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ABSTRACT 

Rachael K. Ross: Missing Data and Measurement Error: Analytic Approaches for Observational Studies 

With Examples from Pregnancy Outcomes Research 

(Under the direction of Stephen Cole) 

Observational research to improve pregnancy outcomes faces methodological challenges that 

limit accurate and actionable evidence. The objective of this dissertation was to examine analytic 

approaches to address the common challenges of measurement error and missing data. 

In Aim 1, we developed and validated standardization (g-computation) estimators that leverage 

external validation data to account for outcome misclassification. To account for measurement error, 

external validation data are used to estimate misclassification probabilities (i.e., sensitivity and 

specificity). When the validation data are external, the estimated misclassification probabilities may need 

to be transported from the validation to the target population. If there are variables related to 

misclassification whose distribution differ between the validation and target, these probabilities are not 

immediately transportable. We introduce estimators that account for these variables in order to transport. 

For estimation, we used M-estimation. In simulation, these estimators were unbiased when assumptions 

were met and confidence intervals had appropriate coverage. We used these estimators in an applied 

example to estimate the effect of maternal HIV infection on preterm birth. Estimates accounting for 

outcome misclassification were notably different from the naïve analysis. 

In Aim 2, we illustrated implementation and examined the performance of a novel weighted 

estimator to address nonmonotone missingness. In simulation, we compared performance to complete 

case analysis and multiple imputation by chained equations. Regardless of the missing data approach, we 

used weighting to address confounding. When complete case analysis was biased, weighting and 

imputation were unbiased, except when data were missing not at random. Imputation was more precise as 
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sample size and percent exposed declined; otherwise imputation and weighting were similarly precise. 

Imputation was less computationally efficient than weighting. We used these estimators in an applied 

example to estimate the effect of maternal anemia on preterm birth risk, where estimates were similar 

across approaches. 

Measurement error and missing data are often overlooked yet they can produce substantial bias. 

This dissertation examined novel analytic tools to address these issues. Our work makes these tools 

accessible to other epidemiologists in order to advance research to improve pregnancy outcomes and 

public health more broadly.    
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CHAPTER 1: INTRODUCTION 

The need for effective interventions to prevent adverse pregnancy outcomes 

  Every year millions of pregnancies result in fetal death or severe long-term morbidity and highly 

effective interventions to prevent adverse outcomes remain elusive. Annually, there are more than 2.5 

million stillbirths, 13.4 million preterm births, and 32 million babies born small for gestational age (SGA) 

in low- and middle-income countries.1–5 Over one third of all livebirths in low- and middle-income 

countries are preterm or SGA.4 Complications of preterm birth are the leading cause of neonatal death and 

the 2nd leading cause of death in children under 5 years old.6–8 In addition to elevated mortality risk, 

children born preterm or SGA are at higher risk of short- and long-term effects on immunologic 

competence, visual impairment, neurodevelopmental functioning, chronic lung disease, and adult-onset 

chronic conditions.2,9–13 These adverse birth outcomes are also associated with high financial, 

psychological, and social costs.14 

Despite the incredibly high burden and severity of these adverse pregnancy outcomes, there are 

few effective evidence-based interventions to prevent them. Many trials for interventions aimed at 

preventing these outcomes have failed.15,16 For preterm birth, for example, trials for nutritional and 

protein supplementation, and screening and treatment of infections have shown little benefit.17 Just two 

interventions have strong evidence for the prevention of preterm birth and are recommended for low- and 

middle-income countries: administration of progesterone and smoking cessation programs.17 However, a 

recent trial in Zambia found no effect of progesterone on the prevention preterm birth among HIV-

infected people and smoking among pregnant people is uncommon in much of sub-Saharan Africa.18,19 

There are some effective evidence-based interventions for stillbirth and SGA such as protein-energy, 

micronutrient, and folic acid supplementation, and syphilis screening and treatment, but more effective 
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interventions are needed as well as research on implementation and integration of interventions into 

care.20–24  

 Pregnancy outcomes research using observational data is plagued with methodological challenges 

that hamper scientific advancement. Although clinical trials are often the preferred study design to 

produce evidence to inform intervention, trials can be prohibitively expensive and take a long time to 

implement. Further, results may not be generalizable due to the strict inclusion and exclusion criteria 

typical of trials.25 By emulating a trial in study design,26–28 observational data can be used to estimate the 

impact of hypothetical interventions by leveraging natural variation in the care and treatment of pregnant 

people, however research using observational data requires strong untestable assumptions (e.g., 

conditional exchangeability with positivity and causal consistency) that are met in expectation or by 

design in randomized trials.29 Observational data sources are also subject to measurement error and 

missing data. While data from trials are not immune to these issues, they are often avoided or mitigated 

by strict use of protocols and greater resources. The challenges of using observational data for pregnancy 

outcomes research, including measurement error and missing data, are often ignored resulting in estimates 

that are uninformative.  

Measurement error 

Gestational age measurement error 

 Gestational age is used to define important pregnancy outcomes such as preterm birth (birth prior 

to 37 completed weeks of gestation). In research studies that enroll people during pregnancy, the exact 

date of conception is unknown so gestational age must be estimated. Commonly, gestational age is 

estimated from the date of the last menstrual period (LMP) as recalled by the pregnant person or from 

fetal biometry measured by ultrasound.30 Dating by LMP has two sources of error: variation in a person’s 

follicular-phase length (the time between LMP and ovulation) and recall.31–39 The amount of error may be 

related to a number of factors associated with poor pregnancy outcomes such as maternal age, pregnancy 

history, and delayed start of prenatal care.35–37,40 Gestational age dating by ultrasound is more accurate 
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than dating by LMP, particularly before 24 weeks gestation.37,41–46 Unfortunately, due to lack of resources, 

ultrasound measurement is not universally available in low- and middle-income countries. 

Measurement error can produce substantial and unpredictable bias, but it often goes 

unaddressed.47–50 It has been shown that using LMP-based gestational age widens the distribution of 

gestational age at birth (i.e., gestational duration) compared to ultrasound measurement, resulting in an 

excess of apparent preterm births.40,42 For example, in Zambia Preterm Birth Prevention Study, the 

proportion of births classified as preterm was 17.8% when estimated by LMP and 13.8% when estimated 

by ultrasound. Studies have consistently observed such overestimation of the proportion of preterm births 

by LMP compared to ultrasound40,51–53 and these differences in estimates can have a substantial impact on 

public health planning. 

The impact of outcome misclassification  

When estimating the effect of an exposure on the risk of preterm birth, measurement error can 

produce bias towards or away from the null. Under specific conditions measurement error in the outcome 

will not produce bias or the bias will be in a predictable direction.48,54(sec1.2),55,56 However, beyond simple 

and often unrealistic scenarios, it is challenging to predict how measurement error in the outcome will 

impact results, particularly so when error is differential or dependent.55,57,58  

Analytic approaches can be used to address measurement error and produce more accurate 

estimates. These approaches include regression calibration, multiple imputation for measurement error, 

and maximum likelihood.57,59–63 In some areas of epidemiologic research such as nutritional and 

occupational studies, these analytic approaches are more common, however they are rarely applied in 

pregnancy outcomes research. There are a number of potential barriers to uptake of these approaches: 

measurement error is not generally directly observable so it is easy to overlook; there is limited 

appreciation for the impact of bias from measurement error; there is a strong perception that the direction 

of bias is predictable; and many measurement error approaches are statistically complex making adoption 

challenging for epidemiologists with limited statistical training.48 At present, the majority of research on 

adverse pregnancy outcomes from low- and middle-income countries suffers from bias due to gestational 
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age measurement error and without greater awareness of its impact and easy to implement approaches for 

correction, measurement error will continue to be a barrier to producing robust and accurate results. 

Validation data 

Another barrier to uptake of approaches to account for measurement error is the need for 

validation data. Many analytic approaches to address measurement error rely on validation data, which 

includes both the error-prone outcome measurement and a gold-standard measurement. These data 

provide information about the measurement error process, such as the sensitivity and specificity. Ideally 

these validation data would be available on a (perhaps stratified) random sample of the population 

included in the study. However internal validation data such as these can be expensive and time 

consuming to collect. A convenient and less costly alternative is using data that were collected for other 

purposes but incidentally have both the error-prone and gold-standard measurements (i.e., external data). 

However, using external data as validation has unique challenges. Specifically, we need to carefully 

consider whether the information on the measurement error process in the external validation data can be 

transported to the study population.61(sec2.2.4) There is a growing literature on approaches to transport 

causal effects from one population to another,64,65 however approaches to transport measurement error 

parameters from validation data have been only recently explored. Recent work by Edwards et al. and 

Ackerman et al. explore assumptions and approaches for transporting measurement error parameters 

when the parameter of interest is the outcome risk.66,67 Given the convenience and availability of potential 

external validation data, more work is needed to understand when and how these data can be leveraged 

for measurement error correction.  

Missing data 

 Missing data plagues nearly all epidemiologic research including pregnancy outcomes research. 

Unlike hidden measurement error, explicit missing data is observable. Thus, researchers are generally 

more aware of the negative consequences of inappropriately handling missing data, including bias and 

loss of efficiency. Despite this, reviews of the epidemiologic and clinical literature show that missing data 

are often inadequately reported and that complete case analysis, where records with missing data are 
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excluded from the analysis, remains most frequently implemented.68–73 Complete case analysis is 

inefficient because some data are not used in the analysis and it is only unbiased under strong 

assumptions that are unlikely to hold in realistic settings.74,75 There are alternatives to complete case 

analysis with weaker assumptions. 

Missing data types 

Data may be characterized by the independence, conditionally or marginally, of missingness on 

observed and missing data.76,77 Data are “missing completely at random” (MCAR) when missingness is 

marginally independent of observed and missing data. Data are “missing at random” (MAR) when 

missingness is independent of missing data conditional on only observed data. That is, missingness 

cannot depend on data that are unobserved. Finally, if data are neither MCAR nor MAR, then data are 

“missing not at random” (MNAR). In general, unless data are missing by design, the missing data 

mechanism is not known and thus whether the data are MAR or MNAR is an untestable assumption. 

Complete case analysis is unbiased when data are MCAR; complete case analysis may be valid under 

some settings when data are MAR or MNAR, though such settings may not be common or realistic.74,75 

Alternative approaches for missing data generally require that data are MAR but will also be consistent 

under the stronger assumption of MCAR.76,78 

Missingness patterns 

 Missingness can be categorized as monotone or nonmonotone. In monotone missingness, there is 

an ordering of the variables in which a variable is only observed if the previous variable was observed.79 

A monotone pattern is most commonly seen when there is a lost to follow-up. Uniform missingness is a 

special case of monotone missingness in which those variables with missingness are either all observed or 

missing together. As the name implies, nonmonotone missingness is defined by not having a monotone 

pattern. When multiple variables have missingness, a nonmonotone pattern is common. 

Principled approaches for missing data 

 Two principled approaches for missing data include multiple imputation (MI) and weighting 

methods.78–82 MI and weighting have different assumptions and each approach has advantages and 
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disadvantages. In MI, the underlying full data is modeled. Conversely, for weighting, the missingness 

mechanism is modeled, so a distribution of the full data does not need to be specified. For valid estimates, 

both approaches require that these models (for either the missingness mechanism in weighting or the 

missing data in MI) are correctly specified. Both approaches require that the missing data are MAR.  

 Weighting is rather simple to implement when missing data follow a monotone pattern. However, 

until recently, weighting approaches for a nonmonotone pattern have been very complex.83,84 In 2018, Sun 

and Tchetgen Tchetgen published an weighting approach for nonmonotone missing data in the statistical 

literature.85 They also published an application in the epidemiologic literature.81  

Sun and Tchetgen Tchetgen approach 

To account for missing data using weighting, the complete cases are weighted by the inverse of 

their conditional probability of being a complete case. This probability is conditional on the set of 

covariates required for MAR. Typically, the complete case probability must be estimated. When 

missingness is uniform, estimation is straightforward and can, for example, be estimated by a logistic 

regression that includes the fully observed variables. When missingness is nonmonotone, Sun and 

Tchetgen Tchetgen’s approach specifies a logistic model for each missing data pattern except for the 

complete case pattern. The parameters of these models are estimated by maximizing the joint likelihood. 

This is the unconstrained maximum likelihood estimator (UMLE). Once these parameters are estimated, 

the conditional probability for being a complete case is back calculated as the complement of the sum of 

the probabilities of being in one of the other patterns. Sometimes the UMLE will fail to converge and Sun 

and Tchetgen Tchetgen propose an alternative constrained Bayesian estimator (CBE).  

 Unfortunately, there do not appear to be any applications of this approach in the epidemiologic 

literature (subsequent to 2018), possibly because the available papers are too complex for widespread 

adoption. weighting for nonmonotone missing data could be a valuable, intuitive, and easy to implement 

tool for researchers to handle missing data, but the lack of illustrative and easy to follow examples with 

code are currently barriers to adoption. 
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Conclusion 

 Our proposed work will develop, illustrate, and compare the use of innovative tools to produce 

accurate answers. Researchers are generally aware of the methodological challenges described and yet 

these issues are rarely addressed in pregnancy outcomes research. This is likely because researchers lack 

easy to use tools to address these challenges or illustrative examples of implementation of already 

developed approaches. In this work we will address two important methodological issues that are 

commonly overlooked. We will illustrate the application of novel tools to applied examples in pregnancy 

outcomes research in order to promote their uptake by other researchers. It is in part through the 

development and widespread use of modern methods that we can produce more actionable evidence to 

improve public health.  
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CHAPTER 2: STATEMENT OF SPECIFIC AIMS 

Annually, there are more than 2.5 million stillbirths, 13.4 million preterm births and 32 million 

babies born small for gestational age in low- and middle-income countries. These adverse pregnancy 

outcomes occur disproportionately in low- and middle-income countries and have severe short-term and 

long-term negative effects. Thus, there is a critical need for effective interventions to prevent these 

adverse pregnancy outcomes. However, research into such interventions faces methodological challenges 

that hamper the ability to produce robust and accurate results. These challenges are often ignored, which 

results in biased or imprecise estimates that misinform public health planning or policy. Informative 

results are critical for public health programs to make evidence-based decisions, particularly in settings of 

limited resources. 

The overall objective of this dissertation is to address analytic challenges that plague studies of 

pregnancy outcomes by developing and applying modern approaches for causal inference, and 

disseminating these tools to researchers through illustrative applications and published code. It is in part 

through the development and widespread use of modern methods that we can produce more actionable 

evidence to improve public health. In this proposal, we will tackle two methodological challenges: 

measurement error and missing data. 

In much pregnancy outcomes research, the date of conception of a fetus is unknown and 

gestational age must be estimated either by the date of the last menstrual period (LMP) as recalled by the 

pregnant person or by ultrasound. Gestational age measured by ultrasound is more accurate than LMP and 

it has been shown that using LMP widens the distribution of gestational age at birth compared to 

ultrasound measurement, resulting in an excess of births classified as preterm. Unfortunately, due to lack 

of resources, universal measurement by ultrasound is not feasible in many low- and middle-income 
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countries. Sometimes ultrasound measurement is available in an external population and these data can 

provide information about the measurement error process. However, to leverage these external data and 

produce more accurate research results, we must carefully consider differences between populations and 

the assumptions needed to transport information between them.   

Missing data plagues nearly all research. When missingness does not follow strict patterns (i.e., a 

monotone patterns), most researchers rely on imputation methods that require parametric assumptions for 

the full data distribution. Recent work has extended semiparametric weighting approaches for such 

missing data, but there has been limited uptake of this new approach.  

Therefore, we specifically aimed to: 

1. Examine estimators that leverage external validation data to account for outcome 

misclassification to estimate marginal risks and causal effects. We used these estimators to 

account for misclassification in LMP-measured preterm birth in a large, representative 

population of pregnant people in Lusaka, Zambia captured in an electronic health record, 

leveraging ultrasound data from external cohorts. We estimated the risk of preterm birth and 

the effect of maternal HIV infection on preterm birth. 

2. Apply a recently developed weighting approach for nonmonotone missingness and compare 

its finite sample properties with multiple imputation. We focused on the setting of time-fixed 

inverse probability of treatment weighted marginal structural models and, for illustration, we 

estimated the effect of anemia on preterm birth. 

For this work, we analyzed data from the Zambia Electronic Perinatal Record System (ZEPRS), 

an electronic medical record used by obstetric clinics in Lusaka, Zambia that includes routine care data on 

more than 100,000 people; the Zambia Preterm Birth Prevention Study (ZAPPS), an information-rich 

cohort of 1450 people enrolled during pregnancy in Lusaka; and the Improving Pregnancy Outcomes with 

Progesterone (IPOP) study, a phase three, randomized, double-blind, placebo-controlled trial of 

progesterone injection in 800 pregnant people also in Lusaka. 
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IMPACT: Our work developed, compared, and illustrated the use of innovative analytic tools to 

produce robust and accurate answers. Such answers are critical for public health programs to make 

evidence-based decisions on what interventions to pursue to improve population health.
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CHAPTER 3: METHODS 

Study design 

 Each aim involves two components: 1) simulation study in which data is generated under a 

known truth to assess performance of analytic approaches and 2) motivating/applied example in which 

analytic approaches are implemented in real data sources. The data sources are described in the next 

section, followed by description of the motivating/applied examples for each aim.  

Data sources  

We leveraged three existing data sources. ZEPRS was an electronic medical record system used 

by 25 prenatal clinics and 1 referral hospital in Lusaka, Zambia that includes routine care data on more 

than 250,000 pregnant people seeking prenatal care between January 2008 and June 2013.86 ZAPPS was 

an observational prospective cohort of 1450 people recruited at prenatal care initiation at five of the 

clinics included in ZEPRS and at the referral hospital between 2015 and 2017.87,88 IPOP was a phase 

three, randomized, double-blind, placebo-controlled trial of progesterone injection in 800 pregnant people 

with confirmed HIV infection and no prior preterm birth enrolled at prenatal care initiation at two of the 

clinics included in ZEPRS between February 2018 and January 2020.89,90 Gestational age measured by 

ultrasound was not available in ZEPRS; rather gestational age was measured either by reported LMP 

(>78% of singleton pregnancies) or symphysis-fundal height. In ZAPPS and IPOP, participants received 

high quality ultrasound to measure gestational age at enrollment (prenatal care initiation). In Aim 1, we 

leveraged the ZAPPS and IPOP cohorts as external validation data in order to account for 

misclassification of LMP-measured preterm birth in the ZEPRS population. In Aim 2, we implemented 

weighting for nonmonotone missingness using data from the ZAPPS cohort.  
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Zambia Electronic Perinatal Record System 

ZEPRS was funded by Bill and Melinda Gates Foundation. Field testing of the system began in 

November 2005 at 3 sites and was expanded in a phased approach.86 By June 2007, it was implemented 

across 25 prenatal care clinics, 13 of which were also delivery centers, and 1 referral hospital. The final 

data extraction from ZEPRS was in 2013. Each patient received a standard identification number at first 

contact. This identification number followed the patients at different clinics within the system, at delivery, 

and across pregnancies. At birth, the infant was also assigned a unique identification number that was 

linked to the mother. Nurses, midwives, and clerical staff entered data from each contact at the point of 

care in real-time. To ensure data quality and integrity, the system had built-in checks and data quality 

reports were generated monthly to identify inconsistencies and duplicate entries. The system captured all 

care at the prenatal clinics and deliveries within the system. The primary strength of ZEPRS is that it 

captures a population-based sample of pregnancies and the data are representative of pregnant people 

seeking prenatal care in Lusaka, Zambia. 

The Zambian Preterm Birth Prevention Study 

ZAPPS, also funded by the Bill and Melinda Gates Foundation, aimed to establish a well-

characterized pregnancy cohort to better understand risk factors associated with preterm birth.87,88 

Between August 2015 and September 2017, eligible pregnant people were enrolled at the referral hospital 

in Lusaka and five nearby high-volume district health clinics. An individual was eligible if they 1) were 

≥18 years old, 2) had a viable intrauterine single or twin pregnancy, 3) presented to prenatal care prior to 

20 weeks gestation if HIV-uninfected or 24 weeks if HIV-infected, 4) resided within Lusaka with no 

plans to relocate during follow-up, and 5) provided consent to participate and for the infant to participate. 

A total of 1784 people were recruited and screened and 1450 were enrolled.  

The contact schedule followed the standard of prenatal care in Zambia (4 recommended contacts). 

At enrollment, a detailed medical history was obtained including information on prior pregnancies and 

outcomes. At enrollment and each follow-up contact, participants received a physical exam and routine 

services according to standard of care in Zambia. Participants were compensated for their time and effort 
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for attendance at study contacts. Participants were encouraged to deliver at the referral hospital and study 

staff identified participants at admission for labor and delivery. For participants who delivered elsewhere, 

outcomes were collected in person or by phone.  

Improving Pregnancy Outcomes with Progesterone Study 

IPOP was a double-masked, placebo controlled, randomized trial of 17-hydroxyprogesterone 

caproate (17P) to prevent preterm birth (NCT03297216).89,90 Between February 2018 and January 2020, 

eligible pregnant people were enrolled at the referral hospital in Lusaka and antenatal clinics of the 

Kamwala District Health Centre. An individual was eligible if they 1) were ≥18 years old, 2) had a viable 

intrauterine singleton pregnancy without uterine or fetal anomaly detected on ultrasound, 3) presented to 

prenatal care prior to 24 weeks, 4) had antibody-confirmed HIV-1 infection, 5) were currently receiving 

or intended to start antiretroviral therapy in pregnancy, 6) did not have a confirmed prior spontaneous 

preterm birth, 7) did not have a known allergy or contraindication to 17P, and 8) were able and willing to 

provide consent and adhere to the weekly study visit schedule. Participants were randomly assigned to 

one of two arms, weekly intramuscular injection of 17P or placebo starting between 16 and 24 weeks of 

gestation and continuing until 36 weeks, stillbirth, or delivery. A total of 1042 potentially eligible people 

were identified and 800 were enrolled and randomized (399 to 17P and 401 to placebo).  

 After enrollment and randomization, participants had weekly visits for injection. The study also 

provided routine antenatal care following Zambia guidelines (4 recommended contacts). At enrollment, a 

detailed medical history was obtained including information on prior pregnancies and outcomes. At 

enrollment and each antenatal care follow-up contact, participants received a physical exam and routine 

services according to standard of care in Zambia. 

 Of the 800 people enrolled, none were lost to follow-up. The primary outcome was a composite 

of preterm birth or stillbirth. In each arm, 36 individuals had the outcome (9%) for a risk difference of 0.1 

percentage points (95% confidence interval -3.9, 4.0).  No differences were observed for secondary 

outcomes including spontaneous preterm delivery, provider-initiated preterm delivery, delivery before 34 
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weeks, and delivery before 28 weeks. There were also no differences by timing antiretroviral initiation, 

parity, or gestational age at enrollment.  

Gestational age measurement 

In ZAPPS and IPOP, at the screening visit (typically the same day as enrollment), participants 

underwent ultrasound to measure crown-rump length (if <14 weeks by LMP), or head circumference and 

femur length (if >14 weeks). All measurements were taken twice and averaged. The INTERGROWTH-

21st  equations were used to estimate gestational age from fetal measurements.91,92 Pregnancies below the 

lower threshold of these equations were dated by the Hadlock formula.93,94 Sonographers were trained 

using curricula adapted from INTERGROWTH-21st. The primary strength of ZAPPS and IPOP is the 

capture of accurate gestational age measurement by ultrasound. LMP as recalled by the pregnant person at 

the first prenatal visit was also documented. 

Ultrasound is not part of routine prenatal care in Lusaka, so ZEPRS does not capture gestational 

age measured by ultrasound. Rather gestational age is mostly commonly measured by reported LMP 

(>78% of singleton pregnancies). 

Motivating/applied examples 

Aim 1 

In ZEPRS, we aimed to estimate the risk of preterm birth (i.e., the natural course) and the effect, 

quantified by the risk difference, of maternal HIV infection on the risk of preterm birth. Unfortunately, 

gestational age measured by ultrasound was not available in ZEPRS; rather gestational age was most 

commonly measured by reported LMP. Given that LMP-measured gestational age has known error, 

outcome misclassification is a concern. More recently, two research studies, ZAPPS and IPOP, 

prospectively enrolled a nonrandom sample of pregnant people at clinics in the ZEPRS system and 

recorded preterm birth measured by reported-LMP and by ultrasound. We aimed to use these research 

studies as external validation data to account for outcome misclassification in our analysis of ZEPRS. 
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Aim 2 

In ZAPPS, we aimed to estimate the effect, quantified by the risk difference, of maternal anemia 

on the risk of spontaneous preterm birth. Some research has suggested an association between maternal 

anemia, particularly when diagnosed early in pregnancy, and poor pregnancy outcomes.11,95,96 However, 

this finding has not been consistently observed.97,98 Anemia was diagnosed at enrollment if the capillary 

hemoglobin concentration was <10.5 g/dL (HemoCue Hb 201).99 Spontaneous preterm birth was defined 

as delivery occurring after spontaneous labor or membrane rupture prior to 37 weeks of gestation. 

Additional covariates collected at enrollment to be used in this analysis included gestational age at 

enrollment, maternal age, maternal HIV serostatus, and previous pregnancy and birth history. Three 

people experienced a miscarriage and were excluded from the analysis, resulting in 1447 people. 
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CHAPTER 4: LEVERAGING EXTERNAL VALIDATION DATA: THE CHALLENGE 

OF TRANSPORTING MEASUREMENT ERROR PARAMETERS 

Overview 

Approaches to address measurement error frequently rely on validation data to estimate 

measurement error parameters (e.g., sensitivity and specificity). Acquisition of validation data can be 

costly, thus secondary use of existing data for validation is attractive. To use these external validation 

data, however, we may need to address systematic differences between these data and the main study 

sample. Here, we derive estimators of the risk and the risk difference that leverage external validation 

data to account for outcome misclassification. If misclassification is differential with respect to covariates 

that themselves are differentially distributed in the validation and study samples, the misclassification 

parameters are not immediately transportable. We introduce two ways to account for such covariates in 

transporting the misclassification parameters: 1) condition on the covariates (i.e., estimate stratified 

misclassification parameters) or 2) weight the validation sample to match the study sample distribution of 

the covariates. We provide proofs of identification, describe estimation using parametric models, and 

assess performance in simulations. We also illustrate implementation to estimate the risk of preterm birth 

and the effect of maternal HIV infection on preterm birth. Measurement error should not be ignored and it 

can be addressed using external validation data via transportability methods. 

