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ABSTRACT 

Chaewon Lee: An integrative machine learning approach for small samples and high-

dimensional imbalanced data in psychological experiment 

(Under the direction of Kathleen Gates) 

 

Machine learning for classification may not be immediately useful for many contexts seen 

in psychology. Psychological data often limit its efficacy due to small sample size, high 

dimensionality, and class imbalance. The current study presents an integrative machine learning 

approach that can be a useful solution to the challenges encountered when the aforementioned 

issues are inherent in psychological data. The tested approach consists of three consecutive steps 

– feature selection, minority oversampling, and predictive modeling. To begin with, feature 

selection tackles high dimensionality and extracts important features out of original predictors, 

using elastic net logistic regression. Then, synthetic minority oversampling technique addresses 

class imbalance, generating new observations primarily for the minority class. Finally, supervised 

machine learning algorithms build predictive models, using the oversampled feature set. The 

algorithms employed in this study include support vector machine, extreme gradient boosting, 

deep neural network, and logistic regression. They fully exploit the small sample with leave-one-

out cross-validation. The current study demonstrates the utility of the integrative classification 

approach with an empirical analysis on predicting suicide attempt by a sample of patients 

diagnosed with bipolar I disorder, using their event-related potentials (ERPs). The study shows 

how prediction can be improved by the integrative modeling as the first two analytical steps being 

added to the generic process of predictive modeling. 
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 CHAPTER 1: INTRODUCTION 

 

Obstacles to Using Machine Learning in Psychology 

Machine learning (ML) approaches for classification may not be immediately useful in 

psychology. It is largely attributed to several unavoidable issues that are often inherent in 

psychological data such as small sample size, high dimensionality, and class imbalance. Above all, 

small samples are commonplace in psychological data since data acquisition from human 

participants or lab experiments tends to be cost-heavy, and most psychology research targets 

specific groups rather than the general population (Button et al., 2013; Muth et al., 2016; Vabalas 

et al., 2019). Such aspects in psychological data may circumvent the utility of ML algorithms out-

of-the-box, as many of them demand large samples for effectual prediction (Jiang et al., 2020). In 

addition, analyses on small samples may pose a risk that prediction results are highly variable upon 

the entry of new data. Meanwhile, psychological data gets increasingly high-dimensional with the 

number of predictors being close to or exceeding the number of observations. It is mainly because 

smartphones and wearable technologies have recently emerged as the main collecting tools for a 

wide array of passive data gathered without direct involvement of participants (Maher et al., 2019). 

Due to these reasons, small samples with high dimensionality are very common in psychology.  

In case of high dimensionality and small sample size, overfitting is a key challenge (Shen 

et al., 2022; Vabalas et al., 2019). Overfitting occurs when a ML algorithm generates a well-fitting
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model on training data but a poorly generalizable model on test data (Yeom et al., 2018; Ying, 

2019). Such a biased prediction gets more pronounced in the presence of class imbalance (Li et al., 

2020). In binary classification, we mainly attempt to identify a target group of interest (e.g., 

patients with diseases), namely positive cases. But given the prevalence of negative cases (e.g., 

healthy control), ML algorithms would be partial to detecting the negative cases well, while poorly 

capturing the positive cases. In that negative cases often outnumbers positive cases in 

psychological data, exploring an effective way to address class imbalance would benefit ML 

algorithms to better identify the group of interest that researchers are ultimately trying to predict 

(Jacobucci & Li, 2022).  

 

Goal of Study 

The current study demonstrates the utility of an integrative ML approach for classification 

with an empirical analysis on predicting suicide attempt by a sample of participants diagnosed 

with bipolar I disorder, using their event-related potentials (ERPs). This research consists of three 

analyses. Analysis 1 explores the efficacy of feature selection that serves as the first step of the 

integrative approach in prediction. Analysis 2 implements the integrative classification approach 

that consists of feature selection, minority oversampling, and predictive modeling and explores 

how prediction can be further improved as minority oversampling process (SMOTE) is added to 

analysis 1 even when sample sizes for two classes are not seriously imbalanced. Analysis 3 looks 

into whether ERPs serve as superior predictors of suicide attempt to demographic variables. The 

present study is organized as follows. The remaining part of introduction discusses the severity of 

suicide attempt by BD patients and reviews previous ML literature of which research goal was to 

predict a person’s suicide risk. Chapter 2 introduces the empirical data – N200 peak latency ERPs 
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and variables. Chapter 3 accounts for supervised ML algorithms that were put in use for feature 

selection and predictive modeling. It also explores two essential statistical methods paired with 

ML algorithms – leave-one-out cross-validation (LOOCV) and synthetic minority oversampling 

technique (SMOTE) – and gives the rationales for employing them in the present study. Also, the 

evaluation metrics that were used to assess the prediction performance of ML algorithms are 

introduced. Chapter 4 presents the overall prediction results across three analyses and shows how 

the integrative ML approach effectively improved prediction. Chapter 5 discusses how the present 

study can be of benefit to psychological research and what possible extensions can be made to 

overcome its limitations. 

 

Suicide Risk of Bipolar Disorder Patients  

 Bipolar disorder (BD) is a chronic mood disorder characterized by recurrent manic or 

hypomanic episodes intermixed with depressive episodes (Miller & Black, 2020). In general, BD 

is classified into two categories – bipolar I disorder (BD I) and bipolar II disorder (BD II). The 

Diagnostic and Statistical Manual of Mental Disorders (DSM-5) defines BD I by the presence of 

at least one episode of mania and BD II by the presence of one episode of hypomania and 

depression (McCormick et al., 2015). Mania is known to result in more severe functional 

impairment and psychotic symptoms than hypomania does (Haldane et al., 2008). BD patients are 

known to have a high risk of dying by suicide (Simpson & Jamison, 1999). In general, it is 

estimated that 25-60% of individuals diagnosed with BD attempt suicide, and 4-19% die by suicide 

(Novick et al., 2010). The suicidality of BD patients even exceeds that of patients suffering from 

other psychiatric disorders (Høyer et al., 2000; Miller & Black, 2020). A comparison study noted 

that suicide was a great cause of mortality especially in the early stage of BD development with 
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its ratio of BD patients due to suicide being 23.4 times higher than that of the general population 

(Sharma & Markar, 1994). Furthermore, it was suggested that BD patients tend to employ more 

lethal suicide methods than suicide attempters in non-BD population (Dome et al., 2019). 

Impulsivity is a long-known important risk factor for suicidality, particularly for repetitive 

suicide attempt (Gvion et al., 2018). Impulsivity refers to a tendency toward unplanned reactions 

to stimuli despite predictable negative consequences (Moeller et al., 2001; Najt et al., 2007). BD 

patients who attempted suicide are believed to possess more severe impulsivity than those who did 

not. (Moraes et al., 2013; Swann et al., 2005). Impulsivity has been found to be closely related to 

the deficits in response inhibition (Christodoulou et al., 2006). Response inhibition denotes the 

ability to control one’s thoughts and behaviors to overcome a strong internal predisposition or to 

thrust external temptation away (Meule, 2017). Deficits in response inhibition is pronounced 

among BD I patients (APA, 2013). Impaired response inhibition may be linked to an inability to 

delay reward, eventually resulting in impulsivity (Swann et al., 2009). The common measure of 

response inhibition is go/no-go task (Verbruggen & Logan, 2008). During go/no-go tasks, 

participants are asked to respond to the frequent target (go tasks) but to withhold a response to the 

less frequent target (no-go tasks) by which they get involved with conflict detection (Albanese et 

al., 2019; Weisbrod et al., 2000). The go/no-go task is a suitable paradigm for investigating 

response inhibition with event-related potentials (ERPs). ERP is a time-locked measure that 

represents the changes in the electrical activities of the cerebral surface when stimuli are presented 

(Patel & Azzam, 2005; Weisbrod et al., 2000). It offers a non-invasive way to examine rapid neural 

processes underpinning inhibitory control (Albanese et al., 2019). The N200 component is one of 

the ERPs that have been often investigated in relation to response inhibition (Bokura et al., 2001). 

N200 is generated under a no-go condition and comprises a negative shift approximately between 
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200 and 300 ms (Bokura et al., 2001). Multiple ERP studies stated that N200 may be associated 

with central inhibition or response conflict (Dominke et al., 2021; Gajewski & Falkenstein, 2013; 

Liotti et al., 2010). There have been mixing implications about the potential of N200 as a neural 

marker of suicidal risk. A principal component analysis (PCA) on the N200 components collected 

from suicide attempters and ideating non-attempters showed that the former exhibited a more 

positively shifted N200 component during a no-go task than the latter (Albanese et al., 2019). 

However, there was a recent ERP study that found no significant difference in the N200 amplitudes 

between suicide attempters and non-attempters (Tavakoli et al., 2021).  

 

Suicide Research with Machine Learning 

 Recent suicide research is actively underway with the applications of ML algorithms. The 

popularity of ML algorithms is mainly attributed to their learning capability from high-

dimensional data and strong predictive power. Previous ML studies showed its promise of 

detecting individuals with high suicidality not only from the general population but also from the 

patient groups diagnosed with psychiatric disorders such as depression, bipolar disorder, and 

schizophrenia (Bohaterewicz et al., 2021; Chen et al., 2020; Fan et al., 2020; Goldstein et al., 2022; 

Hack et al., 2017; Hasey et al, 2020; Hettige et al., 2017; Miché et al., 2020; Navarro et al., 2021, 

Passos et al., 2016; Su et al., 2020) (Table 1). The popular ML algorithms to date include support 

vector machine (SVM), random forest (RF), and logistic regression (LR). Traditional risk factors 

of high suicidality are demographic variables, previous history of suicide attempt, and self-

assessment on suicide-related phenotypes  (Bostwick et al, 2016; Franklin et al., 2017). These risk 

factors, however, have several limitations. First, demographic variables may help recognize 

differentiated lifetime risk for suicide attempt according to a person’s membership but may not 
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signal sufficiently meaningful patterns for the assessment of person-specific suicidality (Gibb & 

Tsypes, 2019). Second, using previous suicide attempt as a predictor of suicidal risk may draw 

biased attention to previous attempters rather than identifying non-attempters who are prone to 

attempting suicide going forward. Finally, self-assessment by patients can be influenced by their 

biases (e.g., cultural or experiential) and memory abilities (Gibb & Tsypes, 2019). It may also pose 

a risk of measurement non-invariance that a psychological construct has a different structure or 

meaning to different groups or on different measurement occasions in the same group. In this case, 

the target construct (e.g., suicide risk) cannot be meaningfully tested or construed across groups 

or across time (Putnick & Bornstein, 2016). 

