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ABSTRACT 

Nicole E. Kramer: Developing computational tools and datasets to investigate the genomic loci associated 
with disease 

(Under the direction of Douglas H. Phanstiel) 

 The majority of genetic variants associated with complex diseases are located in non-coding, 

regulatory regions of the genome. Understanding the genetic mechanisms of the progression of these 

diseases has been largely advanced by sequencing-based genomic techniques including RNA-seq, 

ChIP-seq, Hi-C, genome-wide association studies (GWAS), and Quantitative Trait Locus (QTL) mapping. 

However, the genetic underpinnings of disease have been difficult to interpret largely because (1) 

currently available visualization software lacks the ability to efficiently and programmatically integrate 

large volumes of complex multi-omic data and (2) there are few datasets in disease-relevant cell types in 

which genomic changes are tracked in response to disease-specific stimuli. In the first part of this work I 

describe plotgardener, a new R programmatic library for efficiently and reproducibly plotting publication-

quality, multi-panel genomic figures. Plotgardener provides customizable genomic plotting and annotation 

functions that allows users to size and arrange plots in precisely-defined coordinate systems based upon 

user-defined units of measurement. I include example use cases with plotgardener, both with genomic 

data and ggplot2 objects, and also have extensively documented and freely available code for the 

package through Bioconductor and GitHub. I then go on to create and investigate the first response allelic 

imbalance (AI) and eQTL (reQTL) datasets using an ex vivo model of osteoarthritis (OA) whereby 

chondrocytes are stimulated with fibronectin fragment (FN-f), a known OA trigger. AI analysis revealed 55 

unique genetic variants exhibiting AI at 58 positional genes only after FN-f treatment, with some of these 

genes exhibiting differential expression. reQTL mapping identified 384 eGenes specific to FN-f treated 

samples, and colocalization of identified reQTLs with GWAS of various OA phenotypes revealed one 

robust colocalization of a reQTL with multiple OA phenotypes. I also use plotgardener to visualize these 

datasets within the context of the genes and linkage disequilibrium (LD) structure of the region. Overall, 
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these studies have resulted in the creation of a broadly applicable genomic visualization tool and novel 

datasets to provide critical insights into the genetic basis of osteoarthritis.  
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For all the women in STEM – we got this.  
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CHAPTER 1: INTRODUCTION 

1.1 Gene regulation and disease 

Despite the presence of numerous specialized cell types carrying out specific functions within the 

human body, the same sequence of DNA base pairs makes up the functional blueprint of every cell in an 

individual. The complexities of this system lie in its overall regulation – which genes are expressed and 

when, how much are they expressed, and how does their expression change in different environments? 

The key players of this regulation, including enhancers, promoters, repressors, insulators, and other 

transcription factor binding sites (Levine & Tjian, 2003), mostly reside in the vast non-coding genome 

(Alexander et al., 2010; ENCODE Project Consortium, 2012). Although genome-wide efforts have sought 

to understand the complicated interplay and dynamics of this system, many aspects of genetic regulation 

are still poorly understood. 

Different individuals, particularly from different populations, have many single base pair variations 

in their genomes, termed single nucleotide polymorphisms (SNPs). It is estimated that there are at least 

11 million SNPs in the human genome (1000 Genomes Project Consortium et al., 2015), which can in 

turn alter its regulation and function. Certain variations can result in single gene disorders like cystic 

fibrosis and sickle-cell anemia, whereby a mutation at a single gene results in the diseased phenotype 

(Spataro et al., 2017). However, most traits and diseases are complex and result from the interaction of 

several genomic loci housing susceptibility alleles and various environmental factors (Almouzni et al., 

2014; Jackson et al., 2018). Furthermore, much of this disease-associated genetic variation resides in the 

non-coding genome and is thought to alter the complex transcriptional regulatory landscape and lead to 

the misregulation of gene expression (Gonzaga-Jauregui et al., 2012; Lee & Young, 2013; Zhang & 

Lupski, 2015). While recent studies have made significant progress to disentangle the genetics of 

numerous diseases, it still remains difficult to fully understand the mechanisms of causal genes and 

variants involved in disease susceptibility. Understanding disease-related genetic variation in different 

populations would provide novel avenues for preventative treatments and curing therapies. 
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Osteoarthritis (OA) is one such polygenic disease that requires detailed genetic investigation in 

order to identify targets for therapeutic intervention. OA is a progressive joint disease that affects over 

250 million people worldwide and is one of the leading causes of disability and pain (Hunter & Bierma-

Zeinstra, 2019; Loeser et al., 2012). There are currently no treatments other than symptom management 

or end-stage joint replacements, which leaves gene regulation mechanisms as a lucrative space for 

identifying novel disease-modifying treatments. Thus far, genome-wide association studies (GWAS) have 

been one of the primary methods in studying the effects of genetic variation on OA phenotypes. These 

GWAS involve mapping alleles at SNPs in controls and cases, which can encompass OA at any skeletal 

joint (primarily the knees and hips) both by joint stratification and combining case types. To date, a 

combination of numerous rigorous OA GWAS has resulted in 124 SNPs significantly associated with OA 

spanning 95 independent loci across the genome (arcOGEN Consortium et al., 2012; Boer et al., 2021; 

Casalone et al., 2018; Castaño Betancourt et al., 2012; Castaño-Betancourt et al., 2016; Day-Williams et 

al., 2011; den Hollander et al., 2017; Evangelou et al., 2013, 2014; Evans et al., 2015; Hackinger et al., 

2017; Kerkhof et al., 2010; Liu et al., 2017; Miyamoto et al., 2007, 2008; Nakajima et al., 2010; 

Panoutsopoulou et al., 2017; Styrkarsdottir et al., 2014, 2017, 2018; Tachmazidou et al., 2019; Valdes et 

al., 2011; Yau et al., 2017; Zengini et al., 2018). These studies have identified broad genetic risk loci that 

provide the starting point for disentangling OA etiology but do not reveal the mechanistic impact of causal 

non-coding variants on OA gene regulation. 

1.2 Challenges of studying disease-relevant genetic regulation 

 The increasing sample sizes and diversifying populations of GWAS has revealed more loci 

associated with traits and diseases, but it still remains challenging to translate these results into causal 

variants and their molecular mechanisms for a variety of reasons. The linked inheritance of nearby SNPs, 

termed linkage disequilibrium (LD), results in their correlation with each other and thus makes it difficult to 

distinguish the actual causal variant. In numerous diseases, it is also unclear which cell types these SNPs 

act in to drive disease versus which cell types are merely affected as a consequence of disease. Lastly, 

more than 90% of disease associated variants lie in the non-coding genome and indirectly regulate the 

expression of one or many genes (Cano-Gamez & Trynka, 2020). Thus, the natural next step for 

understanding the biological relevance of these results is to generate molecular datasets in a disease-
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relevant system and integrate them with GWAS to prioritize variants. Several studies across various traits 

have used integrative, multi-omic approaches to identify genes impacted by distal, non-coding SNPs. For 

example, one study used epigenomics, comparative genomics, human genetics, genome editing, and 

sample perturbations to disentangle the mechanisms of the FTO locus and its association to obesity. The 

C risk allele at rs1421085 was found to disrupt a conserved motif for the ARID5B repressor, which led to 

an increase in IRX3 and IRX5 expression during adipocyte differentiation and in turn shifted adipocytes 

towards the energy-storing white adipocyte development (Claussnitzer et al., 2015). From this example it 

is clear that multiple layers of genomic and genetic data are required to understand the effects of non-

coding variants on a phenotype. 

 Beyond the complications of interpreting GWAS results, studying gene regulation in OA in 

particular has been difficult due to the heterogeneity of the disease. In addition to genetic factors, OA is 

highly influenced by various environmental factors including age or degree of wear and tear of the joint. 

Furthermore, symptoms can be highly variable and involve single or multiple joints (Abramoff & Caldera, 

2020). Thus, it is hard to distinguish genetic effects and their response to disease stimuli when 

interrogating the effects of genetic variation on gene expression and regulation. Possible solutions to 

studying the disease include in vivo with animal models, which lack full control in fine-tuning and probing 

genetic-specific effects, and in vitro models, which diminish the biological relevance of a study when cells 

are taken out of the disease context. Ex vivo models provide an opportunity to study OA through articular 

chondrocytes, which are the only cells found in cartilage and are associated with OA, isolated from 

healthy donor tissue and stimulated with an extracellular matrix component (fibronectin fragments, or FN-

f) found in degrading cartilage and shown to initiate a positive feedback loop of matrix destruction 

(Forsyth et al., 2002; Homandberg, 1999; Homandberg et al., 1998; Pulai et al., 2005; Xie et al., 1992). 

This system allows for the control of joint location, OA severity, and environmental factors to increase 

power in identifying causal genetic variation and its effect on gene regulation throughout an OA-like 

response. The FN-f chondrocyte model of OA has been characterized as an effective model for 

recapitulating OA transcriptomics (Reed et al., 2021), so Chapters 3 and 4 leverage this fine-tuned 

system to study OA gene regulation mechanisms in a disease-relevant context. 



 4 

1.3 Genomic datasets for investigating disease-associated genetic loci 

Many genome-wide, sequencing-based assays have been used to study the complexities of non-

coding genomic features and gain mechanistic information about these loci. Measures of chromatin 

accessibility, gene expression, 3D chromatin contact frequencies, and histone marks for transcription 

factor activity functionally annotate the genome, but do not usually connect genetic variation to these 

readouts. Quantitative trait loci (QTL) mapping is a powerful statistical method to understand associations 

between genetic variants and molecular markers. In particular, expression QTLs (eQTLs) link SNPs to 

gene regulatory mechanisms at specific genes, and integrating these datasets with GWAS can serve as a 

way to connect genetic effect on molecular traits with complex phenotypes, making this a useful method 

to identify the genes involved in traits and diseases. Numerous studies and large consortiums like the 

Genotype Tissue Expression project (GTEx) (GTEx Consortium, 2013) have mapped eQTLs in a vast 

array of tissues and in increasingly large sample sizes, but many of these identified eQTLs are shared 

across tissues and do not colocalize with disease-associated GWAS loci (GTEx Consortium, 2020). One 

hypothesis for this lack of colocalization is that disease variants must be studied in the correct cell type 

and genetic regulation in this cell type may only be detected after a disease-relevant stimulus (Umans et 

al., 2021). For example, one previous study identified eQTLs involved in the macrophage immune 

response that colocalized with disease risk loci only after stimulation with IFNγ and/or Salmonella (Alasoo 

et al., 2018). 

Despite this finding, there are limited numbers of disease response-specific genomic datasets, 

particularly in the study of OA. Only one study has leveraged the chondrocyte FN-f model of OA to 

prioritize OA genetic variants through Hi-C DNA looping information (Thulson et al., 2022). However, OA 

integrative epigenomics and QTL studies have only focused on steady-state disease conditions to map 

methylation, protein, and expression QTLs, primarily in diseased bulk cartilage or chondrocytes extracted 

from diseased cartilage alone (Kreitmaier et al., 2022; Steinberg et al., 2017, 2021). While the identified 

QTLs have revealed compelling colocalizations with OA GWAS, there are still many loci that are yet to 

colocalize with OA-relevant QTLs that could potentially be resolved with stimulated cell-type-specific QTL 

datasets. In Chapter 4, I map the first set of OA response eQTLs (reQTLs) using the ex vivo OA model of 

FN-f perturbed chondrocytes to identify novel putative OA risk genes. 
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In addition to understanding the effects of genetic variation on total gene expression through 

eQTLs, we can use the relative expression of gene alleles to further investigate allele-specific effects of 

causal variants on gene expression. Allelic imbalance (AI), or allele-specific expression (ASE), refers to 

the unequal expression of alleles of a gene in diploid individuals, which is driven by genetic variants 

located in or near the gene. This analysis can be used as a complementary approach to eQTL mapping 

to characterize the genetic basis of gene expression. Compared to eQTL studies, AI can be investigated 

with smaller donor sample sizes with higher power because the two measured alleles are expressed 

within the same individual, controlling the genetic and environmental background (Almlöf et al., 2012). AI 

OA studies, like OA QTL studies, have also only been conducted in bulk and/or steady-state diseased OA 

tissues thus far (Bos et al., 2012; Coutinho de Almeida et al., 2022; den Hollander et al., 2019; Gee et al., 

2014; Raine et al., 2013; Reynard et al., 2014; Southam et al., 2007). In Chapter 3, I generate a 

complementary AI dataset in the OA FN-f model system to capture stimulus-specific and chondrocyte-

specific AI variants and their regulation of gene expression. 

1.4 Genomic data visualization as a tool for data interpretation 

The increasing need for larger and more complex genomic datasets to study genetic regulation in 

disease has created a dire need for computational tools that can efficiently parse, interpret, and visualize 

these data. Response eQTL and AI datasets, while informative on their own, are further strengthened by 

integration with other genomic data, including GWAS, chromatin accessibility, DNA looping, and gene 

annotations. Improved tools for handling the large-scale landscape of studying the regulatory genome 

increase the reproducibility and communication of scientific findings as well as contribute to the forming of 

novel hypotheses that can contribute to understanding the genetic basis of disease. 

Numerous tools have already revolutionized our ability to interpret complex scientific data. 

Genomic browsers like the Integrative Genomics Viewer (IGV) (Thorvaldsdóttir et al., 2013), UCSC 

Genome Browser (Kent et al., 2002), and WashU Epigenome Browser (Li et al., 2019) specialize in 

preliminarily surveying through stacked linear genomic tracks for quickly exploring genomic regions of 

interest. The introduction of chromatin conformation assays like Hi-C has led to genomic browsers 

specialized in visualizing 3D data representations like Juicebox (Durand et al., 2016) and HiGlass 

(Kerpedjiev et al., 2018). Despite their contribution to the scientific process, these browsers are poorly 
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suited for integration with data analysis workflows and creating easily reproducible visualizations with 

code. Programmatic libraries have increased the reproducibility and automation of genomic figure 

generation, particularly through bioinformatic tools and infrastructure developed by the Bioconductor 

project (Gentleman et al., 2004) for the R programming language (R Core Team, n.d.). The Bioconductor 

project has established widely used data structures, packages for analysis and visualization, and various 

workflows that have been instrumental in analyzing genomic datasets. For example, almost all studies 

studying differential gene expression use edgeR (Robinson et al., 2010) or DESeq2 (Love et al., 2014), 

which are both a part of Bioconductor. 

Although several visualization packages are available through Bioconductor or the 

Comprehensive R Archive Network (CRAN), these packages do not effectively integrate, align, and 

arrange multiple large-scale genomic data types into multi-panel, publication-quality figures. Genomic-

specific visualization packages like rtracklayer (Lawrence et al., 2009) and Gviz (Hahne & Ivanek, 2016) 

are best suited for plotting single-paneled tracks of small regions of data, which can be difficult to scale to 

look at the increasing number of datasets and disease-associated loci. Packages that can make and 

arrange multi-paneled plots like cowplot (Wilke, 2020), egg (Auguie, 2019), gridExtra (Auguie, 2017), 

multipanelfigure (Graumann & Cotton, 2018), patchwork (Pedersen, 2020), and Sushi (Phanstiel et al., 

2014) give users little control over the exact sizing and arrangement of figures by using relative 

positioning and limiting arrangements to rigid grid-style layouts. Figures generated with these libraries 

often require finishing with graphic design software, which decreases the reproducibility of using 

computational visualization methods. 

In Chapter 2, I describe plotgardener, an R/Bioconductor genomic visualization package for 

building entirely programmatic, complex multi-panel genomic figures. Plotgardener uses an absolute, 

coordinate-based system for sizing and arranging plots and supports a wide range of high-throughput 

genomic data. I have written extensive documentation illustrating plotgardener’s numerous use cases, 

and I have used it for generating figures for my own datasets in Chapters 3 and 4.  
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CHAPTER 2: PLOTGARDENER: CULTIVATING PRECISE MULTI-PANEL FIGURES IN R1 

2.1 Introduction 

The increasing size, complexity, and sheer volume of multi-omic data sets has created a dire 

need for tools to efficiently visualize, interpret, and communicate the underlying biological signals present 

in these data. Towards this end, genome browsers, including the UCSC Genome Browser and IGV, have 

revolutionized our ability to investigate genomic data in a rapid and intuitive fashion, using a stacked 

linear representation of a wide variety of data types and annotations (Abeel et al., 2012; Carver et al., 

2009; Chelaru et al., 2014; Flicek et al., 2011; Freese et al., 2016; Kent et al., 2002; Thorvaldsdóttir et al., 

2013; Zhou et al., 2011). Recently, more specialized browsers like Juicebox (Durand et al., 2016) and 

HiGlass (Kerpedjiev et al., 2018) have increased the ability to visualize non-linear data types, such as 3D 

chromatin contact frequency (Djekidel et al., 2017; Wang et al., 2018). Furthermore, an ever-increasing 

array of programmatic libraries and browser APIs now allow code-based, integrated data analysis and 

construction of browser tracks, which has improved reproducibility and automation (Durinck et al., 2009; 

Hahne & Ivanek, 2016; Lawrence et al., 2009; Wickham, 2016; Yin et al., 2012). 