Introduction 

Measurement error can produce substantial bias and flawed inference,47–49,55–58,61 but is often 

ignored.100 Approaches to address measurement error typically rely on validation data to estimate 

measurement error parameters (e.g., sensitivity and specificity).56,61,101 However, collection of validation 

data can be costly and time consuming. Thus, secondary use of existing data as validation data is an 

attractive alternative. As such validation data are necessarily external to the main study sample, we need 
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to consider how to “transport” measurement error parameters from the validation to the study 

sample.61(sec2.2.4),101,102  

 The importance of addressing measurement error increases as the use of routinely collected 

healthcare data for research becomes increasingly common.103 The primary purpose of these data is 

individual patient care, so some parameters may be subject to greater measurement error than would be 

found in a prospective research cohort.104 The estimation of fetal gestational age in low- and middle-

income countries (LMIC) provides an example. In LMIC, gestational age is typically measured by last 

menstrual period (LMP), which is solicited from the patient during routine prenatal care. Gestational age 

is a foundational measure that is used to define preterm birth and other important adverse birth outcomes. 

LMP-derived gestational age is subject to nontrivial measurement error31–39 that typically results in an 

overestimate of preterm birth risk.40,42,51–53 Gestational age derived from early ultrasound is a more 

accurate measure,37,41–46 but this technology may not be available outside the research setting. Thus, the 

outcome of preterm birth may be subject to misclassification in clinical data from LMIC. 

In this work, we introduce estimators that leverage external data to account for misclassification 

of outcomes with particular focus on the challenge of transporting misclassification parameters between 

populations. We draw on methods for transporting causal effects to address systematic differences 

between the validation and study samples.65 We apply the estimators in a motivating example to account 

for misclassification in preterm birth measured by LMP in a population of women in Lusaka, Zambia 

captured in an electronic health record, leveraging ultrasound data from external research studies. 

Methods 

Motivating example 

We aimed to estimate the overall risk of preterm birth (i.e., the natural course105) and the causal 

effect of maternal HIV infection on the risk of preterm birth among people seeking prenatal care in 

Lusaka, Zambia. We use data from the Zambia Electronic Perinatal Record System (ZEPRS), an 

electronic health record used by 25 clinics and 1 referral hospital in Lusaka with deliveries between 

January 1, 2008 and June 26, 2013.86,106 This is our study sample.  
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In ZEPRS, the outcome of preterm birth was defined by gestational age at birth <37 weeks, as 

measured by patient-reported LMP. Given that LMP measurement has known error, outcome 

misclassification is a concern. More recently (2015-2020), two research studies prospectively enrolled a 

nonrandom sample of pregnant people at clinics where ZEPRS had been deployed.87,89 These studies 

assessed gestational age (and thus preterm birth) by both LMP and early ultrasound and are used herein as 

a validation sample. 

Accounting for outcome misclassification 

Let 𝑌 and 𝐴 be binary indicators for the true outcome and exposure, respectively. We aimed to 

estimate, in the study sample, the marginal outcome risk under the natural course and two counterfactual 

marginal risks: one for the scenario where everyone was exposed and one for the scenario where everyone 

was unexposed. The natural course is 𝑃(𝑌 = 1|𝑅 = 1) and the counterfactual risks are 

𝑃(𝑌(𝑎) = 1|𝑅 = 1), where 𝑌(𝑎) is the potential outcome (i.e., the outcome that would be observed) 

when 𝐴 = 𝑎 and 𝑅 is an indicator of whether the person was in the study sample, 𝑅 = 1, or in the 

validation sample, 𝑅 = 0. Let 𝑍 be a common cause (or a vector of common causes) of 𝐴 and 𝑌 such that 

𝑃(𝑌(𝑎) = 1|𝐴 = 𝑎, 𝑅 = 1) ≠ 𝑃(𝑌(𝑎) = 1|𝑅 = 1). Under conditional exchangeability with positivity 

and causal consistency,27,29,107,108 we can identify the counterfactual risks using the g-formula,27  

𝑃(𝑌(𝑎) = 1|𝑅 = 1) = ∑𝑃(𝑌 = 1|𝐴 = 𝑎, 𝑍 = 𝑧, 𝑅 = 1)𝑃(𝑍 = 𝑧|𝑅 = 1)

𝑧

.                 [1] 

For simplicity, our notation assumes categorical 𝑍.  

However, only 𝑌∗, a potentially misclassified version of 𝑌, was measured in our study sample. To 

account for misclassification, we can replace 𝑃(𝑌 = 1|𝐴 = 𝑎, 𝑍 = 𝑧, 𝑅 = 1) in Equation [1] with 109,110 

𝑃(𝑌∗ = 1|𝐴 = 𝑎, 𝑍 = 𝑧, 𝑅 = 1) − (1 − 𝑆𝑝𝐴,𝑍,𝑅=1)

𝑆𝑒𝐴,𝑍,𝑅=1 − (1 − 𝑆𝑝𝐴,𝑍,𝑅=1)
,                      [2] 

where 𝑆𝑒𝐴,𝑍,𝑅=1 = 𝑃(𝑌∗ = 1|𝑌 = 1, 𝐴 = 𝑎, 𝑍 = 𝑧, 𝑅 = 1) and 𝑆𝑝𝐴,𝑍,𝑅=1 = 𝑃(𝑌∗ = 0|𝑌 = 0, 𝐴 = 𝑎, 𝑍 =

𝑧, 𝑅 = 1) are the misclassification parameters sensitivity and specificity, respectively, in the strata of 𝐴 

and 𝑍 in the study sample (proof in Appendix 4A).  
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We can obtain the misclassification parameters from the validation sample (because both 𝑌 and 

𝑌∗ are available), but in our motivating example these data are external and thus conditional on 𝑅 = 0. 

When 𝑅 is independent of 𝑌∗ conditional on 𝑌, 𝐴 and 𝑍 (𝑅∐𝑌∗|𝑌, 𝐴, 𝑍), we can transport the 𝐴 and 𝑍 

specific misclassification parameters from the validation sample to the study sample 

𝑃(𝑌∗ = 𝑦∗|𝑌 = 𝑦, 𝐴 = 𝑎, 𝑍 = 𝑧, 𝑅 = 1) = 𝑃(𝑌∗ = 𝑦∗|𝑌 = 𝑦, 𝐴 = 𝑎, 𝑍 = 𝑧, 𝑅 = 0).          [3] 

𝑅∐𝑌∗|𝑌, 𝐴, 𝑍 is a conditional transportability condition. Figure 1A and 1B are causal diagrams where 

this condition holds. We also need positivity, i.e., the validation sample includes individuals across the 

observed distribution of 𝐴 and 𝑍 in the study sample.64  

If misclassification is nondifferential with respect to 𝐴 and 𝑍, (𝐴, 𝑍∐𝑌∗|𝑌, 𝑅; Figure 4.1A), then 

sensitivity and specificity are constant across strata of 𝑍 and 𝐴 (i.e., 

𝑃(𝑌∗ = 𝑦|𝑌 = 𝑦, 𝐴 = 𝑎, 𝑍 = 𝑧, 𝑅 = 0) = 𝑃(𝑌∗ = 𝑦|𝑌 = 𝑦, 𝑅 = 0)). This condition does not hold in 

Figure 4.1B, where misclassification is differential with respect to 𝐴 and 𝑍.  

Relaxing the transportability condition  

When misclassification is differential with respect to non-confounding covariates 𝑊 and the 

distribution of 𝑊 differs between the validation and study samples, then Equation [3] does not hold 

(𝑅∐𝑌∗|𝑌, 𝐴, 𝑍; Figure 4.1C). In our motivating example, measurement error in LMP-measured 

gestational age may be differential by birth history42 and the distribution of birth history may vary 

between the validation and study samples (e.g., the proportion nulliparous in each sample may differ).  In 

the presence of these 𝑊 covariates, the misclassification parameters are transportable if we additionally 

condition on 𝑊, 

𝑃(𝑌∗ = 1|𝑌 = 1, 𝐴, 𝑍,𝑊, 𝑅 = 1) = 𝑃(𝑌∗ = 1|𝑌 = 1, 𝐴, 𝑍,𝑊, 𝑅 = 0).                 [4] 

This equality holds when 𝑅∐𝑌∗|𝑌, 𝐴, 𝑍,𝑊. For Figure 4.1C, we provide two identification approaches.   

In the first approach, we condition on both 𝑍 and 𝑊 so that sensitivity and specificity are also 

conditional on 𝑊 (hereafter called conditioning on 𝑊), 𝑃(𝑌(𝑎) = 1|𝑅 = 1) = 
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∑
𝑃(𝑌∗ = 1|𝐴 = 𝑎, 𝑍 = 𝑧,𝑊 = 𝑤, 𝑅 = 1) − (1 − 𝑆𝑝𝐴,𝑍,𝑊,𝑅=0)

𝑆𝑒𝐴,𝑍,𝑊,𝑅=0 − (1 − 𝑆𝑝𝐴,𝑍,𝑊,𝑅=0)
𝑃(𝑍 = 𝑧,𝑊 = 𝑤|𝑅 = 1)

𝑧,𝑤

 

where 𝑆𝑒𝐴,𝑍,𝑊,𝑅=𝑟 = 𝑃(𝑌∗ = 1|𝑌 = 1, 𝐴 = 𝑎, 𝑍 = 𝑧,𝑊 = 𝑤, 𝑅 = 𝑟) and 𝑆𝑝𝐴,𝑍,𝑊,𝑅=𝑟 =

𝑃(𝑌∗ = 0|𝑌 = 0, 𝐴 = 𝑎, 𝑍 = 𝑧,𝑊 = 𝑤, 𝑅 = 𝑟) (proof in Appendix 4B).  

In the second approach, we standardize the misclassification parameters to the conditional 𝑊 

distribution in the study sample (i.e., remove the difference in the distribution of 𝑊 between the two data 

sources). Specifically, 

𝑃(𝑌∗ = 𝑦|𝑌 = 𝑦, 𝐴, 𝑍, 𝑅 = 1) 

= ∑𝑃(𝑌∗ = 𝑦|𝑌 = 𝑦, 𝐴 = 𝑎, 𝑍 = 𝑧,𝑊 = 𝑤, 𝑅 = 1)𝑃(𝑊 = 𝑤|𝑌 = 𝑦, 𝐴 = 𝑎, 𝑍 = 𝑧, 𝑅 = 1)

𝑤

 

= ∑𝑃(𝑌∗ = 𝑦|𝑌 = 𝑦, 𝐴 = 𝑎, 𝑍 = 𝑧,𝑊 = 𝑤, 𝑅 = 0)𝑃(𝑊 = 𝑤|𝑌 = 𝑦, 𝐴 = 𝑎, 𝑍 = 𝑧, 𝑅 = 1)

𝑤

 

= ∑𝑃(𝑌∗ = 𝑦|𝑌 = 𝑦, 𝐴 = 𝑎, 𝑍 = 𝑧,𝑊 = 𝑤, 𝑅 = 0)𝑃(𝑊 = 𝑤|𝐴 = 𝑎, 𝑍 = 𝑧, 𝑅 = 1)

𝑤

. 

The first equality is the law of total probability, the 2nd follows equation [4], and the 3rd equality follows 

from an additional condition that 𝑊 is conditionally independent of the outcome (𝑊∐𝑌|𝐴, 𝑍, 𝑅), which 

we invoke because 𝑌 is missing when 𝑅 = 1. These standardized misclassification parameters are then 

used in Equation [2]. 

 The identification conditions for both approaches, 1) conditioning on 𝑊 or 2) standardizing the 

misclassification parameters, hold in Figure 4.1C, but conditions are violated in Figure 4.1D. Regarding 

the first approach, 𝑊 is a collider in 4.1D so conditioning on 𝑊 opens a path between 𝐴 and 𝑌 inducing 

M-bias (i.e., it violates conditional exchangeability).111 Therefore, risk differences are not identified, 

though we can still identify the natural course as conditional exchangeability is not required. Regarding 

the second approach (standardizing the misclassification parameters), the path between 𝑊 and 𝑌 in 4.1D 

violates the final condition (𝑊∐𝑌|𝐴, 𝑍, 𝑅). Therefore, for this approach, none of the parameters of 

interest are identified.  
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Estimation 

When 𝑍 is categorical and there are enough data, we can estimate quantities nonparametrically. 

Otherwise, we can use parametric models, at the cost of requiring that the models be correctly specified. 

In Equation [2] we can use a logistic model to estimate 𝑃̂(𝑌∗ = 1|𝐴 = 𝑎, 𝑍 = 𝑧, 𝑅 = 1). Alternatively, 

we can directly estimate 𝑃̂(𝑌 = 1|𝐴 = 𝑎, 𝑍 = 𝑧, 𝑅 = 1) by maximizing a modified likelihood of the 

observed data.101,112,113 We use this latter approach, which also extends to multinomial outcomes 

(Appendix 4C). Let 𝜇𝑖 = 𝑃(𝑌 = 1|𝐴𝑖 , 𝑍𝑖 , 𝑅𝑖 = 1) where 𝑖 is an individual level subscript. We specify a 

logistic model 𝜇𝑖 = expit(𝛽0 + 𝛽1𝐴𝑖 + 𝛽𝑧ℎ(𝑍𝑖)) where expit(∙) = 1 [1 + exp(−1(∙))]⁄  and ℎ(⋅) is an 

arbitrary flexible function that may include interactions with other variables. We estimate 𝛽̂ by 

maximizing the modified likelihood in the study sample 

𝐿(𝛽) = ∏{[𝑆𝑒̂𝑖 × 𝜇𝑖 + (1 − 𝑆𝑝̂𝑖) × (1 − 𝜇𝑖)]
𝑅𝑖𝑌𝑖

∗

[(1 − 𝑆𝑒̂𝑖)𝜇𝑖 + 𝑆𝑝̂𝑖(1 − 𝜇𝑖)]
𝑅𝑖(1−𝑌𝑖

∗)
}

𝑛

𝑖=1

 

where 𝑆𝑒̂ and 𝑆𝑝̂ are the sensitivity and specificity, respectively (transported from the validation sample), 

and 𝑛 is the total number of individuals (combined study and validation samples). To estimate the natural 

course risk, we take the mean of 𝜇̂𝑖, 
1

∑ 𝑅𝑖
𝑛
𝑖=1

∑ 𝑅𝑖𝜇̂𝑖
𝑛
𝑖=1 . To estimate the counterfactual risks for each 

treatment level, 𝑃̂(𝑌(𝑎) = 1) =
1

∑ 𝑅𝑖
𝑛
𝑖=1

∑ 𝑅𝑖𝜇̂(𝑎)𝑖
𝑛
𝑖=1  where 𝜇̂(𝑎)𝑖 is an individual’s estimated outcome 

risk when 𝐴 = 𝑎 (i.e., g-computation).114  

 If misclassification is differential with respect to 𝐴 and continuous or high-dimensional 𝑍, we can 

use a parametric misclassification model that is conditional on 𝐴 and 𝑍.101 We specify a logistic model for 

misclassification 𝑃(𝑌∗ = 1|𝑌𝑖 , 𝐴𝑖 , 𝑍𝑖 , 𝑅𝑖 = 0) = expit(𝛿0 + 𝛿1𝑌𝑖 + 𝛿2𝐴𝑖 + 𝛿3𝐴𝑖𝑌𝑖 + 𝛿𝑧ℎ(𝑍𝑖)) in the 

validation sample. Subsequently, we transport the fitted 𝛿̂ to the study sample. For each individual in the 

study sample, 𝑆𝑒̂𝑖 = expit(𝛿̂0 + 𝛿̂1 × 1 + 𝛿̂2𝐴𝑖 + 𝛿̂3𝐴𝑖 × 1 + 𝛿̂𝑧ℎ(𝑍𝑖)) and 1 − 𝑆𝑝̂𝑖 = expit(𝛿̂0 +

𝛿̂1 × 0 + 𝛿̂2𝐴𝑖 + 𝛿̂3𝐴𝑖 × 0 + 𝛿̂𝑧ℎ(𝑍𝑖)), in which 𝑌 is set to 1 and 0, respectively.  
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 If misclassification is also differential with respect to 𝑊 as in Figure 4.1C, one approach is to 

condition on 𝑊. Now, 𝜇𝑖 = 𝑃(𝑌 = 1|𝐴𝑖 , 𝑍𝑖 ,𝑊𝑖 , 𝑅𝑖 = 1) = expit(𝛽0 + 𝛽1𝐴𝑖 + 𝛽𝑧ℎ(𝑍𝑖) + 𝛽𝑤ℎ(𝑊𝑖)); the 

misclassification model is 𝑃(𝑌∗ = 1|𝑌𝑖 , 𝐴𝑖 , 𝑍𝑖 ,𝑊𝑖 , 𝑅𝑖 = 0) = expit(𝛿0 + 𝛿1𝑌𝑖 + 𝛿2𝐴𝑖 + 𝛿3𝐴𝑖𝑌𝑖 +

𝛿𝑧ℎ(𝑍𝑖) + 𝛿𝑤ℎ(𝑊𝑖)). A second approach is to standardize the misclassification parameters by 𝑊. If 𝑊 is 

continuous or high-dimensional, estimation is challenging; however, there is an equivalent weighted 

estimator and we take this approach going forward (proof Appendix 4D).66 The weight is the stabilized 

odds of selection,  

𝜋 =
𝑃(𝑅 = 1|𝑊 = 𝑤, 𝐴 = 𝑎, 𝑍 = 𝑧)

𝑃(𝑅 = 0|𝑊 = 𝑤, 𝐴 = 𝑎, 𝑍 = 𝑧)

𝑃(𝑅 = 0|𝐴 = 𝑎, 𝑍 = 𝑧)

𝑃(𝑅 = 1|𝐴 = 𝑎, 𝑍 = 𝑧)
. 

To estimate the weight, we specify two logistic selection models 𝑃(𝑅𝑖 = 1|𝐴𝑖 , 𝑍𝑖 ,𝑊𝑖) =

expit(𝜈0 + 𝜈1𝐴𝑖 + 𝜈𝑧ℎ(𝑍𝑖) + 𝜈𝑤ℎ(𝑤𝑖)) and 𝑃(𝑅𝑖 = 1|𝐴𝑖 , 𝑍𝑖) = expit(𝜙0 + 𝜙1𝐴𝑖 + 𝜙𝑧ℎ(𝑍𝑖)).  Now, the 

misclassification model is 𝑃(𝑌∗ = 1|𝑌𝑖 , 𝐴𝑖 , 𝑍𝑖 , 𝑅𝑖 = 0)  = expit(𝛿0 + 𝛿1𝑌 + 𝛿2𝐴𝑖 + 𝛿3𝐴𝑖𝑌𝑖 + 𝛿𝑧ℎ(𝑍𝑖)), 

fit in the validation sample weighted by 𝜋. 

 Estimation of the variance of our parameters of interest must account for uncertainty in the 

misclassification parameters estimated in the validation sample. One option is nonparametric bootstrap in 

which both data sets are independently resampled. Alternatively, in this work, we use M-estimation and 

the empirical sandwich variance estimator,115,116 which is more computationally efficient than bootstrap 

(Appendix 4E).  

Simulations 

We conducted illustrative simulations. We generated data loosely based on our motivating 

example for 5000 cohorts under each of the four scenarios depicted in Figure 4.1 (Appendix 4F, code 

available at https://github.com/rachael-k-ross/MeasurementError-ExternalValidation). For each scenario, 

we conducted six analyses using the estimators described above to estimate the natural course outcome 

risk and the marginal causal risk difference: 0) using the true outcome 𝑌 (although impossible in practice, 

this provides a benchmark); 1) using the misclassified outcome 𝑌∗; 2) accounting for nondifferential 

misclassification in 𝑌∗; 3) accounting for differential misclassification with respect to 𝐴 and 𝑍; and 

https://github.com/rachael-k-ross/MeasurementError-ExternalValidation
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accounting for differential misclassification with respect to 𝐴, 𝑍, and 𝑊 by 4) conditioning on 𝑊 or 5) 

weighting the misclassification parameters. To describe performance, we estimated bias, empirical 

standard error (ESE), average estimated standard error, and 95% confidence interval (CI) coverage.117 

Applied example 

As previously described, we aimed to estimate the risk of preterm birth and the effect (marginal 

risk difference) of maternal HIV infection on preterm birth in the study sample.  

Study sample 

We restricted the ZEPRS study sample to individuals aged 18 to 40 at the first prenatal care visit 

with a singleton delivery, with gestational age measured by LMP, who initiated prenatal care <24 weeks 

gestation, and with gestational age at delivery ≥16 weeks (to overlap with validation sample and exclude 

spontaneous abortions). We also excluded pregnancies with questionable documentation of gestational 

age (i.e., first visit occurred after delivery, gestational age at first visit ≤2 weeks, gestational age at birth 

≥46 weeks) and pregnancies missing data on HIV status. The final analytic cohort included 98,805 

pregnancies. HIV status was captured by patient report or by rapid testing at or prior to the first visit. 

Maternal age was a priori deemed to be a confounder.  

Validation sample 

We used data from the Zambian Preterm Birth Prevention Study (ZAPPS) and the Improving 

Pregnancy Outcomes with Progesterone (IPOP) trial for validation. ZAPPS was an observational 

prospective cohort of 1450 people enrolled between August 2015 and September 2017 at prenatal care 

initiation at five clinics that had been included in ZEPRS.87 IPOP was a phase three, randomized, double-

blind, placebo-controlled trial of weekly progesterone injection in 800 people with confirmed HIV 

infection and no prior spontaneous preterm birth enrolled between February 2018 and January 2020 at 

prenatal care initiation at two clinics that had been included in ZEPRS.89 Progesterone had no effect on 

preterm birth in this trial.90 In both studies, gestational age was measured by ultrasound using the 

INTERGROWTH-21st dating equations.91,92 LMP was also recorded. Here, we treat ultrasound-measured 

preterm birth as the gold standard. HIV status was obtained by rapid test at enrollment. We excluded non-
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singleton pregnancies; spontaneous abortions; and pregnancies with missing data on delivery date, HIV 

status, or maternal age. The final validation sample included 1778 pregnancies (1026 ZAPPS and 752 

IPOP).  

Analysis 

Appendix 4G is a causal diagram. We conducted five analyses that parallel those in the 

simulation: (1) naïve analysis using LMP-measured preterm birth; (2) accounting for nondifferential 

outcome misclassification; (3) accounting for differential outcome misclassification with respect to HIV 

status and maternal age; and accounting for differential outcome misclassification with respect to HIV 

status, maternal age, nulliparity, and prior preterm birth by (4) conditioning on these variables or (5) 

weighting the misclassification model by nulliparity and prior preterm birth. Henceforth, we refer to 

nulliparity and prior preterm birth collectively as birth history. Maternal age was modeled using restricted 

quadratic splines (4 knots at 5th, 35th, 65th, and 95th percentiles);118 other variables were binary. Models 

included all two-way interaction terms (interactions with age included linear term only).  

Results 

Simulations 

The true natural course risk and risk difference were 23.3% and 5.0 percentage points, 

respectively. Table 4.1 and Figure 4.2 show simulation results. 

In scenario A (nondifferential misclassification), the naïve analysis (1) was biased upward (+9.2 

percentage points) for the natural course risk and biased downward for the risk difference (-1.2). The 

estimator accounting for nondifferential misclassification (2) had negligible bias. The estimators 

accounting for differential misclassification (3-5) also had negligible bias, though these estimators were 

less efficient, particularly for the risk difference (ESE ~4 times larger).  

In scenario B (differential misclassification by exposure and confounder), both the naïve analysis 

(1) and the estimator accounting for nondifferential misclassification (2) were biased. Bias in the risk 

difference was larger for the estimator accounting for nondifferential misclassification than for the naïve 
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analysis (+6.6 vs. +3.7). Estimators accounting for differential misclassification (3-5) had negligible bias. 

The estimator that weighted the misclassification parameters by 𝑊 (5) was the least efficient. 

In scenario C (differential misclassification by exposure, confounder, and 𝑊), only the two 

approaches that accounted for 𝑊 (4,5) had negligible bias for both parameters. Conditioning on 𝑊 (4) 

was more efficient than weighting the misclassification parameters (5).  

In scenario D (differential misclassification by exposure, confounder, and 𝑊, and 𝑊 was a 

collider), we expected both estimators accounting for 𝑊 (4,5) to be biased for the risk difference, 

however, they had negligible bias. We also expected the weighted estimator (5) to be biased for the 

natural course risk, however, it had negligible bias. Recall that when 𝑊 is a collider, conditioning on 𝑊 

induces M-bias. It has been shown that meaningful M-bias requires strong relationships along the “M” 

path.111 Therefore, we examined bias under an altered data generation mechanism with strong effects 

(odds ratio 4) for each arrow on the “M” path (Appendix 4H) and, as expected, the estimator conditioning 

on 𝑊 was biased for the risk difference and there was negligible bias for the natural course risk. 

However, unexpectedly, the weighted estimator remained unbiased. To further investigate the potential 

bias of this weighted estimator, we conducted a simplified simulation without 𝐴 or 𝑍 focused on 

estimating the outcome risk in the presence of a 𝑊 covariate (Appendix 4I). In this simplified setting, we 

observed bias in this estimator when there was a direct path from 𝑊 to 𝑌.  

For all estimators the average estimated standard error was close to the ESE (Table 4.1). 

Confidence intervals had nominal coverage for unbiased estimators. These results indicate that the 

standard errors estimated by the empirical sandwich variance estimator appropriately captured random 

error. 

In Table 4.1 we used stabilized weights for the weighted estimator (5). Using unstabilized 

weights was more likely to fail and was notably less efficient than using stabilized weights (Appendix 4J). 

Additionally, the estimated standard errors did not appropriately capture the inflated ESE for the 

unstabilized weighted estimator.  
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Applied example 

In the study sample, 23.0% were HIV positive (22759/98805); 56.8% of the validation sample 

were HIV positive (1010/1778). Overall, the study sample was younger than the validation sample (e.g., 

proportion <20 years: 13.5% vs. 4.8%) (Table 4.2). In both samples people with HIV were, on average, 

older than people living without HIV. There were more nulliparous people (40.5% vs. 25.8%) and fewer 

with a prior preterm birth (2.4% vs. 16.9%) in the study sample than the validation sample.  

 Marginally, the sensitivity was 0.90 and specificity was 0.84 in the validation sample. Figure 4.3 

presents the results of different misclassification modeling strategies that reflect the three estimators that 

accommodate differential misclassification. When misclassification was modeled as a function of HIV 

status and maternal age (A and B), sensitivity was differential by HIV status only at younger ages; 

specificity was differential by HIV status, but varied little by age. When misclassification was also 

modeled as a function of birth history (C and D), parous individuals were the only group with notable 

variation of sensitivity by age and HIV status; there was variation in specificity by birth history and age 

only among people with HIV. Panels E and F show misclassification modeled as a function of HIV status 

and age, weighted so that the validation sample had the same birth history distribution as the study 

sample. Weighting had little impact except on sensitivity among HIV negative individuals. 

 Table 4.3 presents the estimates (in percentage points) of the natural course risk, the two 

counterfactual risks (if everyone had HIV and if no one had it), and the risk difference. In the naïve 

analysis, the natural course was 38.9% (95%CI 38.3, 38.9) which is expected to be biased upward. 

Accounting for nondifferential misclassification reduced the natural course to 30.3% (95%CI 27.8, 32.8). 