Acknowledging the aforementioned limitations of traditional risk factors, researchers 

recently began to leverage biological measures such as functional magnetic resonance image 

(fMRI) and electroencephalography (EEG) data. A resting-state fMRI study predicted suicidal risk 

of schizophrenia patients with ML algorithms (Bohaterewicz et al., 2021). Also, an EEG study 

applied ML to resting EEG data in an attempt to detect suicidal ideators from a sample of 

depression patients (Hasey et al., 2020). However, there is still a paucity of suicide research with 

ML on biological measures. The aforementioned previous literature on the N200 ERP component 

suggests its potential as an effectual predictor of suicidal risk. Since decreased response inhibition 

may be seen in suicide attempters, ERPs captured during response inhibition task can be a 

meaningful neural marker. To the best of the author’s knowledge, no suicide research has been 

carried out with a combination of ML and ERPs. The current study conducts an empirical analysis 

with ML and ERPs to predict suicide attempt by BD I disorder patients. The study shows how the 

initial prediction based on the raw ERP data can be improved by the integrative machine learning 

approach described herein.  



 

  

Table 1 

Summary of prior machine learning research on predicting suicide risk 

Authors ML  Data Participants performance 

Bohaterewicz et al. 
(2021) 

boosting; lasso; logistic regression;  
random forest; support vector machine 

multi-state fMRI indexes 𝑁 = 59 
patients with schizophrenia 

70% ACC 
76% AUC 

Chen et al. 
(2020) 

boosting; logistic regression;  
random forest;neural network 

demographics; criminality 𝑁 = 126,205 
patients with mental disorders 

88-89% AUC 
52-75% SNT 

Fan et al. 
(2020) 

random forest; logistic regression;  
k-nearest neighbors; Naïve Bayes 

electronic health records 
 

𝑁 = 6,042 
patients with BD and PTSD 

55-98% SNT 
7-91% PRC 

Goldstein et al. 
(2022) 

boosting demographics; psychosis; 
history of suicide attempt 

𝑁 = 394 

BD patients 

82% AUC 

Hack et al. 
(2017) 

lasso;support vector machine self-report;  
clinician assessment 

𝑁 = 1,017 
patients with trauma 

71% AUC 
64% SNT 

Hasey et al 
(2020) 

random forest resting EEG 𝑁 = 40 
patients with depression 

77% AUC 
71% ACC 

Hettige et al. 
(2017) 

linear regression; random forest; 
elastic net regression; support vector machine 

sociocultural/clinical data 𝑁 = 345 
patients with schizophrenia 

65-67% ACC 
70-71% AUC 

Jung et al. 
(2019) 

logistic regression;random forest; 
neural network; support vector machine, 

neural network; extreme gradient boosting 

risk behavior survey 𝑁 = 59,984 
middle & high school students 

78-79% ACC 

Miché et al. 
(2020) 

logistic regression; lasso, 
ridge, random forest 

demographics; clinical records; 
history of suicide attempt 

𝑁 = 2,797 
a sample from general population 

82-83% AUC 

Navarro et al. 
(2021) 

random forest pregnancy/birth record; 
parent assessment 

𝑁 = 1,623 

a cohort for a longitudinal study 

62-72% AUC 

Passos et al. 
(2016) 

lasso; support vector machine;  
relevance vector machine 

clinical records; demographics; 
history of trauma 

𝑁 = 144 
patients with mood disorders 

67-73% ACC 

Su et al. 
(2020) 

penalized logistic regression demographics; medications; 
laboratory test; diagnosis codes 

𝑁 = 41,721 
patients with clinical records 

81-88% AUC 
51-65% SNT 
90-95% SPC 

Note. AUC: area under the curve, ACC: accuracy, SNT: sensitivity, SPC: specificity, PRC: precision 

7
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CHAPTER 2: EMPIRICAL DATA 

 

Participants 

 Fifty-seven individuals diagnosed with BD I participated in the study. These individuals 

were drawn from the Pretcher Bipolar Research Program (McInnis et al., 2018). Thirty-five 

participants had no history of suicide attempt (NSA), while twenty-two of them had attempted 

suicide at least once (SA) in their life time. The Diagnostic Interview for Genetic Studies (DIGS) 

was conducted by a trained clinician, and the diagnosis of BD I was confirmed by two doctorate 

level reviewers (Nurnberger et al., 1994). The primary language of all the participants was English, 

and their vision was normal or corrected to normal. All the participants in the study were right-

handed. The two groups were matched on age, gender, and education (Table 2). 

 

Table 2 

Demographic characteristics of participants 

 NSA SA Test 𝒑-value CI 

Age 
(years) 

41.34 (12.18) 42.23 (7.77) 𝑡(54.97) = .33 .74 (-4.41, 6.18) 

Education 
(years) 

15.58 (2.39) 15.23 (2.67) 𝑡(41.55) = -.49 .62 (-1.77, 1.07) 

Gender 
(male/female) 

18 / 17 8 / 14 𝜒2(1) = .703 .40 - 

 
Note.  Age, Education: mean (standard deviation) 

          There were two missing values in the years of education.
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Visual Go/no-go Tasks 

 The electroencephalograms (EEGs) were recorded during a modified version of a visual 

go/no-go task (Eimer, 1993). Visual stimuli were generated using the Corel Photopaint 6.0 

graphics program. The central plus sign or central arrow, subtending 1 degree of visual angle (deg), 

was flanked by two squares, each of which subtended 2 deg of visual angles. Each square was 6 

deg to the left and right on the horizontal meridian. Two alphabet letters (M and W), subtending 1 

degree each, were presented at the center of either a right or left square. The task consisted of 240 

trials presented in 4 separate blocks of 60 trials each, in which the go:no-go ratio was 7:3. In two 

blocks (120 trials) the letter M and W were the go and the no-go stimulus respectively, and the 

vice versa for the other two blocks. All participants were instructed to press the right or left button 

as fast as possible when the go stimulus appeared on the right or left side and to withhold response 

when the no-go stimulus was presented on either side. The order of four blocks were 

counterbalanced across the participants to control any order effects. Each trial was preceded by an 

arrow as a precue (200 ms) with 100% validity, indicating on which side a stimulus would be 

presented, followed by an inter-stimulus interval (700 ms) and a target (M or W, 150 ms).  

 

ERP Preprocessing  

 Data were processed with software developed by the James Long Company. ERPs from 9 

electrode sites, including F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4, were analyzed, and only correct 

trials were included (Chun et al., 2013). Artifacts due to eye blinks were corrected by linear 

regression (Gratton et al., 1983). EEG data were divided into the two segments of 150 ms pre-
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stimulus onset and 1000 ms post-stimulus onset. The data were baseline corrected before averaging. 

All trials with remaining artifacts were excluded from further analyses.  

 

N200 Peak Latency ERPs 

 ERPs are scalp-recorded voltage fluctuations that are time-locked to an event, obtained by 

averaging EEG fragments across multiple trials (Kropotov, 2016). Per participant, 250 data points 

of averaged time-stamped ERP amplitudes were collected from 9 electrode sites every 4ms. 

Temporal principal component analysis (tPCA) was implemented to the time-series data with 

Varimax rotation to decompose ERPs into a discrete set of temporal patterns (Chapman & 

McCrary, 1995; Coles & Gratton, 1986; Donchin & Coles, 1988; Frishkoff et al., 2007). tPCA1 

calculates the covariance between all ERP time points and forms groups of highly covarying time 

points that constitute individual ERP components (Albert et al., 2012; Scharf et al., 2022). Among 

several candidate factor models, 8-factor model was chosen based on the best fit to the grand 

averaged ERP amplitudes for all participants. From this model, the time window of N200 was 

identified between 150-308 ms among BD I patients. Thus, the N200 peak latency is defined as 

the time when the most negative amplitude was observed between 150-308 ms post-stimulus onset 

time window. ERPs were measured from 9 electrode sites, 3 (frontal, central, parietal region) × 3 

 
1 Much ERP literature has called a statistical method used in decomposing an observed brainwave signal into a set of 

underlying latent constructs as tPCA. However, what it actually implemented is factor analysis on the voltage (𝑡𝑖𝑗) 

collected from an observation 𝑖 and a sampling point 𝑗. Scharf et al. (2022) noted that factors refer to the estimates of 

the true underlying signals, while components refer to the ideally recovered signal. Albeit similarities between PCA 

and factor analysis (e.g., their utility for dimension reduction and the involvement of latent constructs in modeling), 

they are completely distinct given that PCA predicts latent constructs using a set of observed independent variables, 

while factor analysis predicts observed variables with a set of latent constructs. Since the term, tPCA, has been widely 

used in this field, the identical term was used here, but tPCA does not denote PCA generally used in the realm of 

statistics. 
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(left, midline, right side), while 2 types of stimuli (Go, NoGo) were presented to 2 visual fields 

(right and left). As a result, N200 peak latency ERP data consists of 36 variables (3 × 3 × 2 × 2).  