While these tools have been transformative for data exploration, they are largely based on single-

panel figures and vertical stacking of genomic tracks and are often ill-suited for the generation of complex 

multi-panel figures that include both genomic and non-genomic plot types. Such complex figures are often 

critical for evaluating the underlying biology and are almost always used to present multi-omic data in 

publications. Thus, a tool specifically designed to programmatically create and arrange publication-quality 

multi-panel figures is critical to extend the rigor, reproducibility, and clarity of scientific data visualizations. 

Currently existing R packages like patchwork (Pedersen, 2020), cowplot (Wilke, 2020), gridExtra 

(Auguie, 2017), egg (Auguie, 2019), multipanelfigure (Graumann & Cotton, 2018), and Sushi (Phanstiel et 

 
1 The work in this chapter has been previously published. The original citation is as follows: Kramer, N.E., Davis, 
E.S., Wenger, C.D., Deoudes, E.M., Parker, S.M., Love, M. I., & Phanstiel, D. H. (2022) Plotgardener: cultivating 
precise multi-panel figures in R. Bioinformatics 38(7): 2042-2045. doi: 10.1093/bioinformatics/btac057. 
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al., 2014) can be used to arrange multi-panel plots. However, these layout packages use relative 

positioning to place plots and are limited to standard grid-style layouts, giving users little control over 

precise sizing and arrangement. Furthermore, these packages arrange and align entire plot panels as 

opposed to internal plot elements like axes. Figures generated with these tools often need finishing in 

graphic design software such as Adobe Illustrator (Adobe Inc., 2019), Inkscape (Inkscape Project, 2020), 

PowerPoint (Microsoft Corporation, 2018), and Keynote (Apple Inc., n.d.). In addition to the cost of 

purchasing proprietary graphic design software and the steep learning curve often associated with their 

use, generating multi-panel figures with these software requires non programmatic, manual user 

interactions, a labor intensive process that decreases reproducibility. 

Here we introduce plotgardener, an R package for absolute coordinate-based plot placement and 

sizing of complex multi-panel plots. This paradigm gives users precise control over size, placement, 

typefaces, font sizes, and virtually all plot aesthetics without the need for graphic design software. 

Plotgardener (1) supports a vast array of genomic data types, (2) allows precise placement and sizing of 

genomic and non-genomic figures, (3) is tightly integrated with the Bioconductor environment (Gentleman 

et al., 2004), and (4) is optimized for speed and user-experience. The code is open source, extensively 

documented, and freely available via GitHub and Bioconductor.  

2.2 Philosophy 

The defining feature of plotgardener that separates it from virtually all other genomic visualization 

tools is that it allows exact sizing and placement of plots using an absolute, coordinate-based plotting 

system (Figure 2.1). Each plot, axis, and annotation is placed independently according to user-specified 

positions and dimensions. Each plot or feature extends from edge to edge of the defined coordinates, 

allowing for precise control and perfect alignment of plots. Rulers and guidelines can be temporarily 

added for ease of plotting and then removed prior to file generation. Adding additional plots does not shift 

or resize existing ones, so figures can be built incrementally and adjusted without affecting other figure 

panels, allowing rapid and easy construction of publication-quality multi-panel figures. 



 15 

2.3 Data Types 

Plotgardener can display a vast array of genomic data types which can be provided as either 

external files or R data classes. Plotgardener has 45 functions for plotting and annotating diverse 

genomic data types, including genome sequences, gene/transcript annotations, chromosome ideograms,  

 
Figure 2.1. Plotgardener uses a coordinate-based plotting system to size and arrange plots.  
(A) Blueprint outline of a multi-omic figure to be created with specified dimensions and placements on a 
defined page. (B) Multi-panel, multi-omicc figure programmatically created with plotgardener using the 
sizing and placement coordinates from (A). The plotgardener functions used to create this figure include 
pageCreate, plotHicSquare, annoHeatmapLegend, plotGenes, annoGenomeLabel, plotIdeogram, 
plotHicTriangle, plotSignal, and plotText. Code to reproduce this plot is included in the plotgardener 
package. 
 
 
signal tracks, GWAS Manhattan plots, genomic ranges (e.g. peaks, reads, contact domains, etc), paired 

ranges (e.g. paired-end reads, chromatin loops, structural rearrangements, QTLs, etc), and 3D chromatin 

contact frequencies. Plotgardener plotting functions automatically recognize and read compressed, 

indexed file types including “.bam”, “.bigwig”, and “.hic”, allowing for rapid and memory-efficient reading 

and plotting of large genomic data. Figure 2.S1 displays the runtime required to read and plot various 

types of genomic data. Even with file sizes exceeding 50 GBs, plotgardener can read and plot data in 

under a second. Multiple classes of R objects are supported, including “data.frame”, “data.table”, “tibble”, 

“GRanges”, and “GInteractions”. Plotgardener automatically detects whether the input is a file path or an 

R object and handles them accordingly, providing a seamless and flexible experience for the user. 

Furthermore, plotgardener provides the additional reading functions readHic and readBigwig to allow 

users to work with their raw datasets within the R environment.  
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2.4 Plotting Workflow 

 Plotgardener functions can be grouped into four main categories of exported functions – page, 

reading, plotting, and annotation – which provide a framework for modular plots and annotations to be 

arranged together on a page. The first step to building a complex, multi-panel figure is to initialize a 

plotgardener page with pageCreate. The plotgardener page provides the coordinate system for users to 

size and place plots. pageCreate allows users to define the width, height, and units of the page so users 

can make a variety of figure sizes in the units of their preference, including inches, centimeters, and 

millimeters. To assist the placement of figure elements, gridlines can be set in the vertical and horizontal 

directions with the xgrid and ygrid parameters within pageCreate, and additional guides can be added 

with pageGuideVertical and pageGuideHorizontal. Once the page is defined, users are free to add plots 

with precise dimensions and placement coordinates in relation to the page. The page sets the origin of 

the figure at the top left corner of the page, and the just parameter in plotting functions provides additional 

flexibility by allowing users to change the placement reference point. The just parameter can be set using 

character strings or numeric values, as shown in Figure 2.S2. 

 Plotgardener is modular and separates plotting and annotating into two different categories of 

functions. Once a user creates a plot and places it on the page, the resulting plot object can be passed 

into various annotation functions through the plot parameter. This parameter allows the annotation 

function to inherit genomic region and plot location information from the main plot. Possible annotations 

include genome labels, heatmap legends, Hi-C pixel and domain highlights, axes, and genomic region 

highlights. 

 Once a user has plotted and arranged a multi-panel figure with the elements of their choice, they 

have the option to customize the aesthetics of the figure. Each plot and annotation can be customized for 

a variety of aesthetic parameters, including colors/palettes, line colors, line widths, font families, font 

sizes, font colors, and labeling options. In addition, any grid lines or guides used during plotting can be 

removed with pageGuideHide. After this step, the plotgardener figure is ready for export with any of the 

built in R graphics devices for saving plots. 
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2.5 Bioconductor Integration 

Plotgardener is tightly integrated with the Bioconductor ecosystem (Gentleman et al., 2004), 

making it compatible with many existing workflows. It has 29 built-in genomes and associated annotations 

but can easily accommodate custom genomes and annotations using Bioconductor TxDb (Lawrence et 

al., 2013), OrgDb (Pagès et al., 2021), and Bsgenome (Pagès, 2021) packages and/or objects. 

Plotgardener leverages these annotation resources on behalf of the user to obtain and plot chromosome 

sizes, gene and transcript structures, and nucleotide sequences. By preconfiguring the genome builds 

and associated feature data, plotgardener allows users to focus their attention on layout and to quickly 

visualize their data rather than spending time and effort on curation and organization of sequences and 

genome annotations. 

2.6 User Experience 

Plotgardener includes a variety of user-friendly features to maximize ease of use for both novices 

and experienced R programmers. We describe just some of these features here. Parameters can be set 

within each function call or passed in a pgParams object for more efficient code. Genomic coordinates 

can be set either by supplying the chromosome, start, and end position or by providing a gene name (e.g. 

IL1B), reference genome name (e.g. “hg19”), and optional base pair window around the gene (e.g. 

50,000 bp). Resolution of Hi-C contact matrices, signal tracks, and gene tracks are automatically 

determined based on the genomic range being plotted, but can be overwritten if desired. When genomic 

regions are too large to label all genes, plotGenes and plotTranscripts will choose which genes/transcripts 

to label based on frequency of appearance in publications. Similarly, 

annoGenomeLabel/plotGenomeLabel can detect appropriate resolutions to display nucleotides as colored 

boxes or colored letters. Users can provide their own priorities or select individual genes to highlight with 

text and colors. A colorby function allows users to flexibly color genomic features by quantitative and 

qualitative attributes. Plotgardener is open source, version controlled, and extensively documented via 

articles and vignettes (https://phanstiellab.github.io/plotgardener/). 

2.7 ggplot and Beyond 

In addition to its included functions for plotting and annotating genomic data, plotgardener allows 

for the absolute sizing and placement of non-genomic plots, shapes, and images within a plotgardener 
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page. Users can make multi-panel figures seamlessly by integrating and aligning plotgardener and non-

plotgardener plots, including other Bioconductor grid Graphics-based visualizations like ComplexHeatmap 

(Gu et al., 2016) (Figure 2.S3). Users can also create coordinate-based layouts entirely composed of 

external plot types and objects. For example, plotgardener was used to arrange and add text annotations 

to the ggplot2 plot objects featured in Figure 2.S4. Plotgardener intuitively sizes, arranges, and overlays 

plots, text, and geometric objects to make complex figure arrangements beyond basic grid-style or 

relative layouts.  

2.8 Future Directions 

The plotgardener package is actively maintained via GitHub issues and undergoes regular build 

reports and unit tests to ensure consistency and robustness. We are actively developing the package with 

suggestions from the genomic plotting community to refine functions and add additional features, and 

other potential future additions include more plotting functions, templates for common arrangements, 

convenient functions for multiplotting, enhanced ggplot2 integration, and more. 

In summary, plotgardener provides a new paradigm for generating complex publication-quality 

figures of both genomic and non-genomic data types, making it an invaluable tool for R users and data 

scientists from virtually any discipline. 

2.9 Methods 

Visualization Methods 

Plotgardener is an open-source extension for R, building its visualization functions from primitive 

graphical functions in the grid package (R Core Team, 2021). Each plot and annotation is drawn within its 

own defined graphical region, or viewport, and then placed on a larger plotgardener page. These 

viewports give the power to specify the size and placement of plot containers and clip data to precise 

genomic and data axis measurements. To obtain large, reference genomic annotation data, plotgardener 

integrates and utilizes packages and data objects through Bioconductor. 

Gene and transcript label publication frequency mining 

Annotations for genes in PubMed articles were obtained from the PubTator text mining tool (Wei 

et al., 2013) and counted for each unique gene ID. Publication frequencies were matched via gene ID to 

Bioconductor transcript database (TxDb) gene IDs for the 29 built-in plotgardener genomes.  
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Evaluating runtimes of plotgardener plotting functions 

To calculate plotgardener plotting runtimes, we used the R package microbenchmark (Mersmann, 

2019). plotHicSquare, plotSignal, plotGenes, and plotRanges functions were timed for various genomic 

region sizes and resolutions. Each condition was timed on 20 random genomic regions generated by 

BedtoolsR (Patwardhan et al., 2019). 

Data availability 

Various publicly available datasets are included with a supplementary plotgardenerData package 

and were used to demonstrate the functionalities of plotgardener. Hi-C datasets from the GM12878 and 

IMR90 cell lines were downloaded from GEO (Barrett et al., 2013) under the accession code GSE63525. 

CTCF ChIP-seq signal files for the GM12878 and IMR90 cell lines were downloaded from the ENCODE 

portal (ENCODE Project Consortium, 2012) with accession codes ENCFF312KXX and ENCFF603PYX. 

H3K27ac ChIP-seq signal files for the GM12878 and IMR90 cell lines were downloaded from the NIH 

Roadmap Epigenomics Project (Bernstein et al., 2010) with reference epigenome identifiers E116 and 

E017. COVID-19 case data was downloaded from The COVID Tracking Project 

(https://covidtracking.com/). State population data and state COVID-19 vaccination data were 

downloaded from the Johns Hopkins Centers for Civic Impact COVID-19 GitHub repository 

(https://github.com/govex/COVID-19/). 
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2.11 Supplemental Figures 

 
Figure 2.S1. Plotgardener function runtimes. 
A bar plot depicting mean runtimes for reading and plotting genomic data across various sizes and 
resolutions using plotHicSquare, plotRanges, plotSignal, and plotGenes functions. Times were calculated 
for 20 randomly chosen gene regions for each bar. Error bars indicate standard error. File sizes for the 
input data are indicated below each set of bars for each function: plotHicSquare (55 GB .hic file), 
plotRanges (5.6 GB .bam file), plotSignal (0.5 GB .bigwig), plotGenes (NA, data stored as an internal 
object). 
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Figure 2.S2. Plotgardener plotting justifications. 
Diagram illustrating the various character and numeric justification settings that can be specified with the 
just parameter of plotting functions. 9 different points along a plot’s rectangular edges can be used as the 
reference point for plotting. Each point shows the the x-coordinate, y-coordinate, justification in 
characters, and justification in numbers that would be used for plotting the displayed box. More 
information can be found in the plotgardener vignette “The plotgardener page.” 
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Figure 2.S3. Integration of plotgardener plot objects and Bioconductor ComplexHeatmap. 
A ComplexHeatmap of the density of simulated ChIP-seq data was incorporated into a plotgardener 
figure with plotgardener plotting and annotation objects. Left: Triangular Hi-C heatmap, heatmap legend, 
CTCF and H3K27ac signal tracks, gene track, and genome label plotted with plotgardener functions 
plotHicTriangle, annoHeatmapLegend, plotSignal, plotGenes, and annoGenomeLabel. Right: Density 
heatmap of simulated ChIP-seq data produced with ComplexHeatmap and incorporated into the figure 
using the plotgardener function plotGG. Code to reproduce this figure can be found in the plotgardener 
vignette “Incorporating ggplots and other grid-based Bioconductor visualizations.” 
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Figure 2.S4. Precise arrangement of ggplot2 objects with plotgardener.  
Five ggplot2 objects and additional text elements were arranged into this multi-panel figure using 
plotgardener. Left: A map of the United States depicts COVID-19 cases per 100,000 people in each state. 
Right: Pie charts depict state vaccination percentages and line plots describe cumulative COVID-19 
cases in New York and Florida. The plotgardener functions used to create this figure include pageCreate, 
plotGG, and plotText. Code to reproduce this plot is included in the plotgardener package. 
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CHAPTER 3: OSTEOARTHRITIS 
 RELEVANT GENETIC VARIATION AFFECTS 

GENE EXPRESSION THROUGH ALLELIC IMBALANCE 

3.1 Introduction 

Osteoarthritis (OA) is an age-related degenerative disease of synovial joints which impacts over 

500 million people worldwide and is one of the leading causes of disability and pain (Hunter and Bierma-

Zeinstra 2019; Hunter et al. 2020). OA is a disease of the whole joint, but it is primarily characterized by 

the progressive degradation and loss of articular cartilage as well as the remodeling of joint tissues driven 

by a variety of inflammatory mediators (Loeser et al. 2012). Currently, there is no disease-modifying 

treatment for OA with only end-stage treatments available in the form of costly total joint replacements. 