Estimates of the natural course varied between 32.4% and 34.0% when accounting for differential 

misclassification. The naïve risk difference estimate was 6.0% (95%CI 5.3, 6.8). The estimate was 8.2% 

(95%CI 7.0, 9.4) when accounting for nondifferential misclassification. The estimate was 2.3% (95%CI -

3.9, 8.5) when accounting for differential misclassification by HIV status and age and the point estimates 

changed little when also accounting for birth history.  
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The confidence intervals from the naïve analysis were narrow. The confidence interval width 

increased when accounting for the misclassification, particularly under the assumption of differential 

misclassification. When also accounting for birth history, the confidence interval width was larger when 

conditioning than when weighting; contrary to the simulation. Conditioning on birth history required 

fitting a misclassification model that included a large number of variables in the validation sample 

resulting in greater uncertainty given the validation sample size.  

Discussion 

In epidemiology there is increasing interest in methods to transport causal effects from one 

population to another.119,120 In this paper, we draw on those methods in the context of leveraging external 

validation data to address measurement error. Here, we need to transport misclassification parameters like 

sensitivity and specificity from an external validation sample to our study sample. Our estimators rely on 

an exchangeability condition that we call the conditional transportability condition (among others) and we 

illustrate that causal diagrams can be used to assess conditions for transportability. For estimation, our 

work incorporates common transportability methods, such as inverse odds weighting, into parametric 

approaches for measurement error.65,101  

The measurement error literature focuses more on mismeasured exposures and covariates than it 

does on outcomes.54,56 Our simulations highlight that outcome misclassification can produce substantial 

bias in risks and causal effects. Combined with the high precision of the naïve analysis, ignoring 

measurement error results in a high degree of confidence in a biased estimator. Our simulations also show 

that assuming misclassification is nondifferential when it is actually differential can produce more bias 

than ignoring the misclassification.  

 Combining multiple data sources like validation sample and a study sample yields a fusion 

design.116 When fusing data sources, we should carefully consider assumptions for transporting 

information between them. Here, we transported misclassification parameters from the validation sample 

to the study sample.61(sec2.2.4) Discussions of differential measurement error in the literature are not often 

linked to transportability. Additionally, the literature predominantly focuses on whether measurement 
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error is differential with respect to the exposure (in the context of outcome measurement) and 

confounders.56 Whether measurement error is differential with respect to other covariates has largely been 

ignored (Edwards et al. is a recent exception).67 To transport the misclassification parameters we need to 

consider whether measurement error is differential with respect to any non-confounding covariates (𝑊) 

with differing distributions between the validation and study samples.  

We introduced two estimators to account for these 𝑊 covariates: 1) conditioning on 𝑊 and 2) 

weighting the misclassification model by 𝑊 (using inverse-odds weights commonly seen in the 

transportability literature65,121) so that the validation sample distribution of 𝑊 is the same as the 

distribution in the study sample (see Ackerman et al. for single arm trial setting66). Unfortunately, when 

𝑊 causes the outcome or is a collider, assumptions required for these approaches are violated so some of 

our parameters of interest may not be identified. However, in simulations, there was negligible bias under 

our original data generation based on our motivating example. To observe bias, we had to generate data 

with certain strong relationships that may be unrealistic.111 For the weighted estimator, we were only able 

to observe bias under a simplified version of our simulation. Given that these two proposed approaches 

rely on different assumptions, similar results may indicate minimal bias. In our application, LMP 

measurement error was potentially differential by certain elements of the birth history (parity and prior 

preterm birth) and the distribution of these covariates differed between the study and validation samples. 

However, birth history may be a collider (Appendix 4G). Ultimately, the results from conditioning on 

birth history or weighting the misclassification model were similar; they were also similar to the analysis 

that only accounted for differential misclassification by HIV status and maternal age, therefore accounting 

for birth history may not be needed. 

 Our work highlights that to transport we generally require rich validation data sources that 

capture exposure, confounders, and other covariates related to measurement error. Such data may be rare 

and costly to collect. When addressing outcome misclassification in electronic health records or other 

large patient-care datasets, leveraging previously-collected data from prospective research studies that 

enrolled people from the same health care delivery network may be convenient and low cost. However, if 
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there are strict eligibility criteria or barriers to participation, then the transportability assumptions may be 

harder to meet (e.g., there may be positivity violations that require restriction of the study sample). 

 Our work has limitations. The results of our applied example did not match our expectations. We 

hypothesized a natural course risk <20% and a risk difference >5 percentage points based on prior 

analysis of the ZAPPS data.122 Our results could be biased because we did not meet the transportability 

assumption (i.e., there were unadjusted 𝑊 covariates such a pre-pregnancy weight, education, or 

gestational age at first prenatal care visit). However, even multiple unadjusted 𝑊 covariates may not be 

strong enough to notably change estimates after accounting for differential misclassification by HIV 

status and maternal age. Additionally, our validation sample could have systematic error (e.g., ultrasound 

technicians were not blinded to the LMP-measured gestational age). Finally, there is likely measurement 

error in other variables, such as HIV status or prior preterm birth.  

Conclusions 

Measurement error poses a threat to descriptive and causal parameters. Qualitative conjectures 

about the direction of potential bias are often based on unrealistic assumptions and do not produce more 

accurate results. To appropriately address misclassification, we generally need rich and large validation 

data to meet identification conditions, which is a barrier to widespread adoption of measurement error 

corrections. We proposed estimators that leverage potentially low-cost and readily available external data.
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Figures 

Figure 4.1. Causal diagrams for simulation scenarios. 𝜖𝑦 is the measurement error. Arrows from 𝑅 

into other nodes signify that the distributions of 𝐴, 𝑍, 𝑌, and 𝑊 differ between the external validation data 

and study sample indicated by 𝑅.  
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Figure 4.2. Boxplots of risk under the natural course (panel A) and risk difference (B) estimates for 

simulation under original data generation parameters. Panel A) true risk was 23.2 percentage points; 

panel B) true risk difference was 5 percentage points. Analytic approaches: 0) true outcome; 1) naïve 

analysis; 2) accounting for nondifferential error; 3) accounting for differential error by exposure and 

confounder; and accounting for differential error by exposure, confounder and covariate 𝑊 by 4) 

conditioning on 𝑊 and 5) weighting misclassification parameters by 𝑊. Horizontal black line marks true 

risk and risk difference; black dot marks mean of the estimates; small gray dots are a 10% random sample 

of estimates. 
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Figure 4.3. Estimated sensitivity (panels A,C,E) and specificity (B,D,F) transported from the 

validation data to the study sample when misclassification parameters are differential with respect 

to HIV status and maternal age (A,B), differential with respect to HIV status, maternal age, and 

birth history (C,D), and differential with respect to HIV status and maternal age weighted by birth 

history (E,F). The gray lines in panels E and F are the same as the black lines in panels A and B. 

Abbreviations: Neg, negative; Pos, positive; PTB, preterm birth. 
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Tables 

Table 4.1. Simulation results for the risk under the natural course and the risk difference (in percentage points) under the original data 

generation (n=5000). 

    Natural course  Risk difference 

Scenario1 Approach2 Mean Bias ESE Avg SE Coverage3   Mean Bias ESE Avg SE Coverage3 

All True outcome (0) 23.3 0.0 0.1 0.1 95.3  5.0 0.0 0.4 0.4 94.4 

               

A Naïve analysis (1) 32.5 9.2 0.1 0.1 0.0  3.8 -1.2 0.4 0.4 12.5 

 Accounting for error that is            

   Nondifferential (2) 23.3 0.0 1.1 1.1 95.5  5.0 0.0 0.5 0.6 94.9 

   Differential by A & Z (3) 23.3 0.0 1.7 1.7 95.6  5.1 0.1 2.1 2.2 95.4 

   Differential by A, Z, & W            

   Conditioning (4) 23.3 -0.1 1.9 1.9 95.4  5.1 0.1 2.1 2.2 95.4 

   Weighted Se/Sp (5) 23.3 0.0 2.1 2.1 95.6  5.0 0.0 2.6 2.6 95.0 

               

B Naïve analysis (1) 32.2 8.9 0.1 0.1 00.0  8.7 3.7 0.4 0.4 0.0 

 Accounting for error that is            

   Nondifferential (2) 23.0 -0.3 1.1 1.1 93.9  11.6 6.6 0.6 0.6 0.0 

   Differential by A & Z (3) 23.3 -0.1 1.7 1.7 95.2  5.0 0.0 2.2 2.2 95.5 

   Differential by A, Z, & W            

   Conditioning (4) 23.2 -0.1 1.9 1.9 95.4  5.0 0.0 2.2 2.2 95.6 

   Weighted Se/Sp (5) 23.3 -0.1 2.1 2.1 95.8  5.0 0.0 2.7 2.7 95.4 

               

C Naïve analysis (1) 33.3 10.0 0.1 0.1 00.0  8.8 3.8 0.4 0.4 0.0 

 Accounting for error that is            

   Nondifferential (2) 24.4 1.0 1.1 1.1 84.8  11.8 6.8 0.6 0.6 0.0 

   Differential by A & Z (3) 24.7 1.3 1.7 1.7 86.9  5.3 0.3 2.2 2.2 95.2 

   Differential by A, Z, & W            

   Conditioning (4) 23.2 -0.1 1.9 1.9 95.7  5.0 0.0 2.3 2.3 95.4 

   Weighted Se/Sp (5) 23.3 -0.1 2.2 2.2 95.4  5.0 0.0 2.8 2.8 94.8 
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D Naïve analysis (1) 33.3 10.0 0.1 0.1 0.000  8.8 3.8 0.4 0.4 0.000 

 Accounting for error that is            

   Nondifferential (2) 24.4 1.0 1.1 1.1 0.849  11.8 6.8 0.6 0.6 0.000 

   Differential by A & Z (3) 24.7 1.3 1.7 1.7 0.869  5.3 0.3 2.2 2.2 0.952 

   Differential by A, Z, & W            

   Conditioning (4) 23.2 -0.1 1.9 1.9 0.957  5.0 0.0 2.3 2.3 0.954 

      Weighted Se/Sp (5) 23.3 -0.1 2.2 2.2 0.953   5.0 0.0 2.8 2.8 0.948 

Abbreviations: ESE, empirical standard error; Avg SE, average estimated standard error; Se, sensitivity; Sp, specificity 
1Scenarios correspond to Figure 1 Panels A, B, C, and D 
2Numbers in parentheses correspond to numbered approaches in Figure 4.2 
395% confidence interval coverage (%)
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Table 4.2. Characteristics of study sample and validation data in applied example, overall and by HIV status. 

    Study sample   Validation data 

    HIV status     HIV status   

    Positive Negative Overall   Positive Negative Overall 

Characteristic (N=22759) (N=76046) (N=98805)   (N=1010) (N=768) (N=1778) 

Maternal age               

  Median (IQR) 27 (23, 31) 24 (21, 28) 25 (21, 29)   29 (25, 33) 26.5 (23, 31) 28 (24, 33) 

  <20 years 1360 (6.0) 12016 (15.8) 13376 (13.5)   28 (2.8) 58 (7.6) 86 (4.8) 

  20-34 years 19004 (83.5) 59592 (78.4) 78596 (79.5)   784 (77.6) 613 (79.8) 1397 (78.6) 

  ≥35 years 2395 (10.5) 4438 (5.8) 6833 (6.9)   198 (19.6) 97 (12.6) 295 (16.6) 

         
Prior preterm birth        

 Yes 799 (3.5) 1603 (2.1) 2402 (2.4)   97 (9.6) 203 (26.4) 300 (16.9) 

 No, parous 15515 (68.2) 40872 (53.7) 56387 (57.1)   726 (71.9) 294 (38.3) 1020 (57.4) 

  No, nulliparous 6445 (28.3) 33571 (44.1) 40016 (40.5)   187 (18.5) 271 (35.3) 458 (25.8) 
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Table 4.3. Estimated risks and risk differences, in percentage points, from the applied example. 

      Risks (95% CI)   

Analysis Natural Course   HIV + HIV - Difference (95% CI) 

Naïve analysis 38.6 (38.3, 38.9)   43.3 (42.6, 44.0) 37.3 (36.9, 37.6) 6.0 (5.3, 6.8) 

Accounting for error that is           

  Nondifferential 30.3 (27.8, 32.8)   36.7 (33.9, 39.5) 28.5 (26.0, 30.9) 8.2 (7.0, 9.4) 

  Differential by HIV, age 32.4 (29.6, 35.1)   34.3 (28.8, 39.8) 32.1 (29.0, 35.2) 2.3 (-3.9, 8.5) 

  Differential by HIV, age, birth history1 
     

    Conditioning 34.0 (29.6, 38.5)   36.1 (29.7, 42.4) 33.8 (28.4, 39.2) 2.3 (-5.7, 10.3) 

    Weighted sensitivity/specificity 32.8 (29.2, 36.4)   34.8 (29.4, 40.3) 32.6 (28.3, 37.0) 2.2 (-4.7, 9.1) 
1Nulliparity, prior preterm birth 
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CHAPTER 5: ACCOUNTING FOR NONMONOTONE MISSING DATA USING INVERSE 

PROBABILITY WEIGHTING 

Overview 

Inverse probability weighting can be used to correct for missing data. New estimators for the 

weights in the nonmonotone setting were introduced in 2018. These estimators are the unconstrained 

maximum likelihood estimator (UMLE) and the constrained Bayesian estimator (CBE), introduced as an 

alternative if UMLE fails to converge. In this work we describe and illustrate these estimators, and 

examine their performance in simulation and in an applied example estimating the effect of anemia on 

spontaneous preterm birth in the Zambia Preterm Birth Prevention Study. We compare performance with 

multiple imputation (MI) and focus on the setting of an observational study where inverse probability of 

treatment weights are used to address confounding. In simulation, weighting was less statistically efficient 

at the smallest sample size and lowest exposure prevalence examined (n=1500, 15% exposure prevalence) 

but in other scenarios statistical performance of weighting and MI was similar. Weighting had improved 

computational efficiency taking, on average, 0.4 and 0.05 times the time for MI in R and SAS, 

respectively. UMLE was easy to implement in commonly used software and convergence failure occurred 

just twice in >200,000 simulated cohorts making implementation of CBE unnecessary. In conclusion, 

weighting is a viable alternative to MI for nonmonotone missingness. It may be preferred with large 

sample sizes, when using resampling algorithms for variance, or when researchers having greater 

confidence in correctly modeling the missingness mechanism than the missing data values. Weighting for 

missing data may be more intuitive for researchers already familiar with weighting approaches for other 

biases. 
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Introduction 

Missing data plague research. Reviews of the epidemiologic and clinical literature show that 

missing data are often inadequately reported and that complete case analysis, where records with missing 

data are excluded, remains the most frequently implemented approach to handle missing data.68–73 

Complete case analyses are statistically inefficient and are valid only under strong assumptions.74,75 

Weighting is an alternative approach to handle missing data that is valid under weaker assumptions.78,79,82 

It is generally straightforward to estimate weights to account for missing data when missing data 

follow a uniform pattern (i.e., for each individual, the variables with missingness are either all observed or 

all missing) or a monotone pattern (i.e., there is an ordering in which a variable is observed only if the 

previous variable is observed, such as missing data after lost to follow-up) (see illustration in Appendix 

5A).79 However, until recently, weighting approaches for nonmonotone missing data (i.e., when 

missingness is neither uniform nor monotone) have been challenging to implement.83,84 In 2018, Sun and 

Tchetgen Tchetgen published two estimators for weights in the setting of nonmonotone missingness.81,85 

Unlike prior approaches, their estimators can be readily implemented in commonly used software. 

In this paper, we describe and illustrate the estimators from Sun and Tchetgen Tchetgen, and 

examine their performance in simulation and an applied example estimating the effect of anemia on 

spontaneous preterm birth in the Zambia Preterm Birth Prevention Study (ZAPPS).87,88 We compare 

performance with multiple imputation (MI), a commonly used alternative. We specifically examine the 

setting of an observational study where inverse probability of treatment weights are used to address 

confounding. In section 2, we introduce our motivating application. In section 3, we detail our parameter 

of interest, a sufficient set of identification assumptions, and weighted estimators. In section 4, we 

describe the weighted estimators from Sun and Tchetgen Tchetgen using a simple example to aid 

understanding. In section 5, we present results from a limited simulation study to compare performance 

with MI in finite samples. Section 6 presents results from the motivating application. Finally, in section 7, 

we discuss the findings and consider the choice between weighting and MI.  
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Motivating application 

Our objective was to estimate the effect of maternal anemia on the risk of spontaneous preterm 

birth among people seeking prenatal care in Lusaka, Zambia. Some research has suggested an association 

between maternal anemia, particularly when diagnosed early in pregnancy, and poor pregnancy 

outcomes.11,95,96 However, this finding has not been consistently observed.97,98 To estimate this effect, we 

used data from ZAPPS,87,88 an observational prospective cohort of 1450 people recruited at prenatal care 

initiation in Lusaka, Zambia between 2015 and 2017. A person was eligible if she was ≥18 years old, had 

a viable intrauterine single or twin pregnancy, presented to prenatal care prior to 20 weeks of gestation if 

HIV-seropositive or 24 weeks if HIV-seronegative, and resided within Lusaka with no plans to relocate 

during follow-up. Anemia was diagnosed at enrollment if the capillary hemoglobin concentration was 

<10.5 g/dL (HemoCue Hb 201).99 Spontaneous preterm birth was defined as delivery occurring after 

spontaneous labor or membrane rupture prior to 37 weeks of gestation. Additional covariates collected at 

enrollment and used in this analysis included gestational age at enrollment, maternal age, maternal HIV 

serostatus, and previous pregnancy and birth history. Three people experienced a miscarriage and were 

excluded from the analysis, resulting in 1447 people. 

Table 5.1 shows cohort characteristics and occurrence of the outcome, overall and stratified by 

anemia diagnosis. ZAPPS is typical of many prospective cohorts. Despite rigorous study procedures and 

active efforts to maximize study retention, some data are missing. In particular, our exposure and outcome 

have notable missingness; 425 people (29%) did not have a hemoglobin measurement and 239 (17%) 

were lost to follow-up. Ignoring missing data, 13.5% of people were anemic and 9.9% had a spontaneous 

preterm birth. The risk of spontaneous preterm birth was higher among anemic people (12.4%) compared 

to people without anemia (9.5%) or people with missing anemia status (9.7%). There was also 

missingness in some covariates: maternal age (n=41, 3%), maternal HIV serostatus (n=3, <1%), and prior 

stillbirth (n=85, 6%). Table 5.2 shows the 16 missing data patterns for the 5 variables with missingness. 

Just over half (781, 54%) of the cohort were complete cases. Among the 666 people with some missing 

data, 4 patterns accounted for 88%. There were 9 patterns with <1% of people. 



 

40 

Parameter, identification, and weighted estimators 

Parameter  

Our parameter is the sample average causal effect of a time-fixed binary exposure on the outcome 

risk, quantified by the risk difference, 𝜃 = 𝐸(𝑌𝑥=1) − 𝐸(𝑌𝑥=0), where 𝑌𝑥 is the potential outcome when 

exposure 𝑋 is set to 𝑥. This parameter requires identification of two sample average risks, 𝐸(𝑌𝑥), one 

under exposure (𝑥 = 1) and one under no exposure (𝑥 = 0). We focus on identification of the risk in the 

observational setting in which there are common causes of the exposure and treatment, 𝑍, that produce 

confounding bias such that the risk is not identified by the crude conditional risk, i.e., 𝐸[𝑌𝑥] ≠ 𝐸[𝑌|𝑋 =

𝑥], even in the absence of missing data.  

No missing data 

We can point-identify the risk under the assumptions of conditional exchangeability with 

positivity, causal consistency, and no measurement error. Conditional exchangeability means that, 

conditional on a set of measured confounders, the potential outcomes are independent of the observed 

exposure, 𝑌𝑥∐𝑋|𝑍, such that 𝐸[𝑌𝑥|𝑍] = 𝐸[𝑌𝑥|𝑋 = 𝑥, 𝑍].29,123 Positivity means that every person has a 

non-zero probability of having each level of exposure across the distribution of 𝑍.29,107,123 Causal 

consistency means that the potential outcome 𝑌𝑥 is the observed outcome 𝑌 for people with observed 

exposure 𝑥.29,108 With these conditions, 𝐸(𝑌𝑥) is identified by a weighted risk where the weight is the 

inverse of the confounder-conditional probability of exposure (i.e., inverse probability of treatment 

weight, hereinafter treatment weight), formally 

𝐸[𝑌𝑥] = 𝐸 [
𝑌𝐼(𝑋 = 𝑥)

Pr(𝑋 = 𝑥|𝑍 = 𝑧)
], 

where 𝐼(𝑎) is an indicator that takes the value 1 when 𝑎 is true and 0 otherwise (proof in Appendix 5B) 

and Pr(𝑋 = 𝑥|𝑍 = 𝑧)−1 is the treatment weight. An estimator of this weighted risk is 
1

𝑛
∑

𝑌𝑖𝐼(𝑋𝑖=𝑥)

Pr̂ (𝑋𝑖=𝑥|𝑍𝑖)
𝑖  

where 𝑖 indexes the independent and identically distributed 𝑛 people included in the sample. 
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Pr̂(𝑋𝑖 = 𝑥|𝑍𝑖) can be estimated nonparametrically or using a parametric model, commonly a logistic 

regression, called a propensity score model.  

With missing data 

When some data are missing, the identification conditions described above are not sufficient 

because the weighted risk above is no longer expressed in terms of fully observed data. Let 𝑅 = 1 for 

complete cases. We can point-identify the risk among the complete cases by incorporating a second 

weight, formally 

𝐸 [
𝑌I(𝑋 = 𝑥)

Pr(𝑋 = 𝑥|𝑍 = 𝑍)
] = 𝐸 [

Pr(𝑅 = 1|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦)

Pr(𝑅 = 1|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦)

𝑌I(𝑋 = 𝑥)

Pr(𝑋 = 𝑥|𝑍 = 𝑍)
] 

= 𝐸 [
𝐸[𝐼(𝑅 = 1)|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦]𝑌I(𝑋 = 𝑥)

Pr(𝑅 = 1|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦) Pr(𝑋 = 𝑥|𝑍 = 𝑧)
] 

= 𝐸 [
𝑌I(𝑋 = 𝑥)I(𝑅 = 1)

Pr(𝑅 = 1|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦) Pr(𝑋 = 𝑥|𝑍 = 𝑧)
]. 

The first equality is multiplication by 1, the second is the equivalence between probability and 

expectation of an indicator function, and the third is the law of total probability. The additional weight, 

Pr(𝑅 = 1|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦)−1, is the inverse of the conditional-probability of missingness, 

hereinafter the missingness weight. We require additional conditions to obtain 

Pr(𝑅 = 1|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦) because some data on 𝑍, 𝑋, or 𝑌 are not observed for people with 𝑅 ≠ 1. 

These conditions are that the data are missing at random (MAR) and there is positivity. We reserve full 

explanation of MAR and estimation of Pr(𝑅 = 1|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦) for section 4. In the missing data 

setting, positivity means that everyone has a non-zero probability of being a complete case.81,85 Once we 

obtain the missingness weight, we subsequently obtain the treatment weight among the weighted 

complete cases (proof in Appendix 5C).124 An estimator of the weighted risk is 

1

𝑛𝑐𝑐
∑

𝑌𝑖𝐼(𝑋𝑖 = 𝑥, 𝑅𝑖 = 1)

Pr̂(𝑅𝑖 = 1|𝑍𝑖 = 𝑧, 𝑋𝑖 = 𝑥, 𝑌𝑖 = 𝑦)Pr̂ (𝑋𝑖 = 𝑥|𝑍𝑖 = 𝑧)
,

𝑖

 

where 𝑛𝑐𝑐 is the number of complete cases, 𝑛𝑐𝑐 = ∑ 𝐼(𝑅𝑖 = 1)𝑖 . 
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Sun and Tchetgen Tchetgen estimators for the missingness weight 

To aide illustration, we introduce a simple example with exposure 𝑋, outcome 𝑌 and confounder 

𝑍. There are nonmonotone missing data with four patterns (Table 5.3). Let 𝑅 denote the pattern to which 

an individual belongs where 𝑅 = 1 is reserved for complete cases. For the missingness weight, we require 

the conditional probability of being a complete case, 𝑃(𝑅 = 1|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦), which is the 

complement of the sum of the probabilities of the other patterns,  

𝑃(𝑅 = 1|𝑍, 𝑋, 𝑌) = 1 − 𝑃(𝑅 = 2|𝑍, 𝑋, 𝑌) − 𝑃(𝑅 = 3|𝑍, 𝑋, 𝑌) − 𝑃(𝑅 = 4|𝑍, 𝑋, 𝑌). 

The MAR condition is that missingness is independent of the missing data, conditional on the observed 

data. For example, 𝑌 is missing in pattern 𝑅 = 2. Under MAR, 𝑅 = 2∐𝑌|𝑍, 𝑋, such that 

𝑃(𝑅 = 2|𝑍, 𝑋, 𝑌) = 𝑃(𝑅 = 2|𝑍, 𝑋). Applying this condition to each pattern, we get 

Pr(𝑅 = 1|𝑍, 𝑋, 𝑌) = 1 − Pr(𝑅 = 2|𝑍, 𝑋) − Pr(𝑅 = 3|𝑋) − Pr(𝑅 = 4|𝑋, 𝑌). 

When missingness is not independent from the missing data, neither marginally nor conditional on 

observed data, then data are missing not at random (MNAR). Data are missing completely at random 

(MCAR) when missingness is marginally independent of the observed and missing data, a stronger 

condition than MAR. 

Sun and Tchetgen Tchetgen developed two estimators for the conditional probability of being a 

complete case under MAR.81,85 Let 𝜋𝑟 be the probability for each pattern. We specify logistic models for 

each pattern 𝑅 > 1, formally 

Pr(𝑅 = 2|𝑍, 𝑋) = 𝜋2(𝛾2) = 1/(1 + exp (−(𝛾20 + 𝛾21 𝑋 + 𝛾22 𝑍))) 

Pr(𝑅 = 3|𝑋) = 𝜋3(𝛾3) = 1/(1 + exp (−(𝛾30 + 𝛾31𝑋))) 

Pr(𝑅 = 4|𝑋, 𝑌) = 𝜋4(𝛾4) = 1/(1 + exp (−(𝛾40 + 𝛾41𝑋 + 𝛾42𝑌))). 

The first estimator is the unconstrained maximum likelihood estimator (UMLE). We maximize the joint 

log-likelihood of the models using the observed data, 

ln ℒ (γ) = ∑{[∑ 𝐼(𝑅𝑖 = 𝑟) ln 𝜋𝑟(𝛾𝑟)

4

𝑟=2

] + 𝐼(𝑅𝑖 = 1) ln [1 − ∑ 𝜋𝑟(𝛾𝑟)

4

𝑟=2

]}

𝑛

𝑖=1

. 
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Each individual contributes a term to the likelihood that corresponds to the pattern to which she belongs. 