 

Variables 

 Predictor variables consist of thirty-six N200 ERP peak latencies (Table 3). A response 

variable is binary as to history of suicide attempt at baseline visit (SA: suicide attempter, NSA: 

suicide non-attempter). All the values of predictor variables were Z-transformed. Then, 

participants that had at least one absolute value of transformed latencies greater than 3 were 

considered as outliers. As a result, four participants classified as NSA were removed from the final 

dataset. Therefore, the following analyses are continued with 53 observations (NSA - 31, SA - 22). 

 

Table 3 

Predictor variables 

       Laterality 
 
Caudality 

3 (left) z (midline) 4 (right) 

F (front) F3S1, F3S2, F3S3, F3S4 FzS1, FzS2, FzS3, FzS4 F4S1, F4S2, F4S3, F4S4 

C (central) C3S1, C3S2, C3S3, C3S4 CzS1, CzS2, CzS3, CzS4 C4S1, C4S2, C4S3, C4S4 

P (parietal) P3S1, P3S2, P3S3, P3S4 PzS1, PzS2, PzS3, PzS4 P4S1, P4S2, P4S3, P4S4 

 

Note. S1: Go stimulus presented to the right visual hemifield (RVF)  

          S2: Go stimulus presented to the left visual hemifield (LVF) 

          S3: NoGo stimulus presented to the LVF 

          S4: NoGo stimulus presented to RVF
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CHAPTER 3: METHODS 

 

Analytical Procedures 

The current paper demonstrates three analyses on predicting suicide attempt of BD I 

patients by classification supervised ML, using their N200 ERP peak latencies (ERPs). Analysis 1 

was designed to address high dimensionality in the small sample. Here we explore the efficacy of 

feature selection in advance of predictive modeling (Figure 1). First, elastic net logistic regression 

(ENR) is performed on 36 original ERPs (D1) in an attempt to select important features in the 

relationship with suicide attempt, reducing the dimensionality of predictors. The selected features 

are referred to as D2. Second, predictive modeling is run by six supervised ML algorithms – 

support vector machine with linear, radial, and polynomial kernels, deep neural network, extreme 

gradient boosting, and logistic regression. Then, their predictive performances on D2 are compared 

to those on D1. Analysis 2 implements the integrative ML approach as a way of further improving 

prediction shown in analysis 1. This analysis leverages the oversampled features (D3) for 

classification (Figure 2). In creating D3, a minority oversampling technique (SMOTE) is 

embedded between feature selection and predictive modeling and generates new minority 

instances based on the pre-existing ones to resolve class imbalance. The prediction outcomes on 

D2 are compared to those on D3, and the usefulness of SMOTE is explored. Analysis 3 examines 

the utility of ERPs as the potential neural marker of suicide attempt. Here the prediction results on 

D2 are compared to those with demographic variables (D4). Across three analyses, supervised 

learning algorithms implement leave-one-out cross-validation to fully exploit the small sample.
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Figure 1 

Representation of analysis 1: feature selection + predictive modeling 

 

 
 

Note. Analysis 1 consists of two steps – feature selection by ENR and predictive modeling by ML 

algorithms. Important features in relation to suicide attempt are extracted via feature selection 

and are sequentially fed into predictive modeling by six supervised ML algorithms. The trained 

models predict the suicidality of BD I patients via binary classification.  
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Figure 2 

Representation of analysis 2: integrative classification approach 

 

  

 

Note. Analysis 2 consists of three steps – feature selection by ENR, minority oversampling by 

SMOTE, and predictive modeling by supervised ML algorithms. Analysis 2 embeds the minority 

oversampling process between feature selection and predictive modeling. The oversampled final 

features contain the equal number of observations for each class. 
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 Machine Learning Algorithms 

 

Overview 

 Machine learning (ML) refers to an application of artificial intelligence, aiming to enable 

computers to learn from given data so as to generate statistical models that perform data-driven 

analyses for making predictions or inferring relationships among variables (Bi et al., 2019; James 

et al., 2013; Mahesh, 2018). In general, ML is classified into three categories – supervised, semi-

supervised, and unsupervised learning. Given that the current research implements supervised 

learning only, this section will closely look into supervised ML algorithms.  

A supervised ML algorithm builds a statistical model for the purpose of prediction (James 

et al., 2013). The algorithm fits the model on the pre-defined set of training data of which labels 

are known. Then, it leverages knowledge accumulated throughout training process to predict the 

labels of test data of which labels are assumed to be unknown. Comparing the predicted labels and 

the actual labels of test data, the performance of the predictive model is evaluated. When labels 

are categorical, supervised learning performs classification, or otherwise, it runs regression. This 

study performs classification to construct predictive models (i.e., classifiers) that differentiate 

suicide attempters (SA) from non-attempters (NSA), using N200 ERP peak latencies drawn from 

a sample of BD I patients. Six ML algorithms are implemented for predictive modeling, some of 

which have been at the forefront (e.g., support vector machine and logistic regression) and others 

of which have yet been often employed in suicide research (e.g., deep neural network and 

XGBoost). Most of the algorithms contain a set of hyperparameters that largely affect the 

performance of classifiers. In tuning hyperparameters, random search and grid search were 

performed in a consecutive manner. Random search was first conducted to uncover the 
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neighborhood which the optimal values are likely to lie in. Then, grid search was followed to 

scrutinize the identified area so as to pick the optimal values of hyperparameters. Across both 

tuning processes, leave-one-out cross-validation was implemented.  

 

ML Algorithms for Predictive Modeling 

Support Vector Machine. Support vector machine (SVM) searches for the optimal 

separating hyperplane farthest from observations (James et al., 2013). A hyperplane is a flat affine 

subspace of 𝑝 − 1 dimension in the presence of 𝑝 predictors (James et al., 2013). SVM aims to 

maximize margin, the minimum perpendicular distance from the observations to the hyperplane. 

Support vectors are the observations that fall on the margin, or on the wrong side of the margin for 

their class. If training data are linearly separable, SVM with linear kernel will satisfy (1).  

 

                        (1) 

 

 

 

 

𝛽0  +  𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + … + 𝛽𝑝𝑥𝑖𝑝  =  0 defines a hyperplane. 𝑀 is the width of the margin, and 

𝜖𝑖 is a slack variable that dictates the degree of individual observations being allowed to lie on the 

wrong side of the margin. 𝐶  is a budget for the amount that the margin can be violated by 

observations, in other words, the degree of tolerance to violations to the margin (James et al., 2013). 

In building SVM classifiers, the cost argument was tuned instead of 𝐶. The cost argument and 𝐶 
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are not the identical terms but in an inverse relationship as the former literally denotes the cost of 

violations to the margin.  

 The advantage of using SVM is that we can achieve not only a linear classifier but also 

non-linear classifiers depending on the choice of kernels. A kernel function, 𝐾 < 𝒙, 𝒙′ >, is a 

symmetric, positive (semi-) definite function that represents the transformation of input data by 

the inner product of two input vectors given the number of predictors, 𝑝 (2) (Hofmann et al., 2008; 

James et al., 2013). Equations (3) to (5) denote three kernel functions – linear kernel (3), 

polynomial kernel with 𝑑-th degree (4), and radial basis kernel with gamma (𝛾) (5).  

 

 

                                                           (2) 

                                                          (3) 

                                                (4) 

                                      (5) 

 

Three types of SVM models were generated by linear, radial basis, and polynomial kernels 

in the study. The tune function and the svm function embedded in the R library e1071 were used 

for tuning the hyperparameters of each SVM model and for building SVM models on the basis of 

the tuned hyperparameters (Meyer et al., 2021). The hyperparameters of three SVM models are 

listed in Table 4. 
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Table 4 

Main hyperparameters of SVM 

Hyperparameters Description Relevant kernel  

cost 
controls the trade-off between the number of slack 
variables and the width of the margin 

linear, radial, polynomial 

gamma dictates the extent to which a decision boundary curves radial, polynomial 

degree determines the degree of polynomial function polynomial 

 

 

Logistic Regression. Logistic regression generates a linear classifier with respect to log 

odds ratio. It computes the posterior probabilities for each class per observation and assigns it to a 

class for which the posterior probability is the highest (Maalouf, 2011). Let 𝑃𝑟(𝒙) =

 𝑃𝑟(𝑌 = 1|𝑋 = 𝒙) and 1 − 𝑃𝑟(𝒙) = 𝑃𝑟(𝑌 = 0|𝑋 = 𝒙). 𝑃𝑟 is the probability function with the 

range [0,1]. With the logit function 𝑔 defined as (6), the range of 𝑔(Pr(𝒙)) is shifted to (-∞, ∞).   

 

                               (6)  

 

 

Here, 𝒙  denotes a ( 𝑝 + 1) × 1  column vector for an observation where p is the number of 

predictors. We search for the coefficient estimates 𝜷 maximizing the log-likelihood function, 𝑙(𝜷), 

with respect to 𝑁 observations in (7). 

 

               (7) 
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We take derivatives on the likelihood with respect to 𝜷 and set them equal to zero to attain the 

maximum log-likelihood (8). This process does not give rise to a solution in a closed form, so the 

iteratively reweighted least squares algorithm is used to estimate the maximum likelihood 

estimates of  𝜷. Logistic regression is simple to implement with no hyperparameters and shows 

the importance of predictors (i.e., regression coefficients) and their directed causality with a sign 

(+ or −). Logistic regression models were built by the glm function in the stats R library (R Core 

Team, 2013). The family argument was set to binomial to perform binary classification. 

 

                                          (8) 

 

 Deep Neural Network. Neural network is a powerful supervised learning algorithm with 

networks of multiple nodes of neurons (Hastie et al., 2017; Sharma et al., 2017) (Figure 3). Neural 

network mimics the way the human brain learns through its neuron network. It consists of three 

layers – input, hidden, and output layer. The input layer is the initial layer that holds input data and 

starts disseminating them via synapses into the nodes situated in the following hidden layer. The 

hidden layer bridges the input layer and the output layer. The output layer is the final layer that 
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receives input from the previous hidden layer. Each node in the hidden layer and the output layer 

has an activation function that determines whether to turn the node on or off.  