It is known that OA has a strong genetic component (Aubourg et al. 2022; MacGregor and 

Spector 1999), and many genome-wide and gene-targeted studies have aimed to characterize the 

genetic landscape of the disease and identify putative genes and mechanisms that contribute to disease 

progression. In particular, numerous studies have identified risk genes whose altered expression 

contributes to disease progression and recent genome-wide association studies (GWAS) have identified 

many SNPs that are associated with the disease (Tachmazidou et al. 2019; Boer et al. 2021). However, it 

still remains difficult to determine the causal SNPs and their molecular mechanisms because many lie in 

non-coding regions of the genome and most likely modulate OA pathology through genetic regulation. 

One method to capture effects of genetic regulatory variants in cis is allele-specific expression 

(ASE) analysis or allelic imbalance (AI). Allele-specific expression refers to the unequal expression of 

alleles among heterozygous variants in diploids. Previous studies have identified AI events of OA risk and 

susceptibility genes, both with targeted analyses (Raine et al. 2013; Reynard et al. 2014; Southam et al. 

2007) and transcriptome-wide surveys. Notable examples of genes with significant AI that contribute to 

OA association include GNL3 and SPCS1 (Gee et al. 2014), DIO2 (Bos et al. 2012), CRLF1 (den 

Hollander et al. 2019), and MALAT1 (Coutinho de Almeida et al. 2022). While these examples were found 
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in diseased OA tissue, many genetic regulatory events occur in response to disease-specific stimuli and 

must be studied in the appropriate disease context (Umans et al. 2021). 

One possible model for simulating the OA transcriptional landscape is fibronectin fragment-

treated chondrocytes. Fibronectin is an extracellular protein present in cartilage (Loeser 2014), and 

fibronectin fragments (FN-f) have been shown to recapitulate many features of OA, including the 

production of matrix degradation enzymes and pro-inflammatory cytokines (Homandberg et al. 1998; D. 

L. Xie et al. 1992; Homandberg 1999; Collins et al. 2019). Chondrocytes are the only cell type found in 

cartilage and synthesize and maintain the cartilage matrix (Bhosale and Richardson 2008), making them 

the appropriate cell target for such a stimulus. A previous study has characterized the response of 

chondrocytes isolated from normal cartilage to acute FN-f treatment, confirming robust transcriptional 

changes that recapitulate the transcriptional landscape of OA (Reed et al. 2021). 

In this study, we utilize the above-described model of OA with 79 paired samples of control and 

FN-f treated chondrocytes isolated from donor articular cartilage to characterize transcriptome-wide AI 

events in the context of a disease-relevant stimulus and identify sites of putative disease-driven genetic 

variation. We also overlap AI SNPs with genes expressed differentially between unstimulated and 

stimulated chondrocytes and intersected our data with OA GWAS SNPs to identify potentially novel OA 

susceptibility variants and genes affected by AI. 

3.2 Results 

3.2.1 FN-f treatment recapitulates previously published transcriptional response 

To validate the utility of our FN-f treated chondrocytes in capturing OA-relevant transcriptional 

changes, we conducted differential gene expression analysis and compared gene expression changes in 

response to FN-f to a previous study that utilized the same system and compared it to genes implicated in 

OA. We observed 4201 significantly differential genes (FDR < 0.01, absolute log2FC > 2), with 1915 

genes differentially upregulated and 2286 genes differentially downregulated in response to FN-f. When 

compared to Reed et al. (2021), our samples capture 93.1% of the significant differential genes identified 

in that study (Figure 3.1A). Our dataset contains notable upregulated and downregulated genes identified 

in Reed et al. with known implications in OA, including CXCL2 (log2FC 8.88, FDR-adjusted p-value < 

2.23e-308), IL6 (log2FC 10.4, FDR-adjusted p-value < 2.23e-308), MMP13 (log2FC 4.7, FDR-adjusted p-
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value = 5.753e-246), and GDF5 (log2FC -3.49j, FDR-adjusted p-value = 4.494e-270) (Figure 3.1B, 

Figure S3.1). Chemokines and pro-inflammatory 

 

Figure 3.1. Differential expression analysis between FN-f treated and control chondrocytes. (A) 
Venn diagram depicting the overlap of identified differential genes and previously published differential 
chondrocyte expression from Reed et al. (2021). (B) Donor RNA-seq data for previously identified 
upregulated IL6 and downregulated GDF5 OA-relevant genes. (C) Donor RNA-seq data for genes with 
connections to OA but were not identified in Reed et al. (2021). (D) Top 20 KEGG pathways enriched in 
response to FN-f. Heatmap color represents -log10 p-value enrichment for labeled pathway.  

 
cytokines like CXCL2 and IL6 are involved in OA pathogenesis, particularly in the disruption of the 

inflammatory processes affected during disease progression (Molnar et al. 2021). MMP13 is a matrix 

metallopeptidase that degrades type II collagen and is thought to play a role in the progressive cartilage 

degradation associated with OA (Forsyth et al. 2002). GDF5 is a growth/differentiation factor with a major 

role in cartilage and joint development and has been cited as a major susceptibility gene for OA 
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(Hatakeyama et al. 2004; Kania et al. 2020; Sun et al. 2021; Boer et al. 2021). Only 107 Reed et al. 

(2021) genes were not marked as significantly differential in our dataset, with 55 of these genes falling 

into the “up-early” and “down-early” temporal clusters of response which we did not capture with our 

treated samples. Our study also found genes that were not identified in Reed et al., but have connections 

to OA. Examples of these genes include PLEKHM1, which is related to autophagy and has been shown 

to play a role in osteoarthritis (Kao et al. 2022) and two genes highlighted as high confidence effector 

genes in the most recent OA GWAS: wnt family member WNT10B and collagen II gene COL2A1 (Boer et 

al. 2021) (Figure 3.1C, Figure S3.1). 

To connect our genes to likely phenotypic functions and pathways, we performed GO and KEGG 

pathway enrichment analyses. In line with the findings of Reed et al. (2021), differential regulated genes 

were strongly enriched for processes related to stimulus response and signaling, inflammatory response 

and cytokine production, and cell morphogenesis. Similarly, differentially regulated genes were enriched 

for TNF, IL-17, and NF-kappa B pathways (Figure 3.1D), which were highlighted by Reed et al. (2021) 

and have known implications in the inflammatory changes and cartilage destruction of OA (van den 

Bosch et al. 2020; Choi et al. 2019; Lu et al. 2006). Taken together, these results demonstrate a highly 

powerful and robust use of the chondrocyte FN-f model system to capture OA-relevant transcriptional 

changes. 

3.2.2 Transcriptome-wide AI in FN-f model of OA 

To understand OA-relevant cis-regulated gene expression changes, we robustly characterized 

allelic imbalance at heterozygous variants in control and FN-f treated samples. We quantified allele-

specific RNA-seq counts at heterozygous genomic sites and filtered these variants based on read counts, 

DNA-RNA heterozygotes concordance, and the number of heterozygotes donors for the variant. After this 

stringent filtering to ensure robust quantification of allelic imbalance, we performed statistical tests for 

allelic imbalance for 25440 SNPs with DESeq2 (Love et al. 2014). Model fitting and testing resulted in 741 

tested SNPs after removal of outliers. The distribution of mean alternative allele fractions in heterozygote 

donors in control and FN-f conditions among these tested variants showed fractions both above and 

below 0.5, with a range of values from 0.28 to 0.72 in control and 0.22 to 0.72 in FN-f (Figure 3.2A), 

confirming an appropriate dataset of heterozygous AI candidates. We observed a total of 179 significant 
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SNPs (FDR > 0.05; abs(log2FC) of reference and alternate alleles > log2(1.1)) marked by allelic 

imbalance, with 46 unique significant control SNPs, 55 unique significant SNPs in FN-f treated samples, 

and 78 significant SNPs shared by both conditions (Figure 3.2B). These SNPs correspond to 57, 58, and 

74 unique positional genes, respectively. Mean alternative allele fractions among significant AI variants 

follow similar trends as the tested variants but accurately select against variants that show approximate 

even ratios of reference and alternate allele counts (Figure 3.2C). 

 
Figure 3.2. Allelic imbalance events in control and FN-f chondrocytes. (A) Distribution of mean 
alternative allele fraction results from DESeq2 in control (left) and FN-f (right) conditions. (B) Venn 
diagram showing significant AI variants (FDR > 0.05, abs(log2FC) > 1.1) found in control, FN-f, or both 
conditions. (C) Distribution of mean alternative allele fractions for significant AI variants identified with 
DESeq in control (left), FN-f (middle), and both (right) conditions. 

 

A notable example of a site significantly associated with AI in heterozygous donors in both control 

and FN-f treated conditions was rs78820491, which is positionally located within the gene NQO2. This 

site consistently showed a higher expression of the reference A allele than the alternative C allele across 

all samples (Figure 3.3A) in both conditions (control FDR-adjusted p-value = 3.935e-3; FN-f FDR-

adjusted p-value = 1.220e-4), possibly suggesting that the decreased alternative allele expression may be 

a consistent site of genetic variation in chondrocytes. One donor’s alternative allelic fractions exhibited 
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opposite trends than the other four donors, with a slightly higher alternative allele fraction after FN-f 

treatment as opposed to a slightly lower alternative allele fraction after FN-f treatment. These differences 

may be due to other donor-specific genetic differences or upstream genetic mechanisms that result in 

allele-specific gene expression changes at the variant, though we do not know these mechanisms 

through this data. 

Many SNPs were only tagged by significant AI in one condition, particularly in samples treated 

with FN-f, but these effects were subtle. For example, rs3177065 showed overall lower expression of the 

G alternative allele within the FOSL2 gene and AI was only detected as statistically significant after FN-f 

treatment (control FDR-adjusted p-value = 0.1633; FN-f FDR-adjusted p-value = 0.0147) (Figure 3.3B). 

We also observed subtle allelic fraction changes with the opposite direction of effect. For example, 

rs12418317 showed overall higher expression of the A alternative allele within the LIN7C gene with 

statistically significant AI in FN-f-treated samples (control FDR-adjusted p-value = 0.405; FN-f FDR-

adjusted p-value = 5.373e-3) (Figure 3.3C). Interestingly, FOSL2 was identified as a downregulated gene 

involved in OA (J. Xie et al. 2021) and LIN7C was found to be associated with higher bone mineral 

density and hence higher risk of OA (Yerges-Armstrong et al. 2014). These results identify statistically 

significant AI in previously implicated OA risk genes with imbalanced alternative allele effect directions 

aligning with directions of previously identified gene upregulation and downregulation. 
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Figure 3.3. NQO2 expression exhibits significant allelic imbalance in control and FN-f 
chondrocytes while FOSL2 and LIN7C expression are associated with allelic imbalance after FN-f 
stimulation. (A) (Left) Normalized RNA-seq counts for reference A allele versus alternative C allele at 
rs78820491 in NQO2. (Right) Alternative allele fractions for heterozygous donors at rs78820491 in 
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NQO2. Control AI FDR-adjusted p-value = 3.935e-3; FN-f AI FDR-adjusted p-value = 1.220e-4. (B) (Left) 
Normalized RNA-seq counts for reference A versus alternative G allele at rs3177065 in FOSL2. (Right) 
Heterozygote alternate allele fractions at rs3177065 in FOSL2. Control AI FDR-adjusted p-value = 
0.1633; FN-f AI FDR-adjusted p-value = 0.0147. (C) (Left) Normalized RNA-seq counts for reference T 
versus alternative A allele at rs12418317 in LIN7C. (Right) Heterozygote alternate allele fractions at 
rs12418317 in LIN7C. Blue points represent data in a given donor’s control samples and orange points 
represent data in the given donor’s FN-f treated samples. Control AI FDR-adjusted p-value = 0.405; FN-f 
AI FDR-adjusted p-value = 5.373e-3. Triangular points indicate an FDR-adjusted p-value < 0.05 in the 
corresponding condition. Alternative allele fractions represent the number of alternative allele counts over 
total read counts, with horizontal dashed lines depicting equal expression ratios of alternative and 
reference alleles. 

3.2.3 AI genes intersect with genes differentially expressed between untreated and FN-f treated 

chondrocytes 

We next intersected our AI candidates with genes identified from differential gene expression 

analysis to identify differential upregulated and downregulated OA-relevant genes tagged by genetic 

variation through AI. Of the 4201 significantly differential genes, 26 genes were tagged by 27 SNPs that 

exhibited significant AI, which includes 21 upregulated genes marked by 22 SNPs and 5 downregulated 

genes marked by 5 SNPs. Examples of differential genes that contained variants showing significant FN-

f-associated AI in FN-f treated samples were SH3PXD2B and GALNT8. SH3PXD2B was consistently 

upregulated (log2FC 2.19), with the AI at rs17074773 trending towards higher expression of the 

alternative A allele (FN-f FDR-adjusted p-value = 3.5e-8) (Figure 3.4A). SH3PXD2B encodes a protein 

involved in extracellular matrix degradation and has been previously connected to OA as a gene linked to 

musculoskeletal phenotypes in humans and mice (Boer et al. 2021; Mortier et al. 2019). Conversely, AI at 

rs11063346 trended towards lower expression of the alternative A allele (FN-f FDR-adjusted p-value = 

1.7e-4) with GALNT8 expression being downregulated with FN-f treatment (log2FC -1.2) (Figure 3.4B). 

GALNT8 encodes a protein linked to protein modification and protein glycosylation pathways, though it 

has not been previously implicated in OA. 

We also assessed differential gene-based AI at these genes with ASEP (Fan et al. 2020) and 

found the significant upregulated genes RGS5, SLC25A37, and IFIT3 to mark significantly differential AI 

(p < 0.05). Connecting these genes back to our SNP-based AI tests, these genes positionally map to the 

SNPs rs15049, rs11779396, and rs17119665, which were found to be significant in the FN-f condition 

(FN-f FDR-adjusted p-values 0.0104, 0.0367, and 0.00407, respectively). These variants had mean 

alternative allele fractions among heterozygous donors of 0.44, 0.44, and 0.53, respectively. For a full list 
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of significant AI variants after FN-f treatment that intersected with differential AI genes, please refer to 

Table 3.1. Please refer to Table S3.1 to compare AI results from DESeq2 and ASEP methods. 
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Figure 3.4. Differentially upregulated and downregulated genes intersect with significant FN-f 
allelic imbalanced SNPs. (A) (Left) Alternative allele fractions (A allele counts over total counts) of 
heterozygous donors at rs17074773 (AI FN-f FDR-adjusted p-value = 3.4997e-8) maps to upregulated 
expression of SH3PXD2B after FN-f treatment as compared to control (log2FC 2.19), represented by 
relative normalized RNA-seq counts for heterozyous donors (right). (B) (Left) Alternative allele fractions 
(A allele counts over total counts) of heterozygous donors as rs11063346 (AI FN-f FDR-adjusted p-value 
= 1.7112e-4) maps to downregulated expression of GALNT8 after FN-f treatment as compared to control 
(log2FC -1.2), represented by relative normalized RNA-seq counts for heterozygous donors (right). In 
alternative allele count fraction plots, the horizontal dashed lines represent even ratios of reference and 
alternative alleles. In plots illustrating gene expression, blue points represent control donor samples and 
orange points represent corresponding FN-f-treated donor samples. 
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Table 3.1. Intersection of significant allelic imbalance SNPs with positional genes exhibiting 
significant differential expression. 

3.2.4 AI variants overlap with genetic association signals in various OA phenotypes 

To connect our AI results to OA risk loci reported in OA GWAS, we intersected our AI SNPs and 

their proxies with variants with reported OA genetic association signals. Using GWAS meta-analysis for 

OA phenotypes defined as “All OA”, “Finger OA”, “Hand OA”, “Hip OA”, “KneeHip OA”, “Knee OA”, “Spine 

OA”, “Total Hip Replacement (THR)”, “Thumb OA”, “Total Joint Replacement (TJR)”, and “Total Knee 

Replacement (TKR)”, we compared significant FN-f-specific AI SNPs to GWAS SNPs with a nominal 

genetic association (p-value < 0.05). As shown in Table 3.2, 34 unique SNPs were nominally associated 

in one or more of 10 OA phenotypes and were marked with significant AI after FN-f treatment in our 

dataset. As an example, rs11779396 was associated with 5 OA phenotypes either directly (All OA, Finger 

OA, Knee OA) or by proxy SNP in high LD (KneeHip OA and Spine OA). This SNP was significantly 

associated with FN-f AI and positionally marked SLC25A37 with a direction of effect trending towards 

lower expression of the alternative G allele. Many of the identified AI SNPs with associations in the OA 

GWAS mapped to positional genes that also exhibited significant differential expression within our data, 

including SH3PXD2B, LHFPL2, GALNT8, MDM2, IFIT3, PTPRJ, RGS5, PNRC2, SLC25A3, BTNA31, 

and PARP12.  