The log-likelihood can be maximized in standard software and we provide code in SAS (using the 

NLMIXED procedure) and R (using nlm in the Stats package)125 (Appendix 5D). The UMLE does not 

naturally impose the constraint that  𝜋1 > 0, so the log-likelihood may fail to converge if there is a fitted 

𝜋1 for a complete case close to zero. Therefore, Sun and Tchetgen Tchetgen also proposed the 

constrained Bayesian estimator (CBE).  

 The CBE bounds the probability of being a complete case away from zero by discarding draws 

from the posterior that do not meet a user-specified constraint. Let 𝑐 be a user-specified constraint that is 

a small positive number. CBE produces a posterior distribution that is proportional to the combination of 

the likelihood, constraint, and prior distributions 𝑓(𝛾), 

𝑓(𝛾|𝑋, 𝑍, 𝑌) ∝ ℒ(𝛾)𝐼(𝑅𝑖 = 1)𝐼(𝜋2(𝛾2) + 𝜋3(𝛾3) + 𝜋4(𝛾4) < 1 − 𝑐)𝑓(𝛾). 

Sun and Tchetgen Tchetgen used diffuse priors, 𝛾~𝑁(0,100), 𝑐 = 10−8 and adaptive Gibbs sampling to 

sample from the posterior.126 They used the median of the posterior samples to estimate 𝛾̂. ST provided 

OpenBugs code for implementation.127 In Appendix 5D, we provide R code using R2jags package128 

which calls Just Another Gibbs Sampler (JAGS).129 The OpenBugs and R2jags code are opaque, so we 

provide code in SAS and R for a more transparent (though less efficient) manually coded Metropolis-

Hastings algorithm with rejection sampling that imposes the user-specified constraint by rejecting draws 

that violate it.130 Once 𝛾̂ are estimated by UMLE or CBE, the missingness weight can be estimated for 

each complete case. 

Inference 

The naïve standard error estimate from a weighted analysis is not consistent and resulting Wald-

type confidence intervals may have poor coverage.131 There are at least three options for estimating the 

standard error and obtaining appropriate confidence intervals (CI): 1) “robust” (Huber-White) sandwich 

estimator, 2) nonparametric bootstrap, or 3) sandwich estimator based on stacked estimating functions. 

The robust sandwich estimator, which assumes the weights are known (i.e., not estimated), is easy to 
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implement and expected to produce conservative estimates leading to over-coverage in CIs.27,132 

Nonparametric bootstrapping will produce nominal CIs though it can be computationally intensive.133,134 

Sun and Tchetgen Tchetgen provide stacked estimating functions when the parameter of interest is the 

conditional odds ratio that will produce nominal CIs, though implementation is less user-friendly 

compared to the other options. Here we use the robust sandwich estimator. 

Simulation 

We conducted a limited simulation study to assess finite-sample performance of weighting for 

nonmonotone missingness. The design was guided by the motivating application. We used both SAS and 

R.  

Data generation 

We simulated 5000 studies each with 𝑛 independent individuals, a binary exposure 𝑋, a binary 

outcome 𝑌, and 3 correlated confounders 𝒁 (one continuous and two binary). Under no exposure (𝑋 = 0), 

the marginal incidence of the outcome was 10%. See Appendix 5E for data generation details and causal 

diagram. We varied 𝑛 = (1500, 5000), marginal prevalence of exposure 𝑝𝑥 = (15%, 50%), and the true 

risk difference, in percentage points, 𝜃 = (0,5).  

After generating the full data, we induced missingness guided by our motivating example. In the 

primary scenario, we generated missing data with 6 patterns and 50% complete cases (Table 5.4). For 

each pattern where 𝑅 > 1, we specified a logistic model 

Pr(𝑅 = 𝑟|𝑍, 𝑋, 𝑌) = 1 (1 + exp(−(𝛾𝑟0 + 𝛾𝑟1𝑋 + 𝛾𝑟2𝑌 + 𝛾𝑟3𝑍1 + 𝛾𝑟4𝑍2 + 𝛾𝑟5𝑍3)))⁄  

to obtain individual probabilities of being in that pattern. The probability of being a complete case was the 

complement of the sum of the other probabilities. The observed missing data pattern, 𝑅, was generated 

from a multinomial distribution and then missing data were imposed according to the observed pattern 

(i.e., value of any variable missing under that pattern was set to missing). We varied the 𝛾 coefficients to 

produce missing data that were MAR (coefficients for variables missing in that pattern were zero), 

MCAR (all coefficients were zero), and MNAR (some coefficients for missing variables were non-zero). 
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The 𝛾 intercepts were set by numerical approximation to achieve the desired prevalence of each pattern.135 

We also explored how the percent of complete cases and number of patterns affected results when data 

are MAR (secondary scenarios, Table 5.4).  

Analysis 

In each simulated cohort, we implemented three approaches to address missing data. Regardless 

of missing data approach used, we used inverse probability of treatment weighting to address 

confounding and fit a weighted linear-binomial outcome model conditional on exposure (𝐸(𝑌) = 𝜆 + 𝜃𝑋) 

using generalized estimating equations with an independence covariance structure to estimate the risk 

difference, 𝜃, and robust standard error for Wald-type 95% CIs.  

First, we conducted an analysis restricted to complete cases (i.e., conditional on 𝑅 = 1). We fit 

the treatment propensity score model among the complete cases and estimated the treatment weight as 

Pr̂(𝑋 = 𝑥|𝑍 = 𝑧, 𝑅 = 1)−1.  

Second, we implemented weighting for missingness. We implemented UMLE and, if UMLE 

failed to converge, we estimated 𝛾̂ as the posterior median obtained by CBE implemented by adaptive 

Gibbs sampling with a single chain of 10,000 iterations with 5,000 burn-in samples discarded. We used 

diffuse priors 𝛾~𝑁(0,100) and set 𝑐 = 10−8. For each missingness model, all variables observed in that 

pattern were included. Models were correctly specified except in MNAR scenarios. Using 𝛾̂, we 

estimated the missingness weight, Pr̂(𝑅 = 1|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦)−1.  We subsequently fit the 

missingness-weighted treatment propensity score model among the complete cases to obtain the treatment 

weight, Pr̂(𝑋 = 𝑥|𝑍 = 𝑧)−1. The final weight was the product of the missingness weight and treatment 

weight.  

Third, we implemented MI by chained equations.136,137 Using logistic regression for binary 

variables and linear regression for continuous variables, we imputed missing data 20 times (mice package 

in R138 and MI procedure in SAS). All variables were included in each imputation model which were 

correctly specified except in MNAR scenarios. In each imputed dataset, we fit the treatment propensity 
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score model and estimated the treatment weight, Pr̂(𝑋 = 𝑥|𝑍 = 𝑧)−1. From the treatment-weighted 

outcome models, the 20 estimates were combined by Rubin’s rule,139 (𝜃̅ =
1

20
∑ 𝜃𝑘

20
𝑘=1  where 𝜃𝑘 is the 

estimated risk difference from imputation 𝑘; 𝑉(𝜃̅) =
1

20
∑ 𝑉̂(𝜃𝑘)20

𝑘=1 + (1 +
1

20
) (

1

20−1
)∑ (𝜃𝑘 − 𝜃̅)220

𝑘=1  

where 𝑉̂(𝜃𝑘) is the estimated robust variance for 𝜃𝑘 in imputation 𝑘).  

Finally, we analyzed the full data without inducing missingness. While not available in practice, 

the full data provide a reference against which we compare the three approaches. We fit the treatment 

propensity score model in the full data and estimated the treatment weight as Pr̂(𝑋 = 𝑥|𝑍 = 𝑧)−1.  

To compare estimator performance, we estimated 1) number of times the estimator failed to 

produce results, 2) bias (mean of the risk difference estimates minus the true risk difference), 3) empirical 

standard error (standard deviation of the estimates), 4) root mean squared error (square root of the average 

of the squared differences between each risk difference estimate and the true risk difference), 5) average 

model standard error (square root of the average of the variance estimates), and 6) CI coverage 

(proportion of estimated 95% CIs that included the true risk difference).117 Failures did not contribute to 

the estimation of the other performance measures. We also captured the run time as the average time in 

seconds for a single cohort (each scenario was run separately on a single 2.5GHz processor with up to 

15GB of memory allocated; versions R 4.1.0 and SAS 9.4).  

Results 

Failure to produce results 

For all approaches, failures were rare and occurred with similar frequency across the missing data 

approaches (Table 5.5). In the primary scenario, failures only occurred when exposure prevalence was 

15%, sample size was 1500, and data were missing MAR (≤0.5% failures) or MNAR (≤4.0%). In the 

primary scenario, there were no failures at the larger sample size, 50% exposure prevalence, or when data 

were MCAR. In general, failures for weighting and complete analysis occurred when the weighted 

outcome model restricted to the complete cases did not converge due to too few exposed individuals or 

too few outcomes. Weighting can also fail if UMLE fails to converge and thus missingness weights are 
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not estimate, however this UMLE non-convergence never occurred in SAS and occurred just twice in R 

(across 5000 cohorts in 44 scenarios). In those 2 instances, CBE successfully estimated the weights. For 

the remainder of the simulation results, only UMLE is presented for weighting.  

Statistical performance 

Results from R and SAS were approximately equivalent; we present R only. For the primary 

scenario (6 patterns, 50% complete cases), results are presented in Table 5.6 and Figure 5.1 (MAR), 

Appendix Table 5F.1 and Appendix Figure 5F.1 (MCAR), and Appendix Table 5F.2 and Appendix 

Figure 5F.2 (MNAR). When data were MAR, complete case analysis was notably biased and thus had 

poor coverage. At 50% exposure prevalence, MI and weighting performed similarly with negligible bias 

and nearly the same RMSE and coverage. At 15% exposure prevalence with n=1500, weighting 

performance declined with a small increase in bias and reduced precision and coverage. Comparably, MI 

had greater precision and thus lower RMSE. When data were MCAR, bias was negligible for all 

approaches. Weighting had the same precision as complete case analysis. Again, improved precision of 

MI over weighting was apparent only at 15% exposure prevalence with n=1500. When data were MNAR, 

all missing data approaches were biased. At 15% exposure prevalence, weighting had more bias than MI 

though at 50% exposure prevalence bias was similar. 

 Results from scenarios varying percent of complete cases and number of missing data patterns are 

presented in Appendix Tables 5F.3 and 5F.4. Data were MAR with 50% exposure prevalence. Bias was 

negligible for MI and weighting so plots of results (Figure 5.2 and Appendix Figure 5F.3) focus on 

RMSE and coverage. At n=1500, MI had a lower RMSE than weighting when there were 35% complete 

cases. A small difference persisted at 50% complete cases only when there were 8 patterns and the 

difference nearly disappeared at 65% complete cases. A similar pattern was present when n=5000 though 

the differences between MI and weighting were smaller. For both sample sizes, there was decreasing 

coverage for MI (dropping <95%) and increasing coverage for weighting (>95%) as the percent of 

complete cases declines. There were little differences in results when there were 6 or 8 patterns. 
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Computational efficiency 

Figure 5.3 plots the time in seconds for MI and weighting for all 22 scenarios by sample size 

(Appendix Table 5F.5 for numeric results). On average, MI took 2.7 times as long as weighting in R (13.0 

vs. 4.9 seconds) and 18.3 times as long in SAS (19.2 vs. 1.0 seconds). Weighting was faster in SAS than 

in R (average 1.0 vs. 4.9); MI was slower in SAS than in R (average 19.2 vs.13.0).  

Application 

Methods 

As outlined above, we aimed to estimate the effect of maternal anemia in pregnancy on the risk of 

spontaneous preterm birth. We implemented three approaches to address missing data that mirror the 

simulation study. In all, we used treatments weights to address confounding by gestational age at 

enrollment, maternal age, maternal HIV serostatus, and birth history including parity, prior preterm birth, 

and prior stillbirth. We fit a weighted linear-binomial model to estimate the risk difference and obtained 

Wald-type 95% CIs using the robust standard error. Gestational age and maternal age were modeled with 

restricted quadratic splines with 4 knots at the 5th, 35th, 65th, and 95th percentiles.118  

First, we conducted a complete case analysis restricted to the 781 people with complete data. 

Second, we implemented weighting for missingness. There were a number of missing data patterns with 

few people so we combined rare patterns as suggested by Sun and Tchetgen Tchetgen.85 We combined 

patterns in two ways: 1) patterns 8 through 16 (each <1%, total 2.4%) resulting in 8 total patterns and 2) 

patterns 6 through 16 (each <2%, total 5.7%) resulting in 6 total patterns. All observed variables were 

included in the missingness models. For the combined pattern, the model included variables observed 

across all patterns in the set: gestational age, nulliparity, and prior preterm birth. We implemented UMLE 

and CBE (with diffuse priors 𝛾~𝑁(0,100) and 𝑐 = 10−8). We used Gelman-Rubin statistic (Rhat) to 

assess convergence.140 We estimated 𝛾̂ by the median across 3 chains of 120,000 iterations with the first 

half of samples discarded. Using 𝛾̂, we estimated the missingness weights for the complete cases and then 

fit the missingness-weighted treatment propensity score model to estimate the treatment weights. The 

final weight was the product of the two weights. 
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Third, we implemented MI by chained equations. We implemented MI four ways varying 1) 

whether spline terms were created before imputation (active imputation) or after imputation (passive 

imputation) and 2) imputation model flexibility. The imputation models included all variables from the 

analysis and the exposure-outcome interaction. To increase flexibility, we included interactions between 

the outcome and strong outcome predictors: prior preterm birth, maternal age, and HIV serostatus. We 

imputed missing data 20 times. In each imputed dataset, we fit the treatment propensity score model, 

estimated the treatment weights and then estimated the risk difference and robust variance from the 

treatment-weighted linear-binomial model. The 20 estimates were combined by Rubin’s rule (as detailed 

above). 

Results 

In the complete case analysis, the estimate of the effect of anemia on spontaneous preterm birth 

was 2.7 percentage points (95% CI -5.7, 11.0) (Table 5.7). Although anemia appeared to elevate the risk 

of preterm birth, the confidence interval was wide and encompassed effects ranging from strongly 

protective to strongly causative. While addressing missingness resulted in small changes in the point 

estimate, the confidence intervals remained wide so that these changes were not meaningful. Across the 

weighting approaches, the point estimates varied from 2.1 to 2.3. There was modest improvement in 

statistical efficiency with weighting compared to complete case analysis (standard error: complete case 

4.3, UMLE 4.0, CBE 4.1). Across the MI specifications, the point estimates varied more widely, from 1.9 

to 3.0. The standard errors ranged from 3.8 to 4.1.  

Discussion 

Our work supports the finding of Sun and Tchetgen Tchetgen that weighting is an alternative to 

MI to account for nonmonotone missingness. The UMLE estimator for missingness weights is easy to 

implement in commonly used software and intuitive, in contrast to prior approaches for weighting for 

nonmonotone missingness.81,83–85 We provide code in R and SAS to support uptake of this approach.   

Although theoretically UMLE may fail to converge if there are complete cases with a small 

probability of being a complete case, this was extremely rare in our simulation study (twice in 220,000 
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simulated cohorts). CBE is an alternative that can be used in these settings, though implementation is 

more challenging. Future work could examine characteristics of the datasets in which UMLE failed in an 

effort to anticipate failures. Even when UMLE converges, the weighted outcome model may fail, though, 

this was also rare in our simulation study (≤0.5% under MAR). Weighting failed when the complete case 

analysis also failed as both approaches fit the outcome model restricted to the complete cases. The 

complete case analysis could be used to assess whether weighting is likely to succeed. UMLE non-

convergence was previously examined in a simple simulation by Sun and Tchetgen Tchetgen.85 They 

reported that UMLE failed in approximately 1% of simulation replicates. However, the authors did not 

say specifically whether these failures were due to UMLE non-convergence or non-convergence of the 

weighted outcome model. They also do not report failures of the other approaches.  

 Generally weighting is a semi-parametric approach; in contrast, the more widely-used MI is a 

fully parametric approach. The stronger parametric assumption improves precision of MI,79 however, in 

our simulation, this improved efficiency was only notable at the smaller sample size with 15% exposure 

prevalence. This observed relationship with exposure prevalence may be because there was a lot of 

missingness in the exposure in our simulation (30% in primary scenario marginally). In the other 

scenarios, there was little practical difference in efficiency between weighting and MI. To improve 

efficiency of weighting, augment weighted estimators (also derived by Sun and Tchetgen Tchetgen) could 

to be used.85 We chose to use the non-augmented estimators in this work because they are easier to 

implement and thus more likely to be used in practice. 

 There were two instances where performance was notably different between weighting and MI. 

First, when data were MNAR, both MI and weighting were biased, however MI was less biased than 

weighting. It is not clear whether this is a characteristic of the estimators themselves or a produce of our 

data generating mechanism. In Sun and Tchetgen Tchetgen’s simulation, there was not a consistent 

pattern of bias in the estimators across the parameters of interest under MNAR.85 Second, weighting was 

computationally faster than MI. At the small sample sizes examined here, the difference was trivial, 

however with large sample sizes or when estimating the variance using resampling algorithms with a 



 

51 

moderate sample size, the difference could be meaningful. Under linear extrapolation of our results, 1000 

bootstrap resamples for n=5000 is expected to take 7.8 hours using MI and 0.4 hours using weighting in 

SAS. In R, MI is expected to take 5.1 hours and weighting 1.9 hours. 

 In our empirical example, there was little change in the estimates across the approaches and 

results were imprecise. The application highlights that implementing weighting and MI each require a 

number of analytic decisions. For weighting, some missing data patterns were rare, so we collapsed rare 

patterns. The model for this combined set could only include variables that were observed across all 

patterns in the set and therefore induced an assumption stronger than MAR. Combining patterns may 

induce bias, but such bias is likely small given that the combined patterns include few observations.85 

After estimation, it is good practice to examine the distribution of the weights as extreme weights can 

inflate the variance. Truncation of extreme weights can improve precision though potentially at the cost of 

bias.141 Arguably, MI demands a greater number of analytic decisions.79,142 Some of these decisions 

include: the iterative procedure (Markov chain Monte Carlo vs. chained equations); transforming skewed 

variables; passive vs. active imputation; number of iterations and imputed datasets; and specifying prior 

distributions.78,80,142–151  

Both weighting and MI require correct model specification. In MI, we specify a model for each 

variable with missingness. In weighting, we specify a model for each pattern. The number of potential 

patterns grows exponentially with the number of variables with missingness meaning weighting will often 

require specification of more models than MI. The missingness models in weighting all have binomial 

dependent variables whereas the distribution of the dependent variables in the imputation models may 

take different distributions. Some imputation approaches assume a normal distribution and if this 

assumption is grossly violated, performance can be poor.149 It may be necessary to transform variables 

before imputation. Although it has been argued that it is easier to correctly specify the missingness 

models than the imputation models,79 accurate specification of models depends on context-specific 

knowledge of what variables cause missingness and the functional form of those variables with 

missingness itself (for missingness models) or with the unobserved data (for imputation models). Finally, 
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an important limitation of MI is that specification of the imputation models can impose constraints on the 

model of interest (i.e., the analyst must ensure the imputation models are congenial with the analysis 

model).147 Issues of congeniality can arise by omitting the outcome or important interactions from 

imputation models, or using different functional forms of variables in imputation models and analysis 

models. This is not the case with weighting where specification of the missingness models is independent 

of the full data and therefore does not impose restrictions on the analysis model. 

 Our work has limitations. Our simulation design was relatively simple compared to most data 

settings and we did not vary all elements of the data generating mechanism. We mimicked the patterns 

observed in the application where missing exposure and outcome accounted for most of the missingness 

and results may differ as these patterns change. Finally, other than the MCAR and MNAR scenarios, we 

did not vary the strength of relationships between observed data and missingness. A strength of our work 

is that our simulation employed increased complexity over the only other simulation examining these 

estimators.85 Additionally, in contrast to that previous simulation, we focused on estimating marginal 

effects and combined missing data approaches with inverse probability of treatment weighting to address 

confounding. We also provide code for the estimators in two commonly used software programs.  

Conclusion 

Weighting can be used to address confounding and missing data simultaneously.124 When 

missingness is nonmonotone, Sun and Tchetgen Tchetgen’s UMLE is an easy to implement estimator for 

the missingness weights. Though less statistically efficient in some settings, weighting is a viable 

alternative to MI. Weighting for missingness may be more intuitive for researchers already familiar with 

using weighting to address other biases and computational efficiency is attractive in large datasets or 

when estimating the variance using resampling algorithms such as nonparametric bootstrap. 
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Tables 

Table 5.1. Cohort characteristics overall and stratified by anemia status at enrollment. 

   N (%) 

     Anemia status  

   Overall  Positive Negative Unknown 

Characteristic (N=1447)   (N=138) (N=884) (N=425) 

Spontaneous preterm birth 120 (9.9)  15 (12.4) 70 (9.6) 35 (9.7) 

 Missing 239  17 157 65 
        
At enrollment      

 Gestational age (weeks)      

  Median (IQR) 16.1 (13.3, 18.3)  16.9 (14.7, 18.9) 15.9 (12.9, 18.1) 16.6 (13.6, 18.6) 

  First trimester 432 (29.9)  29 (21) 286 (32.4) 117 (27.5) 

  Missing 0  0 0 0 
        

 Maternal age      

  Median (IQR) 27 (23, 32)  27 (22, 33) 27 (23, 32) 27 (22, 31) 

  <20 years 111 (7.9)  11 (8.3) 59 (6.9) 41 (9.8) 

  20-34 years 1113 (79.2)  102 (76.7) 677 (79.2) 334 (79.9) 

  ≥35 years 182 (12.9)  20 (15) 119 (13.9) 43 (10.3) 

  Missing 41  5 29 7 
        

 HIV+ 349 (24.2)  58 (42) 195 (22.1) 96 (22.7) 

  Missing 3  0 0 3 
        

 Nulliparous 457 (31.6)  40 (29) 286 (32.4) 131 (30.8) 

  Missing 0  0 0 0 
        

 Prior preterm birth 410 (28.3)  40 (29) 258 (29.2) 112 (26.4) 

  Missing 0  0 0 0 
        

 Prior stillbirth 126 (9.3)  15 (11.6) 80 (9.6) 31 (7.8) 

    Missing 85   9 48 28 

Abbreviations: IQR, interquartile range
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Table 5.2. Missing data patterns in the motivating example data from the ZAPPS cohort, n=1447. 

Pattern Anemia 

Spont. 

PTB 

Maternal 

Age 

HIV 

serostatus 

Prior 

stillbirth N % 

1 O O O O O 781 54.0 

2 M O O O O 330 22.8 

3 O M O O O 151 10.4 

4 M M O O O 58 4.0 

5 O O O O M 45 3.1 

6 M O O O M 26 1.8 

7 O O M O O 21 1.5 

8 O M M O O 12 0.8 

9 O M O O M 11 0.8 

10 M M M O O 5 0.4 

11 M O O M O 2 0.1 

12 O O M O M 1 0.1 

13 M O M O O 1 0.1 

14 M O M O M 1 0.1 

15 M M O O M 1 0.1 

16 M M O M O 1 0.1 

“O” indicates variable is observed and “M” indicates variable is missing 

Variables not included here (gestational age at enrollment, maternal HIV serostatus, nulliparity, and prior 

preterm birth) did not have missingness 

Abbreviations: Spont. PTB, spontaneous preterm birth
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Table 5.3. Missing data patterns in the simple illustrative example.  

Pattern (𝑅) 𝑍 𝑋 𝑌 

1 O O O 

2 O O M 

3 M O M 

4 M O O 

“O” indicates variable is observed and “M” indicates variable is missing
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Table 5.4. Missing data patterns in the simulation study. 

      % in each pattern 

Pattern (𝑅) 𝑋 𝑌 𝑍1 𝑍2 𝑍3 Primary Secondary scenarios 

1 O O O O O 50 65 35 50 65 35 

2 M O O O O 15 10 15 10 5 15 

3 O M O O O 15 10 15 10 5 10 

4 M M O O O 10 5 15 10 5 10 

5 O O O O M 5 5 10 5 5 10 

6 M O O O M 5 5 10 5 5 10 

7 O O M O O 
 

    5 5 5 

8 O M M O O       5 5 5 

“O” indicates variable is observed and “M” indicates variable is missing
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Table 5.5. Failures in 5000 simulated datasets when exposure prevalence was 15% and sample size 

was 1500 for primary missing data scenario (6 patterns, 50% complete cases. 

   Risk difference 0%  Risk difference 5% 

Missing data approacha R SAS   R SAS 

MAR      

 CC 12 (0.2%) 25 (0.5%)  0 (0.0%) 1 (<0.1%) 

 MI 18 (0.4%) 25 (0.5%)  0 (0.0%) 1 (<0.1%) 

 Weightingb 12 (0.2%) 25 (0.5%)  0 (0.0%) 1 (<0.1%) 

        
MNAR      

 CC 165 (3.3%) 202 (4.0%)  32 (0.6%) 52 (1.0%) 

 MI 163 (3.3%) 168 (3.4%)  22 (0.4%) 38 (0.8%) 

 Weightingb 162 (3.2%) 202 (4.0%)  34 (0.7%) 52 (1.0%) 

Abbreviations: MAR, missing at random; CC, complete case analysis; MI, multiple imputation; MNAR, 

missing not at random  
aAll approaches addressed confounding using inverse probability of treatment weights 
bUMLE used to estimate the missingness weights
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Table 5.6. Bias, empirical standard error, root mean squared error, average model standard error, and 95% confidence interval coverage 

of the risk difference (in percentage points) for primary missing data scenario (6 patterns, 50% complete cases) when data are missing at 

random (MAR). 

   Exposure prevalence 15%  Exposure prevalence 50% 

Missing data approacha Bias ESE RMSE 

avg. 

ModSE 

95% CI 

Coverage   Bias ESE RMSE 

avg. 