 

Figure 3 

Illustrated structures of NN and DNN 

 

Note. (Left) A neural network consists of an input layer, a hidden layer, and an output layer. A 

circle indicates a node, and a blue straight line portrays a synapse that connects two nodes in 

adjacent layers. (Right) A deep neural network (DNN) shows more intricately connected network 

than the neural network with more than one hidden layer. This illustration shows a DNN with three 

hidden layers. In both pictures, we can observe three nodes in the output layer, meaning that 

those networks are supposed to perform three-class classification. This study implements binary 

classification to differentiate suicide attempters from non-attempters. Therefore, there are two 

nodes in the output layer of our DNN models. 
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Deep neural network (DNN) has more sophisticated architectures than neural network with 

more than one hidden layer. Such intricacy renders DNN to be more powerful than neural network 

in catching complex relationships between inputs and outputs (Srivastava et al., 2014). Supervised 

learning by DNN is processed throughout multiple roundtrips between the input and the output 

layer. This back-and-forth ping-pong is run by forward and backward propagation. In forward 

propagation, input flows from the input to the output layer, while in backward propagation, 

learning flows in reverse, modifying the parameters estimated during the prior forward propagation. 

Throughout the entire learning process, DNN seeks for the optimal values of two parameters – 

weight (𝒘) and bias (𝑐). Weight controls the strength of signal between two nodes connected via 

synapses. Bias is a constant term added to the weighted sum of input. When an input (𝒙𝑖) is 

transmitted via synapses to the next layer, it is newly weighted, and the weighted sum of input is 

added to bias (𝑐) (∑ 𝒘𝑖𝒙𝑖 + 𝑐𝑛
𝑖 = 1 ), which sequentially enters an activation function (𝑓) (9).  

 

                                          (9) 

 

Activation functions introduce non-linearity to the network and largely affect its prediction 

performance (Sharma et al., 2017). The sum of weighted input and bias becomes the domain of an 

activation function. Weight reflects the slope of an activation function, while bias exerts influence 

on the movement of an activation function from side to side. There are multiple types of activation 

functions (Appendix 1). This study used ReLU function in the hidden layers and Softmax function 

in the output layer. ReLU function has been the most popular activation function to date in deep 

learning research mainly due to its sparsity like biological neurons that less than 5% of neurons 
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are activated simultaneously (10) (Ding et al., 2018; Glorot & Bengjo, 2018; Krizhevsky et al., 

2017 ; Srivastava et al., 2013; Zeiler et al., 2013). ReLu function operates elementwise, vanishing 

negative elements but returning the original values for non-negative elements. 

 

                                                        (10) 

 

Softmax function has been the dominant activation function used in the output layer of neural 

network (11) (Nwankpa et al., 2018). 𝑓(𝒙)𝑗 represents the probability of an input vector 𝒙 to be 

categorized into the class 𝑗 among 𝑄 number of classes. Softmax converts the outputs into the 

probability values summed up to 1. The output layer was designed to have two nodes, each of 

which represents a class, with one-hot encoding that assigns binary classes into two corresponding 

columns.  

 

                                      (11) 

 

Now we turn to the optimization methods for DNN. Optimization refers to the process in 

search of the optimal values of parameters that locally minimizes loss function. Stochastic gradient 

descent algorithm (SGD) underlies the majority of optimization methods for DNN (Zhang, 2018). 

SGD updates parameters (i.e., weight and bias) by subtracting the initial parameters by the product 

of learning rate and gradient (12). 𝐿 is loss function; 𝑤𝑖  refers to the weight of an input 𝒙𝑖; 𝑐 is 

bias; 𝜂 is learning rate;  
𝜕𝐿

𝜕𝑤𝑖 
 and 

𝜕𝐿

𝜕𝑐
 are gradients. 
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                                  (12) 

 

SGD starts from randomly set parameters and travels on its terrain until it reaches the minimum 

point of loss function. Even though SGD expedites the entire learning process, using a small subset 

of input data (i.e., batch) throughout optimization process, it has several disadvantages. First, it 

draws inefficient zigzag paths through iterative learning. Second, optimization sometimes 

discontinues at a local minimum or a saddle point where gradient is zero. Third, SGD assigns a 

global learning rate across all parameters despite their varied ranges. 

 Multiple variants of SGD such as Adagrad, RMSprop, Momentum, and Adam were 

devised in an attempt to overcome the aforementioned limitations (Zhang, 2018). Adagrad 

(adaptive gradient algorithm) and RMSProp (root mean squared propagation) implements an 

adaptive learning rate that varies for every parameter at each iteration rather than using the global 

learning rate across the entire learning processes for all the parameters. Adagrad takes a large 

learning step when reaching sparse features but moves slowly around dense features to scrutinize 

their neighborhood (Lydia & Francis, 2019). The shortcoming of Adagrad is that the learning rate 

keeps decreasing in each iteration (Septiadi et al., 2020). To tackle this issue, RMSprop introduces 

the moving average of gradients so that the optimizer focuses more heavily on the recent gradient 

but less heavily on the old gradients. Momentum controls not only the learning speed but also the 

direction of learning (Nakerst et al., 2020). It increases the momentum by inertia when gradients 

keep moving to the same direction. Therefore, even when the optimizer reaches a local minimum 

or a saddle point, Momentum can keep moving forward and escape from those flat points. Adam 

(adaptive moment estimation) is the most popular optimizer in deep learning, which borrows the 

merits of RMSProp and Momentum. Adam controls both the size of learning step and the direction 
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of learning so that the optimizer can learn enough from each observation without being too rapidly 

decayed nor inefficiently taking a zigzag path. This study uses Adam as the optimizer for DNN. 

In terms of loss function, the categorical cross-entropy was used with one-hot encoding. 

Categorical cross-entropy is used for classification and generates probabilities that an observation 

belongs to each class, 𝑞, that are summed up to 1 (13). Cross-entropy loss tends to increase when 

predicted probabilities deviate from the actual class.  

 

                    (13) 

 

The power of DNN is mainly attributed to multiple processing layers where activation 

functions are situated, which effectively detect complex non-linear relationships among variables. 

However, DNN has several limitations. First, DNN is a black box in nature. That is, it does not 

reveal how the model works internally in producing output. Second, DNN tends to show excellent 

performance when sample size is large. So, we cannot guarantee that DNN would still demonstrate 

high performance given small samples. Finally, DNN is prone to overfitting, largely due to its 

requirement of large data and its sheer capacity to memorize massive data (Zhang & Sabuncu, 

2018). Multiple ways to avoid overfitting have been introduced. First, limiting the number of 

hidden layers and hidden units can be considered. Second, weight decay is a useful L2 

regularization method that constrains weights from growing too fast (Zhang et al., 2018). Third, 

we can consider stopping learning early by limiting the number of roundtrips (i.e., epoch). Fourth, 

we may use the dropout method that excludes partial nodes from learning process by introducing 

the proportion of retaining nodes (Srivastava et al., 2014). Fifth, we can control the batch size, a 
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number of samples to be used at each update of model parameters. A smaller batch size has been 

known to better generalize a trained model (Hoffer et al., 2017).   

The current study used the R libraries keras and tensorflow to build DNN models (Falbel 

et al., 2021; Kalinowski et al., 2021). Considering a large number of hyperparameters, the 

architecture of DNN was designed in three steps. First, the number of hidden layers and the number 

of nodes in each layer were determined. Too many hidden layers and nodes were avoided to 

prevent overfitting. Second, activation functions, loss function, and optimizer were chosen as 

aforementioned with reference to prior deep learning literature. Finally, the remaining 

hyperparameters were tuned by LOOCV. The hyperparameters of DNN are shown in Table 5.  

 

Table 5 

Main hyperparameters of DNN 

Hyperparameters Description 

number of hidden layers a higher number of hidden layers leading to a more complex model 

number of nodes a higher number of hidden units leading to a more complex model 

learning rate step size at each iteration  

dropout probability at which outputs of the layer are dropped out 

batch size the proportion of samples used at each update of model parameters 

activation function function that determines whether a neuron node is activated 

weight decay a value multiplied to weights to prevent them from growing too fast 

epoch number of roundtrips with a pair of forward pass and backward pass 

optimizer algorithm optimizing model parameters until reaching the minimum loss 

loss function objective function that optimizer attempts to minimize  
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Extreme Gradient Boosting. Extreme gradient boosting (XGBoost) is an ensemble 

algorithm that integrates gradient boosting framework into a base learner to generate a unified 

predictive model (Chen et al., 2021). A base learner forms the basic architecture of XGBoost. 

Gradient boosting gradually improves the predictive power of a weak base learner in an additive 

manner. Here, a weak learner function, ℎ(𝒙, 𝜽), refers to a classifier of which prediction accuracy 

is barely above random guess (50% of accuracy). An additive manner means that a boosting 

algorithm iteratively fits ℎ(𝒙, 𝜽)  to the pseudo-residual generated from the previous round of 

learning. Given the 𝑏-th iteration  (𝑏 = 1, … , 𝐵) and an observation 𝑖 (𝑖 =  1, . . . , 𝑁), the pseudo-

residual (�̃�𝑖𝑏), the difference between an actual value and a predicted value, serves as the negative 

gradient of the loss function 𝛹 (𝑦𝑖, 𝑓(𝒙𝑖)) to be minimized (14) (Friedman, 2002). In binary 

classification, 𝛹 (𝑦𝑖 , 𝑓(𝒙𝑖)) is often the negative log-likelihood (see equation 7). 

 

                                    (14) 

 

𝜌𝑏 , the optimal step length or the magnitude of contribution that an individual base learner makes 

to the final predictive model, is estimated at the 𝑏-th iteration (15), and the predictive model is 

sequentially updated as (16). 

