically have better performance with error that decreases as

O(G−1/2). However, the rate of convergence for MC methods depends on the variance of sam-

ples [169], which may make for poor approximations in practice. Importance sampling [19] can

improve the performance of Monte Carlo methods to adapt to the regions with the greatest contri-

bution.

We choose to model the data using a separable function. Separable functions have the key

benefit of decomposing M -dimensional integrals into a combination of M one-dimensional

integrals. Each of these one-dimensional integrals can then be solved using any number of highly-

accurate solvers (e.g., Runge-Kutta [151], Dormand-Prince [48], Tsit [164], etc.) that have error

rates better than O(G−4) but are unavailable in high dimensions. The use of separable functions

is a component of the VEGAS algorithm [140] and is utilized in conjunction with adaptive Monte

Carlo sampling to approximate high-dimensional integrals.

The use of a separable function over the input space may make estimation of integrals over

the model more accessible; however, they impose a strong, inappropriate inductive-bias. The

obvious approach of utilizing a standard neural network as a feature extractor and integrating

72

Figure 5.1: Depiction of the overall network with intervening distributions over the latent space,
Z

over learned features means that we would no longer have a valid integrator over the input space.

We propose to solve this problem by utilizing bijective transforms prior to the separable network.

The bijective transform allows us to decouple the data into a latent space where the data can be

modeled using a separable network and guarantees equality between integrals in the latent space

and integrals in the input space.

5.3 Background

We perform integration over the input space by splitting neural network models down into

two key components: (1) a bijective feature extractor, (2) a separable task network, see Fig. 5.1.

For simplicity, we only consider classification tasks in this work. This makes our total network

analogous with the common architecture where a classifier, often a linear layer or an MLP, is

constructed on a feature extractor, such as a CNN. Unlike the typical process, we must place

constraints on both networks so that we can integrate over the input domain. This network break-

down is similar to hybrid networks [30, 126] except for the separability requirement on the classi-

fier.

5.3.1 Separable Functions

Separable functions have long been used in mathematics and physics to solve simple partial

differential equations such as the homogeneous wave and diffusion equations [159]. We con-

sider two types of separable functions, additive and multiplicative. All proofs can be found in

Appendix A.

73

5.3.1.1 Additively Separable Functions

Definition 5.3.1. A function, f : CM → CK , is additively separable if it is composed as a

summation of element-wise functions operating independently on each dimension of the input:

f (v) =
M∑

m=1

fm (vm;ϕm) (5.4)

Theorem 5.3.1 (Additive Independent Integration). Given an additively separable function, f(v),

an independent likelihood, p(v) =
∏M

m=1 pm(vm), and domain, Dv = Dv1 × ...×DvM :

Ev∼p(v) [f (v)] =
M∑

m=1

∫
Dvm

fm (vm) pm (vm) dvm (5.5)

5.3.1.2 Multiplicatively Separable Functions

Definition 5.3.2. A function, g : CM → CK , is multiplicatively separable if it is composed as a

product of element-wise functions operating independently on each dimension of the input:

g (v) =
M∏

m=1

gm (vm;ψm) (5.6)

Theorem 5.3.2 (Multiplicative Independent Integration). Given a multiplicitively separable

function, g(v), an independent likelihood, p(v) =
∏M

m=1 pm(vm), and domain, Dv = Dv1 × ...×

DvM :

Ev∼p(v) [g (v)] =
M∏

m=1

∫
Dvm

gm (vm) pm (vm) dvm (5.7)

5.4 Method

Both forms of separable functions allow us to decompose a single M -dimensional integral

into M 1-dimensional integrals. A dense estimation of the integral without taking advantage of

a separable function using G points per dimension would require O(GM) network evaluations.

74

This is completely impractical for modern datasets where M is at least on the order of hundreds

and G should be as large as possible. Exploiting separable functions allow us to reduce the com-

plexity to O(GM).

However, it is unlikely that we could construct a separable function directly on the input

space and achieve reasonable performance. Doing so would essentially require that each input

dimension contribute to the final output independently of the others. Instead, we can combine

Eq. 2.8 and Eq. 5.5 (alternatively, Eq. 5.7) to perform practical integration over the input domain

while still allowing for inter-dependent contributions from each input dimension. To do so, we

first let the latent distribution, pZ , be independently (but not necessarily identically) distributed:

pZ(z) =
∏

m pm(zm). This allows us to write the integral over the input space in terms of the

latent space and then simplify via Eq. 5.5.

∫
D
f(h(x))pZ(h(x))

∣∣∣∣∂h∂x
∣∣∣∣ dx = Ex∼pX(x) [f(h(x))]

= Ez∼pZ(z) [f(z)] =

∫
Z
pZ(z)f(z)dz =

M∑
m=1

∫
Zm

fm(zm) pm (zm) dzm

(5.8)

Each 1-dimensional integral can be easily approximated using a variety of integration approaches.

In addition to the requirements placed on the feature extractor and task network, this formulation

also requires that we define the integration domain in the latent space as a Cartesian product of

domains over each latent dimension. This may seem like a strong requirement since we appar-

ently lose some level of interpretability; however, there are several advantages to defining the

input domain in this learned space. Most notably, we know the data distribution in this space

exactly and can tune the domain based on the goal of a particular integral.

Figure 5.2 contains a cartoon example that demonstrates how these methods combine to

allow for integration over the complex data space. Both plots show the value of f ; Fig. 5.2a

shows the non-separable function in the input space and Fig. 5.2b shows the same data in the

(separable) latent space, after the bijective transformation. The colored points and dotted lines are

in correspondence between the two spaces and illustrate how the space is warped by the bijector

75

(a) Input Space f(h(x)) (b) Latent Space f(z)

Figure 5.2: Separable functions need O(G) latent samples (red) instead of O(GM) input samples
(blue). Integration regions emphasized.

to create a separable, independent latent space. The light gray lines represent the contours of

the underlying probability distribution. We define both the integration domain and perform the

integration in the latent space. For simplicity, we illustrate the integration using five, equally-

spaced points (in both dimensions). The naive procedure would require sampling f at each point

in the grid (the blue points). The use of the separable functions allow us to integrate using only

the red points and get the same estimate.

5.5 Practical Applications

In this section we discuss specific choices made when constructing the latent distribution,

separable networks, and various integrals. For classification tasks, it is not possible to parame-

terize the normalized network output of class probabilities, ŷ, as a separable network since each

prediction must sum to one. However, it is possible to parameterize each unnormalized logits as a

separable network, e.g., ŷ(x) = σ (f(h(x))), where σ is the softmax operator and the output of f

are the unnormalized logits. While this limits what quantities can be integrated over exactly, it is

still possible to integrate over approximations/bounds without resorting to brute-force methods.

76

Out-of-Distribution Detection We construct a global integration regularizer to provide re-

silience to out-of-distribution (OOD) examples. We enable OOD detection by introducing a

“reject” option [78] into the classification vector, increasing the number of classes by one, where

the additional class indicates that the instance is OOD. An example is considered OOD if ŷK+1

exceeds a predefined threshold. We supervise the model over out-of-distribution examples by

integrating the cross-entropy over the contrastive probability distribution, q(z) (see Sec. 5.5.3.1).

Semi-supervised Learning We build a local integral to enhance consistency within latent neigh-

borhoods and utilize it in place of pre-chosen augmentation strategies to inform a label-starved

dataset. Specifically, we introduce a loss where all examples near a real, labeled example are

regularized to share the real example’s label as in Eq. 5.2 (see Sec. 5.5.3.2). We additionally use

pseudo-labels [107] so that consistency is maintained about unlabelled points as the model grows

more confident.

5.5.1 Latent Distributions

Figure 5.3: Data and contrastive distributions

A critical component of this method is that

the likelihoods over the latent space must be

independent: pZ(z) =
∏

m pZ(zm). As this is

extremely unlikely to occur in the input space,

we learn a bijective (flow) transformation from

the input space to a latent space where the like-

lihood can be decomposed into independent

components of our choice. Since we would

like to use the latent features to discriminate between classes using a separable function, we

choose to utilize a (bimodal) Gaussian mixture model. This allows the model to put different

classes into one of two “buckets” per feature and enables classification through multiple features.

This results in an exponential number of components (with respect to dimension) in the full latent

space, e.g., 2M components. However, we can easily offset this by choosing some dimensions to

77

use a unimodal latent distribution while the remaining dimensions are still bimodal:

pZm(zm) =

0.5 N (−µ, σ2

1) + 0.5 N (µ, σ2
1), if m ≤ L

N (0, σ2
2), else

(5.9)

In addition to the typical latent data distribution, pZ(z), we explicitly include a contrastive distri-

bution, q(z). This distribution is critical if we desire to regularize our model outside the data dis-

tribution, i.e., setting some background/default behavior. When using a bimodal data distribution,

we additionally desire that latent vectors are more likely under this distribution once the vector is

sufficiently far away from any single in-distribution mode. Therefore, we select this distribution

so that it fully encapsulates all the components of the data distribution, e.g., qm(zm) > pZm(zm)

for | |zm| − µ| > γ. When the data distribution is unimodal we choose pm = qm so that the feature

is uninformative.

We utilize a standard Gaussian for the contrastive distribution and set µ to 1 and experiment

with σ1 ≤ 0.5. This choice allows us to formulate OOD examples that exist between the in-

distribution data as near zero, and outside the in-distribution data, near the tails. Figure 5.3 illus-

trates the data and contrastive distributions for a latent feature for convenience.

5.5.2 Separable Networks

We explore three different formulations of separable networks. The first formulation learns

a distinct quadratic function, the second learns a symmetric hinge, and the third learns a multi-

layer perceptron. These functions have distinct parameterizations for each latent feature and each

in-distribution class. The out-of-distribution logit is held fixed at zero: lK+1(x) = 0.

f (quad)
k,m (zm;αk,m, uk,m, νk,m) = αk,m − (zm − uk,m)

2

2e2νk,m
(5.10)

f (hinge)
k,m (zm;αk,m, uk,m, νk,m) = αk,m − |zm − uk,m| eνk,m (5.11)

78

where k is the logit class index and m is the feature dimension so that the total unnormalized

logit, lk(z), is lk(z) =
∑

m fk,m(zm). The separable MLP is constructed by concatenating a

learned vector per feature and class to each 1-dimensional feature and constructing a standard

MLP that operates on that augmented state. This formulation provides the greatest flexibility as it

leverages all the benefits of the universal approximator theorem [83]. Unfortunately, we find the

MLP version difficult to train in practice, often resulting in degenerate solutions. Fixing the OOD

logit at zero provides a fixed reference point for the other logits. We interpret this as each latent

feature voting on how in-distribution the example is on a per-class basis.

5.5.3 Integrals

The cross-entropy, CE(ŷ(x), y), between the normalized model output, ŷ(x), and the true

labels, y, is commonly used to train classification models. In this section, we explore global and

local integrals of the cross-entropy loss used to train most classifiers (see Eq. 5.3) when ŷ is given

as the composition of the softmax function, a separable function and a bijective function, e.g.,

σ(f(h(x))). We can express this as minθ

∑
x,y∈T CE(ŷ(x), y) owing to the finite number of ele-

ments in T . Ideally, we would minimize the model cross-entropy over all possible examples in D.

We accomplish this by defining the subspace, D(c) ⊂ D, that has a given label and corresponding

conditional distribution, p(x|c)

Ex∼p(x|c) [CE (ŷ(x), c)] = −Ex∼p(x|c) [log(ŷc(x))] = −
∫
D(c)

log(ŷc(x)) p(x|c)dx. (5.12)

It is not possible to represent ŷ(x) as separable network due to the softmax operation but it is

possible to parameterize the unnormalized logits as a separable network. Substituting this pa-

rameterization into Eq. 5.12 and transforming to the latent space yields a bound for the expected

79

cross-entropy

Ex∼p(x|c) [CE (ŷ(x), y)] ≤ −
M∑

m=1

∫
Z(c)

fc,m(zm)pm(zm|c)dzm

+ log

(
K+1∑
j=1

M∏
n=1

∫
Z(c)

exp (fj,n(zn)) pn(zn|c)dzn

)
.

(5.13)

See Appendix E for a full derivation. We will utilize this formulation in conjunction with a con-

trastive prior to supervise OOD examples, Sec. 5.5.3.1, and with a local prior to enforce consis-

tency, Sec. 5.5.3.2.

5.5.3.1 Out-of-Distribution Supervision

We can utilize the cross-entropy integral in different ways by choosing the label we would

like to apply over a domain. For example, we can integrate the cross-entropy over the OOD latent

space, U , with the true label fixed to the reject class (c=K+1), and the latent distribution over codes

is the contrastive distribution (Sec. 5.5.1), p(z|c=K+1) = q(z); using Eq. 5.13 with fK+1,n=0:

LGLBL = log

(
K∑
j=1

M∏
n=1

∫
U
exp (fj,n(zn)) qn(zn)dzn

)
. (5.14)

In effect, Eq. 5.14 discourages OOD data from being labeled as any in-distribution label. Since

the data and contrastive distributions overlap, the model could degenerate and always make OOD

decisions; however, this would be in conflict with the standard cross-entropy loss applied to each

example in the training set. So long as LGLBL is not weighted too strongly, the model achieves

equilibrium by making OOD predictions over regions where the contrastive distribution is more

likely. In effect, we supervise OOD training without requiring any OOD data.

5.5.3.2 Local Consistency

We may also perform integration over neighborhoods of data points in Tx and utilize that

point’s label over the entire region. This integral serves to improve consistency around observa-

80

tions. Adversarial attacks [64, 116] are often constructed as perturbations on real data points and

adversarial training finds one such point and includes it in the training set. We can interpret local

consistency integrations as a form of average adversarial training. We reformulate the integral to

be centered around a particular datum, x0 and its class label, y

LLCL = −
∑
k

yk

∫
V
log(σ (fk(h(x0) + v))) pV (v)dv (5.15)

A complication resulting from local integration is how to select the local distribution, pV (v),

and the neighborhood, V . There are many reasonable choices depending on the goal of the local

integration. For simplicity, we choose each Vm ∈ [−ε, ε] and pm(vm) to be uniformly distributed.

5.5.4 Loss Components

The final training loss used to evaluate the model is composed of different combinations of

the standard cross-entropy loss over class predictions, LCE = −
∑

k yk log (ŷ), the negative log-

likelihood loss over in-distribution data points, LNLL = − log(pZ(h(x))) − log
∣∣∂h
∂x

∣∣, and the

integration losses, LGLBL and LLCL. We always include LCE and LNLL. Based on results from

previous hybrid networks [30, 126], we weight the negative log-likelihood by 1/M , which is anal-

ogous to using bits per dimension and introduce an additional weight over the cross-entropy, λ,

which controls the relative importance of the generative and classification tasks. When included,

each integration penalty shares the same weight as LCE with additional binary weight, π

Ltotal =
1

M
LNLL + λ (LCE + πGLBLLGLBL + πLCLLLCL) . (5.16)

5.6 Related Work

Noise Contrastive Distributions Noise contrastive methods introduce a distribution that is dis-

tinct from the data distribution. The constrastive distribution can be learned and provides a mech-

anism to supervise the model to discriminate between true and contrastive samples [71]. This

81

forces the model to learn discriminative statistical properties of the data. We utilize this idea to

inform the null-space over which we will integrate. We fix the data and contrastive distributions

and learn the bijective map between input and latent spaces.

Hybrid Models Normalizing flows are a family of flexible, tractable likelihood estimators based

on the application of learnable, bijective functions [47, 67]. These methods have shown strong

performance, both as likelihood estimators and as generative processes. Recent work has coupled

advances in bijective networks to construct invertible feature extractors that are capped by a

more conventional classifier. The combination bijective/classifier structure are called hybrid

models and show reasonable performance as likelihood and discriminative models [30, 126].

Unfortunately, the discriminative performance of these models is lower than traditional methods.

We utilize hybrid models with constraints that enable tractable integration. Other hybrid models

architectures are less restricted but prohibits practical integration.

Out of Distribution Detection OOD detection is a challenge for many modern ML algorithms.

Recent work has demonstrated that OOD data can achieve higher likelihoods than the training

data [80, 125]. Several recent methods have been developed to detect OOD examples including

Maximum Softmax Probability (MSP) [79], Outlier Exposure (OE) [80], Multiscale Score Match-

ing (MSMA) [117], ODIN [111], and Certified Certain Uncertainty (CCU) [119]. [109] utilize

a GAN trained with a classifier to produce examples near but outside the training distribution.

These methods are constructed specifically for OOD detection whereas our method is applicable

to a variety of problems.

Semi-supervised Learning Semi-supervised learning is a burgeoning research area that learns

from a large data corpus when only a small subset are labeled. The problem setting is very perti-

nent as it is often easy to acquire data examples but can be extremely time consuming to create

the corresponding labels. Many modern methods can achieve very strong performance with very

few labels [189, 33]. However, most of these methods rely on domain-specific augmentation

strategies that are difficult to replicate in new data regimes, i.e., for non-image data. Fortunately,

82

(a) Class colored, green OOD (b) Z neighborhood (c) Z neighborhood

(d) p(y = 0) (e) p(y = 1) (f) p(x ∈ OOD)

Figure 5.4: Three-arm spirals results
methods such as SSVAE [95] and VIME [182] are domain agnostic. These methods are built

exclusively for semi-supervised learning but we only require an additional regularizing penalty to

achieve comparable performance on tabular datasets.