ModSE 

95% CI 

Coverage 

Risk difference 0           

 n=1500            
 

  Full -0.1 2.2 2.2 2.2 94%  0.0 1.6 1.6 1.6 96%  

  CCb -1.6 2.8 3.2 2.8 81%  -1.1 1.9 2.2 1.9 91%  

  MIb 0.4 4.0 4.1 4.3 94%  0.0 2.6 2.6 2.6 94%  

  Weightingb,c -0.5 4.4 4.5 4.5 90%  0.0 2.7 2.7 2.7 95%  
               

 n=5000            
 

  Full 0.0 1.2 1.2 1.2 95%  0.0 0.9 0.9 0.9 95%  

  CC -1.6 1.5 2.2 1.5 77%  -1.0 1.0 1.4 1.0 84%  

  MI 0.2 2.3 2.3 2.4 94%  0.1 1.4 1.4 1.4 95%  

  Weightingc -0.2 2.4 2.4 2.5 94%  0.1 1.4 1.4 1.5 96%  

 
 

             

Risk difference 0.05           

 n=1500            
 

  Full -0.1 2.6 2.6 2.6 95%  0.0 1.7 1.7 1.8 95%  

  CC -3.4 3.5 4.9 3.5 74%  -2.5 2.1 3.3 2.2 78%  

  MI 0.0 4.7 4.7 4.8 94%  0.0 2.8 2.8 2.8 94%  

  Weightingc -0.6 5.2 5.2 5.3 91%  0.0 2.8 2.8 3.0 96%  

              
 

 n=5000            
 

  Full 0.0 1.4 1.4 1.4 95%  0.0 1.0 1.0 1.0 95%  

  CC -3.4 1.9 3.8 1.9 55%  -2.5 1.2 2.7 1.2 45%  

  MI -0.1 2.6 2.6 2.6 94%  0.1 1.5 1.5 1.5 95%  

    Weightingc -0.1 2.8 2.8 2.9 95%   0.1 1.5 1.5 1.6 96%  

Abbreviations: CC, complete case analysis; MI, multiple imputation; ESE, empirical standard error; RMSE, root mean squared error; avg. ModSE, 

average model standard error; CI, confidence interval  
aAll approaches addressed confounding using inverse probability of treatment weights 

Results from 5000 simulated cohorts except approaches marked with b at 15% prevalence (see Table 5 for number of failures) 
cUMLE used to estimate the missingness weights
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Table 5.7. Risk difference estimates (in percentage points) and uncertainty from application 

examining effect of anemia on spontaneous preterm birth. 

Missing data approacha RD 95% CIb SEb 

Complete case analysis 2.7 -5.7, 11.0 4.3 

Weighting, UMLE, 6 patternsc 2.1 -5.8, 10.0 4.0 

Weighting, UMLE, 8 patternsd 2.0 -5.9, 9.9 4.0 

Weighting, CBE, 6 patternsc 2.3 -5.8, 10.3 4.1 

Weighting, CBE, 8 patternsd 2.2 -5.8, 10.2 4.1 

MI, transform/imputee 1.9 -5.7, 9.6 3.8 

MI, transform/impute, more flexiblee,f 3.0 -5.3, 11.2 4.1 

MI, impute/transformg 2.4 -5.6, 10.5 4.0 

MI, impute/transform, more flexibleg,f 3.0 -5.0, 11.0 4.0 

Abbreviations: RD, risk difference in percentage points; CI, confidence interval; SE, standard error; 

UMLE, unconstrainted maximum likelihood estimator; CBE, constrained Bayesian estimator; MI, 

multiple imputation 
aAll approaches addressed confounding using inverse probability of treatment weights 
bRobust standard error estimated by “robust” (Huber-White) sandwich estimator 
cCombined patterns 6 through 16 (each <2%) resulting in 6 total patterns  

dCombined patterns 8 through 16 (each <1%) resulting in 8 total patterns 

eSpline terms were created first and then missing data were imputed 
fMore flexible imputation models included interactions between outcome and strong predictors of the 

outcome: prior preterm birth, maternal age, and HIV serostatus 
gMissing data were imputed first and then spline terms were created 
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Figures 

Figure 5.1. Boxplots of risk difference estimates for primary missing data scenario (6 patterns, 50% 

complete cases) when data are missing at random (MAR). Panel A) true risk difference is 0%; 

panel B) true risk difference is 5%. Horizontal black line marks true risk difference; black dot marks 

mean; small gray dots are a 10% random sample of estimates. Abbreviations: CC, complete case analysis; 

MI, multiple imputation 
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Figure 5.2. Root mean squared error and confidence interval coverage as percent complete cases 

and number of patterns varies when the true risk difference is 5% and data are missing at random 

(MAR). Solid line indicates 6 patterns and dashed line indicates 8 patterns (for Full, the two lines are 

exactly overlaid). Abbreviations: MI, multiple imputation; CI, confidence interval 
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Figure 5.3. Computational time in seconds to implement MI (triangle) and weighting using UMLE 

(circle) from 22 scenarios by sample size and computer program. Filled in black symbol marks the 

mean. Abbreviations: MI, multiple imputation; UMLE, unconstrained maximum likelihood estimator. 



 

63 

CHAPTER 6: DISCUSSION 

Overview of key findings 

In this work we examined approaches to address missing data and measurement error in 

observational epidemiologic studies. This methodological work was motivated by research 

aimed at understanding the underlying causes of preterm birth and identifying points of potential 

intervention to prevent preterm birth.  

Aim 1 

 Outcome misclassification can produce meaningful bias in estimates of risk and causal effects. 

We introduced standardization estimators that leverage external validation data to account for outcome 

misclassification. Our simulation showed that these estimators were unbiased for the marginal risk under 

the natural course and causal effects when assumptions held.  

 To accommodate continuous variables or high dimensional data, we relied on parametric 

modeling. To estimate the conditional outcome risk, we used a modified likelihood previously described 

by Carroll et al. and Lyles et al.61,101 Lyles et al. also described using logistic regression to estimate 

flexible misclassification models in validation data. We have incorporated this flexibility into our 

estimators as well. In Lyles et al., the parameters of interest were the coefficients a logistic regression for 

the outcome. In our work, the parameters of the outcome logistic model were nuisance parameters; rather 

we were interested in estimating marginal effects. Thus, we added a standardization step to the estimators 

described in Lyles et al. With this standardization, the variance estimation proposed in Lyles et al. is no 

longer valid. Therefore, we used M-estimation and the empirical sandwich variance estimator.115,116 Our 

simulation showed that the empirical sandwich variance estimator appropriately estimated the empirical 

standard error. 
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 Because we are leveraging external validation data, we need to transport the misclassification 

model from the validation data to the main study.61(sec2.2.4) We rely on an ignorability assumption for 

transport. For this assumption, we condition on variables related to misclassification and whose 

distribution varies between the validation data and the main study such that, conditional on these 

variables, inclusion in each population is independent of the misclassification model (mismeasured 

outcome conditional on true outcome). We introduce two estimators that account for these variables. 

Versions of these estimators (in the simpler setting without exposure or confounders) were previously 

introduced in Edwards et al. and Ackerman et al.66,67 Although we focused on external validation data, our 

conclusions also apply to internal validation data that is not a conditional random sample from the main 

study, conditional on exposure and confounders.  

 Our work highlighted that we generally need rich validation data to account for measurement 

error unless we make strong assumptions such as the error is nondifferential or that the validation data are 

a random sample of the main study conditional on exposure and confounders.  

Aim 2 

Weighting is an alternative to MI to account for missing data, even when missingness is 

nonmonotone. Previous weighting approaches for nonmonotone missingness were cumbersome, but Sun 

and Tchetgen Tchetgen’s novel UMLE approach is straightforward to implement. Sun and Tchetgen 

Tchetgen’s CBE approach is less straightforward, however, in our simulation UMLE rarely failed, 

making implementation of CBE unnecessary.   

 In our simulation, performance of weighting and MI were mostly similar, however there were 

three differences to highlight. As expected, MI was more precise than weighting; though this 

improvement was notable only at the smaller sample with 15% exposure prevalence. This gain in 

precision comes from stronger parametric assumptions in MI than in weighting.79 Also as expected, we 

observed improved computational efficiency of weighting over MI. Finally, we observed less bias in MI 

than in weighting when the MAR assumption was violated (i.e., data were MNAR). We do not believe 



 

65 

this is an inherent characteristic of these estimators, however, performance when assumptions are violated 

is an area for future research. 

 Ultimately, a number of factors may be considered when choosing between weighting and MI to 

account for nonmonotone missingness.  

1) Model specification: For weighting, we need to correctly specify a model for each missingness 

pattern. Each model has a binary outcome so the choice of parametric family, binomial, is correct. 

However, we need to choose the dependent variables with the correct functional form to satisfy 

our MAR assumption. Specification of these missingness models is independent of the full data 

and therefore does not impose restrictions on the analysis model. For MI, we need to correctly 

specify a model for each variable with missingness. The distribution of these variables may vary 

and a parametric family is chosen for each; there is the possibility that the parametric family may 

be misspecified. It may be necessary to transform variables if the distribution, e.g., normal, is 

grossly violated. Additionally, we need to choose the dependent variables with the correct 

functional form to satisfy our MAR assumption. Importantly, unlike with weighting, specification 

of the imputation models in MI is not independent of the full data and these imputation models 

can imposed restrictions on the analysis model. Therefore, imputation models and analysis model 

must be congenial, meaning both models are compatible with a shared larger model because 

dependencies excluded from the imputation model restrict the analysis model.147 This means that 

in practice the imputation model should be more flexible than the analysis model. 

Although it has been argued that it is easier to correctly specify the missingness models 

than the imputation models,79 accurate specification of models depends on context-specific 

knowledge of what variables cause missingness and the functional form of those variables with 

missingness itself (for missingness models) or with the unobserved data (for imputation models). 

2) Precision: MI is expected to be more precise than weighting. Our simulation illustrated that this 

improved precision may not always be meaningful. Precision is likely affected by sample size, 
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exposure prevalence, outcome incidence, the number of missingness patterns, and the number of 

complete cases.  

3) Computational time: Given the relative difference in computation time observed in our 

simulation, weighting may be preferred some settings where computational efficiency matters, 

such as when there is a large sample size or when resampling approaches, such as nonparametric 

bootstrap, are needed to estimate confidence intervals. 

4) Comfort: A researcher’s comfort level with each approach (and the various decisions required for 

implementation) is important for correct implementation, interpretation, and communication of 

results.   

Finally, a researcher can implement both approaches. As each approach relies on correct specification of 

different models, agreement between the approaches may indicate minimal bias.  

Limitations 

 Limitations specific to each aim are presented in the Discussion sections of Chapters 4 and 5. In 

this section we highlight limitations shared by the two aims.  

 We performed simulation studies in each aim. In Aim 1, the objective was to illustrative 

implementation of the proposed estimators, that validity aligned with expectations given the data 

generation and assumptions of each estimator, and that the empirical sandwich variance estimator was 

valid. In Aim 2, the objective was to compare performance of weighting to MI to address nonmonotone 

missing data. We specifically examined the setting of a time-fixed exposure in which weighting was used 

to account for confounding. A limitation of our work is that these simulation studies were restricted to a 

small number of settings. As is generally true of simulation studies, we could not and did not aim to 

examine performance of these estimators across many realistic settings. For example, we did not examine 

performance when parametric models were misspecified. Additionally, data generation closely mimicked 

the applied examples and did not dramatically alter data generation in different scenarios, beyond a 

limited set of factors in Aim 2. The nature of these simulation studies limits the generalizability of our 
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results. For example, we cannot say whether our findings of the comparative performance of weighting 

and MI in our second Aim 2 extend to settings with a time-to-event outcome.  

 In both aims, our parameters of interest included causal effects. To connect the observed 

outcomes to potential outcomes, we invoked the causal consistency assumption. This assumption is that 

the observed outcome is the potential outcome if the exposure had been set to the observed exposure 

value. Formally, for a binary exposure, this can be written as 𝑌 = 𝐴𝑌1 + (1 − 𝐴)𝑌0 where 𝑌𝑎 is the 

potential outcome when 𝐴 is set to 𝑎.152 This assumption is sometimes combined with an assumption of 

no interference and collectively called the stable unit-treatment value assumption, referred to as 

SUTVA.152 Causal consistency is met by design and is intuitive in a trial where a specific intervention is 

randomized. This is not the case however in observational studies, particularly those of biologic 

features.108 In our applied examples, we examined the exposures of maternal HIV infection and maternal 

anemia. It is challenging to conceive of interventions that eliminate anemia or HIV infection. Even if we 

can conceive of these interventions, it is likely such interventions would affect pregnancy outcomes in 

ways unrelated to anemia or HIV infection. Therefore, the causal consistency assumption is unlikely to 

hold in our applied examples. If this assumption is violated, then we cannot interpret our estimates as 

causal effects.        

Implications 

 Epidemiology training and research largely focus on methods for mitigating confounding bias 

under the strong assumptions of no missing data and no measurement error. Yet, missing data and 

measurement error are ubiquitous, particularly in observational data sources, and they hamper our ability 

to produce accurate results. Unfortunately, there are barriers to widespread adoption of principled 

approaches for missing data and measurement error in applied research, including poor dissemination to 

broad non-statistical audiences. The research in this dissertation addresses such methodological 

challenges by developing and applying modern epidemiologic tools with the goal of making them more 

accessible to researchers. This research supports broader use of these tools to increase the quality of 
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research and produce more actionable evidence to improve pregnancy outcomes and public health more 

broadly. 

 There are four important strengths of this research. First, we focused on epidemiologic tools that 

address multiple biases. In Aim 1, the estimators address confounding and outcome misclassification. In 

Aim 2, the estimators address confounding and missing data. Methods research often examines 

performance of analytic approaches that address one bias in isolation, however this does not reflect 

realistic data analysis of observational data. Second, we focused on estimators of marginal standardized 

measures in contrast to previous work. For both aims, the estimators built on prior work that focused on 

estimation of conditional log odds ratios, i.e., the coefficients in a logistic regression.85,101 We 

incorporated modern standardization approaches to estimate marginal measures, g-computation in Aim 1 

and weighting in Aim 2. Third, we considered estimators of causal effects. We incorporated potential 

outcomes notation and relied on a set of causal identification conditions that included conditional 

exchangeability with positivity and causal consistency. Finally, we provide code to support uptake of 

these estimators. 

 To conclude, measurement error and missing data pose serious threats to valid estimation of 

descriptive and causal parameters. Qualitative conjectures about the direction of potential bias do not 

produce more accurate results or inform inference. In Aim 1, to address outcome misclassification and 

confounding, we proposed estimators that leverage external validation data. To appropriately address 

misclassification and satisfy identification assumptions, we generally need rich and large validation data. 

The estimators introduced here are able to leverage external already existing data for validation. In Aim 2, 

we showed that weighting can be used to address confounding and missing data simultaneously.124 When 

missingness is nonmonotone, Sun and Tchetgen Tchetgen’s UMLE is an easy to implement estimator for 

the missingness weights. Though less statistically efficient in some settings, weighting is a viable 

alternative to MI. Weighting for missingness may be more intuitive for researchers already familiar with 

using weighting to address other biases and computational efficiency is attractive in large datasets or 

when estimating the variance using resampling algorithms such as nonparametric bootstrap. 
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 Future work will build on this research in several ways. A strength of the current work is that we 

focused on methodological tools that address multiple biases, measurement error and confounding in Aim 

1 and missing data and confounding in Aim 2. However, the analysis of real data often must address all 

three – missing data, measurement error, and confounding – and potentially more. Future work will 

examine approaches to address all three biases. One area of research will be to examine the impacts of 

missing data in our measurement error approaches and how missing data can be addressed. It will be 

important to distinguish missing data in the study sample and in the external validation sample because 

the latter is not typically part of the target population. Another area of research will consider how to 

improve efficiency of approaches that address multiple biases, particularly measurement error. We 

observed a notable loss of precision when we relaxed our assumption of nondifferential error, particularly 

for the causal effect estimate. It is important that we allow for differential error as we saw that 

erroneously assuming nondifferential error can be more biased than the naïve analysis, however relaxing 

this assumption may produce results that are so imprecise as to be uninformative. Finally, future work 

will focus on the development and communication of generalizability and transportability methods. Data 

fusion, the combining of multiple data sources, continues to increase in our field and data fusion 

necessarily relies on transporting parameters between samples. Further, most modern epidemiology 

approaches, in general, generalize or transport estimates whether they address confounding, selection 

bias, or other biases. For example, the average treatment effect involves generalizing risks among the 

treated and untreated to the total population. Analogously, the average treatment effect in the treated 

involves transporting the risk in the untreated to the treated population. We believe that promoting a 

shared language, instead of using language specific for each bias, will accelerate methods development 

and adoption. 
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APPENDIX: CHAPTER 4 

Appendix 4A: Rogan-Gladen Equation proof 

Let 𝑃(𝑌∗ = 1|𝑌 = 1) = 𝑆𝑒 and  𝑃(𝑌∗ = 0|𝑌 = 0) = 𝑆𝑝 

𝑃(𝑌∗ = 1) 

= 𝑃(𝑌∗ = 1|𝑌 = 1)𝑃(𝑌 = 1) + 𝑃(𝑌∗ = 1|𝑌 = 0)𝑃(𝑌 = 0)  

= 𝑃(𝑌∗ = 1|𝑌 = 1)𝑃(𝑌 = 1) + (1 − 𝑃(𝑌∗ = 0|𝑌 = 0))(1 − 𝑃(𝑌 = 1))  

= 𝑆𝑒 × 𝑃(𝑌 = 1) + (1 − 𝑆𝑝)(1 − 𝑃(𝑌 = 1))  

= 𝑆𝑒 × 𝑃(𝑌 = 1) + 1 − 𝑃(𝑌 = 1) − 𝑆𝑝 + 𝑆𝑝 × 𝑃(𝑌 = 1) 

= 𝑃(𝑌 = 1)(𝑆𝑒 − (1 − 𝑆𝑝))  + (1 − 𝑆𝑝) 

Therefore, 𝑃(𝑌 = 1) =
𝑃(𝑌∗=1)−(1−𝑆𝑝)

𝑆𝑒−(1−𝑆𝑝)
 

where the first equality follows the law of total probability, the second follows from convexity, the third 

is by definition of 𝑆𝑒 and 𝑆𝑝, and the fourth and fifth are algebraic rearrangement. 

Conditional version 

Let 𝑃(𝑌∗ = 1|𝑌 = 1, 𝑆 = 𝑠) = 𝑆𝑒𝑆 and  𝑃(𝑌∗ = 0|𝑌 = 0, 𝑆 = 𝑠) = 𝑆𝑝𝑆 

𝑃(𝑌∗ = 1|𝑆 = 𝑠) where 𝑆 is a vector of covariates 

= 𝑃(𝑌∗ = 1|𝑌 = 1, 𝑆 = 𝑠)𝑃(𝑌 = 1|𝑆 = 𝑠) + 𝑃(𝑌∗ = 1|𝑌 = 0, 𝑆 = 𝑠)𝑃(𝑌 = 0|𝑆 = 𝑠) 

= 𝑃(𝑌∗ = 1|𝑌 = 1, 𝑆 = 𝑠)𝑃(𝑌 = 1|𝑆 = 𝑠) + (1 − 𝑃(𝑌∗ = 0|𝑌 = 0, 𝑆 = 𝑠))(1 − 𝑃(𝑌 = 1|𝑆 = 𝑠)) 

= 𝑆𝑒𝑆 × 𝑃(𝑌 = 1|𝑆 = 𝑠) + (1 − 𝑆𝑝𝑆)(1 − 𝑃(𝑌 = 1|𝑆 = 𝑠)) 

= 𝑆𝑒𝑆 × 𝑃(𝑌 = 1|𝑆 = 𝑠) + 1 − 𝑃(𝑌 = 1|𝑆 = 𝑠) − 𝑆𝑝𝑆 + 𝑆𝑝𝑆 × 𝑃(𝑌 = 1|𝑆 = 𝑠) 

= 𝑃(𝑌 = 1|𝑆 = 𝑠)(𝑆𝑒𝑆 − (1 − 𝑆𝑝𝑆))  + (1 − 𝑆𝑝𝑆) 

 Therefore, 𝑃(𝑌 = 1|𝑆 = 𝑠) =
𝑃(𝑌∗=1|𝑆=𝑠)−(1−𝑆𝑝𝑆)

𝑆𝑒𝑆−(1−𝑆𝑝𝑆)
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Appendix 4B: Proof of conditioning on W approach  

Let 𝑆𝑒𝐴,𝑍,𝑊,𝑅=𝑟 = 𝑃(𝑌∗ = 1|𝑌 = 1, 𝐴 = 𝑎, 𝑍 = 𝑧,𝑊 = 𝑤, 𝑅 = 𝑟) and 𝑆𝑝𝐴,𝑍,𝑊,𝑅=𝑟 =

𝑃(𝑌∗ = 0|𝑌 = 0, 𝐴 = 𝑎, 𝑍 = 𝑧,𝑊 = 𝑤, 𝑅 = 𝑟) 

𝑃(𝑌(𝑎) = 1|𝑅 = 1) 

Apply law of total probability 

= ∑𝑃(𝑌(𝑎) = 1|𝑍 = 𝑧,𝑊 = 𝑤, 𝑅 = 1)𝑃(𝑍 = 𝑧,𝑊 = 𝑤|𝑅 = 1)

𝑧,𝑤

 

Apply conditional exchangeability 𝑌(𝑎)∐𝐴|𝑍,𝑊 

= ∑𝑃(𝑌(𝑎) = 1|𝐴 = 𝑎, 𝑍 = 𝑧,𝑊 = 𝑤, 𝑅 = 1)𝑃(𝑍 = 𝑧,𝑊 = 𝑤|𝑅 = 1)

𝑧,𝑤

 

Apply causal consistency 

= ∑𝑃(𝑌 = 1|𝐴 = 𝑎, 𝑍 = 𝑧,𝑊 = 𝑤, 𝑅 = 1)𝑃(𝑍 = 𝑧,𝑊 = 𝑤|𝑅 = 1)

𝑧,𝑤

 

Apply Rogan-Gladen 

= ∑
𝑃(𝑌∗ = 1|𝐴 = 𝑎, 𝑍 = 𝑧,𝑊 = 𝑤, 𝑅 = 1) − (1 − 𝑆𝑝𝐴,𝑍,𝑊,𝑅=1)

𝑆𝑒𝐴,𝑍,𝑊,𝑅=1 − (1 − 𝑆𝑝𝐴,𝑍,𝑊,𝑅=1)
𝑃(𝑍 = 𝑧,𝑊 = 𝑤|𝑅 = 1)

𝑧,𝑤

 

Apply transportability condition 𝑅∐𝑌∗|𝑌, 𝐴, 𝑍,𝑊 

= ∑
𝑃(𝑌∗ = 1|𝐴 = 𝑎, 𝑍 = 𝑧,𝑊 = 𝑤, 𝑅 = 1) − (1 − 𝑆𝑝𝐴,𝑍,𝑊,𝑅=0)

𝑆𝑒𝐴,𝑍,𝑊,𝑅=0 − (1 − 𝑆𝑝𝐴,𝑍,𝑊,𝑅=0)
𝑃(𝑍 = 𝑧,𝑊 = 𝑤|𝑅 = 1)

𝑧,𝑤
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Appendix 4C: Multinomial outcomes 

Let 𝑦 denote the level of a multinomial outcome, 𝑦 = 0,1, … ,𝑚. To estimate 𝑃(𝑌 = 𝑦|𝐴 =

𝑎, 𝑍 = 𝑧, 𝑅 = 1), we again use a maximum likelihood approach. Let 𝜇𝑖𝑦 = 𝑃(𝑌 = 𝑦|𝐴𝑖 , 𝑍𝑖 , 𝑅𝑖 = 1). We 

specify a multinomial model consisting of logistic models for 𝑦 > 0, ln(𝜇𝑖𝑦 𝜇𝑖0⁄ ) = 𝛽0𝑦 + 𝛽1𝑦𝐴𝑖 +

𝛽𝑧𝑦ℎ(𝑍𝑖) where ℎ(⋅) is a flexible function that may include interactions with other variables in the model. 

Note that 𝜇𝑖𝑦 =
exp(𝛽0𝑦+𝛽1𝑦𝐴𝑖+𝛽𝑧𝑦ℎ(𝑍𝑖))

[1+∑ exp(𝛽0𝑘+𝛽1𝑘𝐴𝑖+𝛽𝑧𝑘ℎ(𝑍𝑖))
𝑚
𝑘=1 ]

 when 𝑦 > 0 and 𝜇𝑖0 = 1 − ∑ 𝜇𝑖𝑘
𝑚
𝑘=1 . We estimate 𝛾 by 

maximizing the modified likelihood in the study sample 

𝐿(𝛽) = ∏∏{[∑𝑃̂(𝑌∗ = 𝑘|𝑌 = 𝑙)𝜇𝑖𝑙

𝑚

𝑙=0

]

𝑅𝑖𝐼(𝑌𝑖
∗=𝑘)

}

𝑚

𝑘=0

𝑁

𝑖=1

. 

We estimate the risk of level 𝑦 under the observed exposure distribution as 
1

𝑛1
∑ 𝑅𝑖𝜇̂𝑖𝑦

𝑁
𝑖=1  and the 

counterfactual risk of level 𝑦 as  
1

𝑛1
∑ 𝑅𝑖𝜇̂𝑖𝑦

𝑎𝑁
𝑖=1 . Note that ∑ 𝜇̂𝑖𝑘

𝑚
𝑘=0 = 1. 