SNP Positional 
Gene 

Reference 
Allele 

Alternative 
Allele 

AI FDR-
adjusted 
p-value 

AI log2 
Fold 

Change 

Gene 
FDR-

adjusted 
p-value 

Gene 
log2 
Fold 

Change 
rs17074773 SH3PXD2B G A 3.50E-08 0.4488 < 2.23E-308 2.1889 

rs2278225 LHFPL2 G A 8.08E-08 -0.1630 2.92E-111 1.6160 

rs11063346 GALNT8 G A 1.71E-04 -0.2405 4.24E-47 -1.2020 

rs1044276 IL4I1 T C 9.72E-04 -0.2560 < 2.23E-308 3.7850 

rs2077439 MDM2 T G 9.72E-04 -0.4665 < 2.23E-308 1.4163 

rs17119665 IFIT3 A G 4.071E-03 0.1419 1.70E-24 1.1469 

rs2292692 ADAM12 G A 6.428E-03 0.2743 5.91E-55 1.1712 

rs4752904 PTPRJ G C 7.253E-03 0.2032 < 2.23E-308 1.8815 

rs15049 RGS5 T G 1.040E-02 -0.5596 3.21E-54 1.9634 

rs12364724 TNKS1BP1 G C 1.177E-02 -0.6250 < 2.23E-308 1.1715 

rs10493018 PNRC2 A C 2.599E-02 -0.3697 < 2.23E-308 1.3048 

rs11779396 SLC25A37 C G 3.666E-02 -0.3819 1.13E-153 1.6889 

rs3198487 BTN3A1 G C 3.696E-02 -0.2984 < 2.23E-308 2.0313 

rs61729681 PARP12 C A 3.799E-02 0.3629 7.81E-127 1.7316 
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Allelic Imbalance     GWAS       

SNP Positional Gene Ref Alt FDR SNP R2 Beta p OA EA EAF 

rs385543 CFH A G 3.01E-09 rs460376 1 0.364 0.0344 S T 0.0072 

rs17074773 SH3PXD2B G A 3.50E-08 rs2731722 0.83 -0.0151 0.0439 K T 0.33 

rs2278225 LHFPL2 G A 8.08E-08 rs3822476 0.83 0.0759 0.00668 THR T 0.955 

rs11063346 LOC105369614 G A 1.72E-04 rs11063346 NA 0.04 0.04747 THR A 0.0803 

rs11063346 GALNT8 G A 1.72E-04 rs11063346 NA 0.04 0.04747 THR A 0.0803 

rs11063346 KCNA6 G A 1.72E-04 rs11063346 NA 0.04 0.04747 THR A 0.0803 

rs1874340974 TMEM120B A G 2.51E-04 rs1874340974 NA -0.0158 0.00841 All A 0.8244 

rs1874340974 RHOF A G 2.51E-04 rs1874340974 NA -0.0158 0.00841 All A 0.8244 

rs1874340974 TMEM120B A G 2.51E-04 rs1874340974 NA -0.0275 0.04034 S A 0.828 

rs1874340974 RHOF A G 2.51E-04 rs1874340974 NA -0.0275 0.4034 S A 0.828 

rs1874340974 TMEM120B A G 2.51E-04 rs1874340974 NA -0.0194 0.03966 K A 0.827 

rs1874340974 RHOF A G 2.51E-04 rs1874340974 NA -0.0194 0.03966 K A 0.827 

rs1874340974 TMEM120B A G 2.51E-04 rs12303659 0.9 0.0237 0.02417 KH A 0.176 

rs1874340974 RHOF A G 2.51E-04 rs12303659 0.9 0.0237 0.02417 KH A 0.176 

rs3741588 TMEM120B A G 2.51E-04 rs3741588 NA -0.0158 0.0084 All A 0.824 

rs3741588 RHOF A G 2.51E-04 rs3741588 NA -0.0158 0.0084 All A 0.824 

rs3741588 TMEM120B A G 2.51E-04 rs3741588 NA -0.0275 0.0403 S A 0.828 

rs3741588 RHOF A G 2.51E-04 rs3741588 NA -0.0275 0.0403 S A 0.828 

rs3741588 TMEM120B A G 2.51E-04 rs3741588 NA -0.0194 0.0397 K A 0.827 

rs3741588 RHOF A G 2.51E-04 rs3741588 NA -0.0194 0.0397 K A 0.827 

rs3741588 TMEM120B A G 2.51E-04 rs7308348 0.84 -0.0167 0.0396 KH T 0.825 

rs3741588 RHOF A G 2.51E-04 rs7308348 0.84 -0.0167 0.0396 KH T 0.825 

rs7228940 CEP192 G A 1.55E-03 rs143666215 0.82 -0.0306 0.0464 K D 0.117 

rs7228940 CEP192 G A 1.55E-03 rs60945352 1 -0.0845 0.0464 THR T 0.131 

rs2077439 MDM2 T G 3.99E-03 rs7296057 0.86 -0.605 0.0403 K C 0.9996 

rs17119665 IFIT3 A G 4.07E-03 rs12250860 1 -0.1633 0.0363 F A 0.0148 

rs34644316 ELK3 C T 4.26E-03 rs35891480 1 -0.0775 0.0132 K A 0.0878 

rs34644316 ELK3 C T 4.26E-03 rs75936517 0.87 -0.0481 0.0359 Ha T 0.0784 

rs12460570 ZNF253 C G 4.49E-03 rs3841054 1 0.0536 0.0488 F D 0.1614 

rs1221896942 UBFD1 A G 4.78E-03 rs1221896942 0.94 0.0614 0.0164 K A 0.962 

rs541504918 UBFD1 A G 4.78E-03 rs9937564 0.94 0.0614 0.0164 K A 0.962 

rs12418317 LIN7C T A 5.37E-03 rs16917051 0.83 -0.1672 0.0252 F T 0.0163 

rs3797851 HAVCR2 G T 6.45E-03 rs3797851 NA 0.0271 0.0465 S T 0.161 

rs3797851 MED7 G T 6.45E-03 rs3797851 NA 0.0271 0.0465 S T 0.161 

rs4752904 PTPRJ G C 7.25E-03 rs4752894 0.9 -0.0209 0.0288 H A 0.605 

rs4752904 PTPRJ G C 7.25E-03 rs4752894 0.9 -0.0247 0.0305 THR A 0.604 

rs7301926 STX2 T C 9.92E-03 rs61346189 1 -0.55 0.0204 Ha A 0.999 

rs15049 RGS5 T G 1.04E-02 rs15049 NA -0.0396 0.00773 H T 0.895 

rs62222237 N6AMT1 A G 1.04E-02 rs18702983 0.84 0.0481 0.0128 THR A 0.121 

rs62222237 N6AMT1 A G 1.04E-02 rs187023983 0.84 0.0358 0.0415 H A 0.121 

rs1804094 KIAA0040 C G 1.30E-02 rs1804094 NA 0.076 0.0121 Fr C 0.897 

rs1804094 KIAA0040 C G 1.30E-02 rs1804094 NA 0.0556 0.0292 Ha C 0.896 

rs1076669 ECE1 G A 1.38E-02 rs1076669 NA 0.0464 0.03423 Ha A 0.0842 

rs1076669 ECE1 G A 1.38E-02 rs1076669 NA 0.0634 0.02873 Th A 0.0895 

rs12713193 FAM228B C T 2.09E-02 rs6721278 1 0.0204 4567 K T 0.1396 

rs41291167 BIRC6 T C 2.41E-02 rs41291167 NA 0.0417 0.0473 THR T 0.924 

rs10493018 PNRC2 A C 2.60E-02 rs10493018 NA 0.122 0.0176 Th A 0.952 

rs10493018 PNRC2 A C 2.60E-02 rs10493018 NA 0.105 0.0202 Ha A 0.953 

rs10493018 PNRC2 A C 2.60E-02 rs10493018 NA 0.12 0.0358 Fr A 0.963 

rs77410650 CMAHP T C 3.10E-02 rs77410650 NA -0.0482 0.0428 TKR T 0.93 

rs77410650 CMAHP T C 3.10E-02 rs35073828 0.8 -0.0389 0.038 TJR D 0.93 

rs77410650 CMAHP T C 3.10E-02 rs916539 1 0.0633 0.04 Th T 0.08 

rs12367881 ALG10 T C 3.13E-02 rs71447679 0.82 0.0272 0.02399 H D 0.3896 

rs11779396 SLC25A37 C G 3.66E-02 rs11779396 NA 0.0222 0.0147 All C 0.993 

rs11779396 SLC25A37 C G 3.66E-02 rs11779396 NA -0.795 0.0219 F C 0.932 

rs11779396 SLC25A37 C G 3.66E-02 rs11779396 NA 0.0375 0.00954 K C 0.935 

rs11779396 SLC25A37 C G 3.66E-02 rs73671493 0.86 -0.0253 0.0401 KH C 0.0658 

rs11779396 SLC25A37 C G 3.66E-02 rs11779370 1 0.0411 0.0475 S C 0.9358 

rs3198487 BTN3A1 G C 3.70E-02 rs3198487 NA -0.022 0.02679 K C 0.155 

rs3198487 BTN3A1 G C 3.70E-02 rs3198487 NA -0.0169 0.047 KH C 0.153 

rs3198487 BTN3A1 G C 3.70E-02 rs111540572 0.97 0.044 0.0359 TKR T 0.859 

rs3198487 BTN3A1 G C 3.70E-02 rs55775018 0.97 -0.0132 0.0462 All T 0.146 

rs61729681 PARP12 C A 3.80E-02 rs61729681 NA -0.0387 0.0273 K A 0.0462 

rs61729681 PARP12 C A 3.80E-02 rs61729681 NA -0.0335 0.0241 KH A 0.0469 

rs41296175 LINC01140 A T 3.90E-02 rs41296175 NA -0.0333 0.0332 All A 0.978 

rs41296175 HS2ST1 A T 3.90E-02 rs41296175 NA -0.0333 0.0332 All A 0.978 

rs2231250 AUP1 G C 3.90E-02 rs2231250 NA 0.0192 0.00271 All C 0.157 

rs2231250 AUP1 G C 3.90E-02 rs2231250 NA 0.0176 0.04008 KH C 0.1558 
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rs2231250 AUP1 G C 3.90E-02 rs2231250 NA 0.0379 0.027 TKR C 0.149 

rs2231250 AUP1 G C 3.90E-02 rs2231250 NA 0.0217 0.03 K C 0.159 

rs10409531 ZNF470-DT C T 3.90E-02 rs111831807 0.84 -0.028 0.0387 S D 0.686 

rs10409531 ZFP28 C T 3.90E-02 rs111831807 0.84 -0.028 0.0387 S D 0.686 

rs10409531 ZNF470-DT C T 3.90E-02 rs3065645 0.93 -0.0399 0.0467 Th D 0.319 

rs10409531 ZFP28 C T 3.90E-02 rs3065645 0.93 -0.0399 0.0467 Th D 0.319 

rs7215868 NLRP1 T C 4.41E-02 rs7215868 NA -0.0354 0.0278 K T 0.949 

rs56301120 EPHX1 G A 4.44E-02 rs56301120 NA -0.0582 0.0076 Ha A 0.086 

rs56301120 TMEM63A G A 4.44E-02 rs56301120 NA -0.0582 0.0076 Ha A 0.086 

rs56301120 EPHX1 G A 4.44E-02 rs56301120 NA -0.0606 0.0434 Th A 0.0876 

rs56301120 TMEM63A G A 4.44E-02 rs56301120 NA -0.0606 0.0434 Th A 0.0876 

Table 3.2. Intersection of significant FN-f specific allelic imbalance SNPs with nominally 
significant OA GWAS SNPs. Ref = reference allele; Alt = alternative allele; FDR = FN-f FDR-adjusted p-
value; R2 = R2 measure of linkage disequilibrium of proxy SNP with AI SNP; OA = OA GWAS phenotype; 
EA = effect allele; EAF = effect allele frequency; All = All OA; F = Finger OA; H = Hip OA; Ha = Hand OA; 
K = Knee OA; KH = KneeHip OA; S = Spine OA, Th = Thumb OA; THR = Total Hip Replacement; TJR = 
Total Joint Replacement; TKR = Total Knee Replacement. 

3.3 Discussion 

In this study, we used a dataset of matched donors with a robust transcriptomic model of OA to 

identify disease-relevant genetic variants acting through imbalanced expression of alleles. We not only 

confirmed the validity of the chondrocyte FN-f system in recapitulating the transcriptomic changes of OA 

progression and cartilage degradation, but also use the largest sample size of this system thus far (n = 79 

unique donors) to create the first FN-f response-specific ASE dataset. The AI variants identified provide 

an initial set of candidate sites with which to investigate the effects of genetic variation on gene 

expression changes during disease progression. Among the genes these SNPs positionally marked, we 

confirmed previously known chondrocyte and OA-relevant genes (e.g. COL1A2 (Snelgrove et al. 2005), 

which had AI in both conditions; FOSL2 (J. Xie et al. 2021), LIN7C (Yerges-Armstrong et al. 2014), MDM2 

(Jiang et al. 2022), RGS5 (Appleton et al. 2006), and SLC25A37 (Rai et al. 2019), which were tagged by 

AI only after FN-f treatment) and found genes not previously connected to OA (e.g. GALNT8, PARP12, 

LHFPL2, and IFIT3) that could potentially serve as new candidates for investigation in relation to OA. 

An interesting aspect of our dataset was the variants that marked significant AI both in control 

and FN-f treated conditions, which previous OA-related AI datasets cannot identify with diseased cartilage 

samples alone. NQO2 was one such gene marked by statistically significant AI at rs78820491. NQO2 

encodes a member of the thioredoxin family of enzymes and harbors the rs78820491 A>C SNP where 

both sample conditions showed significantly decreased expression of the alternate C allele among all 

heterozygote donors. NQO2 was not differentially expressed in our data, but its related quinone 

oxidoreductase NQO1 was upregulated. Both NQO2 and NQO1 enzymes are factors related to the 
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regulation of the immune response, with the loss of NQO2 and NQO1 linked to lack of NF-κB activation 

with NQO1-null and NQO2-null mice having a predisposition to collagen-induced arthritis (Iskander et al. 

2006). Based on our findings, we hypothesize that the upregulation of NQO1 compensates for the lower 

expressed alternative C allele of NQO2 in all chondrocytes, which may still leave a potential 

predisposition to OA but mitigating some inhibited immune function. This AI event may not serve as a 

suitable therapeutic target for OA since it exhibits AI for both conditions in our model and may be a site 

regulated by similar genetic mechanisms regardless of disease state. 

Among the AI events only identified after FN-f treatment, we were able to find previously 

implicated OA risk genes and hypothesize possible mechanisms for conferring or tagging OA risk through 

AI. For example, decreased expression of FOSL2 in a recent study of OA risk genes linked FOSL2 to OA 

susceptibility (J. Xie et al. 2021), and part of this susceptibility may be conferred in heterozygotes through 

lower expression of the alternative G allele at rs3177065. Similarly, LIN7C is associated with higher bone 

mineral density which has been linked observationally to a higher risk of OA, particularly in the knee 

(Yerges-Armstrong et al. 2014). This study linked rs10835187 with association to OA to LIN7C as the 

nearest gene, and our dataset reveals AI at the SNP rs12418317 whereby heterozygotes show increased 

expression of the alternative A allele. This may confirm the relevance of LIN7C to OA through imbalanced 

expression of alleles mediated by genetic risk variants. 

Notable AI SNPs also overlapped significantly differentially expressed genes, including 

rs17074773 in SH3PXD2B and rs11063346 in GALNT8. In the latest OA GWAS meta-analysis, 

SH3PXD2B was identified as a likely effector gene for OA linked to the lead SNP rs3884606 (Boer et al. 

