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ABSTRACT

Siyuan Shan: Leveraging Related Instances for Better Prediction
(Under the direction of Junier Bárbaro Oliva)

One fundamental task of machine learning is to predict output responses y from input data

x. However, despite significant advances in the past decade, most current predictive models still

only consider every single x in isolation when making predictions, which inevitably impacts

model performance as the model may lose the opportunity to extract helpful information from

other related instances to better predict x. This dissertation pushes the boundaries of machine

learning research by explicitly taking advantage of related instances for better prediction. We find

that leveraging multiple learned or intrinsically-related instances when making predictions in a

data-driven and flexible manner is important for achieving good performance over a myriad of

tasks.

When x is a single instance, we can flexibly find related instances based on similarity mea-

surements. We develop algorithms that consider related neighborhood instances for a specific

given x during prediction. Our assumption is that similar instances can be found near one an-

other in an embedding space and they locally share a similar predictive function. We develop

a model, Meta-Neighborhood, to learn a dictionary of neighbor points during training so that

we can retrieve related instances from this dictionary during inference for improved classifica-

tion and regression. Furthermore, this work is extended to Differentiable Wavetable Synthesis

(DWTS) which leverages a dictionary of related basis waveforms for audio synthesis. We show

that realistic audio can be synthesized by directly combining those basis waveforms.

Next, we consider the case where x is a given collection that contains multiple instances. In

this case, x already included multiple related instances and we develop methods that learn how

to exploit these related instances together to improve the prediction. Algorithms are developed to

iii



discover those instances more related to the prediction tasks and encourage the model to focus on

these related instances for prediction. We first develop a transparent and human-understandable

algorithm CKME that summarizes millions of instances into hundreds whilst being comparably

accurate for single-cell set classification. Then an algorithm NRTSI for time series imputation

is developed that treats the time series as a set and imputes missing data by leveraging those

observed related data.
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CHAPTER 1: OVERVIEW

1.1 Leveraging Related Neighbor Instances

Machine learning models are built to automatically exploit patterns and structures in training

data to make predictions or decisions. The main objective of machine learning models is to infer

the relationship between the input data x and its corresponding label y. Depending on applica-

tions, y could be a categorical variable for classification tasks such as image recognition, a real-

valued scalar for regression tasks such as stock price prediction, or an action for reinforcement

learning tasks. However, learning a function that directly infers y only from x may be challeng-

ing. As a motivating analogy, consider the following: when faced with a new unseen instance, x,

humans not only analyze x, but also leverage previous examples in their memory that are similar

to x to make a prediction [97]. The first “predicting by analysis” method is the philosophy be-

hind the popular deep learning methods where the models analyze the input by feature extraction.

The second “predicting by comparison” method constitutes the success of the classic K-nearest

neighbors algorithm (kNN) algorithm that makes decisions by first finding related neighbors and

taking a majority vote on the outcomes of these neighbors. However, the latter method is largely

neglected in a world dominated by deep learning approaches nowadays.

In this dissertation, we develop novel algorithms that enable deep learning models to also

consider related neighbor instances to achieve better prediction. Specifically, two methods are

developed to consider related neighbors for predicting y. In the first method, given a deep learn-

ing model fϕ(·) parameterized by ϕ, we allow ϕ to be adjusted using neighbors related to a spe-

cific input x during inference and use the model with adjusted parameter ϕ∗ to predict on x, i.e.

y = fϕ∗(x). In this way, our prediction can implicitly depend on the neighbor instances. In the

second method, the outputs are expressed as a weighted average of related neighbors and the
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averaging weights are predicted by a neural network f . This paradigm allows related neighbor

points to have a direct impact on the final predictions. For both methods, we treat these related

neighbor instances as a part of all the learnable parameters in our model and optimize them end-

to-end with the neural networks using gradient descent. In this way, we guarantee that the learned

neighbor instances are compatible with our neural networks. Note that our methods still maintain

the feature learning capacity of deep learning approaches as we leverage related neighbor points

only to enhance the predictions.

By leveraging these related neighbor points, higher-quality predictions can be achieved as the

model can gather information from similar points to gain additional context. As a by-product, we

find the learned related neighbors provide insights into understanding how the decision is made.

This is because the related instances explain the behavior of machine learning models or the

underlying data distribution. For instance, we find that different related instances may represent

different concepts of the datasets, i.e. some represent speedboats while others represent cargo

ships.

In the next section, we will discuss how this idea to leverage related instances can be ex-

tended to cases where the input data is a collection of features rather than a single feature.

1.2 Leveraging Related Points in a Collection

Unlike traditional machine learning tasks where the input data can be succinctly expressed

as a single multi-dimensional feature vector, there are other more complicated applications, such

as population statistics estimation [223], point cloud classification [114] and object detection

[206], image registration [173], time series classification [74, 199], multiarray signal processing

[120, 110, 145], and multi-frame video classification [53] where the input is a collection of fea-

ture vectors. Learning over this type of input data is challenging as the model not only needs to

characterize and compare across multiple collections but also must reason and identify the inter-

actions between the elements in each collection. Also, handling a collection of multi-dimensional

feature vectors incurs higher computational overhead and further obscures the decision-making
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process. For these applications, when the instances in the collection are unordered, this collec-

tion is a set of instances. If the instances are ordered, this collection can be seen as a sequence of

instances.

In the same vein as the discussion in the previous section, we also develop algorithms to

leverage the related instances to achieve better predictions in the case where the input data is a

collection. Specifically, we propose methods to find a subset of related instances belonging to

the original input collection for better predictions. Note that a slight difference from the previous

section is that we do not find other instances related to the input. Instead, in this section, we

aim to find related instances inside the input collection itself. Our methods are based on the

assumption that not all instances in a collection are equally important to predict the outcome of

the collection. For instance, consider the case where the task is to predict whether a point cloud

(i.e. a set of points in a three-dimensional space) represents an airplane, the points in the area of

wings and engines contribute more semantic clues for our specific prediction task than those in

other areas.

Concretely, we propose an explicit method as well as an implicit method to find related in-

stances. Firstly, we propose a method that builds on kernel methods and herding algorithms

to explicitly find only hundreds of related points from a collection of millions of points while

maintaining a high clinical outcome classification accuracy for single-cell data. Our proposed

approach significantly reduces the computational cost of considering millions of points simul-

taneously for classification and enables better interpretability as the decision is made only on

hundreds of points. Secondly, we propose an implicit method to discover related instances for

time series imputation. To impute missing data, the model needs to collect information from the

observed time points. However, not all the observed time points are equally important for predict-

ing a specific missing value. To find those related instances that are more important, we adopt an

attention mechanism to allow the model to automatically infer the relationship between different

time points, and thus related instances are learned implicitly.
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Below, I will introduce the necessary background knowledge and our proposed methods in

detail. Then the applications of the proposed approaches will be discussed.

1.3 Background

In this chapter, I introduce the necessary background for our proposed methods. More specif-

ically, my work Meta-Neighborhoods [170] requires an understanding of a well-known meta-

learning technique MAML [56]. Then we extend the idea of Meta-Neighborhoods for audio syn-

thesis and propose a method called Differentiable Wavetable Synthesis (DWTS) [169]. DWTS

is built on a pioneering work DDSP [44] that combines the interpretable structure of classical

DSP elements (such as filters, oscillators, reverberation, etc.) with the expressivity of deep learn-

ing. Also, both Meta-Neighborhoods and Differentiable Wavetable Synthesis adopt the attention

mechanisms. NRTSI [171] employ a Transformer architecture [191] to implicitly identify in-

stances that are related to the imputation targets. CKME [168] and its application for sketching

single-cell samples [9] use kernel mean embedding [140] to sub-select sample-sets. Since both

NRTSI and CKME are learning over sets, we also introduce here several properties of sets and

existing methods that can handle this type of data.

1.3.1 Model-Agnostic Meta-Learning (MAML)

Our work Meta-Neighborhood in Chapter 2 is built on MAML [56], a model-agnostic meta-

learning method. The main goal of meta-learning is to learn quickly on new tasks with the help

of knowledge on the old tasks. MAML [56] aims to learn a set of good initial model parameters

that can be quickly fine-tuned to achieve good performance for a new task. Therefore, knowledge

about the old tasks is effectively summarized by this set of initial parameters. MAML learns the

initial parameters ϕ by optimizing the following loss L(ϕ) with gradient descent:

L(ϕ) =
∑

Ti∼p(T )

LTi(ϕi) =
∑

Ti∼p(T )

LTi(ϕ− α∇ϕLTi(ϕ)), (1.1)
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where Ti is a task sampled from a distribution of tasks p(T ), LTi(ϕi) means the loss on the task

Ti evaluated with the model parameter ϕi. From (1.1), we can see that MAML first fine-tunes ϕ

for every task as ϕi = ϕ−α∇ϕLTi(ϕ), which is called the inner-loop optimization. Then the model

computes the average loss across all tasks, minimizing which can learn a good initial parameter ϕ

that can be easily fine-tuned for all tasks. This step is often called outer-loop optimization.

1.3.2 Differentiable Digital Signal Processing (DDSP)

In Chapter 3, we extend the idea of Meta-Neighborhood and propose a method Differentiable

Wavetable Synthesis, which is built on a previous work DDSP [44]. DDSP described a model

that introduces modules with strong inductive biases from the traditional digital signal processing

library (e.g. filters, oscillator, reverberation, etc.) to deep learning. As all the modules are dif-

ferentiable, they can be easily combined with neural networks for end-to-end learning. The core

module of DDSP is an additive synthesizer.

In additive synthesis [136], you can build a sound from scratch by combining multiple sinu-

soidal waves of different amplitudes and frequencies. This way of sound synthesis is intuitive

because the sounds that are heard in everyday life do not contain a single frequency. Instead, they

consist of a sum of pure single frequencies as illustrated by Fig. 1.1. The timbre of the synthe-

sized sound is determined by the amplitudes of every single sinusoidal wave (single frequency

component). For example, Fig. 1.2 illustrates the spectrograms of four instruments. We can see

that each different instrument has a different summation of pure single frequencies, resulting in

different timbres. For instance, trumpets sound different from flutes because the high-frequency

components of trumpets have higher amplitudes.

More formally, similar to the summation mechanism shown in Fig. 1.1, the additive synthe-

sizer in DDSP combines K sinusoidal functions with different predefined frequencies to output

the synthesized signal s(n) over discrete time steps, n:

s(n) =
K∑
k=1

Ak(n)sin(ϕk(n)), (1.2)
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Figure 1.1: Illustration of additive synthesis. Image is taken from [1].

where Ak(n) is predicted by a neural network and represents the time-varying amplitude of the

k-th sinusoidal components, ϕk(n) = 2π
∑n

m=0 fk(m) is the corresponding instantaneous phase

obtained by integrating the predefined instantaneous frequency fk. DDSP assumes fk = kf0(n)

where f0(n) is the time-varying fundamental frequency. Therefore, the synthesized signal only

contains harmonics with integer multiples of the fundamental frequency.

1.3.3 Attention Mechanisms

In neural networks, attention is a technique that mimics cognitive attention. The effect empha-

sizes some parts of the input data while ignoring other parts. The motivation is that the network

should devote more focus to the small, but important, parts of the data. Learning which part of
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Figure 1.2: Illustration of different compositions of harmonic components of different instru-
ments. Image is taken from [21].

the data is more important than another depends on the context, and this is trained by gradient

descent.

Attention mechanisms are mainly used to retrieve relevant information from a set of candi-

dates {k1, k2, ..., kn} where kj is a high-dimensional feature vector. Given a query vector xi, we

first compute the similarity of xi to all the candidates using a dot product as xT
i · kj . Then, the

softmax function is applied to compute the attention weights ωi,j of all candidates as

ωi,j =
ex

T
i ·kj/T∑n

m=1 γe
xT
i ·km/T

, (1.3)

where T is usually known as the temperature parameter of the softmax function that controls the

sparseness of the attention pattern. A smaller T leads to a sparser attention weight. By default, T
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is equal to 1. Finally, the query result is computed as a weighted average of all the candidates, i.e.

qi =
n∑

j=1

ωi,jkj. (1.4)

Note that it is guaranteed that the attention weights sum up to 1 according to the definition of

the softmax function. Alternatively, in some applications, we may be interested in retrieving the

values corresponding to these candidates rather than the candidates themselves. In such a case,

the query result is

qi =
n∑

j=1

ωi,jvj, (1.5)

where vj is the value of the candidate kj .

1.3.4 Transformer

Before the introduction of Transformer models [191], recurrent neural networks [72, 34] and

convolution neural networks [100, 96] dominated sequence learning tasks. Though there are

some earlier efforts [8] that combine attention mechanisms with recurrent models to improve the

performance, Transformer models show that an attention mechanism is all you need to achieve

state-of-the-art performance on the sequence learning tasks. This is because the attention mech-

anism itself allows direct access to any position in the input sequence and effectively solves the

information loss problem of recurrent models. Transformer models [191] have revolutionized

both natural language processing fields [41] and computer vision fields [42] due to their strong

capacity to model interactions between L d-dimensional input tokens X ∈ RL×d with attention,

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V ∈ RL×dv , (1.6)

Q = XWq ∈ RL×dk , (1.7)

K = XWk ∈ RL×dk , (1.8)
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V = XWv ∈ RL×dv , (1.9)

where Wq ∈ Rd×dk ,Wk ∈ Rd×dk ,Wv ∈ Rd×dv are learnable parameters to compute the

query vector Q, the key vector K, and the value vector V . The hyperparameters dk and dv are the

dimensions of the key vector and the value vector. This attention mechanism is further improved

by using multi-head attention (MHA), which uses multiple independent heads to capture different

features. MHA is a module for attention mechanisms that run through an attention mechanism

several times in parallel. The independent attention outputs are then concatenated and linearly

transformed into the expected dimension, which can be written as

MultiHead(Q,K, V ) = OW0 ∈ RL×d, (1.10)

O = Concat(head1, ..., headh) ∈ RL×hdv (1.11)

headi = Attention(Qi, Ki, Vi) ∈ RL×dv , (1.12)

Qi = XWi
q ∈ RL×dk , (1.13)

Ki = XWi
k ∈ RL×dk , (1.14)

Vi = XWi
v ∈ RL×dv , (1.15)

where Wi
q ∈ Rd×dk , Wi

k ∈ Rd×dk , Wi
v ∈ Rd×dv , and WO ∈ Rhdv×d are learnable projection

matrices. Attention is usually implemented as scaled dot-product attention as in (1.6). Intuitively,

multiple attention heads allow for attending to parts of the sequence differently (e.g. longer-term

dependencies versus shorter-term dependencies [228]). Unlike recurrent neural networks that

are naturally aware of the sequence order of the input tokens, Transformer models do not have

such a concept as all the input tokens are processed in parallel. To inject the order information,
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Figure 1.3: Transformer Encoder Architecture.

Transformer models introduce positional encodings,

PE(pos,2i) = sin(pos/100002i/d)

PE(pos,2i+1) = cos(pos/100002i/d),

where pos is the position and i is the dimension.

The full Transformer encoder architecture is illustrated in Fig 1.3. It stacks N blocks to en-

hance feature extraction capacity and each block consists of a MHA layer, normalization layers,

and a feed-forward layer. Skip connection is used to facilitate the gradient flow.

1.3.5 Kernel Mean Embedding

Please see Muandet et al. [140] for a thorough review of kernel mean embeddings. Kernel

methods have achieved great success in many distinct machine learning tasks, including classifi-

cation [35], regression [196], and dimensionality reduction [137]. They utilize a positive defini-

tive kernel function k : Rd × Rd 7→ R 1, which induces a reproducing kernel Hilbert space (RKHS)

(e.g. see Berlinet & Thomas-Agnan [12] for further details). Kernels have also been deployed for

1Note that kernels may be defined over non-real domains, this is omitted for simplicity.

10



representing a distribution, p, with the kernel mean embedding µp : Rd 7→ R:

µp(·) ≡ Ex∼p[k(x, ·)]. (1.16)

Note that µp is itself a function. For “characteristic” kernels, k, such as the common radial-basis

function (RBF) kernel k(x, x′) = exp(− 1
2γ
||x− x′||2), the kernel mean embedding will be unique

to its distribution; i.e., for characteristic kernels, ||µp−µq|| = 0 if and only if p = q. In general, the

distance2 ||µp − µq|| induces a divergence, the maximum mean discrepancy (MMD) [67], between

distributions.

1.3.6 Permutation Invariant Mappings on Sets

A set is a collection that does not impose order among its elements. Models over sets must

preserve this property. We list the commonly used terminology for set modeling below. We de-

note a set as x = {xi}Ni=1 ∈ XN , where N is the cardinality of the set and the calligraphic letter

X represents the domain of each element xi.

Definition 1. (Permutation Equivariant) Let f : XN → YN be a function, then f is permutation

equivariant iff for any permutation π(·), f(π(x)) = π(f(x)).

Definition 2. (Permutation Invariant) Let f : XN → Y be a function, then f is permutation

invariant iff for any permutation π(·), f(π(x)) = f(x).

A naive method to encourage permutation invariance is to augment the training data with

randomly permuted sets and treat them as sequences. One could then train a neural network map-

ping the permuted inputs to the same output. Due to the universal approximation ability of neural

networks, the final model could be invariant to permutations given an infinite amount of training

data and model capacity. However, this simple approach does not guarantee invariance for real-

world finite datasets. As pointed out by Vinyals et al. [193], the order cannot be discarded for a

sequence model.

2In the RKHS norm.
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DeepSet [223] proves that any permutation invariant function for a set with a finite number of

elements can be decomposed as ρ(
∑

x∈XN ϕ(x)), where the summation is over the set elements.

Based on this decomposition, they propose using two neural networks for both ρ and ϕ to learn

flexible permutation invariant functions. They also propose an equivariant model, where inde-

pendent processing combined with a pooling operation is used to capture the intradependencies.

Although deep sets are universal approximators, there are some constraints with respect to the

dimensionality of latent representation as shown by Wagstaff et al. [197].

Set Transformer [102] proposes to use an attention mechanism over set elements to model the

intradependencies between each pair of elements. Since the attention is a weighted sum over all

set elements, this operation is naturally equivariant. They also propose an attention-based pooling

operation to achieve invariant representations.

1.4 Thesis Structure

This dissertation is structured as follows:

1. In Chapters 2 and 3, we focus on the case where the input contains only a single instance

and demonstrate the technical development for better prediction.

• Chapter 2: We develop a meta-learning pipeline to learn a dictionary of related in-

stances to achieve better image classification and tabular data regression performance.

During inference, related instances are retrieved via an attention mechanism to adjust

model parameters to improve performance. A similar idea of learning a dictionary of

related instances for audio synthesis is proposed in Chapter 3.

• Chapter 3: We propose an audio synthesis method Differentiable Wavetable Synthesis

(DWTS) that synthesizes by reusing a set of learned instance waveforms. Our work

can synthesize harmonic audio in a controllable and interpretable manner. DWTS has

a fast synthesis speed and superior one-shot learning performance.
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2. In Chapters 4 and 5, we consider the case where the input data is a collection of instances

and develop methods to jointly consider the given set of related points to make a better

prediction on the collection.

• Chapter 4: We develop an interpretable machine learning model CKME for classify-

ing single-cell sample sets, which is a collection of feature vectors of a set of cells.

CKME uses kernel mean embedding to build permutation-invariant featurization of

each individual sample set.

• Chapter 5: We develop a method NRTSI for time series imputation. Unlike traditional

approaches that view time series as a sequence, we view a time series as a set. This al-

lows us to develop a hierarchical imputation procedure and use attention mechanisms

to better impute missing data.
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CHAPTER 2: LEVERAGING RELATED NEIGHBORS FOR IMPROVED
PREDICTION

2.1 Notation

• x: an input data x ∈ Rdi .

• y: an output response y ∈ Rdo .

• D = {(xi, yi)}Ni=1: a training set with N input-output pairs.

• ω(xi, kj): attention weight between query xi and key kj .

• M = {(kj, vj)}Sj=1: a dictionary that stores neighbors where S is the number of induced

neighbors. Just like the real training set D, the dictionary stores input-output pairs as key-

value pairs (kj ,vj)

• fϕ: a neural network with parameter ϕ.

2.2 Introduction

Neural networks assume that a set of fixed parameters ϕ determines the predictive distribution,

i.e., p(y | x;ϕ). The training process estimates ϕ and then discards the training data completely,

as the learned parameters ϕ are responsible for the ultimate prediction. This paradigm has proven

effective, however, it leaves the entire burden on learning a complex predictive distribution over

potentially large support. The well-known k-nearest neighbor (kNN) estimator, in contrast, often

achieves surprisingly good results by leveraging neighbors from the training data, which reduces

the problem to a much simpler local manifold.
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Figure 2.1: Top: traditional parametric models. Bottom: our per-instance-adapted model. N(xi)
denotes the set of neighbors of instance xi.

In this work, we improve traditional neural networks with related neighbors and propose a

method called Meta-Neighborhoods. The main body of Meta-Neighborhoods is a parametric

neural network, but we adapt its parameters to a local neighborhood in a non-parametric scheme.

The prediction is made on the local manifold by the adapted model. Fig. 2.1 illustrates the differ-

ence between traditional parametric models and the proposed model. Inspired by the success of

inducing point methods from sparse Gaussian process literature [178, 188] to alleviate the stor-

age burden and reduce time complexity, we learn induced neighborhoods, which summarize the

training data into a much smaller dictionary. The induced neighborhoods and the neural network

parameters are learned jointly.

Our model is also closely related to locally linear embeddings [161], which reconstructs the

non-linear manifold with locally linear approximation around each neighborhood. In our method,

we adapt an initial model (not necessarily linear) to local neighborhoods.

Our method imposes challenges of adapting the initial model since the local neighborhoods

usually do not contain enough training instances to independently adapt the model, and the in-

duced neighborhoods contain even fewer instances. Inspired by the few-shot and meta-learning

literature [56], we propose a meta-learning-based training mechanism, where we learn an initial

model so that it adapts to the local neighborhood after only several fine-tuning steps over a few

instances inside the neighborhood.
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The prediction process of our model proceeds as follows. An input x is first paired with its

neighbors by querying the induced dictionary. The initial model is adapted to its neighborhood by

fine-tuning several steps on the neighbors. We then predict the target y using the adapted model.

Our contributions are as follows:

• We improve neural networks by considering related neighbor points.

• We propose Meta-Neighborhoods to jointly learn the induced neighborhoods and an adap-

tive initial model, which can adapt its parameters to a local neighborhood according to the

input through both fine-tuning and a proposed instance-wise modulation scheme, iFiLM.

• Extensive empirical studies demonstrate the superiority of Meta-Neighborhoods for both

regression and classification tasks.

• We empirically find the induced neighbors are semantically meaningful: they represent in-

formative boundary cases on both realistic and toy datasets; they also capture sub-category

concepts even though such information is not given during training.