For estimation of the misclassification parameters in which error is differential with respect to 𝑍, 

let 𝜌𝑖𝑦 = 𝑃(𝑌∗ = 𝑦|𝑌𝑖 , 𝑍𝑖 , 𝑅𝑖 = 0). In the validation data, we fit the multinomial logistic model consisting 

of logistic models for 𝑦 > 0, ln(𝜌𝑖𝑦 𝜌𝑖0⁄ ) = 𝛿0𝑦 + ∑ 𝛿𝑘𝑦𝐼(𝑌𝑖 = 𝑘)𝑚
𝑘=1 + 𝛿𝑧𝑦ℎ(𝑍𝑖), and transport the 

fitted 𝛿̂ to the study sample. Each individual in the study sample will have (𝑚 + 1)2 misclassification 

parameters, one for each combination of 𝑌∗ and 𝑌. Let 𝜌̂𝑖𝑘𝑙 = 𝑃̂(𝑌∗ = 𝑙|𝑌𝑖 = 𝑘, 𝑍𝑖 , 𝑅𝑖 = 0) and  

𝜌̂𝑖𝑘𝑙 = exp (𝛿̂0𝑙 + 𝛿̂𝑘𝑙 + 𝛿̂𝑧𝑙ℎ(𝑍𝑖)) / [1 + ∑exp (𝛿̂0𝑡 + 𝛿̂𝑘𝑡 + 𝛿̂𝑧𝑡ℎ(𝑍𝑖))

𝑚

𝑡=1

] 

when 𝑙 > 0. Note for 𝑘 = 0, there is no term 𝛿̂0𝑙. For 𝑙 = 0, 𝜌̂𝑖𝑘0 = 1 − ∑ 𝜌̂𝑖𝑘𝑡
𝑚
𝑡=1 . 
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Appendix 4D: Proof of weighted estimator  

Proof 1 relying on 𝑊∐𝑌|𝐴, 𝑍, 𝑅  

𝑃(𝑌∗ = 𝑦|𝑌, 𝐴, 𝑍, 𝑅 = 1) 

Apply law of total probability 

= ∑𝑃(𝑌∗ = 𝑦|𝑌, 𝐴, 𝑍,𝑊 = 𝑤, 𝑅 = 1)𝑃(𝑊 = 𝑤|𝑌, 𝐴, 𝑍, 𝑅 = 1)

𝑤

 

Apply transportability condition 𝑅∐𝑌∗|𝑌, 𝐴, 𝑍,𝑊 

= ∑𝑃(𝑌∗ = 𝑦|𝑌, 𝐴, 𝑍,𝑊 = 𝑤, 𝑅 = 0)𝑃(𝑊 = 𝑤|𝑌, 𝐴, 𝑍, 𝑅 = 1)

𝑤

 

Apply Bayes theorem 

= ∑
𝑃(𝑌∗ = 𝑦,𝑊 = 𝑤|𝑌, 𝐴, 𝑍, 𝑅 = 0)𝑃(𝑌 = 𝑦, 𝐴 = 𝑎, 𝑍 = 𝑧|𝑅 = 0)

𝑃(𝑊 = 𝑤|𝑌, 𝐴, 𝑍, 𝑅 = 0)𝑃(𝑌 = 𝑦, 𝐴 = 𝑎, 𝑍 = 𝑧, |𝑅 = 0)
𝑃(𝑊 = 𝑤|𝑌, 𝐴, 𝑍, 𝑅 = 1)

𝑤

 

Rearrange terms 

= ∑𝑃(𝑌∗ = 𝑦,𝑊 = 𝑤|𝑌, 𝐴, 𝑍, 𝑅 = 0)
𝑃(𝑊 = 𝑤|𝑌, 𝐴, 𝑍, 𝑅 = 1)

𝑃(𝑊 = 𝑤|𝑌, 𝐴, 𝑍, 𝑅 = 0)
𝑤

 

Apply condition 𝑊∐𝑌|𝐴, 𝑍, 𝑅  

= ∑𝑃(𝑌∗ = 𝑦,𝑊 = 𝑤|𝑌, 𝐴, 𝑍, 𝑅 = 0)
𝑃(𝑊 = 𝑤|𝐴, 𝑍, 𝑅 = 1)

𝑃(𝑊 = 𝑤|𝐴, 𝑍, 𝑅 = 0)
𝑤

 

Apply Bayes theorem 

= ∑𝑃(𝑌∗ = 𝑦,𝑊 = 𝑤|𝑌, 𝐴, 𝑍, 𝑅 = 0)
𝑃(𝑅 = 1|𝑊, 𝐴, 𝑍)𝑃(𝑊 = 𝑤, 𝐴 = 𝑎, 𝑍 = 𝑧)

𝑃(𝑅 = 1|𝐴, 𝑍)𝑃(𝐴 = 𝑎, 𝑍 = 𝑧)

𝑃(𝑅 = 0|𝑌, 𝐴, 𝑍)𝑃(𝐴 = 𝑎, 𝑍 = 𝑧)

𝑃(𝑅 = 0|𝑊, 𝐴, 𝑍)𝑃(𝑊 = 𝑤, 𝐴 = 𝑎, 𝑍 = 𝑧)
𝑤

 

Rearrange terms 

= ∑𝑃(𝑌∗ = 𝑦,𝑊 = 𝑤|𝑌, 𝐴, 𝑍, 𝑅 = 0)
𝑃(𝑅 = 1|𝑊, 𝐴, 𝑍)

𝑃(𝑅 = 0|𝑊, 𝐴, 𝑍)

𝑃(𝑅 = 0|𝐴, 𝑍)

𝑃(𝑅 = 1|𝐴, 𝑍)
𝑤
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Proof 2 relying on 𝑅∐𝑌|𝐴, 𝑍,𝑊 and 𝑅∐𝑌|𝐴, 𝑍  

𝑃(𝑌∗ = 𝑦|𝑌, 𝐴, 𝑍, 𝑅 = 1) 

Apply law of total probability 

= ∑𝑃(𝑌∗ = 𝑦|𝑌, 𝐴, 𝑍,𝑊 = 𝑤, 𝑅 = 1)𝑃(𝑊 = 𝑤|𝑌, 𝐴, 𝑍, 𝑅 = 1)

𝑤

 

Apply transportability condition 𝑅∐𝑌∗|𝑌, 𝐴, 𝑍,𝑊 

= ∑𝑃(𝑌∗ = 𝑦|𝑌, 𝐴, 𝑍,𝑊 = 𝑤, 𝑅 = 0)𝑃(𝑊 = 𝑤|𝑌, 𝐴, 𝑍, 𝑅 = 1)

𝑤

 

Apply Bayes theorem 

= ∑
𝑃(𝑌∗ = 𝑦,𝑊 = 𝑤|𝑌, 𝐴, 𝑍, 𝑅 = 0)𝑃(𝑌 = 𝑦, 𝐴 = 𝑎, 𝑍 = 𝑧|𝑅 = 0)

𝑃(𝑊 = 𝑤|𝑌, 𝐴, 𝑍, 𝑅 = 0)𝑃(𝑌 = 𝑦, 𝐴 = 𝑎, 𝑍 = 𝑧, |𝑅 = 0)
𝑃(𝑊 = 𝑤|𝑌, 𝐴, 𝑍, 𝑅 = 1)

𝑤

 

Rearrange terms 

= ∑𝑃(𝑌∗ = 𝑦,𝑊 = 𝑤|𝑌, 𝐴, 𝑍, 𝑅 = 0)
𝑃(𝑊 = 𝑤|𝑌, 𝐴, 𝑍, 𝑅 = 1)

𝑃(𝑊 = 𝑤|𝑌, 𝐴, 𝑍, 𝑅 = 0)
𝑤

 

Apply Bayes theorem 

= ∑𝑃(𝑌∗ = 𝑦,𝑊 = 𝑤|𝑌, 𝐴, 𝑍, 𝑅 = 0)
𝑃(𝑅 = 1|𝑌,𝑊, 𝐴, 𝑍)𝑃(𝑌 = 𝑦,𝑊 = 𝑤, 𝐴 = 𝑎, 𝑍 = 𝑧)

𝑃(𝑅 = 1|𝑌, 𝐴, 𝑍)𝑃(𝑌 = 𝑦, 𝐴 = 𝑎, 𝑍 = 𝑧)

𝑃(𝑅 = 0|𝑌, 𝐴, 𝑍)𝑃(𝑌 = 𝑦, 𝐴 = 𝑎, 𝑍 = 𝑧)

𝑃(𝑅 = 0|𝑌,𝑊, 𝐴, 𝑍)𝑃(𝑌 = 𝑦,𝑊 = 𝑤, 𝐴 = 𝑎, 𝑍 = 𝑧)
𝑤

 

Rearrange terms 

= ∑𝑃(𝑌∗ = 𝑦,𝑊 = 𝑤|𝑌, 𝐴, 𝑍, 𝑅 = 0)
𝑃(𝑅 = 1|𝑌,𝑊, 𝐴, 𝑍)

𝑃(𝑅 = 0|𝑌,𝑊, 𝐴, 𝑍)

𝑃(𝑅 = 0|𝑌, 𝐴, 𝑍)

𝑃(𝑅 = 1|𝑌, 𝐴, 𝑍)
𝑤

 

Apply condition 𝑅∐𝑌|𝐴, 𝑍,𝑊 and 𝑅∐𝑌|𝐴, 𝑍 

= ∑𝑃(𝑌∗ = 𝑦,𝑊 = 𝑤|𝑌, 𝐴, 𝑍, 𝑅 = 0)
𝑃(𝑅 = 1|𝑊, 𝐴, 𝑍)

𝑃(𝑅 = 0|𝑊, 𝐴, 𝑍)

𝑃(𝑅 = 0|𝐴, 𝑍)

𝑃(𝑅 = 1|𝐴, 𝑍)
𝑤
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Appendix 4E: M-estimation  

4E.1 M-estimation overview 

Let 𝜃 denote a 𝑝-by-1-dimensional vector of parameters (i.e., 𝜃 = (𝜃1, … , 𝜃𝑝)), 𝑂𝑖 be the 

observed data where 𝑖 indexes 𝑁 independent individuals, and 𝑔(∙) be a 𝑝-by-1 vector of estimating 

functions. An M-estimator, 𝜃, is the solution to ∑ 𝑔(𝑂𝑖 , 𝜃) = 0𝑁
𝑖=1 . For example, 𝑔(𝑋𝑖 , 𝜃) = 𝑋𝑖 − 𝜃 is the 

estimating function for the mean. For maximum likelihood, the first derivative of the log-likelihood, or 

the score functions, are the corresponding estimating functions.  

The covariance of 𝜃, denoted as Σ𝜃̂ (i.e., the covariance matrix for 𝜃 where the diagonals are the 

variance of each parameter in 𝜃), can be estimated by the empirical sandwich estimator Σ̂𝜃̂ =

𝑁−1 [𝐵𝑁(𝜃)
−1

𝑀𝑁(𝜃) {𝐵𝑁(𝜃)
−1

}
𝑇
] where 𝐵𝑁(𝜃) = 𝑁−1 ∑ −𝑔′(𝑂𝑖; 𝜃)𝑁

𝑖=1  where 𝑔′(𝑂𝑖; 𝜃) = [
𝜕𝑔(𝑂𝑖;𝜃)

𝜕𝜃
] is 

the matrix of partial derivatives of 𝑔 with respect to each parameter and 𝑀𝑁(𝜃) =

𝑁−1 ∑ 𝑔(𝑂𝑖; 𝜃)𝑔(𝑂𝑖; 𝜃)
𝑇𝑁

𝑖=1 . Wald-type confidence intervals for the parameters are constructed using the 

square root of the diagonal of Σ̂𝜃̂. 

4E.2 Stacked estimating functions for estimators in the paper 

Note: To simplify and limit the length of this appendix, we do not include flexible functions or all 

possible interactions terms. Stacks can be straightforwardly extended to accommodate flexible modeling. 

4E.2.1 Notation 

Let 𝑅 be an indicator of the which population an individual belongs to where 𝑅 = 1 for the study 

sample and 𝑅 = 0 for the validation cohort. Here, the observed data are 𝑂𝑖 = {𝑅𝑖 , 𝐴𝑖 , 𝑍𝑖 ,𝑊𝑖 , 𝑌𝑖
∗, 𝑌𝑖(1 −

𝑅𝑖)}. Let 𝑌𝑖(𝑎) be the potential outcome when 𝐴𝑖 = 𝑎. Let 𝐼(𝑥) be an indicator function that equals 1 if 𝑥 

is true and 0 otherwise. For simplification of notation, 𝑍 and 𝑊 are each treated as a single variable. 

4E.2.2 Assuming no misclassification 

Here, 𝜃 = (𝛼, 𝛽) with 𝛼 = (𝛼1, 𝛼2, 𝛼3, 𝛼4) as the parameters of interest where 𝛼1 = 𝛼2 − 𝛼3, 

𝛼2 =  𝐸(𝑌𝑖
1), 𝛼3 = 𝐸(𝑌𝑖

0), and 𝛼4 = 𝐸(𝑌𝑖); and 𝛽 = (𝛽0, 𝛽1, 𝛽2, 𝛽3) as the nuisance parameters for the 
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outcome model in the study sample, Pr (𝑌𝑖
∗ = 1) = expit(𝛽0 + 𝛽1𝐴𝑖 + 𝛽2𝑍𝑖 + 𝛽3𝐴𝑖𝑍𝑖) = expit(𝑋𝑖𝛽

𝑇) 

where 𝑋𝑖 = (1, 𝐴𝑖 , 𝑍𝑖 , 𝐴𝑖𝑍𝑖). 

𝑔(𝑂𝑖 , 𝜃) =

[
 
 
 
 
 
 
 
 
 

𝐼(𝑅𝑖 = 1)[(𝛼2 − 𝛼3) − 𝛼1]

𝐼(𝑅𝑖 = 1)(𝑌̂(1)𝑖 − 𝛼2)

𝐼(𝑅𝑖 = 1)(𝑌̂(0)𝑖 − 𝛼3)

𝐼(𝑅𝑖 = 1)(𝑌̂𝑖 − 𝛼4)

𝐼(𝑅𝑖 = 1)[𝑌𝑖
∗ − expit(𝑋𝑖𝛽

𝑇)]

𝐼(𝑅𝑖 = 1)[𝑌𝑖
∗ − expit(𝑋𝑖𝛽

𝑇)]𝐴𝑖

𝐼(𝑅𝑖 = 1)[𝑌𝑖
∗ − expit(𝑋𝑖𝛽

𝑇)]𝑍𝑖

𝐼(𝑅𝑖 = 1)[𝑌𝑖
∗ − expit(𝑋𝑖𝛽

𝑇)]𝐴𝑖𝑍𝑖]
 
 
 
 
 
 
 
 
 

  

where 𝑌̂𝑖 = expit(𝑋𝑖𝛽̂
𝑇), 𝑌̂𝑖(0) = expit(𝑋𝑖

0𝛽̂𝑇), and 𝑌̂𝑖(1) = expit(𝑋𝑖
1𝛽̂𝑇) in which 𝑋𝑖

1 = (1,1, 𝑍𝑖 , 𝑍𝑖) 

and 𝑋𝑖
0 = (1,0, 𝑍𝑖 , 0). 

4E.2.3 Accounting for nondifferential outcome misclassification (Figure 1A) 

The full set of parameters to be estimated is 𝜃 = (𝛼, 𝛽, 𝛾) where 𝛼 and 𝛽 are the same as in 

4E.2.2 and 𝛾 = (𝛾1 = 𝑆𝑒, 𝛾2 = 1 − 𝑆𝑝)  

 

𝑔(𝑂𝑖 , 𝜃) =

[
 
 
 
 
 
 
 
 
 
 
 

𝐼(𝑅𝑖 = 1)(𝛼2 − 𝛼3) − 𝛼1

𝐼(𝑅𝑖 = 1)(𝑌̂(1)𝑖 − 𝛼2)

𝐼(𝑅𝑖 = 1)(𝑌̂(0)𝑖 − 𝛼3)

𝐼(𝑅𝑖 = 1)(𝑌̂𝑖 − 𝛼4)

𝐼(𝑅𝑖 = 1)expit(𝑋𝑖𝛽
𝑇)[1 − expit(𝑋𝑖𝛽

𝑇)]𝑆𝑖

𝐼(𝑅𝑖 = 1)expit(𝑋𝑖𝛽
𝑇)[1 − expit(𝑋𝑖𝛽

𝑇)]𝐴𝑖𝑆𝑖

𝐼(𝑅𝑖 = 1)expit(𝑋𝑖𝛽
𝑇)[1 − expit(𝑋𝑖𝛽

𝑇)]𝑍𝑖𝑆𝑖

𝐼(𝑅𝑖 = 1)expit(𝑋𝑖𝛽
𝑇)[1 − expit(𝑋𝑖𝛽

𝑇)]𝐴𝑖𝑍𝑖𝑆𝑖

𝐼(𝑅𝑖 = 0)𝐼(𝑌𝑖 = 1)(𝑌𝑖
∗ − 𝛾1)

𝐼(𝑅𝑖 = 0)𝐼(𝑌𝑖 = 0)(𝑌𝑖
∗ − 𝛾2) ]

 
 
 
 
 
 
 
 
 
 
 

  

where 𝑆𝑖 = [
𝑌𝑖

∗(𝛾1−𝛾2)

𝛾2+expit(𝑋𝑖𝛽
𝑇)(𝛾1−𝛾2)

−
(1−𝑌𝑖

∗)(𝛾1−𝛾2)

(1−𝛾2)−expit(𝑋𝑖𝛽
𝑇)(𝛾1−𝛾2)

] 

Derivation of score equation for modified likelihood 

The individual likelihood101,113 is [𝑆𝑒 × 𝜇𝑖 + (1 − 𝑆𝑝) × (1 − 𝜇𝑖)]
𝑅𝑖𝑌𝑖

∗
[(1 − 𝑆𝑒)𝜇𝑖 +

𝑆𝑝(1 − 𝜇𝑖)]
𝑅𝑖(1−𝑌𝑖

∗)where 𝜇𝑖 = expit(𝑋𝑖𝛽
𝑇). An individual’s contribution to the log-likelihood is 

𝑅𝑖𝑌𝑖
∗ log[𝑆𝑒 × 𝜇𝑖 + (1 − 𝑆𝑝𝑖) × (1 − 𝜇𝑖)] + 𝑅𝑖(1 − 𝑌𝑖

∗) log[(1 − 𝑆𝑒)𝜇𝑖 + 𝑆𝑝𝑖(1 − 𝜇𝑖)] 
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= 𝑅𝑖𝑌𝑖
∗ log[(1 − 𝑆𝑝𝑖) + 𝜇𝑖(𝑆𝑒 − (1 − 𝑆𝑝𝑖))] + 𝑅𝑖(1 − 𝑌𝑖

∗) log[𝑆𝑝𝑖 − 𝜇𝑖(𝑆𝑒 − (1 − 𝑆𝑝𝑖))] 

The derivative of that log-likelihood is 

𝑅𝑖𝑌𝑖
∗(𝑆𝑒 − (1 − 𝑆𝑝))

𝜕𝜇𝑖
𝜕𝛽

(1 − 𝑆𝑝) +
𝜕𝜇𝑖
𝜕𝛽

(𝑆𝑒 − (1 − 𝑆𝑝))
−

𝑅𝑖(1 − 𝑌𝑖
∗)(𝑆𝑒 − (1 − 𝑆𝑝𝑖))

𝜕𝜇𝑖
𝜕𝛽

𝑆𝑝𝑖 −
𝜕𝜇𝑖
𝜕𝛽

(𝑆𝑒 − (1 − 𝑆𝑝𝑖))
 

= 𝑅𝑖𝜇𝑖
′ [

𝑌𝑖
∗(𝑆𝑒 − (1 − 𝑆𝑝))

(1 − 𝑆𝑝) +
𝜕𝜇𝑖
𝜕𝛽

(𝑆𝑒 − (1 − 𝑆𝑝))
−

(1 − 𝑌𝑖
∗)(𝑆𝑒 − (1 − 𝑆𝑝))

𝑆𝑝 −
𝜕𝜇𝑖
𝜕𝛽

(𝑆𝑒 − (1 − 𝑆𝑝))
] 

where 
𝜕𝜇𝑖

𝜕𝛽0
= 𝜇𝑖(1 − 𝜇𝑖); 

𝜕𝜇𝑖

𝜕𝛽1
= 𝜇𝑖(1 − 𝜇𝑖)𝐴𝑖; 

𝜕𝜇𝑖

𝜕𝛽2
= 𝜇𝑖(1 − 𝜇𝑖)𝑍𝑖; 

𝜕𝜇𝑖

𝜕𝛽3
= 𝜇𝑖(1 − 𝜇𝑖)𝐴𝑖𝑍𝑖 

We replace 𝑆𝑒 and 1 − 𝑆𝑝 with 𝛾1 and 𝛾2, respectively 

= 𝑅𝑖𝜇𝑖
′ [

𝑌𝑖
∗(𝛾1 − 𝛾2)

𝛾2 + 𝜇𝑖(𝛾1 − 𝛾2)
−

(1 − 𝑌𝑖
∗)(𝛾1 − 𝛾2)

(1 − 𝛾2) − 𝜇𝑖(𝛾1 − 𝛾2)
] 

Let 𝑆𝑖 = [
𝑌𝑖

∗(𝛾1−𝛾2)

𝛾2+𝜇𝑖(𝛾1−𝛾2)
−

(1−𝑌𝑖
∗)(𝛾1−𝛾2)

(1−𝛾2)−𝜇𝑖(𝛾1−𝛾2)
], then 𝑔(𝑋𝑖 , 𝛾) =

[
 
 
 

𝑅𝑖𝜇𝑖(1 − 𝜇𝑖)𝑆𝑖

𝑅𝑖𝜇𝑖(1 − 𝜇𝑖)𝐴𝑖𝑆𝑖

𝑅𝑖𝜇𝑖(1 − 𝜇𝑖)𝑍𝑖𝑆𝑖

𝑅𝑖𝜇𝑖(1 − 𝜇𝑖)𝐴𝑖𝑍𝑖𝑆𝑖]
 
 
 

 

4E.2.4 Accounting for outcome misclassification that is differential with respect to 𝐴 and 𝑍 

(Figure 1B) 

The full set of parameters to be estimated is 𝜃 = (𝛼, 𝛽, 𝛿) where 𝛼 and 𝛽 are the same as in 

4E.2.3 and 𝛿 = (𝛿0, 𝛿1, 𝛿2, 𝛿3, 𝛿4, 𝛿5) are the nuisance parameters from the measurement error model, 

Pr (𝑌𝑖
∗ = 1) = expit(𝑋𝑖

†𝛿𝑇) where 𝑋𝑖
† = (1, 𝑌𝑖 , 𝐴𝑖 , 𝐴𝑖𝑌𝑖 , 𝑍𝑖 , 𝑍𝑖𝑌𝑖). Note the distinction that 𝑋𝑖 is the 

design matrix for the outcome model and 𝑋𝑖
†
 is the design matrix for the measurement error model.  
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𝑔(𝑂𝑖 , 𝜃) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐼(𝑅𝑖 = 1)(𝛼2 − 𝛼3) − 𝛼1

𝐼(𝑅𝑖 = 1)(𝑌̂(1)𝑖 − 𝛼2)

𝐼(𝑅𝑖 = 1)(𝑌̂(0)𝑖 − 𝛼3)

𝐼(𝑅𝑖 = 1)(𝑌̂𝑖 − 𝛼4)

𝐼(𝑅𝑖 = 1)expit(𝑋𝑖𝛽
𝑇)[1 − expit(𝑋𝑖𝛽

𝑇)]𝑆𝑖

𝐼(𝑅𝑖 = 1)expit(𝑋𝑖𝛽
𝑇)[1 − expit(𝑋𝑖𝛽

𝑇)]𝐴𝑖𝑆𝑖

𝐼(𝑅𝑖 = 1)expit(𝑋𝑖𝛽
𝑇)[1 − expit(𝑋𝑖𝛽

𝑇)]𝑍𝑖𝑆𝑖

𝐼(𝑅𝑖 = 1)expit(𝑋𝑖𝛽
𝑇)[1 − expit(𝑋𝑖𝛽

𝑇)]𝐴𝑖𝑍𝑖𝑆𝑖

𝐼(𝑅𝑖 = 0)[𝑌𝑖
∗ − expit(𝑋𝑖

†𝛿𝑇)]

𝐼(𝑅𝑖 = 0)[𝑌𝑖
∗ − expit(𝑋𝑖

†𝛿𝑇)]𝑌𝑖

𝐼(𝑅𝑖 = 0)[𝑌𝑖
∗ − expit(𝑋𝑖

†𝛿𝑇)]𝐴𝑖

𝐼(𝑅𝑖 = 0)[𝑌𝑖
∗ − expit(𝑋𝑖

†𝛿𝑇)]𝐴𝑖𝑌𝑖

𝐼(𝑅𝑖 = 0)[𝑌𝑖
∗ − expit(𝑋𝑖

†𝛿𝑇)]𝑍𝑖

𝐼(𝑅𝑖 = 0)[𝑌𝑖
∗ − expit(𝑋𝑖

†𝛿𝑇)]𝑍𝑖𝑌𝑖 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

where 𝑆𝑖 = [
𝑌𝑖

∗(𝛾1𝑖
−𝛾2𝑖

)

𝛾2𝑖
+expit(𝑋𝑖𝛽

𝑇)(𝛾1𝑖
−𝛾2𝑖

)
−

(1−𝑌𝑖
∗)(𝛾1𝑖

−𝛾2𝑖
)

(1−𝛾2𝑖
)−expit(𝑋𝑖𝛽

𝑇)(𝛾1𝑖
−𝛾2𝑖

)
]  where 𝛾1𝑖

= expit(𝑋𝑖
†1𝛿𝑇) and 𝛾2𝑖

=

expit(𝑋𝑖
†0𝛿𝑇) in which 𝑋𝑖

†1 = (1,1, 𝐴𝑖 , 𝐴𝑖 , 𝑍𝑖 , 𝑍𝑖) and 𝑋𝑖
†0 = (1,0, 𝐴𝑖 , 0, 𝑍𝑖 , 0). 

4E.2.5 Accounting for outcome misclassification that is differential with respect to 𝐴, 𝑍, and 𝑊 

(Figure 1C and 1D) 

Conditioning on 𝑊 

The full set of parameters to be estimated is 𝜃 = {𝛼, 𝛽, 𝛿} where 𝛼 is the same as in 4E.2.4. 𝛽 =

{𝛽0, 𝛽1, 𝛽2, 𝛽3} and the design matrix for the outcome model 𝑋𝑖 = (1, 𝐴𝑖 , 𝑍𝑖 , 𝐴𝑖𝑍𝑖 ,𝑊𝑖).  𝛿 =

{𝛿0, 𝛿1, 𝛿2, 𝛿3, 𝛿4, 𝛿5, 𝛿6, 𝛿7} and the design matrix for the measurement error model 𝑋𝑖
† =

(1, 𝑌𝑖 , 𝐴𝑖 , 𝐴𝑖𝑌𝑖 , 𝑍𝑖 , 𝑍𝑖𝑌𝑖 ,𝑊𝑖 ,𝑊𝑖𝑌𝑖). The stack from 4E.2.4 is expanded to include these additional 

parameters. 

Weighted misclassification model 

The full set of parameters to be estimated is 𝜃 = (𝛼, 𝛽, 𝛿, 𝜈, 𝜙) where 𝛼 and 𝛽 are the same as in 

4E.2.4. 𝛿 = (𝛿0, 𝛿1, 𝛿2, 𝛿3, 𝛿4, 𝛿5)  and the design matrix for the weighted measurement error model 𝑋𝑖
† =

(1, 𝑌𝑖 , 𝐴𝑖 , 𝐴𝑖𝑌𝑖 , 𝑍𝑖 , 𝑍𝑖𝑌𝑖). 𝜈 = (𝜈0, 𝜈1, 𝜈2, 𝜈3) are the nuisance parameters of the selection model where 𝑅 is 
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the outcome with design matrix 𝑋𝑖
‡ = (1, 𝐴𝑖 , 𝑍𝑖 ,𝑊𝑖).  𝜙 = (𝜙0, 𝜙1, 𝜙2) are the nuisance parameters of the 

selection model for the stabilization term where 𝑅 is the outcome with design matrix 𝑋𝑖
⋄ = (1, 𝐴𝑖 , 𝑍𝑖). 