5.7 Experiments

All models were constructed using PyTorch [137], trained using PyTorch-Lightning [55],

utilized bijectors and distributions from Pyro [18], and were trained using Adam [93]. We assess

the integrable model’s performance in a semi-supervised regime and against OOD examples. See

Appendix B and C for additional experiments and training details.

83

5.7.1 Spirals

We construct a synthetic, 2D dataset composed of three intertwined spirals, see Fig. 5.4a.

Suppose that, due to an unknown sampling bias, we only observe two of the three arms (missing

the green arm) and constructed our model as a two-class problem with a third, reject class.

We sample points in a dense 2-dimensional grid at twice the range of the data in both dimen-

sions and evaluate the probability that each point belongs to the two known classes and the OOD

class. Figures 5.4d and 5.4e illustrate the probability of belonging to the two known classes and

Fig. 5.4f contains the probability that each point is OOD. Red and white values indicate high and

low probabilities, respectively. The model successfully identifies the two in-distribution regions.

Unsurprisingly, the model also identifies data outside of the training data range as being OOD

and, impressively, identifies the unobserved spiral and the region between spirals as being OOD.

Finally, we sample a square box (orange) around a data point (blue) in the latent space and

invert the box to assess the appropriateness of the neighborhood in the input space and plot the

result, Figs. 5.4b and 5.4c. As expected, the bijector converts the latent Euclidean neighborhood

into a semantically meaningful neighborhood. Had we included the local cross-entropy integral

in this training process, all points within the orange boundary would have received the same label

as the data point.

5.7.2 Out of Distribution Detection

We test how our models respond to OOD examples when trained with global integrals over

the noise-contrastive prior and consistency integrals and compare to methods designed cfor OOD

detection. See Appendix B.3 for standard performance and Sec. 5.6 for a discussion of the base-

lines. Table 5.1 contains the AUPR for the various methods against similar but different datasets

(see Appendix B.4 for the AUROC). We juxtapose SVHN vs CIFAR10 and MNIST vs FMNIST

plus Extended MNIST (EMNIST) [36]. We include a separable, hybrid model without integral

regularizations (hybrid) and the same model with regularizations (Int. Reg.) to illustrate the util-

ity of learning over hypervolumes. When MNIST or FMNIST are the in-distribution set, the

84

regularized, integrable network performs on par with the best baseline methods. SVHN and CI-

FAR10 show reasonable OOD performance but are not as strong as the baselines. This is not

surprising since the integrals rely on a reasonable estimate of p(x), which both datasets have

failed to achieve, Table C.3.

Table 5.1: Area under the PR curve (percentage).

In Out GAN ODIN MSMA OE CCU Hybrid Int. Reg.

MNIST
FMNIST 99.4 98.8 - 99.9 99.9 93.7 ± 6.8 99.7 ± 0.17
EMNIST 84.5 78.4 - 91.4 84.3 97.2 ± 1.9 99.8 ± 0.03

FMNIST
MNIST 99.9 99.2 80.8 97.0 98.3 63.9 ± 8.3 95.4 ± 0.04
EMNIST 100. 99.3 - 98.6 99.1 93.8 ± 3.5 98.8 ± 0.47

SVHN CIFAR10 98.6 97.3 92.5 100. 100. 71.8 ± 2.0 76.8 ± 1.4

CIFAR10 SVHN 80.5 92.7 99.0 98.5 97.5 84.6 ± 0.8 87.0 ± 2.1

5.7.3 Semi-Supervised Learning

We apply the local integral to the separable hybrid model and train on several tabular datasets

with 10% of the labels and domain-specific augmentation strategies are unavailable. These mod-

els do not utilize the OOD class or global penalty. We apply pseudo-labelling with thresholds of

0.9-0.95. Table 5.2 compares the performance of the integrated hybrid models to several standard

(non-image) semi-supervised baselines on flat MNIST (MNIST, flattened to a vector), Mini-

BooNE [12], and HepMass [11]. We utilize a CNF [67] as the bijector and the hinge as the clas-

sifier. We see that the integrated model achieves similar-to-better performance than the other

methods on all datasets, showcasing the generality of integrated regularizers in different problem

spaces.

5.7.4 Interpretability

The separably model and independent latent dimensions allows us to reason about how the

model is making decisions in the latent space. Unfortunately, for most bijectors, it is not possible

85

to carry this interpretability back to the input space. Figure 5.5 demonstrates the final state of

the model trained on Fashion MNIST for several features with respect to the latent distribution,

per in-distribution class and juxtaposed with the out of distribution data. Specifically, the top

row contains the logit components, fk,m, learned by the separable network, color-coded by class;

the middle row contains the distribution of each class (colors matched to logits); and the bottom

row contains the distribution of the in-distribution data (blue) and OOD data (red). The top row

illustrates how the classification network makes its decisions per feature over the distribution

presented in the middle row. We see that the logit components map well to the distribution of

the data in each feature and provides some intuition for how certain the classifier is over a fea-

ture. This demonstrates how this architecture allows for reasonable interpretibility from the latent

space. Any value above zero (the dotted black line) is considered in-distribution and the most

likely class is the line with the greatest value at that point. The features were chosen to demon-

strate the diversity of the learned solution over features. Generally, the data maps reasonably well

to the bimodal distribution, though we do occassionally see mode collapse as in Fig. 5.5e. For-

tunately, in these cases the logits tend to be fairly uninformative and only introduce a small bias.

Figures 5.5a through 5.5c show a common trend where the OOD data has heavy overlap with one

of the two clusters but not the other. While we do see some diversity amongst the in-distribution

classes that overlap with the OOD data the “bags” (gray) and “sandals” (cyan) class overlap most

often. Finally, Fig. 5.5d demonstrates a latent feature where the OOD data falls in the region

between the two data components.

Table 5.2: Tabular dataset semi-supervised accuracy (%).

SSVAE VIME Local Int.

Flat MNIST 88.9 95.8 94.9± 0.16
MiniBooNE 92.2 91.7 93.5± 0.074

HepMass 83.1 82.0 85.4± 1.2

86

(a) Feature 1 (b) Feature 2 (c) Feature 3 (d) Feature 4 (e) Feature 5

Figure 5.5: Each subplot corresponds to a single latent feature. The top and middle rows contain
the unnormalized logit components and distributions per class, with matching colors. The bottom
row compares the distribution of Fashion MNIST (blue) and MNIST (red). x-axis shared across
all rows.

5.8 Limitations

There are two primary limitations with this method for delivering tractable integrals. First, the

network relies on a bijective feature extractor to relate latent and input spaces in a principled man-

ner that allows us to equate integrals in one space to integrals in the other space. Unfortunately,

bijective feature extractors are known to provide inferior performance relative to their injective

counterparts. This is demonstrated empirically by Chen et al. [30] where they demonstrate that

hyrbid networks struggle with a trade-off between generative and discriminative tasks. This result

is consistent with our efforts, especially when we introduce additional objectives in the form of

volumetric penalties. As discussed in Sec. 5.7.2 and C.2.3, we expect we could improve the per-

formance of our models by utilizing more sophisticated (and more expensive) bijectors such as

Spline-Coupling [50] or Residual Flows [30].

The second limitation of the method pertains to the output of the separable network. Namely,

when the output of the model requires some constraint across output features (e.g., must sum to

one or have unit norm), the separable network will not generally be able to maintain this con-

straint. Fortunately, it is usually possible to bypass this limitation with special tricks or by con-

structing approximations or bounds for the output (given the constraint and separable network)

so that we can still achieve some reasonable training objective. In fact, this is the case for the

87

classification problems and the reason we explore them in this chapter. We demonstrate both how

to construct a bound for training and the effectiveness of training given that bound.

5.9 Conclusions

In this chapter we have demonstrated how to incorporate a learned density (e.g., a normaliz-

ing flow) in conjunction with a separable network to enable tractable integration over the data

space. This is a capability that does not currently exist within existing architectures without rely-

ing on high-sample count Monte Carlo estimators that would be too memory intensive to utilize

in training for high dimensional/high complexity data sets. We demonstrate that the ability to

supervise regions and not isolated points encourages the model to learn better representations

and be less likely to degenerate. We consider several formulations that allow us to regularize the

model’s behavior based on consistency and contrast without relying on augmentations of and

sparse comparisons between a finite collection of data points. We experiment with the various

integrals to obtain promising out-of-distribution detection. Through now tractable integrals, this

work enables future methods and applications for learning over continuous regions.

88

CHAPTER 6: CONTINUOUSLY PARAMETERIZED MIXTURE MODELS

We now look to increase the transparency of deep learning generative models by parameteriz-

ing a mixure of Gaussians with a neural ODE, Sec. 2.1.2. Mixture models are universal approx-

imators of smooth densities but are difficult to utilize in complicated datasets due to restrictions

on typically available modes and challenges with initialiations. We show that by continuously

parameterizing a mixture of factor analyzers using a learned ordinary differential equation, we

can improve the fit of mixture models over direct methods. Once trained, the mixture compo-

nents can be extracted and the neural ODE can be discarded, leaving us with an effective, but

low-resource model. We additionally explore the use of a training curriculum from an easy-to-

model latent space extracted from a normalizing flow to the more complex input space and show

that the smooth curriculum helps to stabilize and improve results with and without the continuous

parameterization. Finally, we introduce a hierarchical version of the model to enable more flex-

ible, robust classification and clustering, and show substantial improvements against traditional

parameterizations of GMMs.

6.1 Overview

Mixture models have long served as reliable tools for both modeling (density estimation)

and summarizing (cluster analysis) datasets. Through their probabilistic nature, mixture models

provide an estimate of the underlying data distribution; through a parsimonious collection of

components, mixture models succinctly summarize the major patterns found in a dataset. Gaus-

sian mixture models (GMMs), which provide a universal approximation for smooth densities

[65], have been effectively deployed for modeling and clustering in a wide range of applications

[22, 58, 90].

89

There are two major challenges in applying GMMs to complicated, high dimensional data.

First, the partitions (modes) that we wish to characterize in data are rarely spherical or simple

enough in nature to be faithfully captured with Gaussian components. As an alternative, one

may consider more complicated components [82], however, this worsens identifiability issues

and yields partitions that do not adequately summarize populations of interest in the data [22].

Second, mixture models converge to local minima and thus their optimization is extremely sen-

sitive to initialization. Some approaches propose to initialize via local fitting methods such as

k-means [146]. However, the distance metrics, for example Euclidean distance, implied in those

local fitting methods is rarely appropriate in high dimensions, imposing initial partitioning that is

arduous to escape.

We propose to offset the first difficult by taking a mixture of mixtures in a hierarchical ap-

proach by considering a mixture of distinct dynamical systems. In effect, we propose to learn to

evolve the components of one partition (see Fig. 6.1a) in a fashion that results in an infinite mix-

ture model in the limit. This alleviates the burden of learning a large number of separate modes

through a shared generator of components in an approach that is akin to hypernetworks [72]. We

can then combine multiple partitions to cover the entire support (see Fig. 6.1b). Specifically, each

partition is itself defined by multiple components that are spanned through smooth dynamics to

represent complex, multi-modal distributions. We sample discrete components from this continu-

ous parameterization during inference to construct a cheap, lightweight model that dramatically

reduces the computational cost, maintains improved performance over typical mixture methods,

and simplifies model interpretation.

We alleviate the second difficulty by creating a learned curriculum [16] over the data. We

construct the curriculum by transforming the data into a standard Gaussian through a normalizing

flow [30, 47, 67, 96] and slowly annealing back to the original space. This removes the difficulty

with initialization since the distribution early in the training process is known. As we advance

through the curriculum, the model only requires minor perturbations from its previous state. We

90

(a) Evolution of a single continuous mix-
ture model.

(b) Evolution of several continuous mix-
tures. Color schemes represent different
mixtures.

Figure 6.1: We illustrate how a continuously parameterized mixture model can evolve com-
ponents to model the data distribution (samples in blue). Each ellipse corresponds to equal
likelihood contours for a different component. Colors across components implicitly indicates the
arrow of pseudotime. (a) A single trajectory through the space provides a smooth probabilistic
model. (b) A hierarchy of three different partitions allows for different manifolds and enables
flexible clustering or classification.

find that this process results in considerably improved performance regardless of the mixture

parameterization.

Main Contributions We propose a parameterization of Gaussian mixture models through the

output of a neural ordinary differential equation (NODE). This formulation induces a smoothly-

varying trajectory through the data, in essence, learning a probabilistic sheath around the trajec-

tory and across the data manifold. Once trained, the components of the GMM can be extracted

and the NODE discarded, rendering storage and inference notably cheaper than most other mod-

ern methods. We include a hierarchical component to the model by considering multiple trajec-

tory starting points to allow us to utilize simple Bayesian methods for clustering or classification.

Finally, we demonstrate a curriculum-based training method to significantly improve model per-

formance.

91

6.2 Background

6.2.1 Mixture of Factor Analyzers

Mixture of factor analyzers [62, 146] is a popular exploratory statistical model commonly

used in applied disciplines such as psychology. The model for one factor analyzer is

x = A z+µ+ ϵϵϵ (6.1)

where A ∈ RM×R is the loading matrix with R ≪ M , z ∼ N (0, I) is the latent representation

drawn from an isotropic Gaussian, ϵ ∼ N (0, D), and D is a diagonal matrix. Due to the distribu-

tional assumptions on z and ϵϵϵ, we have x ∼ N
(
µ,AAT +D

)
. It then follows that a mixture of

factor analyzers is a special case of the general GMM with the density

p(x) =
∑
k

πk N
(
x; µk, AkA

T
k +Dk

)
. (6.2)

This choice allows for a reduction in the number of parameters from O(M2) to O(MR). When

M is large (i.e., when the dimension of the input space is high), the naive evaluation of the mix-

ture density, p(x), is challenging as it involves inverting and calculating the determinants of large

covariance matrices each of which is O(M3). Fortunately, the Woodbury matrix inversion lemma

and the matrix determinant lemma can be applied to significantly speed up the calculations by

reducing the complexity to O(MR2). We refer readers to [146] for more details.

6.3 Methods

In this section we discuss how we utilize neural ordinary differential equations (NODE) to

parameterize mixture models over continuous indices and how to improve the training process

by instituting a curriculum to guide the model from an easy-to-learn space to the true data space.

The NODE allows for a hyper-network [72] type approach, which shares weights of a network

92

to output parameters over multiple components, and whose limit is an infinite GMM. We then

extend a continuously parameterized mixture model by allowing for multiple trajectories in a

hierarchical structure that allows us to perform clustering or classification.

6.3.1 Continuously Parameterized Mixture Models

Inspired by the universal approximator properties of Eq. 2.7, where the parameters of each

component depend on the latent variable, s, we chose to parameterize the MFA via a neural

network. We begin by constructing a joint state across the MFA parameters. When the data is

tabular, this amounts to flattening each parameter and concatenating them together:

h(t) =
[
µ(t), Ā(t), log(d)(t), log(π)(t)

]
(6.3)

where the bar over A indicates the matrix has been flattened, d is the diagonal portion of D, and

log is applied element-wise. We choose to use a shared state across parameters rather than a

separate ODE for each parameter so that the model can better coordinate and share relevant

information. We learn the log of d and π instead of the parameters directly to ensure that the

covariance is positive definite and that the weights are non-negative. As a result, h ∈ RJ where

J = (R + 2)M + 1. In most cases, we set the value of π to a constant and exclude it from the state

to encourage contiguous modes and prevent a trajectory from covering a zero-probability region.

There are two possible ways to proceed. If our goal was to best match Eq. 2.7, we would

construct the NODE based on the joint state and solve the system of ODEs that includes the

continuous mixture

dh(t)

dt
= f(h(t), t; θ)

dp(x)

dt
= (2π)−M/2 |Σ(t)|−0.5

exp
(
− (x−µ(t))T Σ

−1
(t) (x−µ(t)) /2

)
π(t)

93

where we evaluate each component in accordance with Eq. 2.7 on the instantaneous value of

t within the ODE solver and set p(x) = 0 at t = 0 and take the integral over the range of t

without producing intermediate values and require that
∫
π(t) dt = 1. Unfortunately, while this

formulation is a better match to the continuous mixture model, integrating p(x) is numerically

unstable and often causes f to become stiff [20] or for the integrator to underflow, see Appendix

for additional details. Additionally, this form would require that we keep the NODE once training

is complete and resolve it for every new example encountered.

We instead choose to solve for the joint state directly and return the parameters at a (pos-

sibly variable) number of pseudotimes. That is, for a (uniformly drawn) set of pseudotimes,

{tj}Gj=1, we model the density as p(x) =
∑G

j=1 π(tj)N
(
x; µ(tj), A(tj)A(tj)

T +D(tj)
)
, where

π(tj), µ(tj), A(tj), D(tj) are the respective continuously indexed parameters and
∑

j π(tj) = 1.

