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ABSTRACT 

Kelly Shea Olsen: Shared Minor Histocompatibility Antigen Discovery and Targeting in 
the context of Allogeneic Hematopoietic Stem Cell Transplant for Hematologic 

Malignancies 
(Under the direction of Benjamin Vincent) 

 
In allogeneic hematopoietic stem cell transplantation (alloHCT), donor-derived T 

cells that recognize minor histocompatibility antigens (mHAs) are able to eliminate 

leukemia cells via the “graft versus leukemia effect” (GvL). However, donor T cells can 

also recognize non-leukemia host antigens and cause inflammatory tissue damage 

termed “graft versus host disease” (GvHD). Therapies that boost T cell responses can 

improve alloHCT efficacy, but are limited by concurrent increases in incidence and 

severity of GvHD. Therapies that prevent GvHD by impairing T cell responses also 

increase relapse rates. Thus, it is critical to understand the biological differences 

between GvL and GvHD to develop treatment strategies that separate GvL from GvHD. 

mHAs with expression restricted to hematopoietic tissue (GvL mHAs) are attractive 

targets for T cell responses that could drive GvL without causing GvHD. Prior work to 

identify mHAs has focused on a small set of mHAs or population-level SNP association 

studies. We sought to broaden the array of known mHAs capable of mediating an anti-

leukemia response, including discovery of GvL mHAs that are highly shared across 

donor-recipient pairs (DRPs). To do this, we applied experimental and computational 

antigen discovery and validation methods to two alloHCT datasets. We found that the 

total number of predicted mHAs varied by HLA allele, and number of each class of mHA 
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significantly differed by recipient genomic ancestry. From the pool of predicted mHAs, 

we identified the smallest sets of GvL mHAs needed to cover 100% of DRPs with a 

given HLA allele. We used two different mass spectrometry methods to search for high 

population frequency GvL mHAs presented by three common HLA alleles. We validated 

a total of 26 novel predicted GvL mHAs that have a high degree of sharing within DRPs 

expressing HLA-A*02:01, HLA-B*35:01, and HLA-C*07:02, increasing the number of 

known GvL mHAs by more than 200%. We confirmed immunogenicity of an example 

novel mHA via T cell co-culture with peptide-pulsed dendritic cells, and we continue to 

seek additional mHA-targeting T cell clones against our novel antigens. This work 

demonstrates that identification of shared mHAs is a feasible and promising technique 

for expanding GvL mHA-targeting immunotherapies. 
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CHAPTER 1: Introduction to Minor Histocompatibility Antigens 

(1.1) Introduction to the immune system 

The immune system represents a collection of organs, tissues, cells, and 

processes that distinguish self from non-self and protect the body from threats. These 

threats are mostly external pathogens such as viruses, toxins, bacteria, fungi, or 

parasites, but can also be threats from within (e.g. cancer). The organs that make up 

the immune system include the thymus, lymph nodes, spleen, and bone marrow. Bone 

marrow is the site of hematopoiesis, the thymus is where mature T cells are generated, 

lymph nodes facilitate interactions between antigens and immune cells, and the spleen 

filters blood and also facilitates antigen-immune cell interactions. The lymph nodes and 

spleen are also the site of antigen specificity acquisition for B cells. These components 

are arranged in a parallel circuit such that cellular components of the immune system 

move through these tissues and throughout the body via the circulatory system and 

lymphatics. The lymphatic vessels facilitate host defenses by collecting interstitial fluid 

from body tissues, draining this through the lymph nodes allowing immune cells to 

encounter antigens from peripheral tissues, and then returning lymph fluid into the 

peripheral circulation1. Hematopoietic stem cells give rise to all blood cells including 

erythrocytes and platelets, myeloid cells, and lymphoid cells. The immune system is 

broken into two major divisions: innate and adaptive immunity.  

Innate immunity serves as the first line of defense of the immune system. This 

system generates rapid antigen-independent responses and has no immunologic 
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memory2,3. The innate system includes defensive barriers such as skin and mucous 

membranes, physiologic defenses such as low stomach pH that kills microbes, 

circulating proteins that are able to bind and inhibit pathogens, and cells that 

endocytose foreign molecules and/or produce chemical mediators like cytokines and 

chemokines that recruit additional immune cells to the site of defense4. The immune 

components that generate these responses include phagocytes such as macrophages, 

dendritic cells (DCs), and neutrophils, natural killer cells (NK cells), and the complement 

cascade5. Innate immune responses are triggered by engagement of pattern recognition 

receptors that coordinate immune cells to respond to different pathogenic classes4. 

Phagocytes engulf and kill cells and ingest cellular debris to present antigens to 

adaptive immune cells, NK cells kill cells that have downregulated normal cell surface 

molecules and/or upregulated sets of stimulatory molecules, and complement proteins 

form pores in target cells to kill them6–8. These elements together form a system that 

rapidly responds to a broad range of target pathogens, but does not include antigen-

specific responses or elicit immunological memory to these targets.  

The adaptive arm of the immune system comprises the lymphocytes (T cells and 

B cells) and is responsible for antigen-specific responses and memory. It takes 7-10 

days to develop primary adaptive responses in humans, though memory recall 

responses are more rapid7. Exogenous antigens from pathogens like viruses and 

bacteria as well as endogenous antigens like tumor-associated or -specific antigens can 

be targeted by adaptive responses9. B cells drive the humoral side of adaptive immunity 

by producing antibodies, antigen-specific immunoglobulin proteins that bind the target 

antigen to drive downstream effects that depend on the antibody isotype and target 



 3 

antigen. These outcomes include neutralization by antibodies that block portions of a 

pathogen rendering it unable to interact with host cells, agglutination of clusters of 

antibodies bound to antigens to mark a target for phagocytosis, or complement fixation 

to mediate lysis of the foreign cell10. T cells are the primary effectors of cell-mediated 

cytotoxic adaptive immunity. T cells may be divided into several subtypes based on 

differences in function, including “killer” cytotoxic CD8+ T cells and “helper” CD4+ T 

cells. CD8+ T cells recognize antigens from infected cells, cancer cells, or other 

antigens recognized as non-self and induce cell death in cells presenting non-self 

antigens11. There are two primary mechanisms of CD8+ T cell-mediated cytotoxicity. 

The CD8+ T cells secrete granules containing perforin, granzymes, cathepsin C, and 

granulysin that fuse with the target cell membrane and form pores in the membrane and 

induce death12. CD8+ T cells also express Fas ligand which ligates Fas receptors on 

target cells to activate death domains and pathways leading to fragmentation of DNA 

and eventually cell death12. While CD8+ T cells exert direct cytotoxic effects and B cells 

secrete antibodies, “helper” CD4+ T cells perform a wide variety of supportive and 

regulatory roles including secretion of cytokines, providing costimulatory or coinhibitory 

signals to other adaptive immune cells, inhibition of harmful adaptive immune 

responses, and cytotoxic activity13. Helper CD4+ T cells are subdivided into multiple 

types, including Th1, Th2, Th17, and regulatory T cells (Tregs). Th1 cells secrete 

interferon (IFN)-γ and tumor necrosis factor (TNF)-β to protect against intracellular 

pathogens by activating phagocytes and promoting proliferation and cytolytic activity of 

CD8+ T cells, as well as promoting the development of memory CD8+ T cell and Treg 

responses14. Th2 cells coordinate responses to extracellular parasites and secrete 
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interleukin (IL)-4, 5, 10, and 13 to activate B cells to promote antibody isotype switching, 

somatic hypermutation and affinity maturation, and antibody production as well as to 

induce degranulation of granulocytes and release of proinflammatory mediators14. Th2 

cells play an important role in asthma and allergic diseases via allergic airway 

inflammation, histamine release, and activation of eosinophils15. Th17 cells generate 

responses against extracellular bacteria and fungi by secreting IL-6, IL-17, and IL-22 

and TNF- α to activate T cells, induce B cell differentiation into plasmocytes and 

memory B cells, and enhancing mucosal defenses by inducing antimicrobial peptides 

and activating neutrophils14. In addition to these conventional helper T cell types, an 

additional CD4+ T cell type are regulatory T cells, or Tregs. Tregs protect against 

immunopathology by suppressing potentially harmful activities of helper T cells through 

a variety of mechanisms including secreting inhibitory cytokines like IL10 and 

expressing high levels of CTLA-4 to inhibit proliferation of T and B cells and maintain 

immunologic tolerance of self-antigens16,17.  

Adaptive immune cells arise in the bone marrow and mature in the thymus (T 

cells) and bone marrow (B cells).  T cells go through a maturation process upon arrival 

of precursor cells in the thymus that includes differentiation, proliferation, recombination 

and assembly of the TCR, initiation of expression of T cell-specific cell surface proteins, 

and positive and negative selection18. The T cell receptor is structurally similar to B cell-

generated immunoglobulins, and acts as a membrane-bound antigen-specific receptor. 

The TCR includes a variable region that confers antigen specificity and a constant 

region.  It can be composed of a paired heterodimer of α and β chains, or in the case of 

the rarer γδ T cells that represent 1-10% of the T cell repertoire, a paired γ chain and δ 
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chain heterodimer. The TCRα and TCR γ loci contain V and J gene segments, while the 

TCRβ and TCRδ loci contain D gene segments in addition to V and J.  The initial stage 

of TCR assembly via somatic recombination occurs when the gene segments of TCR- 

β, TCR-γ, and TCR-δ chains rearrange. Cells commit to the γδ T cell lineage if 

formation of a productive γδ TCR complex is completed first, or the αβ lineage if they 

first form a pre-TCR complex of rearranged TCRβ plus the invariant pTα 

placeholder19,20. T cells committed to the αβ lineage then rearrange the TCRα locus, 

generating complete VJα and VDJβ V-region exons that are transcribed and spliced to 

constant regions, then translated to produce α and β chains that pair to form a complete 

TCR heterodimer21. Somatic recombination generates TCR diversity due to the 

combination of germline V(D)J segments, with the TCRα locus having approximately 70 

V regions and 61 J regions to select from, while the TCRβ locus has approximately 52 V 

regions, 2 D regions, and 13 J regions21.  If selected at random, this gives about 5.8 

million potential gene region combinations for an αβ pair, which while large is 

insufficient to address the vast antigen space that T cells must be capable of 

responding to. Further TCR diversity is contributed by junctional diversity, in which 

germline nucleotides can be deleted, and the double stranded breaks made in order to 

join gene segments can be filled by the random incorporation of P and N nucleotides 

prior to ligation of the segments22. This junctional diversity is estimated to bring the total 

possible T cell diversity to on the order of 1018 possible TCRs21. Once a complete TCR 

αβ pair is assembled, T cells undergo positive and negative selection in the thymus to 

become mature. T cells (at this stage known as double positive T cells because they are 

expressing surface proteins CD4 and CD8) first encounter thymic cortical epithelial cells 
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in the cortex that utilize thymoproteasomes and lysosomal proteases to generate and 

present peptides derived from the endogenous proteome on Major Histocompatibility 

Complex (MHC) class I and II23. This step is known as positive selection, and generates 

MHC restriction and ensures that T cells will be capable of productively engaging with 

peptide-MHC complexes. Cells that recognize peptide-MHC class I complex commit to 

the CD8 lineage while cells that recognize peptide-MHC class II commit to the CD4 

lineage via the activity of two opposing transcriptional regulators, Thpok and Runx3, that 

initiate repression of the opposite surface protein24. About 90% of T cells die of “neglect” 

via apoptosis at this step due to lack of TCR:peptide-MHC engagement, which 

generates critical survival signaling23. Following positive selection, the remaining T cells 

that are now single positive for CD4 or CD8 undergo negative selection to remove T 

cells with high affinity for binding self-peptides or self-MHC, eliminating cells that are 

potentially self-reactive. Cells undergo directed migration to the thymic medulla via the 

chemokine receptor CCR7 for negative selection25. In the medulla they encounter 

medullary thymic epithelial cells (mTECs), conventional DCs, and plasmacytoid DCs 

presenting self-peptides on MHC class I and II23. mTECs express the human 

autoimmune regulator (Aire) that controls the expression of over 3,000 downstream 

genes, increasing gene transcription by interacting with RNA polymerase II and 

releases it from where it stalls at promoter regions of genes, freeing them to proceed 

with transcription26. Aire allows for mTECs to express many more genes than other cells 

including a large number of peripheral tissue-specific genes that would otherwise not be 

expressed in the thymus, allowing for presentation of peripheral tissue self-antigens in 

the thymic medulla to generate immunological tolerance of self-peptides from 
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throughout the body26. This promiscuous gene expression continues throughout the 

entire time of thymic T cell output27. mTEC lifespan is short due to the double stranded 

breaks generated by the action of Aire, leading to rapid turnover28.  

  Within the thymus, most T cells that strongly bind self-antigen-MHC complexes 

are eliminated via repression of the anti-apoptotic protein Bcl2, which represses pro-

apoptotic proteins including Bim and Puma29. While most cells that bind self-antigens 

presented on MHC undergo apoptosis, a portion of autoreactive CD4 T cells 

differentiate into regulatory T cells via agonistic selection25. These Tregs are important 

for maintaining immunological tolerance. In summary, T cells generate unique TCR α 

and β chains that pair to form a heterodimeric TCR, then T cells traffic through the 

thymic cortex to remove T cells that do not engage with peptide-MHC in positive 

selection, then move through the thymic medulla to remove T cells that engage self-

peptide-MHC too strongly in negative selection. This pathway results in mature naïve 

single positive T cells that then traffic throughout the body to secondary/peripheral 

lymphoid organs that include spleen and lymph nodes in order to make contact with 

circulating pathogens or antigen-presenting cells (APCs)9. 

T cells become activated upon contact with antigen presented on the appropriate 

MHC, with CD8+ T cells activated by MHC class I-presented antigens and CD4+ T cells 

activated by class II-presented antigens. CD8 and CD4 act as coreceptors to the TCR 

to increase binding affinity to peptide-MHC. T cells need three signals to be optimally 

activated. Signal 1 is TCR binding to a peptide-MHC complex, initiating intracellular 

signaling cascades such as the MAPK and NFAT pathways that lead to T cell activation. 

Signal 2 occurs via binding of costimulatory molecules such as the binding of CD28 
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from the APC to CD80/86 on the T cell, which completes the signaling necessary for 

survival, proliferation, and differentiation. Signal 3 is T cell reception of proinflammatory 

cytokines such as type 1 interferons that are released from the APCs, which lead to 

continued survival, proliferation, and formation of antigen-specific memory 

responses30,31. If cells receive Signal 1 but no binding of costimulatory molecules for 

Signal 2 and/or presence of proinflammatory cytokines for Signal 3, this results in T cell 

anergy and/or tolerance of the cognate antigen30. It is also possible for T cells to receive 

a negative signal at Signal 2, such as CD80/86 binding CTLA-4, preventing CD28 

ligation and preventing activation31. Cytokines can also serve roles in T cell activation 

other than directly providing Signal 3 to the T cells. For example, the cytokine IFN-γ 

enhances antigen presentation to CD8+ T cells by upregulating expression of MHC 

class I and antigen processing pathways32–34. Overall, T cell activation state is 

determined by a complex aggregation of stimulatory and inhibitory signaling, simplified 

below (Figure 1.1). 
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Figure 1.1: T cell activation signals. Figure shows 3 signals necessary to activate 
CD8+ T cells and CD4+ T cells.  
 
 Generation of Signal 1 requires a complex process of antigen processing and 

presentation on the cell surface of the APC. MHC class I molecules are expressed by all 

nucleated cells and drive cytotoxic CD8+T cell responses, while class II molecules are 

presented on “professional” antigen-presenting cells including DCs, macrophages, and 

B cells and drive helper and regulatory CD4+ T cell responses35. For class I MHC 

proteins, peptides between 8-11 amino acids bind to specific amino acids at the C and 

N terminus of the MHC protein leading to presentation of amino acids in the center of 

the peptide for recognition by CD8+ T cells. In contrast, class II MHC proteins are not 

anchored at the N or C terminus and as a consequence bind peptides that are 13-25 
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amino acids long35. The set of peptides that binds MHC is also determined by the class I 

and II HLA alleles that are encoded in an individual based on the HLA haplotypes 

inherited from each parent. Thousands of HLA alleles are known, and alleles and 

haplotypes vary in prevalence in different ethnic populations36. 

Endogenous antigens are primarily presented by MHC class I, while class II 

primarily presents exogenous antigens37,38. Antigen cross-presentation is also possible, 

in which antigens presented to CD8+ T cells by MHC class I are exogenously derived. 

This process is crucial for adaptive immune responses to viral infections and solid 

tumors because it allows for presentation of tumor or viral antigens by cells other than 

the directly affected cell to coordinate CD8+ T cell responses. In addition to presentation 

to different cell types, antigen processing also differs between class I and class II 

(Figure 1.2). 

 

Figure 1.2: MHC class I and II antigen processing and presentation pathways39,40.  
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For class I MHC, proteins are degraded in the cytosol and nucleus then routed 

through the cytosol into the ER by TAP, where MHC class I heterodimer assembly takes 

place from heavy chain, beta 2 microglobulin, and the peptide41. Until peptide binding, 

MHC class I is stabilized by chaperone proteins including tapasin, calreticulin, and 

others, and these release when peptides bind MHC class I and the fully assembled 

complex is freed to exit the ER and move to the cell surface via the Golgi complex41. 

Free peptides are degraded by cytosolic peptidases within seconds, meaning that the 

number of peptides that bind TAP and ultimately get presented is much lower than the 

sum of all peptides produced by proteasomal degradation of proteins42. For class II 

antigen presentation, exogenous antigens are endocytosed or phagocytosed and 

degraded in endosomal-lysosomal compartments or phagolysosomes43. MHC class II 

alpha and beta chains are synthesized and assembled into heterodimers in the ER and 

bind invariant chain which targets the complex to the peptide-containing endosomal-

lysosomal compartments43,44. The complex moves from the ER through the Golgi to the 

plasma membrane, and is endocytosed to then follow the same pathway as the 

peptides it will present. This invariant chain is degraded and removed in the antigen-

processing compartment except for a small remaining component called class II-

associated invariant chain peptide (CLIP) that occupies the class II binding groove45. 

The enzyme HLA-DM then removes CLIP to allow a processed peptide to bind the 

groove, and the completed class II complex moves via transport vesicle to be inserted 

into the plasma membrane45.  

 In summary, the immune system comprises adaptive and innate components, 

and T cells and B cells are the primary mediators of antigen-specific adaptive immune 
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responses. CD8+ T cells kill target cells in response to endogenously derived short 

peptides presented on MHC class I, while helper CD4+ T cells respond to longer and 

exogenously derived peptides presented on MHC class II. Together, these responses 

allow for a rapid and dynamically adaptive response to fight infection and disease. This 

work hereafter primarily focuses on antigens presented by MHC class I to CD8+ T cells 

to generate cytotoxic responses. 

(1.2) Predictors of antigen presentation and immunogenicity 

Although the exact determinants of a given TCR/peptide/HLA binding interaction 

are impossible to perfectly predict, some characteristics of the binding interaction have 

been discovered that make individual peptides more or less likely to bind HLA and 

generate a cognate T cell immune response. On the peptide binding side, each HLA 

allele has a slightly different conformation that leads to binding somewhat overlapping 

but distinct peptide repertoires46. Peptides that are more likely to bind contain specific 

amino acids at so-called “anchor residues” towards the ends of the peptide which have 

more contact with the binding groove and are therefore stronger determinants of 

binding47–49. These anchor residues vary based on HLA allele, but are concentrated 

around peptide side chains46. The conformational differences between binding grooves 

of alleles driving differential binding and therefore different sets of peptides bound and 

presented by each allele46. The peptide C-terminal side chain is one such anchor 

residue that is highly important for binding and stability of the peptide-MHC complex49. 

Computational scientists have utilized datasets of peptides that are known to bind MHC 

to train in silico models to predict peptide binding to MHC class I and II alleles. These 

computational tools such as netMHCpan, MHCflurry, and others are available for 
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researchers to estimate binding prediction values for antigens with HLA alleles of their 

choice50,51. While imperfect, these tools have improved over time as additional training 

data on antigens validated by mass spectrometry have been generated. The options for 

predicting which validated HLA-presented antigens will actually elicit antigen-specific T 

cell responses in vivo are even more limited, as the majority of presented antigens do 

not generate a cognate T cell response and the factors that dictate immunogenicity and 

the degree to which they matter are unclear52. However, studies have established some 

of the factors that do correlate with endogenous T cell responses such as strong 

peptide/MHC binding affinity, long half-life (peptide/MHC binding stability), high RNA 

and protein expression, low agretopicity (ratio of mutant to wild-type binding affinity), 

and high foreignness (degree of homology to known self-peptides)52. Of these, peptide 

binding affinity, binding stability, and protein expression seem to have the strongest and 

most reproducible correlations with MHC presentation and elicitation of antigen-specific 

T cell responses52. Peptides with longer MHC interaction half-lives are more likely to 

come in contact with TAP and be transported for MHC presentation, and strong binding 

affinity allows for peptide presentation. High expression of the peptide source gene is a 

strong predictor of an antigen-specific T cell response because high abundance of the 

protein makes it more likely that the peptide of interest will be produced by proteasomal 

degradation and presented by MHC, though not all possible peptides from a given 

protein are generated with equal probability and frequency by the proteasome. The 

importance of agretopicity and foreignness are less agreed upon, but it appears that 

mutated peptide variants that are much more likely than the normal form to bind MHC, 

or peptides with further distance from the normal proteome, may be more likely to be 
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recognized as foreign52–56. Our group and others are working to utilize deep learning 

and other computational methods to predict antigens that will generate T cell responses, 

and similarly to binding prediction tools, these approaches will approve as more 

antigen-specific T cell clones are discovered57–61. 

(1.3) Defining mHAs 

Minor histocompatibility antigens (mHAs) are MHC-presented peptide antigens 

that are relevant in the context of hematopoietic cell transplant. mHAs are derived from 

nonsynonymous single nucleotide polymorphisms (SNPs) that differ between a 

transplant donor and recipient, leading to an amino acid change in a peptide such that 

the recipient peptide is foreign to the donor62–64. In allogeneic hematopoietic cell 

transplantation (alloHCT), any given donor-recipient pair (DRP) has their own individual 

set of mHAs due to the large number of SNPs that differ between the genomes of any 

individuals, on the order of thousands to millions based on the estimation of 1 SNP per 

1000 bases in the average genome65. These SNP-derived peptides are presented by 

recipient MHC proteins, termed human leukocyte antigen (HLA) proteins in humans 

(Figure 1.3)66. 
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Figure 1.3: Minor histocompatibility antigen presentation on class I MHC. Minor 
antigen HA-1 (VLRDDLLEA) is used as an example67. 
 