𝑔(𝑂𝑖 , 𝜃) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐼(𝑅𝑖 = 1)(𝛼2 − 𝛼3) − 𝛼1

𝐼(𝑅𝑖 = 1)(𝑌̂(1)𝑖 − 𝛼2)

𝐼(𝑅𝑖 = 1)(𝑌̂(0)𝑖 − 𝛼3)

𝐼(𝑅𝑖 = 1)(𝑌̂𝑖 − 𝛼4)

𝐼(𝑅𝑖 = 1)expit(𝑋𝑖𝛽
𝑇)[1 − expit(𝑋𝑖𝛽

𝑇)]𝑆𝑖

𝐼(𝑅𝑖 = 1)expit(𝑋𝑖𝛽
𝑇)[1 − expit(𝑋𝑖𝛽

𝑇)]𝐴𝑖𝑆𝑖

𝐼(𝑅𝑖 = 1)expit(𝑋𝑖𝛽
𝑇)[1 − expit(𝑋𝑖𝛽

𝑇)]𝑍𝑖𝑆𝑖

𝐼(𝑅𝑖 = 1)expit(𝑋𝑖𝛽
𝑇)[1 − expit(𝑋𝑖𝛽

𝑇)]𝐴𝑖𝑍𝑖𝑆𝑖

𝐼(𝑅𝑖 = 0)[𝑌𝑖
∗ − expit(𝑋𝑖

†𝛿𝑇)]𝜋𝑖

𝐼(𝑅𝑖 = 0)[𝑌𝑖
∗ − expit(𝑋𝑖

†𝛿𝑇)]𝜋𝑖𝑌𝑖

𝐼(𝑅𝑖 = 0)[𝑌𝑖
∗ − expit(𝑋𝑖

†𝛿𝑇)]𝜋𝑖𝐴𝑖

𝐼(𝑅𝑖 = 0)[𝑌𝑖
∗ − expit(𝑋𝑖

†𝛿𝑇)]𝜋𝑖𝐴𝑖𝑌𝑖

𝐼(𝑅𝑖 = 0)[𝑌𝑖
∗ − expit(𝑋𝑖

†𝛿𝑇)]𝜋𝑖𝑍𝑖

𝐼(𝑅𝑖 = 0)[𝑌𝑖
∗ − expit(𝑋𝑖

†𝛿𝑇)]𝜋𝑖𝑍𝑖𝑌𝑖

𝑅𝑖 − expit(𝑋𝑖
‡𝜈𝑇)

[𝑅𝑖 − expit(𝑋𝑖
‡𝜈𝑇)]𝐴𝑖

[𝑅𝑖 − expit(𝑋𝑖
‡𝜈𝑇)]𝑍𝑖

[𝑅𝑖 − expit(𝑋𝑖
‡𝜈𝑇)]𝑊𝑖

𝑅𝑖 − expit(𝑋𝑖
⋄𝜙𝑇)

[𝑅𝑖 − expit(𝑋𝑖
⋄𝜙𝑇)]𝐴𝑖

[𝑅𝑖 − expit(𝑋𝑖
⋄𝜙𝑇)]𝑍𝑖 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

where 𝜋𝑖 =
expit(𝑋𝑖

‡
𝜈𝑇)[1−expit(𝑋𝑖

⋄𝜙𝑇)]

[1−expit(𝑋𝑖
‡𝜈𝑇)]expit(𝑋𝑖

⋄𝜙𝑇)
 and 𝑆𝑖 = [

𝑌𝑖
∗(𝛾1𝑖

−𝛾2𝑖
)

𝛾2𝑖
+expit(𝑋𝑖𝛽

𝑇)(𝛾1𝑖
−𝛾2𝑖

)
−

(1−𝑌𝑖
∗)(𝛾1𝑖

−𝛾2𝑖
)

(1−𝛾2𝑖
)−expit(𝑋𝑖𝛽

𝑇)(𝛾1𝑖
−𝛾2𝑖

)
], 

where 𝛾1𝑖
= expit(𝑋𝑖

†1𝛿𝑇) and 𝛾2𝑖
= expit(𝑋𝑖

†0𝛿𝑇) in which 𝑋𝑖
†1 = (1,1, 𝐴𝑖 , 𝐴𝑖 , 𝑍𝑖 , 𝑍𝑖) and 𝑋𝑖

†0 =

(1,0, 𝐴𝑖 , 0, 𝑍𝑖 , 0).



 

80 

Appendix 4F: Data generation for simulations 

Appendix Figure 4F.1. Causal diagram for data generation. 

 

Scenario A: black arrows 

Scenario B: black + blue 

Scenario C: black + blue + green 

Scenario D: black + blue + green + orange 

Generation of study sample, 𝑅 = 1 

𝑛1 = 100,000 

𝑈𝐴~Bernoulli(𝑝𝑢𝑎
= 0.5) 

𝑈𝑌~Bernoulli(𝑝𝑢𝑦
= 0.5) 

𝑍~Normal(𝜇𝑧1
= 0, 𝜎𝑧1

= 1) 

𝑊~Bernoulli(𝑝𝑤1
) where 𝐸(𝑝𝑤1

) = 0.67,  

  Scenarios A, B, C: 𝑝𝑤1
= expit(0.693 + ln(1)𝑈𝐴 + ln(1)𝑈𝑌) 

  Scenario D: 𝑝𝑤1
= expit(0.514 + ln(1.2) 𝑈𝐴 + ln(1.2) 𝑈𝑌) 

𝐴~Bernoulli(𝑝𝑎1
) where 𝐸(𝑝𝑎1

) = 0.20, 𝑝𝑎1
= expit(−1.555 + ln(0.6) 𝑍 + ln(1.2) 𝑈𝐴)  

𝑌0~Bernoulli(𝑝𝑦01
) where 𝐸(𝑝𝑦01

) = 0.22, 𝑝𝑦01
= expit(−1.364 + ln(1.15) 𝑍 + ln(1.2) 𝑈𝑌)  

𝑌1~Bernoulli(𝑝𝑦11
) where 𝐸(𝑝𝑦11

) − 𝐸(𝑝𝑦01
) = 0.05,  

𝑝𝑦11
= expit(−1.364 + ln(1.15) 𝑍 + ln(1.2)𝑈𝑌 + ln(0.8) 𝑍 + 0.275) 
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𝑌 = 𝐴𝑌1 + (1 − 𝐴)𝑌0, resulting 𝑃(𝑌 = 1) = 0.233 

After 𝑌∗ is generated (see below), 𝑌 is set to missing in this dataset  

Generation of validation data, 𝑅 = 0 

𝑛0 = 2,000 

𝑈𝐴~Bernoulli(𝑝𝑢𝑎
= 0.5) 

𝑈𝑌~Bernoulli(𝑝𝑢𝑦
= 0.5) 

𝑍~𝑁(𝜇𝑧0
= 1, 𝜎𝑧0

= 1) 

𝑊~Bernoulli(𝑝𝑤0
) where 𝐸(𝑝𝑤0

) = 0.33,  

  Scenarios A, B, C: 𝑝𝑤0
= expit(−0.693 + ln(1)𝑈𝐴 + ln(1) 𝑈𝑌) 

  Scenario D: 𝑝𝑤0
= expit(−0.878 + ln(1.2)𝑈𝐴 + ln(1.2) 𝑈𝑌) 

𝐴~Bernoulli(𝑝𝑥0
) where 𝐸(𝑝𝑎0

) = 0.50, 𝑝𝑎0
= expit(0.42 + ln (0.6)𝑍 + ln(1.2) 𝑈𝐴)  

𝑌0~Bernoulli(𝑝𝑦00
) where 𝐸(𝑝𝑦00

) = 0.11, 𝑝𝑦00
= expit(−2.333 + ln (1.15)𝑍 + ln(1.2) 𝑈𝑌)  

𝑌1~Bernoulli(𝑝𝑦10
), 𝑝𝑦10

= expit(−2.333 + ln(1.15) 𝑍 + ln(1.2) 𝑈𝑌 + ln(0.8) 𝑍 + 0.275) 

 Resulting 𝑃(𝑌1 = 1) − 𝑃(𝑌0 = 1) = 0.005 

𝑌 = 𝐴𝑌1 + (1 − 𝐴)𝑌0, resulting 𝑃(𝑌 = 1) = 0.115 

Generation of 𝑌∗ in both study sample and validation data 

𝑌∗~Bernoulli(𝑝𝑦∗) 

Note: first 2 parameters set so that 𝑆𝑒 = 0.9 and 𝑆𝑝 = 0.85 marginally in validation data 

Scenario A: Figure 1A 

𝑝𝑦∗ = 0.15 + 0.75𝑌 = expit(−1.735 + 3.932𝑌) 

Scenario B: Figure 1B 

𝑝𝑦∗ = expit(−1.853 + 3.979𝑌 + ln(0.9) 𝑍 + ln(1.5) 𝐴) 

Scenarios C: Figure 1C 

𝑝𝑦∗ = expit(−1.946 + 3.990𝑌 + ln(0.9) 𝑍 + ln(1.5) 𝐴 + ln(1.3)𝑊) 
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Scenarios D: Figure 1D 

𝑝𝑦∗ = expit(−1.946 + 3.989𝑌 + ln(0.9) 𝑍 + ln(1.5) 𝐴 + ln(1.3)𝑊) 

Appendix Table 4F.1. Summary of simulated study sample, 𝑹 = 𝟏 

 Mean (min, max)   

𝑆𝑒 𝑆𝑝 𝑃(𝑌∗ = 1) 𝐸(𝑌∗1 − 𝑌∗0) 

A  0.90 0.85 0.325 0.037 

B 0.90 (0.83, 0.96) 0.85 (0.71, 0.92) 0.322 0.087 

C 0.91 (0.82, 0.96) 0.84 (0.68, 0.92) 0.332 0.088 

D 0.91 (0.82, 0.96) 0.84 (0.67, 0.92) 0.332 0.089 

Truth: 𝑃(𝑌 = 1) = 0.233 and 𝑃(𝑌1 = 1) − 𝑃(𝑌0 = 1) = 0.05 
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Appendix 4G: Causal diagram for applied example 

Appendix Figure 4G.1. Hypothesized causal diagram for applied example. 

Abbreviations: PTB, preterm birth; prior HIV, maternal HIV infection at prior pregnancy; prior PTB, 

preterm birth at prior pregnancy 
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Appendix 4H: Data generation and results for alternate Scenario D  

Differences from original data generation are bolded  

Generation of study sample, 𝑅 = 1 

𝑛1 = 100,000 

𝑈𝐴~Bernoulli(𝑝𝑢𝑎
= 0.5) 

𝑈𝑌~Bernoulli(𝑝𝑢𝑎
= 0.5) 

𝑍~Normal(𝜇𝑧1
= 0, 𝜎𝑧1

= 1) 

𝑊~Bernoulli(𝑝𝑤1
) where 𝐸(𝑝𝑤1

) = 0.67, 𝑝𝑤1
= expit(−𝟎. 𝟓𝟒𝟔 + 𝐥𝐧(𝟒) 𝑼𝑨 + 𝐥𝐧(𝟒)𝑼𝒀) 

𝐴~Bernoulli(𝑝𝑎1
) where 𝐸(𝑝𝑎1

) = 0.20, 𝑝𝑎1
= expit(−𝟐. 𝟐𝟖𝟖 + ln(0.6) 𝑍 + 𝐥𝐧(𝟒) 𝑈𝐴)  

𝑌0~Bernoulli(𝑝𝑦01
) where 𝐸(𝑝𝑦01

) = 0.22, 𝑝𝑦01
= expit(−𝟐. 𝟎𝟗𝟖 + ln(1.15) 𝑍 + 𝐥𝐧(𝟒)𝑈𝑌)  

𝑌1~Bernoulli(𝑝𝑦11
) where 𝐸(𝑝𝑦11

) − 𝐸(𝑝𝑦01
) = 0.05,  

𝑝𝑦11
= expit(−𝟐. 𝟎𝟗𝟖 + ln(1.15) 𝑍 + 𝐥𝐧(𝟒) 𝑼𝒀 + ln(0.8) 𝑍 + 𝟎. 𝟐𝟗𝟕) 

Generation of validation data, 𝑅 = 0 

𝑛0 = 2,000 

𝑈𝐴~Bernoulli(𝑝𝑢𝑎
= 0.5) 

𝑈𝑌~Bernoulli(𝑝𝑢𝑎
= 0.5) 

𝑍~Normal(𝜇𝑧0
= 1, 𝜎𝑧0

= 1) 

𝑊~Bernoulli(𝑝𝑤0
) where 𝐸(𝑝𝑤0

) = 0.33, 𝑝𝑤0
= expit(−𝟐. 𝟐𝟐𝟕 + 𝐥𝐧(𝟒)𝑼𝑨 + 𝐥𝐧(𝟒) 𝑼𝒀) 

𝐴~Bernoulli(𝑝𝑥0
) where 𝐸(𝑝𝑎0

) = 0.50, 𝑝𝑎0
= expit(−𝟎. 𝟏𝟖𝟑 + ln (0.6)𝑍 + 𝐥𝐧(𝟒) 𝑈𝐴)  

𝑌0~Bernoulli(𝑝𝑦00
) where 𝐸(𝑝𝑦00

) = 0.11, 𝑝𝑦00
= expit(−𝟑. 𝟏𝟏𝟐 + ln (1.15)𝑍 + 𝐥𝐧(𝟒)𝑈𝑌)  

𝑌1~Bernoulli(𝑝𝑦10
), 𝑝𝑦10

= expit(−𝟑. 𝟏𝟏𝟐 + ln(1.15) 𝑍 + 𝐥𝐧(𝟒)𝑈𝑌 + ln(0.8) 𝑍 + 𝟎. 𝟐𝟗𝟕)  
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Generation of 𝑌∗ in both study sample and validation data 

𝑌∗~Bernoulli(𝑝𝑦∗) 

Note: first 2 parameters set so that 𝑆𝑒 = 0.9 and 𝑆𝑝 = 0.85 marginally in validation data 

𝑝𝑦∗ = expit(−𝟏. 𝟗𝟒𝟒 + 𝟑. 𝟗𝟔𝟗𝑌 + ln(0.9) 𝑍 + ln(1.5) 𝐴 + ln(1.3)𝑊) 
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Appendix Table 4H.1. Simulation results under the altered data generation for Scenario D (n=5000). 

    Natural course  Risk difference 

Scenario1 Approach2 Mean Bias ESE Avg SE Coverage2   Mean Bias ESE Avg SE Coverage2 

All True outcome 23.3 0.0 0.1 0.1 95.3  5.0 0.0 0.4 0.4 94.4 

               

D Naïve analysis  33.2 9.9 0.2 0.1 0.0  9.1 4.1 0.4 0.4 0.0 

 Accounting for error that is            

   Nondifferential 24.3 1.0 1.1 1.1 85.2  12.1 7.1 0.6 0.6 0.0 

   Differential by A & Z  24.7 1.5 1.7 1.7 85.8  5.3 0.3 2.2 2.2 95.0 

   Differential by A, Z, & W            

   Conditioning  23.2 -0.1 2.0 2.0 95.5  4.4 -0.6 2.5 2.3 94.2 

      Weighted Se/Sp  23.2 -0.1 2.2 2.2 95.5  5.0 0.0 2.8 2.9 95.9 

Abbreviations: ESE, empirical standard error; Avg SE, average estimated standard error; Se, sensitivity; Sp, specificity 
1Scenarios correspond to Figure 1 Panels A, B, C, and D 
295% confidence interval coverage (%) 
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Appendix 4I: Simplified simulation 

Appendix Figure 4I.1 Causal diagram of data generation for simplified simulation. 

 

Generation of study sample, 𝑅 = 1 

𝑛1 = 5,000,000 

𝑊~Bernoulli(0.5)  

𝑌~Bernoulli(0.4 − 0.3𝑊)  

 

Generation of validation data, 𝑅 = 0 

𝑛0 = 5,000,000 

𝑊~Bernoulli(0.5)  

𝑌~Bernoulli(0.8 − 0.3𝑊)  

 

Generation of 𝑌∗ in both study sample and validation data 

𝑌∗~Bernoulli(0.7𝑌𝑊 + 0.9𝑌(1 − 𝑊) + 0.05(1 − 𝑌)𝑊 + 0.2(1 − 𝑌)(1 − 𝑊)) 

 

Results 

Truth 𝑃(𝑌 = 1) = 25.0 

Conditioning on 𝑊: mean estimate 25.0%, bias 0.1 percentage points 

Weighted Se/Sp: mean estimate 28.0%, bias 3.0 percentage points 

As expected (see proofs below), the weighted estimator is biased but conditioning on 𝑊 has negligible 

bias.
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Estimator proofs 

Weighted misclassification parameters 

𝑃(𝑌 = 1|𝑅 = 1) 

Apply Rogan-Gladen 

=
𝑃(𝑌∗ = 1|𝑅 = 1) − (1 − 𝑃(𝑌∗ = 0|𝑌 = 0, 𝑅 = 1))

𝑃(𝑌∗ = 1|𝑌 = 1, 𝑅 = 1) − (1 − 𝑃(𝑌∗ = 0|𝑌 = 1, 𝑅 = 1))
 

Now identify 𝑃(𝑌∗ = 𝑦|𝑌 = 𝑦, 𝑅 = 1) 

Apply law of total probability 

= ∑𝑃(𝑌∗ = 𝑦|𝑌 = 𝑦,𝑊 = 𝑤, 𝑅 = 1)𝑃(𝑊 = 𝑤|𝑌 = 𝑦, 𝑅 = 1)

𝑤

 

Apply transportability condition 𝑅∐𝑌∗|𝑌,𝑊 

= ∑𝑃(𝑌∗ = 𝑦|𝑌 = 𝑦,𝑊 = 𝑤, 𝑅 = 0)𝑃(𝑊 = 𝑤|𝑌 = 𝑦, 𝑅 = 1)

𝑤

 

Apply Bayes theorem 

= ∑
𝑃(𝑌∗ = 𝑦,𝑊 = 𝑤|𝑌 = 𝑦, 𝑅 = 0)𝑃(𝑌 = 𝑦, 𝑅 = 0)

𝑃(𝑊 = 𝑤|𝑌 = 𝑦, 𝑅 = 0)𝑃(𝑌 = 𝑦, 𝑅 = 0)
𝑃(𝑊 = 𝑤|𝑌 = 𝑦, 𝑅 = 1)

𝑤

 

Rearrange terms, cross out common terms in numerator and denominator 

= ∑𝑃(𝑌∗ = 𝑦,𝑊 = 𝑤|𝑌 = 𝑦, 𝑅 = 0)
𝑃(𝑊 = 𝑤|𝑌 = 𝑦, 𝑅 = 1)

𝑃(𝑊 = 𝑤|𝑌 = 𝑦, 𝑅 = 0)
𝑤

 

Apply 𝑊∐𝑌|𝑅 (see alternative identification below) 
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= ∑𝑃(𝑌∗ = 𝑦,𝑊 = 𝑤|𝑌 = 𝑦, 𝑅 = 0)
𝑃(𝑊 = 𝑤|𝑅 = 1)

𝑃(𝑊 = 𝑤|𝑅 = 0)
𝑤

 

Apply Bayes theorem 

= ∑𝑃(𝑌∗ = 𝑦,𝑊 = 𝑤|𝑌 = 𝑦, 𝑅 = 0)
𝑃(𝑅 = 1|𝑊 = 𝑤)𝑃(𝑊 = 𝑤)

𝑃(𝑅 = 1)
𝑤

𝑃(𝑅 = 0)

𝑃(𝑅 = 0|𝑊 = 𝑤)𝑃(𝑊 = 𝑤)
 

= ∑𝑃(𝑌∗ = 𝑦,𝑊 = 𝑤|𝑌 = 𝑦, 𝑅 = 0)
𝑃(𝑅 = 0)

𝑃(𝑅 = 1)
𝑤

𝑃(𝑅 = 1|𝑊 = 𝑤)

𝑃(𝑅 = 0|𝑊 = 𝑤)
 

 

Alternative identification 

= ∑𝑃(𝑌∗ = 𝑦,𝑊 = 𝑤|𝑌 = 𝑦, 𝑅 = 0)
𝑃(𝑊 = 𝑤|𝑌 = 𝑦, 𝑅 = 1)

𝑃(𝑊 = 𝑤|𝑌 = 𝑦, 𝑅 = 0)
𝑤

 

Apply Bayes theorem 

= ∑𝑃(𝑌∗ = 𝑦,𝑊 = 𝑤|𝑌 = 𝑦, 𝑅 = 0)
𝑃(𝑅 = 1|𝑊 = 𝑤, 𝑌 = 𝑦)𝑃(𝑊 = 𝑤, 𝑌 = 𝑦)𝑃(𝑅 = 0|𝑌 = 𝑦)𝑃(𝑌 = 𝑦)

𝑃(𝑅 = 1|𝑌 = 𝑦)𝑃(𝑌 = 𝑦)𝑃(𝑅 = 0|𝑊 = 𝑤, 𝑌 = 𝑦)𝑃(𝑊 = 𝑤, 𝑌 = 𝑦)
𝑤

 

= ∑𝑃(𝑌∗ = 𝑦,𝑊 = 𝑤|𝑌 = 𝑦, 𝑅 = 0)
𝑃(𝑅 = 0|𝑌 = 𝑦)

𝑃(𝑅 = 1|𝑌 = 𝑦)
𝑤

𝑃(𝑅 = 1|𝑊 = 𝑤, 𝑌 = 𝑦)

𝑃(𝑅 = 0|𝑊 = 𝑤, 𝑌 = 𝑦)
 

Apply 𝑅∐𝑌|𝑊 and 𝑅∐𝑌  

= ∑𝑃(𝑌∗ = 𝑦,𝑊 = 𝑤|𝑌 = 𝑦, 𝑅 = 0)
𝑃(𝑅 = 0)

𝑃(𝑅 = 1)
𝑤

𝑃(𝑅 = 1|𝑊 = 𝑤)

𝑃(𝑅 = 0|𝑊 = 𝑤)
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Conditioning on 𝑊 

𝑃(𝑌 = 1|𝑅 = 1) 

Apply law of total probability 

= ∑(𝑌 = 1|𝑊 = 𝑤, 𝑅 = 1)

𝑤

𝑃(𝑊 = 𝑤|𝑅 = 1) 

Apply Rogan-Gladen 

= ∑
𝑃(𝑌∗ = 1|𝑊 = 𝑤, 𝑅 = 1) − (1 − 𝑃(𝑌∗ = 0|𝑌 = 0,𝑊 = 𝑤, 𝑅 = 1))

𝑃(𝑌∗ = 1|𝑌 = 1,𝑊 = 𝑤, 𝑅 = 1) − (1 − 𝑃(𝑌∗ = 0|𝑌 = 1,𝑊 = 𝑤, 𝑅 = 1))
𝑤

𝑃(𝑊 = 𝑤|𝑅 = 1) 

Apply transportability condition 𝑅∐𝑌∗|𝑌,𝑊 

= ∑
𝑃(𝑌∗ = 1|𝑊 = 𝑤, 𝑅 = 1) − (1 − 𝑃(𝑌∗ = 0|𝑌 = 0,𝑊 = 𝑤, 𝑅 = 0))

𝑃(𝑌∗ = 1|𝑌 = 1,𝑊 = 𝑤, 𝑅 = 0) − (1 − 𝑃(𝑌∗ = 0|𝑌 = 1,𝑊 = 𝑤, 𝑅 = 0))
𝑤

𝑃(𝑊 = 𝑤|𝑅 = 1) 
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Appendix 4J: Comparison of stabilized and unstabilized weighting  

Appendix Table 4J.1 Simulation results (in percentage points) comparing stabilized and unstabilized weighting under original data 

generation. 

     Natural course  Risk difference 

Scenario1 Method # Mean Bias ESE Avg SE Coverage2   Mean Bias ESE Avg SE Coverage2 

A Stabilized 5000 23.3 0.0 2.1 2.1 95.6  5.0 0.0 2.6 2.6 95.0 

 Unstabilized 4992 23.3 0.0 3.0 2.9 94.2  5.0 0.0 5.7 5.3 93.5 

B Stabilized 5000 23.3 -0.1 2.1 2.1 95.8  5.0 0.0 2.7 2.7 95.4 

 Unstabilized 4992 23.3 0.0 3.2 2.8 93.4  4.8 -0.2 5.8 5.4 93.4 

C Stabilized 5000 23.3 -0.1 2.2 2.2 95.4  5.0 0.0 2.8 2.8 94.8 

 Unstabilized 4989 23.3 0.0 3.3 2.9 93.3  4.8 -0.2 6.0 5.5 93.0 

D Stabilized 5000 23.3 -0.1 2.2 2.2 95.3  5.0 0.0 2.8 2.8 94.8 

  Unstabilized 4987 23.3 0.0 3.0 2.9 93.0   4.8 -0.2 5.9 5.5 92.8 

Abbreviations: ESE, empirical standard error; Avg SE, average estimated standard error; Se, sensitivity; Sp, specificity 
1Scenarios correspond to Figure 1 Panels A, B, C, and D 
295% confidence interval coverage (%)
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APPENDIX: CHAPTER 5 

Appendix 5A: Illustration of uniform, monotone, and nonmonotone missing data 

Appendix Figure 5A.1. Illustration of uniform, monotone, and nonmonotone missing data. 

 

There are three variables, 𝑋, 𝑍, and 𝑌. Each column represents the observed data for individuals 

𝑖 = 1 to 𝑁. When there are complete data, the columns extend the full length. When data are missing in a 

uniform patter, the variables will missingness (here 𝑍 and 𝑌) are either both observed together or both 

missing. When data are missing in a monotone pattern, there is an ordering of the variables in which a 

variable is only observed if the previous variable was observed. In the illustration, 𝑌 is observed only for 

individuals with 𝑍 observed and 𝑍 is observed only for individuals with 𝑋 observed. Uniform is a special 

case of monotone missingness. Finally, a nonmonotone pattern is defined as missing data that do not 

follow a monotone pattern.  
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Appendix 5B: Proof of identification of 𝑬[𝒀𝒙] 

𝐸[𝑌𝑥] = 𝐸[𝐸[𝑌𝑥|𝑍 = 𝑧]] 

= 𝐸 [
Pr(𝑋 = 𝑥|𝑍 = 𝑧)

Pr(𝑋 = 𝑥|𝑍 = 𝑧)
𝐸[𝑌𝑥|𝑍 = 𝑧]] 

= 𝐸 [
𝐸[𝑌𝑥𝐼(𝑋 = 𝑥)|𝑍 = 𝑧]

Pr(𝑋 = 𝑥|𝑍 = 𝑧)
] 

= 𝐸 [
𝐸[𝑌𝐼(𝑋 = 𝑥)|𝑍 = 𝑧]

Pr(𝑋 = 𝑥|𝑍 = 𝑧)
] 

= 𝐸 [
𝑌𝐼(𝑋 = 𝑥)

Pr(𝑋 = 𝑥|𝑍 = 𝑧)
], 

The first equality follows from the law of total probability, the second equality is multiplication by 1, the 

third equality follows from conditional exchangeability with positivity, the fourth equality from causal 

consistency, and the final equality follows from the law of total probability.
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Appendix 5C: Identification of 𝐏𝐫(𝑿 = 𝒙|𝒁 = 𝒛) among complete cases  

Pr(𝑋 = 𝑥|𝑍 = 𝑧) =
𝐸 [

𝐼(𝑋 = 𝑥)𝐼(𝑍 = 𝑧)𝐼(𝑅 = 1)
Pr(𝑅 = 1|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦)

]

𝐸 [
𝐼(𝑍 = 𝑧)𝐼(𝑅 = 1)

Pr(𝑅 = 1|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦)
]
 

Numerator 

𝐸 [
𝐼(𝑋 = 𝑥)𝐼(𝑍 = 𝑧)𝐼(𝑅 = 1)

Pr(𝑅 = 1|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦)
] 

= 𝐸 [𝐸 [
𝐼(𝑋 = 𝑥)𝐼(𝑍 = 𝑧)𝐼(𝑅 = 1)

Pr(𝑅 = 1|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦)
|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦]] 

= 𝐸 [
𝐸[𝐼(𝑋 = 𝑥)𝐼(𝑍 = 𝑧)𝐼(𝑅 = 1)|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦]

Pr(𝑅 = 1|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦)
] 

= 𝐸 [
𝐼(𝑋 = 𝑥)𝐼(𝑍 = 𝑧)𝐸[𝐼(𝑅 = 1)|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦]

Pr(𝑅 = 1|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦)
] 

= 𝐸 [
𝐼(𝑋 = 𝑥)𝐼(𝑍 = 𝑧) Pr(𝑅 = 1|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦)

Pr(𝑅 = 1|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦)
] 

= 𝐸[𝐼(𝑋 = 𝑥)𝐼(𝑍 = 𝑧)] 
= Pr(𝑋 = 𝑥, 𝑍 = 𝑧) 

 

Denominator 

𝐸 [
𝐼(𝑍 = 𝑧)𝐼(𝑅 = 1)

Pr(𝑅 = 1|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦)
] 

= 𝐸 [𝐸 [
𝐼(𝑍 = 𝑧)𝐼(𝑅 = 1)

Pr(𝑅 = 1|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦)
|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦]] 

= 𝐸 [
𝐸[𝐼(𝑍 = 𝑧)𝐼(𝑅 = 1)|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦]

Pr(𝑅 = 1|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦)
] 

= 𝐸 [
𝐼(𝑍 = 𝑧)𝐸[𝐼(𝑅 = 1)|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦]

Pr(𝑅 = 1|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦)
] 

= 𝐸 [
𝐼(𝑍 = 𝑧) Pr(𝑅 = 1|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦)

Pr(𝑅 = 1|𝑍 = 𝑧, 𝑋 = 𝑥, 𝑌 = 𝑦)
] 

= 𝐸[𝐼(𝑍 = 𝑧)] 
= Pr(𝑍 = 𝑧) 
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Appendix 5D: Code for simple illustrative example 

https://github.com/rachael-k-ross/Wgt-NonmonotoneMiss 

 

https://github.com/rachael-k-ross/Wgt-NonmonotoneMiss
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Appendix 5E: Details of simulation study 

Generation of full data 

Appendix Figure 5E.1 Causal diagram for full data generation. 