Concretely, we solve the NODE, dh(t)
dt

= f(h(t), t; θ), for each tj to extract the j-th component

parameters and evaluate p(x) using the finite sum. This approach essentially performs numerical

integration to approximate Eq. 2.7, which is feasible given the 1d integral. This leaves us with

a mixture model whose parameters are derived from a continuous process. We will refer to this

model as a continuously parameterized mixture model (CPMM). Figure 6.1 illustrates a dataset

overlayed with the components extracted from a CPMM.

We have specifically chosen f so that the ODE is not autonomous [20]. From a practical

perspective, this means that our models are capable of learning loops and cycles. However, to

further increase the flexibility of the model, we additionally augment the joint state

h(t) =
[
µ(t), Ā(t), log(d)(t), α(t)

]
(6.4)

where α ∈ RL and we have excluded log(π) from the state. α is not directly used in evaluating

any portion of the mixture but instead provides an unconstrained pathway that the network can

use to pass information along. Without the augmented state, the network must encode informa-

tion relevant to future times into the parameters of the current time, overloading those parame-

94

ters and notably decreasing performance. We generally choose L to be 2-4× larger than J , so

h ∈ R5J .

In this form, the NODE, dh(t)
dt

, does not depend on the evaluation data point, x, directly and

can be solved independently. In fact, the NODE can be evaluated with only the initial value and

the parameter times. We can therefore consider that our model is a type of hypernetwork [72].

We train the model by evaluating/solving the hypernetwork against the learnable initial state

and then evaluating the likelihood for each example in the batch. The initialization and hyper-

network dynamics are then updated to maximize the likelihood of the batch. During evaluation,

we solve the hypernetwork once and cache the parameters (for a uniformly drawn set of pseudo-

times {tj}Gj=1) against future executions. This places the total computational cost for inference at

O(KMR).

When the input data is an image, we construct the joint (augmented) state by keeping the

parameters in the image shape for the NODE and concatenating over channels which allows us

to utilize CNNs for the function underlying the NODE. We then flatten the data and parameters

to calculate the likelihood. This means that the unaugmented portion of the channel dimension is

increased by a factor of R + 2 relative to the image channel count (when π is held fixed).

6.3.2 Hierarchical Mixture of Factor Analyzers

To facilitate clustering and classification, we extend the mixture of factor analyzers (MFAs) in

a hierarchical manner. More specifically, we model the data with a mixture of MFAs

p(x) =
C∑
c=1

ηc p(x |c) =
C∑
c=1

ηc

G∑
j=1

πc(tj)N
(
x; µc(tj), Ac(tj)Ac(tj)

T +Dc(tj)
)
, (6.5)

where C denotes the number of MFAs and, therefore the number of clusters/classes,
∑

c ηc = 1,

and {tj}Gj=1 is a set of pseudotimes. We construct the mixture of the C MFAs by providing C dif-

ferent initial values to the NODE. Alternatively, we could learn a separate NODE and initial state

for each MFA. This should allow for greater flexibility in each trajectory. However, we generally

95

Figure 6.2: Evenly distributed transitions through different spaces. The data begins in a latent
space as a standard Gaussian (top left) and ends in the true space (bottom right).

find that the improvement is not appreciable while the increase in compute is significant. Shar-

ing the ODE means that the trajectories will learn from one another and share certain dynamic

characteristics.

The hierarchical mixture allows the model to learn disparate data partitions without requiring

that a single trajectory transition through low probability regions. Additionally, we can utilize

Bayes rule to estimate p(y = c|x) from Eq. 6.5 to perform clustering or classification. In the

unsupervised setting we can utilize this to impose different forms of regularization. In the super-

vised setting, p(y|x) can be directly supervised.

6.3.3 Curriculum Through Spaces

Unfortunately, training large mixture models in high dimensions often gets stuck in local

minima and is extremely sensitive to initialization. Direct mixtures (mixtures with parameters

that do not come from the same generative process such as the NODE) are often initialized via a

combination of kmeans and local fitting prior to gradient descent [146]. However, for CPMMs,

the parameters are the product of a learnable process and cannot be directly initialized. As a

heuristic, one may initialize the ODE initial value based on kmeans or labeled examples, however

96

this only provides a limited signal and one must resolve how to initialize other parameters such as

A or log d.

In order to circumvent this difficulty, we borrow ideas from curriculum learning [16]. We

begin by defining a continuously indexible map, ∀v ∈ [0, 1], Mv : RM 7→ RM such that

M0(x) = x, and Mv progressively maps to a smoother, simpler space as v increases. We pro-

pose to leverage M to construct a curriculum for learning the CPMM. Intuitively, we may begin

training on the simplest space induced by M1 and slowly progress to training on our target input

space M0. That is, for a sequence 1 = v1 > . . . > vT = 0, we progressively train on respective

datasets Dt = {Mt(xi)}Ni=1. An accessible choice is to define Mv as a continuous normalizing

flow [67] (see Sec. 2.2.2.4), Mv = uv, where

uv(x) =

∫ v

0

g(us(x), s;ϕ)ds

log puv(uv(x)) = logN (u1(x); 0, I) +

∫ 1

v

(
∂g

∂s

)
ds,

u0(x) ≡ x and uv(x) is defined by a learnable function, g, which is trained via MLE so that

u1(x) ∼ N (0, I).

We construct the curriculum for the CPMM by first training the CPMM on u1. Since the data

is (ideally) a standard Gaussian in this space, it is trivial to learn a good CPMM and the initial-

ization of the CPMM parameters can be created as perturbations from the standard Gaussian. We

then marginally perturb the space by taking a small step in v towards the input, e.g., we train the

CPMM on u1−ϵ where, for sufficiently small ϵ, pu1−ϵ(u1−ϵ) ≈ pu1(u1). We repeat this process of

perturbing the space and then updating the CPMM until we have arrived back at the input space.

Figure 6.2 shows this smooth transition on a two-dimensional dataset as the map transitions be-

tween the latent space, through several intermediate spaces, before arriving back at the input

space.

One interpretation of this curriculum is that we learn the initialization for one space based

on training over a marginally simpler version of the data. This interpretation applies to both the

97

parameters of the NODE hypernetwork and the initial values of each trajectory. Without this slow

update procedure, even with a good initial value, the CPMM can be hard to train since the initial

trajectories can point in the wrong directions and the model can struggle to shift the probability

mass appropriately.

An important distinction between our use of a curriculum and the typical form of curricu-

lum learning is that we do not want to remember earlier “tasks.” Doing so would mean that the

CPMM would still capture the intermediate spaces between the Gaussian noise and the input

space. Since these spaces are only used as a guide and have no intrinsic meaning, maintaining

them has no direct value.

6.4 Related Work

Mixture Models Mixture models can be applied to solve an array of ML problems, e.g., clus-

tering and density estimation [73], and are widely deployed in modern ML methods. Viroli

et al. [171] model the variables at each layer of a deep network with a Gaussian mixture model

(GMM), leading to a set of nested mixtures of linear models. Izmailov et al. [86] use a GMM

as the base distribution in conjunction with normalizing flows for semi-supervised learning.

Richardson et al. [146] demonstrate that GMMs better capture the statistical modes of the data

distribution than generative adversarial models (GANs), while Eghbal-zadeh et al. [52] incor-

porate a GMM into the discriminator of a GAN to encourage the generator to exploit different

modes in the data.

Tractable Likelihood Models Normalizing flows and autoregressive models are two common

types of extremely effective tractable likelihood estimators. Normalizing flows (NF) learn invert-

ible transformations to a latent space where the data has a known, prechosen, distribution, typi-

cally the standard normal. There exist considerable variations between models based on the fami-

lies of invertible functions allowed [30, 47, 67, 96]. Autoregressive (AR) models [132, 135, 167]

exploit the probabilistic chain rule and learn a distribution for each dimension conditioned on the

98

previous features. Despite their impressive performance as likelihood estimators and as genera-

tive methods, these models are surprisingly brittle. In particular, they show higher likelihoods for

completely different datasets than the ones they were trained on which prevents them from being

utilized for outlier detection [80, 125].

Deep Clustering Several approaches to apply deep networks for clustering have been proposed

in the past few years [26, 180], centering around the concept that the input space in which tradi-

tional clustering algorithms operate is of importance. There have also been works on incorporat-

ing traditional clustering methods, such as spectral clustering or hierarchical clustering, directly

into deep networks [28, 104, 150]. Mukherjee et al. [122] extend GANs for clustering by using a

combination of discrete and continuous latent variables.

Mixture Models + Deep Nets for Clustering Since mixture models are the traditional models

of choice for clustering tasks, arming them further with the recent development in deep learn-

ing is only natural. Zhang et al. [188] directly deployed a mixture of autoencoders with the as-

sumption that different clusters are effectively different local data manifolds, and thus could be

parametrized and learned by autoencoders. In the same vein, Pires et al. [141] model the data us-

ing a mixture of normalizing flows, where the mixture weights are computed through optimizing

the variational lower bound. Jiang et al. [89] use a GMM as the prior distribution for the latent

code in a variational auto-encoder (VAE), thus allowing for clustering of the input data in the

latent space.

Non-parametric Bayesian Mixture Models Non-parametric Bayesian models [124] assume

the number of parameters of the underlying model grows with the number of data samples. In

the case of the underlying model being a non-parametric Bayesian mixture model, this indicates

that for every new data sample, the model can either group it with the already-discovered mixture

components or initiate a new mixture component for that data sample, increasing the number of

mixture components deployed and hence the number of parameters utilized [66]. This is accom-

plished by using a Dirichlet process for the prior distribution of the parameters of non-parametric

99

Bayesian mixture models [59]. Despite effectively deploying an infinite number of mixture com-

ponents during the training stage, the number of components eventually learned is determined by

the finite data samples available, resulting in a learned finite mixture distribution at test time.

Sum-Product Networks Sum-product networks (SPN) [138, 139, 142] are a class of proba-

bilistic circuits [37] that produce a tractable likelihood estimate akin to normalizing flows and

autoregressive methods. SPNs are constructed as a directed acyclic graph composed of alternat-

ing “sum” and “product” operations over the evaluation of (typically) one-dimensional densities

at each leaf node. Learning is often performed through the EM algorithm by updating the pa-

rameters of each leaf distribution and the weights at each sum node. This structure allows SPNs

to cheaply evaluate a variety of statistical quantities (e.g., marginals) without approximation.

When leaf densities are Normal distributions, the SPN can be expressed as a GMM with many

components [87].

6.5 Experiments

We construct our models in PyTorch [137] and train using PyTorch Lightning [55]. We used

Adam [93] as the optimizer in all cases. Unless otherwise stated, we extract 25 components per

trajectory for each hierarchical CPMM. Curriculum models were constructed using simple CNFs

from FFJORD [67]. Since the execution of a CNF is computationally expensive, we extracted the

smoothly varying datasets (see Sec. 6.3.3), Dt, immediately after training and saved them to disk.

In general, we choose to use 51 total spaces, Mt, (including the latent space, u1, and the input

space, x) and allocate one epoch per space. We then fine-tune on the input space. All models

trained directly in the input space utilize standard data augmentations (see Appendix for further

details). Models trained with the curriculum are initialized randomly; other models are initialized

via kmeans or a combination of kmeans and fitting a local Factor Analyzer as in [146]. When

training a hierarchical model, we often find it helpful to include entropy regularizations across

trajectories.

100

Figure 6.3: Two synthetic datasets designed to assess the limitations of the CPMM.

6.5.1 Synthetic Data

We demonstrate the effectiveness and weaknesses of CPMM on two toy datasets. The first

dataset consists of two concentric, broken circles. The radii of both circles are chosen to differ

by 10% and have similar thicknesses. The second dataset consists of a noisy five-armed spiral

that begins near the origin before curving outward. This dataset is intentionally constructed with

“outliers” (points between the arms without a clear cluster identity) to assess how the CPMM will

handle examples “far” from the manifold. Both CPMMs are trained using a curriculum.

Figure 6.3 contains true data points in the top row and samples drawn from the CPMM on

the bottom row. Since the model is trained unsupervised, we use different colors between true

labels and cluster labels (e.g., between the top and bottom row). We see that the CPMM does a

reasonable job of capturing the general manifolds of both datasets. However, the model seems

to struggle with the end points of the trajectory and the samples are less precise than during the

other portions of the trajectory. We observe this trend on all datasets: the CPMM often struggles

with endpoints, typically the early pseudotimes. In the spiral data, we see that the model has

101

Figure 6.4: Means from a hierarchical CPMM trained on MNIST with a space-based curriculum.
Each trajectory is evaluated at evenly spaced pseudotimes between zero and one and displayed
from left to right. Despite the 3/8 and 4/9 confusion, the model does an excellent job of learning
smoothly-varying transitions between digits. The initial component (far left cases) are never the
most likely component and could be discarded.

attempted to capture the outliers, though they have larger spread than the true outliers and it

attributes them all to the same cluster.

6.5.2 Images

To process image datasets, we first rescale the input pixels to be between zero and one and

then apply an element-wise logit transform, a standard preprocessing technique (e.g., [67]). We

perform these transformations so that the “input” data has support over R. These transformations

are applied before we train any model and the corresponding log detJacobian is accounted for

when estimating bits per dimension (BPD) as in a normalizing flow.

We test training CPMMs on MNIST [40] and Fashion-MNIST [178] and compare to two

different GMM baselines along with several standard likelihood models and clustering models.

CPMM NODEs are constructed using CNNs with a depth of 3, a hidden channel width of 64, and

utilize sin activations. We additionally augment the state space by a factor of four and explicitly

condition the ODEs on pseudotime by concatenating it as an extra channel. To avoid degenera-

cies, we soft-clip log d so that the minimum value cannot be less than -6.

102

Table 6.1: Bits per dimension (BPD) and clustering accuracy (Acc.) for several image datasets.

MNIST Fashion-MNIST
BPD Acc. BPD Acc.

Matched GMM 6.61 61.75 6.58 55.00
GMM w/ S.Clust. 5.21 48.91 5.71 48.52
EiNet (Matched) 2.19 - 4.18 -
EiNet (Large) 1.95 - 3.98 -
GMM w/ Curr. 2.61 64.47 4.35 58.41
CPMM 2.21 80.07 3.91 65.01

Teacher 1.04 - 2.85 -
FFJORD 1.01 - 2.75 -
VADE - 94.5 - 57.8
SPC - 99.21 - 67.94
DLS - 97.6 - 69.3

We consider two baseline GMMs for comparison. In the first model, we choose the total

number of components equal to the number of clusters (e.g., 10). This simple procedure allows

for easy cluster assignments; each component corresponds to exactly one cluster. In the second

case, we train a GMM with 250 components since this corresponds exactly to the number of

components extracted across trajectories when using a CPMM. However, attributing components

to clusters is less obvious in this case. We choose to use spectral clustering [57] over compo-

nents based on the Fréchet distance over Gaussians [49]. Specifically, we attribute examples to

components and components to clusters based on a spectral clustering model that constructs an

affinity matrix through the Fréchet distance. Both models are initialized and trained as discussed

in Sec. 3.3.

Table 1 summarizes the results for the different mixture models in juxtaposition to standard

baselines [3, 44, 118, 138]. The matched GMM models (one component per cluster) achieves

surprisingly high clustering accuracies but subpar BPD. Unsurprisingly, introducing more compo-

nents (GMM w/ S.Clust.) improves the BPD. However, spectral clustering across components is

only marginally successful and the clustering accuracy drops relative to the baseline GMM. We

103

additionally train two EiNets [138], a type of sum-product network. The first EiNet (Matched)

is constrained to have the same total number of parameters (not components) as the the CPMM.

The second EiNet (Large) utilizes an order of magnitude more parameters. Finally, we train

a standard GMM with 250 components that additionally utilizes the curriculum. The CPMM

trained with the curriculum enjoys significantly improved BPD and clustering accuracy relative to

the GMM baselines, better performance compared to the matched EiNet and standard GMM with

the curriculum, and similar performance against the large EiNet. (See Appendix for additional

ablation experiments.) Our results indicate that our proposed methodology closes the consider-

able gap between mixture models and modern neural baselines (listed in the bottom of Table 6.1).

An especially notable case is the Fashion MNIST clustering accuracy, where the CPMM results

in comparable-to-better than the standard baselines. Thus, CPMM allows one to retain the inter-

pretability and inference speed of mixture models with improvements in modeling performance

over tradition mixture approaches.

Interpretability Figure 6.4 shows the trajectories learned by a CPMM where we have manually

ordered the clusters. The figure shows smooth transitions along the trajectory for all digits, in

general transitioning from fatter, curvier digits to slimmer, straight digits. The early pseudotimes

(far left) are never the most likely component and could be excluded for a slight increase in the

BPD. We have not done so here for the sake of transparency and to avoid arbitrary post-hoc op-

erations. This particular model does an excellent job of isolating different digits into different

trajectories with the exception of some 3/8 and 4/9 confusion that results in a clustering accuracy

of 80%. This confusion is understandable given the similarities in the digit pairs but more impor-

tantly, this analysis highlights the interpretability of our model. That is, it is simple to resolve

the model’s confusion from the trajectories since CPMM directly operates over input features. In

contrast to more opaque clustering models, a quick visual inspection reveals CPMM’s partioning

of the space. Similar results and discussion can be found for Fashion-MNIST in the Appendix.