2.3 Problem Formulation

Given a training set D = {(xi, yi)}Ni=1 with N input-target pairs, we learn a discriminative

model fϕ(x) and a dictionary M = {(kj, vj)}Sj=1 jointly from D. The learned dictionary stores

the neighbors induced from the training set, where S is the number of induced neighbors. Just

like the real training set D, the dictionary stores input-target pairs as key-value pairs (kj ,vj),

where both the keys and the values are learned end-to-end with the model parameters ϕ in a meta-

learning framework. For classification tasks, vj is a vector representing the class probabilities

while for regression tasks vj is the regression target. In the following text, we will use the terms

“induced neighbors” and “learnable neighbors” interchangeably.
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2.4 Background

Our model is built on the well-known meta-learning algorithm Model-Agnostic Meta-Learning

(MAML) [56]. Meta-learning, also known as learning to learn, allows machine learning models

to learn new concepts and skills quickly and efficiently with a limited number of training ex-

amples [78]. This is in contrast to popular machine learning models nowadays such as neural

networks, which are data-hungry and requires many iterations to converge. Also, unlike contem-

porary machine learning models that only learn a single specific task, meta-learning algorithms

learn several tasks simultaneously and can adapt to generalize to new tasks that are not seen

during training. The tasks can be any well-defined family of machine learning problems such

as supervised learning and reinforcement learning. There are three categories of meta-learning

algorithms, namely metric-based, model-based and optimization-based. Metric-based methods

predict by computing the similarity between a query example and a set of support examples in

the new task and aggregate the output responses according to the similarity. This is similar to

nearest neighbor algorithms like kNN. With several different ways to compute the similarity, rep-

resentative metric-based works are Matching Networks [194] and Prototypical Networks [177].

Model-based algorithms either use external memory storage to facilitate the learning of neural

networks [166] or perform rapid parameter updates by its internal architecture [141].

MAML belongs to the third categorical which is optimization-based. MAML [56] aims to

learn a set of good initial model parameters that can be quickly fine-tuned to achieve good perfor-

mance for a new task. During inference, MAML fine-tunes the initial parameters ϕ by perform-

ing gradient descents to minimize the task loss LTi:

ϕi ← ϕ− α∇ϕLTi(ϕ), (2.1)

where Ti is a task sampled from a distribution of tasks p(T ). MAML uses few-shot learning to

test the meta-learning performance where each task has a support set with several labeled data

instances and a query set with several unlabeled data instances whose labels need to be predicted.
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In our model, we follow a similar fashion but the support set in our model is a set of instances

related to the input instance and the query set only contains that single input instance.

2.5 Methods

2.5.1 Prediction with Induced Neighborhoods

In this section, we assume access to the learned neighborhoods in M and the learned model

fϕ. Different from the conventional parametric setting, where the learned model is employed

directly to predict the target, we adapt the model according to the neighborhoods retrieved from

M and the adapted model is the one responsible for making predictions. Specifically, for a test

data instance xi, relevant entries in M are retrieved in a soft-attention manner by comparing xi to

kj via an attention function ω. The retrieved entries are then utilized to fine-tune fϕ following

ϕi ← ϕ− α∇ϕ

S∑
j=1

ω(xi, kj)L(fϕ(kj), vj), (2.2)

where α is the fine-tuning step size. We set α to be a learnable variable in our work. Note we

weight the loss terms of all dictionary entries by their similarities to the input test data xi. The

intuition is that nearby neighbors play a more important role in placing xi into the correct local

manifold. Since the model fϕ is specially trained in a meta-learning scheme, it adapts to the local

neighborhoods after only a few fine-tuning steps.

To better understand our method, we draw connections to other well-known techniques. The

above prediction process is similar to a one-step EM algorithm. Specifically, the dictionary query-

ing step is an analogy to the Expectation step, which determines the latent variables (in our case,

the neighborhood assignment). The fine-tuning step is similar to the Maximization step, which

maximizes the expected log-likelihood. We can also view this process from a Bayesian perspec-

tive, where the initial parameter ϕ is an empirical prior estimated from data; posteriors are de-
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Figure 2.2: Model overview.

rived from neighbors following the fine-tuning steps. The predictive distribution with posterior is

used for the final predictions.

Algorithm 1 META-NEIGHBORHOODS: TRAINING PHASE

Require: ω: similarity metric, η: outer loop learning rate
1: Initialize θ, ϕ, α,M = {(kj, vj)}Sj=1

2: while not done do
3: Sample a batch of training data {(xi, yi)}Bi=1

4: for all (xi, yi) in current batch do
5: Compute the feature vector zi = µθ(xi)
6: Compute Linner

i (ϕ) =
∑S

j=1 ω(zi, kj)L(fϕ(kj), vj)

7: Finetune ϕ: ϕi = ϕ− α∇ϕLinner
i (ϕ)

8: end for
9: Compute Lmeta(ϕ, θ,M, α) = 1

B

∑B
i=1 L(fϕi

(µθ(xi)), yi)
10: Update model parameters Θ = {θ, ϕ,M, α}

using gradient descent as Θ← Θ− η∇ΘLmeta

11: end while

2.5.2 Joint Meta Learning

Above, we assume access to a given dictionary M and a given model fϕ. In this section,

we describe our meta-learning mechanism to train them jointly. The training strategy of Meta-

19



Neighborhoods resembles MAML [56] in that both adopt a nested optimization procedure, which

involves an inner loop update and an outer loop update in each iteration. Note that in contrast to

MAML, we are solving a general discriminative task rather than a few-shot task [208]. Given

a batch of training data {xi, yi}Bi=1 with a batch size B, in the inner loop we fine-tune the initial

parameter ϕ to ϕi in a similar fashion to (2.2). With ϕ individually fine-tuned for each training

data xi using its corresponding neighborhoods, we then jointly train the model parameter ϕ, the

dictionary M as well as the inner loop learning rate α in the outer loop using the following meta-

objective function

Lmeta(ϕ,M, α) =
1

B

B∑
i=1

L(fϕi
(xi), yi) =

1

B

B∑
i=1

L(fϕ−α∇ϕLinner
i

(xi), yi), (2.3)

where Linner
i (ϕ) =

∑S
j=1 ω(xi, kj)L(fϕ(kj), vj) according to (2.2). We set α to be a learnable

scalar or diagonal matrix. Lmeta encourages learning shared ϕ, M , and α that are widely applica-

ble for data with the same distribution as the training data. An overview of our model is shown in

Fig. 2.2.

Parameter ϕ serves as initial weights that can be quickly adapted to a specified neighbor-

hood. This meta-training scheme effectively tackles the overfitting problem caused by the limited

number of finetuning instances, as it explicitly optimizes the generalization performance after

fine-tuning.

For high-dimensional inputs such as images, learning kj in the input space could be pro-

hibitive. Therefore, we employ a feature extractor µθ to extract the feature embedding zi = µθ(xi)

for each xi and learn kj in the embedding space. We accordingly modify (2.2) to

ϕi ← ϕ− α∇ϕ

S∑
j=1

ω(µθ(xi), kj)L(fϕ(kj), vj), (2.4)

where the attention function ω is employed in embedding space. The meta-objective is accord-

ingly modified as Lmeta(ϕ, θ,M, α) = 1
B

∑B
i=1 L(fϕi

(µθ(xi)), yi). We train θ and other learnable

20



parameters jointly. Note that the model without a feature extractor can be viewed as a special

case where µθ is an identity mapping. The pseudocode of our training algorithm is given in Algo-

rithm 1.

It is also desirable to adjust µθ per instance. However, when µθ is a deep convolution neu-

ral network, tuning the entire feature extractor µθ is computationally expensive. Inspired by

FiLM [149], we propose instance-wise FiLM (iFiLM) that adjusts the batch normalization lay-

ers individually for each instance. Suppose al ∈ RB×Cl×W l×Hl is the output of the lth Batch

Normalization layer BNl, where B is batch size, C l is the number of channels, W l and H l are

the feature map width and height. Along with each BNl, we define a learnable dictionary M l =

{kl
j, γ

l
j, β

l
j}

Sl
j=1 of size Sl. kl

j are the keys used for querying. γl
j, β

l
j ∈ RCl represent the scale

and shift parameters used for adaptation respectively. When querying M l, the outputs al are first

aggregated across their spatial dimensions using global pooling, i.e. gl = GlobalAvgPool(al) ∈

RB×Cl
. Then, the instance-wise adaptation parameters γ̂l

i and β̂l
i are computed as

γ̂l
i =

Sl∑
j=1

ω(gli, k
l
j)γ

l
j ∈ RCl

β̂l
i =

Sl∑
j=1

ω(gli, k
l
j)β

l
j ∈ RCl

, (2.5)

where ω is defined as in (2.2) and i ∈ {1, 2, . . . , B}. Following FiLM [149], each individual

activation ali is then adapted with an affine transformation γ̂l
i · ali + β̂l

i. Note the transformation

is agnostic to spatial position, which helps to reduce the number of learnable parameters in the

dictionary M .

2.5.3 Other Details and Considerations

Above, we have discussed how we learn related instances and leverage them to obtain a more

flexible model. In this section, we discuss further implementation details that enable successful

model training. We also motivate our method from the perspective of k-nearest neighbor (kNN).

Similarity Metrics To implement the attention function ω in (2.2)(2.4)(2.5), we need a simi-

larity metric to compare an input xi with each key kj . We consider two types of metrics, cosine
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similarity and negative Euclidean distance. We find cosine similarity works better than negative

Euclidean distance in the case of high dimensions while the opposite is true in the case of low

dimensions. The similarities of xi to all keys are normalized using a softmax function with a

temperature parameter T [71], i.e.,

ω(xi, kj) =
exp(sim(xi, kj)/T )∑S
s=1 exp(sim(xi, ks)/T )

, (2.6)

where sim(·) represents the similarity metric.

Initialization of the Dictionary Since we use a similarity-based attention function ω in (2.4), we

would like to initialize the key kj to have a similar distribution to zi = µθ(xi), otherwise, kj can-

not receive useful training signal at early training steps. To simplify the initialization, we follow

[63] to remove the non-linear function (e.g. ReLU) at the end of µθ so that features extracted by

µθ are approximately Gaussian distributed. With this modification, we can simply initialize kj

with Gaussian distribution.

Cosine-similarity Based Classification Since the model fϕ is fine-tuned using the learned dic-

tionary in the inner loop, the quality of the dictionary has a significant impact on final perfor-

mance. Typical neural network classifiers employ a dot product to compute the logits, where the

magnitude and direction could both affect the results. Therefore, the model needs to learn both

the magnitude and the direction of kj . To alleviate this training difficulty, we eliminate the influ-

ence of magnitude by using a cosine similarity classifier, where only the direction of kj can affect

the computation of logits. Cosine similarity classifiers have been adopted to replace dot product

classifiers for few-shot learning [63, 30] and robust classification [220].

Relationship to kNN Below, we show that Meta-Neighborhoods can be derived as a direct

generalization of kNN under a multi-task learning framework. Considering a regression task

where the regression target is a scalar, the standard view of kNN is as follows. First, aggregate

the k-nearest neighbors of a query x̃i from the training set D as N(x̃i) = {(xj, yj)}kj=1 ⊂ D.

Then, predict an average of the responses in the neighborhood: ŷ = 1
k

∑k
j=1 yj .
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Instead of simply performing an average of responses in a neighborhood, we frame kNN as a

solution to a multi-task learning problem with tasks corresponding to individual neighborhoods

as follows. Here, we take each query (test) data x̃i as a single task, Ti. To find the optimal esti-

mator on the neighborhood N(x̃i) = {(xj, yj)}kj=1, we optimize the following loss LTi(fi) =

1
k

∑k
j=1 L(fi(xj), yj) where L is a supervised loss, and fi is the estimator to be optimized. For ex-

ample, for MSE-based regression, the loss for each task is LTi(fi) =
1
k

∑k
j=1(fi(xj)− yj)

2. If one

takes fi to be a constant function fi(ηj) = Ci, then the loss is simply LTi(fi) =
1
k

∑k
j=1(Ci − ζj)

2,

which leads to an optimal fi(x̃i) = Ci =
1
k

∑k
j=1 ζj , the same solution as traditional kNN. Similar

observations hold for classification. Thus, given neighborhood assignments, one can view kNN as

solving for individual tasks in the special case of a constant estimator fi(xj) = Ci.

With the multi-task formulation of kNN, we can generalize kNN to derive our Meta-Neighborhoods

method by considering a non-constant estimator as fi. For instance, one may take fi as a para-

metric output function fϕi
(e.g. a linear model or neural networks), and fine-tune the parameter

ϕ to ϕi for a data xi according to the loss on neighborhood N(xi). Instead of fitting a single la-

bel on the neighborhood, a parametric approach attempts to fit a richer (e.g. linear) dependency

between input features and labels for the neighborhood. In addition, the multi-task formulation

gives rise to a way of constructing meta-learning episodes. Also, we learn both neighborhoods

and the function fϕ jointly in our Meta-Neighborhoods framework.

2.6 Related Work

Memory-augmented Neural Networks Augmenting neural networks with memory has been

studied in the sentinel work Neural Turing Machine [65], where a neural network can read and

write an external memory to record and change its state. Recent works that utilize memory mod-

ules generally fall into two categories. One category modifies the memory modules according to

hand-crafted rules. For instance, previous works tackling few-shot classifications add a new slot

to the memory when the label of a given data does not match the labels of its k-nearest neighbors

from the memory [20] or the given data is misclassified [155]. Sprechmann et al. [179] adopt a
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fixed-size memory that acts as a circular buffer for life-long learning. Another category uses a

fully-differentiable memory module and trains it together with neural networks by gradient de-

scent. This type of memory has been explored for knowledge-based reasoning [66], sequential

prediction [182] and few-shot learning [87, 166]. Our work also utilizes a differentiable mem-

ory but is used to capture the local manifolds and improve the general discriminative learning

performance.

Meta-Learning Representative meta-learning algorithms can be roughly categorized into two

classes: initialization-based and metric-learning based. Initialization-based methods, such as

MAML [56], learn a good initialization for model parameters so that several gradient steps using

a limited number of labeled examples can adapt the model to make predictions for new tasks.

To further improve flexibility, Meta-SGD [115] learns coordinate-wise inner learning rates, and

curvature information is considered in Park & Oliva [146] to transform the gradients in the inner

optimization. Metric-learning-based methods focus on using a distance metric on the feature

space to compare query set samples with labeled support set samples. Examples include cosine

similarity [194] or Euclidean distance [177] to support examples. A learned relation module is

employed in [183].

Our model is similar to the initialization-based method: each test sample can be regarded as

a new task, and we meta-learn a dictionary that adapts the initial model to a local neighborhood

by fine-tuning over queried neighbors. A recent work Meta AuXiliary Learning (MAXL) also

explores meta-learning techniques to improve classification performance, where a label generator

is meta-learned to generate auxiliary labels so that the auxiliary task trained together with the

primary classification task can improve the primary performance.

2.7 Experiments

In this section, we conduct experiments for both classification and regression tasks. To

demonstrate the benefits of making predictions in local neighborhoods, we compare to the vanilla

24



(a) Iteration 0 (b) Iteration 800 (c) Iteration 6400

Figure 2.3: Evolution of learnable neighbors and classification results on the test data during
training. Two classes are two spirals. Binary predictions for the test set are shown as blue and
yellow points. Learnable neighbors are first randomly initialized in (a), then optimized in (b) (c).
The dotted black lines are the trajectories of learnable neighbors through training iterations.

model where the same network architecture is used but without the learnable neighborhoods. We

also compare to MAXL [122] for classification tasks.

2.7.1 Toy Example: Binary Classification of the Concentric Spiral Dataset

To investigate the behavior of the induced neighbors and how they assist the parametric

model to make predictions, we first classify on a 2D toy dataset. In this binary classification

task, points from two classes are placed in concentric spirals with a non-linear decision boundary.

Although a linear classifier is incapable of capturing this decision boundary, we show that tuning

a linear classifier with induced neighbors gives an overall non-linear classifier. In addition, our

learned neighborhoods capture the critical manifold structure and concentrate at boundary cases;

we also observe semantically relevant learned neighbors in higher dimensions (see Section 2.8.6

and 2.8.7)

In Fig. 2.3, we visualize the evolution of the learned neighbors and the decision boundary.

The learnable neighbors (shown in green and red markers for two classes respectively) are first

initialized with random keys and values. As we train the model and the neighbors, the learned

neighbors are gradually driven to important manifold locations as in Fig. 2.3 (b) and (c). After
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Table 2.1: The classification accuracies of our model and the baselines. “MN” denotes Meta-
Neighborhoods. Results from three individual runs are reported and the best performance is
marked as bold. Given that backbones like ResNet-56 are strong, our consistent improvement is
notable.

Datasets vanilla MAXL ours
vanilla+iFiLM MN MN+iFiLM

Backbone: 4-layer ConvNet
MNIST 99.44±0.03% 99.60±0.02% 99.40±0.02% 99.62±0.03% 99.58±0.03%
SVHN 93.02±0.12% 94.06±0.10% 93.95±0.12% 94.46±0.09% 94.92±0.09%
MNIST-M 96.18±0.05% 96.85±0.06% 96.99±0.07% 96.55±0.04% 97.40±0.05%
PACS 92.55±0.08% 94.85±0.12% 94.45±0.09% 95.19±0.10% 95.22±0.09%
Backbone: DenseNet40-BC
CIFAR-10 94.53±0.10% 94.83±0.09% 94.87±0.08% 95.04±0.11% 95.22±0.09%
CIFAR-100 73.92±0.12% 75.64±0.14% 74.66±0.13% 76.32±0.16% 76.96±0.14%
CINIC-10 84.92±0.07% 85.42±0.07% 85.11±0.08% 85.73±0.10% 86.02±0.07%
Tiny-ImageNet 49.28±0.18% 50.94±0.16% 50.86±0.14% 53.27±0.18% 54.36±0.15%
Backbone: ResNet-29
CIFAR-10 95.06±0.10% 95.31±0.09% 95.17±0.10% 95.56±0.09% 95.58±0.10%
CIFAR-100 76.51±0.15% 77.94±0.12% 77.16±0.14% 78.84±0.14% 79.84±0.11%
CINIC-10 86.03±0.08% 86.34±0.06% 86.64±0.06% 86.86±0.08% 87.35±0.09%
Tiny-ImagNnet 54.82±0.17% 56.29±0.14% 55.59±0.17% 57.36±0.15% 57.94±0.14%
Backbone: ResNet-56
CIFAR-10 95.73±0.08% 96.06±0.07% 96.08±0.08% 96.36±0.07% 96.40±0.06%
CIFAR-100 79.64±0.13% 80.36±0.13% 80.04±0.12% 80.58±0.10% 80.90±0.12%
CINIC-10 88.21±0.07% 88.30±0.05% 88.57±0.07% 88.61±0.06% 88.99±0.07%
Tiny-ImageNet 57.92±0.12% 58.94±0.16% 58.31±0.15% 60.05±0.12% 60.78±0.13%
ImageNet 48.41±0.14% 48.83±0.16% 52.03±0.12% 51.85±0.12% 54.23±0.13%

training, the linear classifier adapted to local neighborhoods can accurately classify test examples.

We use 100 induced neighbors. The labels of neighbors (values in the dictionary) are fixed after

random initialization for illustration purposes. The 2D locations of neighbors (keys in the dictio-

nary) are updated with the model. We use negative Euclidean distance as the similarity metric in

(2.6) and set T to 0.1.

2.7.2 Image Classification

In this section, we evaluate 9 datasets with different complexities and sizes: MNIST [101],

MNIST-M[58], PACS[106], SVHN [64], CIFAR-10 [95], CIFAR-100 [95], CINIC-10 [36], Tiny-

ImageNet [163] and ImageNet [40]. Dataset details and preprocessing methods are given in

Section 2.8.1.
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Our models are compared to two baselines: vanilla, a traditional parametric ConvNet with

the same architecture as ours but without the learnable dictionary, and MAXL [122], where an

auxiliary label generator is meta-learned to enhance the primary classification tasks. For MNIST,

MNIST-M, SVHN and PACS, a 4-layer ConvNet is selected as the feature extractor µθ. For the

other four datasets, three deep convolutional architectures, DenseNet40-BC [80], ResNet29, and

ResNet56 [70], are used as µθ. fϕ is implemented as a cosine-similarity-based classifier with one

linear layer for both vanilla and our models. Experiment details for our models and baselines are

provided in Section 2.8.2.

Results Table 2.1 compares the test accuracy to baselines. We show that both Meta-Neighborhoods

(MN) and iFiLM (vanilla+iFiLM) can improve over vanilla. The best performance is achieved

when combining MN and iFiLM (MN+iFiLM), which outperforms the vanilla and MAXL base-

lines across several network architectures and different datasets. This indicates Meta-Neighborhoods

and iFiLM are complementary and it is beneficial to adjust both fϕ and µθ per instance. Our

method is also effective at PACS and MNIST-M datasets that contain significant domain shifts.

Note that backbones like ResNet-56 are already powerful for these datasets and there is lim-

ited room for improvement over the vanilla model. For instance, employing ResNet-110 instead

of ResNet-56 only gives 0.14% and 0.40% further improvements on CIFAR-10 and CIFAR-100,

but at the expense of doubling the number of parameters. Yet Meta-Neighborhoods still consis-

tently achieves greater improvements over vanilla than the previous SOTA meta-learning method

MAXL [122]. Compared to vanilla models, Meta-Neighborhoods with the same backbone archi-

tecture contains extra trainable parameters stored in the dictionary M . However, as discussed in

Section 2.8.3, the performance boost in our paper originates from adjusting models using neigh-

bors, rather than a naive increase in the number of parameters.

Since we implement fϕ as a cosine similarity classification layer, ϕ can be regarded as the

prototypes for each class. To verify that fine-tuning over neighborhoods helps with the classifi-

cation, we compare the cosine similarity between the extracted feature zi and its corresponding

ground-truth prototypes ϕ[yi] before and after fine-tuning, where yi is the class label for zi. From
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Figure 2.4: Cosine similarities between features and their corresponding ground-truth class
prototypes. Each blue point denotes a testing sample. We expect most samples to be located
above the red lines, meaning larger similarities after fine-tuning.

Fig. 2.4, we can see that the cosine similarities increase after fine-tuning for most test examples,

which indicates better predictions after fine-tuning.

We discuss the inference speed of our model in Section 2.8.5.

Analysis of Learned Neighbors In Fig. 2.5, we use t-SNE [135] to visualize the 2D embeddings

of the learned neighbors (marked as “+”) along with the training data (marked as “o”) on CIFAR-

10 and MNIST. The 2D embeddings of training data are computed on the features zi = µθ(xi),

and embeddings of learned neighbors are computed on keys kj . Classes of the learned neighbors

are inferred from values vj . It is shown that our model learns neighbors beyond the training set as

the learned neighbors do not completely overlap with the training data, and the learned neighbors

represent “hard cases” around class boundaries to assist our model in making better predictions.