2021). SH3PXD2B encodes an adapter protein involved in cell adhesion with mutations in the gene being 

linked to Borrone dermato-cardio-skeletal syndrome. Borrone demato-cardio-skeletal-syndrome is 

characterized by traits like thickened joints (Wilson et al. 2014), giving it a plausible connection to OA. Not 

only was SH3PXD2B expression upregulated both in our study and a previous study utilizing the FN-f 

model of OA, but it was also marked by highly significant AI (FDR 3.5e-8) at rs17074773 G > A with 

higher expression of the alternative A allele. With these combined lines of evidence, we hypothesize that 

increasing expression of the alternative A allele confers higher expression of SH3PXD2B which may 

result in abnormal cell adhesion within the joints and lead to susceptibility for diseases like OA. GALNT8 
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has never been previously connected to OA, but was shown to be downregulated with FN-f treatment and 

marked by AI at rs11063346 G > A. GALNT8 encodes one of a family of glycosylation enzymes whose 

altered activity has been implicated in cancer metastasis. Our data reveals that this gene could also be 

relevant in OA, where lower expression of the alternative A drives lower expression of the gene and may 

confer OA susceptibility through misregulated EGFR signaling, though future functional studies are 

required to verify this hypothesis. 

By comparing AI SNPs with OA-associated SNPs from GWAS data, we were able to connect the 

genetic variation at our SNPs with 11 different OA phenotypes. Although we were not able to observe any 

overlap with the lead variants or proxies reported in Boer et al. (2021), we found 34 unique nominally 

significant SNPs that were tagged by significant AI. Numerous significant AI SNPs were found in multiple 

OA phenotypes, which could possibly suggest shared genetic mechanisms act at these sites for related 

OA phenotypes. We did not observe an enrichment of GWAS putative OA risk SNPs in our dataset, which 

may point to the subtlety of the allelic imbalance events we observed and might suggest that these SNPs 

may not be functional drivers of gene expression changes. It is also possible that the variants identified 

through this analysis are merely markers with which to measure allele-specific gene expression as a 

consequence of unknown disease mechanisms. 

The dataset presented here is the first characterization of AI events in the FN-f chondrocyte 

model of OA. With such a large sample size of paired donors (n = 79), we are able to recapitulate OA-

relevant transcriptomic changes and find differential genes and sites of AI not found in previous studies. 

However, all the AI events identified here are merely statistical associations within an OA model and any 

hypotheses must be validated. Nonetheless, these data serve as an initial examination in understanding 

the effects of in cis gene regulation at these sites of genetic variation. When comparing to previous OA AI 

studies, we did not necessarily identify any discrepancies from previous OA AI datasets, but we did not 

find previously tagged AI SNPs to be significant in our dataset. This may occur due to several reasons. 

First, FN-f treatment induces OA-relevant changes, but may still fail to capture some OA-relevant genes 

and mechanisms. This is to be expected using an approximate model of the disease and does not 

discount the validity of such a model, but attests to the benefits and drawbacks for both model and 

disease tissue systems to study OA genetics. It is also possible that previous studies reported false 
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positive AI hits that we corrected for using other statistical methods. We ensured stringent quality control 

and filtering of our data at multiple stages, and tested for AI using a Wald test with a beta binomial model 

or a generalized linear mixed-effects model accounting for donor-specific random effects. Using different 

statistical models and methods than previous studies may have yielded fewer false positives. However, it 

may also be worthwhile to explore different statistical models to test for AI with our dataset, like the 

binomial and negative binomial models. Furthermore, despite our large sample size of donors, we cannot 

ensure sufficient numbers of heterozygotes at each variant site and may not have included numerous 

variants in our statistical tests. Though previous AI studies required comparable ratios of heterozygotes 

for their AI tests (e.g. 2 heterozygotes for 47 donors (Hollander et al. 2019) and 5 heterozygotes for 85 or 

74 donors (Aygün et al. 2021)), 5 heterozygotes may not be a sufficient cutoff to test for AI. However, a 

more stringent heterozygote cutoff would further limit the variants we are able to test. Lastly, our study 

may be more relevant for capturing early-stage OA susceptibility AI SNPs that previous studies could not 

identify using diseased cartilage. 

In summary, we have produced a dataset identifying AI in response to an OA-relevant stimulus to 

characterize genetic variation that may contribute to disease risk or serve as indicators of disease risk. 

Combining evidence of differential gene regulation and condition-specific AI allowed us to present a 

dataset of variants that are potentially affected by disease-specific mechanisms and result in disease-

relevant gene expression changes. These results and the analysis framework presented here will allow 

for further investigation into the effects and consequences of OA genetic mechanisms as we continue to 

disentangle the genetics of OA and search for novel therapeutic targets. 

3.4 Materials and Methods 

Sample collection and treatment 

Primary articular chondrocytes were isolated by enzymatic digestion from human talar cartilage 

obtained from 79 tissue donors without a history of arthritis (see Table S3.2 for donor sexes, ages, and 

self-reported ancestries), through the Gift of Hope Organ and Tissue Donor Network (Elmhurt, IL) as 

previously described (Reed et al. 2021; Loeser et al. 2003). After serum starvation, cells were treated with 

either purified 42-kDa endotoxin-free recombinant FN-f (1 µM final concentration in PBS), prepared as 

previously described, or with PBS as a control (Wood et al. 2016). After 18 hours of treatment with FN-f or 
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PBS, RNA was isolated using the RNeasy kit from Qiagen. Samples were sent for library preparation and 

sequencing at the New York Genome Center. 

RNA-sequencing data processing 

RNA-seq libraries were sequenced to an average depth of approximately 80 million reads per 

sample at the New York Genome Center. FASTQ files that were from the same library but sequenced on 

multiple flow cells were merged. Low quality reads and adapters were trimmed with TrimGalore! v0.6.2 

(Krueger). We performed quality control of each library with FastQC v0.11.8 (Andrews 2010). These 

trimmed reads were quantified for differential gene expression analysis with Salmon v1.4.0 (Patro et al. 

2017) against the hg38 transcriptome. All programs were run with default settings. 

Genotype processing 

We performed genotyping using the Illumina Human Infinium Global Diversity Array platform and 

exported SNP genotypes into PLINK format with the Illumina software GenomeStudio. Quality control was 

performed with PLINK v1.9 (Purcell et al. 2007) to filter out SNPs with missing genotype rate > 10% (--

geno 0.1), deviations from Hardy-Weinberg equilibrium at a p-value < 1 x 10e-6 (--hwe 10^-6), and minor 

allele frequency < 1% (--maf 0.01). Reported sample sexes were confirmed based on heterozygosity on 

the X chromosome. We estimated the population structure of our samples after combining it with data 

from the 1000 Genomes Project using EIGENSTRAT v7.2.1 (Price et al. 2006; Patterson et al. 2006). 

Data was imputed with Eagle2 (v2.4) phasing (Loh et al. 2016) against the TOPMed Imputation Server 

against the TOPMed reference panel (version R2 on GRC38) (Das et al. 2016). Following imputation, we 

retained SNPs with missing genotype rate < 10% (--geno 0.1), deviations from Hardy-Weinberg 

equilibrium at a p-value > 1 x 10e-6 (--hwe 10^-6), minor allele frequency > 1% (--maf 0.01), and sufficient 

imputation quality (R2 > 0.3). The final dataset contained 10419216 autosomal variants for 79 donor 

samples. 

Sample quality control 

We detected sample swaps or mixing between samples by evaluating the consistency of 

genotypes called from RNA-seq and genotyping array using VerifyBamID v1.1.3 (Jun et al. 2012). We 

detected genotyping sample swaps (n = 2) and corrected them. All RNA-seq libraries had [FREEMIX]  > 
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0.04 and [CHIPMIX] < 0.04 and were thus kept for subsequent analyses. After quality control, we retained 

79 unique control donors and 79 unique FN-f treated donors with genotyping and RNA-seq data. 

Differential gene expression 

To identify differential genes, transcript-level quantifications for each sample were summarized 

and converted to gene-level scaled transcripts in R with tximeta (Love et al. 2020). Differential analysis 

was conducted with DESeq2 (Love et al. 2014) using a design to adjust for donor variability and to 

calculate differences between treatment conditions (~ donor + condition). Differential genes were defined 

as those with p-values < 0.01 and absolute log2FC < 2. 

Comparison of differential genes with data from Reed et al. (2021) 

Sample gene-level summaries from Reed et al. (2021) were downloaded at GEO accession 

GSE150411. To account for the multiple clusters of temporal patterns found within this dataset, we 

isolated a significant differential dataset with genes of p-values < 0.01 and absolute log2FC < 1 for the 

18-hour time point. Our compared dataset defined significant differential genes with these same 

thresholds. 

GO term and KEGG pathway enrichment analysis 

Significantly enriched (p-value < 0.05) Gene Ontology (GO) terms among significant differential 

genes were found with terms obtained through topGO (Alexa and Rahnenfuhrer 2021) and tested with a 

Fisher’s exact test. Significant enriched (p-value < 0.05) Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways among significant differential genes were identified using KEGGREST (Tenenbaum 

and Maintainer 2021) with a Wilcoxon rank-sum test. 

Allele-specific expression analysis 

Trimmed FASTQ files from RNA-seq data processing were aligned to the 

GENCODE.GRCh38.p13 reference genome with STAR aligner v2.7.10a (Dobin et al. 2013). To reduce 

reference mapping bias, we used the WASP algorithm (van de Geijn et al. 2014) implemented within 

STAR with the –waspOutputMode tag and filtered reads that did not pass WASP filtering. For each 

sample, we counted allele-specific reads that overlapped with non-duplicated, bi-allelic variants identified 

in our genotyping data with GATK ASEReadCounter v4.2.5.0 (McKenna et al. 2010). A sample was 

considered heterozygous for a variant when it had at least 10 total counts from both alleles and at least 2 
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counts from either allele. We only retained variants with at least 5 heterozygous donors. We further 

pruned our dataset by stringently correcting for potential genotyping and sequencing errors. We assessed 

concordance between genotypes called from DNA versus RNA and removed any variants that were 

discordant between these datasets. 

We used two different methods to evaluate allelic imbalance: (1) We used DESeq2 (Love et al. 

2014) with a design to account for donor variability and with the ability to detect significant differences in 

the reference allele versus alternative allele in each condition (~0 + condition:donor + condition:allele). 

The log2 fold change of alternative allele counts to reference allele counts was calculated with a Wald 

test and fitType = “mean”. Significant ASE sites were defined as variants with an FDR-adjusted p-value 

(Benjamini-Hochberg (Benjamini and Hochberg 1995)) below 0.05 and absolute value log2 fold change > 

log2(1.1). (2) We used ASEP (Fan et al. 2020) to detect AI on a gene-level while taking into account 

shared information amongst individuals. Haplotype phases for SNPs were obtained from processed 

genotyping data. Data was prepared for ASEP for the two-condition analysis. Genes were considered to 

exhibit significantly differential ASE with p-values < 0.05. 

For both analyses, AI sites were mapped to positional genes based on their coordinates in the 

Bioconductor TxDb.Hsapiens.UCSC.hg38.knownGene with the IRanges findOverlaps function (Lawrence 

et al. 2013), omitting genes that were not single stranded. 

Overlap with Boer et al. (2021) OA GWAS 

Genome-wide association summary statistics for OA phenotypes identified in Boer et al. (2021) 

were obtained from the Musculoskeletal Knowledge Portal (Kiel et al. 2020). Positional variants were 

mapped to rsIDs against the dbSNP155.GRCh37.p13 reference. Nominal significant SNPs in GWAS 

datasets were defined with a p-value < 0.05. LD proxies for significant AI SNPs were identified using a 

within study panel and R2 values were calculated with the –ld function in PLINK v1.9 (Purcell et al. 2007). 

Datasets were compared on the basis of rsID. 
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3.5 Supplemental Figures and Tables 

 

 
Figure 3.S1. Paired differential expression between control and FN-f treated chondrocytes. (A) MA 
plot depicting significant upregulated genes in orange (FDR > 0.05; abs(log2FC) > 2) and significant 
downregulated genes in blue (FDR > 0.05; abs(log2FC) < 2). (B) Normalized RNA-seq counts between 
control and FN-f treated samples for additional examples of genes previously implicated in OA: CXCL2 
(log2FC 8.88, FDR-adjusted p-value < 2.23e-308), MMP13 (log2FC 4.7, FDR-adjusted p-value = 5.753e-
246), and WNT10B (log2FC 1.74, FDR-adjusted p-value = 1.947e-16).  
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Figure 3.S2. Distributions of allelic imbalance events for all donors. (A) Alternative allele fractions for 
all control donor samples. (B) Alternative allele fractions for all donor samples treated with FN-f. 

 
SNP Positional 

Gene 
Reference 

Allele 
Alternative 

Allele 
Mean 

Alternative 
Allele 

Fraction 

DESeq 
FDR-

adjusted p-
value 

ASEP p-
value 

rs385543 CFH A G 0.41 3.01E-09 0 

rs5756130 MYH9 C T 0.43 1.17E-04 0.0496 

rs3741588 RHOF A G 0.39 2.51E-04 0.0385 

rs1874340974 RHOF A G 0.39 2.51E-04 0.0385 

rs1044276 NUP62 T C 0.46 9.72E-04 0.00309 

rs61364522 SYNPO G C 0.47 0.001127 0.00397 

rs17119665 IFIT3 A G 0.53 0.004071 0.00206 

rs17119665 LOC101926887 A G 0.53 0.004071 0.00212 

rs17119665 LIPA A G 0.53 0.004071 0.00331 

rs17119665 LOC105378419 A G 0.53 0.004071 0.00347 

rs34644316 ELK3 C T 0.6 0.004261 0.022 

rs720745 CCAR2 G T 0.43 0.005158 0.00895 

rs7301926 STX2 T C 0.44 0.009925 0.0294 

rs15049 RGS5 T G 0.44 0.01040 0 

rs62222237 N6AMT1 A G 0.43 0.01045 0.00165 

rs1804094 KIAA0040 C G 0.42 0.01299 0 

rs77410650 CMAHP T C 0.58 0.03102 1.00E-06 

rs11779396 SLC25A37 C G 0.44 0.03666 0.001 

rs74984838 PTGFRN A G 0.56 0.04351 0.00454 

rs7215868 NLRP1 T C 0.56 0.04408 0.00855 

Table 3.S1. Intersection of significant allelic imbalance SNPs from DESeq2 with positional genes 
exhibiting significant differential allelic imbalance with ASEP. 
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Donor ID Sex Age Race 

AM7180 M 39 C 

AM7181 M 84 C 

AM7182 F 65 C 

AM7188 M 62 C 

AM7189 M 37 C 

AM7196 M 73 BL 

AM7197 M 50 C 

AM7203 M 59 Unknown 

AM7204 M 49 BL 

AM7205 M 66 C 

AM7208 M 38 BL 

AM7209 M 63 BL 

AM7211 M 55 C 

AM7213 M 64 C 

AM7214 M 72 C 

AM7215 M 66 C 

AM7216 F 58 BL 

AM7221 F 63 C 

AM7223 M 71 C 

AM7224 F 61 BL 

AM7226 F 65 C 

AM7228 M 63 BL 

AM7229 F 62 C 

AM7230 M 72 BL 

AM7236 M 62 C 

AM7237 F 58 BL 

AM7241 M 65 C 

AM7242 M 63 C 

AM7243 M 67 C 

AM7244 M 71 C 

AM7255 M 50 C 

AM7256 M 70 C 

AM7260 M 71 C 

AM7261 F 54 C 

AM7266 M 63 C 

AM7269 F 57 BL 

AM7270 M 67 C 

AM7272 M 68 C 
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AM7273 M 72 BL 

AM7277 M 43 C 

AM7278 M 51 HISP 

AM7280 M 68 C 

AM7283 M 57 C 

AM7284 M 71 C 

AM7285 M 77 HISP 

AM7294 M 57 C 

AM7295 M 76 Unknown 

AM7302 M 70 HISP 

AM7303 F 65 C 

AM7304 F 54 BL 

AM7312 M 61 C 

AM7313 M 63 C 

AM7318 M 74 C 

AM7319 F 49 BL 

AM7320 M 45 C 

AM7321 M 76 C 

AM7323 M 75 BL 

AM7325 M 75 C 

AM7327 M 55 C 

AM7328 M 38 C 

AM7329 M 50 C 

AM7332 M 34 BL 

AM7333 M 69 C 

AM7334 M 68 HISP 

AM7336 F 61 C 

AM7337 M 77 Unknown 

AM7343 M 68 C 

AM7344 M 65 C 

AM7345 M 50 ASIAN 

AM7346 M 54 HISP 

AM7352 M 72 HISP 

AM7353 M 67 C 

AM7354 M 50 C 

AM7356 F 49 C 

AM7359 F 58 C 

AM7361 M 46 BL 

AM7362 M 72 C 
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AM7365 M 39 C 

AM7372 M 76 ARAB 

 Totals Mean age ±  
SD years 

Totals 

 15 
Females 

64 
Males 

61 ± 11 1 ARAB 
1 ASIAN 

3 Unknown 
6 HISP 
16 BL 
52 C 

Table 3.S2. Donor sample sexes, ages, and reported ancestry. M = Male; F = Female; ASIAN = 
Asian; ARAB = Arab; BL = Black; C = Caucasian; HISP = Hispanic. 
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CHAPTER 4: RESPONSE EQTL ANALYSIS TRANSLATES OSTEOARTHRITIS GWAS 
LOCI INTO PUTATIVE RISK GENES 

4.1 Introduction 

In the monumental effort to study the genetic architecture of complex traits and diseases, 

genome-wide association studies (GWAS) have identified numerous genomic loci associated with one or 

more phenotypes (Uffelmann et al., 2021). However, translating these associated variants into molecular 

mechanisms of disease risk remains difficult in large part since the majority of GWAS variants reside in 

non-coding regions of the genome and most likely perturb gene expression through the disruption of 

regulatory elements (Alexander et al., 2010). Understanding this genetic regulation is further complicated 

by the presence of numerous variants within risk loci in high linkage disequilibrium (LD) and many genes, 

making it hard to identify the putative causal variants and affected genes (Cano-Gamez & Trynka, 2020). 