OOD Detection Finally, we test the CPMM’s ability to distinguish between different datasets

based on likelihood. This is a known shortcoming of neural likelihood models [80, 125] where

104

Table 6.2: OOD Detection via Likelihood Thresholding

CPMM FFJORD
In Out AUROC AUPR AUROC AUPR.

MNIST Fashion 99.95 99.95 99.95 99.95
Fashion MNIST 93.38 93.28 8.98 31.65

the networks unfortunately predict that simpler datasets are more likely than the data the model

was trained on; e.g., MNIST instances yield a higher likelihood than Fashion-MNIST instances

for models trained on Fashion-MNIST. This surprising result limits the applicability of modern

likelihood models for detecting out-of-distribution (OOD) and anomalous instances, despite

their intuitive capabilities. Table 6.2 illustrates the performance of our model against a CNF for

detecting instances that are out-of-distribution (Out) when trained on a distinct inlier distribution

(In) with a simple thresholding of likelihoods. Specifically, we evaluate the likelihood of each

image using the CPMM and FFJORD when images come from the inlier distribution and when

they come from an outlier distribution (e.g., In: Fashion, Out: MNIST) and call an example in-

distribution if the likelihood exceeds some threshold and call it out-of-distribution otherwise.

Results are given as areas under the receiver operating characteristic and precision/recall curves

as a percent. Higher is better. Although both models perform nearly perfectly when MNIST is

in-distribution and Fashion-MNIST is out-of-distribution, the CPMM performs quite well on the

reverse problem where the CNF fails miserably. Notwithstanding a gap in the likelihood that is

obtainable with CPMM as compared to CNF (Table 6.1), this experiment illustrates an advantage

to our simplified approach of directly modeling the input data through a mixture of components.

6.6 Limitations

The primary difficulty of the proposed method centers on the complexity of the underlying

trajectories and how to construct a space-filling curve. This is compounded by our desire for

a trajectory to be matched to a particular class or cluster of the data and the limitation that we

105

forced each component to be equally likely, e.g., πc(t) is constant for all c and t. This limitation

is necessary to restrict the trajectories from crossing through low-probability regions and main-

tain a coherent cluster. Without this requirement, the 3/8 confusion we observed would be better

accepted as the intermediate cases (mid-times/components) would simply have little-to-no prob-

ability. This has the advantage of increasing the effectiveness of the generative portion of the

model but would significantly diminish its discriminative properties. Unfortunately, more com-

plex data manifolds may require clusters with sophisticated trajectories that would be aided by

the ability to perform complex corrections in low-likelihood regions. This is especially true if we

wish to consider clusters of objects that can take different evolutionary paths.

Two possible solutions exist to rectify this complication: additional trajectories for each

diverging path or the ability for the model to bifurcate at branch points. The up front addition of

more branches is naive and requires advanced knowledge of how many branches exist and how

to group independent trajectories back into a tree-like structure. Introducing the ability for the

model to bifurcate alleviates the difficulty with grouping but still requires a knowledge of how

many branching opportunities should be allowed. Fortunately, it may be possible for a model to

choose where to branch. We consider this an interesting direction for future research.

6.7 Conclusions

We have demonstrated that even simple likelihood models can provide additional benefits

beyond the simple generative properties they are usually ascribed when properly parameterized

and trained. Speficially, mixture models are interpretable, well-behaved, computationally-cheap

likelihood models that are, unfortunately, increasingly difficult to employ as the data complexity

and dimensionality increases. These difficulties are largely due to the relatively simple compo-

nents and sensitivities to model initializations. Neural networks have proven themselves to be

incredibly powerful models but their performance is inexplicable and they exhibit bizarre failure

modes. In this chapter, we have proposed a hierarchical method to parameterize a continuum of

mixture models from neural ODEs to create a rich, multi-modal density over disparate partitions,

106

essentially constructing a mixture of mixtures where the outer mixture encompasses different

data regions and the inner mixture can be arbitrarily complex.

We have additionally innovated a curriculum that alleviates many of the difficulties associated

with initialization. The curriculum utilizes an annealing process from a prescribed latent space

chosen for its simplicity towards the true, nuanced data space. The transitions are learned via

maximum likelihood estimation through a continuous normalizing flow. Since the initial distri-

bution is known, it is trivial to initialize a model that is well-matched. Finally, we sample a finite

number of components from the dynamic NODE to achieve an effective, light-weight model that

significantly outperforms mixtures with a similar number of components, indicating that the com-

bination of the curriculum and dynamic system allows for a more efficient use of the available

components than traditional methods.

While this method provides notable improvements in terms of likelihood predictions and clus-

tering accuracies in comparison to typical mixture methods, it unsurprisingly, fall short of neural

network methods that utilize learned latent spaces on the primary metrics typically used in model

assessment. However, we do not exhibit the same brittleness (e.g., larger likelihoods on OOD

data), require significantly less computation (once trained), and are completely interpretable. We

additionally have the ability to arbitrarily condition our models if a subset of features is known

a priori. Similarly, we can easily marginalize a subset of features to produce a completely con-

sistent model without requiring any additional training. Neither of these benefits are available

to pure neural network models further demonstrating the additional capabilities that likelihood

models can provide for alternate processes and functionality.

107

CHAPTER 7: CONCLUSION

In this dissertation we have addressed shortcomings in likelihood models over less structured

data by introducing a clever mechanism to link exchangeable likelihood models to sequential

models, enabling practitioners to exploit the huge corpus of existing research from normalizing

flows and autoregressive models. Bridging this gap is of increasing importance as the prolifer-

ation of unordered collections across a number of domains continues to increase. For example,

unordered collections are inherent for the lidar arrays utilized by driverless cars, land surveys,

and national defense. Our method remains the only model that allows for sophisticated likelihood

modeling without relying on i.i.d. assumptions in the input or latent spaces or without requiring

impractical marginalizations over all permutations. We have empirically demonstrated that this

model provides notable improvements in likelihood scoring and sample quality using a variety of

data domains.

We have additionally demonstrated several methods that utilize a learned density to improve

the performance of a larger system. Specifically we showed that by constructing a generative

process over neural networks to improve adversarial robustness. This is an important problem as

artificial agents become increasingly prevalent in areas pertaining to human safety and security.

We have additionally proposed a method for enabling high-dimensional integrals to estimate and

regularize the expected behavior of a network. The ability to estimate the expected behavior of

a network has a huge number of applications ranging from general semi-supervised learning to

average adversarial training. We can also introduce more custom integrals to help regularize a net-

work to better match expected behavior derived from domain expertise. A critical component of

this method exploits the transformative portion of a normalizing flow and without this underlying

likelihood model, the construction would not be practical. Finally, we have proposed a universal

108

approximator of smooth denisities by constructing a continuously parameterized mixture model

that maintains many of the benefits of traditional density estimates without a significant loss of

performance relative to state of the art methods. We have illustrated how this flexible model can

be used for explainable decision making when performing clustering and classification. Overall,

we have clearly shown that likelihood models have significant utility in addition to their direct

generative mode.

Future Works Our efforts have also enabled several interesting directions for future efforts. In

particular, we hypothesize that it may be possible to improve the bridge between exchangeable

and sequential models by utilizing a learnable ordering function instead of relying on a sorting

operation. This should ease the learning process of the permutation equivariant transforms by ex-

plicitly providing gradient information about how the scan is making its decisions. Additionally,

we expect that utilizing more sophisticated flow transformations should result in across-the-board

performance improvements when utilizing a composition of bijective and separable functions to

enable integrations. Finally, we expect that allowing for bifurcation within the trajectories of the

continuously parameterized mixture should allow for more flexible groups.

109

APPENDIX A: FLOWSCANS

A.1 Proof of Prop. 1

Proof. First, note that |det dq̂
dx
| is invariant to Γ since one may compute the Jacobian of q̂(Γx) as

the composition of q̂ followed by a permutation and the determinant of the Jacobian of a permu-

tation is one. Furthermore, f̂(q̂(Γx)) = f̂(Γq̂(x)) = f̂(q̂(x)), by the permutation equivariance of

q̂ and permutation invariance of f̂ . Hence, the total likelihood p̂(x) =
∣∣det dq̂

dx

∣∣f̂(q̂(x)) is permuta-

tion invariant.

A.2 Experiment Details

Experiments were implemented in Tensorflow [2]. We use multiple stacked Real NVP trans-

formations with a Gaussian exchangeable process for BRUNO. For both BRUNO and NS, we

experimented with publicly available implementations in addition to our own. We observed su-

perior performance for each using our own implementations and thus report these results. All

results reported for BRUNO are the best-of-six validated trained cases. We validated eighteen

different modifications of the Neural Statistician where we toggled if the variance of the code was

fixed (learned or fixed at one), the hidden layer sizes (64, 128, or 256), and the code size (16, 64,

or 256). See [131], and [51] for further details. (Largest models were typically not best.) Results

are reported on the best of the eighteen models. Additionally, each model was initialized six dif-

ferent times and the best model was then trained to convergence. The best model was selected

based on a held-out validation set. For FlowScan, we used equivariant pointwise transformations

by stacking RNN-coupling and invertible leaky-ReLU transformations [131]; after the scan we

implemented the autoregressive likelihood with a 2-layer GRU (256 units), which conditioned

a TAN density [131] on points. Models were optimized for 40k iterations on TitanXP GPUs.

Modelnet data was gathered as in [184], brain data was gathered as in [35]. All datasets used a

random 80/10/10 train/validation/test split.

110

A.2.1 ModelNet10 Ablation Study

We performed an ablation study using ModelNet10. We begin with a full flow scan model,

which performs an equivariant flow transformation, scans, does corresponding coupling transfor-

mations, and uses an auto-regressive model. Next, we omit the correspondence coupling trans-

formation. After, we also remove the equivariant flow transformation. Finally, we considered a

basic model without an autoregressive likelihood, that only scans and has a flat-vector density

estimate on the vector of concatenated covariates. The models achieve per point log likelihoods

of 3.01, 2.67, 2.34, and 2.27, respectively. We see that each component of FlowScan is improving

the likelihood estimate. It is also interesting that the basic scan model is still outperforming the

NS likelihood bound.

A.3 Synthetic

The synthetic data in Sec. 3.3.1 is generated as follows:

x
(1)
1 ∼ N (2, n−2)

x
(2)
1 ∼ N (0, n−2(1 + (π/3)2))

x
(1)
k ∼ N (x

(1)
1 cos(πk/n), n−2)

x
(2)
k ∼ N (cos(πk/n+ x

(2)
1), n−2)

A.4 Permutation Equivariant Transformations

For the sake of completeness, we develop several novel permutation equivariant transforma-

tions which do not transform each set element independently.

Recall that a transformation q : Rn×d → Rn×d is permutation equivariant if for any permuta-

tion matrix Γ, q(Γx) = Γq(x). Furthermore, recall that one may construct a simple permutation

111

equivariant transformation by transforming each element of a set identically and independently:

(x1, ..., xn) 7→ (q(x1), ..., q(xn)). (A.1)

However, this transformation is unable to capture any dependencies between points, and operates

in a i.i.d. fashion. Instead, we propose equivariant transformations that transform each element of

a set in a way that depends on other points in the set, yielding a richer family of models. In other

words, transforming as

(x1, ..., xn) 7→ (q(x1,x), ..., q(xn,x)). (A.2)

Below, we propose several novel equivariant transformations with intra-set dependencies.

A.4.1 Linear Permutation Equivariant (L-PEq)

We start with a linear permutation equivariant transformation. It can be shown [184] that

any linear permutation equivariant map of one-dimensional points can be written in the form,

x 7→ (λI + γ11T)x for some scalars λ and γ, and x ∈ Rn×1. Specifically, a linear permuta-

tion equivariant transformation is the result of a matrix multiplication with identical diagonal

elements and off diagonal elements.

Such a transformation captures intradependencies by mapping the jth dimension of the ith

point as

x
(j)
i 7→ λ(j)x

(j)
i +

γ(j)

n

n∑
k=1

x
(j)
k , (A.3)

incorporating the mean of other points in the set. We use the mean rather than the sum as in

[184] because it allows for better symmetry with our proposed generalization in Sec. A.4.2. It

is trivial to go between the two formulations by scaling γ(j) by n. The log-determinant of the

transformation equation equation ?? can be show to be (n− 1) log |λ(j)|+ log |λ(j) + γ(j)|, and is

112

invertible whenever λ(j) ̸= 0 and λ(j) + γ(j) ̸= 0 with inverse:

z
(j)
i 7→ z

(j)
i

λ(j)
− γ(j)

nλ(j)(λ(j) + γ(j))

n∑
k=1

z
(j)
k

A.4.2 Nonlinear Weighting (NW-PEq)

We propose a generalization of the linear permutation equivariant transformation equa-

tion equation ?? here. Instead of a direct mean, we propose to weight each element by some

nonlinear function that depends on the element’s value relative to a global operation over the set:

x
(j)
i 7→ λ(j)x

(j)
i + γ(j)

∑
k x

(j)
k w

(
x
(j)
k

)
∑

m w
(
x
(j)
m

) (A.4)

7→ λ(j)x
(j)
i + γ(j)η(j)

where w is the nonlinear weighting function and η(j) is the weighted mean. The log-determinant

of the Jacobian can be expressed as

log|J | = (n− 1) log |λ(j)|

+ log

∣∣∣∣λ(j) + γ(j)
(
1 +

∑
k

(
x
(j)
k −η(j)

)
w′

(
x
(j)
k

)
∑

m w
(
x
(j)
m

)
)∣∣∣∣ (A.5)

where w′ is the first derivative of w. It is clear that A.5 simplifies to the linear determinant for

constant w. Attempting to invert A.4 results in an implicit function for η(j)

η(j) =
(
1 + γ(j)

)−1
∑

k x
(j)
k w

(
x
(j)
k −γ(j)η(j)

)
∑

m w
(
x
(j)
m −γ(j)η(j)

) (A.6)

(where λ(j) has been dropped for brevity) that could be solved numerically to perform the in-

verse for a general nonlinear weight. This formulation implies that the weighted permutation

equivariant transform can be inverted even if w is not an invertible function. Thus, allowing for a

113

larger family of nonlinearities than is typically included in transformative likelihood estimators

[45, 46, 97].

The simplest method forward is to choose a weighting function such that a sum of function

inputs decomposes into a product of outputs, e.g. w(a+ b) = f(a)f(b) where f is some nonlinear

function. In this case, A.6 simplifies to

η(j) =
(
1 + γ(j)

)−1
∑

k x
(j)
k f

(
x
(j)
k

)
∑

m f
(
x
(j)
m

) (A.7)

and the inverse transform proceeds trivially. Choosing f to be the exponential function allows for

the simplification, guarantees positive weights, and results in a softmax-weighted mean,

x
(j)
i 7→ λ(j)x

(j)
i + γ(j)

∑
k x

(j)
k exp

(
β(j)x

(j)
k

)
∑

m exp
(
β(j)x

(j)
m

) (A.8)

with inverse temperature scaling β. It is apparent that this transformation reduces to the L-PEq

transformation when β = 0. Additionally, in the limit as β → ∞ or β → −∞, the transformation

tends to shift by the maximum or minimum of the set, respectively. The log-determinant of this

transformation is identical to the linear case and the inverse comes directly from (A.7):

z
(j)
i 7→ z

(j)
i

λ(j)
− γ(j)

λ(j) (λ(j) + γ(j))

∑
k z

(j)
k exp(

β(j)z
(j)
i

λ(j))∑
m exp(

β(j)z
(j)
i

λ(j))

where λ(j) has been reintroduced. Other choices for the nonlinear weight function w are possible,

however finding a good map that has both a closed-form log-determinant and inverse is non-

trivial. Alternate weighting functions remain a direction for future research.

114

A.5 Generated Samples for Point Cloud Experiments

Below we plot additional sampled sets using the methods compared in our experiments in

Figures A.1-A.5.

A.6 Training Examples for Point Cloud Experiments

The training data includes 10,000 points per set for all ModelNet data sets and approximately

1,000 points for both brain substructures. The various models used a randomly selected, 512

point subset during training, validation, and testing. We plot training instances in Figure A.6.