It is also interesting to note that this follows the same trend as our toy example in Fig. 2.3.

We further investigate whether the learned neighbors are semantically meaningful by retriev-

ing their 5-nearest neighbors from the test set. As shown in Section 2.8.6, the retrieved 5-nearest

neighbors for each learned neighbor not only come from the same class but also represent a spe-

cific sub-category concept. In Section 2.8.7, we quantitatively show that our method has superior

sub-category discovery performance than vanilla on CIFAR-100: our method achieves 63.3%

accuracy on the 100 fine-grained classes while vanilla only achieves 59.28%. This indicates our

learned neighbors can preserve fine-grained details that are not explicitly given in the supervision

signal. Qualitative results are shown in Fig. 2.6.
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(a) MNIST (b) CIFAR-10

Figure 2.5: t-SNE visualization of the learned neighbors and training data on MNIST and CIFAR-
10. Learned neighbors are marked as “+” and real training data are marked as “o”. The class
information is represented by colors. Please zoom in to see the differences between “+” and “o”.

Figure 2.6: Sub-category image retrieval quality of our model and the vanilla model. Correct
retrievals have green outlines and wrong retrievals have red outlines.
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Table 2.2: Test MSE of our model, kNN and the vanilla baseline on five datasets. n and d respec-
tively denote the dataset size and the data dimension.

Datasets n d kNN vanilla Meta-Neighborhoods
music 515345 90 0.6812±0.0062 0.6236±0.0056 0.6088±0.0050
toms 28179 96 0.0602±0.0083 0.0594±0.0080 0.0531±0.0073
cte 53500 384 0.00134±0.00023 0.00121±0.00022 0.00109±0.00015
super 21263 80 0.1126±0.0061 0.1132±0.0060 0.1077±0.0068
gom 1059 116 0.5982±0.0521 0.5949±0.0515 0.5681±0.0563

2.7.3 Regression

We use five publicly available datasets with various sizes from UCI Machine Learning Repos-

itory [43]. For regression tasks, we found learning neighbors in the input space yields better

performance compared to learning neighbors in the feature space. As a result, the feature ex-

tractor µθ is implemented as an identity mapping function. We compare our model to kNN and

vanilla baseline using the mean square error (MSE). The vanilla baseline is a multilayer per-

ceptron for regression. We searched for the best network configuration for the vanilla model on

every dataset by varying the number of layers in {2, 3, 4, 5} and the number of neurons at each

layer in {32, 64, 128, 256}. For each dataset, our model uses the same network architecture to

vanilla. Model details, training details, and hyperparameter settings are given in Section 2.8.8.

5-fold cross-validation is used to report the results in Table 2.2. Our model has lower MSE scores

compared to the vanilla model across the five datasets. The results of Meta-Neighborhoods and

vanilla are statistically different based on paired Student’s t-test with a significance of 0.05. We

found that naively increasing the model complexity for vanilla baseline can not further improve

its performance due to over-fitting, but our method can as it takes advantage of non-parametric

neighbor information.
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2.8 Experiment Details for Classification

2.8.1 Dataset Details

All datasets except ImageNet were resized to resolution 32×32 to facilitate fast experimenta-

tion. ImageNet was resized to resolution 64×64. CIFAR-10/100 are image classification datasets

containing a training set of 50K and a testing set of 10K 32×32 color images across the 10/100

classes. CINIC-10 has 270K 32×32 images across 10 classes equally split into three parts for

training, validation, and testing. Tiny-ImageNet has a training set of 100K and a testing set of

10K 64×64 images across the 200 classes. PACS contains domain shifts (Art painting, Cartoon,

Photo and Sketch), and we train on all domains to test our model’s ability to fit on all domains.

PACS is split as 9K/1K/10K for training/validation/testing. MNIST-M also contains domain

shifts due to the random background. MNIST-M is split as 55K/5K/10K for training/valida-

tion/testing.

2.8.2 Implementation Details

We find adaptive learning rate optimizers like Adam [92] are more effective than SGD at

optimizing the dictionary, as these optimizers can compute individual adaptive learning rates for

different parameters. In all the experiments, we adopt AdamW [124], a variant of Adam [92]

with a correct weight decay mechanism and better generalization capability.

Our models are trained by AdamW with a weight decay rate of 7.5e-5, an initial learning rate

of 1e-3 and a batch size of 128. For CIFAR-10 and CIFAR-100, we train for 400 epochs with a

learning rate reduced to 1e-4 at epoch 300. For CINIC-10 and Tiny-ImageNet, models are trained

for 350 epochs with the learning rate reduced to 1e-4 at epoch 250. We train vanilla baselines by

AdamW in the same way as our models.

We initialize kj and vj with Gaussian distribution N (0, 0.01), and apply a softmax over vj

to make it a probability distribution over multiple classes. Cosine similarity is adopted as the

similarity metric in (2.6). We set T in (2.6) to 0.2. For CIFAR-10 and CINIC-10, the number of
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dictionary entries S is set to 5000, and for CIFAR-100 and Tiny-Imagenet S is set to 10000 in the

main results. For the results in Table 2.1, we set the number of inner loop steps to 1 and set α to

be a learnable scalar.

When optimizing the dictionary at the early stage, some entries might always receive larger

gradients than others due to the random initialization, which causes the model to exploit only part

of the dictionary entries. To boost the diversity of used entries, we randomly dropout 50% of the

entries during training. This also helps to prevent overfitting and improve training speed.

For models (Densenet40-BC, ResNet) with iFiLM, we learn a learnable fix-sized dictionary

Ml = {kl
j, γ

l
j, β

l
j}

Sl
j=1 with every batch normalization layer, where Sl is set to 10 for all Ml.

We ran MAXL using code provided in [122] and performed extensive hyperparameter tuning

to report the best results. We run MAXL with SGD of a learning rate of 0.1 with momentum 0.9

and weight decay 5 × 104, and hierarchies to set to 5 as recommended in MAXL. We also try a

larger learning rate of 0.01. We dropped the learning rate by half for every 50 epochs with a total

of 200 epochs.

2.8.3 vanilla Models with Extra Parameters

Compared to vanilla models, our best model (MN+iFiLM) with the same backbone architec-

tures contain S × (d + C) extra trainable parameters in the dictionary M and 3 × Sl × C l extra

trainable parameters in M l, where S is the number of dictionary entries in M , d is the dimension

of the feature vector, C is the number of classes, Sl is the number of dictionary entries in M l and

C l is the number of feature map channels. Since we set a small Sl = 10, extra parameters in M l

is negligible compared to the remaining model parameters. Therefore we only consider the extra

parameters in M in this section.

To investigate whether vanilla models can also benefit from more parameters as our model,

we add an extra fully connected layer with the same number of extra parameters to vanilla mod-

els. According to Fig. 2.7, vanilla models with extra parameters have inferior validation accuracy

than vanilla models without extra parameters across three backbone architectures on CIFAR-
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100. The same observation holds for other datasets. Therefore, vanilla models can not benefit

from more parameters as our model, and the performance boost in our paper originates from

fine-tuning using neighbors, rather than a naive increase in parameters.

2.8.4 Ablation Study of S and T

We investigate the impact of hyperparameters, S and T on CIFAR-100 using ResNet-29. As

shown in Fig. 2.8, the testing accuracy increases with the increase of the number of dictionary

entries S (with T set to 0.2), which indicates a better fine-tuning of ϕ with the help of more learn-

able neighbors. The temperature T controls the “peakiness” of the similarity distribution in (2.6).

It is set to a fixed value rather than learned in all experiments. If we enable T to be learnable,

it always grows to a small value, which makes the model only pay attention to a small number

of entries and leads to over-fitting. On the other hand, if T is too large, the model will pay uni-

form attention to all entries in M , which leads to under-fitting. According to Fig. 2.8, the optimal

range of 1
T

is [3,7] (with S set to 10000).

We show in Table 2.1 that our method consistently improves performance regardless of the

choice of backbones, indicating our method can further improve over an even bigger model.

Note that our method is particularly helpful for low-capacity models, which usually handle

simpler tasks like MNIST/SVHN classification and regression. In the regression experiment

in Section 2.7.3, we show that naively increasing the model capacity can’t effectively further

(a) ResNet-29 (b) ResNet-56 (c) DenseNet40-BC

Figure 2.7: Validation accuracies of vanilla models with (shown in orange) and without (shown
in blue) extra parameters on CIFAR-100 across three backbone architectures.
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improve performance on these simple tasks due to over-fitting, but our method can as it takes

advantage of non-parametric neighbor information.

2.8.5 Inference Speed

Due to the neighbor searching process and fine-tuning process, our method is slower at the

testing time compared to the vanilla testing process which only requires a single feed-forward

propagation. However, our method is only approximately 2 times slower than the vanilla models

due to the following reasons: (1) our searching space is small (only 5000 neighboring points) (2)

the attention calculation and the fine-tuning step are parallelized efficiently across multiple GPU

threads (3) for the classification task, we only fine-tune the parameters of the classification layer

rather than the whole model (4) we only fine-tune for a small number of steps (1 or 3).

2.8.6 Visualizing Learned Neighbors by Retrieving Real Neighbors

We further investigate whether the learned neighbors are semantically meaningful by retriev-

ing their 5-nearest neighbors from the test set.

Examples on CIFAR-10 and MNIST are respectively shown in Fig. 2.9 and 2.10. We found

most entries can retrieve consistent neighbors. It is shown that the retrieved 5-nearest neighbors

for each learned neighbor not only come from the same class but also represent a specific sub-

category concept. For instance, both of the entries on the fifth row of Fig. 2.9 represent “ship”,

but the first represents “steamship” while the second represents “speedboat”.

Figure 2.8: Ablation studies of S and T on CIFAR-100.
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Figure 2.9: 5-nearest neighbors of 12 dictionary entries retrieved using kj in (2.4) from the
CIFAR-10 test set. Entry indexes and entry classes inferred from vj are shown on the left of
each group of images. By comparing the two entries on the same row, we discover that different
entries represent different fine-grained sub-category concepts.

2.8.7 Sub-category Discovery

To quantitatively measure the sub-category discovery performance, we train our model (S is

set to 5000) and the vanilla cos-adamw model with the same Densenet40 backbone on CIFAR-

100 only using its coarse-grained annotations (20 classes), and evaluate the classification accu-

racy on the fine-grained 100 categories using kNN classifiers, which is called induction accuracy

as in Huh et al. [81]. For the vanilla model, the kNN classifier uses the feature zi = µθ(xi), while

for our model, the classifier uses the attention vector ω⃗ = [ω(zi, k1), ω(zi, k2), ..., ω(zi, kS)] over

all entries in M . Our kNN and vanilla’s kNN achieve similar accuracy on the coarse 20 classes

(80.18% versus 80.30%). However, on the fine-grained 100 classes, our kNN achieves 63.3%

while the vanilla’s kNN only achieves 59.28%. This indicates our learned neighbors can preserve

fine-grained details that are not explicitly given in the supervision signal. Examples of nearest

neighbors retrieved are shown in Fig. 2.6.
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Figure 2.10: 5-nearest neighbors of 30 dictionary entries retrieved using kj in (2.4) from the
MNIST test set. By comparing the three entries on the same row, we discover that different
entries represent different fine-grained attributes such as stroke widths, character orientations and
fonts.

2.8.8 Experiment Details for Regression

We use five publicly available datasets with various sizes from UCI Machine Learning Repos-

itory: music (prediction of the release year of a song from audio features), toms, cte (Relative

location of CT slices on axial axis), super (Superconduct), and gom (Geographical Original of

Music). All datasets are normalized dimension-wise to have zero means and unit variances.

For regression tasks, we found learning neighbors in the input space yields better perfor-

mance compared to learning neighbors in the feature space. As a result, our model for regression

only consists of an output network fϕ and a dictionary M . It is trained with the loss in (2.3). A

learning rate of 1e-3 and a batch size of 128 are used, and the best weight decay rate is chosen for

each dataset. The training stops if the validation loss does not reduce for 10 epochs. We initialize

kj with Gaussian distribution N (0, 0.01) and vj with uniform distribution in the same range of

the regression labels. Cosine similarity is adopted to implement the similarity metric in (2.6). We
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use 1000 dictionary entries and set T to 0.1 based on the validation performance. Because there

is no batch normalization layer in fϕ, iFiLM is not used in this regression experiment.

2.9 Closing Remarks

In this chapter, we introduced Meta-Neighborhoods, a novel meta-learning framework that

adjusts predictions based on learnable neighbors (related instances). It is interesting to note that

in addition to directly generalizing kNN, Meta-Neighborhoods provides a learning paradigm that

aligns more closely with human learning. Human learning jointly leverages previous examples

both to shape the perceptual features we focus on and to pull relevant memories when faced with

novel scenarios [97]. In much the same way, Meta-Neighborhoods use feature-based models

that are then adjusted by pulling memories from previous data. We show through extensive em-

pirical studies that Meta-Neighborhoods improve the performance of already strong backbone

networks like DenseNet and ResNet on several benchmark datasets. In addition to providing a

greater gain in performance than previous state-of-the-art meta-learning methods like MAXL,

Meta-Neighborhoods also works both for regression and classification, and provides further inter-

pretability as shown by Fig. 2.9 and 2.10.

Compared to vanilla neural networks and the previous work MAXL, Meta-Neighborhoods

can explicitly find related instances to provide some understanding of the decision-making

process and use them to improve the model performance. However, the limitation of Meta-

Neighborhoods is that it is approximately 3 times slower to train and 2 times slower at inference

compared to vanilla neural networks. This slowdown is caused by the related instances retrieval

step and the fine-tuning step.
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CHAPTER 3: LEVERAGING RELATED NEIGHBOR WAVEFORMS FOR IMPROVED
AUDIO SYNTHESIS

3.1 Notation

• ki ∈ RL: a one-dimensional waveform of length L. ki[j] is the value at the j-th position of

ki.

• D = {ki}Ni : a learnable dictionary containing N waveforms.

• ω1(t), ω2(t), ...ωN(t): time-varying attention weights over N wavetables at timestep t.∑N
i=1 ωi(t) = 1 and ωi(t) ≥ 0.

• f0(t): fundamental frequency at timestep t. The fundamental frequency, often referred to

simply as the fundamental, is defined as the lowest frequency of a periodic waveform. In

music, the fundamental is the musical pitch of a note that is perceived as the lowest partial

present.

3.2 Introduction

In the previous chapter, we show that leveraging related neighbor points can improve dis-

criminative learning performance on image classification and tabular data regression tasks. In

this chapter, we show that leveraging related neighbor waveforms can also help improve audio

synthesis performance.

Although machine learning has revolutionized modern audio classification [172] and synthe-

sis [48] with unprecedented progress; fast, robust, and real-time neural audio synthesis remains

a challenge. Most neural synthesis models generate waveforms directly in the time domain, or

38



from their corresponding Fourier coefficients in the frequency domain [44]. However, both ap-

proaches have their drawbacks. Fourier-based models–such as GANSynth [48] suffer from the

phase-alignment problem, as the Short-time Fourier Transform (STFT) is a representation over

windowed wave packets. Autoregressive waveform models, such as WaveNet [189], avoid these

issues by generating the waveform a single sample at a time. They are not constrained by the bias

over generating wave packets and can express arbitrary waveforms. However, they require larger

and more data-hungry networks, as they do not take advantage of a bias over oscillation. In addi-

tion, the use of teacher-forcing during training leads to exposure bias during generation, where

errors with feedback can compound. Also, their generation speed is slow as they only generate

autoregressively.

One of the causes of the above-mentioned problems is that these methods fail to take advan-

tage of the nature of harmonic audio. Many acoustic oscillators, such as the human voice or a

bowed violin string, produce complex tones that are more or less periodic and thus are composed

of harmonic components with frequencies that are near matches to integer multiples of the funda-

mental frequency. Also, real-world objects that generate sound often exhibit physics that are well

described by harmonic oscillations. These include vibrating strings, membranes, hollow pipes

and human vocal chords [176]. Based on this interesting phenomenon, DDSP [44] proposes a

novel approach that learns to combine several sinusoidal waveforms with integer multiples of

the fundamental frequency. DDSP describes a family of techniques utilizing strong inductive bi-

ases from DSP combined with modern ML. Successful applications include audio synthesis [45],

pitch detection [46], artificial reverberations [104], IIR filters [13] and audio effect manipualtion

[157]. However, DDSP uses a fixed set of 100 sinusoidal waveforms that are not customized for

different datasets. Thus, it is redundant to use the same set of waveforms for all the datasets.

In this paper, inspired by compressive sensing techniques [57], we take an alternative ap-

proach to learn a set of related neighbor waveforms that are more compact and customized

toward the specific dataset we want to train. To synthesize a new waveform, we train a neural

network to find and combine related neighbor waveforms for high-quality, real-time audio syn-
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thesis. We call our approach Differentiable Wavetable Synthesis (DWTS) as our approach is

inspired by Wavetable Synthesis (WTS) that is well-suited to the real-time synthesis of periodic

and quasi-periodic signals. We demonstrate three key contributions to neural audio synthesis

using this approach: high fidelity synthesis, wavetables transferrable to other tasks and an order

of magnitude reduction in computational complexity.

3.3 Problem Formulation

Given that monophonic audio is composed of multiple cycles, the core insight of this paper is

that every cycle can be synthesized by linearly combining a dictionary of one-period waveforms.

We refer to such a dictionary as a wavetable and define it as D = {ki}Ni where N is the number

of waveforms and ki ∈ RL denotes a one-period waveform of length L. Unlike the traditional

wavetable synthesis technique [15] that uses hand-crafted waveforms, we learn D using gradi-

ent descent jointly with other components in our model during training. During inference, D is

frozen and our model only needs to compute linear combination weights to combine the wave-

forms in D to synthesize different audio. In this light, the waveforms in D can be conceptually

regarded as a set of basis vectors that spans a L-dimensional vector space.

3.4 Background

Our work is built on Differentiable Digital Signal Processing (DDSP) [44], which enables

direct integration of classic signal processing elements with deep learning methods. Despite

significant advances in neural audio synthesis, such as methods based on CNN, GAN, and autore-

gressive models, these methods suffer from their own drawbacks such as wrong phase alignment,

spectral leakage, slow synthesis speed and model collapse. According to the DDSP, the main

reason that causes these drawbacks is that these methods fail to utilize existing knowledge of

how sound is generated and perceived. Unlike deep learning based methods, a class of traditional

approaches (vocoders/synthesizers) successfully consider strong domain knowledge of signal
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Figure 3.1: Architeture of DDSP [44]. Figure taken from [44].

processing and perception. But these methods are less expressive and seem incompatible with

deep learning approaches.

DDSP is the first end-to-end differentiable method that combines the strong inductive bias of

signal processing with deep learning approaches. DDSP can generate high-fidelity audio without

autoregressive models, large neural networks, or adversarial losses.

The architecture of DDSP is shown in Fig. 3.1, where an autoencoder is used to learn a dis-

entangled and interpretable latent space for audio resynthesis. Given an input audio, the encoder

extracts time-varying fundamental frequency f0 and a latent vector z that contains information

about input timber. The time-varying loudness information is also extracted by a hand-engineered

algorithm. Based on this human-understandable and disentangled information, a decoder predicts

how to combine harmonics components and noise components for reconstructing the input au-

dio. The overall model is end-to-end differentiable and trained using a multi-scale spectrogram

loss, which is better than the point-wise loss on the raw waveform as two perceptually identical

audio samples may have distinct waveforms, and point-wise similar waveforms may sound very

different. Multi-scale loss can better compare two waveforms across multiple spatial-temporal

resolutions. Given this specifically designed architecture, DDSP is highly interpretable and thus

enables manipulation of individual components to independently control attributes of the gener-

ated audio, such as pitch, loudness, extrapolation to unseen pitches and timbre transfer.
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The sinusoidal oscillator [10] is the heart of DDSP. A bank of oscillators that outputs a signal

x(n) over discrete time steps, n, can be expressed as:

x(n) =
K∑
k=1

Ak(n) sin(ϕk(n)), (3.1)

where Ak(n) is the time-varying amplitude of the k-th sinusoidal component and ϕk(n) is its

instantaneous phase. The phase ϕk(n) is obtained by integrating the instantaneous frequency

fk(n):

ϕk(n) = 2π
n∑

m=0

fk(m) + ϕ0,k, (3.2)

where ϕ0,k is the initial phase that can be randomized, fixed, or learned.

For a harmonic oscillator, all the sinusoidal frequencies are harmonic (integer) multiples of a

fundamental frequency, f0(n), i.e., fk(n) = kf0(n). The fundamental frequency, often referred to

simply as the fundamental, is defined as the lowest frequency of a periodic waveform. In music,

the fundamental is the musical pitch of a note that is perceived as the lowest partial present. Thus

the output of the harmonic oscillator is entirely parameterized by the time-varying fundamental

frequency f0(n) and harmonic amplitudes Ak(n). To aid interpretability DDSP further factorizes

the harmonic amplitudes:

Ak(n) = A(n)ck(n). (3.3)

into a global amplitude A(n) that controls the loudness and a normalized distribution over har-

monics c(n) that determines spectral variations, where
∑K

k=0 ck(n) = 1 and ck(n) ≥ 0. DDSP

also constrains both amplitudes and harmonic distribution components to be positive through the

use of a modified sigmoid nonlinearity.

3.5 Methods

Similar to Meta-Neighborhoods in Chapter 2 that learns a dictionary of related instances to

assist predictions, we propose an approach Differentiable Wavetable Synthesis (DWTS) [169]
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that learns a dictionary of related basic instances that can be combined to generate authentic

audios. Our model has a similar architecture shown in Fig. 3.1, except that we avoid using the

sinusoidal oscillator in DDSP. Instead, we take a wavetable synthesis approach. This idea to

synthesize audio from a set of basic elements can date back to the 1970s when a sound synthesis

technique called Wavetable Synthesis [76] was introduced to create periodic waveforms. This

technique synthesizes periodic signals by combining a table of hand-crafted waveforms, while

our proposed method DWTS learns such a dictionary of waveforms (related instances) that best

synthesize a target dataset.

3.5.1 Wavetable as learnable dictionary

We define a learnable dictionary D = {ki}Ni where N is the number of wavetables and

ki ∈ RL denotes a one-period wavetable of length L. When a wavetable begins and ends on

different values, this discontinuity causes synthesis artifacts. We append ki[L + 1] to ki and set

ki[L+1] = ki[0]. A wavetable ki now contains L+1 elements with L learnable parameters. During

training, we learn D using gradient descent jointly with other parameters. During inference, D is

frozen and treated as a traditional, static collection of wavetables.

3.5.2 Time-varying attention

By sequential morphing between wavetables, timbre can be changed over time [77]. In-

spired by [75] we generalize morphing as a time-varying linear attention over all wavetables

i.e. ωN
1 , ωN

2 ...ωN
T where N and T are numbers of wavetables and timesteps respectively with con-

straints
∑N

i=1 ωi(n) = 1 and ωi(n) ≥ 0. The time-varying linear attention is predicted by the

encoder in Fig. 3.1.