For many diseases, there is a clear and urgent need to resolve these genetic signals and understand 

which candidates can be targeted by actionable therapeutics. 

Expression quantitative trait loci (eQTL) mapping is a powerful statistical tool used to connect 

genetic variation with gene expression variation to further annotate disease-associated variants and 

suggest potential gene regulatory mechanisms. Since gene expression is an intermediate link between an 

organism’s DNA sequence and the observed phenotype, leveraging eQTL studies in combination with 

GWAS through colocalization can elucidate the potential gene regulatory mechanisms by which a variant 

affects a disease (Hormozdiari et al., 2016). Many studies, notably including the Genotype-Tissue 

Expression Project (GTEx) (GTEx Consortium, 2013), have mapped eQTLs in a vast array of tissues in 

an effort to contribute to the understanding of many traits and diseases such as obesity (Smemo et al., 

2014) and Alzheimer’s disease (Schwartzentruber et al., 2021). Despite the large collection of available 

eQTL datasets, many eQTLs do not colocalize with GWAS and have thus failed to explain a large 

proportion of disease-associated genetic variation (Manolio et al., 2009). 

A possible explanation for the inability to map disease-associated variants with standard eQTL 

studies is a lack of datasets not only utilizing the appropriate cell type but also capturing the dynamic 
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nature of gene regulation, particularly in the context of disease-specific stimuli. Thus, response eQTL 

(reQTL) studies are necessary to capture context-specific effects of genetic variation on gene expression 

before and after a disease-relevant trigger or treatment (Umans et al., 2021). For example, one recent 

reQTL study in macrophages identified immune response eQTLs that colocalized with disease risk loci 

only after stimulation with IFNγ and/or Salmonella (Alasoo et al., 2018). The number of reQTL studies is 

limited, and reQTL studies have not been carried out for the vast array of tissues and diseases to the 

same extent that standard eQTL studies have been conducted. 

 Osteoarthritis (OA) is one such disease lacking a strong understanding in the genetic 

underpinnings and mechanisms of the disease (Aubourg et al., 2022). OA GWAS have identified 100 

independently associated risk variants across 11 OA phenotypes (Boer et al., 2021; Tachmazidou et al., 

2019), and recent OA QTL studies have identified methylation QTLs (Rice et al., 2022) and standard 

eQTLs. In particular, one study conducted a standard eQTL analysis in low-grade (intact, preserved), 

high-grade (degraded, lesioned), and synovial joint tissues, finding strong evidence for OA signals with 

non-coding eQTLs for ALDH1A2, NPC1, SMAD3, FAM53A, and SLC44A2 (Steinberg et al., 2021). While 

this study identified “differential eQTLs” for various genes, it did not capture the dynamics of OA 

progression and only assessed disease endpoints. Here we leverage a validated model of OA 

transcription and inflammation using fibronectin fragment (FN-f) treated chondrocytes (Forsyth et al., 

2002; Homandberg, 1999; Pulai et al., 2005; Reed et al., 2021) to perform the first response QTL analysis 

in an OA-relevant system. Using paired control and FN-f treated samples of articular chondrocytes 

extracted from human donors, we robustly map reQTLs to identify eGenes specific to resting 

chondrocytes and eGenes specific to FN-f treated chondrocytes and characterize dynamic genetic 

regulation. We identified 264 control reQTLs and 384 FN-f reQTLs and connected them to genes 

previously implicated in OA like SMAD3 as well as novel response eGenes. Furthermore, colocalization 

with OA GWAS revealed strong evidence for SMAD3 as a likely effector gene driving the signals in 

multiple OA GWAS phenotypes. These findings within a controlled in vitro model of OA provide 

translational opportunities for the functional probing and ultimate development of OA treatments. 
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4.2 Results 

4.2.1 Study design and gene expression profiling 

To establish a robust reQTL design, we collected primary articular chondrocytes from the talar 

cartilage of 79 human donors (see Table 4.1 for donor characteristics) and extracted paired samples to 

be treated with either FN-f or PBS as a control. With both control and OA-stimulated samples coming 

from paired donors, we are able to perform analyses with matched genetic backgrounds as well as 

capture the dynamic transcriptomic changes of OA progression. We profiled genotype information for 

each donor and RNA-seq data for each sample, generating genome-wide data to define condition-specific 

reQTLs (Figure 4.1A).  

 Before performing eQTL mapping with our dataset, we first assessed the transcriptomic profiles 

of control and FN-f treated chondrocyte samples to assess which factors are driving major expression 

changes. First, we confirmed the validity of FN-f chondrocytes as an appropriate model in recapitulating 

OA-relevant transcriptomic changes (see Chapter 3.2.1), confirming upregulation and downregulation of 

genes implicated in OA including WNT10B, MMP13, CXCL2, GDF5, and COL2A1. Sample clustering of 

differential gene expression was driven by FN-f treatment as opposed to the donor-specific factors age, 

sex, and race (Figure 4.1B). Furthermore, PBS-treated and FN-f-treated samples clustered separately by 

principal component analysis (PCA) of global gene expression (Figure 4.1C, Figure 4S.1A), reinforcing 

that global transcriptomic differences are mainly condition-specific. Furthermore, we confirmed sufficient 

replication of gene expression results across donors from each condition (Figure 4S.1B), ensuring the 

robustness of our study system. 

Number of donors 

Sex Male Female    

64 15 

Age 34 – 44 45 – 55 56 – 66 67 – 77 78 – 88 

7 16 27 28 1 

Ancestry African American East Asian European South Asian 

17 40 0 8 5 

Table 4.1. Study donor characteristics. 
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Figure 4.1. reQTL study design and gene expression profiling. (A) Human chondrocytes were 
isolated from 79 donors of healthy human talar articular cartilage and either treated with either PBS as a 
control or fibronectin fragment (FN-f) to simulate a cell-type-relevant osteoarthritis response. Imputed 
genotypes and gene expression were used to perform local response eQTL mapping to discover disease 
stimulus-specific reQTLs. (B) Gene expression profile of transcriptome-wide gene expression changes 
after FN-f treatment. Genes were clustered by their relative expression. Previously implicated OA genes 
are labeled. Samples are labeled for donor race, donor age, donor sex, and condition. (C) Principal 
component analysis of donor samples from each condition indicates treatment-specific clustering. Control 
samples are colored in light grey and FN-f treated samples are colored in dark grey. 

4.2.2 Determining covariates for modeling 

 To ensure appropriate correction for confounding variation in our datasets prior to local eQTL 

mapping, we performed a methodical assessment of correlations and eGene calling power using a variety 

of covariates within our model. In both conditions, we first carried out correlation analyses between gene 

expression principal components and recorded technical factors for donors as well as sample 

preparations ranging from DNA or RNA extraction kit batches to FN-f treatment batch. Both sample 

groups showed similar, highly significantly correlated variables with the first principal component, 

suggesting some kind of related batch effects between RNA extraction kit batch, sequencing batch, DNA 

reagent batch, and genotyping batch (Figure 4.2). Assuming RNA extraction kit batch/sequencing batch 
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and DNA reagent batch/genotyping batch were almost redundant batch effects, we corrected our RNA-

seq data for RNA extraction kit batch and DNA reagent batch and saw a reduction in significant 

correlations of batch effects with variation in our gene expression data (Figure 4.S2A). Thus, we 

determined RNA extraction kit batch and DNA reagent batch to be essential covariates in our eQTL 

model. 

 
Figure 4.2. Correlation analysis between gene expression principal components and technical 
factors. Pearson’s correlations were calculated between potential technical cofounders (x-axis) and the 
top 10 gene expression PCs (y-axis), separately for control (left) and FN-f treated (right) samples. 
Asterisks indicate significant correlation (** p-value <= 0.01; *** p-value < 0.001). 

 To correct for other potential hidden sources of variation within our data, we simultaneously 

explored the use of RNA-seq principal components versus PEER factors (Stegle et al., 2012). In one 

comparison, we calculated principal components (PCs) and determined which number to include based 

on the percent variance explained of each PC (Figure 4S.2B). We performed cis eQTL mapping with a 

permutation pass and calculated the number of significant eGenes obtained from mapping with correction 

for PC’s and various combinations of other covariates. Simultaneously, we calculated 10 to 60 PEER 

factors in iterations of 10 and compared the number of significant eGenes obtained when using similar 

combinations of other covariates. For all combinations, we obtained within a range of 1250 to 2250 

significant eGenes after global multiple testing correction with both the Storey q-value (Storey, 2003) and 

Benjamini-Hochberg false discovery rate (FDR) (Benjamini & Hochberg, 1995) (Figure 4.3A). As to be 

expected, we saw fewer significant eGenes when including batch effect, genotype ancestry, and higher 

numbers either of PCs or PEER factors. Although we observed variable trends when comparing the 
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inclusion of PCs versus PEER factors, PEER factors generally produced more conservative eGene 

results, so we proceeded with PEER factors in our subsequent analyses. 

In a similar comparison, we refined the number of PEER factors included (using only 5, 10, 15, or 

20), included 2 genotyping principal components to correct for ancestry, and further explored the effect of 

including various types of batch effects in our model on the number of significant eGenes obtained from 

local eQTL mapping (Figure 4.3B). Based on this analysis and the previous correlation analyses, we 

concluded that the use of 10 PEER factors with RNA extraction kit batch and DNA extraction kit batch 

yielded the appropriate amount of correction in our linear model without overcorrecting or including 

redundant batch effects. We also confirmed that our PEER factors did not correlate with each other 

(Figure 4.S2C). Thus, the final covariates included in our model include donor sex, 2 genotyping PCs, 10 

PEER factors, RNA extraction kit batch, and DNA extraction kit batch. 

 
Figure 4.3. Covariate selection analysis for local eQTL mapping. (A) Number of eGenes called from 
eQTL mapping in separate conditions using different linear models comparing PC correction and 
inclusion of differing number of PEER factors. 15 gene expression PCs were used in any model with PC 
covariates. (B) Comparison of number of eGenes called from local eQTL mapping in separate conditions 
using 5 to 20 PEER factors and correcting for different potential batch effects. For each eGene dataset, 
the same dataset was corrected with either the Storey q-value (dark blue) or Benjamini-Hochberg FDR 
(light blue). 

4.2.3 Local eQTL mapping 

 We identified cis eQTLs using the aforementioned covariates separately in control samples and 

FN-f-treated samples. We identified 1517 significant control eGenes (Benjamini-Hochberg FDR < 0.05) 

and 1482 significant FN-f eGenes, with 667 eGenes specific to control samples, 632 eGenes specific to 

FN-f samples, and 850 eGenes found in both conditions (Figure 4.4A). When looking at the effect sizes 
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of lead eGene-eSNP pairs that were detected as significant with FDR < 0.05 in both conditions, all show a 

concordant direction of effect (Figure 4.4B). Similarly, nominally significant eQTLs in both conditions also 

show concordant directions of effect. Nominally significant eQTLs detected in only one condition also 

show an overall concordance of directions of effect, though with less strong linear relationships which is 

to be expected when eQTLs are not detected as significant in the opposite condition (Figure 4.4C). In 

both conditions, the highest frequency of nominally significant eQTLs lie within 250 Kb of the eGene 

transcription start site (TSS) (Figure 4.4D). 

 
Figure 4.4. Features of condition-specific local eQTLs. (A) Venn diagram illustrating number of 
significant eGenes identified in the control eQTL dataset, FN-f eQTL dataset, or both datasets. (B) Effect 
sizes of significant lead eGene-eSNP pairs identified in both control and FN-f eQTL datasets. (C) Effect 
sizes of nominally significant eQTLs identified in both (grey points), control (blue points), or FN-f (orange) 
datasets. In (B) and (C), x-coordinates represent effect size in control and y-coordinates represent effect 
size in FN-f. Dashed line represents y = x. (D) Frequency of distances between significant eGene TSS 
and their nominally significant eQTLs in control (left) and FN-f (right) datasets. 

 To confirm cell-type specificity and condition specificity of our identified eQTLs, we performed a 

series of π1 comparisons (see Materials and Methods) to determine fractions of lead eGene-eSNP pairs 

that were true associations in other datasets. First, we assessed sharing with eQTLs identified in GTEx 

tissues for both our control and FN-f eQTLs (Figure 4.5A). GTEx does not include any OA-specific 

tissues or cell types, but highest sharing of eGene-eSNP pairs was observed in somewhat similar or 
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related tissues including tibial artery tissue, subcutaneous adipose, and cell cultured fibroblasts. However, 

among the top 10 GTEx tissues with highest sharing of identified eQTLs, 7 of these tissues (tibial artery, 

subcutaneous adipose, skin sun exposed lower leg, tibial nerve, thyroid, skin not sun exposed 

suprapubic, and skeletal muscle) were among the top 10 largest GTEx sample sizes, with sizes ranging 

from 517 to 706 RNA-seq and genotyped samples. Thus, the highest sharing with these tissues may be 

attributed to sample size and not necessarily relevance of tissue type. Next, we assessed concordance of 

our control and FN-f eQTLs with those identified in Steinberg et al. (2021) in low-grade and high-grade 

diseased cartilage (Figure 4.5B). Overall, our lead FN-f eGene-eSNP pairs showed slightly higher π1 

values than our control eGene-eSNP pairs against both cartilage grades, which suggests the FN-f 

treatment is able to capture more disease relevant eQTLs. Lastly, we compared our control and FN-f 

eGene-eSNP pairs against each other and only observed π1 values below 0.4 (Figure 4.5C), perhaps 

suggesting the presence of many condition-specific eQTLs.  
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Figure 4.5. eQTL sharing between control and FN-f eQTLs and previously published datasets. (A) 
The fraction of control (blue) and FN-f (orange) eGene-eSNP pairs that are true associations (π1) with 
eGene-eSNP pairs in GTEx tissues. (B) π1 values for eGene-eSNP pairs in control and FN-f conditions 
with eQTLs identified in low-grade and high-grade cartilage in Steinberg et al. (2021). (C) eQTL sharing 
across conditions assessed via π1. Box plots show π1 values calculated from 100 samplings of the 
uniform distribution to account for eGene-eSNP pairs not found in both compared datasets. 

4.2.4 Response eQTLs 

 To determine OA stimulus-specific effects of genetic variation on gene expression, we identified 

response eQTLs that only showed a significant interaction effect of donor genotype with condition either 

before or after FN-f treatment. We found 264 response eGenes specific to control samples and 384 

response eGenes specific to FN-f treated samples. We observed FN-f reQTLs with both directions of 

effect, with either the risk allele being associated with higher gene expression, as with the G allele at 

rs12901081 being associated with higher SMAD3 expression (log2aFC 1.24) (Figure 4.6A), or the risk 

allele being associated with lower gene expression, as seen at rs8011143 where the C allele is 

associated with lower ABHD4 expression (log2aFC -1.79) (Figure 4.6B). Numerous control and FN-f 

response eGenes had multiple significant reQTLs (Figure 4.6C). Furthermore, we overlapped our 

significant response eGenes with differential gene expression information from Chapter 3 and found 177 



 65 

differentially regulated genes that intersected with our FN-f response eGenes, where 69 were 

downregulated and 108 were upregulated. One notable example was the differentially downregulated 

response eGene DIO2, which has been cited as an OA susceptibility gene (Bomer et al., 2015; Bos et al., 

2012; Goldring, 2013). 