 T cell recognition of these mHAs presented by recipient HLA can lead to T cell-

mediated cytotoxicity of recipient cells that express these mHAs. This dissertation will 

focus on mHAs in alloHCT because these antigens are critical to graft versus host 

disease (GvHD) and the graft versus leukemia (GvL) effects of transplant68–70. Within a 

single DRP, the T cell recognition of mHAs produces a complex combination of GvL and 

GvHD. It is hypothesized that the effect that each individual mHA mediates in a 

transplant recipient depends on the tissue type that the mHA is presented within, with 

hematopoietic cell expression leading to GvL and expression by epithelial cells leading 

to GvHD. (Figure 1.4)71–73.  
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Figure 1.4: GvL and GvH effects of T cells targeting mHAs. 

If an mHA is derived from a gene that is expressed in leukemia cells, it is 

hypothesized that the immune response against that antigen will drive T cell-mediated 

killing of leukemic cells and therefore the mHA be classified as a GvL mHA. If the mHA 

is derived from a gene expressed in acute GvHD target organs such as skin, colon, and 

liver, responses to that mHA will generate graft versus host (GvH) effects. Acute GvHD 

is characterized by a proinflammatory response mediated by Th1 and/or Th17 cells, 

while chronic GvHD is a complex pro-fibrotic response mediated by B cells and Th17 

cells74–76. The pathophysiology of acute GvHD is a three-step process including 

recipient tissue damage from radiation and chemotherapy included in pre-transplant 

conditioning, donor T cell activation and clonal expansion in response to tissue damage, 

and release of cytotoxic effectors of tissue injury77. In contrast to the T cell infiltrates 

seen in acute GvHD, chronic GvHD is characterized by a fibroproliferative signs and 

acellularity78. The clinical symptoms of donor T cells generating immune responses 

against recipient tissues in acute GvHD include maculopapular rashes, jaundice and 
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cholestasis, nausea, vomiting, and diarrhea79. Symptoms of chronic GvHD can include 

those similar to acute GvHD as well as dry eyes or mouth, shortness of breath, joint 

inflammation and discomfort, fatigue, sclerotic skin lesions, vulvovaginitis, or other 

symptoms of chronic inflammation in a variety of systems80. While acute GvHD is 

almost exclusively mediated by donor T cells, chronic GvHD pathogenesis has been 

shown to also involve donor B cells81. mHAs can also fall into a third category when 

they are derived from genes that are expressed in healthy circulating or tissue-resident 

white blood cells (leukocytes). These genes are often also expressed in leukemia cells, 

making mHAs derived from them classifiable as GvL mHAs, but occasionally an mHA is 

derived from a gene that is only expressed in healthy leukocytes and not in leukemia. 

These mHAs are often grouped in with GvL, but T cells targeting these mHAs would not 

be expected to kill leukemia cells. Instead, recipient healthy leukocytes will be targeted. 

In the context of alloHCT, this could still be beneficial by eliminating recipient-derived 

leukocytes and thereby supporting donor hematopoietic stem cell engraftment. 

Therefore, these non-typical mHAs belong in a third category of mHAs that can lead to 

a beneficial effect that is not mediated by leukemia targeting. 

 mHAs can be considered either class I or class II antigens based on whether 

they are presented on HLA class I or II proteins. We focus on class I mHAs in this work, 

as these are directly recognized by CD8+ T cells leading to T cell-mediated cytotoxicity, 

though other studies have shown that class II mHAs can be beneficial targets for GvL 

as well82,83. 
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(1.4) Relevance to allogeneic hematopoietic cell transplantation 

mHAs are relevant in the context of alloHCT due to its unique clinical context in 

which, following engraftment, a donor-derived hematological system is functioning 

within a completely foreign environment of tissues and antigens. alloHCT has been 

increasingly used over the last 50 years as a treatment for both malignant and 

nonmalignant conditions in which therapeutic effect requires a recipient to have donor-

derived hematopoiesis84. It was first conceptualized as a treatment for radiation-induced 

bone marrow deficits after WWII, with experiments being performed to reconstitute bone 

marrow after radiation treatment in mice84. The first human alloHCT was performed in 

1939 when a woman with aplastic anemia received intravenous injection of bone 

marrow from her brother along with a large number of transfusions in an attempt to 

prolong life, though successful alloHCTs were not performed for several more 

decades85.  Work progressed to efforts to treat leukemia in mice, canines, and humans 

throughout the 1960s84. Early on, it was determined that endogenous hematopoiesis 

must be ablated prior to transfer of new hematopoietic materials in a process known as 

pre-transplant conditioning. This was initially done by administering radiation, but it was 

soon discovered that conditioning chemotherapy such as cyclophosphamide could be 

utilized as an alternative86. One crucial discovery that allowed for the alloHCT field to 

progress in humans was the identification of the MHC locus in humans, first discovered 

by Jean Dausset with Felix Rapaport in 196587–92. After this discovery, the first 

successful allogeneic (donation from another person, in contrast to autologous 

transplant in which the donor source is self) transplants were performed with HLA-

matched sibling donors for bone marrow failure syndromes and immunodeficiencies in 

the 1960s-1970s84. The first successful curative alloHCTs for malignant conditions were 
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reported in a 100 patient cohort in 1977, encouraging further development of alloHCT 

for malignancies and establishing that alloHCT is more effective in patients with early 

stage disease than with advanced disease93. 

 As mentioned previously, mHAs mediate effects of alloHCT by eliciting donor T 

cell responses against recipient tissues. When mHAs are presented on AML or 

leukocytes, the corresponding outcome is a desirable GvL effect. The GvL effects of 

mHAs were first uncovered based on observations of a lack of therapeutic efficacy 

when alloHCT was performed with identical twin donors compared to HLA-identical non-

twin sibling donors94.  The other major effect of mHA targeting is GvHD, which occurs 

as discussed when mHAs are presented on healthy recipient tissues. GvHD risk can be 

reduced via prophylactic treatments including calcineurin inhibitors like cyclosporine or 

tacrolimus in combination with methotrexate, an antimetabolite that attenuates T cell 

activation, or mycophenolate mofetil, an inosine monophosphate dehydrogenase 

inhibitor95. Though these are most often used, other methods of prophylaxis include 

sirolimus, posttransplant cyclophosphamide, or T cell depletion via antithymocyte 

globulin (ATG)95. GvHD can also be treated after it arises using immunosuppressants. 

Glucocorticoids are the first line agent for acute GvHD, though steroid monotherapy will 

fail in 35-50% of patients95,96. Although it is known that mHAs drive GvHD and GvL, it is 

currently unknown whether these effects are dependent upon a few immunodominant 

mHAs that drive the alloantigen-specific T cell response or whether total number of 

mHAs is important for driving either or both effects97.  
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(1.5) Clinical Context of alloHCT for Acute Myeloid Leukemia 

In the modern era, alloHCT is utilized for intermediate or high risk cases of Acute 

Myeloid Leukemia (AML) in patients in Complete Response 1 (CR1) with characteristics 

that allow for successful alloHCT, as determined by a risk of relapse greater than or 

equal to 40% if treated with induction chemotherapy alone, and a low risk of treatment 

related mortality due to age and comorbidities98. AML is stratified into risk groups based 

on cytogenetic and molecular factors. The favorable/low risk group includes patients 

with NPM1 mutations, biallelic mutation of CEBPA, RUNX1-TUNX1T1 translocations, 

and other mutations99. The adverse/high risk group includes patients with complex 

cytogenetics or high risk mutations such as BCR-ABL1 translocations or FLT3-ITD with 

wild-type NPM199. Finally, the intermediate risk group contains patients with cytogenetic 

and molecular abnormalities that are neither favorable nor adverse. Based on current 

treatment guidelines, it is suggested that patients with favorable risk factors do not go 

on to transplant unless they have a c-KIT mutation, while patients with unfavorable risk 

proceed to transplantation. Intermediate risk patients may or may not go on to 

transplant depending on specific cytogenetic risk factors and on availability of an HLA-

matched donor100. Older patients follow generally the same stratification framework, but 

with individualized considerations of age and comorbidities to determine whether the 

benefits of transplant will outweigh the risk. 

Prior to alloHCT, the first step in treatment of AML patients is to administer 

induction chemotherapy to induce remission. More than 70% of young patients that 

undergo induction therapy achieve CR1, with lower rates for older patients101–103. If a 

patient does not enter CR1 after induction therapy, they may receive another round of 

induction therapy to reach CR1, though this places patients into a higher risk group than 
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their cytogenetics would indicate100. AML patients with high-risk disease may proceed to 

alloHCT once they achieve CR1. Otherwise, patients with relapsed disease after prior 

therapeutic regimens may be treated with alloHCT if they achieve remission with further 

lines of anti-leukemia therapy. 

Immediately prior to receiving alloHCT, recipients receive myeloablative 

conditioning (MAC) or reduced intensity conditioning (RIC) therapy for disease 

eradication, immunosuppression, and creating space for transplanted cells to engraft104. 

Examples of MAC regimens include cyclophosphamide with total body irradiation (TBI) 

or busulfan-based treatments such as fludarabine/busulfan98. RIC regiments are less 

taxing and thus beneficial for patients with intermediate to high risk AML who are older 

or have comorbidities such that MAC regimens would be too harmful105. Common RIC 

regimens include fludarabine with doses of TBI or busulfan that are lower than what is 

utilized in MAC regimens105.  

Once remission has been achieved and conditioning therapy given, patients can 

go on to receive an alloHCT. Most alloHCTs have historically been performed with 

either an HLA matched related donor (MRD) or matched unrelated donor (MUD). Only 

30% of patients have a suitable HLA-matched immediate family member to serve as an 

MRD, so the remainder of patients rely on availability of HLA-matched donors in 

national donor registries103. Due to ethnic and allelic makeup of the donor registry, 

chance of finding an HLA-matched donor varies greatly by race. White patients have the 

best chance of finding a matched donor, with a 79% chance of match, while other races 

have worse chances, with Black patients only having a 29% chance of finding a match 

in the registry106. In cases where a matched donor is unavailable, alternative donor 
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sources such as umbilical cord blood, haploidentical donor, or mismatched unrelated 

donor may be considered, but this is beyond the scope of this dissertation. For MUD or 

MRD alloHCTs, cells will be harvested from the donor via either a bone marrow harvest 

from the iliac crest or apheresis of stem cells mobilized from peripheral blood. If 

donating via peripheral blood, donors receive a mobilizing factor such as G-CSF or 

CXCR4 blockers in order to increase the number of stem cells in the peripheral blood 

before harvest107. Peripheral blood grafts appear to give better engraftment but a 

slightly increased risk of acute and chronic GvHD108. Fresh or cryopreserved stem cells 

are then infused into the patient and allowed to engraft within their bone marrow and 

perform hematopoiesis. Prognosis for patients that relapse after receiving alloHCT is 

poor, but in this case patients can receive additional salvage chemotherapy, donor 

lymphocyte infusion, or a second alloHCT99. Clinical trials with novel therapeutic agents 

or regimens may be used for patients that fail any of these treatment modalities.  

 In selecting a donor for alloHCT, though matching at all HLA loci is preferred, 

matching at certain loci is more important than at others. Matching can be defined at 

different levels based on the number of alleles that are considered. Mismatching at 

crucial alleles can lead to graft rejection, GvHD, or worsened patient outcomes including 

decreased overall survival. The National Marrow Donor Program recommends an 8/8 

match for matched alloHCTs, referring to matching at both alleles at HLA-A, B, C, and 

DRB1 loci109. Most European centers consider a 10/10 match, meaning an 8/8 match 

plus DQB1, to be the gold standard110. A 12/12 match refers to matching at these loci 

plus DPB1. Additional matches beyond 8/8 have been shown in a variety of recent 

studies to impact outcome as well109. Effects of DPB1 matching is a controversial topic, 
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but there are categories of DPB1 mismatches that are considered permissive versus 

nonpermissive as some mismatches lead to worse GvHD and mortality outcomes while 

others have no impact111–113. DPB1 is also especially complex because HLA-DR+ 

leukemias generally also express HLA-DP, so it may mediate GvL effects in addition to 

GvHD114. Even within alleles that are considered a required match including A, B, C, 

and DQB1, some specific mismatches can be well tolerated while others can lead to 

transplant rejection or GvHD115–117. Another donor source option is haploidentical 

transplantation, where a patient receives an alloHCT from a relative that is a half match 

due to unavailability of a matched donor. Recent innovations in GvHD prophylaxis have 

made this graft type possible, and patients receive posttransplant cyclophosphamide to 

prevent GvHD and graft rejection118. These transplants help to bridge the gap in donor 

availability by race: while many non-Caucasian patients do not have a matched donor 

available in the registry, most patients have a haploidentical donor available in the form 

of a first degree or occasionally even further degree relative. One center reports a 

greater than 95% success rate in identifying a haploidentical first degree relative for 

their patients, with an average of 2.7 haploidentical donor sources available per 

patient119. Data on outcomes from MUD versus haploidentical alloHCT are mixed but 

generally favors MUD where available due to higher incidence of graft failure and GvHD 

in haplo alloHCTs118. Ultimately, determination of what specific donor is best for a 

recipient is a highly complex topic, and donor availability, clinician judgment, and 

personal preference play a strong role in donor selection.  

 Another factor to consider in donor selection is degree of genetic similarity of 

recipient and donor. As previously mentioned, the lack of graft versus leukemia effects 
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of transplant with identical twin donors led to discovery of the GvL effects of mHAs94. 

However, it is unknown how the increased genetic distance between donor and 

recipient in a MUD DRP versus a MRD impacts the number of biologically relevant 

mHAs in alloHCT. Studies have shown many conflicting results when comparing MUD 

vs MRD alloHCT, though the largest study to date found no significant difference in 

survival times based on donor source120. Unpublished and published data from our lab 

have shown that while genetic distance measured via SNP arrays is greater in MUD 

DRPs than in MRD DRPs, genetic distance does not correlate with total number of 

predicted mHAs or with number of predicted GvL mHAs per DRP121. Overall, we know 

that some degree of genetic distance is necessary between donor and recipient in order 

to generate GvL effects and prevent relapse, but genetic differences (mHAs) also 

generate GvHD. Donor selection and transplant medicine are a delicate balance of 

reducing transplant-related mortality while also seeking to decrease relapse and prolong 

survival. 

(1.6) History of mHA discovery 

The concept of transplant tissue incompatibility arose approximately 80 years 

ago with the work of Ray Owen, Sir Peter Medawar, and their contemporaries. In 1943, 

Medawar performed the first systematic examinations of the phenomenon of transplant 

rejection. He observed a burn patient who received skin grafts both from her own 

tissues (autograft) and from a donor (allograft), assessed these macroscopically and 

histologically and found that the allografts were rejected more rapidly than autografts122. 

Skin grafting had been practiced as long ago as 1500 BC but was largely abandoned 

during the middle ages until reimplementation in the 1800s, with the first successful skin 



 25 

graft of the modern age performed in 1822123. It was widely known that grafts from other 

individuals would fail, with the exception of grafts from identical twins, but the reasons 

for this were not understood until the mid-1900s122. Medawar’s work helped to fill this 

gap by supporting the hypothesis that rejection of allografts was mediated by the 

immune system reacting to foreign antigens from the donor. Owen’s work added to the 

concept of transplant compatibility by exploring the idea of immune tolerance. His 

critical observation took place in 1945 when observing a pair of dizygotic twin calves 

that had apparently shared circulation during development, leading to antigens from one 

calf not eliciting an immune response in the other124. In 1949, Burnet and Fenner then 

used Owen’s observation to support the idea of immune tolerance and propose the 

concept of fetal recognition of “self-markers” that lead to tolerance in their book on 

antibodies125. Medawar and Burnet received the 1960 Nobel Prize for the discovery of 

immunological tolerance, which they had both worked on independently of each 

other125.  

In addition to immunological tolerance, the discovery of the MHC locus was also 

a pivotal advance that enabled the progression of discoveries in transplant biology. After 

several decades of investigations into graft acceptance in mice, the MHC locus was first 

described in 1948 by George Snell, who named the gene encoding the antigen H2, 

where the H stands for Histocompatibility, eventually reflected in the MHC name126,127. 

Jean Dausset went on to discover the first MHC antigen in humans in the 1958 by 

observing that upon transfusion of blood from a single donor into a patient, the recipient 

patient developed anti-leukocyte antibodies. These antibodies also reacted with the 

leukocytes of about 50% of tested volunteers, meaning that the volunteers whose 
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leukocytes did not generate a response must share the antigen with the donor. He 

named the antigen MAC after the initials of three of his experimental volunteers, though 

this allele later came to be recognized as HLA-A2128,129. As discussed previously, he 

went on to discover the MHC locus in humans in the mid 1960s. In the 1960s-70s, Baruj 

Benacerraf performed guinea pig experiments showing that genetic factors related to 

the MHC antigens facilitate generation and strength of immune reactions130,131. Snell, 

Dausset, and Benacerraf shared the 1980 Nobel Prize in Physiology or Medicine for 

their work on discovering and characterizing MHC biology.  

These discoveries set the stage for uncovering the antigens that mediate 

tolerance or rejection in the context of transplant between two individuals. An early 

breakthrough in this field was a 1976 publication by Van Rood and Goulmy describing a 

case in which a woman with aplastic anemia rejected an HLA-identical alloHCT from her 

brother132. Ex vivo analysis of cytotoxicity of patient lymphocytes was performed and 

cytotoxic T cell responses against only male HLA-A2 positive target cells was found, 

indicating that a T cell response to an antigen on the Y chromosome drove graft 

rejection133. This observation correlated with earlier observations from the 1950s in mice 

that skin grafts in females from otherwise identical males failed134. These graft failures 

indicated that there were antigens encoded on the Y chromosome that would be 

recognized as foreign to female mice, but tolerated and not recognized as non-self by 

male mice135. These human and mouse Y chromosome-encoded antigens are now 

known as H-Y antigens, a group of mHAs that are specifically relevant in alloHCTs 

between donors and recipients of disparate sex136.  
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A crucial discovery in establishing the mechanism of immune responses to mHAs 

was made in 1990, when the Rammensee group established that presentation of mHAs 

is dependent upon MHC, and that the MHC alleles in an individual determine which 

peptides can be presented137. When they compared peptides presented on MHC in 

mouse spleens from mouse strains that are identical at all genes except for MHC class 

I, they found that these strains presented different patterns of peptides137. Important 

mHA-related developments continued in the 1990s with the discovery of the first non-Y 

chromosome mHAs mediating immune responses in mice. Dozens of loci driving 

immune responses were discovered in the context of transplants between murine 

strains with the same MHC alleles between the mid 1980s through 1990s138. In the early 

days of mHA discovery, loci that encode mHAs were often identified by linkage analysis 

or other methods that could narrow down the genomic region that the antigen is derived 

from, but not identify the actual antigenic peptide. Discovery of the mHA peptide 

sequences themselves often came later, enabled by technological developments in 

techniques such as expression cloning or mass spectrometric immunopeptidomics that 

enable peptide identification. The first autosomal mouse mHA peptide sequence was 

identified in 1997 after over 50 autosomal mouse mHA loci had been established, with 

the H13 mHA peptide discovered by the Shastri group via expression cloning139. 

Taken together, this early work established that peptides known as mHAs 

presented on HLA/MHC can mediate immune responses in individuals that do not 

recognize these antigens as self. The field progressed in the 1990s in humans in a 

similar pattern to how mouse mHA work evolved, with discovery of loci that impacted 

transplant outcomes first, followed by discovery of the specific mHAs corresponding to 
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the loci. Rammensee and Els Goulmy’s groups investigated tissue expression of genes 

that generated mHAs in 1991 and 1992, finding that distribution of mHA source gene 

expression corresponded with class I HLA expression. Additionally, some source genes 

were evenly distributed across tissue types while others were specific for certain 

tissues, alluding to the modern understanding of mHAs as falling into subgroups based 

on tissue specificity140. Goulmy and her group then went on to discover the first known 

actual human mHA peptide sequence in 1995 (HA-2) in a hugely labor-intensive 

experiment. While they had previously identified the HA-2-encoding locus, the peptide 

epitope was not yet known, and so they purified HLA molecules from EBV-LCLs that 

expressed HA-2, isolated the HLA-bound peptides, fractionated them by high-

performance liquid chromatography (HPLC), and screened fractions for response from 

T cells via chromium release assay. They then performed mass spectrometry on that 

fraction, which led to identification of more than 100 peptides. They took these peptides 

and again fractionated them by microcapillary HPLC and split the resulting fractions into 

a 96 well plate, all of which they individually screened for immunogenicity of HA-2 

reactive T cells by chromium release assay141. Her group continued to discover several 

other antigens in the following years67,133,141–143. Her work also established that mHAs 

are capable of driving graft failure and GvHD, and later went on to establish mHAs as a 

therapeutic target for augmentation of GvL effects of transplant144. Other groups then 

continued to discover additional human mHA peptides with increasing frequency in the 

late 1990s-201067,73,115,141,145–163. The rate of novel mHA discovery had somewhat 

slowed between 2010 and prior to this dissertation work, but innovation in the field has 
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continued during this time and much work has been done to bring mHA targeting into 

the clinic. 