115

(a) FlowScan (b) NS (c) BRUNO

Figure A.1: Chair Samples

(a) FlowScan (b) NS (c) BRUNO

Figure A.2: ModelNet10 Samples

(a) FlowScan (b) NS
(c) BRUNO

Figure A.3: ModelNet10a Samples

116

(a) FlowScan (b) NS (c) BRUNO

Figure A.4: Caudate Samples

(a) FlowScan (b) NS
(c) BRUNO

Figure A.5: Thalamus Samples

117

(a) Airplanes

(b) Chairs

(c) modelnet10

(d) modelnet10a

(e) thalamus

(f) caudate

Figure A.6: Training examples

118

APPENDIX B: SUPPORTING INFORMATION FOR DIVERSE DEFENSES

B.1 Proof of Proposition 1

Proof. Suppose X ∼ fX(x). Since the elements of X are independent, the entropy of the random

vector X equals the sum of the entropy of each individual element

H(X) = −
∫

x
f(x) log f(x)dx

= −
∑
i

∫
x

[∏
j

f(xj)

]
log f(xi)dx

= −
∑
i

∫
xi

f(xi) log f(xi) dxi

=
∑
i

H(Xi)

(B.1)

and that

H(Xi) =

∫
xi

f(xi) log
1

f(xi)
dxi

=

∫
xi

(xi − µi)
2f(xi) log

(
e

1
(xi−µi)

2 +
1

f(xi)

)
dxi.

Since by assumption each Xi is bounded in a compact interval, we have log
(
e1/(xi−µi)

2
+ 1/f(xi)

)
>

1. It also achieves its maximum and minimum values on this compact interval which we denote

as k and h, respectively. We then have

h · Var[Xi] ≤ H(Xi) ≤ k · Var[Xi]

indicating that maximizing the entropy of X is equivalent to maximizing
∑

i Var(Xi).

119

B.2 Additional Results

Method BIM CW FGM PGD

CNN 7.1 30.5 36.8 2.6
BNN 5.5 88.9 55.2 0.9

BNN-Off 4.8 - 40.0 2.1
M 88.2 73.0 93.0 55.2

M-V 89.5 67.4 94.0 70.0
M-S 97.1 75.4 96.3 94.0

M-V-S 97.8 78.8 97.2 95.8
M-S-Off 97.2 65.6 97.6 95.8

M-V-S-Off 97.5 61.9 97.4 94.5

Table B.1: Adversarial accuracy on MNIST with various combinations of diversity promotion
against L∞ attacks.

(a) art attack (b) art attack

Figure B.1: White box attack accuracy after each epoch.

120

APPENDIX C: SUPPORTING INFORMATION FOR PRACTICAL INTEGRATION

C.1 Proofs

C.1.1 Additively Separable Functions

Theorem C.1.1 (Additive Independent Integration). Given an additively separable function, f(v),

an independent likelihood, p(v) =
∏M

m=1 pm(vm), and domain, Dv = Dv1 × ...×DvM :

Ev∼p(v) [f (v)] =
M∑

m=1

∫
Dvm

fm (vm) pm (vm) dvm (C.11)

Proof. ∫
fn (vn) pm (vm) dvm =

fn (vn) , if n ̸= m∫
fn (vn) pn (vn) dvn, else

(C.12)

Ev∼p(v) [f (v)] =

∫
D

(
M∑
n=1

fn (vn)

)(
M∏

m=1

pm(vm)

)
dv (C.13)

=
∑
n

∫
D
fn (vn)

M∏
m=1

pm(vm) dv (C.14)

Substituting Eq. C.11 into Eq. C.13 reduces the M -dimensional integral over independent likeli-

hoods into a 1-dimensional integral and completes the proof.

C.1.2 Multiplicatively Separable Functions

Theorem C.1.2 (Multiplicative Independent Integration). Given a multiplicitively separable

function, g(v), an independent likelihood, p(v) =
∏M

m=1 pm(vm), and domain, Dv = Dv1 × ...×

121

DvM :

Ev∼p(v) [g (v)] =
M∏

m=1

∫
Dvm

gm (vm) pm (vm) dvm (C.15)

Proof. Since each component of gn is matched to a component in pm, the two products can be

recombined to isolate like-dimensions. Each dimension can then be integrated independently.

Ev∼p(v) [g (v)] =

∫
dv

(
M∏
n=1

gn(vn)

)(
M∏

m=1

pm(vm)

)

=

∫
· · ·
∫ (M∏

n=1

gn(vn)pn(vn)

)
dv1 · · · dvM

=

∫
g1(v1)p1(v1)dv1 · · ·

∫
gM(vM)pM(vM)dvM

C.2 Additional Experiments

All image datasets were trained using Glow as the bijector with the number of levels adjusted

for the size of the image. MNIST and Fashion MNIST were trained with Adam for 50 epochs

with an exponentially decaying learning rate of γ = 0.75. SVHN and CIFAR10 utilized a similar

training procedure but with 75 epochs and a slower exponential decay of γ = 0.99. We find

that utilizing an average instead of a sum over separable features and soft-thresholding at −1

improves training stability.

C.2.1 Adversarial Robustness

We test the efficacy of the local cross-entropy integral by utilizing a synthetic dataset from

[163]. The data is constructed via

y ∼ {−1, +1}, x1 =

+y, w.p. p

−y, w.p. 1− p

, x2, ..., xM+1 ∼ N (ηy, 1) (C.21)

122

and the adversarial examples are constructed analytically by, essentially, flipping the sign

of η. We utilize this synthetic dataset to test adversarial robustness because it provides an upper

bound on the adversarial accuracy relative to the standard accuracy which allows us to quantify

our performance with respect to an absolute. Additionally, because adversarial examples can be

constructed exactly without relying on an optimization procedures, there can be no concerns that

this defense relies on obfuscated gradients [9]. We refer the interested reader to the original paper

for a thorough discussion.

Table C.1: Std. &
Adv. Accuracy

Std. Adv.

Accurate 100.0 0.0

Robust 95.0 95.0

Baseline 97.9 27.5

Integrated 94.5 90.8

We choose M = 10, p = 0.95, and η = 2/
√
M . For these

choices, a strong classifier will obtain near perfect standard accuracy

with zero adversarial accuracy while a robust classifier will obtain

95% standard and adversarial accuracy. We use a similar architec-

ture to that found in Sec. C.3.1 except we utilize ten blocks instead

of five. We train one model with only the standard cross-entropy

and negative log-likelihood losses and a second model with the ad-

ditional global and local cross-entropy integration loss. We find that

the model with only the standard losses achieves reasonably good

standard performance and fairly poor adversarial accuracy. The model with the additional in-

tegration losses contains considerably better adversarial performance, nearing the upper and,

necessarily lower, standard accuracy bound. Table C.1 summarizes our results and the ideal per-

formances.

C.2.2 Toy Semi-supervised Regression

Table C.2: Semi-supervised integration regularization

E [y] = 0 Standard Integrated

Sup. MSE 1.195e-5 ± 1.882e-5 2.487e-5 ± 1.769e-5

Unsup. MSE 1.399 ± 1.198 0.06187 ± 0.04538

E [ŷ] 0.1041 ± 0.08582 8.570e-4 ± 4.150e-4

To illustrate the utility of

global regularizations, we

construct a one-dimensional,

semi-supervised problem with

x ∼ N (0, 4) and y = tanh(x).

123

We keep all values of x but re-

move y values corresponding to

negative x during training. Unlike the standard semi-supervised problem, the missing labels are

not random but are the result of limitations or bias in the data collection process. We train two

models that are identical except that the integrated model includes a penalty over E [Ω (ŷ (x))]

based on foreknowledge that the average value is zero. Table C.2 shows how the models perform

over the supervised and unsupervised regions. The inclusion of the integration regularizer allows

the model to reason about regions that it has not directly observed and has decreased the error in

that region by two orders of magnitude.

124

C.2.3 Standard Performance

Table C.3: Standard accuracy and
bits-per-dimension for different datasets

Acc. BPD

MNIST 98.3 ± 0.2 2.54 ± 0.13

FMNIST 88.1 ± 2.3 4.76 ± 0.64

CIFAR10 73.4 ± 1.8 5.62 ± 0.76

SVHN 89.9 ± 0.7 4.14 ± 0.08

CIFAR10* 76.5 3.78

SVHN* 90.0 2.24

We test the impact of integrable models on OOD

performance against several standard image classifi-

cation datasets: MNIST [40], Fashion MNIST (FM-

NIST) [178], SVHN [128], and CIFAR10 [101]. See

Appendix B for architures, distributions, and training

parameters. Table C.3 contains the validation standard

accuracy and bits per dimension for all datasets with

all integration regularizers. The upper portion of the

table is averaged over 10 runs and contains a reject

option in the separable model. The lower portion is

a single run without a reject option or any integrated

regularizers. We find that the model performs reasonably well for MNIST and FMNIST but the

integrated losses cause a large degredation in performance for SVHN and CIFAR10. The removal

of these losses produces similar accuracies but much-improved BPD, consistent with the hybrid

network results reported by ResidualFlows [30] when Glow is used.

C.2.4 Out of Distribution Detection AUROC Comparisons

Table C.4: Area under the ROC curve (percentage)

GAN ODIN MSMA OE CCU Hybrid Int. Reg.

MNIST
FMNIST 99.4 98.7 - 99.9 99.9 93.6 ± 6.5 99.8 ± 0.12
EMNIST 92.8 88.9 - 95.8 92.0 77.7 ± 12.6 98.2 ± 0.28

FMNIST
MNIST 99.9 99.0 82.6 96.3 97.8 69.8 ± 9.2 95.4 ± 3.1
EMNIST 99.9 99.3 - 99.3 99.5 63.4 ± 18.2 87.8 ± 4.4

SVHN CIFAR10 96.8 95.9 97.6 100. 100. 87.0 ± 0.7 91.3 ± 0.6

CIFAR10 SVHN 83.9 96.7 99.1 98.8 98.2 73.5 ± 1.8 78.85 ± 2.7

125

C.2.5 MNIST Leave-one-out

Following [4], we test the robustness of our method against semantic OOD examples by

training models on all but one class from MNIST [40] and assessing OOD performance on the

held out class. We repeat the process for each class and report the AUROC and AUPR. In all

cases, we train using ten different random seeds and report the average performance and standard

deviation across seeds that do not degenerate against the in-distribution validation set. Table C.6

and Table C.5 contain the results of our method using both integrated losses compared to several

relevant baselines. Results from Efficient GAN-Based Anomaly Detection (EGBAD) [187] and

GANomaly [6] are taken by estimating the results from figures in both works. The Semantic

Anomalies [4] results are obtained by executing the official version of the code using the rotation

auxiliary task with two different batch sizes (128 and 256). The Semantic Anomalies results in

both tables are the best across both batch sizes and detection methods (ODIN [111] and MSP

[79]) based on the AUPR.

We see that the Semantic Anomalies generally achieves the best AUROC across all digits.

The integration often achieves the best AUPR but struggles with certain held out digits. In partic-

ular, the integration performs significantly worse on the “4” and “9” digits. This is a reasonable

confuser due to the similarities and variability of the two classes. These results indicate that the

integration penalties are helpful for inducing the model to detect semantic anomalies.

Table C.5: MNIST leave one out: AUPR (%)

Method 0 1 2 3 4

EGBAD 78 29 67 52 46
SA: Rotation 89.24 83.57 78.20 66.33 90.45
Global & Local 95.26 ± 1.98 89.67 ± 4.33 86.02 ± 3.19 93.41 ± 1.88 69.89 ± 7.02

5 6 7 8 9

EGBAD 43 57 35 54 35
SA: Rotation 83.38 75.57 95.19 68.84 84.88
Global & Local 87.76 ± 2.1 91.7 ± 2.84 83.43 ± 3.72 87.5 ± 2.91 72.9 ± 7.23

126

Table C.6: MNIST leave one out: AUROC (%)

Method 0 1 2 3 4

EGBAD 78 29 67 52 45
GANomaloy 88 65 95 79 80
SA: Rotation 98.85 98.17 94.60 94.22 98.23
Global & Local 95.93 ± 1.91 89.32 ± 4.76 84.83 ± 3.94 94.25 ± 1.25 74.49 ± 6.98

5 6 7 8 9

EGBAD 43 57 39 55 36
GANomaloy 85 85 68 85 55
SA: Rotation 97.21 92.52 99.16 92.69 97.02
Global & Local 89.47 ± 2.32 93.11 ± 2.98 83.45 ± 4.01 88.42 ± 2.97 75.66 ± 5.65

C.3 Training and Architectures

C.3.1 Spirals

The bijective layer is composed of five blocks where each block contains an affine-coupling

layer [47] and an invertible fully connected layer. The data distribution is bimodal over both

latent dimensions with means at ±1 and standard deviations of 0.4. The separable network is

composed of quadratic functions. We train the model as discussed, using the standard cross-

entropy loss for each observed point, the negative log-likelihood over the input space, and the

global cross-entropy integration with respect to the contrastive prior. The learning rate is set to

0.001 with standard weight decay of 1e-4 over 20 epochs using Adam [93].

C.3.2 Fashion MNIST

The bijective layers are composed of the Glow [96] architecture with two levels composed of

32 steps and 512 channels. We utilize an open-source Glow implementation1 wrapped in Pyro’s

[18] bijective operators. The data distribution is bimodal over all latent dimensions with means at

±1 and standard deviations of 0.5. The noise constrastive distribution is a standard Gaussian. The

separable network is composed of hinge functions (see Sec. 4.3). We utilize a batch size of 256,

1https://github.com/chrischute/glow

127

a learning rate of 1.5e-4 over the bijective layers, and a learning rate of 1.0e-3 over the separable

layers using Adam [93]. Both learning rates are exponentially decayed at a rate of 0.75 per epoch.

Standard weight decay is applied with a weight of 1e-4. The network is trained for 50 epochs.

The adversarial attacks are performed against the model at the epoch with the lowest validation

cross-entropy loss.

C.4 Approximate Expected Cross-Entropy over a Domain

We desire the expected cross-entropy, CE(ŷ(x), yc), over a domain Dc where yc is the desired

probability vector over classes, ŷ(x) is the model’s prediction of y ∈ RK from x ∈ RM and is

composed of a bijective function, h, a separable function, fk(x) =
∑

m fk,m(xm), and the soft-

max function, σ, such that ŷ(x) = σ(f(h(x))). If we are attempting to regularize the model

to produce a single class label over Dc, then y will correspond to a one-hot vector. In general,

however, yc may be a dense vector with elements yk. The expected cross-entropy is expressed as

EDc [CE(ŷ(x), yc)] = −
K∑
k=1

ykEDc [log(ŷk(x))] = −
K∑
k=1

yk

∫
Dc

log(ŷk(x)) pDc(x|y)dx (C.41)

where pDc(x|y) is the probability density function over Dc conditioned on y. We can take advan-

tage of the bijective transform to convert this expression into an expectation over the latent space,

z, and latent domain, Zc, which allows us to write

K∑
k=1

ykEDc [log(ŷk(x))] =
K∑
k=1

ykEZc [log(σ(f(z))] =
K∑
k=1

yk

∫
Zc

log(σk(f(z))) pZc(z|y)dz

(C.42)

where σk is the kth element after the soft-max normalization and pZc(z|y) is the independent

probability density function in the latent space, e.g., pZc(z|y) =
∏

m pm(zm). We can then

128

expand the soft-max operator within the expectation to get

K∑
k=1

ykEZc [log(σ(f(z))] = −EZc

[
log

(
K∑
j=1

exp(fj(z))

)]
+

K∑
k=1

ykEZc [fk(z)] (C.43)

The combination of the separable function and independent densities allows for an exact simplifi-

cation of the second term into

K∑
k=1

ykEZc [fk(z)] =
K∑
k=1

yk

M∑
m=1

∫
Zm

fk,m(zm)pm(zm)dzm (C.44)

≈ 1

G

K∑
k=1

yk

M∑
m=1

G∑
g=1

fk,m(z̃m,g)

where we have overloaded Zm to correspond to the domain of the mth latent dimension and have

approximated the integral via Monte Carlo integration with z̃m,gp̃m(zm) and G draws. The first

term on the right-hand side of Eq. C.43 does not enjoy the same exact simplification. However, it

is possible to bound the term via Jensen’s Inequality by moving the logarithm into the sum over j

or outside the expectation operator. We consider the latter case where

EZc

[
log

(
K∑
j=1

exp(fj(z))

)]
≤ log

(
EZc

[
K∑
j=1

exp(fj(z))

])
. (C.45)

Then, we expand the separable function, exchange the order of the sum over dimensions and the

exponent, take advantage of the multiplicative integral simplification (Eq. C.15), approximate via

129

Monte Carlo integration, and utilize the log
∑

exp operator for stability:

log

(
EZc

[
K∑
j=1

exp(fj(z))

])
= log

(
EZc

[
K∑
j=1

exp(
M∑

m=1

fj,m(zm))

])
(C.46)

= log

(
K∑
j=1

∫
Zc

dz
M∏

m=1

exp(fj,m(zm))
M∏
n=1

pn(zn)

)

= log

(
K∑
j=1

M∏
m=1

∫
Zm

exp(fj,m(zm))pm(zm)dzm

)

≈ log

(
K∑
j=1

M∏
m=1

G∑
g=1

exp(fj,m(z̃m,g))

)
−M log(G)

= log
K∑
j=1

exp
M∑

m=1

log
G∑

g=1

exp(fj,m(z̃m,g))−M log(G).