 

                                        (15) 
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                                          (16) 

 

XGBoost is an advanced derivative of gradient boosting. XGBoost counters overfitting by 

incorporating the L1 and L2 regularization terms into loss function. And it takes a multi-threaded 

approach that speeds up computation with multicore parallel processing. Therefore, unlike gradient 

boosting that adds a weak learner at a time after the other, the updates of weak learners occur 

almost simultaneously in XGBoost (Ramraj et al., 2016). XGBoost also employs the sparsity-

aware split finding algorithm by which sparsity in data is automatically handled. In addition, it can 

be a highly customized algorithm in the sense that evaluation metrics and loss function can be 

chosen according to a researcher’s preference.  

The current study used the xgboost function embedded in the xgboost R library (Chen et 

al., 2021). Either a tree or a linear model could be used as the base learner, but the ERP data 

showed a better fit with the linear booster. Therefore, XGBoost algorithm generated classifiers 

with the gblinear booster in the study, tuning its hyperparameters – lambda, alpha, and nrounds 

(Table 6).  

 

Table 6 

Main hyperparameters of XGBoost  

Hyperparameters Description 

booster gblinear 

nrounds number of boosting iterations 

lambda L2 regularization term on weights 

alpha L1 regularization term on weights 
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ML Algorithm for Feature Selection 

Elastic Net Logistic Regression. The original ERP data have too many variables (𝑝 = 36) 

in the small sample (𝑁 = 53). Also, those variables tend to be correlated with each other (e.g., 

ERPs collected from the same electrode scalp sites). A large number of variables in a small sample 

increase the complexity of data, which renders the fitting of predictive models to be unstable, in 

other words, overfitting  (Bickel et al., 2006; Breiman, 1996). Feature selection methods can help 

prevent overfitting by removing non-representative predictors while reducing the dimensionality 

of data. The current study performed feature selection with elastic net logistic regression (ENR). 

Those who only seek for reducing dimensionality of data rather than selecting representative 

predictors can consider using dimension shrinkage methods such as principal component analysis 

(PCA) that extracts features as a combination of original predictors. 

 Elastic net regression is a compromise between 𝐿1 regularization and 𝐿2 regularization. In 

both regularization methods, a positive regularization parameter 𝜆  controls the degree of 

coefficient shrinkage. The least absolute shrinkage and selection operator regression (i.e., lasso) 

uses the 𝐿1 regularization technique. Lasso regression adds the 𝐿1 penalty term – the penalized 

summed magnitude of coefficients – to the loss function of ordinary least squares regression (17).  

Lasso shrinks the coefficient estimates of non-significant predictors towards zeros. In this way, 

less important features are removed, while more important features remain in the model. Such a 

property enables lasso to perform feature selection. 

 

                          (17) 
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Meanwhile, ridge regression uses the 𝐿2 regularization technique. Ridge adds the 𝐿2 penalty term 

– the penalized summed squares of coefficients – to the loss function of ordinary least squares 

regression. Ridge regression minimizes the coefficients of non-representative predictors and keeps 

correlated predictors together in the model (18) (Zou & Hastie, 2005).  

 

                             (18) 

 

Both lasso and ridge have limitations in practice. First, lasso may not be an effective 

algorithm to select features in the presence of high collinearities among predictors. When there is 

a group of predictors highly correlated, lasso tends to randomly choose only one out of the group 

and removes the rest (Freijeiro-González et al., 2022; Zou & Hastie, 2005). In addition, lasso 

selects at most 𝑛 predictors when 𝑝 > 𝑁  (Zou & Hastie, 2005). Second, ridge does not perform 

feature selection but only minimizes marginal coefficients, not shrinking them towards zeros. 

Elastic net regression borrows the benefits from both lasso and ridge. It selects features like lasso 

but keeps highly correlated coefficients in the model like ridge. Thus, elastic net regression enables 

a set of correlated predictors to co-exist but produces a parsimonious selection of predictors (19).  

 

          (19) 

 

𝛼 controls the relative balance between the lasso and the ridge regression (lasso: 𝛼 =1, ridge: 𝛼 =

0). 𝜆 adjusts the overall intensity of penalization. As this study predicts a binary response variable, 

we perform elastic net logistic regression (ENR). The equation (19) is the solution with respect to 
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linear regression, not logistic regression. Therefore, the loss function of logistic regression (i.e., 

negative log-likelihood) is plugged into (19) to generate the ENR solution reformulated as (20).  

 

   (20) 

 

The present study used the cva.glmnet function in the R glmnetUtils library to 

simultaneously cross-validate 𝛼 and 𝜆, seeking for their optimal values (Friedman et al., 2017; 

Microsoft & Ooi, 2021). This function originates from the glmnet function that fits generalized 

linear models or regularization models. Its arguments were set as family = binomial and 

type.measure = class. family specifies the type of a probability distribution. This study used 

binomial distribution to run ENR, which is the penalized logistic regression with a response 

variable being binary. The type.measure = class specifies misclassification error as the loss 

function for cross-validation (Hastie & Qian, 2016).  

 

Essential Statistical Methods 

 This section describes leave-one-out cross-validation (LOOCV) and synthetic minority 

oversampling technique (SMOTE). Two methods are effective for addressing small sample size 

and class imbalance. The empirical ERP data to be studied has small sample size  (𝑁 = 53) and a 

slight class imbalance in the categories of observations (NSA : SA ≑ 3:2). Suicide research mainly 

aims at detecting those who have high suicidality, but the dominant class in the current ERP data 

is the low-risk group. Such an unequal composition of classes may not be desirable in the sense 

that ML algorithms would have more chances to learn from observations that belong to the low 
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suicidality group and thus predict them better than the high suicidality group. Even though the two 

classes are not imbalanced as severely as 5:1 or 10:1, the present study takes advantage of this 

example for demonstrating how to address class imbalance in machine learning when needed.  

 

Leave-one-out Cross-validation 

 Cross-validation contributes to estimating a classifier’s performance and tuning the 

hyperparameters of ML algorithms. It randomly splits data into two disjoint parts – training data 

and test data (Zhang & Yang, 2015). Training data are used for model estimation, and test data are 

used for model validation. Typically, at each round of cross-validation, 75-90% of the sample 

serves as training data, while the remaining portion is used as test data. However, such splits may 

be sub-optimal for small samples as we get to train models with too few numbers of observations 

at each round of cross-validation. To address this issue, this study implements leave-one-out cross-

validation (LOOCV) for supervised learning. LOOCV holds out one observation at a time as a test 

set, leverages the remaining portion of the observations as a training set, and repeats the split 

process across 𝑁 times. Below describes the overall process of LOOCV. 

 

Leave-one-out cross-validation (LOOCV) 

1. Split the entire data set (𝑁) into a training set (𝑁 − 1) and a test set (1) 

2. Fit a predictive model using the training set 

3. Validate the model with the test set  

4. Repeat step 1-3 𝑁 times with a different observation being a test set at a time 

5. Collect all the validated outcomes and evaluate the performance of the predictive models  
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This study employed LOOCV for two reasons. First, it helps secure the largest number of 

training set and utilize the given sample to the fullest when sample size is small. A limited number 

of observations in training set tends to compromise the generalizability of prediction results. 

LOOCV allows predictive models to remain robust to the entry of new training data by numerously 

incorporating all observations into model estimation and thus prevents overfitting. Second, 

LOOCV aids in searching for the optimal combinations of hyperparameters with which ML 

algorithms achieve the minimum misclassification error. The identified optimal hyperparameters 

are to be re-used for model validation. The optimal ML hyperparameters are listed in Appendix 2.  

 

Synthetic Minority Oversampling Technique 

Categories are not equally represented in imbalanced data based on which classification is 

prone to be biased in favor of the majority class (Chawla et al., 2002). It is mainly because ML 

algorithms are trained more frequently on the majority instances and therefore tend to exhibit bias 

towards the majority class (Blagus & Lusa, 2013). Here, problems may arise if our primary target 

of prediction is the minority class. In such a case, synthetic minority oversampling technique 

(SMOTE) can be a useful solution. SMOTE generates newly synthesized observations based on 

the existing minority instances (Seo & Kim, 2018). In tackling class imbalance, some researchers 

may consider using random sampling methods. Random oversampling that duplicates the minority 

data points may pose a risk of overfitting as ML algorithms would be trained with the same 

observations repeatedly. Random undersampling that decreases the number of majority instances 

may not be a good option to consider in case of small sample size because this may lead to the 

significant loss of available data. Unlike the random sampling methods, SMOTE does not 

duplicate existing observations nor reduce the sample size. SMOTE resolves class imbalance as 
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well as increases sample size, leveraging the existing minority instances to synthesize new data 

points for the minority class. The summary below describes how SMOTE works for minority 

oversampling. 

 

Synthetic minority oversampling technique (SMOTE) 

1. Select a minority class instance 𝑥′ in the training data at random 

2. Find its 𝑘-nearest minority class neighbors 

3. Choose one of the 𝑘-nearest neighbors 𝑥𝑘  at random 

4. Generate a new instance 𝑥𝑛𝑒𝑤 = (𝑥′ − 𝑥𝑘) ∗ random number between 0 and 1 

5. Repeat step 1-4 until the numbers of instances for both classes become equal 

 

 

There are two SMOTE parameters – class size (𝑚) and the number of nearest neighbors 

(𝑘). 𝑚 determines the number of observations in each class, and 𝑘 is referenced to synthesizing 

new instances of each class. The original SMOTE paper (Chawla et al., 2002) suggests that the 

sample size of the minority class can be determined by the ratio of the number of samples in the 

minority class over the number of samples in the majority class. This study sets the sample sizes 

of both classes to be always equal (i.e., ratio = 100%). 𝑚 can be set to a value greater than the 

sample size of the majority class, which results in oversampling of both classes. Even in this case, 

SMOTE synthesizes more minority instances than majority ones so that both classes are equally 

represented after resampling. The attempted values for two SMOTE parameters are 𝑚 =

 {31, 50, 100, 300, 500, 1000} and 𝑘 =  {1, 2, 3, 4, 5, 6, 7}. SMOTE was implemented between 

feature selection and predictive modeling, as attaining important features based on the original 

sample was preferred rather than based on partially simulated data. The smote function embedded 

in the R library DMwR was used in minority oversampling (Torgo, 2013).  
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Evaluation Metrics 

 

Confusion Matrix  

 A confusion matrix presents the counts of + or – predicted classes and + or – actual classes, 

based on which multiple evaluation metrics are computed (Görtler et al., 2022) (Table 7). This 

study measures five evaluation metrics based on confusion matrix – sensitivity (SNT), specificity 

(SPC), precision (PRC), F-beta score (F-𝛽), and accuracy (ACC). Considering that this project 

aimed at identifying those at high risk of suicide attempt, the high-risk group was labeled as the 

positive class (+), while the low-risk group being labeled as the negative class (–). The categories 

were determined with the decision threshold of .5 based on the predicted probabilities of a patient’s 

suicidality. This means that if a predicted probability of a patient’s suicidality is greater than .5, 

that patient is categorized as a suicide attempter (SA), otherwise, a non-attempter (NSA).  