(1.7) Methods of mHA discovery  

 Methods used for mHA discovery fall broadly into two categories: forward 

immunology and reverse immunology. Forward immunology approaches have been the 

primary method for mHA discovery for most of the history of the field; these generally 

start with an activated T cell and seek to identify the mHA it recognizes. Reverse 

immunology approaches are becoming more prominent as technological advances 

make them more feasible, and generally include a computational prediction component 

followed by screening for immunogenicity and targeting of predicted mHAs. Only 56 

mHAs (including only 12 GvL mHAs) have been discovered prior to the work described 

in this dissertation, with the majority discovered via forward immunology, though reverse 

immunology approaches have significantly accelerated discovery in recent years121,164–

168. The most common forward immunology approach is to isolate an activated T cell 

clone from a post-transplant alloHCT recipient, then utilize a variety of laborious 

techniques to identify its cognate antigen141,145,146,149. A limitation of this approach is the 

identification of a mHA from a donor-derived clone gives no information about the mHA 

itself. Information about an mHA like tissue restriction, allele frequency, or HLA 

restriction is crucial for translation to therapeutic use and then must be determined by 

further experiments169. mHAs discovered using this forward approach are often not 

applicable for clinical uses due to expression in off-target tissues or other factors 

discovered after mHA identification. Also, they are often only applicable to a few DRPs 

because they are derived from SNPs with minor allele frequencies such that they are 
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very infrequently disparate and therefore actionable in DRPs, and these forward 

methods have no way to incorporate allele frequency into discovery. 

 Due to the logistical difficulty of forward immunology methods for mHA discovery 

and technological advancements that enable antigen prediction using genomics data, 

reverse immunology strategies for identifying mHAs have gained popularity in the last 

decade. In these methods, mHAs are predicted using bioinformatics tools that assess 

HLA specificity, binding affinity, proteasomal cleavage, and other factors164. 

Researchers then seek to experimentally validate the predicted mHAs using methods 

such as mass spectrometry of HLA-bound peptides or identification of mHA-targeting T 

cells using antigen presenting cell co-culture studies62. Many interesting twists on this 

approach are under investigation, including immunoprecipitating peptides from HLA and 

performing mass spectrometry, then applying mHA prediction algorithms to the 

identified peptide pool in order to reduce false negatives of prediction170. The advent of 

fluorescent labeled peptide-MHC molecules has also led to advances in reverse 

immunology approaches, as these can be used to screen T cells from alloHCT samples 

or healthy donors for specificity towards predicted antigens171,172. Combinatorial use of 

multiple fluorophores and barcoding of peptide-MHC multimers represent other recent 

technical advances that have moved the field towards higher-throughput identification of 

mHA-specific T cells173,174. On the computational side, most modern approaches to 

mHA prediction utilize tools such as NetMHCpan and NetMHCIIpan to predict HLA 

binding of SNP-derived peptides, NetMHCstabpan to predict binding stability, and 

databases like the Human Protein Atlas to assess tissue expression of source genes62. 

NetMHCpan and NetMHCIIpan predict peptide binding to MHC class I and II alleles with 
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known sequences, respectively, using artificial neural networks (ANNs) trained on 

experimental binding affinity and mass spectrometry data50. Likewise, NetMHCstabpan 

uses ANNs trained on peptide-MHC class I dissociation assay data to predict binding 

stability to class I, though no corresponding predictor exists for class II175. Utilizing these 

predictors allows for elimination of epitopes that are not likely to be immunogenic 

because they are not predicted to bind MHC, vastly reducing the pool of potential 

epitopes that must be screened in order to identify immunogenic peptides. However, 

prediction tools are imperfect and will yield both false negatives and false positives for 

peptide binding. In addition, the complete landscape of determinants of immunogenicity 

is unknown and though these tools in combination can identify promising epitopes, the 

field is currently unable to accurately predict immunogenicity. Thus, wet lab validation of 

predicted immunogenic epitopes is necessary. A total of 82 human mHAs are now 

known, including 26 discovered by the work described in this dissertation and 56 known 

in the field prior to this work (Table 1.1).  
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Table 1.1: Characteristics of all known minor histocompatibility antigens in 
humans62,67,73,73,115,141,145–159,161–163,167–169,176–184. 
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(1.8) mHA-targeting immunotherapies 

mHAs can theoretically be targeted via a variety of immunotherapy strategies, 

though only a few of these have been tested in patients. Any peptide-targeting 

therapeutic modality can be applied to mHAs, including peptide vaccines, mHA-

targeting T cell receptors (TCRs) on donor T cells, or chimeric antigen receptor (CAR) T 

cell (using scFv from an anti-peptide/MHC antibody) options. A limited number of mHA-

targeting therapies have made the transition to clinical trials thus far, most of these 

targeting HA-1. The first mHA-targeting trial, in which patients received adoptive transfer 

of donor-derived, ex vivo expanded CD8+ T cells that were specific for minor 

histocompatibility antigens, unfortunately led to no long term remissions and pulmonary 

GvHD in 3 of 7 patients, this demonstrating the necessity of careful screening for off-

target tissue reactivity (trial NCT00107354)73,185. In the strategy used in this trial, mHA-

reactive clones were generated by coculturing recipient post-transplant peripheral blood 

mononuclear cells (PBMCs) with pre-transplant PBMCs followed by limiting dilution and 

characterization of reactive clones73. The clones were used for therapeutic infusion if 

they lysed recipient Epstein-Barr Virus-transformed lymphoblastic cell lines (EBV-LCLs) 

but not donor EBV-LCLs or recipient fibroblasts. Clone mHA specificity was established 

via genome wide association study (GWAS), and tissue expression of source genes 

established via reverse transcription polymerase chain reaction (RT-PCR)73. After 

several patients developed pulmonary toxicity, it was realized that the mHAs their 

therapeutics targeted were derived from genes that were also expressed in lung 

tissues73. While this trial was unsuccessful clinically, it established that screening of 

reactivity and assessment of source gene expression is necessary in order to generate 

a safe mHA-targeting product186. In our view, it also provides a compelling argument for 
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generating T cells targeting known mHAs rather than infusion of T cells with no prior 

identified mHA target so one can carefully investigate the possibility for off-target effects 

prior to treatment.  

Shortly after the first mHA-targeting trial, several options for targeting already 

known mHAs were explored. Though not in humans, the Shlomchik group tested the 

approach of vaccinating donors against an mHA before mouse alloHCT and found that 

it augmented antigen-specific CD8+ T cell presence and GvL effects in the recipient, 

showing that peptide vaccination in donors is a potentially promising approach187. A 

group at Leiden University Medical Center performed optimization of HA-1 targeting T 

cell generation then administered donor-derived HA-1 specific CD8s to patients with 

relapsed leukemia in a pilot study with no toxicity observed, but also no clinical 

response188–190. Medigene had initiated a clinical trial with a similar HA-1 targeting TCR 

in 2020 but discontinued it in 2021 due to a shift in prioritization of solid tumors (trial 

NCT04464889)191. A group in Japan separately generated HA-1 targeting CAR T cells 

around the same time, though they did not test them in patients and only evaluated 

them in vitro192. An additional HA-1 targeting clinical trial was initiated in 2009 that 

proposed vaccinating with HA-1 or HA-2 peptide mixed with G-CSF in order to augment 

GvL responses, but was terminated due to insufficient enrollment with only one patient 

enrolling (trial NCT00943293)193. 

An intriguing approach to a phase I/II trial was reported in 2017, in which multiple 

myeloma patients received donor lymphocyte infusion (DLI) with simultaneous host DC 

vaccination with or without loading the DCs with host mHAs194. Seven patients were 

treated with unloaded DCs, while four patients were treated with DCs loaded with mHAs 
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including HA-1, HA-2, UTA2-1, ACC-1, ACC-2, or LRH-1 based on which mHAs the 

DRP had mismatches for194. All four patients had T cell responses against a control 

positive non-mHA peptide that was included, and one patient had a T cell response 

against ACC-1194. This patient was one of the two patients with objective clinical benefit 

from vaccination, with a partial response persisting for 19 weeks194. A decline in ACC-1 

specific T cells was observed at the time of relapse194. A similar trial is complete but 

without results reported yet, in which patients were given therapeutic mHA-loaded DC 

vaccinations, with theoretically increased potency due to siRNA mediated PD-L1/PD-L2 

silencing (NCT02528682)195. In an adoptive T cell therapeutic approach, the Bleakley 

group generated a novel engineered HA-1 targeting T cell therapeutic in 2018, 

containing a TCR targeting HA-1, a CD8+ coreceptor so the construct can function on 

CD4+ T cells as well as CD8s, an inducible caspase 9 safety switch, and a CD34-CD20 

epitope for cell selection and tracking196. This intriguing strategy of including CD4+ T 

cells in transduction was decided on in an attempt to use the CD4+ T cells to boost 

response by facilitating CD8+ T cell trafficking and expansion and prevention of 

activation-induced cell death (AICD). This approach appears promising as HA-1 positive 

leukemia cells were killed in vitro196. A corresponding clinical trial is currently recruiting 

relapsed or refractory acute leukemia patients that have undergone alloHCT, and this is 

the only mHA targeting clinical trial that includes pediatric patients (NCT03326921)197. 

The Falkenburg group recently published a phase I/II trial of multi-antigen specific T cell 

infusion after T cell depleted alloHCT that included HA-1 as one of the targets in 

addition to tumor associated antigens (TAAs) and viral antigens198. Infusions were well-

tolerated, but T cell reactions observed were all in response to the viral antigens rather 
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than the TAAs and HA-1198. One final clinical trial targeting mHAs was initiated in 2017 

with no reports of results or what mHAs were targeted as of yet; this trial includes 

priming of donor T cells against the selected mHAs followed by infusion into recipients 

with relapsed hematological malignancies after alloHCT (trial NCT03091933)199. An 

overall timeline of mHA discovery and clinical trial applications is shown below (Figure 

1.5). These data demonstrate the need for both improved predictors of minor antigens 

and methods to deliver them to generate anti-tumor immunity without toxicity.   
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Figure 1.5. Timeline of the history of minor histocompatibility antigens.  

(1.9) Shared mHAs 

Because mHAs are derived from SNPs that differ between a donor and a 

recipient and an individual’s complement of SNPs throughout their genome is unique, 

the theoretical set of mHAs for any given DRPs is also unique. mHA discovery methods 

have traditionally relied upon isolating a reactive T cell clone from a single DRP then 
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identifying the cognate mHA (forward immunology method). This discovery method is 

highly likely to uncover mHAs that are only applicable for a single DRP or a low 

population frequency of DRPs because the single DRP that the mHA was discovered 

from contains many SNPs that are rarely disparate in the general population of DRPs. 

Because of this, mHA-targeting therapeutics beyond those targeting HA-1 are often 

thought of as being useful for personalized immunotherapies rather than ones that are 

broadly applicable to the patient population of alloHCT recipients. Population sharing of 

mHAs can be estimated via assessment of the minor allele frequency (MAF) of the SNP 

allele that generates the mHA. Hardy-Weinberg equilibrium states that  

p2 + 2pq + q2 = 1 

where p and q are each the frequency of a possible allele at a given locus. Using this 

equation, one can calculate the population frequency of homozygous and heterozygous 

individuals in a population given the MAF. For a given mHA to be targetable in a DRP, 

the alloHCT recipient must contain the mHA allele and the mHA allele must be foreign 

to the donor, so that donor T cells would not be deleted in thymic selection based on 

self-recognition. This means that the recipient must be either homozygous for the mHA 

allele (q2) or heterozygous (2pq), while the donor must be p2. To have the best chance 

of finding a donor-recipient pair that have the correct alleles to target an mHA, it is 

optimal for p2 to equal 0.5 and 2pq+q2 to also equal 0.5, as this would mean that each 

donor and each recipient have a 50% chance of the appropriate genotype. This gives 

an ideal MAF of approximately 0.3 for mHA targeting. The MAF of many known mHAs is 

either much higher or much lower than this, weighting the population towards either 

more appropriate donors but fewer appropriate recipients or vice versa.  
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One previously known mHA with a high prevalence of appropriate DRP 

genotypes is HA-1. Its MAF is greater than optimal, estimated at 0.63 in the ALFA 

project, which means that the frequency of appropriate recipient genotypes is high at 

86%, but the frequency of appropriate donor genotypes is only 14%200. We found that 

overall, the percent of DRPs expressing HLA-A*02:01 in the DISCOVeRY-BMT dataset 

of 3231 DRPs with HA-1 targetability is 12.3%. Still, these frequencies are high enough 

where HA-1 is targetable in many patients, and immunotherapies targeting HA-1 have 

been tested in clinical trials. We would characterize HA-1 as the first known “shared 

mHA,” or an mHA that is commonly applicable to many DRPs. Though HA-1 ended up 

being targetable for many patients, the discovery of shared mHAs using forward 

immunology methods like the one used to discover HA-1 is essentially  serendipity, with 

no knowledge of whether a reactive T cell clone is specific for a common mHA or a rare 

one until the process is completed. When we investigated the prevalence of the 

appropriate mismatches to generate all known mHAs prior to 2022 in the DISCOVeRY-

BMT dataset of 3231 alloHCT DRPs, we found that only 7 of the previously known 56 

antigens are applicable to any of the DRPs. The highest population frequency in 

DISCOVeRY-BMT was with mHA ACC1Y, which would be targetable in 26.5% of DRPs 

with its corresponding HLA allele, HLA-A*24:02. In recent years, however, the advent of 

reverse immunology approaches to mHA discovery has made it possible to specifically 

seek out mHAs that are shared. These approaches involve predicting mHAs based on 

sequencing data, then confirming existence of predicted antigens using methods like 

immunoprecipitation of HLA-bound peptides from cells and mass spectrometry to 

identify the presented mHAs. If one has access to a dataset of genotyping information 
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for multiple DRPs (e.g. SNP array or DNA sequencing data), they can both predict 

mHAs and define the degree of mHA sharing among multiple DRPs. To the best of our 

knowledge, the Armistead and Vincent groups in collaboration are the first to use this 

approach to discover novel mHAs, first with UNC-GRK4-V in 2018, and now with 26 

novel mHAs in 2022 (published and unpublished data)62,121. A particularly important 

application of shared mHA discovery is that that conventional mHA discovery has been 

done using samples mostly from Caucasian DRPs, meaning that the majority of 

previously known mHAs correspond to HLA alleles that are common in Caucasians and 

less frequent in other ethnic groups. 61% of known class I binding mHAs correspond to 

either HLA-A*02:01 or HLA-B*07:02, the most common A allele and B allele in 

Caucasians in the US (Figure 1.6).  

  

Figure 1.6: Distribution of HLA alleles corresponding to all known mHAs. (A) 
shows class I mHAs corresponding to class I HLA. (B) shows class II mHAs 
corresponding to class II HLA.  
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In fact, 75% of known class I mHAs are specific for HLA alleles that are more 

prevalent in Caucasians than non-Caucasians. The majority of clinical trials being 

conducted on mHA targeting are also restricted to patients that express HLA-A*02:01. 

In addition to HLA alleles that are common in Caucasians being less common in non-

Caucasians, non-Caucasian groups also often have more HLA diversity, shown by the 

higher prevalence of “Other” alleles comprising <5% of the population for each HLA 

class I allele in non-Caucasians versus Caucasians (Figure 1.7).  
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Figure 1.7: HLA allele distribution by ethnic group in the United States. (A) shows 
HLA-A alleles, (B) shows HLA-B alleles, and (C) shows HLA-C alleles. 

A

B

C
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This means that even if a forward immunology approach was used with a 

reactive T cell clone from a non-Caucasian patient to discover a novel mHA, this mHA 

may be applicable to even fewer patients than ones discovered using this technique in 

Caucasians because fewer patients even within the same ethnic group express the 

appropriate HLA allele. As an example, referencing the above Figure 1.4, if an mHA 

was discovered using an HLA-A*02:01 positive Caucasian patient, this mHA could be 

applicable for up to 30% of Caucasians, but only 9% of African Americans. If an mHA 

was discovered in an African American patient expressing HLA-A*23:01, a common 

allele in this group, it would only be applicable to 11% of African Americans due to high 

HLA allele diversity in this population. This emphasizes that not only is additional 

discovery work needed for mHAs present in non-Caucasians, but also the importance of 

using high-throughput reverse immunology discovery methods such as the one 

presented in this work for the discovery of large sets of mHAs in HLA alleles presented 

by diverse ethnic groups. If it requires higher numbers of mHAs to cover all patients with 

a particular ethnicity, we must utilize the technology available to us to discover as many 

antigens for these patients as we can.  

Non-Caucasians are disadvantaged in many aspects of alloHCT, including 

matched unrelated donors being much less available in the donor registry for non-

Caucasian patients. The expansion of mHA prediction and discovery methods enables 

prioritization of discovery in any population we choose, provided that DRP genotyping 

data is available. We are now able to predict and test antigens for any HLA allele, and 

we can use this ability to prioritize antigen discovery in ethnic groups that are less 

served by past research and clinical developments.  
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Despite our specific interest in HLA alleles historically not included in previous 

research, we chose to include HLA-A*02:01 in our antigen discovery work both to test 

the concordance of our results with previously known mHAs and because this allele has 

the most HLA-specific tools available for validation of discovered mHAs (including HLA 

monomers and other materials for monitoring antigen-specific CD8+ T cell responses). 

However, once a method had been established with this allele, we shifted our focus to 

also include alleles that are the most common in other ethnic groups. We included HLA-

B*35:01, the most common HLA B allele in Hispanics, the third most common in African 

Americans, and the fifth most common in Asians and Pacific Islanders201. We also 

included HLA-C*07:02, the most common C allele in Asians and Pacific Islanders, 

second most common in African Americans, and third most common in Hispanics201. 

(1.10) Concluding remarks and contributions of this work 

The studies presented here represent a multidisciplinary approach to minor 

histocompatibility antigen discovery, combining computational and experimental 

methods to answer fundamental questions about mHA sharing and discover new 

targets for translational immunotherapy development. The work discussed here involved 

many collaborations that I would like to note. We collaborated with the Armistead lab on 

most of the components of this work. We obtained data from the Sucheston-Campbell 

lab formerly at Ohio State University as part of a collaboration with them to access data 

from the Center for International Bone Marrow Transplant Research (CIBMTR). We 

worked with the UNC Proteomics Core and with Complete Omics Inc on proteomics 

efforts, with UNC Immune Monitoring and Genomics Facility (IMGF) and High-

Throughput Sequencing Facility (HTSF) for sequencing, and the UNC Flow Core for 
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flow cytometry work. Appendices include work from our lab on a peptide vaccine for 

SARS-CoV-2, work on clinical outcomes associations of predicted mHAs, a 

computational platform for antigen prediction, and a prediction tool for splice variant-

derived antigens. 
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CHAPTER 2: Computational Prediction of Graft versus Leukemia and Shared 
Minor Histocompatibility Antigens1 

(2.1) Introduction 

mHAs can be predicted from paired high-resolution genotyping data from any 

given DRP. We sought to apply mHA prediction methods to sets of many DRPs in order 

to assess population prevalence of mHAs and identify novel mHAs that are shared 

across many DRPs within the population that could serve as targets for future 

immunotherapies. Current mHA-targeting therapies in clinical trials are only applicable 

to a small number of patients because only a low percentage of DRPs have the 

appropriate SNP mismatches in order for the mHAs they target to be relevant. This is a 

result of the forward immunology approach historically used to discover most of the 

previously known mHAs, in which an activated T cell clone is isolated from an alloHCT 

patient post-transplant and the corresponding mHA target is identified via a variety of 

methods such as library screening or whole genome association studies164. Firstly, 

SNPs with high population frequencies are more likely to be concordant in a DRP, so 

most SNPs at which donors and recipients differ at are low population frequency SNPs. 

Therefore, the majority of mHAs for any given DRP will be derived from rare SNPs. 

 
1 Portions of this chapter are published in Blood Advances. Citation: Olsen KS, Jadi O, Dexheimer S, 
Bortone S, Vensko SP, Bennett SN, Tang H, Diiorio M, Saran T, Dingfelder D, Zhu Q, Wang Y, Haiman 
CA, Pooler L, Sheng X, Webb A, Pasquini MC, McCarthy PL, Spellman SR, Weimer ET, Hahn T, 
Sucheston-Campbell LE, Armistead PM*, Vincent B*. Shared graft-vs-leukemia minor histocompatibility 
antigens in DISCOVeRY-BMT. 2022. Blood Adv; bloodadvances.2022008863. I designed and performed 
experiments, performed computational mHA prioritization, interpreted experimental results, performed 
statistical testing, generated figures, prepared the manuscript, and made revisions. 
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Secondly, using strategies that do not deliberately seek out shared mHAs and instead 

randomly isolate mHA-targeting T cells means that the majority of mHAs discovered will 

be rare mHAs. In contrast, reverse immunology approaches allow one to prioritize 

discovery of mHAs that have specific desired characteristics. In reverse immunology 

methods, mHAs are predicted using computational processing of DRP sequencing data, 

and mHAs that suit the characteristics selected by the researcher can then be validated 

by a variety of wet lab methods. The number of mHAs predicted from sequencing data 

will generally be significantly larger than the number that can be validated using wet lab 

methods, often by many orders of magnitude if the dataset used for prediction is large, 

so there is a natural place for a filtering step based on the researcher’s priorities in mHA 

discovery. We believe that this step can be leveraged to generate the greatest benefit 

for patients by prioritizing 1) mHAs that are shared across many DRPs and 2) mHAs 

that are presented by HLA alleles less served by traditional antigen discovery work. As 

part of this, we prioritize identification of mHAs that are predicted to be shared by many 

DRPs. This means that the mHAs discovered using these methods with a large dataset 

will have MAFs that are more favorable for these mHAs to be targetable in many 

patients. As discussed in Chapter 1, the ideal theoretical MAF for mHAs to be targetable 

in as many DRPs as possible is 0.3, as this gives equal odds of any individual either 

containing the mHA allele or being homozygous for the alternate allele, and so the odds 

of finding an appropriate recipient and donor genotype are maximized. In this work, we 

combine predictions for a single HLA allele that were previously made for a small 

dataset, and also generate predictions for every HLA class I allele represented in the 

largest DRP dataset used to date in the field for mHA prediction. For a subset of novel, 
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shared GvL mHAs, we proceed to mHA validation with three HLA alleles selected for 

representation of HLA A, B, and C along with high population frequency in different 

ethnic groups. 

Our ultimate translational goal in this line of work is to generate a set of “off-the-

shelf” mHA targeting TCR products that together cover 100% of DRPs with HLA alleles 

common in different ethnic groups in the US. Our vision for integrating this into the 

typical alloHCT workflow is to genotype patients for the mHAs with off-the-shelf mHA-

specific TCRs available, engineer donor T cells to express these TCRs, expand them ex 

vivo, then infuse them post-alloHCT to augment the GvL effects of transplant (Figure 

2.1). While the Vincent and Armistead groups are pursuing a clinical trial with mHA-

targeting TCRs, these antigens could also be utilized for other targeting methods (e.g. 

vaccination, peptide/HLA antibody, or CAR-T) in the future either by our groups or by 

others.  