3.5.3 Phase

Our model “draws” wavetables directly in the time domain. Phase relationships within and

across wavetables can be controlled without needing to coherently manage independent magni-
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Figure 3.2: Illustration of how we use the instantaneous modulo phase ϕ̃(n) to retrieve values
from a waveform ki. In this example, we have a waveform ki with a length of 25 in a sinusoidal
shape. Note that ki only has values defined at the integer indices 0, 1, ..., 24. When ϕ̃ = π, we
can retrieve a value of 0 at the integer index 13 of ki (as shown by the red vertical dashed line).
However, when ϕ̃ = π

5
, which corresponds to a non-integer index of ki (as shown by the yellow

vertical dashed line), we need to use some interpolation techniques to retrieve the value.

tudes and phases in the complex frequency domain. This contrasts with [45], where the initial

phases of all harmonic components are fixed at 0.

3.5.4 Synthesis

At the heart of WTS is a phase accumulator [15]. Given an input sequence of time-varying

fundamental frequency f0(n) over discrete time steps n, we can compute the instantaneous phase

ϕ by integrating f0(n):

ϕ(n) = 2π
n∑

m=0

f0(m). (3.4)
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As illustrated by Fig. 3.2 and will be introduced below, we use the phase information ϕ(n) to

retrieve values in the waveform ki to synthesize the output signal x. However, ki is a one-period

waveform, which means that we need to reuse the same waveform ki on all the periods deter-

mined by the phase information ϕ(n) (a period finishes whenever ϕ(n) reaches 2π). For this

purpose, we need to compute the instantaneous modulo phase ϕ̃(n):

ϕ̃(n) = ϕ(n) mod 2π, (3.5)

where mod denotes a module operation. Now, we are ready to use ϕ̃(n) to retrieve values from ki.

However, the range of ϕ̃(n) is [0, 2π] while the length of ki is L. To fix this incompatibility, ϕ̃(n)

is normalized into a fractional index j̃(n) = L
2π
ϕ̃(n) ∈ [0, L]. We synthesize the signal x(n) by

linearly combining wavetables ki in D via:

x(n) = A(n)
N∑
i=1

ωi(n) · Φ(ki, j̃(n), κ), (3.6)

where A(n) is a time-varying amplitude controlling the signal’s overall amplitude and ωi denotes

the time-varying attention on ki. A(n) and ωi(n) are constrained positive via a sigmoid. The

function Φ(ki, j̃(n), κ) is an operator that retrieves the j̃(n)-th element of the vector ki by using

an interpolation kernel κ to approximate ki[j̃(n)] when j̃(n) is a non-integer (illustrated by the

yellow dashed line in Fig. 3.2):

Φ(ki, j̃(n), κ) =
L+1∑
m=1

ki[m] · κ(j̃(n) + 1−m). (3.7)

Whilst more sophisticated interpolation kernels exist (cubic, spline, etc.), we use linear inter-

polation for optimal real-time performance. When κ is a linear interpolation kernel, only two

consecutive samples of the original waveform ki are involved in the computation of an interpo-
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lated sample and Φ(ki, j̃(n), κ) is

Φ(ki, j̃(n), κ) =
L+1∑
m=1

ki[m] ·max(0, 1− |j̃(n) + 1−m|). (3.8)

3.5.5 Initialization

ki is randomly initialized with a zero-centered Gaussian distribution N (0, σ2). We empiri-

cally find using a small σ = 0.01 improves training.

3.5.6 Anti-aliasing

At high f0, the frequencies of upper harmonics in a wavetable can be above Nyquist ((i.e.

0.5 × fs where fs denotes the sampling rate)) and must be removed before lookup to prevent

aliasing. Therefore, we need to limit the number of harmonics kept in ki to be smaller than the

upper bound K = ⌊0.5 × fs/f0(n)⌋ [77]. We first convert ki to the frequency domain via the

discrete Fourier transform (DFT) as Wi = DFT (ki). Then only the first K elements of Wi are

kept while the subsequent elements are set to 0 as Ŵi = m ⊙Wi where mj = 1 if j ≤ K

otherwise mj = 0 and ⊙ denotes the Hadamard product. Lastly, we convert Ŵi back to the time

domain via the inverse DFT (IDFT) as k̂i = IDFT (Ŵi). Given that the Fourier transform and

the inverse Fourier transform have the linearity property and (3.6) is a linear combination of the

waveforms in D, in practice, we directly apply the band limit operation to the synthesized signal

x(n) rather than apply it individually N times for every ki to increase the computation speed.

Since all the computations of this anti-aliasing step are differentiable, it can be included in our

model for end-to-end training.

This filter also prevents high-frequency components present in the Gaussian noise initializa-

tion from causing aliasing at the start of training. Without this frequency-dependent anti-aliasing

filter, we found aliasing artifacts alone prevented meaningful learning.
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3.5.7 Model

We adopt an identical input tuple (f0(n), l(n), z(n)) [45]. Fundamental frequency f0(n) in

(3.4) is extracted by a pretrained CREPE model [91] with fixed weights. Loudness l(n) is an A-

weighted log-magnitude extracted deterministically from audio. The residual embedding z(n)

is extracted from MFCC’s via an encoder. For direct comparison, we use identical encoder and

decoder architectures with approximately 7M parameters in total.

Unlike DDSP which only has learnable parameters in the encoder and the decoder, our model

also contains N × L learnable parameters in the differentiable wavetable D during training. Dur-

ing inference, the waveforms in D can be regarded as static waveforms just like the sinusoidal

functions for the additive synthesizer in DDSP. Thus our model has a comparable number of

parameters to DDSP [45] at inference time. We set L to 512 which we find is enough for recon-

structing audios with a 16kHz sampling rate. All the parameters in our model are trained jointly

by minimizing the reconstruction error of the autoencoder.

3.5.8 Loss

We use a multi-scale spectral loss similar to [45]:

Lreconstruction =
∑
i

||Si − Ŝi||1, (3.9)

where Si and Ŝi respectively denote the (magnitude) spectrograms of the target audio and the syn-

thesized audio, and i ∈ {2048, 1024, 512, 256, 128, 64} represents the FFT size used to calculate

the spectrograms. Note that unlike [45], we exclude the log term || logSi − log Ŝi||1 as it causes

training instability. We find this modification does not influence the quality of the synthesized

audio.
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3.6 Related Work

3.6.1 Wavetable Synthesis (WTS)

Wavetable synthesis generates audio from a collection of static, single-period waveforms

called “wavetables”, that each capture a unique harmonic spectrum. Wavetables are typically 256

- 4096 samples in length; a collection can contain a few to several hundred wavetables depending

on the use case. Periodic waveforms are synthesized by indexing into the wavetables as a lookup

table and interpolating between neighboring samples. WTS was historically used on early hard-

ware synthesizers where memory and computing power were limited. Today, WTS continues to

underpin commercial sound design and synthesis tools due to its ability to generate a wide variety

of timbres coupled with efficient performance. Wavetables are normally hand-crafted or extracted

programmatically from audio spectra [15, 77]. In this work, we learn data-driven wavetables.

3.6.2 Differentiable dictionaries

ML models can be equipped with differentiable memory or dictionaries that are learned

end-to-end with model parameters. Models can write to external memory to record and lookup

changes in state [65]. Discriminative models can learn a differentiable dictionary for improved

classification during inference [170, 213, 212]. Here, we formulate wavetables as a differentiable

dictionary optimized jointly with model parameters.

3.6.3 Differentiable Digital Signal Processing

DDSP [45] describes a family of techniques utilizing strong inductive biases from DSP com-

bined with modern ML. Successful applications include audio synthesis [45], pitch detection [46],

artificial reverberations [104], IIR filters [13] and audio effect manipulation [157]. Building on

these works, we add WTS as a new technique for generative audio tasks.
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Table 3.1: Reconstruction error comparison on the Nsynth dataset. Compared to the SOTA ad-
ditive synthesis approach [45], our wavetable synthesis approach achieves comparable or lower
errors.

DDSP Additive Synthesis
Wavetable Synthesis (Ours) with N=

5 10 20 100

0.5834 ± 0.0035 0.6448 ± 0.0041 0.5989 ± 0.0042 0.5712 ± 0.0037 0.5756 ± 0.0034

(a) Target (b) Reconstructed (c) Target (d) Reconstructed

Figure 3.3: Spectrograms of two target samples and their corresponding reconstruction.

3.7 Experiments

We benchmark against the original DDSP autoencoder [45], where a DNN controls an addi-

tive synth and filtered noise synth to produce harmonic and non-harmonic components of audio

respectively. We replace the additive synth with our wavetable synth and use an identical filtered

noise synth. Noise generation is a stochastic process that must be modeled separately. Like [45],

we omit the optional reverb module when training on the NSynth dataset [47].

Dataset We use the same subset of the NSynth dataset [47] in [45, 69, 48], containing 70,000

mono 16kHz samples each 4 seconds long. The examples comprise mostly strings, brass, wood-

winds, and mallets. At 16kHz, a wavetable length L = 512 is enough to represent all harmonics

at the lowest fundamental frequency of interest (20Hz).

Table 3.1 reports the reconstruction error of the SOTA additive-based autoencoder from

[45] and the proposed DWTS-based autoencoder. We vary the number of wavetables N =
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Figure 3.4: Learned wavetables ordered with highest average attention weights appearing first
(normal English reading order). Wavetables of key harmonics are highlighted: f0 (red), f1 (yel-
low), f2 (purple) and f3 (green). The remaining wavetables are data-driven combinations of
higher harmonics. The first two wavetables appear to be silent.

5, 10, 20, 100. Our approach achieves the lowest reconstruction error of 0.5712 using only 20

wavetables. At the expense of a small reduction in quality compared to the baseline, N can be

low as 10. Fig 3.3 shows spectrograms of two samples and their matching reconstructions using

wavetables. We encourage readers to listen to the online supplement1.

Crucially, the wavetables in D form an alternative, compact set of basis vectors spanning an

L-dimensional space extracted directly from the data. When N is very small at 5, reconstruction

suffers due to an insufficient number of bases. 10-20 wavetables strike an optimal balance for

the NSynth dataset. Wavetables reduce the number of control dimensions by an order of mag-

nitude compared to the 100 sinusoids in an additive synth [45]. More importantly, the extracted

wavetables belong to an explicit dictionary that is portable to other tasks. We show this property

in later sections. The idea of basis decomposition is also successfully applied to other tasks such

as convolution kernel decomposition [205, 207].

3.7.1 Visualizing Wavetables

Fig 3.4 shows learned wavetables from the NSynth dataset when N = 20. Despite being

initialized with noise, the learned wavetables are smooth and diverse in shape. They also match

the physics of NSynth sounds. In acoustic instruments, energy is focused on lower frequencies,

1https://lamtharnhantrakul.github.io/diffwts.github.io/
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Figure 3.5: Visualization of the time-varying attention weights of 5 samples using 20 wavetables.

(a) Original (b) Add Scratch (c) Add Pretrain (d) DWTS Scratch (e) DWTS Pretrain

Figure 3.6: Spectrograms of original audio (a) and synthesized samples from an input f0(n) pitch
shifted down by an octave (b-e)

particularly the first few harmonics, compared to higher harmonics [160]. Wavetables in Fig 3.4

are ordered with the highest average attention weights appearing first. The wavetable highlighted

in red is a phase-shifted sinusoid of one period i.e. the fundamental frequency f0. Other key

partials f1, f2 and f3 are highlighted in yellow, purple and green. The remaining wavetables are

data-driven combinations of higher harmonics, compactly summarizing in a single wavetable

entry what would have taken several sinusoidal components in an additive synth [45] to represent.

Fig 3.5 shows the attention weights over time for five audio samples. The attention visibly shifts

across wavetables to output the desired spectrum.

The asymmetric wavetables are the result of complex behavior in magnitude and phase. We

found phase-locking wavetables to start and end at 0 deteriorated performance. It suggests the

model takes advantage of phase relationships within and between wavetables. This precise con-
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trol of wavetable phase will be particularly valuable in future work exploring the synthesis of

stereo and binaural audio [159].

3.7.2 One shot learning and audio manipulations

In domains such as Neural Machine Translation (NMT), word embeddings [138] extracted

from end-to-end language learning are useful for other language tasks. Analogously, we reason

our data-driven wavetables should be useful in other scenarios like one-shot learning and data-

efficient extrapolation. Unlike an implicit multi-dimensional vector, wavetables are an explicit

and interpretable representation.

One-shot setup: Given only a single 4-second passage of saxophone from the URMP dataset

[105], we train a new autoencoder model initialized with pretrained wavetables from Fig 3.4

(DWTS Pretrain). This model only outputs time-varying attention weights, since the wavetables

are now a fixed dictionary lookup. We compare against three baselines: (1) additive-synth autoen-

coder trained from scratch (Add Scratch), (2) finetuning an additive-synth autoencoder pretrained

on Nsynth (Add Pretrain) and (3) Wavetable-synth autoencoder trained from scratch (DWTS

Scratch).

Pitch extrapolation: While all models achieve identical high-quality one-shot reconstruc-

tions of the saxophone segment, only DWTS Pretrain is robust to overfitting during extrapolation.

Fig 3.6 shows how all baselines exhibit high-frequency artifacts when input f0(n) is shifted.

DWTS+Pretrain remains artifact free even at extreme shifts, such as 3 octaves below the original

sample.

We repeat with a 4-second piano passage. A piano is challenging to model due to the pres-

ence of both many harmonics and percussive hammer hits [160]. We also compare against the

Librosa library pitch shift function based on traditional DSP [14]. When resynthesizing the seg-

ment 3 octaves down, DWTS Pretrain is the only method that preserves the hammer’s percussive

impact and independently shifts harmonic components. Librosa pitch shift loses the transient

impact completely.
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Connection to PSOLA: In this scenario, we hypothesize DWTS Pretrain approaches an

optimal Pitch Synchronous Overlap and Add (PSOLA) algorithm [26]. PSOLA windows a single

cycle of the original waveform in the time domain, re-patching and overlapping these windows

at the new pitch. Imperfections in this windowing and overlapping process can cause artifacts.

DWTS Pretrain guarantees single-cycle waveforms in D, where re-pitching is trivially achieved

using a slower phase accumulator ϕ̃(n) reading through a wavetable i. This opens up applications

like data-efficient neural sampling, pitch correction and efficient polyphony using multiple phase

accumulators. We leave wavetables extracted from speech or singing voices for future work.

3.7.3 Computational Complexity

Realtime performance is determined by many factors including algorithmic complexity, low-

level optimizations, target hardware and the C++ ML framework used for matrix operations.

Here, we consider only the key difference between the additive synth-based pipeline in [45],

which already runs real-time [60], and our new approach.

A.) Additive: a bank of 100 sinusoids where harmonic coefficients are updated at 250 frames

per second (FPS) [45]

B.) DWTS: 10 pre-learned wavetables where wavetable weights are also updated at 250 FPS.

The remaining elements of each approach are assumed identical in specification and perfor-

mance. There are two clear areas of improvement with our new method. Firstly, DWTS requires

only ten interpolated wavetable read operations per sample, compared to the 100 required for

Additive. Secondly, both pipelines require frame-wise linear smoothing of control data to avoid

unwanted artifacts in the synthesized signals. Additive requires all 100 sinusoidal amplitude coef-

ficients to be smoothed per sample, whereas DWTS requires smoothing on only 10. We confirm

this on a 2.6GHz 2019 Macbook Pro. Over 10k trials, Additive takes on average 251.32ms to

generate all 250 frames in 1 second of audio, whereas DWTS takes only 20.19ms. Therefore,

DWTS has significantly lower computational complexity, which is important to deploy our ma-
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chine learning model on edge devices [103, 227, 130, 131, 82, 132, 224, 211, 84, 85], such as

smartphones, tablets, laptops, sensors, gateways, and Internet of Things (IoT) device.

3.8 Closing Remarks

In this chapter, we presented a differentiable wavetable synthesizer capable of high-fidelity

neural audio synthesis. Similar to the previous chapter where we learn a dictionary of related

neighbors to fine-tune the model and improve the prediction performance, here we learn a dictio-

nary of related waveform instances and train a model to determine which instances are related

for synthesis at different times. We demonstrate how explicit and learnable wavetables offer

many advantages including robust one-shot learning and an order-of-magnitude reduction in com-

putational complexity. The approach opens up applications such as data-efficient neural audio

sampling and pitch-shifting.

Regarding limitations, as our model DWTS is based on Wavetable Synthesis, DWTS can only

synthesize harmonic sounds. In contrast, DDSP is based on Additive Synthesis and thus it can

also synthesize in-harmonic sounds. Another limitation of DWTS is that it is an auto-encoder

model, which means it is not a generative model that is capable of synthesizing unseen audio

timbres. Thus, future works can combine DWTS with a generative model to synthesize novel

audio timbres.
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CHAPTER 4: LEVERAGING RELATED POINTS IN A COLLECTION OF CELLS FOR
CLASSIFICATION

4.1 Notation

• x(i) ∈ Rd: the vector of d features (e.g. proteins or genes) measured in cell i.

• X = {x(i)}ni=1: a sample-set, which is a collection of n cells from an individual’s blood or

tissue.

• D =
{
X (k)

}N
k=1

=
{
{x(k,i)}nk

i=1

}N
k=1

: a multi-sample dataset D contains multiple sample-

sets (across multiple, N , individuals and conditions). X (k) = {x(k,i)}nk
i=1 is the sample-set

for the k-th profiled biological sample.

• D =
{
(X (k), y(k))

}N
k=1

: dataset consists of sample-set and label tuples. y(k) is the label.

4.2 Introduction

In this chapter, we discuss the case where the input data is a collection of instances rather than

a single instance. In such a case, making a prediction is more challenging as we need to compare

across multiple sets of multiple vectors and consider the related instances in a set together to infer

the label of the set.

Machine learning methods have been used in biomedical data analysis where the input data is

a single instance such as a medical image [225, 50, 201, 52, 116, 118, 54, 99, 98, 119]. Here, we

consider a collection of instances and begin with the single-cell sample-set classification problem.

Modern immune profiling techniques such as flow and mass cytometry (CyTOF) enable com-

prehensive profiling of immunological heterogeneity across a multi-patient cohort [38, 117]. In
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Figure 4.1: Single-cell profiles produce a sample-set of (typically thousands of) multidimensional
feature vectors of measured features per cell (illustrated as scatter plots). Thus, a dataset of
multiple biological samples will result in a dataset of multiple sets (shown above).

recent years, such technologies have been applied to numerous clinical applications. In particu-

lar, these assays allow for both the phenotypic and functional characterization of immune cells

based on the simultaneous measurement of 10-45 protein markers [11]. Modern single-cell flow

and mass cytometry technologies measure the expression of several proteins of the individual

cells within a blood or tissue sample. Each profiled biological sample is thus represented by a

set of hundreds of thousands of multidimensional cell feature vectors, which incurs a high com-

putational cost to predict each biological sample’s associated phenotype with machine learning

models. Such a large set cardinality also limits the interpretability of machine learning models

due to the difficulty in tracking how each individual cell influences the ultimate prediction.

To comprehensively profile the immune systems of biological samples collected across mul-

tiple individuals, a unique data structure of multiple sample-sets is ultimately produced. Each

sample-set is likely to contain hundreds of thousands of cells collected from an individual, and

machine learning models are often used to predict their associated clinical or experimental labels.

This concept is illustrated in Fig. 4.1. In profiling multiple individuals with a single-cell technol-

ogy, a dataset of sets is produced and is a non-traditional data structure that breaks the standard
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convention of a dataset of feature vectors. This produces complexity for learning over individuals

(e.g. patients), as single-cell data requires a model to characterize and compare across multiple

sets of multiple vectors (where each vector represents a cell). Another challenge of analyzing

single-cell data is the large number of cells in each sample-set, which incurs a computational cost

and obscures the decision-making process of machine learning models.

To efficiently and accurately link cellular heterogeneity to clinical outcomes or external vari-

ables, here we introduce Cell Kernel Mean Embedding (CKME), a method based on kernel mean

embeddings [140] that directly featurizes cells in samples according to their aggregate distribu-

tion. For classification tasks, we train a linear classifier (e.g. linear SVM) in the KME feature

space. Despite its simplicity, CKME achieves comparable to state-of-the-art gating-free per-

formance on three flow and mass cytometry datasets with multiple sample-sets and associated

clinical outcomes. We show that CKME may be used to obtain an individual cell score for each

cell in a sample-set, where the ultimate prediction is the result of the average cell score. As a

result, CKME is highly interpretable since one can quantify the individual contribution of every

cell to the final prediction. Predictions are then synthesized further using kernel herding [32],

which identifies key cells to retain in a subsample. We leverage the transparency of CKME in

a thorough analysis to understand predictions. First, we study the semantics of cell scores from

CKME, and show that they follow several desirable, intuitive properties. After, we explore cell

scores to obtain biological insights from our models, and show that discoveries from CKME are

consistent with existing knowledge.

4.3 Problem Formulation

Given a dataset of multiple sample-sets as discussed above, we wish to build a discriminative

model to predict patient-level phenotypes or conditions based on the cellular composition that is

found within a sample-set, X → y. If the model is human interpretable, it will help researchers

make sense of how the cell feature vectors in a sample-set influence the predicted phenotype

or conditions of a patient, which eventually will lead to an improved understanding of biolog-
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ical phenomena and enable better diagnoses and treatment for patients. Below we propose a

methodology to featurize and classify input sample-sets in a way that is more transparent and

human-understandable than comparably performant models (e.g. [221]).

4.4 Background

Our method is built on three techniques, namely Kernel Mean Embedding for featurization of

sample-sets, Random Fourier Feature for computational cost reduction and Kernel Herding for

selecting representative instances.

4.4.1 Kernel Mean Embedding

Kernel methods have achieved great success in many distinct machine learning tasks, in-

cluding: classification [35], regression [196], and dimensionality reduction [137]. They utilize a

positive definite kernel function k : Rd × Rd 7→ R 1, which induces a reproducing kernel Hilbert

space (RKHS) (e.g. see [12] for further details). Kernels have also been deployed for representing

a distribution, p, with the kernel mean embedding µp : Rd 7→ R:

µp(·) ≡ Ex∼p[k(x, ·)]. (4.1)

Note that µp is itself a function (see e.g. [140] for more details). For “characteristic” kernels, k,

such as the common radial-basis function (RBF) kernel k(x, x′) = exp(− 1
2γ
||x− x′||2), the kernel

mean embedding will be unique to its distribution; i.e., for characteristic kernels, ||µp − µq|| = 0 if

and only if p = q. In general, the distance2 ||µp − µq|| induces a divergence, the maximum mean

discrepancy (MMD) [67], between distributions.