Finally, we can substitute Eq. C.44 and Eq. C.46 into Eq. C.41 to get

EDc [CE(ŷ(x), yc)] ≤ −
K∑
k=1

yk

M∑
m=1

∫
Zm

fk,m(zm)pm(zm)dzm (C.47)

+ log

(
K∑
j=1

M∏
m=1

∫
Zm

exp(fj,m(zm))pm(zm)dzm

)

≈ − 1

G

K∑
k=1

yk

M∑
m=1

G∑
g=1

fk,m(z̃m,g)

+ log
K∑
j=1

exp
M∑

m=1

log
G∑

g=1

exp(fj,m(z̃m,g))−M log(G)

In the event that yc is a one-hot vector (at the cth element) this simplifies to

EDc [CE(ŷ(x), yc)] ≤ −
M∑

m=1

∫
Zm

fc,m(zm)pm(zm|c)dzm (C.48)

+ log

(
K∑
j=1

M∏
m=1

∫
Zm

exp(fj,m(zm))pm(zm|c)dzm

)

where we reintroduced the condition over the class within the probability densities pm(zm|c) for

emphasis.

130

APPENDIX D: SUPPORTING INFORMATION FOR CONTINUOUSLY
PARAMETERIZED MIXTURES

D.1 Numerical Integration

The typical strategy to train a likelihood model is to optimize based on the predicted log-

likelihood and not on the likelihood directly. In fact, when training a Gaussian mixture model,

we typically calculate the log-likelihood of each component separately prior to utilizing the

numerically-stable log
∑

exp operator instead of performing the exp, followed by the
∑

, fol-

lowed by the log. This joint version stably handles difficulties resulting from over- or under-flow

when the log-likelihood of any single component is very (large) small.

When attempting to evaluate the log-likelihood for a continuum of components we should

utilize a similar log
∫
exp:

log p(x) =
−M
2

log(2π)

+ log

∫ 1

0

exp
(
− log |Σ(s)| /2− (x−µ(s))T Σ

−1
(s) (x−µ(s)) /2 + log π(s)

)
ds.

Unfortunately, none of the available black-box integrators match this form. This requires that

we utilize a naive implementation of the log
∫
exp operator. In practice, we find this sufficient to

train the model for several epochs without issue but the ODE becomes increasingly stiff before

ultimately underflowing and “NaNing” out. A better strategy to estimate a continuous mixture

model will require a new black-box integrator which we consider an excellent avenue for future

work.

D.2 Augmentations

For all image datasets we added uniform random noise between zero and one prior to rescal-

ing, e.g., a pixel with an 8bit value of 34 would then be distributed uniformly between 34 and 35.

For color images, we additionally perform standard random translations and horizontal flips. For

131

tabular data, we add Gaussian noise to each feature such that the standard deviation of the noise

is 1-10% of the spread of the data itself, e.g., we normalize each feature to be zero mean and unit

standard deviation, add Gaussian noise scaled by 0.01 to 0.1 and unnormalize that data.

When training with the curriculum (see Sec. 6.3.3), we utilize similar augmentations prior to

transforming into the various spaces such that the augmentation is shared across spaces. When

training the CPMM student, we then add a small mount of Gaussian noise (standard deviation of

0.01) regardless of the space, including when fine-tuning on the input space.

D.3 MNIST Ablations

We experiment with different types of initializations and modifications of the CPMM on

MNIST. In particular, we test random initializations and kmeans-based initializations. We also

explore restricting the diagonal portion of the covariance within each MFA to be constant (though

still learnable and still with the low rank updates, A) and attempt to utilize a separate ODE for

each cluster.
Table D.1: MNIST Ablation

Init. Diagonal BPD Acc.

Random Constant 7.67 48.83
kmeans Constant 7.56 64.93
kmeans Variable 4.49 46.42

kmeans* Constant 7.55 71.22

Table D.1 contains some representative runs attempting to train the CPMM without guid-

ance from the teacher. We find that training the models with a variable diagonal often results

in the model degenerating and failing to train. In fact, training with a variable diagonal and a

random initialization tends to fail after a few epochs and is therefore excluded from the table.

Utilizing a kmeans initialization produces moderately good BPD (better than standard GMM

training methods) but slightly worsened accuracies. Restricting the model to use a constant diag-

onal greatly stabilizes training and can produce reasonably good clustering accuracies. However,

132

this strong assumption on the covariance results in very poor BPD. This is not surprising, as the

model must raise the variance of pixels that would normally be very small (background pixels) to

sufficiently capture the spread elsewhere. Finally, the bottom row in Table D.1 contains results

using a kmeans initialization with a constant diagonal but utilizes a separate ODE for each tra-

jectory. This added flexibility results in virtually no improvement to the BPD but does provide

a noticeable increase in accuracy. We find that training separate ODEs per cluster results in a

significant increase to run time.

The results in Table D.1 were chosen as representative values across many different runs. In

general, it is possible to trade accuracy for BPD in any given row by adjust other hyperparameters

or seeds. Utilizing the curriculum learning process helps to stabilize training and allows us to

simultaneously improve the generative and discriminative portions of the model.

D.4 Fashion MNIST Results

Figure D.1 contains the trajectories from a curriculum-based CPMM trained on Fashion-

MNIST. Similar to MNIST, the trajectories show smooth variations between means. Many of

the trajectories contain visible evolutions from start to finish, i.e., bags begin without handles

but end with handles or shoes evolve from boots to stilletos. However, some of the fine detail is

missing from the trajectories, in particular for the shirts, pullovers, and coats classes.

As in MNIST, we can clearly see why the model achieves 65.74% clustering accuracy. The

shirts, pullovers, and coats classes all produce very similar trajectories. Similarly, the

sandals, sneakers, and ankle boots classes see considerable overlap. Abstractly, this

information can be extracted from any clustering model based on the confusion matrix. But,

thanks to the interpretability of the mixture models, the decision process and resulting confusion

is clear.

133

Figure D.1: Means from a hierarchical CPMM trained on Fashion-MNIST with a space-based
curriculum. Each trajectory is evaluated at evenly spaced pseudotimes between zero and one
and displayed from left to right. The initial component (far left cases) are never the most likely
component and could be discarded.

134

REFERENCES

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
qiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.
URL http://tensorflow.org/. Software available from tensorflow.org.

[2] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: a
system for large-scale machine learning. In OSDI, volume 16, pages 265–283, 2016.

[3] Abien Fred Agarap and Arnulfo P. Azcarraga. Improving k-means clustering performance
with disentangled internal representations. 2020 International Joint Conference on Neural
Networks (IJCNN), pages 1–8, 2020.

[4] Faruk Ahmed and Aaron Courville. Detecting semantic anomalies. In Proceedings of 34th
AAAI Conference on Artificial Intelligence, 2020.

[5] Abhimanyu S. Ahuja. The impact of artificial intelligence in medicine on the future role of
the physician. PeerJ, 2019. doi: https://doi.org/10.7717/peerj.7702.

[6] Samet Akcay, Amir Atapour-Abarghouei, and Toby P Breckon. Ganomaly: Semi-supervised
anomaly detection via adversarial training. In Asian Conference on Computer Vision, pages
622–637. Springer, 2018.

[7] Michael A. Alcorn and Anh Nguyen. The DEformer: An order-agnostic distribution
estimating transformer. In ICML Workshop on Invertible Neural Networks, Normalizing
Flows, and Explicit Likelihood Models, 2021. URL https://openreview.net/
forum?id=H1qfnDmta6.

[8] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false
sense of security: Circumventing defenses to adversarial examples. arXiv preprint
arXiv:1802.00420, 2018.

[9] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 274–283. PMLR, 10–15
Jul 2018. URL http://proceedings.mlr.press/v80/athalye18a.html.

135

http://tensorflow.org/
https://openreview.net/forum?id=H1qfnDmta6
https://openreview.net/forum?id=H1qfnDmta6
http://proceedings.mlr.press/v80/athalye18a.html

[10] Mrinal R. Bachute and Javed M. Subhedar. Autonomous driving architectures: Insights
of machine learning and deep learning algorithms. Machine Learning with Applica-
tions, 6:100164, 2021. ISSN 2666-8270. doi: https://doi.org/10.1016/j.mlwa.2021.
100164. URL https://www.sciencedirect.com/science/article/pii/
S2666827021000827.

[11] Pierre Baldi, Kyle Cranmer, Taylor Faucett, Peter Sadowski, and Daniel Whiteson. Pa-
rameterized neural networks for high-energy physics. The European Physical Journal
C, 76(5), Apr 2016. ISSN 1434-6052. doi: 10.1140/epjc/s10052-016-4099-4. URL
http://dx.doi.org/10.1140/epjc/s10052-016-4099-4.

[12] Andrew O. Bazarko. Miniboone: Status of the booster neutrino experiment. Nuclear
Physics B - Proceedings Supplements, 91(1-3):210–215, Jan 2001. ISSN 0920-5632. doi:
10.1016/s0920-5632(00)00943-9. URL http://dx.doi.org/10.1016/S0920-
5632(00)00943-9.

[13] Christopher M. Bender, Yang Li, Yifeng Shi, Michael K. Reiter, and Junier Oliva. Defense
through diverse directions. In Hal Daumé III and Aarti Singh, editors, Proceedings of
the 37th International Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 756–766. PMLR, 13–18 Jul 2020. URL https:
//proceedings.mlr.press/v119/bender20a.html.

[14] Christopher M. Bender, Kevin O’Connor, Yang Li, Juan Garcia, Manzil Zaheer, and Junier
Oliva. Exchangeable generative models with flow scans. 34:10053–10060, Apr. 2020.
doi: 10.1609/aaai.v34i06.6562. URL https://ojs.aaai.org/index.php/AAAI/
article/view/6562.

[15] Christopher M. Bender, Patrick Emmanuel, Michael M. Reiter, and Junier Oliva. Practical
integration via separable bijective networks. In International Conference on Learning Rep-
resentations, 2022. URL https://openreview.net/forum?id=NlObxR0rosG.

[16] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum
learning. In Proceedings of the 26th Annual International Conference on Machine
Learning, ICML ’09, page 41–48, New York, NY, USA, 2009. Association for Com-
puting Machinery. ISBN 9781605585161. doi: 10.1145/1553374.1553380. URL
https://doi.org/10.1145/1553374.1553380.

[17] José M Bernardo and Adrian FM Smith. Bayesian theory, volume 405. John Wiley & Sons,
2009.

[18] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan,
Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman.
Pyro: Deep Universal Probabilistic Programming. Journal of Machine Learning Research,
2018.

[19] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738.

136

https://www.sciencedirect.com/science/article/pii/S2666827021000827
https://www.sciencedirect.com/science/article/pii/S2666827021000827
http://dx.doi.org/10.1140/epjc/s10052-016-4099-4
http://dx.doi.org/10.1016/S0920-5632(00)00943-9
http://dx.doi.org/10.1016/S0920-5632(00)00943-9
https://proceedings.mlr.press/v119/bender20a.html
https://proceedings.mlr.press/v119/bender20a.html
https://ojs.aaai.org/index.php/AAAI/article/view/6562
https://ojs.aaai.org/index.php/AAAI/article/view/6562
https://openreview.net/forum?id=NlObxR0rosG
https://doi.org/10.1145/1553374.1553380

[20] P. Blanchard, R.L. Devaney, and G.R. Hall. Differential Equations. Thomson Brooks/Cole,
2006. ISBN 9780495012658. URL https://books.google.com/books?id=
mwxX2pv9UvYC.

[21] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight
uncertainty in neural networks. arXiv preprint arXiv:1505.05424, 2015.

[22] Dankmar Böhning, Wilfried Seidel, Marco Alfò, Bernard Garel, Valentin Patilea, and
Gunther Walther. Advances in mixture models. Comput. Stat. Data Anal., 51:5205–5210,
2007.

[23] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners, 2020.

[24] Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. Thermometer encoding:
One hot way to resist adversarial examples. 2018.

[25] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks.
In 2017 ieee symposium on security and privacy (sp), pages 39–57. IEEE, 2017.

[26] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering
for unsupervised learning of visual features. In ECCV, 2018.

[27] George Casella and Roger L Berger. Statistical inference, volume 2. Duxbury Pacific Grove,
CA, 2002.

[28] Chao Chen, Guanbin Li, Ruijia Xu, Tianshui Chen, Mei Wang, and L. Lin. Clusternet: Deep
hierarchical cluster network with rigorously rotation-invariant representation for point
cloud analysis. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4989–4997, 2019.

[29] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural
ordinary differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.
neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-
Paper.pdf.

[30] Ricky T. Q. Chen, Jens Behrmann, David K Duvenaud, and Joern-Henrik Jacobsen. Resid-
ual flows for invertible generative modeling. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Process-
ing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/5d0d5594d24f0f955548f0fc0ff83d10-
Paper.pdf.

137

https://books.google.com/books?id=mwxX2pv9UvYC
https://books.google.com/books?id=mwxX2pv9UvYC
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5d0d5594d24f0f955548f0fc0ff83d10-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5d0d5594d24f0f955548f0fc0ff83d10-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5d0d5594d24f0f955548f0fc0ff83d10-Paper.pdf

[31] Tian Qi Chen, Yulia Rubanova, J. Bettencourt, and D. Duvenaud. Neural ordinary differen-
tial equations. In NeurIPS, 2018.

[32] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with
sublinear memory cost. CoRR, abs/1604.06174, 2016. URL http://arxiv.org/abs/
1604.06174.

[33] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple frame-
work for contrastive learning of visual representations, 2020.

[34] Moustapha Cissé, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier.
Parseval networks: Improving robustness to adversarial examples. In ICML, 2017.

[35] Heather Cody, Hongbin Gu, Brent Munsell, Sun Kim, Martin Styner, Jason Wolff, Jed Eli-
son, Meghan Swanson, Hongtu Zhu, Kelly Botteron, Louis Collins, John N. Constantino,
Stephen R. Dager, Annette M. Estes, Alan Evans, Vladimir Fonov, Guido Gerig, Pene-
lope Kostopoulos, Robert C. McKinstry, and Core H. Gu. Early brain development in
infants at high risk for autism spectrum disorder. Nature, 542:348–351, 02 2017. doi:
10.1038/nature21369.

[36] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST: an
extension of MNIST to handwritten letters. arXiv preprint arXiv:1702.05373, 2017.

[37] Adnan Darwiche. A differential approach to inference in bayesian networks. 50(3), 2003.
ISSN 0004-5411. doi: 10.1145/765568.765570. URL https://doi.org/10.1145/
765568.765570.

[38] Nilaksh Das, Madhuri Shanbhogue, Shang-Tse Chen, Fred Hohman, Li Chen, Michael E
Kounavis, and Duen Horng Chau. Keeping the bad guys out: Protecting and vaccinating
deep learning with jpeg compression. arXiv preprint arXiv:1705.02900, 2017.

[39] Ingrid Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Mathemat-
ics, USA, 1992. ISBN 0898712742.

[40] Li Deng. The MNIST database of handwritten digit images for machine learning research.
IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[41] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[42] Guneet S Dhillon, Kamyar Azizzadenesheli, Zachary C Lipton, Jeremy Bernstein, Jean
Kossaifi, Aran Khanna, and Anima Anandkumar. Stochastic activation pruning for robust
adversarial defense. arXiv preprint arXiv:1803.01442, 2018.

[43] Joshua V. Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan, Dave
Moore, Brian Patton, Alex Alemi, Matthew D. Hoffman, and Rif A. Saurous. Tensorflow
distributions. CoRR, abs/1711.10604, 2017. URL http://arxiv.org/abs/1711.
10604.

138

http://arxiv.org/abs/1604.06174
http://arxiv.org/abs/1604.06174
https://doi.org/10.1145/765568.765570
https://doi.org/10.1145/765568.765570
http://arxiv.org/abs/1711.10604
http://arxiv.org/abs/1711.10604

[44] Fei Ding, Feng Luo, and Yin Yang. Double cycle-consistent generative adversarial network
for unsupervised conditional generation, 2019. URL https://arxiv.org/abs/
1911.05210.

[45] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent compo-
nents estimation. CoRR, abs/1410.8516, 2014.

[46] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP.
CoRR, abs/1605.08803, 2016.

[47] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real
NVP. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL
https://openreview.net/forum?id=HkpbnH9lx.

[48] J.R. Dormand and P.J. Prince. A family of embedded runge-kutta formulae. Journal of
Computational and Applied Mathematics, 6(1):19–26, 1980. ISSN 0377-0427. doi: https:
//doi.org/10.1016/0771-050X(80)90013-3. URL https://www.sciencedirect.
com/science/article/pii/0771050X80900133.

[49] DC Dowson and BV666017 Landau. The fréchet distance between multivariate normal
distributions. Journal of multivariate analysis, 12(3):450–455, 1982.

[50] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
7ac71d433f282034e088473244df8c02-Paper.pdf.

[51] Harrison Edwards and Amos Storkey. Towards a neural statistician. In 5th International
Conference on Learning Representations (ICLR 2017), 2 2017.

[52] Hamid Eghbal-zadeh, W. Zellinger, and G. Widmer. Mixture density generative adversarial
networks. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5813–5822, 2019.