 

Figure 2.1: Future therapeutic application of shared GvL mHA-targeting TCRs. 
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In this chapter, I describe the datasets used in this work, the computational 

methods utilized to predict mHAs from SNP typing data, and the decisions made in 

mHA prioritization and selection for wet lab validation and targeting efforts described in 

the next chapters. I also show population-level results on the main dataset utilized in 

this work (DISCOVeRY-BMT) and the prevalence of different types of mHAs within 

DRPs in this set.  

(2.2) Materials and Methods 

Datasets: 

Two datasets were used in this work. For the first dataset, including 101 DRPs, 

mHA predictions were made as part of prior work from the Armistead and Vincent labs 

and mHA validation from these predictions as part of this work62,169. For the second 

dataset, including 3231 DRPs, mHA predictions were made for the purpose of this work 

and the dataset was taken all the way through from mHA prediction to 

immunopeptidomics validation and mHA-specific T cell discovery.  

The first dataset includes 101 patients with Acute Myeloid Leukemia (AML), 

Chronic Myeloid Leukemia (CML), myelodysplastic syndrome (MDS), or 

myeloproliferative neoplasms (MPN) from MD Anderson Cancer Center who underwent 

HLA-matched alloHCT62. DRPs were genotyped at a panel of 13,917 SNPs via Illumina 

NS-12 microarrays and the genotyping data are publicly available via the Vincent lab at 

https://unclineberger.org/vincent/resources. Patient characteristics are shown (Table 

2.1). As mHA predictions were already made for this dataset in prior work from the 

Armistead and Vincent labs, the prediction work in the remainder of the chapter refers 
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exclusively to predictions for the second dataset. However, validation and targeting 

work in future chapters includes mHAs predicted from this initial dataset. 
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Table 2.1: Patient characteristics for 101 patient dataset, adapted from Lansford 
et al62. 

Category Recipient 
Characteristics 

Total 
(n=101) 

Age mean and 
range 

 
48 (21-72) 

Sex M 
F 

64 (63) 
37 (37) 

Disease AML 
CML 
MDS 
MPN 

61 (60) 
25 (25) 
14 (14) 
1 (1) 

Donor type MRD 
MUD 

72 (72) 
29 (28) 

Conditioning 
intensity 

Myeloablative 
Reduced Intensity 

71 (71) 
30 (29) 

Disease AML 
ALL 
MDS 

1938 (60) 
697 (22) 
596 (18) 

Sex mismatch None 
F donor- M recipient 
M donor-F recipient 

54 (53) 
28 (28) 
19 (19) 

Graft source Bone marrow 
Peripheral blood 

33 (33) 
68 (67) 

 
The second dataset is derived from the DISCOVeRY-BMT (Determining the 

Influence of Susceptibility Conveying Variants Related to one-Year mortality after BMT) 

study, reported to CIBMTR from 151 transplant centers within the US202–205. Data was 

obtained via a collaboration between the Armistead and Vincent labs and the 

Sucheston-Campbell lab formerly at Ohio State University, who obtained sequencing 

data via CIBMTR. Patients included in this study were treated for Acute Myeloid 

Leukemia (AML), Acute Lymphocytic Leukemia (ALL), and Myelodysplastic Syndrome 
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(MDS) with alloHCT. Cohort 1 consists of 2609 10/10 HLA-matched unrelated DRPs 

treated from 2000-2008, while Cohort 2 consists of 572 10/10 HLA-matched unrelated 

DRPs treated from 2009-2011 and 351 >=8/8 and <10/10 HLA-matched unrelated 

DRPs treated from 2000-2011205. DRPs were excluded if the grafts were cord blood 

grafts or T cell-depleted, or SNP data was not available. For antigen prediction, all 

patients were combined. Patient characteristics are shown below (Table 2.2).  

All patients included in the DISCOVeRY-BMT study provided informed consent to 

be included in the Center for International Blood and Marrow Transplant Research 

(CIBMTR) registry. Genotyping was performed as previously described using the 

Illumina HumanOmni Express chip205–207. SNP quality control was performed and 

variants with minor allele frequency (MAF) < 0.005 were removed, leaving 637,655 and 

632,823 measured SNPs for Cohort 1 and Cohort 2 respectively203. 
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Table 2.2: Patient characteristics of 3231 patient dataset. 
Category Recipient 

Characteristics 
First 
Cohort 
(n=2357) 

Second 
Cohort 
(n=874) 

Total 
(n=3231) 

Age, years <=40 
>40 

961 (41) 
1396 (59) 

322 (37) 
552 (63) 

1283 (40) 
1948 (60) 

Donor age, 
years range 

 
18-61 18-60 18-61 

Sex M 
F 

1331 (56) 
1026 (44) 

480 (55) 
394 (45) 

1811 (56) 
1420 (44) 

Donor sex M 
F 

1577 (67) 
780 (33) 

620 (71) 
254 (29) 

2197 (68) 
1034 (32) 

Disease AML 
ALL 
MDS 

1397 (59) 
576 (24) 
384 (16) 

541 (62) 
121 (14) 
212 (24) 

1938 (60) 
697 (22) 
596 (18) 

Year of 
alloSCT 

2000-2002 
2003-2005 
2006-2008 
2009-2011 

384 (16) 
848 (36) 
1125 (48) 
0 (0) 

33 (4) 
83 (9) 
119 (14) 
639 (73) 

417 (13) 
931 (29) 
1244 (39) 
639 (20) 

Graft 
source 

Bone marrow 
Peripheral blood 

1504 (64) 
853 (36) 

624 (71) 
250 (29) 

2128 (66) 
1103 (34) 

 

Ethnicity assessment: 

For the DISCOVeRY-BMT dataset, both self-reported ethnicity and SNP typing 

data were available. From SNP typing data, genomic ancestry was calculated via 

principal component analysis. Principal components were constructed using a set of 

independent SNPs in all patients self-declaring White, European, or Caucasian race 

and Non-Hispanic ethnicity.  Mean values for the first three eigenvectors were 
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determined and individuals with any of the first three eigenvectors greater than two 

standard deviations from each mean value were excluded. This was repeated for 

individuals self-declaring Black or African race and Non-Hispanic ethnicity, and for 

individuals declaring Hispanic ethnicity206,208. For this work, three genomic ancestry 

groups were assessed, including European American (EA), Hispanic (HIS), and African 

American (AA). Patients that self-reported as Asian American and Native American 

were included in mHA prediction work but genomic ancestry was not calculated and 

these patients were excluded from ethnicity analyses due to 1) small patient numbers 

for these groups and 2) agreements with CIBMTR for maintaining patient privacy. 

Student’s T tests and Chi-squared tests were performed to assess differences in 

number of predicted mHAs of various types between groups. 

Genetic distance calculation: 

For both datasets, we calculated pairwise genetic distance for every DRP based 

on SNP array data209. Genetic distance was calculated using the following equation. 

mean(1 − 0.5(number	of	shared	alleles	between	pair	at	SNP	locus)) 

This measure should theoretically be lower for MRDs and higher for MUDs, as MRDs 

would be expected to share more SNPs than unrelated pairs. The 101 patient dataset is 

composed of both MUDs and MRDs, while the 3231 patient dataset only contains 

MUDs. 

mHA prediction: 

mHA prediction was performed using the same overall technique for both 

datasets according to the Vincent lab strategy for antigen prediction. Minor mismatches 

were called where a SNP allele was present in the transplant recipient (either 
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homozygous or heterozygous) and was not present in the donor (homozygous for the 

opposite allele). For example, if a recipient was heterozygous at a SNP locus with one 

copy each of A and T, and the donor was homozygous for T, this would be labeled a 

minor mismatch as the A allele is foreign to the donor. Minor mismatches that led to 

amino acid changes (nonsynonymous mutations) were then selected based on the 

standard codons encoding amino acids using ANNOVAR210. SNPs that led to amino 

acid differences were then mapped to the genome using the ENSEMBL variant effect 

predictor with the UCSC Genome Browser database to identify the open reading frames 

containing these SNPs211,212. Based on these open reading frames, all possible 8-11mer 

peptides were considered for class I HLA binding epitope prediction using 

antigen.garnish56. All possible 15-24mer peptides were also computed for class II-

restricted mHAs and processed separately213. The work covered in this dissertation 

exclusively examines the class I mHAs, and only these antigens will be discussed 

moving forward. We applied netMHCpan-4.1 to the pool of all possible peptides of class 

I HLA binding length to predict binding affinity of peptides to the class I HLA alleles of 

the donor that the predicted peptide was derived from50. Peptides were selected if their 

predicted peptide/HLA dissociation constant for the corresponding HLA allele was 

<500nM. Peptides that met all of these criteria were considered mHAs. Next, tissue 

expression of the mHA source genes was considered in order to categorize mHAs and 

identify GvL mHAs that could be clinically beneficial to target. This was done based on 

RNAseq data obtained from The Cancer Genome Atlas (TCGA) and normal tissue RNA 

and protein expression data from the Genotype-Tissue Expression (GTEx) project214. 

Peptides were labeled “GvL” if they showed expression levels of >50TPM in AML in 
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TCGA and <50TPM in healthy GvHD target organs including liver, skin, and colon in 

GTEx. They were labeled as “GvH” if they showed expression levels of <50TPM in AML 

and >50TPM in GvHD target organs. Peptides were labeled as “Both” if they showed 

>50TPM in both AML and GvHD target organs. A final class of mHAs not discussed 

further here is antigens that are expressed in healthy blood but not in AML or GvHD 

target organs. Targeting these antigens would give effects that are helpful for transplant 

by clearing remaining recipient-derived hematopoietic cells to make room for donor-

derived cells to engraft and initiate donor-derived hematopoiesis; however, these 

antigens would not be targets of GvHD or GvL. These mHAs are included in some 

analyses with GvL mHAs as they give pro-transplant effects, but are not rightfully 

labeled as GvL mHAs. Our large dataset enables us to be more stringent in our 

selection criteria, and we excluded these so we would predict only the mHAs that would 

have the most potential to augment GvL effects of alloHCT. This workflow is 

summarized below (Figure 2.2).  
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Figure 2.2: mHA prediction workflow from SNP typing data. 

This workflow resulted in a small number of predicted mHAs for the 101 patient 

dataset due to the smaller DRP number as well as the smaller number of SNP loci 

genotyped. For the 3231 DRP dataset, 1,867,836 total GvL mHAs were predicted. All 

patients in the 101 patient dataset had myeloid malignancies, and TCGA AML 

expression data should be general applicable and somewhat similar to their tumor type. 

However, some patients in DISCOVeRY-BMT did not have myeloid malignancies, 

instead having ALL. The expression profile of ALL is significantly different than AML215. 



 59 

Ideally, for these patients GvL mHAs would have been called based on tissue 

expression data for ALL instead of TCGA AML. However, ALL is not one of the tumor 

types covered by TCGA, and at the time of mHA prediction there was no large publicly 

available dataset of ALL data on which to make these expression calls. We recently 

identified a public RNAseq data expression set that is more relevant but not directly 

applicable to this adult patient population: a set of RNAseq data for 110 pediatric ALL 

patients from phase 3 of the TARGET study via 

(https://portal.gdc.cancer.gov/repository)216,217. After mHA prediction and validation, we 

analyzed expression of source genes for our validated mHAs in this dataset and found 

high concordance of gene z-scores between TARGET and TCGA AML (see Chapter 4). 

However, some predicted mHAs may be less applicable for the ALL patients in the 

DISCOVeRY-BMT dataset than for the patients with myeloid malignancies. 

mHA sharing analyses: 

We developed a greedy algorithm implementation of the maximum set coverage 

solution to generate ranked lists of the most commonly shared mHAs for DRPs with a 

given HLA allele. This algorithm generates a list of the minimal set of peptides such that 

every DRP with a given HLA allele in the dataset contains at least one of these mHAs. 

In short, the algorithm ranks every peptide within a given HLA by the study population 

frequency in descending order. The peptide with the highest frequency is selected and 

added to the mHA set, then population frequency of every peptide is recalculated using 

only DRPs that do not contain an mHA in the set and the new highest frequency peptide 

is selected. This process is repeated until 100% of DRPs are represented by an mHA in 

the set. We applied this algorithm to predicted mHAs for all class I HLA alleles 
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represented by patients in the DISCOVeRY-BMT dataset. Three HLA alleles were 

selected as representative alleles for analyses based on high frequency in US ethnic 

groups and to include representative alleles for HLA-A, HLA-B, and HLA-C. HLA-

A*02:01 is the most common HLA-A allele among Caucasians, African Americans, and 

Hispanics within the United States and third most common among Asians and Pacific 

Islanders, and is found within 28.4% of the total population of the United 

States201.  HLA-B*35:01 is the most common HLA-B allele among Asians and Pacific 

Islanders, is third most common among African Americans, and is fifth most common 

among Caucasians and Hispanics. It is found within 6.7% of the population of the 

United States201.  HLA-C*07:02 is the most common HLA-C allele among Hispanics 

within the United States, is second most common among Caucasians and Asians and 

Pacific Islanders, and is seventh most common among African Americans. It is found 

within 15.4% of the United States population201. 

(2.3) Results 

Patient characteristics, ethnicity analyses, and genetic distance analyses 

60% of DISCOVeRY-BMT patients had a diagnosis of AML, while the remainder 

had diagnoses of ALL or MDS. The number of predicted mHAs did not vary by disease 

type (Figure 2.3).  
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Figure 2.3: Predicted mHAs of each class by disease type in DISCOVeRY-BMT. 
“GvL” denotes expression in leukemia cells, “GvH” denotes expression in GvH target 
organs, and “both” denotes expression in both.  
 

60% of recipients in DISCOVeRY-BMT are over 40 years of age, reflecting the 

general age distribution of AML218. The mean age of recipients in this dataset was 42.5. 

The mean donor age was 33.8, reflecting stringent donor selection criteria that prefer 

younger and healthier donors. The number of predicted mHAs did not vary by recipient 

age (r=-0.01, p=.22) or by donor age (r=-0.01, p=0.11) for any class of predicted mHA 

(Figure 2.4). 
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Figure 2.4: Donor and recipient age versus number of predicted mHAs of each 
mHA class in DISCOVeRY-BMT. (A) shows recipient ages vs number of predicted 
mHAs. (B) shows donor ages vs number of predicted mHAs. The line of best fit is 
shown for each group of mHAs. 
 

While no other variables assessed correlated with number of predicted mHAs, 

investigation of ethnicity uncovered some significant findings. Overall, the self-reported 
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ethnicity and genomic ancestry of alloHCT recipients in this dataset mirror the general 

distribution of alloHCT recipients in the US, with an overrepresentation of patients with 

EA ancestry219. A large number of mHAs were predicted for each genomic ancestry 

group assessed in this study, with 75918 total predicted mHAs for EA, 27557 mHAs for 

AA, and 39272 mHAs for HIS. mHAs were assigned tags based on expression of the 

source gene in AML and GvHD target tissues. The mean total predicted mHAs per DRP 

across all ethnicities was 1476, with a mean of 704 predicted GvL mHAs. Number of 

predicted mHAs significantly differed by genomic ancestry group, with EA>HIS>AA for 

number of mHAs labeled as GvL, GvH, and both as well as total mHAs per DRP (Figure 

2.5). DRPs had an average of 2152 total mHAs predicted for AA, 2591 for HIS, and 

2917 for EA (p=1.23e-5). In the same pattern, DRPs had an average of 1018 GvL 

mHAs predicted for AA, 1229 for HIS, and 1363 for EA (p=7.26e-5). 
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Figure 2.5: Number of predicted mHAs of each class based on genomic ancestry 
in DISCOVeRY-BMT. Figure shows number of each category of predicted mHA per 
DRP by genomic ancestry, including patients identifying as European American (EA), 
African American (AA), or Hispanic (HIS). 
 

We then investigated whether DRPs where self-reported ethnicity was 

concordant vs discordant between donor and recipient had differing numbers of 

predicted mHAs. We found that DRPs with self-reported matching ethnicities had higher 

numbers of predicted mHAs of each class than ethnicity-discordant pairs. Concordant 

pairs had a mean of 2900 total predicted mHAs, while discordant pairs had 2536 

(p=1.45e-5). Concordant pairs also had a mean of 1356 predicted GvL mHAs, while 

discordant pairs had 1198 (p=.0001). In conclusion, some genetic ancestry groups gave 

higher numbers of predicted mHAs than others, and if pairs were a self-reported 

ethnicity match they had higher numbers of predicted mHAs (Figure 2.6). 
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Figure 2.6: Number of predicted mHAs of each class based on self-reported 
ethnicity concordance for DRPs in DISCOVeRY-BMT. Self-reported ethnicity was 
utilized for this analysis because genomic ancestry calling was not available for all 
DRPs. Pairs were labeled “False” if their self-reported ethnicity did not match, and 
“True” if they did. 
 

Due to the unexpected nature of the finding that numbers of mHAs predicted 

varies by recipient genomic ancestry and self-reported ethnicity matching in a DRP, we 

investigated other potential explanations for this result. We considered whether DRPs 

with recipients corresponding to the genomic groups with more predicted mHAs would 

have higher pairwise genetic distance values, as a higher number of SNP loci that differ 

could lead to a higher number of predicted mHAs. We did not find this to be the case, 

and the EA genomic ancestry group that had the highest number of predicted mHAs 

actually had the lowest genetic distance values (Figure 2.7). The mean genetic distance 

for AA was 0.2723, for HIS was 0.2700, and for EA was 0.2620 (p<2e-16).  
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Figure 2.7: Pairwise genetic distance per DRP by recipient genomic ancestry 
group. Only three genomic ancestry groups were considered as other groups had two 
few representatives for analyses. For these three groups, n=2960 of the total 3231 in 
dataset. 
 

Likewise, we investigated the correlations between numbers of predicted mHAs, 

number of mHA-encoding SNPs per DRP, and genetic distance. We saw a strong 

positive correlation between total number of mHA-encoding SNPs and number of 

predicted GvL mHAs (Figure 2.9a). This observation is expected, as more total SNP 

that mHAs are predicted from will lead to more GvL mHAs. We observed an overall 

narrow range of pairwise genetic distance across all DRPs within DISCOVeRY-BMT 

(Figure 2.9b), likely because a large number of rare SNPs were genotyped leading to 

high denominators of total SNPs and low numerators of SNPs that differ in genetic 

distance calculations. Still, distance values were consistent with previously reported 
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data for healthy pairs209. For the 101 patient dataset, MUD DRPs had higher genetic 

distance values than MRD DRPs, which is logically consistent with the nature of this 

value (Figure 2.8). We utilized DISCOVeRY-BMT to investigate the impact of the 

genetic distance value and found no correlation between genetic distance and predicted 

GvL mHAs (Figure 2.9c) or total mHAs (Figure 2.9d). As the DISCOVeRY-BMT cohort 

did not include MRD DRPs, we were not able to compare MRD to MUD DRPs in 

DISCOVeRY-BMT. 

 
Figure 2.8: Pairwise genetic distance values for matched related donor (MRD) and 
matched unrelated donor (MUD) DRPs in the 101 patient dataset. 
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Figure 2.9: Degree of genetic distance versus number of predicted GvL mHAs by 
DRP in the DISCOVeRY-BMT dataset. (A) shows number of total SNPs that differ and 
are predicted to lead to an mHA versus number of predicted GvL mHAs per patient. (B) 
shows distribution of pairwise distance values for every DRP in the DISCOVeRY-BMT 
dataset. Pairwise genetic distance value is calculated as the mean of (1-.5(number of 
shared alleles at SNP locus)) for every genotyped SNP locus for a DRP. (C) shows 
pairwise genetic distance versus number of predicted total mHAs per DRP. (D) shows 
pairwise genetic distance versus number of predicted GvL mHAs per DRP.  
 
mHA predictions by HLA allele 
 

A total of 23 HLA-A alleles, 26 HLA-B alleles, and 7 HLA-C alleles were 

represented in DISCOVeRY-BMT. The total number of predicted mHAs that bind each 

allele varied widely: from 82 to 11017 for HLA-A alleles, 19 to 8585 for HLA-B alleles, 

and 946 to 7537 for HLA-C alleles (Figure 2.10A/B/C). However, our method predicted 

GvL mHAs for every HLA allele represented within DISCOVeRY-BMT. Next, we looked 

at the proportion of mHAs classified as GvL, GvH, or both for each HLA allele. GvL 
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mHA comprised approximately half of all predicted mHAs for each HLA allele (Figure 

2.10D/E/F).  
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Figure 2.10: Number and proportion of predicted mHAs by HLA allele within study 
population. mHAs classed as “GvL” broadly represent mHAs that are desirable to 
target for anti-leukemia effects with minimal GvHD. mHAs classed as “GvH” represent 
mHAs that are undesirable to target as they are predicted to correspond to GvHD and 
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no GvL effects. “Both” category represents peptides that are predicted to lead to both 
GvL and GvH effects. (A) shows counts of each predicted class of mHA for HLA-A 
alleles represented in patient dataset. (B) shows counts for HLA-B alleles represented 
in patient dataset. (C) shows counts for HLA-C alleles represented in patient dataset. 
(D) shows proportion of predicted mHAs corresponding to each mHA class for HLA-A 
alleles. (E) shows proportion for HLA-B alleles. (F) shows proportion of HLA-C alleles. 
 

We evaluated sharing of predicted mHAs within the DISCOVeRY-BMT cohort. Of 

our predicted mHAs, the majority were found within less than ten DRPs (<0.3% 

population frequency). However, 38.7% of our predicted mHAs were shared by 1% or 

more of the study population, and 4% were shared by 10% or more of the study 

population (Figure 2.11A). Next, we assessed sharing of mHAs within individual HLA 

alleles. For the three HLA alleles focused on in this work, the population frequency of 

predicted mHAs shows a bimodal distribution. Most mHAs are unshared, but a group of 

mHAs covers approximately 20-30% of patients (Figure 2.11B-D).  
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Figure 2.11: Degree of sharing of predicted mHAs across study population. (A) 
shows distribution of predicted mHAs by the number of patients in the DISCOVeRY-
BMT cohorts that possess them. Most mHAs are shared by ten or fewer patients. Inlaid 
is the same data with log transformed y axis to highlight the tail of the distribution. Data 
are colored by quartile of number of patients for each mHA. (B) shows distribution of 
predicted HLA-A*02:01 mHAs by population frequency in DRPs with HLA-A*02:01. 
(C) shows distribution of predicted HLA-B*35:01 mHAs by population frequency in 
DRPs with HLA-B*35:01. (D) shows distribution of predicted HLA-C*07:02 mHAs by 
population frequency in DRPs with HLA-C*07:02. 
 