1Note that kernels may be defined over non-real domains, this is omitted for simplicity.
2In the RKHS norm.
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4.4.2 Random Fourier Features

To get a non-linear decision boundary, we can map data into a high-dimensional space such

that the data is separable in that space. However, explicitly calculating that mapping is not scal-

able. To solve this problem, the kernel trick uses kernel functions k(x, y) to calculate the dot

product in the high-dimensional space without explicitly mapping data to that space: k(x, y) =

⟨ϕ(x), ϕ(y)⟩. However, this requires to perform kernel evaluation on all pairs of datapoints,

which scales quadratically to dataset size. Instead of relying on the implicit lifting provided

by the kernel trick, the Random Fourier Features (RFF) approach [153] explicitly maps the

data to a Euclidean inner product space using a randomized feature map z so that the inner

product between a pair of transformed points approximates their kernel evaluation: k(x, y) =

⟨ϕ(x), ϕ(y)⟩ ≈ z(x)′z(y).

4.4.3 Kernel Herding

Let x ∈ X denotes some state over an index set X and let ϕ : X → H denote a feature map

into a Hilbert SpaceH with inner product ⟨·, ·⟩. Given a probability distribution p(x), herding

[31] consists of the following processes to sequentially generate pseudo-samples x:

xt+1 = argmax
x∈X

⟨wt, ϕ(x)⟩ (4.2)

wt+1 = wt + Ex∼p[ϕ(x)]− ϕ(xt+1) (4.3)

Give suitable assumptions and the further restrictions of finite-dimensional discrete state spaces

[214], we can show that herding greedily minimizes the following error

||Ex∼p[ϕ(x)]−
1

T

T∑
t=1

ϕ(xt))||2. (4.4)

Thus, herding generate pseudo-samples that best approximate Ex∼p[ϕ(x)].
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The herding algorithm is extended to continuous spaces by using the kernel trick and the

resulting method is called kernel herding [32]. This method is an infinite memory deterministic

process that learns to approximate a PDF with a collections of samples. It is shown that kernel

herding decreases the error at a rate O( 1
T
) which is much faster than the usual O( 1√

T
).

4.5 Methods

To classify labels of interest, y, given an input sample-set, X , we featurize X so that we may

learn an estimator over those features. However, unlike traditional data-analysis, which featurizes

a single vector instance x ∈ Rd with features ϕ(x) : Rd 7→ Rq, here we featurize a set of multiple

vectors (one vector for each cell in a sample-set) X = {x(i)}ni=1, ϕ(X ) ∈ Rq. Featurizing a set

presents a myriad of challenges since typical machine learning approaches are constructed for

statically-sized, ordered inputs. In contrast, sets are of varying cardinalities and are unordered.

Hence, straight-forward approaches, such as concatenating the sample-set elements into a single

vector (x(1), . . . , x(n)) ∈ Rnd shall fail to provide mappings that do not depend on the order that

elements appear in. To respect the unordered property of sample-sets one must carefully featur-

ize X in a way that is permutation-invariant. That is, the features ϕ(X ) should be unchanged

regardless of what order that the elements of X are processed. Recently, there have been multiple

efforts to create methods based on neural networks to featurize sets in a permutation invariant

manner [150, 223, 174, 114, 171]. Although these approaches provide expressive, non-linear,

discriminative features, they are often opaque and difficult to understand in how they lead to their

ultimate predictions. In contrast, we propose an approach based on kernels and random features

that is more transparent and understandable whilst being comparably accurate.

For our purposes, we propose to use kernel mean embeddings to featurize sample-sets:

µX (·) ≡
1

n

n∑
i=1

k(x(i), ·) ≈ µp(·), (4.5)
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where p is the underlying distribution (of cell features) that X was sampled from. That is, the set

embedding µX (eq. 4.5) also approximately embeds the underlying distribution of cells that the

sample-set was derived from. To produce a real-valued output from the mean embedding, one

would take the (RKHS) inner product with a learned function f :

⟨µX , f⟩ =
1

n

n∑
i=1

⟨k(x(i), ·), f(·)⟩ = 1

n

n∑
i=1

f(x(i)), (4.6)

where the last term follows from the reproducing property of the RKHS. For example, eq. 4.6 can

be used to output the log-odds for a target y given X : p(y = 1|X ) = (1 + exp(−⟨µX , f⟩))−1.

Using the representer theorem [167] it can be shown that f may be learned and represented using

a “Gram” matrix of pairwise kernel evaluations, k(x, x′). This, however, will be prohibitive

in larger datasets. Instead of working directly with a kernel k, we propose to leverage random

Fourier features for computational efficiency and simplicity.

We propose to use random Fourier frequency features [153] to build our mean embedding

[140]. For a shift-invariant kernel (such as the RBF kernel), random Fourier features provide

a feature map φ(x) ∈ RD such that the dot product in feature space approximates the kernel

evaluation, φ(x)Tφ(x′) ≈ k(x, x′). I.e. φ(x) acts as an approximate primal space for the kernel k

(please see [153, 184, 185, 143, 144] for further details). Using the dot product of φ(x), our mean

embedding becomes:

µX =
1

n

n∑
i=1

φ(x(i)) ∈ RD, µX (x
′) =

1

n

n∑
i=1

φ(x(i))Tφ(x′) (4.7)

where φ(x) =
(
sin(ωT

1 x), . . . , sin(ω
T
D/2x), cos(ω

T
1 x), . . . , cos(ω

T
D/2x)

)
with random frequencies

ωj ∼ ρ drawn once (and subsequently held fixed) from a distribution ρ that depends on the kernel

k. For instance, for the RBF kernel, ρ is an iid multivariate independent normal with mean 0 and

variance that depends (inversely) on the bandwidth of the kernel, γ.
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When computing the mean embedding in the φ(·) feature space (eq. 4.7), one may directly

map µX to a real value with a dot product with learned coefficient β ∈ RD:

µT
Xβ =

(
1

n

n∑
i=1

φ(x(i))

)T

β =
1

n

n∑
i=1

φ(x(i))Tβ. (4.8)

That is, we may learn a linear model directly operating over the D dimensional feature vectors

µX , which are composed of the average random features found in a sample-set. Below we ex-

pound on how to build a discriminative model based on µX .

Linear Classifier with Interpretable Scores With the mean embedding of sample-sets {µX (k)}Nk=1,

µX (k) ∈ RD, we can build a discriminative model f : RD → R to predict their labels. If we

choose f as a linear model (e.g. linear SVM), then f(µX ) can be generally expressed as

f(µX (k)) = µT
X (k)β + b =

1

nk

nk∑
i=1

φ(x(k,i))Tβ + b︸ ︷︷ ︸
s(k,i)

=
1

nk

nk∑
i=1

s(k,i), (4.9)

where β ∈ RD and b ∈ R are the weight and the bias of the linear model (see Fig.4.2 for illustra-

tion). From eq. 4.9, we can express the output response of f as the mean of all s(k,i), which we

denote as the score of the i-th cell in the k-th sample-set X (k). This formulation naturally allows

to quantify and interpret the contribution of every cell to the final prediction, which can poten-

tially lead to an improved understanding of biological phenomena and enable better diagnoses

and treatment for patients.

Kernel Herding When using random features (eq. 4.7), µX may be understood as the average

of random features for cells found in a sample-set. Predicted outputs based on µX (eq. 4.9) may

be further interpreted as the average “score” of cells, s(i), in the respective sample-set. How-

ever, sample-sets may contain many (hundreds of) thousands of cells, making it cumbersome to

analyze and synthesize the cell scores in a sample-set. To ease interpretability, we propose to sub-

select cells in the sample-set in a way that yields a similar embedding to the original sample-set.

That is, we wish to find a subset X̂ ⊂ X such that µX̂ ≈ µX , which implies that one may make

62



Algorithm 2 COMPUTE THE MEAN EMBEDDING AFTER SUB-SELECTION VIA KERNEL

HERDING

Require: A sample-set X , number of cells kept after sub-selection m, dimensionality of the
random feature space D, kernel hyperparameter γ.

1: # Compute Random Fourier Frequency Features
2: Compute W ∈ Rd×D

2 by sampling its elements independently wi,j ∼ N (0, 1
γ
)

3: for each x(i) ∈ X do
4: φ(x(i))← [sin(WTx(i)), cos(WTx(i))] ∈ RD, where [·, ·] denotes concatenation.
5: end for
6: # Sub-selection with Kernel Herding
7: Initialize j ← 1, X̂ ← ∅, θ0 ← 1

n

∑n
i=1 φ(x

(i)), θ ← θ0
8: while j ≤ m do
9: i∗ ← argmax

i
θTφ(x(i))

10: X̂ ← X̂ ∪ {φ(x(i∗))},
11: θ ← θ + θ0 − φ(x(i∗))
12: j ← j + 1
13: end while
14: # Compute the mean embedding of the Sub-selected Sample-set
15: µX̂ = 1

m

∑
z∈X̂ z

16: return µX̂
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Figure 4.2: The pipeline of CKME to process the dataset and train the classifier. The left rect-
angle shows a dataset with 3 sample-sets and each sample-set contains 5 features vectors in
the original feature space Rd. In the middle rectangle, we use φ(·) to transform the data into
random Fourier feature space RD and compute the mean embedding µX (1) , µX (2) , µX (3) for every
sample-set (4.7). Finally, in the right rectangle, we train a linear discriminative model f (4.9)
upon the mean embeddings to predict the label of each sample-set.

similar inferences using a smaller (easier to interpret) subset of cells as with the original sample-

set. Although a uniformly random subsample of X would provide a decent approximation µX̂

for large enough cardinality (|X̂ |), it is actually a suboptimal way of constructing an approxi-

mating subset [32]. Instead, we propose to better construct synthesized subsets (especially for
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small cardinalities) using kernel herding (KH) [32]. KH can provide a subset of m points that

approximates the mean embedding as well as m2 uniformly sub-sampled points. We expound on

KH for producing subsets of key predictive cells in Algorithm 3. We denote the dataset with the

sub-selected sets as D̂ =
{
(X̂ (k), y(k))

}N
k=1

.

4.6 Related Work

The first class of methods for identifying coherent cell-populations and specifying their

associated immunological features are gating-based3, and operate by first assigning cells to

populations either manually, or in an automated manner by applying an unsupervised cluster-

ing approach [117, 3]. After an individual’s cells have been assigned to their respective cell-

populations, corresponding immunological features are specified by 1) computing frequencies or

the proportion of cells assigned to each population and 2) computing functional readouts as the

median expression of a particular functional marker [181]. Though gating-based approaches can

be automatic without human intervention, they have several drawbacks: 1) they tend to be sensi-

tive to variation in the parameters of the underlying clustering algorithms [181]. 2) the underlying

clustering algorithms typically do not scale well to millions of cells. 3) they typically need to

rerun the expensive clustering process whenever a new sample-set is given [93]. Furthermore,

partitioning cells into discrete clusters can be inadequate in the context of continuous pheno-

types such as drug treatment response and ultimately limits the capacity of having a single-cell

resolution of the data.

To address these limitations, the second class of methods are gating-free and rely on rep-

resenting, or making predictions based on individual cells [5, 79, 221]. For example, CytoDx

[79] uses a linear model to first compute the response of every single cell individually, then the

responses are aggregated by a mean pooling function. Finally, the aggregated result is used by

another linear model to predict clinical outcomes. CellCNN [5] uses a 1-d convolution layer to

learn filters that are responsive to marker profiles of cells and aggregates the responses of cells to

3Gating refers to partitioning cells into populations
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different filters via a pooling layer for prediction. Since both CytoDx and CellCNN only contain

a single linear or convolution layer before the pooling operation, they enable human interpre-

tation. However, this property also limits their expressive power. To enhance model flexibility,

CytoSet [221] employs a deep learning model similar to Deep Set [223] to handle set data with

a permutation invariant architecture that stacks multiple intermediate permutation equivariant

neural network layers. As a result, the sample-set featurization that CytoSet achieves, while dis-

criminative and accurate, is opaque and a black box, making it difficult to analyze downstream

for biological discoveries. In addition, CytoSet usually contains millions of parameters, further

obfuscating the underlying predictive mechanisms. Our method CKME belongs to this gating-

free class; we show that CKME achieves interpretability without harming model expressiveness.

4.7 Experiments

4.7.1 Datasets

We used publicly available, multi-sample-set flow and mass cytometry (CyTOF) datasets.

Each sample-set consists of several protein markers measured across individual cells.

Preeclampsia. The preeclampsia CyTOF dataset profiles 11 women with preeclampsia and

12 healthy women throughout their pregnancies. Sample-sets corresponding to profiled samples

from women are publicly available4. Our experiments focused on uncovering differences between

healthy and preeclamptic women.

HVTN. The HVTN (HIV Vaccine Trials Network) is a Flow Cytometry dataset that profiled

T-cells across 96 samples that were each subjected to stimulation with either Gag or Env pro-

teins 5 [3]. The data are publicly available6. Our experiments focused on uncovering differences

between Gag and Env stimulated samples.

4http://flowrepository.org/id/FR-FCM-ZYRQ
5Note these are proteins meant to illicit functional responses in immune cell-types.
6http://flowrepository.org/id/FR-FCM-ZZZV
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Table 4.1: Classification accuracies on the three datasets. Standard deviations are computed from
5 independent runs.

HVTN Preeclampsia COVID-19

CytoDx [79] 65.24 ± 1.90 56.17 ± 3.95 68.82 ± 3.15
CellCNN [5] 81.87 ± 1.77 58.51 ± 3.25 75.93 ± 2.62
CytoSet [221] 90.46 ± 2.20 62.85 ± 3.42 86.55 ± 1.76

CKME 90.68 ± 1.69 63.52 ± 2.22 86.38 ± 1.92

Table 4.2: Number of parameters (×103) for different methods on different datasets.

HVTN Preeclampsia COVID-19

CytoDx [79] 0.01 0.03 0.03
CellCNN [5] 40.7 20.2 40.5
CytoSet [221] 330.2 80.0 330.0

CKME 2.0 2.0 2.0

COVID-19. The COVID-19 dataset analyzes cytokine production by PBMCs derived from

COVID-19 patients. The dataset profiles healthy patients, as well patients with moderate and

severe covid cases. Specifically, the dataset consists of samples from 49 total individuals and is

comprised of 6 healthy, 23 labeled intensive-care-unit (ICU) with moderately severe COVID, and

20 Ward (non-ICU, but covid-severe) labeled individuals with severe COVID cases, respectively.

The data are publicly available7. Our experiments focused on uncovering differences between

sample-sets from ICU and Ward patients.

4.7.2 Baselines

We focus our comparison to current state-of-the-art gating-free methods CytoDx [79], Cell-

CNN [5], CytoSet [221], which look to assuage the drawbacks of gating-based methods. Please

refer to Sec. 4.6 “Related Work” for a detailed discussion about these methods.

7http://flowrepository.org/id/FR-FCM-Z2KP
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Figure 4.3: The influence of the number of cells selected by KH and uniform sub-sampling, m,
on the classification accuracy. m =“inf” means no sub-selection.

4.7.3 Implementation Details

Given the limited number of sample-sets, we used 5-fold cross-validation to report the classifi-

cation accuracies on the three datasets. We tuned hyperparameters (e.g. the bandwidth parameter

γ) on the validation set. On the HVTN and the Preeclampsia datasets, γ was set to 1 while on

the COVID-19 dataset γ was set to 8. The dimensionality D was set to 2000 for all datasets. The

linear classifier in eq. 4.9 is implemented by a linear SVM. For all the methods, m = 200 cells

are sub-selected for all datasets. The best hyperparameters of CytoSet, CellCNN and CytoDx are

selected based on the validation performance. CytoSet, CellCNN, CytoDx was run using their

public implementation8.

4.7.4 Classification Accuracies

We report accuracies in Table 4.1 and numbers of model parameters in Table 4.2. Although

our foremost goal is to make a more transparent model, we find that CKME achieves compara-

ble or better accuracies than the state-of-the-art gating-free methods. The strength of CKME’s

performance is impressive when taking into account that: 1) CKME contains on average two

orders of magnitude fewer parameters than CytoSet; 2) unlike CytoSet, which has an opaque,

uninterpretable set-featurization and prediction model, CKME uses a simple average score over

8CytoSet: https://github.com/CompCy-lab/cytoset, CellCNN: http://eiriniar.github.io/
CellCnn/code.html, CytoDx: http://bioconductor.org/packages/CytoDx
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Table 4.3: Ablation Studies.

HVTN Preeclampsia COVID-19

CKME w/ Unif 80.26 ± 1.53 55.52 ± 4.33 84.28 ± 1.74
Naive Mean 64.24 ± 3.17 57.60 ± 4.20 83.07 ± 2.29

CKME 90.68 ± 1.69 63.52 ± 2.22 86.38 ± 1.92

cells; 3) comparably simple models, such as CytoDX and CellCNN, have significantly poorer

accuracies than CKME. We believe that CKME’s success is due to the expressive ability of ran-

dom Fourier features, which provide flexible non-linear mappings (to cell scores) over input cell

features without the need to learn additional featurization (e.g. from a neural network). Moreover,

the average of the random Fourier features, the mean map embedding (Sec. “Random Fourier

Features”), is descriptive of the overall distribution and composition of respective sample-sets;

since the discriminator is trained directly on the mean map embeddings, CKME is able to classify

based on the cell composition of sample-sets. Lastly, when a sample-set is sub-selected with ker-

nel herding (Sec. “Kernel Herding”), the selected cells are explicitly a salient, descriptive subset

that distills the sample-set whilst preserving overall characteristics.

4.7.5 Ablation Studies

Ablation Studies on Sub-sampling We first ablate the number of sub-samples to study the im-

pact of cell sub-selection on accuracy. Fig. 4.3 shows the classification accuracies of CKME on

the HVTN dataset with different numbers of cells selected by Kernel Herding (KH) and uniform

sub-selection. We found that KH consistently outperforms uniform sub-selection and the accu-

racy of KH quickly saturates with as few as 50 cells sub-selected for every sample-set, confirm-

ing the strong capacity of Kernel Herding to maintain the distribution of the original sample-sets

after sub-selection. Moreover, in Table 4.3, we show the performance of CKME with 200 cells

sub-selected by uniform sub-sampling (CKME w/ Unif). Compared to sub-selection with Ker-

nel Herding, we find that using uniform sub-sampling leads to a worse result. This confirms that

Kernel Herding is more effective than uniform sub-sampling.
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Figure 4.4: Cluster scores computed by the two methods are positively correlated.

Ablation Studies on Naive Mean Embedding Here, we investigate the performance of mean

embeddings without using random Fourier features. In this case, we still used Kernel Herding

to sub-select m cells but represented the summarized sample-set in the original feature space as

x̄(k) = 1
m

∑m
j=1 x̂

(k,j) ∈ Rd. We call this approach “Naive Mean”. As shown in Table 4.3, “Naive

Mean” is worse than CKME, which indicates that simple summary statistics (x̄(k), the mean of

input features) does not suffice for classification; in contrast, the random feature kernel mean

embedding is able to provide an expressive enough summary of sample-sets.

4.8 Analysis

4.8.1 Semantic Analysis of Cell Scores

Recall that CKME can compute a score, s(k,i) (eq. 4.9), for every cell feature vector x̂(k,i)

in the KH sub-selected sample-set X̂ (k). Although this already enables our model to be more

transparent, we hope that these scores are semantically meaningful and consistent with intu-

itive properties that one would want. We draw an analogy to natural language processing word-

embeddings [139], where one constructs word-level featurizations (embeddings) that one hopes

are semantically meaningful. For example, the sum of a group of consecutive words-embeddings

in a sentence should yield a sentence-embedding that maintains the characteristics of that sen-
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tence as a whole. Here, we study the semantics of scores of regions (groups) of cells induced by

our cell scores.

We may assign scores to regions in two ways: 1) averaging scores of cells in a nearby region

; 2) directly compute the score of the centroid of the respective region. That is, for cells in a

nearby region, G = {x(i)}mi=1, their average score is s(G) = 1
m

∑m
i=1 φ(x

(i))Tβ + b, where

φ : Rd 7→ RD are the Fourier features, and β, b are the parameters of the learned linear model.

In contrast, one may directly compute the score of the centroid of this region, ν = 1
m

∑m
i=1 x

(i),

as s(ν) = φ(ν)Tβ + b (note the abuse of notation on s). Both s(G) and s(ν) score a region.

Analogously to word-embeddings we hope that the score of cells (“words”) retains the semantics

of the regions (“sentences”). Below we study the semantic retention of cell scores through a

comparative analysis between s(G) and s(ν), and a predictive analysis.

Regions We construct nearby regions with a k-means cluster analysis of cells in each dataset.

I.e., we obtain C cluster centroids, ν1, . . . , νC , and respective partitions Gc = {x ∈
⋃N

k=1 X̂ (k) | c =

argminl||νl − x||}. Below we set C = 10. The distribution of cluster assignments among cells

from positive and negative classes on HVTN is shown in Fig. 4.5. One can see that clusters with

a negative score (e.g. Clusters 1 & 3) tend to be more heavily represented in negative sample sets

than in positive sample sets (and vice-versa for positive clusters such as Cluster 9).

Comparative Analysis First, we analyze the semantic retention of scores by studying the corre-

lation between the direct scores of cluster centroids s(νc) = φ(νc)
Tβ + b, to the average score of

cells in respective clusters s(Gc) =
1

|Gc|
∑

x∈Gc
φ(x)Tβ + b. Both s(νc) and s(Gc) assign scores

to the same region, however, due to the nonlinearity of Fourier features there is no guarantee that

s(G) will match s(ν) as generally 1
m

∑m
i=1 φ(x

(i))Tβ + b ̸= φ
(

1
m

∑m
i=1 x

(i)
)T

β + b. Notwith-

standing, if cell scores are semantically meaningful, then s(νc) and s(Gc) should relate to each

other as they both score regions. When observing the scatter plot of s(νc) vs. s(Gc) across our

datasets (see Fig. 4.4), we see that both scores on regions are heavily correlated; this shows that

our scores are capable of semantically retaining the characteristics of regions. The respective
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Figure 4.5: The histogram of the clustering assignments on the HVTN dataset. The scores of
all clusters computed by linearly transforming the corresponding centrioid embedding, s(νc), is
shown on the top of each corresponding bar.

Table 4.4: Classification accuracies on the three datasets. Standard deviations are computed from
5 independent runs.

HVTN Preeclampsia COVID-19

Linear 78.66 ± 2.86 56.64 ± 4.16 76.92 ± 2.05
Centroid CKME 76.48 ± 2.62 60.57 ± 3.19 77.88 ± 2.11
Average CKME 74.51 ± 2.46 60.80 ± 3.03 76.17 ± 2.13
Average MELD 64.52 ± 0.92 59.64 ± 3.47 59.16 ± 2.72

Pearson correlation coefficients for COVID-19, HVTN, and Preeclampsia are 0.9785, 0.8234,

and 0.7654.