[53] Gamaleldin Elsayed, Shreya Shankar, Brian Cheung, Nicolas Papernot, Alexey Kurakin,
Ian Goodfellow, and Jascha Sohl-Dickstein. Adversarial examples that fool both computer
vision and time-limited humans. In Advances in Neural Information Processing Systems,
pages 3910–3920, 2018.

[54] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao,
Atul Prakash, Tadayoshi Kohno, and Dawn Song. Robust physical-world attacks on deep
learning visual classification. In 2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 1625–1634.
Computer Vision Foundation / IEEE Computer Society, 2018. doi: 10.1109/CVPR.2018.
00175. URL http://openaccess.thecvf.com/content_cvpr_2018/html/
Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.html.

139

https://arxiv.org/abs/1911.05210
https://arxiv.org/abs/1911.05210
https://openreview.net/forum?id=HkpbnH9lx
https://www.sciencedirect.com/science/article/pii/0771050X80900133
https://www.sciencedirect.com/science/article/pii/0771050X80900133
https://proceedings.neurips.cc/paper/2019/file/7ac71d433f282034e088473244df8c02-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7ac71d433f282034e088473244df8c02-Paper.pdf
http://openaccess.thecvf.com/content_cvpr_2018/html/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.html

[55] et. al. Falcon, WA. Pytorch lightning. GitHub. Note:
https://github.com/PyTorchLightning/pytorch-lightning, 3, 2019.

[56] Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes,
Mohammadamin Barekatain, Alexander Novikov, Francisco J. R. Ruiz, Julian Schrit-
twieser, Grzegorz Swirszcz, David Silver, Demis Hassabis, and Pushmeet Kohli. Discov-
ering faster matrix multiplication algorithms with reinforcement learning. Nature, 610
(7930):47–53, Oct 2022. ISSN 1476-4687. doi: 10.1038/s41586-022-05172-4. URL
https://doi.org/10.1038/s41586-022-05172-4.

[57] Maurizio Filippone, Francesco Camastra, Francesco Masulli, and Stefano Rovetta. A survey
of kernel and spectral methods for clustering. Pattern Recognition, 41(1):176–190, 2008.
ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.2007.05.018. URL https://www.
sciencedirect.com/science/article/pii/S0031320307002580.

[58] Ming Ming Gao, Chan Tai-hua, and Xiang xiang Gao. Application of gaussian mixture
model genetic algorithm in data stream clustering analysis. 2010 IEEE International
Conference on Intelligent Computing and Intelligent Systems, 3:786–790, 2010.

[59] Alan E Gelfand, Athanasios Kottas, and Steven N MacEachern. Bayesian nonparamet-
ric spatial modeling with dirichlet process mixing. Journal of the American Statistical
Association, 100(471):1021–1035, 2005. doi: 10.1198/016214504000002078. URL
https://doi.org/10.1198/016214504000002078.

[60] Efstathios D. Gennatas, Jerome H. Friedman, Lyle H. Ungar, Romain Pirracchio, Eric
Eaton, Lara G. Reichmann, Yannet Interian, José Marcio Luna, Charles B. Simone, An-
drew Auerbach, Elier Delgado, Mark J. van der Laan, Timothy D. Solberg, and Gilmer
Valdes. Expert-augmented machine learning. Proceedings of the National Academy
of Sciences, 117(9):4571–4577, 2020. doi: 10.1073/pnas.1906831117. URL https:
//www.pnas.org/doi/abs/10.1073/pnas.1906831117.

[61] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: Masked Au-
toencoder for Distribution Estimation. In Francis Bach and David Blei, editors, Proceedings
of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of
Machine Learning Research, pages 881–889, Lille, France, 07–09 Jul 2015. PMLR.

[62] Zoubin Ghahramani and Geoffrey E. Hinton. The EM algorithm for mixtures of factor
analyzers. 1996.

[63] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems, volume 27. Curran Associates,
Inc., 2014. URL https://proceedings.neurips.cc/paper/2014/file/
5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

140

https://doi.org/10.1038/s41586-022-05172-4
https://www.sciencedirect.com/science/article/pii/S0031320307002580
https://www.sciencedirect.com/science/article/pii/S0031320307002580
https://doi.org/10.1198/016214504000002078
https://www.pnas.org/doi/abs/10.1073/pnas.1906831117
https://www.pnas.org/doi/abs/10.1073/pnas.1906831117
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

[64] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. In International Conference on Learning Representations, 2015. URL
http://arxiv.org/abs/1412.6572.

[65] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep learning. Nature, 521:
436–444, 2015.

[66] Dilan Görür and Carl Edward Rasmussen. Dirichlet process gaussian mixture models:
Choice of the base distribution. Journal of Computer Science and Technology, 25:653–664,
2010.

[67] Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud. Scalable
reversible generative models with free-form continuous dynamics. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?
id=rJxgknCcK7.

[68] Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles Blundell, and Daan Wierstra. Deep
autoregressive networks. In Eric P. Xing and Tony Jebara, editors, Proceedings of the 31st
International Conference on Machine Learning, volume 32 of Proceedings of Machine
Learning Research, pages 1242–1250, Bejing, China, 22–24 Jun 2014. PMLR.

[69] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. A survey of deep
learning techniques for autonomous driving. Journal of Field Robotics, 37(3):362–386,
Apr 2020. ISSN 1556-4967. doi: 10.1002/rob.21918. URL http://dx.doi.org/10.
1002/rob.21918.

[70] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens Van Der Maaten. Countering
adversarial images using input transformations. arXiv preprint arXiv:1711.00117, 2017.

[71] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estima-
tion principle for unnormalized statistical models. In Yee Whye Teh and Mike Titter-
ington, editors, Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research,
pages 297–304, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL
http://proceedings.mlr.press/v9/gutmann10a.html.

[72] David Ha, Andrew Dai, and Quoc V. Le. Hypernetworks, 2016. URL https://arxiv.
org/abs/1609.09106.

[73] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning. 2001.

[74] Tamir Hazan, George Papandreou, and Daniel Tarlow. Perturbations, Optimization, and
Statistics. MIT Press, 2016.

[75] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

141

http://arxiv.org/abs/1412.6572
https://openreview.net/forum?id=rJxgknCcK7
https://openreview.net/forum?id=rJxgknCcK7
http://dx.doi.org/10.1002/rob.21918
http://dx.doi.org/10.1002/rob.21918
http://proceedings.mlr.press/v9/gutmann10a.html
https://arxiv.org/abs/1609.09106
https://arxiv.org/abs/1609.09106

[76] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[77] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[78] Kilian Hendrickx, Lorenzo Perini, Dries Van der Plas, Wannes Meert, and Jesse Davis.
Machine learning with a reject option: A survey, 2021.

[79] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-
distribution examples in neural networks. Proceedings of International Conference on
Learning Representations, 2017.

[80] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with
outlier exposure. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HyxCxhRcY7.

[81] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages 6840–6851. Curran Associates,
Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

[82] Hajo Holzmann, Axel Munk, and Tilmann Gneiting. Identifiability of finite mixtures of
elliptical distributions. Scandinavian Journal of Statistics, 33, 2006.

[83] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural
Networks, 1991. ISSN 0893-6080. doi: https://doi.org/10.1016/0893-6080(91)90009-
T. URL https://www.sciencedirect.com/science/article/pii/
089360809190009T.

[84] Kurt Hornik, Maxwell B. Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5):359–366, 1989. URL
http://dblp.uni-trier.de/db/journals/nn/nn2.html#HornikSW89.

[85] M.F. Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics - Simulation and Computation, 19(2):
433–450, 1990. doi: 10.1080/03610919008812866. URL https://doi.org/10.
1080/03610919008812866.

[86] Pavel Izmailov, P. Kirichenko, Marc Finzi, and A. Wilson. Semi-supervised learning with
normalizing flows. ArXiv, abs/1912.13025, 2020.

[87] Priyank Jaini, Pascal Poupart, and Yaoliang Yu. Deep homogeneous mixture models: Repre-
sentation, separation, and approximation. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing

142

https://openreview.net/forum?id=HyxCxhRcY7
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://www.sciencedirect.com/science/article/pii/089360809190009T
https://www.sciencedirect.com/science/article/pii/089360809190009T
http://dblp.uni-trier.de/db/journals/nn/nn2.html#HornikSW89
https://doi.org/10.1080/03610919008812866
https://doi.org/10.1080/03610919008812866

Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.
neurips.cc/paper/2018/file/c5f5c23be1b71adb51ea9dc8e9d444a8-
Paper.pdf.

[88] Tony Jebara, Risi Kondor, and Andrew Howard. Probability product kernels. J. Mach.
Learn. Res., 5:819–844, December 2004. ISSN 1532-4435. URL http://dl.acm.
org/citation.cfm?id=1005332.1016786.

[89] Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning Zhou. Variational
deep embedding: An unsupervised and generative approach to clustering. In IJCAI, 2017.

[90] Lianmeng Jiao, Thierry Denoeux, Zhunga Liu, and Quan Pan. Egmm: an evidential version
of the gaussian mixture model for clustering. ArXiv, abs/2010.01333, 2020.

[91] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf
Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko,
Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie,
Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor
Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger,
Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol
Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hass-
abis. Highly accurate protein structure prediction with alphafold. Nature, 596(7873):
583–589, Aug 2021. ISSN 1476-4687. doi: 10.1038/s41586-021-03819-2. URL
https://doi.org/10.1038/s41586-021-03819-2.

[92] Diederik Kingma and Max Welling. Auto-encoding variational bayes. In International
Conference on Learning Representations, ICLR 2014, 12 2014.

[93] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015. URL http://arxiv.org/abs/1412.6980.

[94] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio
and Yann LeCun, editors, 2nd International Conference on Learning Representations,
ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014.
URL http://arxiv.org/abs/1312.6114.

[95] Diederik P. Kingma, Danilo Jimenez Rezende, Shakir Mohamed, and Max Welling. Semi-
supervised learning with deep generative models. CoRR, abs/1406.5298, 2014. URL
http://arxiv.org/abs/1406.5298.

[96] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 con-
volutions. In Advances in Neural Information Processing Systems, pages 10236–10245,
2018.

[97] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 con-
volutions. In Advances in Neural Information Processing Systems, pages 10236–10245,
2018.

143

https://proceedings.neurips.cc/paper/2018/file/c5f5c23be1b71adb51ea9dc8e9d444a8-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/c5f5c23be1b71adb51ea9dc8e9d444a8-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/c5f5c23be1b71adb51ea9dc8e9d444a8-Paper.pdf
http://dl.acm.org/citation.cfm?id=1005332.1016786
http://dl.acm.org/citation.cfm?id=1005332.1016786
https://doi.org/10.1038/s41586-021-03819-2
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1406.5298

[98] Jan J. Koenderink. Solid Shape. MIT Press, Cambridge, MA, USA, 1990. ISBN 0-262-
11139-X.

[99] Iryna Korshunova, Jonas Degrave, Ferenc Huszar, Yarin Gal, Arthur Gretton, and Joni
Dambre. Bruno: A deep recurrent model for exchangeable data. In Advances in Neural
Information Processing Systems, pages 7190–7198, 2018.

[100] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for ad-
vanced research). URL http://www.cs.toronto.edu/˜kriz/cifar.html.

[101] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Learning multiple layers of features
from tiny images. Technical report, CIFAR-10 (Canadian Institute for Advanced Research),
2009. URL http://www.cs.toronto.edu/˜kriz/cifar.html.

[102] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems, volume 25.
Curran Associates, Inc., 2012. URL https://proceedings.neurips.cc/paper/
2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[103] Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator. In Ge-
offrey Gordon, David Dunson, and Miroslav Dudı́k, editors, Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, volume 15 of Proceed-
ings of Machine Learning Research, pages 29–37, Fort Lauderdale, FL, USA, 11–13 Apr
2011. PMLR.

[104] Marc T. Law, Raquel Urtasun, and Richard S. Zemel. Deep spectral clustering learning. In
ICML, 2017.

[105] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http:
//yann.lecun.com/exdb/mnist/.

[106] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[107] Dong-Hyun Lee. Pseudo-label : The simple and efficient semi-supervised learning method
for deep neural networks. ICML 2013 Workshop : Challenges in Representation Learning
(WREPL), 07 2013.

[108] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R Kosiorek, Seungjin Choi, and Yee Whye
Teh. Set transformer. arXiv preprint arXiv:1810.00825, 2018.

[109] Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. Training confidence-calibrated clas-
sifiers for detecting out-of-distribution samples. In International Conference on Learning
Representations, 2018.

[110] Yang Li, Shoaib Akbar, and Junier Oliva. ACFlow: Flow models for arbitrary condi-
tional likelihoods. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th

144

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

International Conference on Machine Learning, volume 119 of Proceedings of Ma-
chine Learning Research, pages 5831–5841. PMLR, 13–18 Jul 2020. URL https:
//proceedings.mlr.press/v119/li20a.html.

[111] Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the reliability of out-of-distribution im-
age detection in neural networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=H1VGkIxRZ.

[112] Xuanqing Liu, Minhao Cheng, Huan Zhang, and Cho-Jui Hsieh. Towards robust neural
networks via random self-ensemble. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 369–385, 2018.

[113] Xuanqing Liu, Yao Li, Chongruo Wu, and Cho-Jui Hsieh. Adv-bnn: Improved adversarial
defense through robust bayesian neural network. arXiv preprint arXiv:1810.01279, 2018.

[114] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable adversarial
examples and black-box attacks. arXiv preprint arXiv:1611.02770, 2016.

[115] Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural
networks: Bridging deep architectures and numerical differential equations, 2017. URL
https://arxiv.org/abs/1710.10121.

[116] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL https:
//openreview.net/forum?id=rJzIBfZAb.

[117] Ahsan Mahmood, Junier Oliva, and Martin Andreas Styner. Multiscale score matching for
out-of-distribution detection. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=xoHdgbQJohv.

[118] Louis Mahon and Thomas Lukasiewicz. Selective pseudo-label clustering. In Stefan
Edelkamp, Ralf Möller, and Elmar Rueckert, editors, KI 2021: Advances in Artificial
Intelligence, pages 158–178, Cham, 2021. Springer International Publishing. ISBN 978-3-
030-87626-5.

[119] Alexander Meinke and Matthias Hein. Towards neural networks that provably know when
they don’t know. 2020.

[120] Christoph Molnar. Interpretable Machine Learning. 2 edition, 2022. URL https:
//christophm.github.io/interpretable-ml-book.

[121] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a
simple and accurate method to fool deep neural networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2574–2582, 2016.

[122] S. Mukherjee, Himanshu Asnani, Eugene Lin, and S. Kannan. Clustergan : Latent space
clustering in generative adversarial networks. ArXiv, abs/1809.03627, 2019.

145

https://proceedings.mlr.press/v119/li20a.html
https://proceedings.mlr.press/v119/li20a.html
https://openreview.net/forum?id=H1VGkIxRZ
https://arxiv.org/abs/1710.10121
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=xoHdgbQJohv
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book

[123] Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák.
Neural importance sampling. ACM Trans. Graph., 38(5):145:1–145:19, October 2019.
ISSN 0730-0301. doi: 10.1145/3341156. URL http://doi.acm.org/10.1145/
3341156.

[124] Peter Müller and Fernando A. Quintana. Nonparametric Bayesian Data Analysis. Statistical
Science, 19(1):95 – 110, 2004. doi: 10.1214/088342304000000017. URL https://doi.
org/10.1214/088342304000000017.

[125] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, and Balaji Lakshminarayanan. Detect-
ing out-of-distribution inputs to deep generative models using typicality. arXiv preprint
arXiv:1906.02994, 2019.

[126] Eric T. Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Görür, and Balaji Lakshmi-
narayanan. Hybrid models with deep and invertible features. Proceedings of the 36th
International Conference on Machine Learning, 2019. URL http://arxiv.org/abs/
1902.02767.

[127] Ali Bou Nassif, Ismail Shahin, Imtinan Attili, Mohammad Azzeh, and Khaled Shaalan.
Speech recognition using deep neural networks: A systematic review. IEEE Access, 7:
19143–19165, 2019. doi: 10.1109/ACCESS.2019.2896880.

[128] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng.
Reading digits in natural images with unsupervised feature learning. In NIPS Workshop on
Deep Learning and Unsupervised Feature Learning, 2011.

[129] Jiquan Ngiam, Zhenghao Chen, Pang Wei Koh, and Andrew Y. Ng. Learning deep energy
models. In Proceedings of the 28th International Conference on International Conference
on Machine Learning, ICML’11, page 1105–1112, Madison, WI, USA, 2011. Omnipress.
ISBN 9781450306195.

[130] Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc Tran, Beat Buesser, Ambrish Rawat, Mar-
tin Wistuba, Valentina Zantedeschi, Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, Ian
Molloy, and Ben Edwards. Adversarial robustness toolbox v1.1.0. CoRR, 1807.01069, 2018.
URL https://arxiv.org/pdf/1807.01069.

[131] Junier Oliva, Avinava Dubey, Manzil Zaheer, Barnabas Poczos, Ruslan Salakhutdinov,
Eric Xing, and Jeff Schneider. Transformation autoregressive networks. In International
Conference on Machine Learning, pages 3898–3907, 2018.