 Finally, we assessed predicted mHA frequency across all HLA alleles 

represented by greater than 0.5% of DISCOVeRY-BMT patients. The same bimodal 

distribution of mHA population frequency was observed across most HLA alleles (Figure 

2.12). 

D
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Figure 2.12: Degree of sharing of all predicted mHAs for most HLA alleles. Figure 
shows percentage of DISCOVeRY-BMT cohort with each HLA allele covered by each 
predicted GvL mHA that binds that HLA allele, for all HLA alleles representing greater 
than 0.5% of DISCOVeRY-BMT patients. 
 
 

We selected three HLA alleles to generate minimal mHA sets in silico. Together, 

HLA-A*02:01, HLA-B*35:01, and HLA-C*07:02 represent a set of common alleles within 

the US population and within the major ethnic groups found in the DISCOVeRY-BMT 

population. For the most common HLA allele in the US, HLA-A*02:01, a set of fifteen 

GvL mHAs are needed to ensure that every DRP with this HLA allele has at least one of 

the fifteen (Figure 2.13A). Only seven peptides are needed to reach 90% coverage. The 

non-cumulative population frequencies for each of these top fifteen peptides range from 

19.4% to 28.3%. We obtained similar results with HLA-B*35:01: eleven peptides are 

needed to reach 100% population coverage and six peptides are needed to reach 90%, 

with non-cumulative population frequencies between 20.9% and 29.3% (Figure 2.13B). 

HLA-C*07:02 also showed similar results, with fourteen peptides needed to reach 100% 

population coverage and seven peptides needed to reach 90%. Noncumulative 

frequencies ranged from 19.3% to 31.1% (Figure 2.13C). A total of 40 peptides gives 
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100% population coverage of three HLA alleles that are among the most common in 

major ethnic groups in the United States. 
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Figure 2.13: Patient population cumulative coverage by shared GvL mHAs. (A) 
Coverage of DISCOVeRY-BMT patients with HLA-A*02:01 allele with predicted GvL 

B

C
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mHAs. Noncumulative independent population frequencies of each of the top fifteen 
peptides within the HLA-A*02:01 population range from 19.4% to 28.3%, shown as bar 
heights. Colors of bars show z-scores of expression for the genes that contain each 
peptide from The Cancer Genome Atlas AML sample expression data (TCGA_AML). 
Cumulative population coverage by the fifteen predicted GvL mHAs needed to reach 
100% corresponding coverage is shown as an overlaid line graph. Dotted lines indicate 
seven peptides needed to reach 90% population coverage. (B) shows coverage of 
DISCOVeRY-BMT patients with HLA-B*35:01 allele with predicted GvL mHAs. Eleven 
predicted GvL mHAs correspond to 100% cumulative population coverage and six 
correspond to 90% coverage for this HLA allele. Noncumulative coverage by the top 11 
peptides for this HLA allele range from 20.9% to 29.3%. (C) shows coverage of 
DISCOVeRY-BMT patients with HLA-C*07:02. Fourteen predicted GvL mHAs 
correspond to 100% cumulative population coverage and seven correspond to 90% for 
this allele. Noncumulative coverage for these mHAs range from 19.3% to 31.1%. 

(2.4) Discussion 

Discovery and characterization of novel mHAs may be crucial for enhancing 

immune monitoring in alloHCT, predicting clinical outcomes based on donor and 

recipient genetics, and improving outcomes by optimizing donor selection and/or 

specifically targeting GvL mHAs. We built upon previous work to perform the first 

population level survey of mHA peptides, taking a new approach by predicting mHAs 

common among recipients with diverse HLA alleles. This ensures that therapeutics 

targeting our newly identified mHAs would be applicable to as broad of a recipient 

population as possible. 

We evaluated mHAs for the total of 56 HLA-A, -B, and -C alleles called in 3231 

DISCOVeRY-BMT recipients. We found that multiple factors influence the number of 

mHAs we called for each HLA allele, including the total number of DRPs with that 

specific HLA allele and the recipient genomic ancestry group. An unexplained finding 

was the significant difference in number of mHAs predicted per DRP by genomic 

ancestry group, with EA>HIS>AA. Adding to this unexpected finding, when we assessed 

the pairwise genetic distance for each DRP we found the opposite trend in genomic 
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ancestry group, with AA>HIS>EA for pairwise genetic distance. When we assessed the 

number of mHAs predicted per DRP versus genetic distance, we found no correlation for 

any class of mHA. That makes this trend of higher numbers of predicted mHAs for 

groups with lower genetic distance values more unexpected, and we have no clear 

explanation for this finding other than potential technical limitations with the SNP arrays 

used in DISCOVeRY-BMT as discussed below. We also found that DRPs with matching 

self-reported ethnicities have higher numbers of predicted mHAs than pairs that do not 

match. This was also an unexpected finding, as we expected that ethnicity-discordant 

pairs might have more SNPs that differ between them due to prevalence of different 

SNPs in different ethnic populations. One proposed explanation for these observations is 

that the design of the SNP panel used for genotyping of the DISCOVeRY-BMT dataset 

plays a role in number and qualities of the SNPs identified and therefore mHAs 

predicted. SNP panels are designed based on SNPs that are relatively high population 

frequency, focusing on genotyping sites with known polymorphism rather than 

genotyping loci where any difference is extremely rare220,221. Scientific research as a 

whole and particularly genetic sequencing has traditionally been done with a strong 

focus on Caucasian and European American individuals, so SNPs selected for inclusion 

in a SNP panel are likely based on which SNPs are commonly polymorphic in individuals 

of this ethnicity. Therefore, SNP panels may be more likely to uncover SNP differences 

in Caucasians as the panels are designed to detect SNPs in that population222,223. Loci 

that are more often polymorphic in non-Caucasian individuals may not be included in 

SNP typing panels, therefore artificially making the number of SNPs that non-Caucasian 

individuals have differences at look less frequent. If we are searching more loci that are 



 78 

common for EA individuals, that could explain why we predicted more mHAs for EA 

individuals and less for other groups. Previous work has shown that ascertainment bias, 

in which SNPs are ascertained in one population and then applied to genotyping of other 

populations, can lead to erroneous conclusions. Some studies have found that assessing 

heterozygosity of SNPs ascertained in European populations can lead to falsely 

concluding that European populations have greater variation than non-European 

populations224,225. Likewise, due to the high prevalence of Caucasian donors in the donor 

registry, most donors in this study are Caucasian. This means that most Caucasian 

recipients in our dataset received transplants from Caucasian donors, and the “Match” 

category in ethnicity analyses is predominated by Caucasian DRPs. Therefore, if SNP 

panels are designed to identify more mHAs in Caucasians, the category with higher 

numbers of Caucasian DRPs would also have more mHAs, and this would explain why 

we found more mHAs for ethnicity-matched pairs than mismatched. These findings merit 

more investigation with additional whole genome sequencing to capture genetic variants 

that are less common in Caucasians and more common in other ethnicities. In the future, 

we would like to repeat mHA prediction with a dataset with a higher prevalence of non-

Caucasian DRPs if such a set becomes available. We also feel that SNP typing panels 

specifically targeting loci with polymorphisms higher in a variety of ethnic backgrounds is 

warranted if the high cost of whole genome sequencing persists and we hope that 

sequencing technology continues to make strides towards equitable availability of 

genetic research resources.  

Despite large differences in total number of mHAs per HLA allele, approximately 

50% of predicted mHAs for each HLA allele are GvL. Therefore, we expect that every 
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HLA allele will present a set of GvL mHAs. We also expect that if we had equal numbers 

of individuals with each HLA allele, the total number of mHAs predicted for each allele 

would have been roughly similar, and the variance in numbers of total mHAs predicted 

was due to the relative abundance of alleles in the dataset. Some number of GvL mHAs 

were predicted for every DRP in the dataset regardless of HLA allele. The majority of 

GvL mHAs are shared among fewer than 10 patients in the dataset, highlighting the 

largely private nature of the mHA landscape. However, though shared mHAs are less 

common than private mHAs, there are some shared mHAs that cover large percentages 

of the population.  38.7% of mHAs were shared by 1% or more of the population, and 4% 

were shared by 10% or more, indicating the low but present frequency of shared mHAs 

in the population. 1602 total predicted mHAs were shared by 10% or more of the 

population, which is more than we foresaw finding given the field’s prior expectation that 

shared mHAs were very rare. We found the presence of these antigens that are broadly 

shared across many mHAs encouraging. We proceeded to assess how many GvL mHAs 

it would take to cover all DRPs with a given HLA allele within our dataset. We found that 

a small set of shared antigens is sufficient to cover all individuals within an HLA allele. 

For each HLA allele, we predicted a small number of highly shared mHA expressed by 

20-25% of the recipient population. For all three of the HLA alleles we selected for further 

analyses, 6-8 mHA peptides would cover >80% of recipients that express that allele, and 

11-15 mHAs would cover 100% of recipients. Therefore, we conclude that targeting a 

small number of shared GvL mHAs could treat a majority of alloHCT recipients 

regardless of race or ethnicity. We envision a set of TCRs targeting mHAs that are 

mostly highly shared in a population, such that any patient presenting with an HLA allele 
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common in any major ethnic group in the US would have at least one targetable mHA 

and we would be able to treat all of these patients with off-the-shelf therapeutics. 
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CHAPTER 3: Custom Mass Spectrometry Method Generation for Minor 
Histocompatibility Antigen Validation2 

(3.1) Introduction 

While mHA prediction methods have advanced significantly since the discovery 

of the first mHA in 1976, development of the tools that enable a reverse immunology 

approach to mHA discovery is still an active field of research133. While individual tools 

such as netMHCpan predict peptide/HLA binding affinity and other mHA qualities fairly 

well and generally have had a lower rate of false positives with every new software 

release, the combined false positive rate from fusing a series of imperfect tools to 

predict mHAs is both high and not perfectly estimable. Every group doing antigen 

prediction work has a slightly (or in some cases drastically) different approach to their 

prediction algorithm, with varying degrees of successful identification of actual antigens 

that generate immune responses in vivo. Some studies have attempted to quantify the 

efficacy of different prediction approaches via “bake off” style competitions in which labs 

are invited to submit antigen predictions and the predictions are centrally tested to 

establish which method had the most success. A recent study set up a consortium 

called the Tumor Neoantigen Selection Alliance (TESLA) and challenged teams from 

academia, nonprofits, and industry to predict neoantigens from tumor and normal whole 

exome sequencing (WES), RNAseq, and clinical HLA typing from three patients with 

non-small cell lung cancer (NSCLC) and three patients with metastatic melanoma52. 25 

 
2 This chapter includes unpublished data that are part of a planned future manuscript from the Vincent and 
Armistead labs. I performed experiments, analyzed results, generated figures, and wrote the text included here.  



 82 

teams submitted between 7 to 81,904 predicted peptides for each sample with very little 

overlap between teams, with a median of 13% overlap between pairs of teams and a 

maximum overlap of 62%52. In addition to the final peptide predictions, the prediction 

methods used by each team varied widely. The study group selected 608 peptides from 

the top-ranked predicted peptides across groups and tested them for immunogenicity 

and found that only 6% of these most agreed upon predicted peptides were 

immunogenic52. This work illustrates that regardless of the quality of your peptide 

predictions, with the current resources we have for this work, one must experimentally 

validate their predicted peptides and not simply assume that all peptides predicted to be 

immunogenic 1) are actually presented via MHC and 2) generate a cognate T cell 

response in vivo. The two broad categories of options for mHA validation in a reverse 

immunology approach are to identify the presence of the predicted peptide bound by 

HLA on the cell surface, or to identify a T cell clone that targets the predicted peptide. 

Identifying a T cell clone gives you one level of information beyond finding the antigen 

presented on the cell surface and is more directly applicable for downstream work 

including antigen targeting. However, identification of antigen-specific T cells is 

extremely laborious, time consuming, and sample dependent. We chose an approach 

where we would first validate our predicted mHAs by mass spectrometry and identify 

peptides that are presented in vivo as our main confirmational approach, then 

separately take these validated mHAs forward to T cell targeting work for downstream 

applications. In the work described in this chapter, we sought to optimize mass 

spectrometry methods for mHA validation in collaboration with the UNC Proteomics 

Core.  
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Multiple different modalities of mass spectrometry are available, and selection of 

the appropriate sampling method for your analyte of interest is critical. For 

immunopeptidomics, where the target of identification is not a full size protein but a set 

of HLA-bound peptides, this selection is even more important, as identification of 

peptides is technically difficult226. The standard method of proteomics data acquisition 

for the last 15 years has been liquid chromatography-tandem mass spectrometry (LC-

MS/MS) in data-dependent acquisition (DDA) mode227. In this method, proteins are 

extracted from a tissue of interest, enzymatically digested into tryptic peptides, and 

fractionated based on their hydrophobicity via liquid chromatography prior to spraying 

into the mass spectrometer for protein identification228. The name of DDA can be 

somewhat misleading for investigators unfamiliar with mass spectrometry, as it is an 

untargeted “shotgun” method of mass spectrometry. In shotgun methods, one obtains a 

broad view of the proteins presented and relative abundance of the proteins observed, 

not inputting any data on specific proteins that should be searched for229. These 

methods are often used in traditional proteomics to assess the broad scale differences 

in protein expression between two conditions, such as healthy versus cancer229. In 

DDA, the peptides fractionated by LC are electrosprayed into the tandem mass 

spectrometer via an electrospray needle coupled to the LC column, the ions enter the 

mass spectrometer, and are separated according to mass-to-charge ratio (m/z) by the 

mass analyzer230. This initial scan is known as the MS1 survey scan, and the most 

intense ions observed in the MS1 scan are selected for MS2 scans231. In the MS2 scan 

process, the mass spectrometer isolates and fragments the ions selected by the MS1 

scan, giving a set of MS2 high quality spectra for the most abundant ions in the 
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sample231. Shotgun methods applied to immunopeptidomics have some drawbacks, 

including that most algorithms used to identify peptides based on MS output spectra are 

designed to process data from trypsin digested proteins, and immunopeptidomics 

studies peptides are isolated directly from HLA molecules rather than using trypsin to 

digest larger proteins232. The C termini of HLA-bound peptides vary because different 

HLA alleles bind peptides with different sequences at the termini, while tryptic peptides 

will always have the same C terminus because trypsin cleaves at specific sites232. 

However, recent methods advances such as hybrid fragmentation and changes to the 

way that spectral data are acquired have enabled better quality of spectra from peptides 

eluted from HLA233,234. 

So, while shotgun methods are improving, they are less than ideal for 

identification of HLA-bound peptides. They are especially unsuited for confirmation of 

specific predicted peptides as these methods only give data on the most abundant 

spectra and are not suited to searching for particular peptides of low-to-moderate 

abundance. One can overcome this limitation using targeted proteomics, where the 

sample spectra are compared to spectra from known standards to obtain information on 

specific proteins or peptides of interest235. The classic method for targeted MS is 

selected reaction monitoring (SRM), in which samples are put into a triple quadrupole 

mass spectrometer, with a precursor ion selected in quadrupole 1 based on 

predetermined m/z ratio for the target of interest, fragmentation of selected precursor 

ions in quadrupole 2, and additional mass filtering once more in quadrupole 3235. SRM 

approaches are costly and fairly low-throughput due to the necessity of generation of 

isotope-labeled peptide standards for each peptide or protein of interest236. One way to 
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increase throughput is by utilizing a parallel reaction monitoring (PRM) method, in which 

the third quadrupole is replaced with an Orbitrap237. Less method optimization and 

development time is needed for PRM compared to SRM because the parallel monitoring 

means that there is no need to pre-determine target peptide transitions235.  

We sought to combine shotgun and targeted approaches to peptide discovery 

and validation in order to establish functional immunopeptidomics in-house, as well as 

to establish a workflow that allowed for stepwise selection and evaluation of a few 

peptides of interest from a large list of predicted peptides. We first ran DDA on samples 

and crosschecked the obtained spectra against a large pool of predicted peptides, then 

we obtained labeled peptide standards for these identified peptides and validated their 

presence using a targeted PRM approach (Figure 3.1).   

 

Figure 3.1: Mass spectrometry approach for predicted mHA identification and 
validation by shotgun and targeted mass spectrometry. 
 

This combined approach allowed us to select peptides of highest interest from 

our large list of predicted antigens to then further analyze, eliminating the need to obtain 
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heavy labeled standards and spend time on methods developments for peptides that 

are ultimately less likely to be positively identified. Using our combined approach, we 

validated two novel HLA-A*02:01 binding mHAs. These peptides are UNC-DPEP1-Q 

(NLLRVFQAV), and UNC-TXNDC2-T (ILSKEDFETSL).  

(3.2) Methods 

mHA selection for validation: 

mHA predictions from both the 101 DRP dataset and the 3231 DRP dataset were 

utilized for validation attempts described in this chapter. We utilized a list of 31 total 

peptides for these analyses that bound HLA-A*02:01 as the only HLA allele-specific 

antibody available for mass spectrometry was for HLA-A*02 and we wished to develop 

this method with as few variables as possible, including ensuring that all 

immunoprecipitated peptides were bound to an HLA allele of interest.  

Peptide immunoprecipitation from cells 

We sought to immunoprecipitate HLA-bound peptides from leukemia cells to test 

for mass spectrometric validation. We used the leukemia cell line U937A2 that 

expressed the HLA allele of interest. This cell line was U937 cells (ATCC CRL-1593.2) 

transfected to stably express HLA-A*02:01 by the Dotti lab at UNC, and we thank Dr. 

Dotti for his contribution in sharing this cell line with us. Cells were grown in Gibco RPMI 

1640 (Thermo Fisher 11875119) with 10% Hyclone fetal bovine serum (FBS) (VWR 

76237-676) , 100 U/mL penicillin/streptomycin (Thermo Fisher 15140122) and 2 mM L-

glutamine (Thermo Fisher 25030081). We created an optimized protocol for 

immunoprecipitation (IP) of HLA-bound peptides by modifying previous IP protocols 

from compiled literature238–240. We expanded the U937A2 cells to 150-500 million cells 



 87 

depending on mass spectrometric needs. We then pelleted the cells, washed them 

three times in 4C Gibco Dulbecco’s phosphate buffered saline (DPBS) (Thermo Fisher 

14040117), and lysed for 1 hour on ice in 6mL of IP lysis buffer, which is comprised of 

1x DPBS, 1% Triton X-100 (Millipore Sigma T8787), 5mM EDTA (Thermo Fisher 

17892), 1x HALT protease inhibitor (Thermo Fisher 78430), 1mg/mL leupeptin (R&D 

Systems 1167), and 1mM phenylmethylsulfonyl fluoride (PMSF) (Millipore Sigma 

P7626), vortexing every fifteen minutes during the lysis. Samples were then centrifuged 

for 20 minutes at 12,000 rpm at 4C. We then added Protein A/G Ultralink Resin 

(Thermo Fisher 53135) to the lysate and incubated on a rotator at 4C for thirty minutes 

to preclear lysates of any materials that would have bound resin with no crosslinked 

antibody. The samples were then centrifuged and precipitate discarded to remove 

nonspecifically bound proteins. HLA molecules with bound peptide were then 

immunoprecipitated from the precleared lysates via incubation for three hours on a 

rotator at 4C with HLA-A*02 specific BB7.2 antibody (BioLegend 343307) crosslinked to 

Protein A/G Ultralink Resin39,241. Resin-bound HLA was then washed twice with 50mM 

Tris pH 8.0 (Thermo Fisher AM9855G), resuspended in Tris, and transferred to a 2mL 

Pierce centrifuge column (Thermo Fisher 89896). Peptides were finally eluted from the 

HLA molecules by gravity flow in 5 fractions with one column volume per fraction of ice 

cold 10% glacial acetic acid (Millipore Sigma A6283). Based on our experience, 

fractions 2-4 contained almost the entirety of the eluted peptides, so these fractions 

were pooled as the final immunopeptide samples and stored at -80C until analysis. An 

overview of the IP workflow is shown below (Figure 3.2). While dozens of IPs were 

performed for methods development purposes, 11 final samples were split and utilized 
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for DDA and PRM. One adjustment was made in the procedure for samples 10 and 11, 

with pipette tips cut to create a broader opening when pipetting samples containing 

Ultralink Resin to avoid shearing the samples off of the resin.  

 

Figure 3.2: HLA-bound peptide immunoprecipitation workflow. Figure generated by 
Marisa Diiorio. 
 

LC-MS/MS Sample Preparation 

Immunoprecipitated peptides were lyophilized and desalted using 1cc/100mg 

tC18 SEP-PAK cartridges (Waters WAT036820) using 30% or 50% acetonitrile 

(Millipore Sigma 34851) and 0.1% trifluoroacetic acid (Millipore Sigma 302031). A C18 

cleanup was then performed on NEST Silica C18 UltraMicroSpin columns (Harvard 

Apparatus 74-7206).  

LC-MS/MS Data Acquisition: DDA 

For DDA, post-cleanup samples were loaded onto a 75um ID x 25cm 2um 

particle size EasySpray PepMap RSLC C18 column (Thermo Fisher ES802). They were 

eluted over a 110 minute acquisition with a separation gradient of 3-60% B at a 
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250nL/min flow rate with mobile phase A comprised of 0.1% formic acid, and mobile 

phase B comprised of 0.1% formic acid and 80% acetonitrile. Precursor scan (m/z 

range of 300 to 1700) resolution was set to 60,000 with a target value of 3x10e6 ions 

and 50ms maximum ion injection time (IT)242. Dynamic exclusion was set to 5s, peptide 

match set to preferred, and precursors with a charge state of greater than or equal to 

five or unknown charge were excluded. MS/MS scan resolution was set to 15,000 with a 

target value of 1x10e5 ions and 120ms maximum ion IT and normalized HCD collision 

energy set to 27%. 