Predictive Analysis Next, we further study the semantic retention of cell scores with a pre-

dictive analysis. Traditionally [17, 151, 181] one may predict a label y using a cluster analysis

through a frequency-featurization. E.g. with a linear model f̂(X̂ (k)) =
∑C

c=1 r̂
(k)
c αc + a, where r̂(k)c

is the proportion of cells in X̂ (k) assigned to cluster c, and α, a are parameters of a learned linear

model. In contrast to learning a linear model, one may directly build a predictor using scores

for clusters. That is, it is intuitive to combine the scores of clusters using a convex combination

according to the frequency of clusters in a sample-set: f̂s(X̂ (k)) =
∑C

c=1 r̂
(k)
c sc, where sc is the

(pre-trained) score of the c-th region as described above, which is acting as a linear coefficient in
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the predictor f̂s. I.e. if we have scores for each cluster (coming from a pre-trained CKME model),

then weighing these scores according to their respective prevalence in sample-sets should be pre-

dictive. Note that although this line of reasoning is semantically intuitive, the CKME cell scores

were not trained to be used in this fashion, hence there is no guarantee that f̂s will be predictive.

We compare the accuracy of learning a linear model over cluster frequency features (denoted as

Linear), f̂ , to directly predicting using fixed cluster scores, fs, in Table 4.4. We consider cluster

scores coming directly from respective centroids sc = s(νc) = φ(νc)
Tβ+b as Centroid CKME, and

cluster scores coming from averages sc = s(Gc) =
1

|Gc|
∑

x∈Gc
φ(x)Tβ + b as Average CKME. As

an additional baseline, we also considered building a predictor through cell scores derived from

MELD [19]. MELD is an alternative method that computes a score for every cell by first esti-

mating the probability density of each sample along a kNN graph and then computes the relative

likelihood of observing a cell in one experimental condition relative to the rest. As MELD cannot

directly assign scores to post-hoc centroids, we utilize the average MELD scores for prediction

sc =
1

|Gc|
∑

x∈Gc
sMELD
x , denoted as Average MELD. As shown in Table 4.4, predictors based on

both CKME cluster scores (Centroid CKME and Average CKME) perform comparably to learn-

ing a linear model (Linear). Here we see that these scores are semantically meaningful since they

retain intuitive predictive properties after manipulations. Again, this is surprising given that our

CKME cell scores were not trained for this purpose (for prediction with cluster frequencies). This

point is further emphasized by the lesser predictive performance of scores from MELD (Aver-

age MELD), which also seeks to provide semantically meaningful scores and was not trained for

prediction in this fashion.

4.8.2 Biological Validation

An important advantage of interpretable models is their capacity to uncover scientific knowl-

edge [23]. Therefore, we would like to know whether the patterns automatically learned by

CKME are consistent with existing knowledge discovered independently via manual analysis.

To do so, we focus our analysis on a salient cluster in the Preeclampsia dataset. More specifically,
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Figure 4.6: We computed the frequency of (e.g. number of) cells assigned to each of 10 clusters,
or cell-populations. We further computed the score of corresponding centroids (value shown
above each bar).

we used our scores to prioritize cells that were different between control (healthy) and preeclamp-

tic women. Cells across sample-sets were clustered into one of 10 clusters. We then computed

the average score of the cells assigned to each cluster. We first identified cell-populations asso-

ciated with patient phenotype using CKME scores for each cluster, followed by a finer per-cell

analysis highlighting clinically-predictive individual cells and lastly identifying their defining

features.

4.8.2.1 Identifying Phenotype-Associated Cell-Populations

To link particular clusters (e.g. cell-populations) to clinical phenotype, we first prioritized

cluster 2, based on its highly negative score according to CKME (−8.74, see Fig. 4.6). A highly

negative score implies that it likely contained a large number of cells predicted as “control”.

The prominent protein markers expressed in cluster 2 were CD3, CD4, CD45RA, and MAP-

KAPK2 and indicated this is a cell-population of naive CD4+ T cells expressing MAPKAPK2

(Fig. 4.7a). The negative score of cluster 2 aligns with previous work, which showed that women

with preeclampsia exhibit a decrease in MAPKAPK2+ naive CD4+ T-cells during the course of

pregnancy, while healthy, women exhibit an increase [68].
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Figure 4.7: Our predicted scores prioritized cluster 2 (CD4+ naive T-cells) as cell-population
likely to have frequency differences between control and preeclamptic samples. (a) Cluster 2
was identified to correspond to a population of MAPKAPK2+ CD4+ naive T-cells according to
protein markers (denoted with arrows). (b) Gradients of CKME scores for cluster centroids νc,
∇x(φ(x)

Tβ) |x=νc , where φ(x) are random Fourier features and β are the learned model weights
(eq. 4.8). (c) The distributions of frequencies of cells assigned to cluster 2 in sample-sets from
preeclamptic and control women. (d) A k-NN graph connecting samples-sets (nodes) according
to computed frequencies across cell-populations reveals a higher frequency of cells assigned
to cluster 2 in control samples-sets. (e) The k-NN graph from (d), with each sample-set (node)
colored by its ground-truth label.

We first compared the distributions of frequencies of cells assigned to cluster 2 (i.e. this pop-

ulation of naive CD4+ T cells expressing MAPKAPK2) between sample-sets from preeclamptic

and healthy control women (Fig. 4.7c). Consistent with our previous observations, sample-sets

from control women had a statistically significantly higher proportion of cells assigned to clus-

ter 2 in comparison to preeclamptic women (see Fig. 4.7c with a p-value of p = 0.038 under a

Wilcoxon Rank Sum Test). As a complementary visualization, we constructed a k-nearest neigh-

bor graph between sample-sets according to the computed frequencies across all cell-types (Fig.

4.7d-e). Here, each node represents a sample-set and an edge represents sufficient similarity be-

tween a pair of sample-sets according to the frequencies of cells across cell-populations. In Fig.

4.7d, sample-sets (nodes) are colored by the probability of their cells belonging to cluster 2. In
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Figure 4.8: Visualizing computed per-cell CKME scores via tSNE. Cells in gray represent a
general, patient-wide cellular landscape. Cells colored red (blue) imply high (low) associations
with the preeclampsia phenotype.

comparison to sample-sets (nodes) colored by their ground-truth labels (Fig. 4.7e), we observed

that control, healthy sample-sets such as the densely connected set of blue nodes in the bottom of

Fig. 4.7e tend to have high frequencies of cells assigned to cluster 2.

4.8.2.2 tSNE Visualizations of Per-Cell CKME Scores in Patient Samples in the Preeclamp-
sia CyTOF Dataset

Next, we perform a fine-grained analysis of individual cell scores. In contrast to previous

approaches to identifying phenotype-associated cell-populations on a population level [181, 17],

CKME provides much finer resolution and instead is able to highlight individual cells (in a di-

gestible, synthesized KH subset) that are likely driving particular clinical phenotypes. For ex-

ample, by combining cells from samples collected from healthy and preeclamptic women in the

preeclampsia CyTOF dataset, we closely examined the patterns in the computed per-cell CKME

scores and how they related to patient phenotypes. Briefly, 200 cells were sub-selected with Ker-

nel Herding from each patient and the sub-selected cells from all patients are together projected

into two dimensions with tSNE [190] to establish a general, patient-wide cellular landscape

(gray cells in Fig. 4.8). For each patient, their sub-selected cells in the two-dimensional space

are colored by their computed CKME score (Fig. 4.8). In particular, a cell colored red (blue)

implies a high (low) association with the preeclampsia phenotype. In Fig. 4.8, we visualized
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scores for patients sampled from two preeclamptic patients (Patients 0 and 1) and two control

patients (Patients 12 and 4)9. Remarkably, in the two preeclamptic women, we identified promi-

nent subsets of red-colored nodes (outlined in red rectangles), implying a strong association with

the preeclampsia phenotype. Based on the expression of phenotypic markers, these cells were

identified as memory CD4+ T-cells (based on the expression of CD3, CD4, and CD45RA). In

contrast, the memory CD4+ T-cells in the healthy patients exhibited low scores (blue-colored

cells outlined in blue rectangles), indicating their negative association with the healthy pheno-

type. Taken together, the CKME scores highlighted the memory CD4+ T-cells as a key predictive

population (also shown in previous work [68]). To further unravel the association between spe-

cialized immune cells and the preeclamptic and control patient phenotypes according to CKME

scores, we investigated the prominent protein feature co-expression patterns of the subset of cells

outlined in the rectangles in Fig. 4.8. Comparing the two preeclamptic (patients 0 and 1) to the

two control (patients 4 and 12) sample-sets (Fig. 4.8), we quickly identified further nuanced cel-

lular subsets associated with the cells with high (red) and low (blue) scoring CKME scores. A

particular differentiating protein marker between the preeclamptic and control patients in this

memory CD4+ T-cell population was p38. The distribution of its expression in cells in the rect-

angular regions is shown in Fig. 4.9 and reveals prominent differences between the preeclamptic

and control patients. p38 is a functional protein marker, indicating likely differences in signaling

responses between control and preeclamptic samples. Interestingly, previous work [68] also inde-

pendently showed that the expression of p38 in memory CD4+ T-cells was an important feature

for predicting preeclampsia status.

4.8.2.3 Assessing Protein Features in Preeclamptic and Healthy Patients

Lastly, we investigated the protein feature coexpression patterns of immune cell types from

preeclamptic and healthy patients to further determine whether CKME scores are consistent with

existing knowledge and could be used for hypothesis generation. To identify the cell populations

9These patients were from a testing set and were not used to learn the CKME scores.
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Figure 4.9: Distributions of features p38 for the cells inside the rectangles of Fig. 4.8.

associated with extremely positive or negative average CKME scores, we further annotated the

clusters according to the expression of known protein markers (Fig. 4.7a). We found that the cell

types that were strongly associated with the preeclampsia phenotype (positive average CKME

score) were clusters 1 and 9, corresponding to classical monocytes and memory CD4+ T cells

(Table 4.5). In contrast, the cell types associated with the control phenotype (negative average

CKME score) were clusters 2, 4, and 5 corresponding to naive CD4+ T cells expressing MAP-

KAPK2, naive CD4+ T cells, and naive CD8+ T cells (Table 4.5). Notably, this is consistent with

previous work that found that the absolute monocyte count was significantly higher in preeclamp-

sia patients than in controls [198, 195]. Moreover as highlighted previously, an abundance of

naive CD4+ T cells (Fig. 4.7c-e) or memory CD4+ T cells (Fig. 4.8) are strong indicators of

healthy or preeclampsia status, respectively [24, 37].

We also provide an alternative investigation of important protein markers in CKME scores.

In particular, we study how minuscule changes in the expression of the protein markers defining

the cluster (cell type) would increase the CKME score and thus have a stronger association with

the clinical phenotype. To do so, we computed the gradient of the CKME score with respect to

the cluster centroid. I.e. we compute ∇x(φ(x)
Tβ) |x=νc for cluster centroids νc, , where φ(x) are

random Fourier features and β are the learned model weights (eq. 4.8). Doing so will uncover

what small changes in protein markers alter the CKME of cluster centers, which serves as one

proxy for feature importance.
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Table 4.5: Gradient analysis of each cell-population highlights prominent features in clinically-
associated cell-populations.

ID/CKME score cell type
(expression) gradient cell type

(gradient)

1/4.1031 classical monocytes ↓ CD14 ↑ CD16 ↑ STAT1 nonclassical monocytes STAT1+

9/11.8123 memory CD4+ T cells ↑ CD4 ↓ CD45RA ↑ STAT3 memory CD4+ STAT3+ T cells

2/-8.7411 naive CD4+ MAPKAPK2+ T cells ↑ CD45RA ↓MAPKAPK2 ↑ p38 naive CD4+ p38+ T cells
4/-8.0372 naive CD4+ T cells ↑ Tbet ↑ GATA3 CD4+ Tbet+ GATA3+ T cells
5/-4.5961 naive CD8+ Tbet+ T cells ↑ Tbet ↑ p38 naive CD8+ Tbet+ p38+ T cells

The gradient heatmap (as shown in Fig. 4.7b) provides a value for each feature within a cen-

troid, where the corresponding direction of change specifies whether an increase (positive) or

decrease (negative) in protein expression would increase the association with the preeclampsia

phenotype. By prioritizing large magnitude changes in particular features that define cell types, in

addition to signaling markers, we observed a shift in the expression of prioritized proteins. When

examining the gradient feature changes in cluster 1 (generally defined as classical monocytes by

the expression of CD14+ CD16−), we observed a decrease in CD14 and an increase in CD16

expression (Fig. 4.7a-b, Table 4.5). This indicates that a transition to a nonclassical monocyte

phenotype (CD14med CD16med) may cause a sample-set to appear more preeclamptic. Interest-

ingly, previous work has indicated that the subpopulation composition of monocytes (classical,

intermediate, nonclassical) significantly varies between preeclamptic and control patients [195].

With respect to cluster 2 (naive CD4+ T cell population expressing MAPKAPK2), we observed

a decrease in MAPKAPK2 and an increase in p38 expression (Fig. 4.7a-b, Table 4.5). This fur-

ther highlights that p38 may be a good functional marker for distinguishing between healthy and

preeclamptic patients in both naı̈ve and memory CD4+ T cells.

4.9 Closing Remarks

In this work, we introduced CKME (Cell Kernel Mean Embedding) as a method to link cellu-

lar heterogeneity in the immune system to clinical or external variables of interest, while simulta-

neously facilitating biological interpretability. As high-throughput single-cell immune profiling

techniques are being readily applied in clinical settings [59, 68, 49], and there are critical needs
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to 1) accurately diagnose or predict a patient’s future clinical outcome and 2) to explain the par-

ticular cell-types driving these predictions. Recent bioinformatic approaches have uncovered

[17, 181, 79] or learned [5, 221] immunological features that can accurately predict a patient’s

clinical outcome. Unfortunately, these existing methods must often make a compromise between

interpretability (e.g. simpler, more transparent methods, such as [79, 5] and accuracy (e.g. more

complicated, opaque methods, such as [221]). Our experimental results show that CKME allows

for the best of both worlds, yielding state-of-the-art accuracies, with a simple, more transparent

model.

We leveraged the transparency of CKME with a thorough analysis. First, we showed that

cell scores stemming from CKME retain intuitive desirable properties for cell contributions. We

studied the semantics of CKME cell scores in tasks that CKME was not explicitly trained for

and found that CKME cell scores were useful for those scenarios. This suggests that, through

simple supervised training, CKME can be used to obtain insights into a myriad of analyses that

it was not trained for. Furthermore, cell-population, individual-cell, and protein feature coexpres-

sion analyses yielded insights that aligned with previous literature (e.g. [68]). This suggests that

CKME is a robust approach to uncovering scientific knowledge.

In summary, CKME enables a more comprehensive, automated analysis and interpretation of

multi-patient flow and mass cytometry datasets and will accelerate the understanding of how im-

munological dysregulation affects particular clinical phenotypes. Future directions may include

alternate synthesizing approaches to Kernel Herding and variants that weigh cells differently.

Furthermore, in addition to the gradient-based analysis presented in Sec. 4.8.2.3, we shall ex-

plore other methodologies for assessing feature importance in CKME scores such as fitting local,

sparse models [158].
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CHAPTER 5: LEVERAGING RELATED POINTS IN A SEQUENCE FOR TIME
SERIES IMPUTATION

5.1 Notation

• X = {xi}Ni=1: a set with the set elements xi ∈ X , where X represents the domain of each

set element.

• S = {si}Ni=1: a time series with N observations. Each observation si is a tuple (ti,xi),

where ti ∈ R+ denotes the observation time and xi ∈ Rd represents the observed data.

• Ŝ = {ŝj}Mj=1: data to impute as a set. M is the number of missing time points. Each set

element ŝj is a tuple (t̂j,∆t̂j)

5.2 Introduction

Similar to the previous chapter, here we consider the case of time series data, where the input

is also a collection. A time series is a collection of feature vectors indexed at different times. We

consider the time series imputation problem where we need to predict the features at the missing

times given the features at the observed times. We view these observed features as a collection

of given related instances and develop an algorithm to exploit these related instances to predict

features at the missing times.

Missing values are common in real-world time series, e.g. traffic trajectories often contain

missing data due to unreliable sensors or object occlusion [210, 200]. Recovering those missing

values is useful for the downstream analysis of time series. Modern approaches impute missing

data in a data-driven fashion. For example, recurrent neural networks (RNNs) are applied in

[127, 27, 22, 107], methods built on Neural Ordinary Differential Equations (NODEs) [29] are
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proposed in [162, 39, 89], and a family of models called Neural Process [62, 90] that learns a

distribution over functions based on the observed data could also be leveraged.

(a) Latent-ODE (b) NRTSI

Figure 5.1: Imputation results of Latent-ODE and NRTSI on a sinusoidal dataset. Red points are
the imputed data, green points are the observed data and the blue points are the ground-truth data.
We can see that Latent-ODE suffers from the error compounding problem as the imputation error
accumulates through time while our NRTSI does not.

However, these existing works all have their own deficiencies. Models that are built on RNNs

or NODEs usually employ a sequential imputation order, meaning that the imputed data xt at

timestep t is predicted based on the already imputed data xt−1 at the previous timestamp t − 1.

Since xt−1 inevitably contains errors, xt is even more inaccurate and the errors will accumu-

late through time, resulting in poor long-horizon imputations for time series that are sparsely

observed. This problem is known as error compounding in the fields of time series analysis

[192, 218, 128, 129] and reinforcement learning [6, 113, 28, 25]. We illustrate this problem of

a NODE-based method called Latent-ODE [162] in Fig 5.1 (a). Previous work [123] alleviates

this problem with an RNN-based model, NAOMI, that imputes from coarse to fine-grained reso-

lutions in a hierarchical imputation order. However, we find the hierarchical strategy in NAOMI

is sub-optimal due to its reliance on RNNs. Neural Process models [61, 90, 62] do not impose

any recurrent structures. However, they impute all the missing data at once without exploiting the

hierarchical information of temporal data, which we find deteriorate their performance.

In this work, we propose NRTSI, a Non-Recurrent Time Series Imputation model. One of our

key insights is that when imputing missing values in time series, the valuable information from
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the observed data is what happened and when. This information is most naturally represented

as a set of (time, data) tuples. We propose a novel imputation model to leverage observed data

as a set of (time, data) tuple instances and impute the unobserved missing data. This is in stark

contrast to previous works (e.g. NAOMI [123]) where observed data are leveraged recurrently

so that the temporal information (when things happened) is unnecessarily entangled with the

order of points being processed. Our natural set representation not only disentangles the data

processing order from the temporal information, but also enables us to design an hierarchical

imputation strategy that is efficient and principled. To the best of our knowledge, we are the first

to jointly leverage the set formulation of time series and hierarchical imputation. We achieve the

new SOTA across multiple benchmarks. Without the set formulation, we have to use the inferior

hierarchical algorithm in [123] due to the RNN sequential constraints; without the hierarchical

formulation, we find directly using set formulation (e.g. [74, 61, 90, 62]) leads to much worse

imputation performance. Despite its simplicity, we find that NRTSI effectively alleviates the prob-

lems of the existing methods in a single framework while achieving state-of-the-art performance

across multiple benchmarks.

Our contributions are as follows:

• We reinterpret time series as a set of (time, data) tuples and propose a time series imputa-

tion approach, NRTSI, using permutation equivariant models.

• We propose an effective hierarchical imputation strategy that takes advantage of the non-

recurrent nature of NRTSI and imputes data in a multiresolution fashion.

• We show that NRTSI can flexibly handle irregularly-sampled data, data with partially ob-

served time dimensions, and perform stochastic imputations for non-deterministic time

series.

• We perform experiments on a wide range of datasets to demonstrate state-of-the-art imputa-

tion performance of NRTSI compared to several strong baselines.
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5.3 Problem Formulation

5.3.1 Motivation

Models such as RNNs that scan sequentially, at first glance, are natural fits for time series

data due to their temporal nature. For imputation, however, these models typically suffer from

a problem called error compounding as discussed above. To remedy these deficiencies, we rein-

terpret time series as a set of (time, data) tuples. The set formulation allows us to conveniently

develop a hierarchical scheme that reduces the number of imputation steps required compared

to the sequential scheme and thus effectively alleviates the error compounding problem. It also

directly enables imputing irregularly sampled time points, since the set can contain tuples for

arbitrary time points. Note that since the time information is provided in the (time, data) tuples,

the sequential order of the time series is not lost, and we can easily transform the set back to a

sequence.

5.3.2 Formulation

Throughout the paper, we denote a set as X = {xi}Ni=1 with set elements xi ∈ X , where

X represents the domain of each set element. We denote a time series with N observations as

a set S = {si}Ni=1, where each observation si is a tuple (ti,xi), where ti ∈ R+ denotes the

observation time and xi ∈ Rd represents the observed data. Given an observed time series S,

we aim to impute the missing data based on S. We also organize data to impute as a set Ŝ =

{ŝj}Mj=1, where M is the number of missing time points. Each set element ŝj is a tuple (t̂j,∆t̂j),

where t̂j ∈ R+ is a timestep to impute and ∆t̂j ∈ R+ denotes the missing gap (i.e. the time

interval length between t̂j and its closest observation time in S). Formally, ∆t̂j is defined as

∆t̂j = min(ti,xi)∈S |ti − t̂j|. Note that both t̂j and ti can be real-valued scalars rather than fixed grid

points, which enable NRTSI to handle irregularly-sampled timesteps. The missing gap ∆t̂j is

essential for our hierarchical imputation procedure. As will be discussed in Sec 5.5.1, we select a

subset G ⊆ Ŝ to impute at each hierarchy level based on the missing gap of the target time points.
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The imputation results are denoted as H = {hj}|G|
j=1 with hj ∈ Rd, where H is predicted using an

imputation model f as H = f(G;S).

5.4 Background

Our hierarchical imputation procedure is inspired by the successful idea of multi-scale mod-

eling of images [2, 88] and waveforms [189]. For example, image pyramid methods [2] represent

visual patterns across multiple resolution scales to extract both global and local information.

Also, the multi-resolution method is used for image synthesis. PG-GAN [88] improves image

synthesis quality and stability by starting with synthesizing low-resolution images first and grad-

ually activating more neural network layers to synthesize higher resolution images based on the

prior information of low-resolution images. WaveNet is a pioneering work for autoregressive

audio synthesis. In order to capture both the local and global information of the previously gener-

ated waveforms, several dilated convolution layers with different dilation rates is used.

5.5 Methods

5.5.1 Hierarchical Imputation

In this section, we introduce our proposed hierarchical imputation procedure given the im-

putation models f at each hierarchy level. We defer the details about the imputation models to

Sec. 5.5.2.

Generative models have benefited from exploiting the hierarchical structure of data [88, 121].