 
Figure 4.6. Response eQTLs with significant associations in control and FN-f conditions.. (A) 
Example of an FN-f reQTL in a previously implicated OA gene whereby the risk allele is associated with 
increasing gene expression. (B) Example of an FN-f reQTL whereby the risk allele is associated with 
decreasing gene expression of the response eGene. In (A) and (B) boxplots show normalized expression 
for each donor, separated by genotype. n: number of donors for each genotype; p: FDR-corrected p-value 
of condition-specific interaction term; log2aFC: log2 allelic fold change of the reQTL. The same expression 
is shown for the variant showing non-significant effects in control. (C) Frequency of number of nominally 
significant reQTLs in response eGenes discovered in control (left) and FN-f (right). 

4.2.5 Colocalization of OA GWAS and FN-f reQTLs 

In order to identify the likely effector genes driving OA GWAS signals, we performed 

colocalization analysis in regions where we identified significant FN-f reQTLs with the most recent OA 

GWAS meta-analysis, which comprises 13 international cohorts where 2 are of East Asian descent and 

11 cohorts are of European descent. Colocalization is a powerful method to integrate eQTL and GWAS 
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datasets and determine the likelihood that the same variant or genetic signal underpins both the 

associations with gene expression and disease. We found strong evidence for colocalization of one FN-f 

response eQTL signal for SMAD3 with 7 OA GWAS phenotypes, with the signals for All OA, KneeHip OA, 

Hip OA, total joint replacement (TJR), and total hip replacement (THR) reaching genome-wide 

significance (Figure 4.7, Figure 4.S3). In each of the GWAS signals, the index variant is rs12908498, 

which is in high LD (r2 = 0.9) with the lead reQTL variant rs12901081. Both of these variants lie within 

non-coding, intronic regions of SMAD3. A recent cartilage eQTL study (Steinberg et al., 2021) also found 

strong evidence for colocalization at this region with the index SNP rs12901372, which is also in high LD 

(r2 = 0.9) with both the GWAS lead SNP and reQTL lead SNP.  



 67 

 
Figure 4.7. An FN-f reQTL shows strong evidence for colocalization with a genetic signal in 
multiple OA GWAS phenotypes. Manhattan plots of All OA, KneeHip OA, Hip OA, total joint 
replacement (TJR), and total hip replacement (THR) GWAS and an FN-f reQTL signal. Associations are 
depicted with -log10 p-values on the y-axis and the genomic location of each variant on the x-axis. GWAS 
plots are colored by pairwise linkage disequilibrium (LD, r2) to the index SNP rs12908498 (red diamond). 
reQTL plot is colored by pairwise LD to the index reQTL SNP rs12901081 (red diamond). reQTL index 
SNP rs12901081 is circled in each GWAS plot. reQTL p-values show associations of SNPs with SMAD3 
gene expression. In GWAS tracks, dashed lines represent the genome-wide significance threshold at 
1.3e-8 and solid lines represent the nominal significance threshold at 2.27e-5. Solid line in reQTL track 
represents the nominal significance threshold for the SMAD3 eGene at.1.201e-5. PP4 = posterior 
probability of colocalization. 
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4.3 Discussion 

Despite the recent rapid influx of standard eQTL studies, a high fraction of disease GWAS loci fail 

to colocalize with and be explained by known eQTLs. In particular, not only has eQTL mapping of OA-

relevant systems been absent from large scale consortia, but standard QTL mapping in cartilage has still 

left gaps in addressing the functionality of OA-associated genetic loci. One possible explanation for not 

capturing all GWAS loci with current eQTLs is that these eQTLs must be captured in response to disease-

appropriate stimuli. Here we perform the first OA response eQTL study, using 79 paired donor samples 

either unstimulated or stimulated with FN-f, a known OA trigger. By capturing the inflammatory response 

of chondrocytes, we identify eQTL signals that mark disease progression-dependent patterns of gene 

regulation that are driven by genetic variation. 

To perform successful eQTL mapping, it is important to properly control any confounding factors 

to increase power and capture only the true genetic effects on gene expression. Our study followed a 

methodical approach to covariate selection, thereby ensuring robust modeling with results optimizing 

discovery and controlling false positives. Although there is no gold standard for appropriately determining 

necessary covariates, our framework attempts to transparently assess any possible recorded and hidden 

sources of confounding information. It is unclear how well previous studies controlled for covariates as 

these factors will vary from dataset to dataset, but this essential step in eQTL studies may serve as an 

additional checkmark for ensuring the detection of all accurate signals that could then colocalize with 

GWAS loci. 

To capture cell-type-specific or disease-state-specific eQTLs, many standard eQTL studies map 

eQTLs separately and compare the overlaps of signals from each sample group. While this approach 

may be sufficient to capture strongly divergent patterns of genetic regulation, it may not be able to discern 

more subtle differences, especially using study designs that do not correct for inter-individual confounding 

or cell state heterogeneity. Before specifically testing for reQTLs, we identified 667 eGenes specific to 

control samples and 632 specific to FN-f samples, but these numbers decreased to 264 and 384 

response eGenes, respectively, after reQTL mapping. Although standard eQTLs in each condition had 

high overlap with GTEx eQTLs in cartilage-related tissues, the large sample sizes of GTEx capture many 

signals without necessarily differentiating between context or deciphering regulatory mechanisms. Our 



 69 

controlled study design allowed us to specifically test the combined effect of genotype and condition on 

gene expression, revealing the true condition-specific eQTLs. We hypothesize that we capture robust 

eQTL signals that are distinguished by OA progression while also observing many diseased cartilage 

signals, as seen in our dataset overlaps with a previous cartilage eQTL study. 

Colocalization analysis identified a lead reQTL for the SMAD3 gene with genome-wide significant 

GWAS signals for 5 OA phenotypes (All OA, KneeHip OA, Hip OA, TJR, and THR) and nominally 

significant GWAS signals for 2 OA phenotypes (Knee OA and Spine OA). Previous studies have either 

colocalized GTEx eQTLs, which do not include cartilage or chondrocytes, or standard diseased cartilage 

eQTLs with OA GWAS from smaller study sizes. Here we have colocalized FN-f reQTLs with OA GWAS 

from the latest and largest meta-analysis, investigating context-specific colocalizations with the most 

available GWAS associations to date. Although colocalization analysis alone is insufficient to determine 

causal genes at GWAS loci, we have strong evidence to prioritize SMAD3 as a gene candidate in future 

studies. The reQTL signal is only strongly associated with SMAD3 after FN-f treatment, with the G allele 

of rs12901081 associated with increasing expression of SMAD3. This signal’s colocalization with GWAS 

signals in numerous OA phenotypes suggests the shared importance of genetic variation at this locus in 

potentially contributing to OA at many different joints. Furthermore, a colocalization at this signal was also 

identified in a previous study where an eQTL only identified in high-grade cartilage colocalized with OA 

GWAS. This agreement further confirms the validity of the chondrocyte FN-f model in identifying relevant 

eQTLs, and the robustness of this signal’s colocalization across multiple OA disease-relevant eQTL and 

GWAS datasets highlights its potential relevance as an effector gene for OA. Lastly, SMAD3 functions in 

the transforming growth factor-beta signaling pathway (TGF-beta), which has been shown to be required 

for maintaining adulthood cartilage homeostasis with TGF-beta signaling disrupted during OA progression 

(Finnson et al., 2012; van der Kraan et al., 2009), further confirming its disease relevance. 

Although these data reveal insights into the context-dependent regulatory landscape of OA gene 

expression, this work has limitations. Our work uses a model of OA inflammation and thus may not 

capture all disease-specific gene expression changes affected by genetic variation, particularly at the 

later stages of disease. Furthermore, OA is a disease of the whole joint and may be affected by multiple 

tissues and cell types, whereas we are using a single cell type in cartilage to simulate the OA phenotype. 
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However, the use of the model system allows for a paired reQTL study that limits any inter-individual 

confounding effects and captures OA-relevant genetic changes that can elucidate the cell type specific 

mechanisms towards the beginning of the disease, which is when novel treatments would be most 

effective. With a sample size of 79 donors, we are underpowered to detect many eQTLs and reQTLs with 

smaller effect sizes, which may be more relevant to disease progression. These signals would also 

provide additional signals to test for colocalization with OA GWAS. Lastly, although we observe a 

colocalization to prioritize a likely effector gene at a GWAS locus, future studies will still be needed to 

confirm the causality of this gene and prove how the identified gene expression changes influence OA 

development. These results would be further strengthened by chromatin accessibility QTLs (caQTLs) to 

identify genetic variant associations with open chromatin regions, which may further resolve OA GWAS 

signals and FN-f reQTLs by suggesting potential mechanisms for variants at shared signals in influencing 

gene expression and OA phenotypes by altering chromatin accessibility. Ultimately, these results require 

experimental validation through studies like gene knockout to prove which gene expression changes are 

causal in disease progression and Hi-C to study DNA looping between putative causal variants and their 

target genes to confirm the physical interaction of distal variants and genes. 

 Here we have used a model of OA using FN-f perturbation to investigate the context-specific 

effects of genetic variation on gene expression and its influence on disease progression. We have 

generated the first reQTL map for an osteoarthritis-relevant cell type and have strengthened the evidence 

of a possible effector gene by colocalizing our results with OA GWAS. As we increase our study size, we 

will likely be able to identify more reQTL signals with smaller effect sizes and resolve even more genetic 

association signals. In combination with other studies, our findings contribute to the investigation of OA 

genetics and will provide evidence for the ultimate translation of genetic findings into novel drug targets 

for the treatment of OA. 

4.4 Materials and Methods 

Sample collection and treatment 

The samples used in these analyses are the same as those used in Chapter 3. Human talar 

cartilage was obtained from 79 tissue donors without a history of arthritis through the Gift of Hope Organ 

and Tissue Donor Network (Elmhurt, IL). Primary articular chondrocytes were isolated by enzymatic 
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digestion and treated with either 42-kDa endotoxin-free recombinant FN-f (1 µM final concentration in 

PBS) or with PBS as a control after serum starvation. After 18 hours of either treatment, RNA was 

isolated using the RNeasy kit from Qiagen and samples were sent for library preparation and sequencing 

at the New York Genome Center. 

RNA-sequencing data processing/quantification of RNA levels 

The samples used in these analyses are the same as those used in Chapter 3. RNA-seq libraries 

were sequenced to an average depth of approximately 80 million reads per sample at the New York 

Genome Center. FASTQ files from the same library were merged, quality controlled with FastQC v0.11.8 

(Andrews, 2010), and trimmed for low quality reads and adapters with TrimGalore! V0.6.2 (Krueger, n.d.). 

These trimmed reads were quantified with Salmon v1.4.0 (Patro et al., 2017) against the hg38 

transcriptome with default settings. 

Genotype processing 

Genotype processing was carried out as described in Chapter 3. Genotyping was performed 

using the Illumina Human Infinium Global Diversity Array platform and exported into PLINK format with 

the GenomeStudio software from Illumiina. PLINK v1.9 (Purcell et al., 2007) was used to perform quality 

control, filtering out SNPs with missing genotype rate > 10% (--geno 0.1), deviations from Hardy-

Weinberg equilibrium at a p-value < 1 x 10e-6 (--hwe 10^-6), and minor allele frequency < 1% (--maf 

0.01). Reported sample sexes were confirmed based on heterozygosity on the X chromosome. After 

combining our data with data from the 1000 Genomes Project, we used EIGENSTRAT v7.2.1 (Patterson 

et al., 2006; Price et al., 2006) to estimate the population structure of our samples (Figure 4S1.C). The 

TOPMed Imputation Server was used for Eagle2 (v2.4) phasing (Loh et al., 2016) and imputation against 

the TOPMed reference panel (version R2 on GRC38) (Das et al., 2016). Additional quality control was 

performed with PLINK following imputation to retain SNPs with missing genotype rate < 10% (--geno 0.1), 

deviations from Hardy-Weinberg equilibrium at a p-value > 1 x 10e-6 (--hwe 10^-6), minor allele frequency 

> 1% (--maf 0.01), and sufficient imputation quality (R2 > 0.3). The final dataset contained 10419216 

autosomal variants for 79 donor samples. 
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Sample quality control 

VerifyBamID v1.1.3 (Jun et al., 2012) was used to detect sample swaps or mixing between 

samples. 2 genotyping sample swaps were detected and corrected. Samples were kept when satisfying 

[FREEMIX] > 0.04 and [CHIPMIX] < 0.04. 79 donors with genotyping and control and FN-f-treated RNA-

seq data were retained. 

Replicate correlation 

To quantify cell culture-induced noise in our samples, we cultured additional control samples from 

2 donors and additional FN-f samples from 3 donors. Pearson’s correlations of gene expression were 

calculated between libraries from the same donors as well as between libraries across different donors. 

Pearson's correlations were transformed with Fisher’s z and tested for significant difference between 

donor-self libraries and donor-other libraries with an unpaired, two-sided t test. 

Condition-specific cis eQTL mapping 

We performed local eQTL mapping separately for control and FN-f treated samples. We included 

genes with at least 10 reads in at least 5% of samples and normalized between samples using weighted 

trimmed mean of M values (TMM) (Robinson & Oshlack, 2010) with edgeR (Robinson et al., 2010). We 

then normalized gene expression data separated by condition with an inverse normal transformation 

across each gene. 

We selected genetic variants for testing with at least 10 counts of the minor allele and at least 5 

heterozygotes using GATK VariantFiltration (McKenna et al., 2010). For each gene, we considered 

variants within a 1 Mb window in either direction of autosomal gene transcription start sites (TSS). The 

TSS was defined as the transcription start site of the gene isoform with the most upstream exon, defined 

from the GRCh38 Ensembl genome assembly. 

We performed QTL mapping with QTLtools (Delaneau et al., 2017) using a final model including 

10 PEER factors, donor sex, RNA extraction kit batch, DNA extraction kit batch, and 2 genotyping 

principal components as covariates (See section 4.2.2). To perform a permutation-based analysis for 

adjusting associations, we employed the QTLtools cis permutation pass with 1000 permutations. Globally 

adjusted p-values were obtained both with the Storey q-value (Storey, 2003) and Benjamini-Hochberg 

false discovery rate (FDR) (Benjamini & Hochberg, 1995). Genes with significant eQTLs (eGenes) were 
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defined as eGenes with FDR less than 0.05. For each eGene, we defined a nominal threshold for 

significant eQTLs by calculating a p-value as the mean of the smallest p-value above the FDR threshold 

and the highest p-value above the FDR threshold and using the beta distribution (qbeta) with shape1 and 

shape2 parameters defined from QTLtools. Allelic fold change (aFC) of eQTLs was calculated using the 

aFC tool (Mohammadi et al., 2017). 

QTL sharing 

We quantified QTL sharing between our control and FN-f local eQTL datasets and compared our 

datasets against publicly available GTEx tissue eQTLs (GTEx Consortium, 2013) and recently published 

cartilage eQTLs (Steinberg et al., 2021) using the π1 statistic (Storey & Tibshirani, 2003) from the R 

qvalue package (Storey et al., 2022). For each comparison, we selected primary eSNP-eGene pairs from 

our control and FN-f datasets and extracted nominal p values from other datasets for those corresponding 

eSNP-eGene pairs. For eSNP-eGene pairs that were not found in other datasets, we assigned a random 

p-value sampled from the uniform distribution (runif). To find the fraction of true associations in other 

datasets, we computed π0 and defined π1 as 1- π0 for each set of p-values. These values were calculated 

100 times with random p-value samplings. 