[132] Junier Oliva, Avinava Dubey, Manzil Zaheer, Barnabas Poczos, Ruslan Salakhutdinov,
Eric Xing, and Jeff Schneider. Transformation autoregressive networks. In International
Conference on Machine Learning, pages 3898–3907, 2018.

[133] Lindsay C. Page and Hunter Gehlbach. How an artificially intelligent virtual assistant helps
students navigate the road to college. AERA Open, 3(4):2332858417749220, Oct 2017.
ISSN 2332-8584. doi: 10.1177/2332858417749220. URL https://doi.org/10.
1177/2332858417749220.

146

http://doi.acm.org/10.1145/3341156
http://doi.acm.org/10.1145/3341156
https://doi.org/10.1214/088342304000000017
https://doi.org/10.1214/088342304000000017
http://arxiv.org/abs/1902.02767
http://arxiv.org/abs/1902.02767
https://arxiv.org/pdf/1807.01069
https://doi.org/10.1177/2332858417749220
https://doi.org/10.1177/2332858417749220

[134] Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu. Improving adversarial robustness
via promoting ensemble diversity. CoRR, abs/1901.08846, 2019. URL http://arxiv.
org/abs/1901.08846.

[135] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow
for density estimation. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/6c1da886822c67822bcf3679d04369fa-
Paper.pdf.

[136] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and
Ananthram Swami. The limitations of deep learning in adversarial settings. In 2016 IEEE
European symposium on security and privacy (EuroS&P), pages 372–387. IEEE, 2016.

[137] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019. URL
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf.

[138] Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin
Trapp, Guy Van Den Broeck, Kristian Kersting, and Zoubin Ghahramani. Einsum networks:
Fast and scalable learning of tractable probabilistic circuits. In Hal Daumé III and Aarti
Singh, editors, Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pages 7563–7574. PMLR,
13–18 Jul 2020. URL https://proceedings.mlr.press/v119/peharz20a.
html.

[139] Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting Shao, Martin
Trapp, Kristian Kersting, and Zoubin Ghahramani. Random sum-product networks: A
simple and effective approach to probabilistic deep learning. In Ryan P. Adams and Vibhav
Gogate, editors, Proceedings of The 35th Uncertainty in Artificial Intelligence Conference,
volume 115 of Proceedings of Machine Learning Research, pages 334–344. PMLR, 22–25
Jul 2020. URL https://proceedings.mlr.press/v115/peharz20a.html.

[140] G Peter Lepage. A new algorithm for adaptive multidimensional integration. Journal
of Computational Physics, 27(2):192–203, 1978. ISSN 0021-9991. doi: https://doi.
org/10.1016/0021-9991(78)90004-9. URL https://www.sciencedirect.com/
science/article/pii/0021999178900049.

[141] Guilherme G. P. Freitas Pires and Mário A. T. Figueiredo. Variational mixture of normaliz-
ing flows. ArXiv, abs/2009.00585, 2020.

147

http://arxiv.org/abs/1901.08846
http://arxiv.org/abs/1901.08846
https://proceedings.neurips.cc/paper/2017/file/6c1da886822c67822bcf3679d04369fa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6c1da886822c67822bcf3679d04369fa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6c1da886822c67822bcf3679d04369fa-Paper.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://proceedings.mlr.press/v119/peharz20a.html
https://proceedings.mlr.press/v119/peharz20a.html
https://proceedings.mlr.press/v115/peharz20a.html
https://www.sciencedirect.com/science/article/pii/0021999178900049
https://www.sciencedirect.com/science/article/pii/0021999178900049

[142] Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture. In
2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops),
pages 689–690, 2011. doi: 10.1109/ICCVW.2011.6130310.

[143] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning
on point sets for 3d classification and segmentation. Proc. Computer Vision and Pattern
Recognition (CVPR), IEEE, 1(2):4, 2017.

[144] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. In C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems, volume 28. Curran Associates, Inc., 2015. URL https://proceedings.
neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-
Paper.pdf.

[145] S Hamid Rezatofighi, Anton Milan, Ehsan Abbasnejad, Anthony Dick, Ian Reid, et al.
Deepsetnet: Predicting sets with deep neural networks. In Computer Vision (ICCV), 2017
IEEE International Conference on, pages 5257–5266. IEEE, 2017.

[146] Eitan Richardson and Yair Weiss. On gans and gmms. In NeurIPS, 2018.

[147] Andrew Slavin Ross and Finale Doshi-Velez. Improving the adversarial robustness and
interpretability of deep neural networks by regularizing their input gradients. In Thirty-
second AAAI conference on artificial intelligence, 2018.

[148] Matthias Rupp. Machine learning for quantum mechanics in a nutshell. International
Journal of Quantum Chemistry, 115(16):1058–1073, 2015. doi: https://doi.org/10.1002/qua.
24954. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.
24954.

[149] J. Rynkiewicz. General bound of overfitting for mlp regression models. Neurocomputing,
90:106–110, 2012. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2011.11.
028. URL https://www.sciencedirect.com/science/article/pii/
S0925231212001865. Advances in artificial neural networks, machine learning, and
computational intelligence (ESANN 2011).

[150] Uri Shaham, Kelly Stanton, Haochao Li, Boaz Nadler, Ronen Basri, and Yuval Kluger.
Spectralnet: Spectral clustering using deep neural networks. ArXiv, abs/1801.01587, 2018.

[151] L.F. Shampine. Solving odes and ddes with residual control. Applied Numerical Mathe-
matics, 52(1):113–127, 2005. ISSN 0168-9274. doi: https://doi.org/10.1016/j.apnum.2004.
07.003. URL https://www.sciencedirect.com/science/article/pii/
S0168927404001187.

[152] Mahmood Sharif, Lujo Bauer, and Michael K. Reiter. n-ML: Mitigating adversarial exam-
ples via ensembles of topologically manipulated classifiers. arXiv preprint 1912.09059,
December 2019. URL https://arxiv.org/abs/1912.09059.

148

https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.24954
https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.24954
https://www.sciencedirect.com/science/article/pii/S0925231212001865
https://www.sciencedirect.com/science/article/pii/S0925231212001865
https://www.sciencedirect.com/science/article/pii/S0168927404001187
https://www.sciencedirect.com/science/article/pii/S0168927404001187
https://arxiv.org/abs/1912.09059

[153] Yash Sharma and Pin-Yu Chen. Attacking the madry defense model with l 1-based adver-
sarial examples. arXiv preprint arXiv:1710.10733, 2017.

[154] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search. nature,
529(7587):484, 2016.

[155] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering
the game of go without human knowledge. Nature, 550(7676):354–359, 2017.

[156] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering
the game of go without human knowledge. Nature, 550(7676):354–359, 2017.

[157] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/
2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf.

[158] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. Pix-
eldefend: Leveraging generative models to understand and defend against adversarial
examples. arXiv preprint arXiv:1710.10766, 2017.

[159] W.A. Strauss. Partial Differential Equations: An Introduction. Wiley, 2007.
ISBN 9780470054567. URL https://books.google.com/books?id=
PihAPwAACAAJ.

[160] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and
Patrick McDaniel. Ensemble adversarial training: Attacks and defenses. arXiv preprint
arXiv:1705.07204, 2017.

[161] Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel. The
space of transferable adversarial examples. arXiv preprint arXiv:1704.03453, 2017.

[162] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander
Madry. Robustness may be at odds with accuracy. arXiv preprint arXiv:1805.12152, 2018.

[163] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander
Madry. Robustness may be at odds with accuracy. In International Conference on
Learning Representations, 2019. URL https://openreview.net/forum?id=
SyxAb30cY7.

[164] Ch. Tsitouras. Runge–kutta pairs of order 5(4) satisfying only the first column simplifying
assumption. Computers & Mathematics with Applications, 62(2):770–775, 2011. ISSN
0898-1221. doi: https://doi.org/10.1016/j.camwa.2011.06.002. URL https://www.
sciencedirect.com/science/article/pii/S0898122111004706.

149

https://proceedings.neurips.cc/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
https://books.google.com/books?id=PihAPwAACAAJ
https://books.google.com/books?id=PihAPwAACAAJ
https://openreview.net/forum?id=SyxAb30cY7
https://openreview.net/forum?id=SyxAb30cY7
https://www.sciencedirect.com/science/article/pii/S0898122111004706
https://www.sciencedirect.com/science/article/pii/S0898122111004706

[165] Benigno Uria, Iain Murray, and Hugo Larochelle. Rnade: The real-valued neural autore-
gressive density-estimator. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 26, pages
2175–2183. Curran Associates, Inc., 2013.

[166] Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, and Hugo Larochelle.
Neural autoregressive distribution estimation. Journal of Machine Learning Research, 17
(205):1–37, 2016.

[167] Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, koray kavukcuoglu, Oriol
Vinyals, and Alex Graves. Conditional image generation with pixelcnn decoders.
In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 29. Curran Associates, Inc.,
2016. URL https://proceedings.neurips.cc/paper/2016/file/
b1301141feffabac455e1f90a7de2054-Paper.pdf.

[168] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
neural information processing systems, pages 5998–6008, 2017.

[169] Eric Veach. Robust Monte Carlo methods for light transport simulation. Stanford University,
1998.

[170] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence
for sets. arXiv preprint arXiv:1511.06391, 2015.

[171] C. Viroli and G. McLachlan. Deep gaussian mixture models. Statistics and Computing, 29:
43–51, 2019.

[172] Peide Wang. Research on comparison of lidar and camera in autonomous driving. Journal
of Physics: Conference Series, 2093(1):012032, nov 2021. doi: 10.1088/1742-6596/2093/1/
012032. URL https://dx.doi.org/10.1088/1742-6596/2093/1/012032.

[173] Siyue Wang, Xiao Wang, Pu Zhao, Wujie Wen, David Kaeli, Peter Chin, and Xue Lin.
Defensive dropout for hardening deep neural networks under adversarial attacks. In Proceed-
ings of the International Conference on Computer-Aided Design, pages 1–8, 2018.

[174] Xiao Wang, Siyue Wang, Pin-Yu Chen, Yanzhi Wang, Brian Kulis, Xue Lin, and Peter
Chin. Protecting neural networks with hierarchical random switching: Towards better
robustness-accuracy trade-off for stochastic defenses. arXiv preprint arXiv:1908.07116,
2019.

[175] Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, and Roger B. Grosse. Flipout: Efficient
pseudo-independent weight perturbations on mini-batches. CoRR, abs/1803.04386, 2018.
URL http://arxiv.org/abs/1803.04386.

[176] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. pages
1912–1920, 06 2015. doi: 10.1109/CVPR.2015.7298801.

150

https://proceedings.neurips.cc/paper/2016/file/b1301141feffabac455e1f90a7de2054-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/b1301141feffabac455e1f90a7de2054-Paper.pdf
https://dx.doi.org/10.1088/1742-6596/2093/1/012032
http://arxiv.org/abs/1803.04386

[177] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 1912–1920,
2015.

[178] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for
benchmarking machine learning algorithms, 2017.

[179] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L Yuille, and Kaiming He. Feature
denoising for improving adversarial robustness. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 501–509, 2019.

[180] Junyuan Xie, Ross B. Girshick, and Ali Farhadi. Unsupervised deep embedding for clus-
tering analysis. In ICML, 2016.

[181] Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and Quoc V. Le. Unsupervised
data augmentation for consistency training, 2020. URL https://openreview.net/
forum?id=ByeL1R4FvS.

[182] Jinsung Yoon, Yao Zhang, James Jordon, and Mihaela van der Schaar. Vime: Extending
the success of self- and semi-supervised learning to tabular domain. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Infor-
mation Processing Systems, volume 33, pages 11033–11043. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper/2020/file/
7d97667a3e056acab9aaf653807b4a03-Paper.pdf.

[183] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn:
Generating realistic graphs with deep auto-regressive models. In International Conference
on Machine Learning, pages 5694–5703, 2018.

[184] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhut-
dinov, and Alexander J Smola. Deep sets. In Advances in Neural Information Processing
Systems, pages 3391–3401, 2017.

[185] Manzil Zaheer, Chun-Liang Li, Yang Zhang, Barnabas Poczos, and Ruslan Salakhutdinov.
Point cloud gan. arXiv preprint arXiv:1810.05795, 2018.

[186] Valentina Zantedeschi, Maria-Irina Nicolae, and Ambrish Rawat. Efficient defenses against
adversarial attacks. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security, pages 39–49, 2017.

[187] Houssam Zenati, Chuan Sheng Foo, Bruno Lecouat, Gaurav Manek, and Vijay Ramase-
shan Chandrasekhar. Efficient GAN-based anomaly detection. In 6th International
Conference on Learning Representations, ICLR 2018, Workshop Track, 2018. URL
http://arxiv.org/abs/1802.06222.

[188] Dejiao Zhang, Y. Sun, B. Eriksson, and L. Balzano. Deep unsupervised clustering using
mixture of autoencoders. ArXiv, abs/1712.07788, 2017.

151

https://openreview.net/forum?id=ByeL1R4FvS
https://openreview.net/forum?id=ByeL1R4FvS
https://proceedings.neurips.cc/paper/2020/file/7d97667a3e056acab9aaf653807b4a03-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/7d97667a3e056acab9aaf653807b4a03-Paper.pdf
http://arxiv.org/abs/1802.06222

[189] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=r1Ddp1-Rb.

[190] Huan Zhang, Hongge Chen, Zhao Song, Duane Boning, Inderjit S Dhillon, and Cho-Jui
Hsieh. The limitations of adversarial training and the blind-spot attack. arXiv preprint
arXiv:1901.04684, 2019.

152

https://openreview.net/forum?id=r1Ddp1-Rb

	TITLE
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	Introduction
	Learning Over Sets
	Applications of Likelihood models
	Thesis Organization
	Contributions

	Background
	Neural Networks
	Convolutional Neural Networks
	Neural Ordinary Differential Equations

	Likelihood Models
	Gaussian Mixture Models
	Normalizing Flows and Bijective Networks
	Linear and Element-wise Transformations
	Coupling Transformations
	Invertible 11 Convolutions
	Continuous Normalizing Flows

	Autoregressive Models

	FlowScans
	Overview
	Motivation and Challenges
	Methods
	Equivariant Flow Transformations
	Invariance Through Sorting
	Autoregressive Scan Likelihood
	Correspondence Flow Transformations
	Complete FlowScan Architecture
	Related Work
	Experiments
	Shuffled Synthetic Sequential Data
	ModelNet
	Brain Data
	Spatial MNIST
	MNIST
	Limitations
	Conclusion
	Defense Through Diverse Directions
	Overview
	Background & Related Work
	Bayesian Neural Networks
	Adversarial Attack
	Adversarial Defense
	Obfuscated Gradients

	Motivation
	Method
	Entropy and Variances
	Direct Loss
	MinVar
	Non-Sparse Promoting Losses
	Batch Loss
	Further Benefits of Adversarial Training

	Experiments
	Penalty Shorthand
	Practical Considerations
	Drawing from the Bayesian Network
	Attack Schemes

	Synthetic Dataset
	MNIST
	MNIST Accuracy Evolution

	CIFAR-10

	Ablation
	Discussion and Limitations
	Conclusions

	Practical Integration
	Overview
	Motivation
	Background
	Separable Functions
	Additively Separable Functions
	Multiplicatively Separable Functions

	Method
	Practical Applications
	Latent Distributions
	Separable Networks
	Integrals
	Out-of-Distribution Supervision
	Local Consistency

	Loss Components

	Related Work
	Experiments
	Spirals
	Out of Distribution Detection
	Semi-Supervised Learning
	Interpretability

	Limitations
	Conclusions

	Continuously Parameterized Mixture Models
	Overview
	Background
	Mixture of Factor Analyzers

	Methods
	Continuously Parameterized Mixture Models
	Hierarchical Mixture of Factor Analyzers
	Curriculum Through Spaces

	Related Work
	Experiments
	Synthetic Data
	Images

	Limitations
	Conclusions

	Conclusion
	FlowScans
	Proof of Prop. 1
	Experiment Details
	ModelNet10 Ablation Study

	Synthetic
	Permutation Equivariant Transformations
	Linear Permutation Equivariant (L-PEq)
	Nonlinear Weighting (NW-PEq)

	Generated Samples for Point Cloud Experiments
	Training Examples for Point Cloud Experiments

	Supporting Information for Diverse Defenses
	Proof of Proposition 1
	Additional Results

	Supporting Information for Practical Integration
	Proofs
	Additively Separable Functions
	Multiplicatively Separable Functions

	Additional Experiments
	Adversarial Robustness
	Toy Semi-supervised Regression
	Standard Performance
	Out of Distribution Detection AUROC Comparisons
	MNIST Leave-one-out

	Training and Architectures
	Spirals
	Fashion MNIST

	Approximate Expected Cross-Entropy over a Domain

	Supporting Information for Continuously Parameterized Mixtures
	Numerical Integration
	Augmentations
	MNIST Ablations
	Fashion MNIST Results

	REFERENCES