Here, we propose to leverage a multi-resolution procedure for time series imputation. Specif-

ically, we divide the missing time points into several hierarchy levels using their missing gaps

(i.e. the closest distance to an observed time point). Intuitively, missing data that are far from the

observed data are more difficult to impute. According to their missing gaps, we can either impute

from small gap time points to large gap ones or vice versa. Empirically, we find starting from

large missing gaps works better (as also indicated by [123]). Given the imputed values at the
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Algorithm 3 IMPUTATION PROCEDURE

Require: f l
θ: imputation model at resolution level l; L: the maximum resolution level; S: ob-

served data; Ŝ: data to impute
1: Initialize G← ∅, l← 0
2: while l ≤ L do
3: Ŝl ← {(t̂j,∆t̂j) | (t̂j,∆t̂j) ∈ Ŝ, ⌊2L−l−1⌋ < ∆t̂j ≤ 2L−l}
4: while Ŝl is not empty do
5: G← {(t̂j,∆t̂j) | (t̂j,∆t̂j) ∈ Ŝl,∆t̂j = maxj ∆t̂j}
6: H← f l

θ(G; S)

7: S← S ∪H, Ŝ← Ŝ \G, Ŝl ← Ŝl \G
8: Update the missing gap information in Ŝ and Ŝl

9: end while
10: l← l + 1
11: end while
12: return Imputation result S

current hierarchy level, the imputation at the higher hierarchy level will depend on those values.

Note that the hierarchical imputation inevitably introduces some recurrent dependencies among

missing time points, but since the number of hierarchy levels is typically much smaller than the

number of missing time points, the error compounding problem of NRTSI is not as severe as the

sequential models. To further reduce the imputation error at each level, we utilize a separate im-

putation model f l
θ for each level l. The imputation model takes in all the observed data and the

already imputed data at lower hierarchy levels as a set to impute the missing data at the current

level. At each hierarchy level, the missing time points are imputed in descending order of their

missing gaps. Please refer to Algorithm 3 for the proposed imputation procedure. We illustrate

the imputation procedure in Fig 5.2 where at each hierarchy level NRTSI can impute multiple

missing points in parallel thanks to the set representation of time series. Note that NRTSI can

also handle irregularly-sampled time series, though we only show the procedure on regularly

sampled ones in Fig 5.2 for convenience.

Similar to our hierarchical imputation procedure, NAOMI [123] also explore the multiresolu-

tion structure of time series. NAOMI first encodes the observed data using a bidirectional RNN.

Then the missing data are imputed by several multiresolution decoders followed by updating the

RNN hidden state to take the newly imputed data into account. To make the hidden state updates
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Figure 5.2: Illustration of the imputation procedure. Blue, green and red boxes respectively repre-
sent missing data, observed data, and data to impute next. Numbers inside each box represent the
missing gap to the closest observed data and we assume the missing gap of observed data to be
0. When deciding which data to impute next, we always select the group of data with the largest
missing gap (Line 5 Algorithm 3). Given a time series with 2 observed values and 32 missing
values, the imputation procedure starts at the first row and ends at the bottom row where all data
are imputed.

efficient, NAOMI chooses to first impute the data with the largest missing gap located between

the two earliest observed time points. Therefore, the first imputed data might not have the largest

missing map throughout the whole time series. In contrast, NRTSI always imputes the data with

the global largest missing gap first thanks to our set formulation. Also, NAOMI only imputes a

single time point at each step, while NRTSI can impute multiple time points together.

5.5.2 Imputation Model f l
θ

In this section, we describe the imputation model f l
θ used at each hierarchy level l. The model

takes in a set of known time points S (either observed or previously imputed at lower hierarchy

levels) and imputes the values for a set of target time points G. To respect the unordered nature

of sets, the imputation model f l
θ is designed to be permutation equivariant w.r.t. G and permu-

tation invariant w.r.t. S, i.e. ρ(H) = f l
θ(ρ(G); π(S)), where π and ρ represent two arbitrary per-

mutations. Theoretically, any permutation equivariant architecture can be seamlessly plugged in

as long as we use a permutation invariant embedding on S. Representative architectures include

DeepSets [223], ExNODE [114] and Transformers [191, 102]. In this work, we adopt the multi-

head self-attention mechanism in Transformers for its established strong capability of modeling

high-order interactions.
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Time Encoding Function Transformers do not require the sequences to be processed in se-

quential order. Originally, the input to Transformers is a set of word embeddings and positional

embeddings. Although the input is an unordered set, the positions of word embeddings are in-

formed by their corresponding positional embeddings. Similar to the positional embedding in

Transformers, we embed the time using a function ϕ to transform a time stamp t ∈ R+ to a higher

dimensional vector z = ϕ(t) ∈ Rτ , where

z2k(t) := sin
(

t

ν2k/τ

)
z2k+1(t) := cos

(
t

ν2k/τ

)
(5.1)

with k ∈ {0, . . . , τ/2}, τ denoting the dimensionality of the time embedding, and ν representing

the expected maximum time scale for a given data set. This time embedding function is first

proposed in [74].

Implementation At each hierarchy level l, a subset of missing time points G are first selected

based on their missing gaps ∆t̂j , then the imputation model f l
θ imputes the missing values by

H = f l
θ(G;S), where S = {(ϕ(ti),xi)} and G = {ϕ(t̂j)}. Note that ∆t̂j are ignored here since

they are only used to define the hierarchy levels (see Algorithm 3). The elements in S and G are

transformed to tensors by concatenating the data x ∈ Rd and the time encoding vector ϕ(t) ∈ Rτ

computed via (5.1). Since the elements in G do not contain x, we use d-dimensional zero vectors

0 ∈ Rd as placeholders. We also add a binary scalar indicator to distinguish missing values and

observed values. That is,

si = (ϕ(ti),xi) ∈ S → si = [ϕ(ti),xi, 1] ∈ Rτ+d+1,

gj = ϕ(t̂j) ∈ G → gj = [ϕ(t̂j),0, 0] ∈ Rτ+d+1,

(5.2)

where [·] represents the concatenation operation. Now that the elements in S and G are all trans-

formed to vectors with same dimensionality, we can combine them into one set and pass it

through the permutation equivariant imputation model f l
θ, i.e. H = f l

θ(S;G). Specifically, we

implement f l
θ by the following steps:
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Figure 5.3: Imputation model.

S(1) ∪G(1) = fin(S ∪G)

S(2) ∪G(2) = fenc(S
(1) ∪G(1))

H = fout(G
(2)).

(5.3)

At the first step, a linear layer fin : Rτ+d+1 → Rdh maps the input data to a high-dimensional

space in a point by point fashion. Then, a permutation equivariant Transformer encoder fenc :

Rdh → Rdh is used to model the interactions between S(1) and G(1). The Transformer encoder

is composed of multiple alternating multi-head self-attention layers and feedforward layers, al-

lowing the elements in S(1) and G(1) to effectively exchange information, i.e. G(1) can attend to

S(1) to gather the observed information and S(1) can be informed about what timestamps to im-

pute by attending to G(1). Finally, the imputation results H are obtained via another linear layer

fout : Rdh → Rd on G(2). The architecture of the imputation model is illustrated in Fig 5.3. Since

the set elements are processed individually by the linear layers and the attention mechanism

[191, 133, 170] in fenc is permutation equivariant, the overall model f l
θ is permutation equivariant

w.r.t. G and permutation invariant w.r.t. S.
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Training Objective We denote our imputation model with learnable parameters θ at level l as f l
θ,

which include the two linear layers and the Transformer encoder. The optimization objective is

min
θ

EG∼p(G),S∼p(S),Y∼p(Y)

[
1

|G|

|G|∑
j=1

L(hj,yj)

]
, (5.4)

where hj ∈ H = f l
θ(G;S) is an imputed data and yj ∈ Y denotes the corresponding ground

truth imputation target. For deterministic datasets, we use Mean Square Error (MSE), i.e. L(hj,yj) =

||hj − yj||22. For stochastic datasets (see Section 5.5.3), we minimize the negative log-likelihood of

a Gaussian distribution with diagonal covariance, i.e.

L(hj,yj) = −logN (yj|µ(hj), diag(σ(hj))), (5.5)

where µ : Rd → Rd and σ : Rd → Rd are two linear mappings. We use a training procedure (Al-

gorithm 4) similar to Algorithm 3. During training, we regard the ground truth imputation target

Y as observed data for the subsequent training steps rather than the imputed H. This resembles

the Teacher Forcing algorithm [215] used to stabilize the training of RNNs.

5.5.3 Model Variants

Next, we show NRTSI is general enough to naturally handle irregularly sampled time series,

stochastic time series, and partially observed time series in a unified framework.

Irregularly-sampled Time Series For regularly-sampled time series, there are typically multiple

time points with the same missing gaps. For irregularly-sampled time series, however, missing

time points tend to have unique missing gaps. Therefore, imputing from large missing gaps to

small missing gaps will reduce to an autoregressive model, which could incur a high computation

demand. Instead, we modify line 5 in Algorithm 3 by imputing time points with similar missing

gaps together, i.e. G ← { (t̂j, ∆̂tj) | (t̂j, ∆̂tj) ∈ Ŝl, ∆̂tj ∈ (a, b]} where a = maxj ∆̂tj − ∆,

b = a+∆, and ∆ ∈ R+ is a hyperparameter.
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Stochastic Time Series Often one models only the mean time series for single imputation, we

instead model multiple potential time series conditioned on the observed points for multiple

imputations (see Fig 5.5). For deterministic datasets, we can impute the mean for data in G si-

multaneously as no sampling is required. For stochastic datasets, however, we need to sample

from the distribution (5.5) and the samples may be incongruous if we sample for all the elements

in G simultaneously. This is because the intermediate imputations should affect the conditional

distribution of later imputed steps. To solve this problem, we propose to impute data with large

missing gaps one by one. Based on the observation that missing data with small missing gaps are

almost deterministic, they can be imputed simultaneously in parallel to avoid the high complexity

of sampling sequentially. In practice, we find this modification does not significantly slow down

the imputation process as there are much fewer data with large missing gaps compared to the

ones with small missing gaps.

Algorithm 4 TRAINING PROCEDURE AT LEVEL l

Require: f l
θ: imputation model at resolution level l, S: observed data, Ŝ: data to impute, Y:

ground-truth imputation target
1: Initialize current imputation set G as an empty set, i.e. G← ∅
2: if l < L then
3: Initialize θ from the higher level trained model f l+1

θ

4: else
5: Randomly initialize θ
6: end if
7: while f l

θ does not converge do
8: Sample a batch of training data Ŝ ∼ p(Ŝ),S ∼ p(S),Y ∼ p(Y)
9: Find times points to impute at current level Ŝl ← { (t̂j,∆t̂j) | (t̂j,∆t̂j) ∈ Ŝ and

⌊2L−l−1⌋ < ∆t̂j ≤ 2L−l}
10: while Ŝl is not empty do
11: Find the data to impute with the largest missing gap and put them into G, i.e.

G← { (t̂j,∆t̂j) | (t̂j,∆t̂j) ∈ Ŝl,∆t̂j = maxj ∆t̂j}
12: Compute the imputation results H = {(t̂j,hj)}|G|

j=1 based on observed data S, i.e. H ←
f l
θ(G; S)

13: Train θ via the objective function in (5.4) in the main text
14: Regard the ground-truth imputation target Y as observed points and delete G from Ŝl,

i.e. S← S ∪Y, Ŝl ← Ŝl \G
15: end while
16: end while
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Partially Observed Time Series In practice, a timestep may be only partially observed, i.e. only

a subset of features is missing at that time. Our hierarchical imputation procedure can be easily

extended to this partially observed scenario. However, missing gaps may no longer be the driving

factor for an effective imputation order, as the number of dimensions observed may affect the

effectiveness of imputations. Therefore, we modify Algorithm 3 to impute the timesteps with

the most missing dimensions first rather than the timesteps with the largest missing gap. We also

modify the data representation to si = [ϕ(ti),xi,mi] ∈ Rd+τ+d where mi ∈ {0, 1}d is a binary

mask indicating which dimensions are observed.

5.6 Related Work

Time Series Imputation Deep generative models offer a flexible framework for imputation.

Several variants of RNNs [27, 22, 33, 154] are proposed to impute time series. Models based on

NODEs [29], such as LatentODE [162], ODE-RNN [39] and NeuralCDE [89], are also proposed

to impute irregularly-sampled data. Generative adversarial networks are leveraged in [51, 222,

126]. However, all of these works are recurrent.

NAOMI [123] performs time series imputation via a non-recurrent imputation procedure

that imputes from coarse to fine-grained resolutions using a divide-and-conquer strategy. How-

ever, NAOMI relies on RNNs to process observed time points, which limits its application for

irregularly-sampled time data and loses the opportunity to efficiently impute multiple time points

in parallel. Moreover, the hierarchical imputation procedure of NAOMI assumes that the mul-

tivariate data at a timestep is either completely observed or completely missing along all the

dimensions. In contrast, the imputation procedure of NRTSI also works well when dimensions

are partially observed.

Set Formulation of Time Series Similar to NRTSI, SeFT [74], attentive neural process (ANP)

[90], Conditional Score-based Diffusion Models (CSDI) [186], TTS-GAN [111], and TTS-

CGAN [112] view a temporal sequence as an unordered set, where each set element is a tuple
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Table 5.1: Quantitative comparison on Billiards dataset. Statistics closer to the expert indicate
better performance. † results are taken from NAOMI [123].

Models Linear† kNN† GRUI† MaskGAN† ANP mTAN CSDI SingleRes† NAOMI† NRTSI Expert

Sinuosity 1.121 1.469 1.859 1.095 1.364 ± 0.012 1.099 ± 0.010 1.231 ± 0.012 1.019 1.006 1.003 ± 0.002 1.000
step change (×10−3) 0.961 24.59 28.19 15.35 18.95 ± 2.82 14.59 ± 2.17 14.92 ± 2.05 9.290 7.239 5.621 ± 0.752 1.588

reflection to wall 0.247 0.189 0.225 0.100 0.134 ± 0.013 0.091 ± 0.010 0.089 ± 0.011 0.038 0.023 0.021 ± 0.002 0.018
L2 loss (×10−2) 19.00 5.381 20.57 1.830 3.762 ± 0.659 1.102 ± 0.316 1.115 ± 0.392 0.233 0.067 0.024 ± 0.003 0.000

that contains the observed data xt ∈ Rd at timestep t ∈ R and an encoding [217] of the time ϕ(t).

SeFT [74] has shown that this set formulation is superior to several strong recurrent baselines

for time series classification. However, only time series classification is considered in SeFT [74]

and [217] and only time series synthesis is considered in TTS-GAN [111] and TTS-CGAN [112],

while we propose a novel model that targets at time series imputation and allows effective infor-

mation exchanges between observed data and missing data. Although ANP is applicable for the

imputation task, the information of what timesteps to impute (target input) is not utilized when

ANP uses self-attention to compute the representations of observed data (context input/output

pairs). Therefore, the representation might be suboptimal. CDSA [134] performs time series im-

putation via self-attention without recurrent modules. However, CDSA is specifically designed

for geo-tagged data. Multi-Time Attention Networks (mTAN) [175] learn an embedding of con-

tinuous time values and use an attention mechanism for interpolation and classification. However,

mTAN still contains recurrent modules (e.g. bidirenctional RNN). Besides, ANP, CDSA, CSDI

and mTAN do not exploit the multiresolution information of sequences, which may impact their

imputation performance according to our ablation study in Section 5.7.5.1. Also,

5.7 Experiments

In this section, we evaluate NRTSI on popular time series imputation benchmarks against

strong baselines. For fair comparisons, we use the same training/validation/testing splits for all

the methods. Similar to masked self-supervised learning [209], during training, we randomly

mask out a subset of observed data and use the masked data as the ground truth imputation

target to train models. We use the same method to randomly mask out data for all the methods.
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(a) Observed (b) Gap 16 (c) Gap 8 (d) Gap 4 (e) Gap 2 (f) Gap 1 (g) NAOMI (h) NRTSI

Figure 5.4: Imputation procedure on the Billiards dataset. The red points denote imputed data
while the green points denote observed data. The purple solid line is the ground-truth trajectory.
The initial observed data is shown in (a), the imputed data with missing gaps 16 to 1 are shown
in (b)-(f). We omit the intermediate results at missing gaps 15, 7, 6, and 3 due to the limitation of
space. In (g) and (h) we show the forward prediction results of NAOMI and NRTSI.

All the experiments conducted in this paper are repeated 5 times and we accordingly report the

average metrics and their standard deviations. We defer the details about datasets, architectures,

and training procedures to Section 5.7.4, 5.7.1, and 5.7.2.

Billiards Ball Trajectory Billiards dataset [164] contains regularly-sampled trajectories of Bil-

liards balls in a rectangular world. Each ball is initialized with a random position and a random

velocity and the trajectory is rolled out for 200 timesteps. All balls have a fixed size and uniform

density, and friction is ignored.

On this dataset, we train and evaluate using MSE loss between imputed values and ground

truth. We also report three additional metrics, Sinuosity, step change and reflection to wall, as

reported in [123] to assess the realism of the imputed trajectories. We closely follow the setting

in [123] and compare to all baselines mentioned there. Please refer to [123] for details about the

baseline models. We also include ANP [90], mTAN [175] and CSDI [186] as baselines. Quan-

titative results are reported in Table 5.1, where Expert denotes the ground truth trajectories.

Following [123], we randomly select 180 to 195 timesteps as missing for each trajectory and re-

peat the test set 100 times to make sure a variety of missing patterns are covered. Statistics that

are closer to the expert ones are better. From Table 5.1, we can see NRTSI reduces the L2 loss by

64% compared to NAOMI and compares favorably to baselines on all metrics except step change,

as linear interpolation maintains a constant step size change by design, which matches with the

underlying dynamics of this dataset. In Fig 5.4, we visualize the hierarchical imputation pro-
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Table 5.2: Traffic data L2 loss (×10−4). † results are taken from NAOMI [123].

Linear† GRUI† kNN† MaskGAN† ANP CSDI mTAN SingleRes† NAOMI† NRTSI

15.59 15.24 4.58 6.02 6.93 ± 1.91 5.89 ± 0.52 5.23 ± 0.44 4.51 3.54 3.22 ± 0.12

cedure on one example. Initially, only five points are observed (shown in green). Then, NRTSI

imputes the time points with the largest missing gap (16) based on those observed points. It then

hierarchically imputes the remaining missing time points with smaller missing gaps. The final

imputed trajectory not only aligns well with the ground truth but also maintains a constant speed

and straight lines between collisions. To better understand how NRTSI imputes, in Section 5.7.3,

we visualize the attention maps of several attention heads and find that they capture different

temporal relationships in accordance with previous findings [204].

In Fig 5.4 (g) and (h), we respectively show the forward prediction (predict the last 195 miss-

ing values based on the first 5 observed values) results of NAOMI and NRTSI. It can be seen that

the trajectories predicted by NRTSI is more accurate and realistic compared to NAOMI, indicat-

ing the advantage of using a non-recurrent imputation model.

Traffic Time Series The PEMS-SF traffic [43] is a multivariate dataset with 963 dimensions at

each time point, which represents the freeway occupancy rate from 963 sensors. The occupancy

rate is regularly-sampled every 10 minutes throughout the day, resulting in the length of each

time series being 144. Time series in this dataset is non-stationary [165] as statistical properties

(e.g. mean of the occupancy rate) are not constant over time.

Similar to the Billiards experiment above, we train and evaluate using MSE loss. We also

compare to the same set of baselines as the Billiards experiment. Following [123], we generate

masked sequences with 122 to 140 missing values at random and repeat the testing set 100 times.

The L2 losses are reported in Table 5.2.

MuJoCo Physics Simulation MuJoCo is a physical simulation dataset created by [162] using

the “Hopper” model from the Deepmind Control Suite [187]. Initial positions and velocities of
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Table 5.3: MuJoCo dataset MSE loss (10−3) comparison. † results are taken from [162].

Method 10% 20% 30% 50%

RNN GRU-D† 19.68 14.21 11.34 7.48
ODE-RNN† 16.47 12.09 9.86 6.65
NeuralCDE 13.52 ± 0.71 10.71 ± 0.57 8.35 ± 0.49 6.09 ± 0.41
Latent-ODE† 3.60 2.95 3.00 2.85

ANP 7.65 ± 0.47 4.37 ± 0.38 3.21 ± 0.36 2.97 ± 0.33
CSDI 6.64 ± 0.35 3.79 ± 0.37 2.96 ± 0.31 2.62 ± 0.32
mTAN 5.90 ± 0.45 3.17 ± 0.36 2.51 ± 0.32 2.35 ± 0.28
NAOMI 4.42 ± 0.41 2.32 ± 0.35 1.46 ± 0.13 0.93 ± 0.11
NRTSI 4.06 ± 0.38 1.22 ± 0.11 0.63 ± 0.09 0.26 ± 0.02

Table 5.4: Quantitative comparison on Football Player Trajectory. A larger avgMSE / minMSE
indicate better diversity. Other statistics closer to the expert indicate better performance.

Models Latent-ODE NAOMI CSDI ANP NRTSI Expert

step change (×10−3) 1.473±0.154 3.227±0.216 1.543±0.297 1.754±0.211 2.401±0.087 2.482
avg length 0.136±0.009 0.236±0.008 0.201±0.009 0.145±0.007 0.175±0.004 0.173

minMSE (×10−3) 19.53±1.44 4.079±0.487 8.142±1.005 6.652±0.881 1.908±0.101 0.000
avgMSE / minMSE 1.16±0.09 1.12±0.07 1.53±0.07 1.19±0.10 2.13± 0.08 —

Imputation Time (s) 1.92 0.64 3.32 0.43 0.51 —

the hopper are randomly sampled such that the hopper rotates in the air and falls on the ground.

The dataset is 14-dimensional.

MSE loss is used to train and evaluate NRTSI. Baseline models include Latent-ODE [162],

ODE-RNN [162], GRU-D [27], NeuralCDE [89], ANP [90], mTAN [175], CSDI [186] and

NAOMI [123]. We report the MSEs with different observation rates in Table 5.3. NRTSI com-

pares favorably to all baselines with 20%, 30% and 50% observed data. When only 10% data are

observed, NRTSI is comparable to Latent-ODE and NAOMI.

Football Player Trajectory This dataset is from the NFL Big Data Bowl 2021 [86], which con-

tains the 2D trajectories of 6 offensive players and is therefore 12-dimensional. During training

and testing, we treat all players in a trajectory equally and randomly permute their orders. Every

time series contain 50 regularly-sampled time points with a sampling rate of 10 Hz.
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Figure 5.5: Imputed trajectories of football players.

This dataset is stochastic and contains multiple modes since there could be many possible

trajectories based on the sparsely observed data. Therefore, we follow [147] to use minMSE to

evaluate the precision and the ratio between avgMSE and minMSE to evaluate the diversity of

multiple imputed trajectories. minMSE and avgMSE respectively denote the minimum and the

average MSEs between the ground truth and n independently sampled imputation trajectories. A

small minMSE indicates that at least one of n samples has high precision, while a large avgMSE

implies that these n samples are spread out. Similar to [123], we also use average trajectory

length and step change to assess the quality of sampled trajectories.