LC-MS/MS Data Acquisition: PRM 

Peptide standards (Peptide 2.0 Inc) were obtained in lyophilized form and 

resuspended at 5mM in DMSO, then diluted to 250nM in pooled HLA-A*02:01-binding 

peptide from immunoprecipitation with 0.1% formic acid. Peptide standard precursor 

m/z ratios and collision energies were assessed and optimized by direct infusion and 

nLC-MS/MS using a Thermo Easy nLC 1000 coupled to a QExactive HF. PRM samples 

were eluted from the EasySpray C18 column using the same 110 minute, 3-60% B 

gradient utilized for DDA. Precursor scan (m/z range of 400 to 1200) resolution was set 

to 60,000 with a target value of 3x10e6 ions and 200ms maximum ion IT. MS/MS scan 

resolution was set to 15,000 with a target value of 1x10e6 ions, 200ms maximum ion IT, 

normalized HCD collision energy set to 27%, loop count 25, and isolation windows of 2 

m/z. 
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Data Analysis 

DDA data were analyzed in ProteomeDiscoverer 2.4 (Thermo Fisher). PRM data 

were analyzed using Skyline. An overview of the entire workflow from mHA prediction to 

data analysis and mHA validation is shown below (Figure 3.3).  

 

Figure 3.3: Overall mHA prediction and MS validation workflow. Figure generated 
by Marisa Diiorio. 
 

As a standard for assessing if MS results successfully identified peptides, we 

assessed the presence of a known peptide that should be present in these samples 

called CG1 (amino acid sequence FLLPTGAEA). This is a cathepsin G-derived HLA-

A*02:01-presented peptide that we have seen presence of in every successful MS run 

in past work, due to cathepsin G’s high expression levels in AML cells243. 
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Cell culture of 
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C18 zip-tip two step 
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(3.3) Results 

DDA Results 

We first assessed the difference in 30% vs 50% acetonitrile for IP sample elution 

prior to C18 cleanup. In 11 samples tested with 30% elutions, our standard peptide CG1 

was detected in nine, while with 50% CG1 gave a strong signal in all samples. We 

therefore selected 50% acetonitrile for our final method. The total number of peptides 

identified across 11 samples using this method was 5919, with 57.13% peptides 

between 8-12 amino acids long, indicating some impurities in immunoprecipitation as 

this sample should have contained only HLA class I-binding peptides due to the HLA-

A*02-specific antibody that was used. Only 2.84% of peptides detected were over 25 

amino acids, indicating that many of the peptides detected were between 13-24 amino 

acids long, making them likely to be class II binding peptides that were aberrantly 

included in the IP samples244. Overlap between the 11 samples was relatively low, 

which is to be expected due to the complexity and variability of immunopeptidomics 

samples and conforms to previous observations about low consistency of 

immunoprecipitated peptides from HLA (Figure 3.4)245–247. Samples 10 and 11 

contained the highest number of peptides identified per sample, with 1605 and 558 

peptides identified respectively. This is likely due to the protocol adjustment made for 

these two samples in which pipette tips were cut, probably leading to less shearing of 

peptides from the resin when pipetting.  
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Figure 3.4: UpSetR plot indicating overlap between 11 MS samples analyzed by 
DDA. 
 

While CG1 was detected in eleven of eleven samples, consistent with its 

remarkably high expression and consistent presence that we have observed in prior 

experiments, we detected three novel peptides in one sample. Peptide NLLRVFQAV, 

predicted from the 101 DRP dataset, was identified with high confidence as determined 

by the ProteomeDiscoverer software, with high confidence indicating false discovery 

rate (FDR) below a cutoff of 0.01. Peptide NLLRVFQA, a length variant of the previous 

peptide, was identified with medium confidence, indicating FDR below a cutoff of 0.05. 

Peptide ILSKEDFETSL, predicted from the 3231 DRP dataset, was detected with 
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medium confidence. They were identified with m/z of 530.3, 480.8, and 641.3 

respectively, and retention times of 62.6, 50.1, and 48.1 minutes respectively.  

PRM Results 

We then sought to confirm the peptides we identified in samples via DDA with 

targeted PRM analysis. We used the same eleven samples eluted with 50% acetonitrile 

as in the DDA runs. We made a targeted method looking exclusively for the three 

peptides identified via DDA as well as CG1. We identified CG1 in all eleven samples as 

expected. NLLRVFQA was identified in all samples as well via PRM, illustrating the 

increased sensitivity of targeted methods over shotgun methods. Additionally, 

NLLRVFQAV and ILSKEDFETSL were identified in one sample each. Therefore, all 

three novel peptides identified via DDA were confirmed via PRM. Example spectra for 

peptide standards vs IP sample are shown below (Figure 3.5). 

 

Figure 3.5: Example PRM MS1 and MS2 spectra for one novel identified peptide, 
NLLRVFQA.  
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We consider these three novel peptides to be two novel mHAs total since two 

were length variants derived from the same SNP. We named these two novel mHAs 

UNC-DPEP1-Q (NLLRVFQA(V)) and UNC-TXNDC2-T (ILSKEDFETSL).  

(3.4) Discussion 

Using a custom MS workflow including shotgun DDA MS for initial identification 

of candidate peptides and targeted PRM MS for validation of candidates, we identified 

two novel mHAs. In the methods development process, we created a new IP method for 

eluting class I HLA-bound peptides from cell lines that gave better results including 

higher numbers of identified peptides and more frequent identification of the peptide 

standard CG1 than previously reported IP protocols. We also assessed different IP 

cleanup methods and different MS methods, and report here that elution with 50% 

acetonitrile, C18 cleanup, and DDA and PRM mass spectrometry using the 

specifications noted here gave the best results. Immunopeptidomics is an exceedingly 

difficult technique due to the small size of the desired targets and difficulty of identifying 

specific amino acid sequences versus their single amino acid variants in peptides as 

small as 8 amino acids long. Despite these challenges, we successfully developed a 

method that enabled validation of predicted mHAs, adding two new GvL mHAs to the 

previously known 12 GvL mHAs in the field. Though these mHAs were predicted from 

different sources, with UNC-DPEP1-Q predicted from the 101 patient dataset and UNC-

TXNDC2-T from the 3231 patient dataset, both were found In a large number of patients 

within the larger dataset. We screened this set for both mHAs as it has a larger number 

of DRPs and is more representative of the general population of alloHCT DRPs. Both 

mHAs are specific for HLA-A*02:01, so this restricts the pool of applicable DRPs to 
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1569 DRPs in DISCOVeRY-BMT with this HLA allele. Of these DRPs, 20.6% have the 

appropriate mismatches for UNC-TXNDC2-T to be applicable, and 23.5% have the 

appropriate mismatches for UNC-DPEP1-Q to be applicable. These two mHAs have a 

higher known applicability than any previously known GvL mHAs other than ACC1Y, 

and UNC-GRK4-V for UNC-DPEP1-Q only. Overall, though this mHA validation 

pathway was successful, it was extremely labor-intensive and time-consuming, and for 

future MS work we moved to a working with a company called Complete Omics Inc that 

has a more established and less time and resource prohibitive pathway for 

immunopeptidomics work, described in the next section.   
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CHAPTER 4: Mass Spectrometry Validation of Shared Minor Histocompatibility 
Antigens from DISCOVeRY-BMT3 

(4.1) Introduction 

In this chapter, we sought to validate shared GvL mHAs predicted from the 

DISCOVeRY-BMT dataset using targeted heavy-labeled peptide standards via the 

Complete Omics method. Heavy labeled peptide standards were cost-prohibitive to 

produce for in-house mHA validation via the Proteomics Core, but enable enhanced 

detection of peptides in immunopeptidomics MS assays and other MS work where there 

are technical difficulties for detection of the analyte of interest248–250. Therefore, we 

transitioned to targeted peptide validation with through a company with more cost-

effective access to heavy-labeled peptides, extensive experience with 

immunopeptidomics, and a unique in-house method for peptide immunoprecipitation. 

We validated 24 novel GvL mHAs, increasing the number of total known GvL mHAs by 

200% compared to the 12 reported in the literature, and bringing our total contribution of 

26 novel GvL mHAs to the field up to 217% compared to the prior 12 known antigens. 

  

 
3 Portions of this chapter are published in Blood Advances. Citation: Olsen KS, Jadi O, Dexheimer S, 
Bortone S, Vensko SP, Bennett SN, Tang H, Diiorio M, Saran T, Dingfelder D, Zhu Q, Wang Y, Haiman 
CA, Pooler L, Sheng X, Webb A, Pasquini MC, McCarthy PL, Spellman SR, Weimer ET, Hahn T, 
Sucheston-Campbell LE, Armistead PM*, Vincent B*. Shared graft-vs-leukemia minor histocompatibility 
antigens in DISCOVeRY-BMT. 2022. Blood Adv; bloodadvances.2022008863. I designed and performed 
experiments, performed computational mHA prioritization, interpreted experimental results, performed 
statistical testing, generated figures, prepared the manuscript, and made revisions. 
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(4.2) Methods 

Computational Methods 

mHAs selected for validation in this chapter were predicted from the 

DISCOVeRY-BMT dataset exclusively, as this dataset is most broadly applicable to the 

general population of alloHCT recipients. mHA validation was performed for HLA-

A*02:01, HLA-B*35:01, and HLA-C*07:02, the representative HLA alleles for A, B, and 

C selected to give high coverage of a variety of ethnic groups as discussed in Chapter 

2. We chose to search for 40 predicted peptides per MS run as this was a feasible 

number from a cost perspective and from an MS methods development perspective. 

One MS run each was performed for HLA-B*35:01 and HLA-C*07:02, for a total of 40 

predicted peptides assessed per allele. Two MS runs were performed for HLA-A*02:01. 

New RNAseq data was generated for the cell line utilized for A*02:01 between the two 

MS runs, slightly shifting the top 40 peptides of interest for this allele. Therefore, we 

searched two overlapping but non-identical sets of peptides for HLA-A*02:01, totaling 

67 searched peptides. 

The list of mHAs for validation for each HLA allele was selected by compiling a 

list of the mHAs selected by the greedy algorithm to give 100% population coverage, 

followed by mHAs that were not selected by the greedy algorithm in descending order of 

population frequency within DISCOVeRY-BMT DRPs with the appropriate HLA allele. 

This list was then filtered to exclude peptides with zero coverage of the source gene by 

RNAseq in the cell line being utilized for validation in that HLA allele. The top 40 

peptides on the remaining list were then selected for each search.  
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Cell Line RNAseq  

RNAseq was performed to assess gene expression in multiple AML cell lines. 

RNA was isolated from 5 million cells per cell line using the Qiagen AllPrep DNA/RNA 

extraction kits (Qiagen, 80004). Nucleic acid quantification and quality detection were 

performed and RNA sequencing libraries were generated via the Illumina Stranded 

mRNA library preparation protocol. Paired-end sequencing was run on a NovaSeq SP 

2x150 with the NovaSeq 6000 SP Reagent Kit v1.5 (NovaSeq, 20028400) and aligned 

to reference genome GRCh37, as SNP locations were called using this reference 

genome. Differential gene expression analysis was performed using the DESeq2 R 

package251. Expression levels were calculated relative to the average expression in the 

five tested cell lines. Several cell lines for each of the three studied HLA alleles were 

examined and one selected for each allele based on ease of expansion to needed 

number of cells for mass spectrometry.  

Cell Lines 

The AML cell lines selected for MS were U937A2, the U937 cell line stably 

transfected to express HLA-A*02:01 as described in the previous chapter, NB4, which 

endogenously expresses HLA-B*35:01, and MONOMAC1, which endogenously 

expresses HLA-C*07:02252. Cell line HLA expression data was downloaded from the 

TRON cell lines portal and validated by the Clinical HLA Typing Laboratory at the 

University of North Carolina Hospitals, with differences as reported (Figure 4.1)252,253. 



 99 

 

Figure 4.1: HLA typing for AML cell lines. (A) shows Venn diagram of number of 
typed HLA alleles agreed upon and disagreed upon by HLA typing on TRON database 
versus performed by UNC Hospitals Clinical Laboratories. (B) shows alleles called by 
one source only. (C) shows alleles agreed upon by both HLA typing sources.  
 

Where discrepancies were found between the HLA haplotype on TRON and 

clinical typing, the clinical typing result was used. Cell lines were maintained in culture 

with RPMI 1640 +10% FBS +1% penicillin-streptomycin +1% L-glutamine243.  

Immunoprecipitation and Mass Spectrometry 

Cell lines were expanded to 1-5x108 per sample. Cells were centrifuged and 

washed with PBS, followed by treatment with 1x cOmplete Mini EDTA-free Protease 

Inhibitor Cocktail tables prepared in PBS (Roche, 11836170001). Cells were 



 100 

centrifuged, supernatant was removed, and cell pellets were snap frozen in liquid 

nitrogen and placed at -80C. Frozen pellets were sent to Complete Omics Inc for 

immunoprecipitation and antigen validation and quantification by mass spectrometry 

through Valid-Neo® platform254. Pellets were processed into single-cell frozen powder 

and then lysed.  Peptide-HLA complexes were immunoprecipitated using Valid-NEO® 

neoantigen enrichment column pre-loaded with anti-human HLA-A, B, C antibody clone 

W6/32 (Bio-X-Cell). After elution, dissociation, filtration and clean up, peptides were 

lyophilized before further analysis. Transition parameters for each epitope peptide were 

examined and curated through Valid-NEO® method builder, an AI-based biostatistical 

pipeline. Ions with excessive noise due to co-elution with impurities were further 

optimized or removed. To boost detectability, a series of computational recursive 

optimizations of significant ions were conducted. Each mHA sequence was individually 

detected and quantified in a high-throughput manner through a Valid-NEO® modified 

mass spectrometer.  

SNP Typing and Sanger Sequencing 

PCR primers for the SNP loci encoding the novel mHAs that were validated by 

mass spectrometry were designed using Primer3 and Geneious. Sequencing primer T7 

pro sequence was added to the 5’ end of each forward primer for ease of sequencing. 

Genomic DNA was extracted from frozen PBMC pellets from alloSCT recipient 

pretransplant and post-transplant D90 peripheral blood draw samples from samples 

expression HLA-A*02:01, HLA-B*35:01, or HLA-C*07:02, obtained from the UNC 

Lineberger Comprehensive Cancer Center Tissue Procurement Facility, using the 

Qiagen DNeasy Blood and Tissue Kit (Qiagen, 69504) and purified using the Monarch 
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DNA Cleanup Kit (NEB, T1030S). D90 samples were taken to represent alloSCT donor 

genetic information, as patient samples were selected for successful engraftment, 

meaning that at this time point the sample is >95% donor as transplant has engrafted 

and hematopoiesis is fully donor in origin. PCR amplification was performed using the 

FastStart High Fidelity PCR System (Roche, 3553400001). Samples were directly sent 

for Sanger Sequencing by Eton Biosciences using T7pro sequencing primer.  

Outcomes Analyses 

Patient data were separated out for the HLA alleles corresponding to novel 

mHAs. Presence or absence of corresponding SNP alleles in each DRP was tabulated 

for each mHA. Competing risk regression was performed to assess associations of 

each mHA with relapse at 1 year via the cmprsk R package. Datasets for each HLA 

allele were then combined and the total number of novel mHAs across all three HLA 

alleles was tabulated per DRP. Cox proportional hazard ratio was calculated to assess 

association of total number of mHAs with relapse at 1 year via the survival R package. 

Source Gene Expression Analysis for ALL 

 RNAseq read quantifications for 110 pediatric ALL patients were accessed from 

the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) 

initiative Phase 3, phs000218 (https://ocg.cancer.gov/programs/target). The data used 

for this analysis are available at https://portal.gdc.cancer.gov/projects. We analyzed 

expression of source genes of mHAs validated in this chapter. Available data were 

centered so no direct comparisons of TPM were possible, so z-scores for mean 

expression values across all ALL patients were calculated and compared to z-scores of 
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the TCGA_AML gene expression data that were utilized for mHA prediction and 

categorization.  

(4.3) Results 

We utilized RNAseq to identify gene expression in AML cell lines both to identify 

which mHAs to select for validation for a particular HLA allele based on which mHA 

source genes had nonzero expression in the cell line utilized for that allele. As part of 

this RNAseq data analysis, we identified the top set of genes that were differentially 

upregulated or downregulated compared to the mean expression across all the cell lines 

identified (Figure 4.2). Overall, we found that source gene expression for our mHAs was 

generally fairly similar across cell lines. 
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Figure 4.2: RNAseq Differential Gene Expression analysis and HLA alleles 
expressed by AML cell lines evaluated for use. Top 30 genes that are differentially 
expressed compared to the mean across the 5 cell lines are shown.  
 

We employed mass spectrometry to validate HLA presentation of predicted GvL 

mHAs. Of the 67 searched peptides for HLA-A*02:01 across two U937A2 cell line 

samples, we positively identified 17 peptides. Of the 40 searched for HLA-B*35:01 using 

an NB4 cell line we identified three peptides, and of the 40 searched for C*07:02 using 

a MONOMAC1 cell line we identified five peptides. Representative spectra are shown 
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for a heavy labeled peptide standard and endogenous identified peptide from an 

immunoprecipitated NB4 cell sample (Figure 4.3). 

 
Figure 4.3: Example mass spectra of an MS validated novel mHA. (A) shows 
representative spectra for heavy-labeled peptide standard for HLA C*07:02-binding 
mHA LPAAYHHH.  (B) shows endogenous LPAAYHHH peptide identified from 
immunoprecipitated peptide sample from cell line MONOMAC1.  
 

From the list of 17 validated peptides for HLA-A*02:01, peptide VLDIEQFSV is 

also known as UNC-GRK4-V and was previously identified by our group as a GvL mHA 

using the U937A2 cell line62,165. Mass spectrometry analysis was blinded to the 

peptide’s status as previously identified. As this peptide is previously known, a total of 

sixteen novel HLA-A*02:01 binding mHAs were discovered. These sixteen novel HLA-

A*02:01-binding mHAs cumulatively cover 98.8% of HLA-A*02:01-positive patients in 

the DISCOVeRY-BMT dataset, with individual peptide population frequencies between 

21.1% and 28.3% (Figure 4.4A). The three novel HLA-B*35:01 binding mHAs cover 

60.7% of the HLA-B*35:01 positive DISCOVeRY-BMT population with population 

frequencies of 26.0-27.6% (Figure 4.4B). The five novel HLA-C*07:02 binding mHAs 

give cumulative HLA-C*07:02 positive DISCOVeRY-BMT patient coverage of 78.9%, 
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with independent frequencies of 24.4-26.7% (Figure 4.4C). Characteristics of all novel 

mHAs are shown (Table 4.1)211,255. 

 
Figure 4.4: Population frequencies of 24 novel shared GvL mHAs. (A) shows all 
novel identified peptides from cell line U937A2 sample. “Noncumulative population 
coverage” shows percentage of DRPs expressing HLA-A*02:01 within the DISCOVeRY-
BMT dataset where the recipient expresses the mHA allele and donor does not. 
“Cumulative population coverage” shows output from the maximal set coverage solution 
calculating total population coverage by each peptide and the ones preceding it, with a 
total of 98.8% population coverage by the ten peptides. (B) shows all identified peptides 
from cell line NB4 sample, with 60.7% cumulative coverage of DRPs expressing HLA-
B*35:01 within the dataset by the three peptides. (C) shows all identified peptides from 
cell line MONOMAC1, with 78.9% cumulative coverage of HLA-C*07:02-expressing 
DRPs within the dataset. 

Validated Peptides
Noncumulative 

Population Coverage
Cumulative 

Population Coverage
KVAVAMLTV 28.3 28.3
ALYPFLGIL 26.4 47.7
FLAAASARGI 26.5 62.0
AVLDEAVV 26.4 72.5
ALARGGGQLPL 24.3 79.5
FLRCMLTI 25.0 85.0
SLICRQLGSA 23.9 89.1
ALSQVPSPL 23.6 92.0
KLIVQPNTHL 23.6 94.1
FLSSANEHL 25.6 95.6
AQYTSVYGA 25.3 96.7
KVSFFVPRL 22.4 97.6
RLHVGCDEV 24.0 98.1
LLGDDDVADGL 26.1 98.3
VVFGQAPPL 21.7 98.6
WLLEKLQEQL 21.1 98.8

Validated Peptides
Noncumulative 

Population Coverage
Cumulative 

Population Coverage
HPDGWSHRGIF 27.4 27.4
LPAAYHHH 26.6 48.2
LPAMPRDY 26.0 60.7

Validated Peptides
Noncumulative 

Population Coverage
Cumulative 

Population Coverage
GRLLSTVIRTL 26.7 26.7
RRQLDGRVLL 25.4 46.1
RYADRPGRRF 25.9 60.6
FLQPNVRGPLF 25.8 71.1
YRLAQDYLQY 24.4 78.9

A

B

C
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Table 4.1: Novel mHA characteristics. 16 novel GvL mHAs that bind HLA-A*02:01, 
three that bind B*35:01, and five that bind C*07:02 and were validated by mass 
spectrometry are shown. 
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One interesting finding to note is that one of our novel mHAs, UNC-BCL2A1-Y, is 

derived from the same SNP as the previously identified mHA ACC1Y described in 2013 

by the Takahashi group as one of the first identified and validated mHAs147. These two 

mHAs overlap by five amino acids, and ACC1Y binds HLA-A*24:02, while our novel 

UNC-BCL2A1-Y binds HLA-C*07:02. Identification of both of the previously discovered 

GvL mHA (UNC-GRK4-V) and a GvL mHA overlapping with another mHA was 

reassuring that our results are consistent with work previously done in the field. 

Next, we were interested in whether our identified mHAs gave high cumulative 

population frequencies due to chance or because our mHA selection method was such 

that any discovered mHAs would result in high cumulative coverage. Essentially, we 

wanted to identify whether it was possible that a different set of the same number of 

identified antigens from our list of predicted shared GvL mHAs would have given much 

lower cumulative coverage because all the mHAs were found in a more overlapping set 

of DRPs, or whether any set of this size from our list would result in high population 

coverage. To evaluate the generalizability of our discovery process, we calculated the 

range of cumulative coverage that would be obtained with a subset of the number of 

peptides that we validated from the searched lists. For each HLA allele, 1000 random 

sets of peptides were selected from the searched peptide list and cumulative coverage 

by each set was calculated. The range of cumulative coverage by the 1000 random sets 

of 16 HLA-A*02:01 peptides was 97.4-99.7%, by the 1000 random sets of three HLA-

B*35:01 peptides was 42.8-66.4%, and by the 1000 random sets of five HLA-C*07:02 

peptides was 65.4-80.7% (Figure 4.5). This indicates that our selection methods for 

mHA lists to validate results in exclusively sets of peptides that would give high 
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cumulative coverage, regardless of which individual peptides are validated within each 

set. 