 

 

Description 

Let 𝑋𝑖 be a binary random variable representing exposure (where 𝑋 = 1 is exposed and 𝑋 = 0 is 

unexposed) for individual 𝑖, 𝒁𝒊 represent a vector of confounders , 𝑌𝑖
0 be a binary random variable 

representing the potential outcome when not treated ( 𝑋 = 0), 𝑌𝑖
1 be a binary random variable 

representing the potential outcome when treated (𝑋 = 1), and 𝑌𝑖 represent the observed outcome given the 

observed value of 𝑋𝑖 (i.e., 𝑌𝑖 = 𝑋𝑖𝑌𝑖
1 + (1 − 𝑋𝑖)𝑌𝑖

0). Let 𝜃 be the marginal risk difference, 𝐸[𝑌1 − 𝑌0].  

We generated 5,000 trials of 𝑁 = {1500,5000}. Individuals (𝑖 = 1 to 𝑁) were independent. 

Subscript 𝑖 is suppressed for remaining description.  

Let 𝑒𝑥𝑝𝑖𝑡(𝑏) = 1 (1 + 𝑒−b)⁄ , where 𝑏 is the ln (𝑜𝑑𝑑𝑠) 

𝒁 = {𝑍1, 𝑍2, 𝑍3} 

𝑍1~𝑁(𝜇𝑧1
= 0, 𝑠𝑑𝑧1

= 1)  

𝑍2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑧2
) where 𝐸(𝑝𝑧2

) = 0.35, 𝑝𝑧2
= 𝑒𝑥𝑝𝑖𝑡(𝛼20 + 𝛼21𝑍1) 

 𝛼20 = −0.77, 𝛼21 = ln (0.33) 

𝑍3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑧3
) where 𝐸(𝑝𝑧3

) = 0.1, 𝑝𝑧3
= 𝑒𝑥𝑝𝑖𝑡(𝛼30 + 𝛼31𝑍1 + 𝛼32𝑍2) 

 𝛼30 = −2.39, 𝛼31 = ln (1.6), 𝛼32 = ln (1.4) 

𝑋~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑥) where 𝐸(𝑝𝑥) = {0.15, 0.50}, 𝑝𝑥 = 𝑒𝑥𝑝𝑖𝑡(𝛽0 + 𝛽1𝑍1 + 𝛽2𝑍2 + 𝛽3𝑍3) 

For 𝐸(𝑝𝑥) = 0.15  𝛽0 = −2.16 

For 𝐸(𝑝𝑥) = 0.50  𝛽0 = −0.34 
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𝛽1 = ln (0.9), 𝛽2 = ln (2.5), 𝛽3 = ln (1.25) 

𝑌0~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑦0
) where 𝐸(𝑝𝑦) = 0.1, 𝑝𝑦0

= 𝑒𝑥𝑝𝑖𝑡(𝜆0 + 𝜆1𝑍1 + 𝜆2𝑍2 + 𝜆3𝑍3) 

 𝜆0 = −2.55, 𝜆1 = ln (0.8), 𝜆2 = ln (1.6), 𝜆3 = ln (2.7) 

𝑌1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑦1
) where 𝑝𝑦1

= 𝑝𝑦0
+ 𝜃 

𝜃 = {0, 0.05} 

𝑌 = 𝑋𝑌1 + (1 − 𝑋)𝑌0 

Three aspects of the data generation were varied factorially: sample size 𝑁, marginal exposure prevalence 

𝐸(𝑝𝑥), and the exposure-outcome marginal risk difference 𝜃 

Generation of missing data 

Table 5.4 in the main text shows the missing data patterns in the percent of the cohort in each 

pattern for the primary missing data scenario and the secondary scenarios (reproduced here).  

Appendix Table 5E.1. Missing data patterns for simulation (duplicate of Table 5.4). 

      % in each pattern 

Pattern (𝑅) 𝑋 𝑌 𝑍1 𝑍2 𝑍3 Primary Secondary scenarios 

1 O O O O O 50 65 35 50 65 35 

2 M O O O O 15 10 15 10 5 15 

3 O M O O O 15 10 15 10 5 10 

4 M M O O O 10 5 15 10 5 10 

5 O O O O M 5 5 10 5 5 10 

6 M O O O M 5 5 10 5 5 10 

7 O O M O O 
 

    5 5 5 

8 O M M O O       5 5 5 

“O” indicates variable is observed and “M” indicates variable is missing 

 

Let 𝑅 be a multinomial random variable representing which missing data pattern an individual belongs to. 

Let 𝑚 be the total number of patterns. 

𝑅~𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝1, 𝑝2, … , 𝑝𝑚), where 

𝑝2 = 𝑒𝑥𝑝𝑖𝑡(𝛾20 + 𝛾21𝑋 + 𝛾22𝑌 + 𝛾23𝑍1 + 𝛾24𝑍2 + 𝛾25𝑍3) 

𝑝3 = 𝑒𝑥𝑝𝑖𝑡(𝛾30 + 𝛾31𝑋 + 𝛾32𝑌 + 𝛾33𝑍1 + 𝛾34𝑍2 + 𝛾35𝑍3) 

⋮ 

𝑝𝑚 = 𝑒𝑥𝑝𝑖𝑡(𝛾𝑚0 + 𝛾𝑚1𝑋 + 𝛾𝑚2𝑌 + 𝛾𝑚3𝑍1 + 𝛾𝑚4𝑍2 + 𝛾𝑚5𝑍3) 
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𝑝1 = 1 − ∑𝑝𝑗

𝑚

𝑗=2

 

For 𝛾 coefficients for each scenario, see table on the next page. The 𝛾 intercepts were set to obtain the 

desired marginal prevalence of each pattern. The intercept values were solved by numerical 

approximation using a bisection algorithm provided by Robertson et al.135 

Note that the generation of 𝑝2 to 𝑝𝑚 by individual logistic regressions does not ensure structural 

positivity, i.e., 𝑝1 > 0. We selected 𝛾 coefficients to produce bias in the complete case analysis and 

maintain structural positivity as possible. For the secondary scenarios with 35% complete cases, there 

were positivity violations when exposure prevalence was 15%; therefore, secondary scenarios were only 

run for exposure prevalence 50%. While we ensured structural positivity by design, there may still be 

random positivity violations in any simulated dataset in any scenario
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Appendix Table 5E.2. 𝜸 coefficients in missing data models for simulation. 

Scenario 

g2

1 

g2

2 

g2

3 

g2

4 

g2

5 

g3

1 g32 

g3

3 

g3

4 

g3

5 g41 g42 

g4

3 

g4

4 

g4

5 g51 g52 

g5

3 

g5

4 g55 

Primary (6 

patterns/50% CC)                     

 MAR 0 

ln(

3) 0 0 0 

ln(

3) 0 0 0 0 0 0 0 

ln(

2) 

ln(

2) 

ln(1/

3) 

ln(1/

3) 0 0 0 

 MCAR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 MNAR 0 

ln(

3) 0 0 0 

ln(

3) 

ln(6/

5) 0 0 0 

ln(6/

5) 

ln(6/

5) 0 

ln(

2) 

ln(

2) 

ln(1/

3) 

ln(1/

3) 0 0 

ln(6/

5) 

Secondary (MAR)                     

 

6 patterns/65% 

CC 0 

ln(

3) 0 0 0 

ln(

3) 0 0 0 0 0 0 0 

ln(

2) 

ln(

2) 

ln(1/

3) 

ln(1/

3) 0 0 0 

 

6 patterns/35% 

CC 0 

ln(

3) 0 0 0 

ln(

3) 0 0 0 0 0 0 0 

ln(

2) 

ln(

2) 

ln(1/

3) 

ln(1/

3) 0 0 0 

 

8 patterns/50% 

CC 0 

ln(

3) 0 0 0 

ln(

3) 0 0 0 0 0 0 0 

ln(

2) 

ln(

2) 

ln(1/

3) 

ln(1/

3) 0 0 0 

 

8 patterns/65% 

CC 0 

ln(

3) 0 0 0 

ln(

3) 0 0 0 0 0 0 0 

ln(

2) 

ln(

2) 

ln(1/

3) 

ln(1/

3) 0 0 0 

  

8 patterns/35% 

CC 0 

ln(

3) 0 0 0 

ln(

3) 0 0 0 0 0 0 0 

ln(

2) 

ln(

2) 

ln(1/

3) 

ln(1/

3) 0 0 0 

 

Scenario g61 g62 g63 g64 g65 g71 g72 g73 g74 g75 g81 g82 g83 g84 g85 

Primary (6 

patterns/50% CC)                

 MAR 0 ln(6/5) 0 ln(1/2) 0           

 MCAR 0 0 0 0 0           

 MNAR ln(6/5) ln(6/5) 0 ln(1/2) ln(6/5)           
Secondary (MAR)                

 6 patterns/65% CC 0 ln(6/5) 0 ln(1/2) 0           

 6 patterns/35% CC 0 ln(6/5) 0 ln(1/2) 0           

 8 patterns/50% CC 0 ln(6/5) 0 ln(1/2) 0 ln(3) 0 0 0 ln(2) 0 0 0 ln(2) 0 

 8 patterns/65% CC 0 ln(6/5) 0 ln(1/2) 0 ln(3) 0 0 0 ln(2) 0 0 0 ln(2) 0 

  8 patterns/35% CC 0 ln(6/5) 0 ln(1/2) 0 ln(3) 0 0 0 ln(2) 0 0 0 ln(2) 0 

Abbreviations: CC, complete cases
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Appendix 5F: Additional results tables and figures 

Appendix Table 5F.1. Bias, empirical standard error, root mean squared error and 95% confidence interval coverage of the risk 

difference (in percentage points) for primary missing data scenario (6 patterns, 50% complete cases) when data are missing completely at 

random (MCAR). 

   Exposure prevalence 15%  Exposure prevalence 50% 

Missing data approacha Bias ESE RMSE avg. ModSE 

95% CI 

Coverage   Bias ESE RMSE 

avg. 

ModSE 

95% CI 

Coverage 

Risk difference 0           

 n=1500            
 

  Full -0.1 2.2 2.2 2.2 94%  0.0 1.6 1.6 1.6 96%  

  CC -0.1 3.2 3.2 3.2 93%  0.0 2.2 2.2 2.3 95%  

  MI 0.1 2.9 2.9 3.0 95%  0.0 2.2 2.2 2.2 95%  

  Weightingb -0.1 3.2 3.2 3.2 93%  0.0 2.3 2.3 2.3 95%  

               

 n=5000            
 

  Full 0.0 1.2 1.2 1.2 95%  0.0 0.9 0.9 0.9 95%  

  CC 0.0 1.7 1.7 1.7 94%  0.0 1.2 1.2 1.2 95%  

  MI 0.0 1.6 1.6 1.6 95%  0.0 1.2 1.2 1.2 95%  

  Weightingb 0.0 1.7 1.7 1.7 94%  0.0 1.2 1.2 1.2 96%  
               

Risk difference 0.05           

 n=1500            
 

  Full -0.1 2.6 2.6 2.6 95%  0.0 1.7 1.7 1.8 95%  

  CC 0.0 3.8 3.8 3.8 94%  0.0 2.5 2.5 2.5 95%  

  MI -0.2 3.4 3.4 3.5 94%  0.0 2.4 2.4 2.4 95%  

  Weightingb -0.1 3.8 3.8 3.8 94%  0.0 2.4 2.4 2.5 95%  

              
 

 n=5000            
 

  Full 0.0 1.4 1.4 1.4 95%  0.0 1.0 1.0 1.0 95%  

  CC 0.0 2.1 2.1 2.0 94%  0.0 1.4 1.4 1.4 95%  

  MI -0.1 1.9 1.9 1.9 95%  0.1 1.3 1.3 1.3 95%  

    Weightingb 0.0 2.0 2.0 2.1 94%   0.0 1.4 1.4 1.4 95%  

Abbreviations: CC, complete case analysis; MI, multiple imputation; ESE, empirical standard error; RMSE, root mean squared error; avg. ModSE, average 

model standard error; CI, confidence interval 

Results from 5000 simulated cohorts 
aAll approaches addressed confounding using inverse probability of treatment weights 
bUMLE used to estimate the missingness weights
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Appendix Figure 5F.1. Boxplots of risk difference estimates for primary missing data scenario (6 

patterns, 50% complete cases) when data are missing completely at random (MCAR). Panel A) true 

risk difference is 0%; panel B) true risk difference is 5%. Horizontal black line marks true risk 

difference; black dot marks mean; small gray dots are a 10% random sample of estimates. Abbreviations: 

CC, complete case analysis; MI, multiple imputation. 
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Appendix Table 5F.2. Bias, empirical standard error, root mean squared error and 95% confidence interval coverage of the risk 

difference (in percentage points) for primary missing data scenario (6 patterns, 50% complete cases) when data are missing not at 

random (MNAR). 

   Exposure prevalence 15%  Exposure prevalence 50% 

Missing data approacha Bias ESE RMSE 

avg. 

ModSE 

95% CI 

Coverage   Bias ESE RMSE 

avg. 

ModSE 

95% CI 

Coverage 

Risk difference 0           

 n=1500            
 

  Full -0.1 2.2 2.2 2.2 94%  0.0 1.6 1.6 1.6 96%  

  CCb -2.7 2.4 3.6 2.5 67%  -1.8 1.8 2.5 1.8 83%  

  MIb -0.9 3.8 4.0 4.3 93%  -0.9 2.6 2.7 2.6 93%  

  Weightingb,c -2.5 4.2 4.9 4.4 80%  -1.1 2.7 2.9 2.8 94%  
               

 n=5000            
 

  Full 0.0 1.2 1.2 1.2 95%  0.0 0.9 0.9 0.9 95%  

  CC -2.8 1.3 3.1 1.3 44%  -1.7 1.0 2.0 1.0 57%  

  MI -1.6 2.3 2.8 2.4 86%  -0.9 1.4 1.7 1.4 91%  

  Weightingc -2.4 2.4 3.4 2.5 76%  -1.0 1.4 1.8 1.5 91%  

 
 

             

Risk difference 0.05           

 n=1500            
 

  Full -0.1 2.6 2.6 2.6 95%  0.0 1.7 1.7 1.8 95%  

  CCb -5.5 3.1 6.3 3.1 52%  -3.7 2.0 4.2 2.0 55%  

  MIb -2.1 4.7 5.2 4.9 88%  -1.2 2.8 3.1 2.8 93%  

  Weightingb,c -3.5 5.3 6.3 5.4 81%  -1.4 2.9 3.2 3.1 94%  

              
 

 n=5000            
 

  Full 0.0 1.4 1.4 1.4 95%  0.0 1.0 1.0 1.0 95%  

  CC -5.4 1.7 5.7 1.7 15%  -3.7 1.1 3.8 1.1 10%  

  MI -2.4 2.7 3.6 2.7 83%  -1.1 1.6 1.9 1.6 88%  

    Weightingc -3.0 2.9 4.2 3.0 78%   -1.3 1.6 2.0 1.7 89%  

Abbreviations: CC, complete case analysis; MI, multiple imputation; ESE, empirical standard error; RMSE, root mean squared error; avg. ModSE, average 

model standard error; CI, confidence interval  
aAll approaches addressed confounding using inverse probability of treatment weights 

Results from 5000 simulated cohorts except approaches marked with b at 15% prevalence (see Table 5.5 for number of failures) 
cUMLE used to estimate the missingness weights
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Appendix Figure 5F.2. Boxplots of risk difference estimates for primary missing data scenario (6 

patterns, 50% complete cases) when data are missing not at random (MNAR). Panel A) true risk 

difference is 0%; panel B) true risk difference is 5%. Horizontal black line marks true risk difference; 

black dot marks mean; small gray dots are a 10% random sample of estimates. Abbreviations: CC, 

complete case analysis; MI, multiple imputation. 
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Appendix Table 5F.3. Bias, empirical standard error, root mean squared error and 95% confidence 

interval coverage of the risk difference (in percentage points) when the true risk difference is 5% 

and data are missing at random (MAR). 

   6 patterns  8 patterns 

Missing data approacha Bias ESE RMSE 

avg. 

ModSE 

95% CI 

Coverage   Bias ESE RMSE 

avg. 

ModSE 

95% CI 

Coverage 

n=1500            

 65% complete cases         

  Full 0.0 1.7 1.7 1.8 95%  0.0 1.7 1.8 1.7 95% 

  CC -1.3 2.0 2.4 2.0 91%  -0.8 2.2 2.1 2.2 94% 

  MI 0.1 2.3 2.3 2.3 95%  0.0 2.1 2.1 2.1 95% 

  Weightingb 0.0 2.3 2.3 2.4 96%  0.0 2.2 2.3 2.2 95% 
              

 50% complete cases         

  Full 0.0 1.7 1.7 1.8 95%  0.0 1.7 1.8 1.7 95% 

  CC -2.5 2.1 3.3 2.2 78%  -1.8 2.9 2.3 2.9 87% 

  MI 0.0 2.8 2.8 2.8 94%  0.0 2.5 2.5 2.5 95% 

  Weightingb 0.0 2.8 2.8 3.0 96%  0.0 2.7 2.8 2.7 96% 
 
 

            

 35% complete cases         

 

 
Full 0.0 1.7 1.7 1.8 95%  0.0 1.7 1.8 1.7 95% 

 

 
CC -3.8 2.4 4.5 2.4 65%  -3.3 4.2 2.5 4.2 72% 

 

 
MI 0.1 3.3 3.3 3.3 94%  0.0 3.0 3.0 3.0 94% 

 

 
Weightingb -0.1 3.5 3.5 3.9 97%  -0.1 3.5 3.8 3.5 96% 

              
n=5000            

 65% complete cases         

  Full 0.0 1.0 1.0 1.0 95%  0.0 1.0 1.0 1.0 95% 

  CC -1.3 1.1 1.7 1.1 80%  -0.8 1.4 1.2 1.4 90% 

  MI 0.1 1.3 1.3 1.3 95%  0.1 1.2 1.2 1.2 95% 

  Weightingb 0.0 1.3 1.3 1.3 95%  0.0 1.2 1.2 1.2 95% 

              

 50% complete cases         

  Full 0.0 1.0 1.0 1.0 95%  0.0 1.0 1.0 1.0 95% 

  CC -2.5 1.2 2.7 1.2 45%  -1.7 2.1 1.2 2.1 72% 

  MI 0.1 1.5 1.5 1.5 95%  0.1 1.4 1.4 1.4 95% 

  Weightingb 0.1 1.5 1.5 1.6 96%  0.0 1.5 1.5 1.5 96% 

 

 

            

 35% complete cases         

 

 
Full 0.0 1.0 1.0 1.0 95%  0.0 1.0 1.0 1.0 95% 

 

 
CC -3.8 1.3 4.0 1.3 19%  -3.3 3.6 1.4 3.6 31% 

 

 
MI 0.1 1.8 1.8 1.8 95%  0.0 1.6 1.6 1.6 94% 

    Weightingb 0.0 1.9 1.9 2.1 97%   0.0 1.9 2.0 1.9 96% 
Abbreviations: CC, complete case analysis; MI, multiple imputation; ESE, empirical standard error; RMSE, root 

mean squared error; avg. ModSE, average model standard error; CI, confidence interval 

Results from 5000 simulated cohorts  
aAll approaches addressed confounding using inverse probability of treatment weights 
bUMLE used to estimate the missingness weights 
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Appendix Table 5F.4. Bias, empirical standard error, root mean squared error and 95% confidence 

interval coverage of the risk difference (in percentage points) when the true risk difference is 0% 

and data are missing at random (MAR). 

   6 patterns  8 patterns 

Missing data approacha Bias ESE RMSE 

avg. 

ModSE 

95% CI 

Coverage   Bias ESE RMSE 

avg. 

ModSE 

95% CI 

Coverage 

n=1500            

 65% complete cases         

  Full 0.0 1.6 1.6 1.6 96%  0.0 1.6 1.6 1.6 96% 

  CC -0.5 1.8 1.9 1.8 94%  -0.4 1.9 1.9 1.9 94% 

  MI 0.1 2.1 2.1 2.1 95%  0.0 1.9 2.0 1.9 95% 

  Weightingb 0.0 2.1 2.1 2.2 95%  0.0 2.0 2.1 2.0 95% 
              

 50% complete cases         

  Full 0.0 1.6 1.6 1.6 96%  0.0 1.6 1.6 1.6 96% 

  CC -1.1 1.9 2.2 1.9 91%  -0.8 2.2 2.0 2.2 93% 

  MI 0.0 2.6 2.6 2.6 94%  0.0 2.3 2.3 2.3 95% 

  Weightingb 0.0 2.7 2.7 2.7 95%  0.0 2.5 2.6 2.5 95% 
 
 

            

 35% complete cases         

 

 
Full 0.0 1.6 1.6 1.6 96%  0.0 1.6 1.6 1.6 96% 

 

 
CC -1.9 2.1 2.9 2.2 86%  -1.5 2.7 2.2 2.7 90% 

 

 
MI 0.1 3.1 3.1 3.1 94%  0.1 2.8 2.8 2.8 94% 

 

 
Weightingb -0.2 3.4 3.4 3.6 96%  -0.1 3.3 3.5 3.3 96% 

              
n=5000            

 65% complete cases         

  Full 0.0 0.9 0.9 0.9 95%  0.0 0.9 0.9 0.9 95% 

  CC -0.5 1.0 1.1 1.0 92%  -0.4 1.1 1.1 1.1 94% 

  MI 0.0 1.2 1.2 1.2 95%  0.0 1.1 1.1 1.1 95% 

  Weightingb 0.0 1.2 1.2 1.2 96%  0.0 1.1 1.1 1.1 96% 

              

 50% complete cases         

  Full 0.0 0.9 0.9 0.9 95%  0.0 0.9 0.9 0.9 95% 

  CC -1.0 1.0 1.4 1.0 84%  -0.7 1.3 1.1 1.3 91% 

  MI 0.1 1.4 1.4 1.4 95%  0.0 1.3 1.3 1.3 95% 

  Weightingb 0.1 1.4 1.4 1.5 96%  0.0 1.4 1.4 1.4 96% 
              

 35% complete cases         

 

 
Full 0.0 0.9 0.9 0.9 95%  0.0 0.9 0.9 0.9 95% 

 

 
CC -1.9 1.2 2.2 1.2 65%  -1.5 1.9 1.2 1.9 77% 

 

 
MI 0.0 1.7 1.7 1.7 94%  0.0 1.5 1.5 1.5 95% 

    Weightingb 0.0 1.8 1.8 2.0 97%   0.0 1.8 1.9 1.8 96% 

Abbreviations: CC, complete case analysis; MI, multiple imputation; ESE, empirical standard error; RMSE, root 

mean squared error; avg. ModSE, average model standard error; CI, confidence interval 

Results from 5000 simulated cohorts except for UMLE when there were 6 patterns with 35% complete cases where 

4998 
aAll approaches addressed confounding using inverse probability of treatment weights 
bUMLE used to estimate the missingness weights 
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Appendix Figure 5F.3. Root mean squared error and confidence interval coverage as percent 

complete cases and number of patterns varies when the true risk difference is null and data are 

missing at random (MAR). Solid line indicates 6 patterns and dashed line indicates 8 patterns (for Full, 

the two lines are exactly overlaid). 
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Appendix Table 5F.5. Average computational time in seconds per replicate in simulation across 22 

scenarios. 

   R  SAS 

      Weightinga MI Relativeb   Weightinga MI Relativeb 

Overall average 4.9 13.0 2.7  1.0 19.2 18.3 
          

n=1500        

 Average 2.7 7.4 2.8  0.5 10.3 19.3 

 6 patterns 2.1 7.3 3.5  0.5 10.3 22.5 

 8 patterns 4.3 7.8 1.8  0.7 10.2 13.8 

 35% complete cases 3.0 7.8 2.6  0.7 10.5 14.8 

 50% complete cases 2.5 7.3 3.0  0.5 9.9 20.3 

 65% complete cases 3.1 7.2 2.3  0.5 11.4 22.0 
          

n=5000        

 Average 7.0 18.5 2.6  1.6 28.2 18.0 

 6 patterns 5.8 17.3 3.0  1.3 27.4 21.7 

 8 patterns 10.4 21.9 2.1  2.4 30.2 12.8 

 35% complete cases 8.5 19.2 2.3  2.2 28.2 12.8 

 50% complete cases 6.6 18.4 2.8  1.3 27.4 20.4 

  65% complete cases 7.0 18.2 2.6   1.7 30.7 18.3 

Abbreviations: MI, multiple imputation 
aUMLE used to estimate the missingness weights 
bRelative: MI time divided by weighting time 
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