 

Table 7 

Confusion Matrix 

 Predicted classes 

Actual classes − + 

− true negative (TN) false positive (FP) 

+ false negative (FN) true positive (TP) 

 

Sensitivity (SNT), also known as recall, is the true positive rate (TPR),  
TP

TP+FN
. SNT refers 

to the proportion of correctly predicted positives to actual positives. Specificity (SPC) is the true 

negative rate (TNR), 
TN

TN+FP
, referring to the proportion of correctly predicted negatives to actual 
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negatives. Precision (PRC) is the positive predictive value (PPV), 
TP

TP+FP
, indicating the proportion 

of correctly predicted positives over all predicted positives. F- 𝛽  score refers to (1 + 𝛽2) ×

precision∙recall

β2∙precision+recall
, the weighted harmonic mean of PRC and recall (i.e., SNT). 𝛽 is determined 

following the perception of researchers as to the relative importance of SNT to PRC. If we believe 

that recall should be more heavily weighed than precision, 𝛽  is set to be > 1, otherwise < 1. 

Accuracy (ACC) refers to the number of all correct predictions over the total number of 

observations, 
TP+TN

TP+TN+FP+FN
, which can be reformulated as 1-misclassification error. 

In the present study, SNT indicates the rate at which BD patients with history of suicide 

attempt are correctly predicted to be suicide attempters. 1-SNT is equivalent to the type II error 

rate referring to the probability that a classifier incorrectly identifies high-risk patients as low-risk 

patients. A high type II error rate may suggest that we are at great risk of overlooking potential 

suicide attempters and thus missing the chance to offer timely intervention to save their lives. 

Meanwhile, SPC indicates the rate at which BD patients with no history of suicide attempt are 

correctly predicted as non-attempters. 1-SPC refers to the type I error rate indicating the probability 

that a classifier incorrectly identifies low-risk patients as high-risk patients. A high type I error rate 

would lead to overtreatment as a preventative measure, which gives rise to a far less life-

threatening consequence than the cost that type II error incurs. In this sense, the acquisition of a 

highly sensitive classifier would be much preferred in suicide research. Furthermore, a classifier 

with high PRC is also sought-after because we may want positive predictions to be correctly made. 

Between SNT and PRC, this study prioritizes high SNT over high PRC, believing that successful 

retrieval of positive cases out of real positive cases is of greater importance than accurate 

prediction of positive cases out of positive predicted cases in suicide research. In fact, low PRC 
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albeit high SNT might be due to high false positives (i.e., the partial denominator of PRC). False 

positives might be simply attributed to the fact that those predicted to be suicide attempters have 

yet attempted suicide despite their high suicidal risk at the time of prognosis. Sometime in the near 

future, it could be just a matter of time to observe their status changes from false positives to true 

positives following their suicide attempt. To grant a higher weight on SNT than on PRC, 𝛽 was 

set to 2 for F-𝛽 score. ACC is the most commonly used evaluation metric but is not the best 

measure in the presence of class imbalance. For example, if the size of class A far exceeds that of 

class B, ML algorithms will still mark high ACC even though classifiers predict most cases to 

class A.  

 

Receiver Operating Characteristic curve 

 The receiver operating characteristic curve (ROC curve) is a two-dimensional plot that 

presents a balanced summary of TPR (i.e., SNT) and FPR (i.e., 1-SPC) (Cook, 2007). The ROC 

curve assigns observations into one of binary classes, using manifold thresholds computed based 

on the predicted probabilities for the positive class. For example, given ten established thresholds, 

ten coordinates with respect to (TPR, FPR) are projected onto the two-dimensional plane and be 

connected, giving rise to a ROC curve. A better binary classifier will plot the curve closer to the 

top left of the plane, generating a greater area under the curve (AUC). AUC measures the degree 

of a classifier ranking positive cases higher than negative cases at each ROC threshold (Jijkoun & 

Hofmann, 2009). One of the ROC thresholds serves as the optimal cut-off point that maximizes 

the difference between TPR and FPR (TPR − FPR). In computing evaluation metrics, this study 

does not reference the optimal threshold but a unitary threshold, .5 across model evaluation. In real 

practice, a predictive model will be kept updated as more training data become available. Choosing 
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an optimal threshold at every update will produce varied classification results on the same 

observations, hampering consistent predictions across updates2. Therefore, this study leverages 

ROC curve only to attain AUC but uses .5 as the global decision threshold in calculating the other 

evaluation metrics.  

 
2 Of course, one’s category can switch to the other as prediction results are updated upon the entry of new input data 

in spite of using the unitary cutoff point. In using a single global threshold, we only intend to prevent a change in 

one’s predicted category simply due to a modified ROC optimal threshold as a classifier being updated. 
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CHAPTER 4: RESULTS 

 

Feature Selection 

What we aim to achieve by feature selection was the reduced subset of representative 

predictors that gives rise to the minimum misclassification error. The cross-validated ENR model 

showed the minimum misclassification error with sixteen selected features at  𝛼 = 1 (i.e., lasso) 

and 𝜆.min = .0115 (Figure 4).3) By the virtue of parsimony, 𝜆.1se = .0202 that refers to the largest 

𝜆 at which the misclassification error rate lies within one standard error away from the minimum 

misclassification error was chosen over 𝜆.min (Figure 4). Therefore, at 𝛼 = 1 and 𝜆.1se = .0202, 

fifteen ERPs were selected as the final feature set that enters the predictive modeling process going 

forward (Table 8). It is notable that the majority of the selected ERPs were extracted from midline 

and right side of the brain according to laterality and the central and parietal brain region according 

to caudality, but no features originated from the left frontal region. The Bonferroni corrected 𝑡-

tests were conducted on each feature to further examine significant differences in the selected ERP 

latencies between SA and NSA, but no significant mean differences were discovered. Such 

statistical non-significance may be attributed to the low power due to the small sample size. As 

aforementioned, ENR is an embedded method that simultaneously performs predictive modeling 

in the course of feature selection. The prediction performance of ENR is summarized in the results 

of analysis 1 (Table 9).  

 
3 In a data-driven manner, ENR performed the best when lasso was chosen by cross-validation, but this is not always 

the case. Applying it to other empirical data may give rise to a different value of 𝛼 rather than 1.  
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Figure 4 

Tuning hyperparameters of ENR and feature selection 

 

  

 

Note. (Left) ENR. The cva.glmnet function in the R glmnet library simultaneously cross-validates, 

seeking for the optimal values of 𝛼 and 𝜆 in ENR. The misclassification error was minimized by 

lasso (𝛼 =  1,  𝜆. 𝑚𝑖𝑛 =  .0115) . (Right) Lasso. The plot on the right-hand side provides more 

details about the LASSO result. The upper x-axis indicates the number of selected features, and 

the lower x-axis shows the range of log(𝜆). The left dotted vertical line shows the pairing of 𝜆.min 

and the number of selected features at the corresponding 𝜆.min. The right dotted vertical line 

indicates the pairing of 𝜆.1se (𝜆 =  .0202) and the number of selected variables at 𝜆.1se. In this 

study, 𝜆.1se was chosen over 𝜆.min by the virtue of parsimony. In the end, 15 ERPs were chosen 

as the final feature set for predictive modeling. 
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Table 8 

Fifteen ERPs selected by ENR 

Laterality 
 
Caudality 

3 (Left) z (Midline) 4 (Right) 

F (front) - FzS1, FzS4 F4S2 

C (central) C3S1 CzS4 C4S1, C4S3, C4S4 

P (parietal) P3S1, P3S2 PzS1, PzS3, PzS4 P4S1, P4S2 

  

 

Predictive Modeling 

 

Analysis 1. Predicting Suicide Attempt with Original N200 ERPs 

 Analysis 1 examines the efficacy of feature selection prior to predictive modeling, 

comparing the prediction performances of ML models on the original 36 ERPs (D1) to those on 

the selected features of 15 ERPs (D2). The results showed that feature selection by ENR noticeably 

improved the prediction performance of the trained ML algorithms across the board (Figure 5). To 

begin with, considerable increase in most of the evaluation metrics was observed from the 

predictive models with D2. In particular, the severe imbalance between SNT and SPC seen in the 

outcomes with D1 was largely resolved with D2. That is, predictive models constructed with D2 

showed superior performance in identifying patients with high suicidality, whereas the D1-based 

models performed better in detecting patients with low suicidality. Also, feature selection by ENR 

contributed not only to increase the magnitudes of evaluation metrics but also to reduce their 

variability across the algorithms. Meanwhile, ENR demonstrated poor performance in prediction, 

merely achieving 66.7% AUC, 50.0% SNT, and 61.1% PRC. Those empirical results support the 

current framework taking two separate phases for feature selection with embedded methods (e.g., 
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ENR or lasso) and predictive modeling with other supervised learning algorithms, rather than 

solely counting on the embedded methods for both purposes.  