 
Figure 4.5: Cumulative population coverage of simulated mHA sets. (A) shows 
cumulative coverage by the 16 novel confirmed HLA-A*02:01-binding mHAs and 1000 
simulated sets of 16 peptides from the set of mHAs searched by mass spectrometry. 
Cumulative coverage by confirmed peptides is shown in blue, while each simulated run 
is shown as an individual gray line. (B) shows cumulative coverage for the three 
confirmed HLA-B*35:01-binding mHAs and 1000 simulated sets of three peptides. (C) 
shows cumulative coverage for the five confirmed HLA-C*07:02-binding mHAs and 
1000 simulated sets of five peptides. 
 

We genotyped seven DRPs from the UNC Lineberger Cancer Center Tissue 

Procurement Facility expressing HLA-A*02:01, one expressing HLA-B*35:01, and four 

expressing HLA-C*07:02 for the majority of the novel mHAs for the corresponding HLA 

alleles (Figure 4.6A-C). We found appropriate minor antigen mismatches for potential 

A B

C
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utilization of these mHAs in 58% of the genotyped DRPs, highlighting their utility for 

future work. This does not align perfectly with predicted coverage of DISCOVeRY-BMT 

patients with these mHAs, but it is likely explained by the small patient count and 

different patient population. However, most of the patients genotyped could use 

treatments targeting these mHAs. We also genotyped the seven HLA-A*02:01 positive 

DRPs for the previously known GvL mHAs HA-1 and UTA2-1 and discovered they were 

targetable in 0% of these DRPs (Figure 4.6A). As illustrated by these example 

frequencies from a relevant DRP population, our newly discovered shared mHAs will be 

applicable to many more patients than previously known mHAs. As discussed in 

Chapter 1, our novel mHAs also have much more favorable minor allele frequencies 

within larger general populations than previously known mHAs as shown in Table 1.1, 

explaining the higher frequency of targetability due to Hardy-Weinberg Equilibrium. 
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Figure 4.6: Assessment of presence or absence of SNPs encoding validated 
predicted GvL mHAs. (A) shows number of copies of alleles encoding fourteen novel 
HLA-A*02:01 mHAs in seven DRPs from alloSCT for AML. Two novel mHAs were 
excluded due to difficulty of appropriate primer design. Two previously known HLA-
A*02:01-binding mHAs from the literature, HA-2 and UTA2-1, are also shown. (B) 
shows number of copies of alleles encoding three novel HLA-B*35:01 mHAs in one 
DRP. (C) shows number of copies of alleles encoding five novel HLA-C*07:02 mHAs in 
four DRPs. 

 

In outcomes assessments with our novel validated mHAs, we found no 

significant association between any individual mHA and relapse at 1 year (Figure 

4.7A/B). We also saw no significant correlation between total number of novel mHAs 

A

B C
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per DRP and 1 year relapse via Cox proportional hazards ratio (Figure 4.7C).  This 

finding is consistent with the hypothesis that alloimmunity is driven by T cell responses 

to multiple antigens rather than single antigens. While some antigens may be 

immunodominant and drive a disproportionately large share of the immune response, 

there is still a complex combination of antigens driving immune responses in any given 

patient256,257. There is also no guarantee that a shared GvL mHA would also be an 

endogenously immunodominant mHA. Few individual mHAs have shown direct 

associations with positive outcomes such as overall survival or relapse-free survival. 

Most studies examining specific mHAs have found no outcomes associations, though 

one study has shown positive outcomes for DRPs with >1 known mHA difference 

versus 0258,259. Even the most well-studied mHA, HA-1, has shown conflicting results on 

associations with outcomes, with two studies showing no association with relapse but 

two showing an association with lower leukemia relapse rates in the context of 

CML150,260–262. Associations of individual mHAs with outcomes are much more common 

on the GvHD side, with a variety of individual mHAs shown to correlate with clinical 

outcomes141,213,263–266. Therefore, we were overall unsurprised to find no significant 

outcomes associations with our individual mHAs, though one HLA-C*07:02-binding 

mHA, UNC-RNASE3-R, was close to significance with a p value of 0.054 and warrants 

future investigation in other datasets (Figure 4.7).  
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Figure 4.7: Outcomes analyses for novel GvL mHAs. (A) shows odds ratio with 95% 
CI for each individual mHA with relapse at 1 year. Dot sizes denote size of patient 
population with the HLA allele corresponding to the mHA. n=1568 for HLAA*02:01, 
n=369 for HLA-B*35:01, and n=1034 for HLA-C*07:02.  (B) shows statistics 
corresponding to the same analysis. (C) shows hazard ratio and 95% CI for association 
of total number of novel GvL mHAs per DRP with relapse at 1 year.   
 
 Finally, we assessed the applicability of these novel mHAs for ALL patients. As 

discussed in Chapter 2, ALL patients are included in DISCOVeRY-BMT but mHA 

mHA Odds Ratio 95% CI p value
MARCH2 1.06 0.96,1.16 0.560

BCL2A1 1.05 0.95,1.15 0.600

SNX19 1.10 1.00,1.19 0.350

RNASE3 1.20 1.10,1.29 0.054

GAA 0.96 0.86,1.06 0.660

NEK4 1.09 0.93,1.25 0.600

HLX 0.88 0.72,1.05 0.450

POLL 0.94 0.77,1.10 0.690

FPR1 0.97 0.89,1.05 0.710

FLT3 0.97 0.88,1.05 0.690

WDR62 1.07 0.99,1.15 0.390

NDUFAF1 1.01 0.93,1.09 0.880

FPGS 1.11 1.03,1.18 0.210

SLC26A8 1.00 0.91,1.08 0.960

GDPD5 1.04 0.96,1.12 0.640

AHRR 0.90 0.81,0.99 0.250

USP4 1.01 0.92,1.09 0.950

TOP1MT 0.92 0.83,1.00 0.320

HEXDC 0.99 0.90,1.07 0.860

DPP3 1.13 1.05,1.21 0.130

ARHGEF18 1.10 1.02,1.18 0.250

SLC25A37 1.01 0.93,1.09 0.950

GLRX3 1.03 0.95,1.11 0.690

IQCE 1.07 0.99,1.15 0.380

A B

C 1 Year Relapse
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classification was performed based on TPM in TCGA_AML due to the lack of TCGA 

data for ALL. We compared source gene expression for the 24 validated mHAs in 

TCGA_AML versus a dataset of 110 pediatric ALL patients as this was the largest 

publicly available ALL RNAseq dataset. Z-scores of gene expression in each dataset 

were positively correlated (r=0.84, p=2.93e-7), indicating that these mHAs may be 

applicable for ALL patients, though this dataset does not suffice for definitively 

determining this (Figure 4.8). This analysis can be repeated when RNAseq data for 

adult ALL patients undergoing alloHCT becomes publicly available.  

 

Figure 4.8: Comparison of mHA source gene expression z-score in TCGA_AML 
and TARGET-ALL-P3. Expression z-scores for the 24 source genes of mHAs validated 
in this chapter are shown. 
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(4.4) Discussion 

Discovery and characterization of novel mHAs may be crucial for enhancing 

immune monitoring in alloHCT, predicting clinical outcomes based on donor and 

recipient genetics, and improving outcomes by optimizing donor selection and/or 

specifically targeting GvL mHAs. We built upon previous work to perform the first 

population level survey of mHA peptides, taking a new approach by predicting mHAs 

common among recipients with diverse HLA alleles. This ensures that therapeutics 

targeting our newly identified mHAs would be applicable to as broad of a recipient 

population as possible. As discussed in Chapter 2, we predicted mHAs for 56 class I 

HLA alleles represented in the DISCOVeRY-BMT dataset and found that approximately 

50% of the mHAs predicted were designated as GvL mHAs. Additionally, we found that 

shared mHAs are more common than expected, with a distinct subgroup of mHAs found 

in approximately 20-30% of the DRP population with the relevant HLA allele for most 

alleles. We found that the number of mHAs needed to target in order for each DRP with 

a given HLA allele to contain at least one targetable mHA is smaller than expected, with 

as few as 11 mHAs per HLA allele covering all DISCOVeRY-BMT DRPs with that allele. 

We next sought to validate our predicted shared GvL mHAs. 

Using mass spectrometry, we validated a total of 24 novel GvL mHAs in this 

chapter in addition to the 2 novel GvL mHAs validated in the previous chapter, 

representing a large increase from the 12 class I GvL mHAs that have been discovered 

since Els Goulmy et al reported the first discovered GvL mHA, HA-1, in 198362,144,164,166–

168. The 16 novel GvL mHAs found for HLA-A*02:01 together cover 98.8% of HLA-

A*02:01-positive patients in the DISCOVeRY-BMT dataset, the three for HLA-B*35:01 

cover 60.7% of HLA-B*35-:01-positive DISCOVeRY-BMT patients, and the five for HLA-
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C*07:02 cover 78.9% of HLA-C*07:02-positive DISCOVeRY-BMT patients. We expect 

that these novel mHAs will serve as future targets for antigen-directed therapeutics.  

Our study is limited in important ways. We biologically validated predicted GvL 

mHAs for three HLA alleles that were selected based on their high frequency of 

expression within diverse ethnic groups. In the future, mHAs for additional HLA alleles 

should be validated. Also, we validated GvL mHAs in a single AML cell line for each HLA 

allele. This is sufficient to establish that the mHAs are capable of being presented; 

however, antigen expression, HLA expression and antigen presentation efficiency will be 

heterogeneous across patient samples. Further studies of primary AML samples will be 

required to estimate the frequency of expression of each GvL mHA in AML. We validated 

more mHAs for HLA-A*02:01 than the other HLA alleles, which is likely not only due to 

running two samples for this allele but also because the cell line U937A2 is engineered 

to express HLA-A*02:01 and presents larger quantities of it on its cell surface than 

endogenously expressed HLA alleles. NB4 endogenously expresses HLA-B*35:01 and 

MONOMAC1 endogenously expresses HLA-C*07:02. In addition, while we validated 

mHAs to be presented by MS, this does not guarantee actual targeting by T cells nor 

assess differential frequency of mHA-specific T cells or immunogenicity. In the next 

chapter, we discuss T cell targeting work to identify, isolate, and perform functional 

assays of mHA-specific T cells to use for future therapeutics and to better understand 

determinants of GvL mHA immunogenicity.  
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CHAPTER 5: Generation of mHA-targeting T cells and TCR sequencing4 

(5.1) Introduction  

While validating 26 novel shared GvL mHAs serves as a major contribution to the 

field, we also seek to confirm immunogenicity of predicted GvL mHAs and target these 

mHAs with T cells. Establishing T cell targeting of GvL mHAs represents a further step 

towards clinical translation of TCR-based therapies. While we could currently produce a 

peptide vaccine-type therapeutic with our antigens, we believe that directly targeting 

mHAs with antigen-specific T cells will avoid several potential roadblocks for therapeutic 

efficacy. Peptide-based vaccines have multiple barrier for successful deployment, 

including needing to modify short peptides to avoid rapid enzymatic digestion, 

dysfunctional T cell responses with poor adjuvant efficacy, and difficulty of epitope 

selection due to imperfect immunogenicity prediction algorithms267,268. Peptide vaccines 

to date have shown to be safe but have limited efficacy thus far in humans; however, one 

recent study analyzing multiple clinical trials showed that peptide-specific T cells persist 

in patients that survive long-term after treatment with peptide vaccines269,270. Recent 

work has suggested some potential improvements for generating more substantial 

immune responses to vaccination also increase clinical response rates, so this is an 

approach we would consider if we are unable to generate satisfactory preclinical results 

with TCR-based therapeutics either in vitro or in vivo271,272. We have chosen to develop 

 
4 This chapter includes unpublished data that are part of a planned future manuscript from the Vincent and 
Armistead labs. I performed experiments, analyzed results, generated figures, and wrote the text included here. 
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TCR-based therapies because of the better results with adoptive cell therapy (ACT) 

compared to peptide vaccines, and some evidence of efficacy specifically with TCR 

ACTs273. We sought to generate T cells targeting our novel mHAs, isolate them, and 

sequence their TCRs. Once the TCR sequences are obtained, we can clone these 

sequences into a lentiviral vector to insert them into donor primary T cells. We can then 

test these cells to assess their cytotoxicity against AML cell lines and primary AML cell 

samples expressing the target antigen. We will also screen T cells for off-target effects 

against other cell types as a preclinical screening for potential safety. Eventually, we 

hope to translate the TCRs that exhibit potent antigen-specific cytotoxic effects to a 

clinical trial. 

(5.2) Methods 

Overall approach and sample selection 
 

We used a healthy donor T cell priming approach to generate mHA-specific T 

cells, adapted from the Wolfl et al method274. We attempted to generate T cells for our 

HLA-A*02:01-binding mHAs and our HLA-C*07:02-binding mHAs, but not HLA-B*35:01-

binding mHAs due to reagent limitations. No HLA monomers are commercially available 

for HLA-B*35:01 at present. 

Non-HLA typed human donor Leukopaks (Gulf Coast Regional Blood Center) 

were used for HLA-A*02:01 due to high population prevalence of this allele in the donor 

population from the blood source. HLA-C*07:02 is less common in the donor population, 

so for this allele, HLA-typed cryopreserved PBMCs were used (Cytologics). From these 

donor sources, we generated monocyte-derived DCs, genotyped samples for our mHAs 

of interest, pulsed them with target mHAs applicable for that donor, then co-cultured 
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them with naïve CD8+ T cells from the same donor. We then used ELISpot and mHA-

specific tetramer staining to confirm the presence of antigen-specific T cells, and we 

used fluorescent-activated cell sorting (FACS) to isolate antigen-specific activated T 

cells for single cell TCR sequencing (Figure 5.1). 

  

Figure 5.1: Overall workflow of T cell priming mHA-specific T cell isolation 
method. 
 

Cell processing and DC generation 

Donor Leukopaks were genotyped for HLA-A*02 via flow cytometry staining with 

purified anti-human HLA-A2 antibody clone BB7.2 (BioLegend). HLA-A*02 positive 

samples were selected and PBMCs isolated by layering over Ficoll-Paque PLUS (VWR) 

then centrifuging at 2200rpm for 20 minutes with low brake. PBMCs were then pulled off 

using transfer pipettes, and cells were washed then remnant red blood cells (RBCs) 

lysed using ACK lysis buffer (Gibco). 1 million PBMCs were set aside for gDNA 

isolations. Then, remaining PBMCs were plated in T75 flasks and incubated on their 

side for 90 minutes in order for monocytes to adhere to the plate. Nonadherent cell 

fraction was then removed and cells vigorously washed, then media replaced for an 

additional 60 minute incubation. Finally, additional nonadherent cells were removed and 
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cryopreserved in Cryostor (Sigma Aldrich). The adherent cells remaining in the flask 

were then cultured to generate monocyte-derived DCs by adding 1000 IU/mL GM-CSF 

and 1000 IU/mL IL-4 and culturing for 4-6 days undisturbed. Two days before co-culture 

initiation, DCs were matured by adding 10ng/mL LPS and 100 IU/mL IFNg and 

incubating for 16 hours. After incubation, DCs were phenotyped for confirmation and 

peptide pulsed  (Peptide 2.0 Inc) with mHAs, negative control mHAs that are 

endogenous to the donor and should not generate an immune response, or positive 

control melanA or a known immunodominant Influenza A Virus M158-66 HLA-A*02:01-

binding influenza peptide (referred to hereafter as “flu”)275.  

mHA SNP typing 

DNA was extracted from reserved PBMCs from donors using the Qiagen DNeasy 

Blood and Tissue Kit (Qiagen, 69504) and purified using the Monarch DNA Cleanup Kit 

(NEB, T1030S). SNP typing was performed as described in Chapter 4. Up to four 

peptides that the donor has zero alleles encoding were selected for pooling for DC 

pulsing and co-culture, and one mHA endogenous to the donor was selected as the 

negative control peptide. 

CD8+ T cell isolation 

Cryopreserved nonadherent cell fractions were thawed and cells washed. Naïve 

CD8+ T cells were then isolated using the EasySep Isolation Kit (StemCell 

Technologies). Briefly, cells were incubated with Isolation Cocktail of antibodies, then 

with RapidSpheres. Cells were then placed in flow tubes on an EasySep magnet for cell 

separation. Once separated, the enriched naïve CD8+ T cell fraction was pipetted off, 

counted, and placed in flasks with 5ng/mL IL7.  
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DC-T cell co-culture 

Peptide pulsed DCs were harvested and resuspended at 0.5x10e6 cells/mL in 

media. Naïve CD8+ T cells were harvested and resuspended at 2x10e6 cells/mL in 

media with 60 ng/mL IL21. Co-cultures were then established by combining 100uL 

peptide pulsed DCs and 100uL CD8+ T cells per well of a 96 well plate. Cells were then 

fed every 2-3 days until day 9 after co-culture establishment. 

ELISpot 

IFNg ELISpots were performed to test T cell activation and IFNg secretion on 

days 9-11 after establishment of co-culture. Each well was tested against negative 

control peptide as well as against pooled peptides of interest, and flu or melanA positive 

wells are also tested against their cognate peptide. First, plates were coated by 

prewashing with 35% ethanol, then incubating with anti-human IFNg mHA 1-D1K 

overnight at 4C. T2 target cells were then pulsed with each necessary peptide, and 

peptide-pulsed T2s plated in the ELISpot plate after antibody incubation. Small fractions 

of each co-culture well were then added to the ELISpot plate and the plate is incubated 

overnight. Anti-human IFNg mHA 7-B6-1 Biotin secondary antibody was then added and 

incubated for 2 hours, followed by Vectastain Elite ABC Kit (Novus Biologicals) and then 

AEC solution (BD Biosciences) for developing. Plates were washed, dried, and read on 

an ELISpot plate reader. Wells with ELISpot positives and control peptide negative 

corresponding wells were then taken on to tetramer staining for T cell isolation. 

Monomer peptide exchange and tetramer generation 

Peptides loaded on their corresponding HLA monomers were generated using 

Flex-T HLA monomers (BioLegend, 280003/280004), which come preloaded with UV-



 121 

labile placeholder peptides. Monomer and peptide were mixed and incubated on ice 

directly under 366 nm UV light for 30 minutes. Peptide exchange was then evaluated 

using HLA ELISA. Briefly, plates are coated with purified streptavidin and incubated 

overnight, then blocked with dilution buffer. HLA control standards were prepared with 

dilution buffer, and controls and samples were plated and incubated for 1 hour. Plates 

were washed, then HRP-conjugated antibody was added and incubated for 1 hour. 

Plates were washed, then Substrate Solution with ABTS (240uL ABTS stock in 12 mL of 

substrate buffer containing 0.1M citric acid and 0.1M trisodium citrate dihydrate) was 

added to develop the plates, followed by Stop Solution to halt the reaction when 

appropriate color is reached and plates were read at 414nm. If peptide exchange was 

successful, monomers were then tetramerized. 2uL fluorophore-conjugated streptavidin 

was combined with 18uL peptide-exchanged monomer and incubated for 30 mins in the 

dark, then 1.6uL blocking solution (1.6uL 50mM D-Biotin + 6uL 10% sodium azide + 

192.4uL PBS) was added and tetramer solution was incubated overnight.  

Tetramer staining and cell sorting 

A small sample of ELISpot positive wells ware first stained and assessed via flow 

cytometry for tetramer positivity. If positive, we proceeded to tetramer staining and 

FACS sorting of positive cells. Briefly, 50nM Dasatinib was added to tetramer positive 

wells and incubated for 30 minutes. Cells were then washed and stained with FVS700 

live-dead (BD Biosciences), followed by staining with tetramer and CD8-BV421 

(BioLegend, Clone: SK1), and resuspended in FACS buffer and filtered. Cells that were 

doubly positive for CD8+ and mHA-specific tetramer were sorted on a FACS Aria and 
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given to UNC Immune Monitoring and Genomics Facility for single cell TCR sequencing 

library preparation. Gating schema is shown (Figure 5.2). 

 
Figure 5.2: Gating strategy for mHA immunogenicity assessment. Gating was 
performed on single cells, lymphocytes, and live cells. (A) shows negative control cells 
stained with tetramer exposed to UV light with no peptide. (B) shows positive control 
cells from CD8+ T cells co-culture with flu-M158-66 pulsed DCs, stained with fluM158-66 
tetramer.  
 
Sequencing and data processing 

A library was prepared for 10x single cell TCR sequencing from a minimum of 

10,000 sorted CD8+ tetramer positive cells using the SMARTer Human TCR a/b 

Profiling Kit (Takara). If the number of tetramer positive cells sorted was less than 

10,000, the sorted cell population was supplemented with T2 cells. These APCs do not 

present TCR, so they add cell bulk to the sorted fraction to increase manual ease of 

library preparation without adding additional TCRs to the sequencing pool276. VDJ 

TCRa/b 10x single cell sequencing was then performed on a NovaSeq instrument, with 

demultiplexing done via Illumina BCL Convert version 3.8.2-12. Sequencing quality 
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control was performed using FastQC277. Final TCRa/b sequences were determined 

using either MiXcR or using the 10x Genomics Cloud Server278. 

(5.3) Results 

To date, we have identified and isolated a T cell clone specific for one of our 

novel mHAs, UNC-HEXDC-V, via tetramer staining of CD8+ T cells co-cultured with 

mHA-pulsed DCs. We sorted this tetramer positive clone, prepared a sequencing 

library, and performed 10x single cell TCRa/b sequencing. We found one clear 

predominant clone with high quality sequencing data, and we are currently engaged in 

cloning this TCR into a lentiviral vector in order to transduce large numbers of T cells 

and test efficacy of this clone via proliferation, killing, and cytokine release assays. Flow 

cytometry analysis of negative control, positive flu control, and our identified UNC-

HEXDC-V specific T cell population is shown (Figure 5.3). 
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Figure 5.3: mHA targeting co-culture flow cytometry. (A) “UV only” shows negative 
control stained with tetramer exposed to UV light with no peptide. (B) “Flu-M158-66” 
shows CD8+ T cells co-cultured with M158-66 pulsed DCs, stained with M158-66 tetramer. 
(C) “UNC-HEXDC-V” shows CD8+ T cells co-cultured with novel mHA UNC-HEXDC-V 
stained with UNC-HEXDC-V tetramer. 