Identification of reQTLs 

Separately within the control eQTL and FN-f eQTL datasets, we first identified the significant 

(FDR < 0.05) lead eGene-eSNP pairs that were only found in either condition. We then assembled all 

pairs of eGenes and corresponding significant SNPs and tested whether the eQTL effect size was 

significantly different among conditions by comparing the following two linear models with lme4 (Bates et 

al., 2015): 

 𝐻0: 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ~ 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 +  𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 +  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 +  (1|𝑑𝑜𝑛𝑜𝑟) 

𝐻1: 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ~ 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 +  𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 +  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 +  𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒: 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + (1|𝑑𝑜𝑛𝑜𝑟) 

where (1|donor) accounts for any donor-specific random effects. Normalized expression data and the 

same covariates used in standard eQTL mapping were input to these models. For each eGene-eSNP 

pair, we tested the significance of the genotype:condition term using ANOVA. We used Benjamini-

Hochberg FDR correction (Benjamini & Hochberg, 1995) and defined significant response eQTLs 

(reQTLs) with FDR values below 0.05. 
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Colocalization between reQTLs and osteoarthritis GWAS associations 

To test for colocalization between reQTLs and GWAS hits, we used summary statistics for 11 OA 

phenotypes from the largest OA GWAS meta-analysis to date (Boer et al., 2021). We considered 

colocalizations between the lead variants from Boer et al. and their LD proxies. LD proxies were identified 

using the 1000 Genomes European reference panel (11 of 13 cohorts are of European descent). r2 values 

were calculated with the –ld function in PLINK v1.9 (Purcell et al., 2007) using a window of 1 Mb for 

calculation, and lead variant GWAS proxies were those defined as those in high LD (r2 > 0.8) with a lead 

variant. For compatibility with GRCh38-based eQTL data, GWAS summary statistics and LD proxies were 

lifted over to GRCh38 coordinates with UCSC liftOver (Hinrichs et al., 2006). Variant rsIDs were assigned 

with dbSNP155 based on variant positions. We analyzed all phenotypes separately with significant 

reQTLs identified after FN-f treatment. For each analysis, we ran coloc (Giambartolomei et al., 2014) 

using default priors considering a region of 250 Kb centered on the lead reQTL variant if the lead reQTL 

variant was in moderate LD (r2 > 0.5) with the lead GWAS variant of that region. LD r2 values of lead 

reQTL variants with other variants were computed with our in-study reference with the PLINK v1.9 

(Purcell et al., 2007) –ld function using a window of 1 Mb. We considered a posterior probability (PP4) > 

0.7 to be sufficient evidence of colocalized signals. 
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4.5 Supplemental Figures 

 
Figure 4.S1. Sample gene expression profiling and donor ancestry.(A) Principal component analysis 
(PCA) of control and FN-f gene expression colored by donor self-reported race (left), donor age (middle), 
or donor sex (right). These factors do not drive the variation seen in PC1. (B) Replicate correlation of 
RNA-seq libraries across donors and within donors for control (left) and FN-f (right) libraries. P-values 
between across donor and within donor groups were calculated using an unpaired, two-sided t-test on 
Fisher’s z transformed Pearson’s correlation coefficients. (C) Principal component analysis of sample 
genotypes overlaid with 1000 Genomes data. Data from 1000 Genomes are colored by superpopulation 
and samples from this study are colored in black. AFR: African, AMR: American, EAS: East Asian, EUR: 
European, SAS: South Asian. 
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Figure 4.S2. Additional covariate selection analysis. (A) Pearson’s correlation analysis of control (left) 
and FN-f (right) gene expression principal components after RNA extraction kit and DNA reagent batch 
corrections. (B) Percent of variance explained by principal components calculated for control (left) and 
FN-f (right) expression. (C) Pearson’s correlation analysis between 10 PEER factors calculated for control 
(left) and FN-f (right) local eQTL mapping. PEER factors are not correlated with each other. Asterisks in 
correlation analyses indicate significant correlation (** p-value <= 0.01; *** p-value < 0.001).  
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Figure 4.S3. Additional OA GWAS phenotype colocalizations where the lead GWAS variant did not 
reach genome-wide significance. Manhattan plots of Knee and Spine OA and the FN-f reQTL signal for 
SMAD3 gene expression. Associations are depicted with -log10 p-values on the y-axis and variant 
genomic locations on the x-axis. The index variant of Knee OA and Spine OA GWAS is rs12908498 while 
the index variant of the reQTL signal is rs12901081, which are represented by red diamonds. reQTL 
index SNP rs12901081 is circled in GWAS Manhattan plots. In GWAS tracks, dashed lines represent the 
genome-wide significance threshold at 1.3e-8 and solid lines represent the nominal significance threshold 
at 2.27e-5. Solid line in reQTL track represents the nominal significance threshold for the SMAD3 eGene 
at1.201e-5. PP4 = posterior probability of colocalization. 
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CHAPTER 5: DISCUSSION 

In this work, I have created the first response AI and eQTL datasets in chondrocytes and 

developed a novel visualization tool for programmatically generating complex, publication-quality, multi-

panel genomic data figures. The findings and workflows/tool presented here do not only contribute to the 

understanding of the genetic basis of OA, but can also be broadly applied to other genomic cell types and 

contexts. There is still much to be answered about the regulatory molecular mechanisms that impact traits 

and diseases, but it is important to continue the rigorous research, insightful discussions, and 

development of innovative methods and analyses to investigate the mysteries of the non-coding genome. 

5.1 The importance of computational methods in studying genomics 

 Since the sequencing of the human genome, there has been an exponential increase in the size 

and quantities of genomic data alongside a decrease in sequencing costs (Lander et al., 2001; Muir et al., 

2016). Whereas studies once primarily focused on single genes or used observational laboratory 

methods to test hypotheses, we are now flooded with terabytes of high-throughput data that must be 

appropriately parsed and integrated in order to make any meaningful conclusions. The sequence 

information of FASTQ files must be translated into readouts of gene expression, chromatin accessible 

regions, transcription factor motifs, binding sites of DNA-associated proteins, regions of interacting 

chromatin, and potentially more data types that can inform DNA structure, regulation, and function (Cock 

et al., 2010). Furthermore, these data must be interpreted properly through integration, statistics, and 

visualization. Taken together, these factors highlight the crucial role that bioinformaticians and 

computational biologists play in studying the complex landscape of genomics. 

Open-source tools like plotgardener, detailed in Chapter 2, are necessary for allowing scientists 

worldwide to conduct analyses with their own datasets. In particular, visualization of such data is often 

overlooked as a key step in scientific research, despite it usually being the final form of understanding 

and communicating results through presentations and publications. To many, not only is seeing believing, 

but it also conceptualizes complicated information in a more accessible format. Making the process of 
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scientific visualization programmatic has many advantages: it fluidly combines with upstream data 

analysis, it allows figures to easily be updated with slight data changes, and it makes figures reproducible 

and the process by which data was translated into the figure transparent. With plotgardener, plots do not 

need to be finished with graphic design software, so there is no risk of misleading manipulation of 

scientific findings. It is my hope that setting such a standard will extend the rigor and reproducibility of 

science all the way to end-stage visualization. 

Creating visualizations from their primitive elements, while challenging, has provided a richer 

understanding of the way data types translate into plots. Plotgardener focuses on plotting and annotation 

functions for genomic data, but it would be further strengthened by incorporating functions for non-

genomic plotting. Another useful future direction for plotgardener is the development of an interactive 

version of the package, making it more accessible for less experienced programmers while keeping the 

programmatic aspect of the tool intact. As genomic datasets continue to evolve in complexity, we will 

continue to develop and improve plotgardener for numerous use cases. 

Beyond tools, publicly available and distributed code for bioinformatic workflows and analyses is 

also essential for scientific discovery, particularly in the study of genomics. The pipelines I developed for 

work in Chapters 3 and 4 have been assembled with snakemake (Mölder et al., 2021), which combines 

different command line tools and parsing scripts from different programming languages into one 

continuous workflow. I am the first to establish the response AI and eQTL workflows within my lab, which 

will advance studies building upon mine or related studies that can use adapted versions of my code. In 

addition, every analysis is available on GitHub, so that other researchers can learn from and/or contribute 

to my computational methods. Just as experimental assays are critical in science, computational methods 

are a necessary and important part of research. 

5.2 Response eQTLs and AI for investigating non-coding GWAS loci 

 The datasets created and explored in Chapters 3 and 4 link genetic variation to gene expression, 

with each approach having their own benefits and drawbacks. Assessing allele-specific expression of 

genes allows for higher powered studies with smaller donor sample sizes, but is limited by the number of 

heterozygous donors for a given genetic variant. Mechanisms of ASE are driven by variants located in or 

near the gene, restricting us to cis genetic regulatory measures. eQTLs link regulatory variants to specific 
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genes, but must be studied in the correct cell types and disease-relevant contexts. Both of these 

techniques, though informative in understanding gene expression changes and their relationship with 

genetic variants, still leave many open questions in understanding disease-causal variants and their 

molecular mechanisms. Although in getting information about the local coordination of gene regulation we 

may capture the cis effects of many trans mechanisms, it is still difficult to understand the full extent of 

their mechanisms when using these data alone. It is unclear what downstream effects these variants may 

have on other aspects of the genome, including expression of non-coding RNAs and altering 3D genomic 

structures. With the possibility of one genetic variant influencing the expression of multiple genes in a 

network of fine-tuned regulation, we may also be losing information about relative effects of gene 

networks. Overall, the field needs these studies as well as orthogonal datasets like chromatin accessibility 

QTLs (QTLs) and Hi-C in numerous cell types and states to get a complete picture of genetic regulation. 

 With the dynamic nature of genetic regulation, it makes sense that disease-relevant regulation 

would occur over a course of time in response to a perturbation relevant to the disease context. In 

particular, studying such systems would reveal variants that display gene-environment interactions, which 

is a relevant feature to understanding the genetics of complex diseases. Response studies like those 

conducted in Chapters 3 and 4 seek to isolate these effects, but there are still many open avenues for 

investigating these aspects of gene regulation. Although the number of these studies are rapidly 

increasing, they are still in early stages in using controlled disease systems and specific cell types. 

Studies of the immune response and blood gene regulation have already gained some crucial insights 

into gene-environment interactions (Findley et al., 2019; Mangravite et al., 2013; Maranville et al., 2011; 

Moyerbrailean et al., 2016), but these systems are only the beginning of what could be done for disease 

genetics. There are still numerous questions associated with probing disease contexts – which cell types 

are most relevant? What is the appropriate stimulus? At what point should the response be assessed? 

Capturing the specific effects of genetic variation on disease progression would also require more 

developed systems to understand the fine-grained temporal dynamics of regulation that cannot be 

observed at singular time points. 

 Until now, the only “response” OA QTL and AI studies have centered on different states of 

diseased tissue. In these study designs, low-grade, preserved cartilage acts as a control while high-
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grade, lesioned cartilage, usually from the same donor, acts as the “response” sample. This framework 

most likely loses genetic information specific to OA progression and cannot recapitulate the dynamics of 

OA gene regulation and could potentially be confounded by uncontrolled variables. This makes 

comparison with our results challenging, as limited overlap between identified genetic variants and gene 

expression changes may simply correspond to different aspects of relevance. The continued efforts of 

both kinds of studies may be required to generate a complete map of OA genetics at various stages, 

including predisposition to disease, dynamic changes as disease worsens, and end-stage disease. 

Comparison with these studies also brings into question which analytical methods are best suited to 

distinguish context-specific AI events and QTLs and how conservative these estimates should be. 

Chapter 3 explored two different methods for testing for AI, either at the variant level with DESeq2 (Love 

et al., 2014) or at the gene level using population information with ASEP (Fan et al., 2020). For reQTLs, 

Chapter 4 focused on testing the significance of the interaction term of genotype with condition within the 

linear model, but it may be worthwhile to explore other tools like Metasoft (Sul et al., 2013) or other 

measures of significantly different eQTLs like β comparisons (Kim-Hellmuth et al., 2017). Like standard 

QTL mapping, exploring these methods will require a balance of maximizing discovery and controlling 

false positives. 

5.3 Insights gained from using fibronectin fragments to study OA regulatory genomics 

Chapters 3 and 4 leverage an ex vivo model of OA whereby human chondrocytes are stimulated 

with fibronectin fragments (FN-f) to conduct response AI and eQTL studies and characterize aspects of 

OA gene regulation. In line with previous findings (Reed et al., 2021), we found evidence of the 

differential expression of many OA-relevant genes in response to FN-f treatment. We conclude that our 

use of the system is comparable to this study, but our increased donor number may benefit from a more 

direct comparison of gene expression to the RAAK (Research Arthritis and Articular Cartilage) study or 

other diseased cartilage samples (Ramos et al., 2014). 

The use of an ex vivo model provided the platform to study response-specific genetic regulation 

against various human genetic backgrounds. The treatment of FN-f induces variable transcriptional 

changes that are consistent with what is seen in patient samples while also controlling for any potentially 

confounding variables and isolating specific gene-environment interactions. Furthermore, the candidate 
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genetic variants and genes identified from our reQTL and AI analyses can be functionally validated within 

this system to directly test the relevance of regulatory variants on the OA phenotype. Two works have 

already successfully used the FN-f OA model in conjunction with CRISPR-based editing (D’Costa et al., 

2020; Thulson et al., 2022), so the variants and genes identified here would be promising targets to probe 

with this kind of validation.  

Despite its numerous advantages in studying gene regulation in the context of OA, the FN-f 

chondrocyte model and the findings from the studies conducted with it in Chapters 3 and 4 leave some 

outstanding questions. The limited overlap of our identified putative SNPs and affected genes with 

previous OA eQTL and AI studies suggests that we might not capture the full range of OA phenotypes. 

Our results suggest that our study only focuses on one specific aspect of OA progression, particularly 

related to the immune response and inflammation in the cartilage. Future work could focus on the other 

key cell types within the entire joint, i.e. synovial macrophages and synovial fibroblasts, with similar 

response systems to characterize the distinct roles of different cell types of the joint in mediating OA-

specific genetic regulation. However, such models have not been developed and validated to the extent 

of the FN-f chondrocyte model, and integrating information from all models may prove challenging as 

regulation likely involves the additive contributions of multiple gene regulatory networks from 

combinations of cell types. Another promising avenue to explore would be the identification of single cell 

QTLs within joint tissue to capture QTLs for all joint cell types, although it may be difficult to probe 

response effects at the single-cell level against variable genetic and environmental backgrounds. Thus, 

model systems provide the platform for well-designed, robust studies but will always face questions of 

disease relevance and should be explored in conjugation with other disease models and systems. 

5.4 Colocalization: challenges and future directions 

 Colocalization of QTL signals with GWAS genetic loci is a powerful technique to connect putative 

causal variants associated with molecular traits with a complex phenotype, but it involves many 

challenges. In Chapter 4, we identified one reQTL colocalization at rs12901081 with GWAS signals in All 

OA, KneeHip OA, Hip OA, TJR, and THR. This SNP is in high LD (r2 = 0.9) with the lead GWAS SNP 

rs12908498 and is associated with the expression of SMAD3, which has been previously cited as a likely 

effector gene from GWAS (Boer et al., 2021) and identified in a colocalization analysis done in a previous 
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cartilage eQTL study (Steinberg et al., 2021). Although we can make hypotheses about the gene and 

variants driving this signal from such a finding, we are still limited in our understanding of the mechanisms 

at this locus and would benefit from finding standard and response caQTLs that colocalize with this locus 

as well. 

 Numerous statistical methods have been developed to assess the colocalization of signals. In our 

colocalization analyses, we employed coloc (Giambartolomei et al., 2014) with an assumption of a single 

causal variant shared between reQTL data and GWAS summary statistics. However, this method does 

not consider differing LD structures between datasets. OA GWAS resulted from a meta-analysis of 9 

populations (Boer et al., 2021) whereas donors in our reQTL study were primarily of European descent, 

making it more complicated to isolate a single causal variant amongst varying LD structures. Furthermore, 

we did not perform stepwise conditional analysis with our data to distinguish independent eQTLs, which 

may provide more accurate results to perform colocalization. These considerations are promising 

avenues to explore as we continue to increase our reQTL donor sample sizes, diversify donor ancestries, 

introduce caQTLs, and optimize available colocalization methods for our datasets. Nonetheless, 

colocalization will continue to be challenging as methods become more advanced in handling LD 

structure (Hormozdiari et al., 2016), analyzing multiple datasets simultaneously (Foley et al., 2021), and 

relaxing the single causal variant assumption (Wallace, 2021) as we battle complications with maintaining 

computational efficiency. 

 Beyond prioritizing a causal variant through colocalization which implies that the same variant 

affects a GWAS trait through the modulation of gene expression, mediation analysis would elucidate the 

potential mediating role of cis genetic variants on distal gene expression. This method could potentially 

disentangle more trans gene regulation mechanisms which may be influenced by one or many genes 

local to a SNP (Shan et al., 2019). The FN-f chondrocyte model would provide an interesting platform to 

identify the mediating factors involved in gene regulation in response to an OA-relevant stimulus. By 

disentangling these effects, we can hopefully begin translating knowledge of disease-related genetic 

variation into novel therapies and treatments. 
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