 

 

Figure 5 

Comparison of prediction performance on D1 and D2 

 

 

 

Note. Each box plot represents the value of the corresponding metrics that six main ML algorithms 

achieved via predictive modeling with D1 and D2. D1 represents the original 36 ERPs. D2 

indicates the 15 ERPs selected by ENR. 
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Now we turn to the detailed prediction outcomes of six main ML algorithms with D2 (Table 

9). DNN algorithm produced the top performing model achieving 84.5% AUC, 81.8% SNT, 72.0% 

PRC, 79.6% F-𝛽 score, 77.4% SPC, and 79.2% ACC. This result is promising given that even with 

the small sample, the DNN model achieved high SNT and AUC over 80% and satisfactory PRC 

over 70%. In addition, SNT recorded even higher than SPC despite the presence of slight 

imbalance biased towards the negative class (i.e., non-attempter). The XGBoost model also 

achieved high AUC over 80%, but SPC (77.4%) recorded slightly higher than SNT (72.7%). The 

rest of the models produced even more biased outcomes towards NSA. For example, the radial 

SVM model merely achieved 54.5% SNT despite high AUC and SPC over 80%. Such biased 

outcomes are likely due to the skewed class proportions towards the negative class even if the 

imbalance was not severe.  

 The results of analysis 1 can be encapsulated as follows. First, feature selection before 

predictive modeling gave rise to a smaller subset of predictors that considerably improved 

prediction performance. Second, the two-step approach that employs feature selection prior to 

predictive modeling demonstrated its superior effectiveness in acquiring competent predictive 

models to all-in-one approach that solely counts on a regularization algorithm (e.g., ENR or lasso) 

for both feature selection and predictive modeling. Third, the DNN model outperformed the other 

ML models, achieving the highest SNT and AUC. Fourth, the non-DNN models achieved higher 

SPC than SNT, which is not sought-after in suicide research that mainly aims to identify potential 

suicide attempters. Such a biased prediction outcome might be due to a greater number of negative 

cases in this small sample. In an attempt to tackle this, we go ahead to analysis 2 and add the 

minority oversampling phase between feature selection and predictive modeling. 

 



 

  

 

 

Table 9 

Summary of analysis 1 

ML 
algorithms 

XGBoost DNN Linear SVM Radial SVM Poly SVM LR ENR 

Dataset D1 D2 D1 D2 D1 D2 D1 D2 D1 D2 D1 D2 D1 D2 

AUC 61.9 83.4 66.1 84.5 29.5 80.4 49.4 83.1 47.5 76.1 44.9 71.0 66.7 - 

SNT 50.0 72.7 54.5 81.8 4.5 54.6 18.2 54.5 13.6 50.0 40.9 72.7 50.0 - 

PRC 52.4 69.6 60.0 72.0 33.3 75.0 50.0 66.7 50.0 68.8 36.0 72.7 61.1 - 

F-beta 50.5 72.1 55.6 79.6 5.5 57.7 20.8 56.6 16.0 52.9 39.8 72.7 51.9  

SPC 67.7 77.4 74.2 77.4 93.5 87.1 87.1 80.6 90.3 83.9 48.4 80.6 77.4 - 

ACC 60.4 75.5 66.0 79.2 56.6 73.6 58.5 69.8 58.5 69.8 45.3 77.4 66.0 - 

 

Note. D1 indicates the original dataset of 36 ERPs. D2 is the subset of 15 ERPs selected by ENR. F-beta score was calculated with 

𝛽 = 2. The D1 column of ENR presents the prediction outcomes that came along during feature selection. Given that ENR was used 

only for the purpose of feature selection in this study, ENR was not run for further analyses with D2-D4.

4
3
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Analysis 2. Predicting Suicide Attempt with Oversampled N200 ERPs 

 Analysis 2 implements the integrative ML approach that the current study ultimately 

attempts to test and explores the efficacy of oversampling by SMOTE as a solution to further 

improve SNT in the predictive models. From the prior analysis, biased prediction results towards 

the NSA class were observed across the majority of the ML models. It was assumed that severe 

imbalance between SNT and SPC might be attributed to the slight class imbalance between NSA 

and SA. SMOTE can offer a solution to imbalanced data by generating new data points for the 

minority class. Multiple values for two SMOTE parameters – class size, 𝑚 =

 {31, 50, 100, 300, 500, 1000}, and the number of nearest neighbors, 𝑘 =  {1, 2, 3, 4, 5, 6, 7}, were 

tried in minority oversampling.  Here the oversampled D2 is referred to as D3. The optimal values 

of hyperparameters attained with D2 were re-used for predictive modeling based on D3 in order 

to make the analytical process less computationally intensive and to focus on probing for the 

optimal pairs of SMOTE parameters in this analysis.  

 Prediction with D3 demonstrated noticeable improvement in most of the evaluation metrics, 

when compared to the outcomes with D2 (Table 10) (Figure 6). First, SNT largely improved across 

the algorithms: linear SVM (54.6% → 77.3%), radial SVM (54.5% → 86.4%), polynomial SVM 

(50.0% → 81.8%), XGBoost (72.7% → 86.4%), LR (72.7% → 77.3%). DNN, the best predictive 

model previously with D2, maintained the same level of SNT at 81.8%. Second, the variability of 

the evaluation metrics was considerably reduced after SMOTE, meaning that it has gotten harder 

to rank the classifiers according to their performance. The large increase in SNT pushed upwards 

ACC and F-𝛽  score altogether. PRC remained almost unchanged even though achieving high 

precision has gotten more challenging with the increased numbers of cases predicted SA. The 

overall levels of SPC slightly reduced after oversampling. But it may not necessarily mean that the 
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classifiers built on D3 predicted NSA less accurately. Rather, SPC decreased as the candidate 

models with high SPC did not pass the model selection criteria described below.  

Out of 42 candidate models by algorithm, the representative models were selected, 

sequentially passing the model selection criteria – 1) top 10 models according to SNT, 2) the top 

5 models with respect to PRC out of the selection passing criterion 1, 3) top 1 model with respect 

to AUC out of those retained by criterion 2. We will want a predictive model that accurately 

identifies potential suicide attempters but not overly produce many false positive cases. For this, 

the model should achieve high SNT, PRC, and AUC. The order of the selection criteria reflects 

our differential preference on the evaluation metrics such as SNT > PRC > AUC. The prediction 

results by the representative models that passed the selection criteria are listed in Table 10. The 

best model of the representatives was the radial kernel SVM that achieved 86.4% SNT, 70.4% 

PRC, 87.2% AUC, 82.6% F-𝛽 score, 74.2% SPC, and 79.3% ACC. The XGBoost model ranked 

the second-best with 86.4% SNT, 70.4% PRC, and 83.4% AUC. The other classifiers also achieved 

high AUC and SNT over 70% with SNT being equivalent to or higher than SPC. Meanwhile, there 

seemed to be no omnipotent combination of SMOTE hyperparameters that maximized the 

performance of all the algorithms. That is, each algorithm showed the most idealistic performance 

with different combinations of (𝑘, 𝑚). The optimal values of 𝑘 varied across the models, but no 

representative model was achieved given 𝑚  = 500 or 1,000. This may imply that excessive 

increase in sample size perhaps led the oversampled data to be far deviated from D2, so applying 

the hyperparameters tuned on D2 no longer gave rise to the best predictive models with D3.  

Analysis 2 can be summarized as follows. First, generating new data points for the minority 

class by SMOTE further pushed SNT upwards across the board. Second, the variability of the 

evaluation metrics mostly decreased. Third, the radial kernel SVM model was the top performing 
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model with the highest SNT (86.4%) and AUC (87.2%), and satisfactory PRC (70.4%). Fourth, 

the logistic regression model was the worst performing model but still demonstrated sound 

performance with the metrics being nearly or above 70%. Finally, there was no general consensus 

in regard to the optimal values of SMOTE parameters, but an overly increase in the sample size 

did not seem to further enhance prediction. 

 

Figure 6 

Comparison of prediction performance on D2 and D3 

 

 

 

Note. Box plots represent evaluation metrics across six ML algorithms given D2 and D3. D2 is 

the reduced subset of ERPs by feature selection. D3 is the oversampled D2.  
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Table 10 

Summary of analysis 2 

ML algorithms XGBoost DNN Linear SVM Radial SVM Poly SVM LR 

Dataset D2 D3 D2 D3 D2 D3 D2 D3 D2 D3 D2 D3 

AUC 83.4 83.4 84.5 82.3 80.4 80.6 83.1 87.2 76.1 82.7 71.0 71.1 

SNT 72.7 86.4 81.8 81.8 54.6 77.3 54.5 86.4 50.0 81.8 72.7 77.3 

PRC 69.6 70.4 72.0 66.7 75.0 70.8 66.7 70.4 68.8 69.2 72.7 68.0 

F-beta 72.1 82.6 79.6 78.3 57.7 75.9 56.6 82.6 52.9 79.0 72.7 75.2 

SPC 77.4 74.2 77.4 71.0 87.1 77.4 80.6 74.2 83.9 74.2 80.6 74.2 

ACC 75.5 79.3 79.2 75.5 73.6 77.4 69.8 79.3 69.8 77.4 77.4 75.5 

𝒎 - 100 - 31 - 50 - 31 - 50 - 300 

𝒌 - 6 - 7 - 5 - 1 - 3 - 1 

 

Note. D2 consists of 15 ERPs selected by ENR. D3 denotes the oversampled D2 by SMOTE. 𝑚 and 𝑘 are SMOTE parameters. 𝑚 

indicates sample size for each class. 𝑘 is the number of nearest neighbors.  
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Analysis 3. Do ERPs Predict Suicide Attempt Better than Demographics? 

Analysis 3 investigates whether ERPs serve as the superior predictors of suicide attempt to 

demographic variables, which have long served as traditional predictors in suicide research to date. 