(5.4) Discussion 

By identifying and isolating a TCR clone specific for one of our novel shared GvL 

mHAs, we confirmed immunogenicity of this peptide and generated a TCR product for 

potential future clinical use. We actively continue to seek T cells targeting additional 

antigens from our work. This process is laborious and lengthy particularly due to the low 

precursor frequency of antigen-specific T cells within the naïve CD8+ T cell fraction from 

a healthy donor. The frequency of T cells specific for a given antigen is estimated to be 

1 in 1 million279–281. We obtain roughly 300-700 million PBMCs per Leukopak on 
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average, which gives a yield of between 1-10 million naïve CD8+ T cells. Therefore, we 

can expect that an average round of co-culture experiments would be done with a 

sample that contains somewhere between one and ten T cells of interest per mHA used 

for peptide pulsing. There are many places in the experimental protocol that these cells 

can be lost, including use within a control well, for cell counting, for the ELISpot assays 

instead of FACS, or in routine cell culture procedures over the course of several weeks. 

While we are investigating more high-throughput approaches for GvL mHA-specific T 

cell isolation as discussed in the next chapter, we continue to strive to identify additional 

TCRs via this method. Our long-term goal is to translate these TCRs to clinic by 

engineering donor T cells to express TCRs specific for GvL mHAs expressed by the 

recipient leukemia in parallel with the regular alloHCT process then infusing them into 

the patient to augment GvL effects (Figure 5.4).  
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CHAPTER 6: Discussion and Future Directions 

(6.1) Summary 

mHAs in the context of alloHCT for hematologic malignancies can serve as 

beneficial targets of anti-tumor T cell responses. Targeting GvL mHAs can address the 

critical “transplanter’s dilemma”: the link between increases in transplant efficacy with 

increases in harmful GvHD78,108,282–291. Discovery of new mHAs is essential for future 

clinical applications because only 12 GvL mHAs were known by the field prior to this 

work, and most of these were applicable to only a few patients. The work we present 

here represents a major step forward in the major histocompatibility antigen field, 

establishing targeting of shared mHAs as a viable approach for the majority of 

transplant recipients and identifying 26 novel mHAs. We discovered that shared GvL 

mHAs are much more prevalent than previously believed, with a small number of GvL 

mHAs covering 20-30% of DRPs with a given HLA allele.  

Prior to the work described here, the mean population prevalence of known 

mHAs in the largest relevant dataset, DISCOVeRY-BMT, was 1.84%. This indicates 

why mHAs have traditionally been viewed as targets for personalized immunotherapy 

and why mHA-targeting clinical trials have had fairly low recruitment. Therapies 

targeting mHAs that are very rarely discordant in a DRP are applicable to very few 

people, so the efficacy of mHA-targeting therapies has been limited thus far. We believe 

that targeting shared GvL mHAs will vastly expand the utility of targeting these antigens. 

The mean population prevalence of our newly discovered mHAs was 25.10%, meaning 
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that many times more patients could be treated with any therapeutic agent targeting 

these. If we were to develop therapeutic agents that targeted each of our novel mHAs, 

we could treat 99% of HLA-A*02:01 DRPs, 61% of HLA-B*35:01 DRPs, and 79% of 

HLA-C*07:02 DRPs, representing a massive improvement in the fraction of patients that 

mHA-targeting therapeutics are available for. This also expands the future availability of 

mHA-targeting therapies to ethnic groups beyond Caucasians. In this final chapter, we 

discuss technical advances that could benefit this work in the future, the relevance of 

our work to foundational transplant immunobiology, and future clinical applications. 

(6.2) Future methodological advances 

While we have discovered one GvL mHA-targeting TCR clone against our new 

targets thus far, we will need to identify more mHA-targeting clones to translate these 

targets to clinic with the method that we view as most promising: adoptive cell transfer 

of donor T cells with GvL mHA-targeting TCRs transgenically inserted. To accomplish 

this, we have multiple options for TCR identification, including continuing with co-culture 

experiments, utilizing the new Barcode Enabled Antigen Mapping (BEAM) technology 

from 10X Genomics, or utilizing the ATRAP method from the Hadrup and Nielsen 

labs292. The BEAM-T method enables single cell immune profiling of antigen-specific T 

cells by utilizing multiplexed antigen screening with barcoded and fluorescently labeled 

peptide-MHC monomers followed by flow sorting of antigen-specific cells. The ATRAP 

method is mostly similar, but requires in-house barcoding of peptide-MHC monomers 

using dextran molecules complexed with streptavidin and fluorescent molecules to 

create barcoded peptide-MHC fluorescent dextramers292. The main benefit of BEAM-T 

over ATRAP is that the peptide-MHC molecules are pre-barcoded for ease of staining 
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and T cell isolation. While barcoding dextramers in-house is more laborious and 

introduces an additional failure mode to the experiment, it also allows for testing as 

many antigens as desired rather than being limited to the 15 antigens plus positive 

control that the BEAM-T kit allows. In addition, the ATRAP method is built to enable 

screening of multiple samples simultaneously using Hashing antibodies so the 

experiment can be multiplexed on two different dimensions. We will continue with TCR 

discovery via co-culture while also exploring these options for making our discovery 

pathway more high-throughput. At present, BEAM-T is available for HLA-A*02:01 but 

not HLA-B*35:01 and HLA-C*07:02, so we plan to utilize BEAM-T to identify HLA-

A*02:01-binding antigen-specific T cell clones, then move into utilizing the ATRAP 

method for the other two alleles of interest. 

In addition to these two methods screening for T cell clones specific for known 

target antigens, additional high throughput methods could be used for more rapid 

testing of predicted antigens in the future. One such method is T-Scan, a novel library 

screen method using a fluorescent reporter of granzyme B activity to isolate activated T 

cells, followed by TCR sequencing293. Target cells are engineered to express a 

genome-wide library of candidate antigens that are then processed and presented 

endogenously on MHC. After co-culture with T cells, target cells undergoing binding of 

peptide/MHC by TCR are identified via a fluorescent reporter that is activated by 

granzyme B binding, enabling them to be FACS sorted and antigens identified via next 

generation sequencing of library barcodes293. Another new method we could utilize is 

RAPTR. This method expands upon the limitation of methods by not only identifying 

antigens that lead to T cell activation, but giving paired information on TCR sequence 
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and antigen294. In this system, 293T cells are transduced with a library of pMHC 

constructs and a fluorescently labeled barcode. They are cultured with a T cell 

population, and upon antigen recognition the viral-packaged barcode and fluorescent 

label from the APC enters the T cell via the TCR, after which cells can then be sorted 

and single cell sequenced to obtain a pMHC-TCR pair294. While this method would 

require incorporating several new techniques into our current workflow, if it performs as 

reported it would be an extremely efficient method to identify paired antigens and their 

cognate TCRs. 

Finally, in addition to improved TCR identification efficiency and improved library 

screens for mHAs that generate immune responses, advances in mass spectrometry 

are also a potential improvement point. A recent major advance in shotgun 

immunopeptidomics was reported by Ehx et al in 2021. This work described a novel 

way to build MS databases for shotgun searches by RNAseq of the tumor sample, 

computational division of RNAseq reads into fixed length k-mers, and subtraction of k-

mers that are also found in RNAseq of a healthy control to generate a database of 

cancer-specific k-mers to screen by mass spectrometry295,296. They can then identify the 

k-mers that are overrepresented in tumor versus normal and assemble these k-mers 

into contigs, followed by all-frame translation to identify expected peptides for the MS 

search. This allows for a streamlined pre-filtering for peptide candidates most likely to 

appear in MS searches, leading to more usable information and positive peptide 

identifications from each MS run295. They successfully used this approach to identify 

dozens of tumor specific and associated antigens from AML samples as proof of 

concept295. On the targeted MS side, the technique of scans with heavy-labeled 
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standards is the current optimal strategy for targeted immunopeptidomics, but future 

innovations in the field can be incorporated into antigen validation as they become 

available.  

Ultimately, incorporating higher throughput antigen discovery and validation 

methods into our experimental workflow could increase the speed of future TCR 

discoveries. We will evaluate the strengths and weaknesses of these techniques in our 

hands to determine which of these technical advances will be most beneficial to propel 

us towards our eventual goal of translating these antigens to clinic. 

(6.3) Relevance to foundational transplant immunology 

The ability to identify mHA-specific T cell responses will enhance our 

understanding of foundational transplant immunobiology. Previous investigations in 

mice and with human cells in vitro have indicated that immune recognition and response 

is focused on a small set of immunodominant antigens297–300. The current low number of 

known mHA-targeting TCR sequences means that it is difficult to investigate the 

differences between immunodominant and non-dominant mHAs. Identification of 

additional mHA-targeting T cells in patient samples in future work will allow for 

assessment of what sets mHAs that drive measurable T cell responses apart from those 

that do not. T cells targeting our validated GvL mHAs can be utilized to investigate 

immunodominance in the context of graft versus leukemia effects. This analysis could 

be extended to immunodominance in GvHD by experimentally validating GvH mHAs 

predicted in this work and identifying their cognate T cells. Understanding of antigens 

that drive these two major effects of alloHCT would help us to better understand the 

factors influencing transplant outcomes. They would also allow us to develop better 
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therapeutics, as future targeting could be focused on antigens that have displayed 

immunodominance, or designed to avoid antigens that are the dominant drivers of 

GvHD. Knowledge of antigen-specific T cell clones could also be used to track these 

cells within patients as a predictive factor for prognosis and as a piece of data to guide 

implementation of GvHD prophylaxis or treatments, or additional GvL therapeutics if 

antileukemic effects are insufficient. Previous work has found an association between 

viral and tumor-associated antigen-specific immune responses and GvHD, and the 

authors theorized that this could be utilized for characterizing GvHD risk. We could 

pursue this same avenue of risk assessment with greater resolution using GvH 

mHAs301. While characterizations of immunodominance are difficult with a limited 

number of antigens, they will become easier as the lab extends this work to discover 

additional T cell clones mapped to mHA. For a more complete picture of the 

immunodominance hierarchy in a system with less complicating factors, these mHA 

discovery efforts could be repeated in one or more syngeneic mouse models. This 

would represent a system in which the full immunogenicity determining landscape could 

be assessed. These discovered mHAs can also be utilized in future experiments in our 

lab for the assessment of mechanisms of resistance to T cell killing of leukemia. 

Knowledge of a large number of antigenic peptides and their cognate TCR sequences 

enables experiments in which dynamics of mixed antigen-specific T cell populations can 

be intensively probed upon exposure to pools of antigens. Complete characterization of 

antigen-specific T cells that mediate versus do not mediate killing of cancer cells will 

represent a foundational science advance in the field and guide future antigen selection 

for immunotherapies.  
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The antigens and concepts uncovered by this work can also be applied to other 

transplant methodologies in the future, including haploidentical transplants. The different 

immunobiology of haplo transplants and the immunosuppression that is necessitated by 

HLA mismatch leads to a unique immune landscape in these transplants, requiring 

special considerations for adoptive cell therapies post-haplo transplant302,303. T cells 

must be depleted to avoid alloreactivity to mismatched HLA and the TCR repertoire 

replenished via naïve T cells passing through the recipient thymus over several 

years302. In addition to the changed T cell landscape in haploidentical transplants, the 

mHA landscape also differs due to the shared and unshared HLA alleles in the DRP. 

mHA identification can be completed as usual for the HLA alleles shared by donor and 

recipient, with the mHA needing to be foreign to the donor in order for targeting by 

donor-derived T cells. However, for the HLA alleles that the recipient has and donor 

does not, there does not need to be any consideration of donor mHA alleles. This is 

because the donor cells do not express the HLA allele corresponding to the mHAs so 

these mHAs will not be presented on donor cells, eliminating the possibility of fratricide 

of donor cells. Overall, haploidentical transplants may have more potential targetable 

mHAs, though differing T cell dynamics may make targeting more complicated. Future 

work should utilize a large sequencing dataset of haploidentical DRPs to extend this 

work, assessing applicability of our validated GvL mHAs to this population and 

assessing whether mHA population frequencies are similar for haploidentical DRPs.  

(6.4) Potential pitfalls 

Though we feel optimistic about future applications of our identified shared GvL 

mHAs, there are several potential limitations to mHA-targeting immunotherapies that we 
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must keep in mind as this work progresses. Firstly, we must learn from history and 

rigorously test for potential off-target effects (used here to mean targeting of tissues 

other than the intended leukemia target) of our mHA-targeting T cells in order to avoid 

serious GvHD effects. A previous attempt at treating relapsed leukemia after alloHCT at 

the Fred Hutchinson Cancer Research Center with mHA-targeting CD8 T cell clones 

that were believed to be tissue-restricted gave pulmonary toxicity in 4 of 7 patients 

requiring intubation in one73. This represented a serious cautionary tale for the field and 

emphasizes the need to screen T cells against a broader panel of normal tissues, as 

this group defined “hematopoietic specific” mHAs exclusively based upon recognition of 

recipient hematopoietic cells and not recipient dermal fibroblasts73. This screening was 

insufficient to thoroughly examine the potential for off-target effects. Prior to applying 

our mHA-targeting T cells to clinic, we will screen them against cells derived from a 

wide variety of tissue types for reactivity. In addition, we have a potentially greater ability 

to avoid off-target effects due to our knowledge of specific mHAs and their tissue 

restriction patterns. In approaches such as that of the Fred Hutchinson group and 

others, the exact target of the T cells used is unknown, and is inferred to be tissue-

specific mHAs based on reactivity to recipient and not donor-derived EBV-LCL 

transformed cells. Information on target cells is exclusively derived from reactivity 

testing against whatever cells the investigator chooses to test against, whereas in our 

approach, because the target mHA is known we have the advantage of being able to 

vigorously assess source gene tissue expression and other factors. If concerns about 

off-target effects are high, a safety switch could be incorporated into the T cell construct 

for rapid irreversible inactivation of the T cell population304.  
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In addition to worries of off-target effects, another potential pitfall of our approach 

is imperfection of immunogenicity predictions as mentioned previously. We as a field 

have knowledge of some predictors of immunogenicity and can utilize tools such as 

netMHCpan to eliminate peptides that are unlikely to generate an immune response. 

However, the sum of the known factors that influence immunogenicity cannot fully 

predict epitopes that generate T cell responses robust enough to drive clinical effects. 

Experimental data that confirms that the peptides of interest are presented on MHC, 

such as our validation data of mHA presentation on AML cell lines, brings the probability 

of these mHAs generating an immune response higher than if they were only predicted 

epitopes, but it is likely that not all of our validated mHAs will generate a measurable T 

cell response in vivo. However, due to our focus on shared mHAs, any of our validated 

mHAs that are targetable will be applicable to a large number of DRPs. Moreover, now 

that we have established and confirmed the functionality of this mHA prediction and 

validation workflow, we can incorporate new and improved immunogenicity prediction 

tools as they are developed in the future by our group and others. An additional benefit 

to the reverse immunology approach to mHA identification is its flexibility. We can fine-

tune our prediction pathways for the mHA qualities we deem potentially beneficial, in 

contrast to forward immunology approaches in which you cannot pre-specify the 

qualities of the mHAs you seek to discover.  

A third potential limitation of TCR-engineered T cell therapy targeting mHAs is 

immune and cancer cell factors that limit the functionality of cellular immunotherapies in 

general. Immune evasion by the cancer could interfere with function of mHA-targeting T 

cells via a variety of mechanisms. For example, the leukemia could downregulate 



 135 

expression of the source gene of the targeted mHA. This possibility is why we feel that 

future applications of this project should include targeting of multiple mHAs 

simultaneously, as the possibility of immune evasion of one T cell antigen specificity is 

high. Loss of heterozygosity at the MHC locus is another concern as this is frequent in 

some cancers, leads to loss of presentation of antigens on either the maternal or 

paternal HLA haplotype, and has been observed (at least in the case of HLA class II 

loss of heterozygosity) to be associated with leukemia relapse after allogeneic stem cell 

transplantation305–308. This would lead to loss of mHA presentation on half of the 

recipient’s HLA class I alleles, which could strongly limit the applicability of mHA-

targeting therapies. Because of this, we believe that it is important to not only target 

multiple mHAs in a single patient, but also target mHAs that bind different HLA alleles. If 

mHAs that bind different alleles are targeted, the possibility of antigen presentation 

being lost with loss of heterozygosity of HLA is reduced. However, antigen presentation 

on HLA class I as a whole can also occur via downregulation of beta 2 microglobulin, 

leading to complete loss of antigen presentation on HLA class I305. In this case, HLA 

class II presentation would still be functional, so class II-binding mHAs would still be 

theoretically targetable. We have also generated class II-binding mHA predictions and 

seek to validate these predicted mHAs in the future to potentially integrate into our 

immunotherapy strategy. A further limiter of target availability is the decrease in antigen 

presentation as leukemia killing occurs309. In mouse experiments in a model where GvL 

is exclusively driven by T cells recognizing the mHA H60, various strategies helped to 

combat this loss of efficacy, including H60 vaccination, administration of anti-CD40 at 

the time of transplant, and PD1 blockade309. These strategies could be incorporated into 
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the clinical plan if we are concerned about loss of efficacy as leukemia cells are 

eliminated. T cell exhaustion could also limit treatment efficacy but could also be 

abrogated by interventions at multiple stages of generation of the T cell product, 

including modulating T cell phenotype via cytokine administration, metabolic or 

epigenetic programming, or genetic engineering, or by administering immunotherapies 

such as PD1 blockade to the patient after T cell administration310,311. If initial 

applications of our mHA-targeting T cells show safety but not efficacy, these 

mechanisms for augmenting T cell function can be explored.  

(6.5) Translational applications 

Once more TCRs are identified and screened rigorously for both on-target and 

off-target effects, we will pursue a clinical trial utilizing T cells with transgenically 

inserted mHA-specific TCRs to enhance GvL effects of transplant. We would also like to 

continue discovering additional GvL mHAs for even more HLA alleles to keep 

expanding this field beyond the traditional one or two HLA alleles in which mHA 

discovery is usually performed. In order to discover which antigens would be most 

beneficial to target, we must discover the determinants of immunodominance in the GvL 

mHA landscape. We expect that some mHAs are more likely to generate a robust 

immune response than others, but do not know for sure and thus far do not know why. 

Future work in our lab including intensive profiling of mHA-specific T cells will enable 

determination of factors that lead to more or less robust immune responses. We can 

then further tailor our mHA discovery methods to incorporate the features that lead to 

robust responses, so future mHAs we discover will be even more likely to be 

therapeutically applicable.  
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The mHAs we describe in this work and in future efforts can also be useful for 

clinical efforts outside of targeting them. If we are able to identify immunodominant 

mHAs and/or mHAs that correlate with clinical outcomes, it would be logical to utilize 

these mHAs to guide donor selection for transplant. If presence of a specific mHA in a 

DRP correlates with worse outcomes, such as the mHAs identified by Vincent lab 

member Othmane Jadi that correlate with increased GvHD death, decreased leukemia-

free survival, and increased disease-related mortality, recipients and potential donors 

could be genotyped prior to donor selection to ensure that these mHAs are not 

present213. Conversely, if we identify immunodominant GvL mHAs or ones that correlate 

with better clinical outcomes, donors could be selected for appropriate mismatches with 

the recipient at this mHA. Monitoring populations of mHA-specific T cells for these 

mHAs that drive desirable or undesirable clinical effects could also represent a way to 

monitor efficacy of transplant. This could perhaps give early indicators of whether 

transplant will be successful at eradicating cancer, or whether a patient will need 

intensified GvHD prophylaxis or treatment. Taken together, our novel mHAs could be 

used in two major ways for benefit of patients: as targets for novel immunotherapies, or 

as prognostic indicators to guide donor selection and give insights into progress of 

treatment. 

Our ultimate dream in the mHA space would be to expand this work beyond 

using it to augment alloHCT and actually be able to replace alloHCT entirely with 

infusion of mHA-specific T cells. While this is not technologically possible due to the low 

number of discovered antigens, even lower number of known TCRs corresponding to 

them, and requirement for tumor-specific mHA for this strategy to work, we foresee this 
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eventually becoming possible as mHA discovery and targeting progresses over the next 

decade. Work in the immunodominance space will also need to progress such that we 

can know how many antigens must be targeted so that the cancer can no longer evade 

elimination by the immune system. If we know this number and have enough mHAs 

discovered to target that many to make immune evasion impossible, every patient could 

receive a bespoke combination of T cells with TCRs specific for their cancer and 

eliminate their cancer by the action of these T cells alone. This could eliminate the need 

for transplant and accompanying factors such as conditioning chemotherapy that 

generate side effects and decrease patient quality of life. While this is our holy grail of 

mHA targeting work, we will be very happy with any translational applications of our 

mHAs, including the clinical trials we hope to launch in the next few years. Ultimately, 

our work will enable novel therapeutics to be developed for AML and other hematologic 

malignancies, and hopefully improve survival and outcomes for these patients. 
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APPENDIX 1: Landscape and Selection of Vaccine Epitopes in SARS-CoV-2 

Please refer to https://doi.org/10.1186/s13073-021-00910-1 for full text. 
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APPENDIX 2: SARS-CoV-2 Peptide Vaccine Elicits T-cell Responses in Mice but 
Does Not Protect against Infection or Disease 

Please refer to https://doi.org/10.1101/2022.02.22.481499 for full text. 
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APPENDIX 3: LENS: Landscape of Effective Neoantigens Software 

Please refer to https://doi.org/10.1101/2022.04.01.486738 for full text.  
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APPENDIX 4: NeoSplice: a Bioinformatics Method for Prediction of Splice Variant 
Neoantigens 

Please refer to https://doi.org/10.1093/bioadv/vbac032 for full text. 
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APPENDIX 5: Associations of Minor Histocompatibility Antigens with Clinical 
Outcomes Following Allogeneic Hematopoietic Cell Transplantation 

Please refer to https://doi.org/10.1101/2022.08.31.506092 for full text. 
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