For this dataset, we train NRTSI to minimize the negative log-likelihood as in (5.5). For each

trajectory, we randomly select 40 to 49 timesteps as missing. According to the discussion in Sec

5.5.3, data with missing gaps larger than 4 are imputed one by one, while data with smaller miss-

ing gaps are imputed in parallel. We compare to several baselines such as Latent-ODE, NAOMI,

CSDI and ANP that can impute stochastically. As shown in Table 5.4, NRTSI compares favor-

ably to the baselines. The speed does not degrade too much by the one-by-one imputation on the

large missing gap time points. It only takes 0.51 seconds to impute a batch of 64 trajectories on

GTX 1080Ti, which is faster than NAOMI. Though ANP is faster than NRTSI, ANP does not
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Table 5.5: Irregularly-sampled Billiards data L2 loss (×10−2).

Latent-ODE NeuralCDE ANP mTAN CSDI NAOMI-∆t NRTSI

19.48±1.64 34.01±1.99 29.31 ±1.53 3.542±0.447 3.823±0.521 1.121±0.265 0.042±0.008

impute hierarchically and has worse imputation quality. The minMSE and avgMSE scores are

calculated using 10 independently imputed trajectories. As shown in Fig 5.5, the imputation is

accurate around observed time points and captures the uncertainty for points far from the observa-

tions. When the observation is sparse, NRTSI can impute multiple realistic trajectories.

Irregularly-sampled Time Series We first test NRTSI on a toy synthetic dataset. Following

Latent-ODE [162], we create an irregularly-sampled dataset containing 1,000 sinusoidal func-

tions with 100 time points for each function, from which 90 timesteps are randomly selected as

missing data. As shown in Fig. 5.1, both Latent-ODE and NRTSI capture the periodic pattern of

this dataset, but NRTSI is more accurate and obtains a much lower MSE (7.17× 10−4) compared

to Latent-ODE (5.05× 10−2).

Next, we evaluate NRTSI on an irregularly-sampled Billiards dataset. This dataset is created

with the same parameters (e.g. initial ball speed range, travel time) as the regularly-sampled Bil-

liards dataset. The only difference is that this dataset is irregularly-sampled. We compare NRTSI

with two representative ODE-based approaches that can deal with irregularly-sampled data,

namely Latent-ODE and NeuralCDE. We also modify NAOMI to handle irregularly-sampled

data, which we call NAOMI-∆t. The time gap information between observations is provided to

the RNN update function of NAOMI-∆t. We also compare to ANP, mTAN and CSDI which can

handle irregularly-sampled data. In Table 5.5, we report the MSE losses between imputed and

ground truth values. We randomly select 180 to 195 timesteps out of the total 200 timesteps as

missing for each trajectory. According to Table 5.5, NRTSI outperforms the baselines by a large

margin despite extensive hyperparameter search for these baselines. We show several trajectories

imputed by NRTSI in Fig. 5.6. To further investigate the poor performance of Latent-ODE, Neu-

ralCDE, and ANP, when the observation is dense (150 points observed), they all perform well.
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However, they have difficulty in predicting the correct trajectories when the observation becomes

sparse (e.g. with only 5 points observed). The excellent performance of NRTSI and NAOMI-∆t

indicates the benefits of the multiresolution imputation procedure. Furthermore, the superiority of

NRTSI over NAOMI-∆t demonstrates the advantage of the proposed set modeling approach.

Figure 5.6: Trajectories imputed by NRTSI on the irregularly-sampled Billiards dataset. The
red points are the imputed data, the green points are the observed data and the blue points are
ground-truth data.

Partially Observed Time Series The air quality dataset [226] and the gas sensor dataset [18] are

two popular datasets to evaluate the scenario where feature dimensions at each time point are par-

tially observed. Data in these datasets are 11-dimensional and 19-dimensional respectively. For

both datasets, we follow RDIS [33] to select 48 consecutive timesteps to construct one regularly-

sampled time series. We compare NRTSI to RDIS, BRITS, Latent-ODE, NeuralCDE, CSDI and

mTAN. In Table 5.6, we report the MSE scores by randomly masking out some dimensions for

all timesteps with several different missing rates. NRTSI outperforms the baselines on all of the

missing rates.

5.7.1 Model Architectures of NRTSI

Our imputation model contains two linear layers fin and fout with bias terms as well as a

Transformer encoder fenc that contains N repeated self-attention blocks. We set N to 8 for all the
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Table 5.6: The MSE comparison under different missing rates on the air quality dataset and the
gas sensor dataset. † results are taken from [33].

Dataset Method
missing rate

20% 40% 60% 80%

Air

Latent-ODE .2954±.0109 .3291±.0118 .3569±.0124 .3762±.0127
NeuralCDE .3129±.0271 .3524±.0285 .4074±.0290 .4865±.0319
BRITS† .2076 .2088 .2660 .3421
RDIS† .1807 .1977 .2528 .3178
CSDI .1236±.0032 .1411±.0041 .1648±.0044 .2155±.0057
mTAN .1192±.0034 .1261±.0033 .1403±.0046 .1885±.0049

NRTSI .1155±.0035 .1250±.0038 .1378±.0039 .1790±.0041

Gas

Latent-ODE .1282±.0039 .1299±.0041 .1387±.0044 .1979±.0049
NeuralCDE .0773±.0024 .1044±.0028 .1538±.0045 .3011±.0097
BRITS† .0226 .0279 .0406 .1595
RDIS† .0226 .0251 .0321 .0837
CSDI .0297±.0009 .0273±.0009 .0352±.0011 .0591±.0017
mTAN .0215±.0007 .0259±.0008 .0497±.0012 .0886±.0016

NRTSI .0195±.0007 .0229±.0007 .0311±.0010 .0445±.0012

datasets reported in our paper except the irregularly-sampled sinusoidal dataset where we set N

to 2. Each self-attention block consists of a multi-head self-attention layer followed by a feedfor-

ward layer. We use 12 attention heads and every head has a key/query/value pair with a dimen-

sion of 128. Then, the output vectors of all heads are concatenated to form a 1,536-dimensional

vector and projected to a 1,024-dimensional vector using a linear layer. The feedforward layer

contains two linear layers where the first one projects the 1,024-dimensional vector to a 2,048-

dimensional vector and the second one projects the 2,048-dimensional vector back to a 1,024-

dimensional vector.

Our model with 8 self-attention blocks contains 84.0M learnable parameters.

For all the datasets, we set τ and ν in (5.1) in the main text to 8 and 100 respectively. We set

∆ in Section 5.5.3 to 1.

We find that the usually used layer normalization [7] and Dropout [180] techniques in Trans-

former are detrimental to imputation performance, and they are removed from our model.
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In practice, we find it beneficial to add a mask to every attention map to prevent elements in

G(1) from attending to each other. This modification encourages elements in G(1) to pay more

attention to S(1) and reduces the mutual influence between elements in G(1).

5.7.2 Training Details of NRTSI

For all the datasets considered in our paper, we use a maximum resolution level of 4, which

corresponds to a maximum missing gap of 24 = 16 that our model can impute. Except for the

partially observed dimension scenario, every resolution level is taken care of by a correspond-

ing imputation model. For the partially observed dimension scenario, we find a single model is

enough. We train NRTSI with Adam [92] using a starting learning rate of 1× 10−4 and decrease it

to 1× 10−5 when the validation loss reaches a plateau.

When we start training on level l, we adopt the transfer learning strategy to initialize the pa-

rameters of f l
θ from the trained weights of model f l+1

θ . The assumption is that the trained higher-

level model already captures the dynamics at a fine-grained scale, and it is beneficial to train

lower-level models based on the prior knowledge of higher-level dynamics.

During training, we regard 195 timestamps as missing for both the regularly-sampled and

the irregularly-sampled Billiards dataset, 140 timestamps as missing for the traffic dataset, 90

timestamps as missing for the MuJoCo dataset, 40 to 49 timestamps as missing for the football

player trajectory dataset, 90 timestamps as missing for the irregularly-sampled sinusoidal dataset.

For the gas dataset and the air quality dataset, we use a missing rate of 80% during training.

We use an NVIDIA GeForce GTX 1080 Ti GPU to train our model. We implement our model

using PyTorch [148].

5.7.3 Visualization of Attention

Visualizing the attention maps at different self-attention blocks and different heads is helpful

to understand how NRTSI imputes missing data.
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Figure 5.7: Visualization of one attention head. Red points are the imputed data, green points are
the observed data. The softmax attention weights are visualized via the blue lines. The wider and
less transparent the blue lines are, the larger the attention weights.

We first visualize the attention maps of an attention head in NRTSI in Fig 5.7 where this at-

tention head models short-range interactions in a single direction. Then, we show several other

representative patterns captured by NRTSI in Fig 5.8. According to Fig 5.8, short-range interac-

tions are captured by Block 1 Head 8, Block 5 Head 10, Block 7 Head 5, and Block 7 Head 7.

Middle range interactions are captured by Block 1 Head 3, Block 5 Head 1, and Block 5 Head 5.

Long-range interactions are captured by Block 1 Head 9 and Block 7 Head 12. It is interesting to

find that some attention heads capture interactions on both the forward and backward directions

(e.g. Block 1 Head 3, Block 1 head 8, Block 1 Head 9, Block 7 Head 12), while some attention

heads capture interactions in a single direction (e.g. Block 5 Head 1, Block 5 Head 5, Block 5

Head 10, Block 7 Head 5, Block 7 Head 7).

5.7.4 Datasets Details

All the datasets can be downloaded or generated from the codes submitted. In the “readme.md”

file, links to download these datasets can be found. We also include the python scripts to generate

the irregularly-sampled Billiards dataset and the irregularly-sampled sinusoidal function dataset.

5.7.4.1 Billiards Dataset

Billiards dataset [164] contains 4,000 training and 1,000 testing sequences, which are regularly-

sampled trajectories of Billiards balls in a rectangular world. We download this dataset from the
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(a) Block 1 Head 3 (b) Block 1 Head 8 (c) Block 1 Head 9

(d) Block 5 Head 1 (e) Block 5 Head 5 (f) Block 5 Head 10

(g) Block 7 Head 5 (h) Block 7 Head 7 (i) Block 7 Head 12

Figure 5.8: Visualization of the attention maps at different self-attention blocks and different
heads on the regularly-sampled Billiard dataset. There are 8 self-attention blocks with 12 heads
each in our model. Red points are the imputed data, green points are the observed data and the
purple solid lines are ground-truth trajectories. The softmax attention weights are visualized via
the blue lines. The wider and less transparent the blue lines are, the larger the attention weights.
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official GitHub repository 1 of NAOMI [123] to guarantee our results are comparable to the re-

sults in the NAOMI paper. Note that this dataset does not have a validation set because NAOMI

does not have a validation set. To make our results comparable to NAOMI we have to follow its

setup.

5.7.4.2 PEMS-SF traffic dataset

The PEMS-SF traffic [43] dataset contains 267 training and 173 testing sequences of length

144 (regularly-sampled every 10 mins throughout the day). We follow NAOMI to download this

dataset form https://archive.ics.uci.edu/ml/datasets/PEMS-SF and follow

NAOMI to use the same default training/testing split. Note that this dataset does not have a val-

idation set because NAOMI does not have a validation set. To make our results comparable to

NAOMI we have to follow its setup.

5.7.4.3 MuJoCo dataset

The dataset is 14-dimensional and contains 10,000 sequences of 100 regularly-sampled time

points for each trajectory. We download this dataset from the official GitHub repository 2 of

Latent ODE [162] to guarantee our results are comparable to the results in Latent ODE paper. We

follow Latent ODE to randomly split the dataset into 80% train and 20% test with the random

seed. Note that this dataset does not have a validation set because Latent ODE does not have a

validation set. To make our results comparable to Latent ODE we have to follow its setup.

5.7.4.4 Irregularly-sampled Billiards Dataset

This dataset is created with the same parameters (e.g. initial ball speed range, travel time)

to create its regularly-sampled counterpart in Section 4.1 in the main text. The only difference

is that this dataset is irregularly-sampled. The billiard table is square and the side length of the

1https://github.com/felixykliu/NAOMI
2https://github.com/YuliaRubanova/latent_ode
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square is 0.8828. The initial ball speed range is 0.0018 to 0.1075. The travel time for each trajec-

tory is 200 seconds. We randomly generate 12,000 trajectories for training and 1,000 trajectories

for testing.

5.7.4.5 The Gas Sensor Dataset and the Air Quality Dataset

We strictly follow RDIS [33] to use the same strategy to prepare the gas sensor dataset and

the air quality dataset. Please refer to the RDIS paper for details. For a fair comparison, we use

the same random seed to perform train/validation/test split as done in RDIS.

5.7.4.6 Football Player Trajectory Dataset

This dataset contains 9,543 time series with 50 regularly-sampled time points for each trajec-

tory. The sampling rate is fixed at 10 Hz. We collect this football player trajectory dataset from

the 2021 Big Data Bowl data [86]. For American football games, the number of players on each

team is 11. However, data of linemen are not provided in [86]. As a result, the number of players

is less than 11. To collect a dataset with the same number of players, we only use data with ex-

actly 6 offensive players. 8,000 trajectories are randomly selected for training and the remaining

ones are used for testing.

This dataset is publicly available and does not contain personally identifiable information or

offensive content.

5.7.5 Ablation Studies of NRTSI

5.7.5.1 Ablation Studies of the Essential Components

In this section, we perform several ablation studies on the regularly-sampled Billiard dataset

to evaluate the contribution of each component in NRTSI. We consider four variants of NRTSI

and report their L2 losses in Table 5.7.
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Table 5.7: Ablation studies of NRTSI. All the methods use the same Transformer encoder archi-
tecture hyperparameters according to Section 5.7.1.

Method Name Description L2 loss (×10−2)

NRTSI w/o Individual
A variant of NRTSI that uses a single imputation model to impute

at all hierarchies. 0.16

NRTSI w/o Encode S ∪G
A variant of NRTSI that uses the Transformer encoder to only model S.

Then G attends to the representation of S via cross-attention. 0.27

NRTSI w/o Hierarchy + all
A variant of NRTSI that imputes all missing data at once without the

proposed hierarchical strategy. 1.14

NRTSI w/o Hierarchy + small
A variant of NRTSI that imputes data with the smallest missing gap first

without the proposed hierarchical strategy. 11.09

NRTSI The proposed method. 0.024

From Table 5.7, it can be seen that not using the proposed hierarchical imputation strategy

(NRTSI w/o Hierarchy) deteriorates the performance most. More specifically, the variant

that imputes data with the smallest missing gap first (NRTSI w/o Hierarchy + small)

is very similar to recurrent methods that always impute data at the next nearby timestamps first.

As a result, this variant suffers from the error compounding problem as shown qualitatively in

Fig 5.9. Another variant that imputes all the missing data at once (NRTSI w/o Hierarchy

+ all) is similar to the way that ANP [90] imputes. We show its performance quantitatively in

Table 5.7 and qualitatively in Fig 5.10.

Figure 5.9: Qualitative results of NRTSI w/o Hierarchy + small on the Billiards dataset.
The purple solid lines are ground-truth trajectories, the red points are imputed data and the green
points are observed data.

Figure 5.10: Qualitative results of NRTSI w/o Hierarchy + all on the Billiards dataset.
The purple solid lines and the blue points are ground-truth trajectories, the red points are imputed
data and the green points are observed data.
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Another variant NRTSI w/o Encode S ∪G only uses the Transformer encoder to model S

rather than S∪G. Then G attends to the representation of S computed by the Transformer encoder

via the cross-attention mechanism. This variant also deteriorates the performance of NRTSI

because the information of what timesteps to impute (i.e. G) is not utilized when the Transformer

encoder uses self-attention to compute the representations of observed data (i.e. S). Therefore,

the representation might be suboptimal. This model architecture is very similar to ANP [90] that

also ignores the target input when ANP uses self-attention to compute the representations of the

context input/output pairs. This shortcoming and the fact that ANP imputes all missing data at

once together explain why NRTSI outperforms ANP by a large margin in Table 5.5.

Using a single model to impute at all hierarchy levels (NRTSI w/o Individual) also

slightly deteriorates the performance. This is because imputing at different hierarchical levels

requires different types of attention patterns, and it might be hard to capture all the necessary

patterns in a single model.

5.7.6 Discussion

Throughout the experiments, we conduct an extensive hyperparameter searching for the base-

lines to make sure they perform as well as they can. We find that the best configurations of these

baselines are not improved by increasing their model capacities. Thus, the superiority of NRTSI

is due to the novel architecture rather than naively using more parameters. In terms of the imputa-

tion speed, though NRTSI contains more parameters than NAOMI, the increase of the number of

parameters does not slow down the imputation speed of NRTSI. According to Table 5.4, NRTSI

is faster than NAOMI as NRTSI can impute multiple missing data in parallel. This speedup is

also observed on other datasets. To evaluate the contribution of each component in NRTSI, we

conduct several ablation studies in Section 5.7.5.1 and find that both the hierarchical imputation

procedure and the proposed attention mechanism are required to achieve good performance.
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5.8 Closing Remarks

In this work, we introduce a novel time-series imputation approach named NRTSI. NRTSI

represents time series as permutation equivariant sets and leverages a Transformer-based archi-

tecture to impute the missing values. We also propose a hierarchical imputation procedure where

missing data are imputed in the order of their missing gaps (i.e. the distance to the closest obser-

vations). NRTSI is broadly applicable to numerous applications, such as irregularly-sampled time

series, partially observed time series, and stochastic time series. Extensive experiments demon-

strate that NRTSI achieves state-of-the-art performance on commonly used time series imputation

benchmarks.

Regarding limitations, the optimal number of hierarchy levels needs to be tuned individually

for different datasets. Another limitation is that for stochastic imputation, we trade off some

degree of parallelism for trajectory quality. In the future, we hope to introduce a global latent

variable to control the overall stochasticity of imputed trajectories, rather than stochastically

imputing every single missing data individually.
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CHAPTER 6: CONCLUSION

Data is one of the most important parts of machine learning. We need data to train machine

learning models and use the trained models to make predictions on new data. However, most

existing models consider every individual data instance in isolation. In this dissertation, we show

the benefits of also learning and exploiting related data instances to enhance performance. To

better leverage related instances, several novel models equipped with dictionary learning, atten-

tion mechanisms, and kernel methods are proposed. Extensive experiments on different types of

data are conducted to support our proposal. We hope our findings can shed some light on future

research that can better model the relationship between data instances to further improve machine

learning performance.

6.1 Review of Thesis Aims

6.1.1 Leveraging Related Neighbor Instances

First, we consider the case where the input is a single instance. To improve prediction per-

formance, we equip neural networks with a dictionary of learnable neighbor instances. During

training, these related instances are automatically learned in a data-driven fashion. During infer-

ence, the related instances for a specific input instance are retrieved and leveraged for better pre-

diction. We show the benefit of exploiting related neighbor instances to obtain an input-specific

predictive model with higher accuracies and lower regression errors. We later extend this idea to

learn related waveform instances for efficient and fast audio synthesis. For both studies, we find

our learned related instances are helpful to improve model performance and also semantically

meaningful to provide some understanding of how the decision is made by our models. This pre-

diction paradigm leveraging related instances is also similar to the human reasoning process, as
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human beings frequently pull similar experiences from memory to assist decision-making. Thus,

our proposed approaches resemble the human reasoning strategy and may inspire future works in

this direction.

6.1.2 Leveraging Related Points from a Collection

We also consider the case where the input is a collection of instances, such as point clouds,

time series, and protein expressions across a set of cells. In these cases, we are directly given a

collection of related instances and we need to consider them in aggregation to make a prediction

over the collection holistically. When the collection is a set, we develop specifically designed

models to respect the unordered property of sets. We first develop a kernel-based method for the

single-cell sample sets classification task and our model can provide rich biological interpretabil-

ity. We also propose another method for time series imputation where time series are viewed as

sets and a hierarchical imputation procedure is used to improve performance. Our findings sug-

gest that it is beneficial to develop models that can comprehensively reason about the relationship

between related instances belonging to the same collection.

6.2 Future Works

6.2.1 Leveraging Related Instances across Modalities

In this dissertation, we only leverage related instances from the same modality. For instance,

to improve image classification performance, we only consider neighbors that are also images;

when reconstructing waveforms we only consider neighbors that are also waveforms; to predict

the clinical outcomes of single-cell sample sets, all the related instances are protein expression

features. However, in the real world, not all related instances belong to the same modality. For

instance, an image may have several related audio instances that describe the content of the image

[55, 202]; a short record of speech audio may have several related text transcripts; a synthetic

image may have a corresponding real image [125]; Thus, one future direction is to also leverage
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related instances across modalities. For instance, a recent work CLIP [152] shows that a more

robust feature space can be learned thanks to visual/text joint learning where the training data

are images with related text descriptions. CLIP leverages related text instances of images rather

than only considering images alone and thus can extract more robust features. Several following

works inspired by CLIP also achieve significant advancements like text-conditioned image gen-

eration and visual-conditioned text generation [4, 156]. Future works could focus on leveraging

related instances for representation learning and generation across other different modalities, such

as caption-image-sound joint learning or text-guided music generation. To achieve this goal, we

need to collect datasets containing paired instances from different modalities. To reduce the hu-

man efforts in collecting data, we may resort to web crawler techniques to automatically discover

paired data from the Internet.

6.2.2 Leveraging Related Instances at Scale

Another future direction is to learn related instances at a larger scale. In our work Meta-

Neighborhood, the learnable dictionary only contains 5,000 to 10,000 related instances. How-

ever, recent works such as CLIP [152] and ChatGPT 1 [83, 216] show that the model performance

can be significantly improved by training on millions of related instances. Therefore, we need

to develop models that are more expressive to fit increasing amounts of training data. A more

expressive and larger model is also often harder to optimize and we need to develop better opti-

mization, initialization, and regularization methods [16, 219, 142, 73, 109, 108]. We also need

to develop more capable computation infrastructures so that large-scale training can be finished

within a reasonable amount of time.

When the input is a collection of instances, we also need to handle cases where the cardinal-

ity of the collection is huge. We show that our work CKME can efficiently handle a collection

with millions of elements with kernel herding. However, kernel herding is a greedy approach to

sub-select the collection and it is more desirable to select in a data-driven fashion, such as us-

1https://chat.openai.com/
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ing attention mechanisms. However, the original self-attention mechanism scales poorly to long

sequences. Thus, we need to develop new attention mechanisms that scale well to huge collec-

tions. Several recent works such as Linformer [203] and Reformer [94] have reduced the time

complexity of the self-attention mechanism from O(n2) to O(n) and O(nlog(n)) respectively

using low-rank approximation or locally sensitive hashing. Future works can build new attention

mechanisms that scale well based on the property of data.
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