As to the prediction outcomes of ERPs, the results from D2 were borrowed. And six predictive 

models were generated, using D4 that consists of three demographic variables – gender, age, and 

years of education. In that most of the six ML algorithms do not accept categorical variable as 

predictors, the gender variable was pre-processed to be numerical, -1 (male) or 1(female). In 

addition, there were two missing values in years of education. As a result, demographic variables 

from 51 participants entered predictive modeling process.  

Table 11 and Figure 7 present the prediction outcomes with D2 and D4. Only the DNN 

model built on D4 showed the performance slightly better than random guessing, merely hitting 

the 60% level. The other ML models demonstrated almost null capability of detecting SA cases 

given too low SNT less than 20%. On the contrary, SPC recorded very high, indicating that most 

of the ML models based on D4 pushed most cases into the NSA class. This analysis suggests that 

demographic variables alone would not bring fruitful prediction outcomes in identifying potential 

suicide attempters, and ERPs should be further investigated in larger samples so that we can assure 

its promise as an effective neural marker of suicide risk.  
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Table 11 

Summary of analysis 3 

ML algorithms XGBoost DNN Linear SVM Radial SVM Poly SVM LR 

Dataset D2 D4 D2 D4 D2 D4 D2 D4 D2 D4 D2 D4 

AUC 82.8 13.0 84.5 64.4 80.4 43.1 83.1 50.5 74.8 27.1 71.0 31.7 

SNT 72.7 0 81.8 63.6 54.6 13.6 54.5 9.1 50.0 4.5 72.7 0 

PRC 72.7 0 72.0 60.9 75.0 33.3 66.7 50.0 68.8 33.3 72.7 0 

F-beta 72.7 0 79.6 63.1 57.7 15.5 56.6 10.9 52.9 5.5 72.7 0 

SPC 80.6 100.0 77.4 69.0 87.1 79.3 80.6 93.1 83.9 93.1 80.6 69.0 

ACC 77.4 56.8 79.2 66.7 73.6 51.0 69.8 56.9 69.8 54.9 77.4 39.2 

 
Note. D2 indicates the reduced set of predictors by feature selection. D4 consists of demographic variables including age, gender, 

and years of education.  
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Figure 7 

Comparison of prediction performance on D2 and D4 

 

 

 

Note. The plot represents the prediction performance of six ML algorithms given D2 and D4. D2 

consists of fifteen ERPs selected by ENR. D4 contains three demographic variables.  
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Conclusion 

Across three analyses, supervised ML algorithms generated classifiers based on four 

different sets of predictors - 36 original ERPs (D1), 15 ERPs selected by ENR (D2), oversampled 

D2 by SMOTE (D3), and  demographic variables (D4). The comprehensive plots on the prediction 

results with D1-D4 are shown in Figure 8 and Appendix 3. By and large, prediction on D3 

demonstrated the best results with the highest evaluation metrics and the lowest variability across 

the performances of ML algorithms. This may suggest that consolidation modeling that integrates 

feature selection, minority oversampling, and supervised ML can offer a reliable classifier that 

effectively predicts person-specific suicidality when we are in need of properly addressing small 

samples and high-dimensional imbalanced data. Furthermore, the contrasting prediction results 

with ERP data (D1-D3) and demographic data (D4) imply that ERPs might serve as a promising 

neural marker for a person’s suicidal risk.  
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Figure 8 

Summary of overall prediction results 

 

 

 

Note. The figure represents the averaged performance of the ML predictive models built with D1 

to D4. Prediction with D3 brought us the most promising results, in general, implied by evenly high 

evaluation metrics and their low variability. Predictive models with D4 showed almost null results 

except SPC. This summary plot well demonstrates the effectiveness of the integrative ML 

approach for classification in tackling small samples with high dimensional imbalanced data and 

the latent power of ERPs as a tracer of suicidality.
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CHAPTER 5: DISCUSSION 

 

The overarching goal of this study was to put forward an integrative machine learning 

approach – feature selection, minority oversampling, and predictive modeling – devised to 

generate powerful predictive models (i.e., classifiers) for a small dataset with high-dimensionality 

and class imbalance that psychologists often encounter in conducting research. We can summarize 

the current study with five main conclusions. First, the proposed approach enabled us to build 

promising predictive models via deep neural network, extreme gradient boosting, and radial kernel 

support vector machine, achieving high AUC and sensitivity over 80%. Second, it is noteworthy 

that feature selection before predictive modeling improved not only the prediction performance of 

classifiers but also their interpretability, giving information on which features were importantly 

used in predictive modeling. Third, minority oversampling on the selected features gave rise to the 

best predictive models in general with the machine learning algorithms in use. Fourth, leave-one-

out cross-validation helped exploit the small sample to the maximum so as to achieve better 

generalizable models. Fifth, event-related potentials produced more fruitful prediction outcomes 

than demographic variables.  

 As demonstrated in this paper, prediction by machine learning can still be viable even for 

small samples and high-dimensional imbalanced data by the analytical processes described herein. 

One thing to note is that the choice of important evaluation metrics would vary, depending on the 

interest of research. Sensitivity took precedence over the other indicators in this study because its
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primary goal was the correct identification of potential suicide attempters. Different research may 

necessitate different priority such as precision in preference to sensitivity. 

Further extensions can be made to overcome the limitations of the current study. To begin 

with, multiple machine learning algorithms employed in this study were the ones that had been at 

the forefront at the time of analyses. Since there will be always new ones offered in the future, an 

even wider range of machine learning algorithms should be explored in an attempt to secure more 

powerful predictive models. Second, it is still recommended to widen the pool of samples to be 

freed from any issues related to selection bias. The sample in use was collected from bipolar 

disorder patients participating in a specific research program, so they might not serve as the 

representative of the target population. Third, suicide attempters may show different time intervals 

between attempted suicide and ERP measurement, but such discrepancy was not factored into 

prediction. If the exact time when suicide was attempted gets available, controlling the interval 

between the ERP measurement and attempted suicide would allow us to test the efficacy of 

predictors more thoroughly. Finally, forecasting the expected time of the target behavior based on 

repeated measures of predictors would constitute another crucial axis of prediction research. 

Forecasting would help complement classification approach that frequently gives rise to falsely 

predicted cases. For example, suicide attempt largely predating ERP measurement might have led 

to false negative cases, since the recent ERPs may not properly reflect one’s suicidality that once 

used to be strong but not anymore. In addition, false positive cases might have arisen from suicide 

attempt lagging ERP measurement. In this case, the transition from false positive to true positive 

could be just a matter of time. Therefore, forecasting based on time series data would propel 

prediction research further, providing the useful means to capture any critical temporal patterns 

that may be seen when a target behavior is imminent. 
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APPENDIX 1: TABLE OF DNN ACTIVATION FUNCTIONS 

Activation 
function 

𝒇(𝒙) Properties 

Binary step 
𝑓(𝑥) =  1, 𝑖𝑓 𝑥 ≥ 0 
𝑓(𝑥) =  0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

simplest activation function 
not feasible in multiclass classification 
backpropagation unavailable 

Binary 𝑓(𝑥) =  𝑎𝑥 (𝑎 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 
only linear classification  
cannot identify complex patterns from data 

Sigmoid 𝑓(𝑥) =
1

1 + 𝑒−𝑥
 non-linear function for binary classification 

not symmetric about zero 

Tanh 𝑓(𝑥) =  2 (
1

1 + 𝑒−2𝑥) − 1 
similar with Sigmoid function 
symmetric about zero 

ReLU 𝑓(𝑥) = max(0, 𝑥) 

rectified linear unit 
non-linear function 
efficient computation due to sparsity 
hidden layer only 

Leaky ReLU 
𝑓(𝑥) =  0.01𝑥,    𝑖𝑓 𝑥 < 0 
𝑓(𝑥) =  𝑥,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

variant of ReLU function 
non-zero value for negative values of 𝑥  

ELU 
𝑓(𝑥) =  𝑥, 𝑖𝑓 𝑥 ≥ 0 
𝑓(𝑥) =  𝑎(𝑒𝑥 − 1), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

exponential linear unit 
variant of ReLU function 
introduction of a slope for the negative values of 𝑥 

Softmax 
𝑓(𝒙)𝑗  =  

𝑒
𝒙𝑗

∑ 𝑒𝒙𝑘𝐾
𝑘 = 1

  

(𝑗 =  1, … , 𝐾)   

An extended version of Sigmoid function  
often used in the output layer 

 

Note. Nwankpa et al., 2018; Sharma et al., 2017 
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APPENDIX 2: TABLE OF OPTIMAL HYPERPARAMETERS 

Algorithms Parameters D1 D2 D3 D4 

ENR 
alpha - 1 1 1 

gamma - .0202 .0202 .0202 

Linear SVM cost 1 5 5 .1 

Radial SVM 
cost 1,000 10 10 1,000 

gamma .0001 .01 .01 .1 

Polynomial 
SVM 

cost .01 100,000 100,000 100,000 

gamma 3 .0005 .0005 .1 

degree 1 1 1 5 

DNN 

number of hidden 
layers 

2 

units input = 128; hidden 1 = 64; hidden 2 = 32; output = 2 

activation hidden = ReLU; output = softmax 

optimizer adam 

loss function categorical cross entropy 

metrics accuracy 

epoch 300 300 300 300 

weight decay .01 .01 .01 .01 

dropout 
input = .1 

hidden 1 = .3 
hidden 2 = .3  

input = .3 
hidden 1 = .1 
hidden 2 = .1  

input = .3 
hidden 1 = .1 
hidden 2 = .1 

input = .1 
hidden 1 = .1 
hidden 2 = .1 

learning rate .01 .01 .01 .01 

batch size 30 30 30 30 

XGBoost 

booster gblinear 

objective binary::logistic 

eval_metric logloss 

nrounds 10 30 30 10 

lambda 0 0 0 .5 

gamma 0 0 0 0 

LR no parameters - 
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APPENDIX 3: FIGURES OF MEAN EVALUATION METRICS BY DATASET 
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