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ABSTRACT 
 

Jack D. Sundberg: A new framework for material informatics and its 
application toward electride-halide material systems 

(Under the direction of Scott C. Warren) 
 
 Despite many years of material exploration, the vast majority of unique crystalline materials remain 

undiscovered, and these undiscovered materials may offer stronger steels, better catalysts, improved 

transistors, and many other solutions to urgent societal problems. We therefore need a fast and efficient 

way of identifying new materials so that society can harness their benefits. To aid in accelerated materials 

discovery, this dissertation describes a computational framework designed for high-throughput calculations 

and analyses: the Simulated Materials Ecosystem (Simmate). This software allows users to explore various 

crystal databases, predict new materials, quickly calculate properties, and share results across analyses. 

We illustrate Simmate’s functionality through the exploration of an exotic class of materials known as 

electrides, which have gained considerable attention in recent literature thanks to their applications as 

superconductors, co-catalysts, and solid-state dopants. This diverse set of applications derives from an 

electride’s defining property: bare electrons that exist at isolated lattice sites. “Electride electrons” effectively 

serve as anions, which led us to propose the direct substitution of electrides with other -1 species, namely, 

halides (F-, Cl-, Br-, I-). Herein, we use Simmate to explore electride-halide systems, understand transitions 

between such materials, and predict new systems with enhanced material properties. This work ultimately 

led to the identification of novel ionic conductors, metastable electrides, and new search algorithms for 

discovering more of the same. Our framework and high-throughput search strategies are highly 

generalizable and will accelerate the exploration of many different materials beyond our illustrative 

examples with electride-halide material systems. 
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CHAPTER 1: INTRODUCTION 

1.1 Motivation 

Throughout history, new materials have spurred the realization of improved technologies and led 

to massive societal changes. Our future will be no exception. Yet-undiscovered materials will be essential 

to address urgent social problems such as climate change and sustainable energy use.1 Whether we 

target materials to create new technologies, to improve upon existing architectures, or to advance 

chemical understanding, our exploration of materials must be as fast and efficient as possible. 

However, materials discovery remains a slow and expensive process. The vast majority of 

materials (likely >99.9%) remain unexplored, and the time required for researchers to fully understand a 

single material can span years or decades.2,3 It can take even longer to identify ideal, high-performance 

materials for a technology and optimize such systems.4 This is because materials discovery is greatly 

complicated by multidimensional parameter space – both in the number of possible compositions and the 

complexity of phase competition.2,5 

Detailed exploration of all possible materials is not practical, so materials discovery must be 

guided by chemical intuition and computational predictions. Researchers should utilize all data available 

to make informed choices on which materials are most promising. Historically, however, data-driven 

decisions were not possible due the small amount of preexisting data. Now, because of advancements in 

hardware and software, materials discovery has begun shifting into the big data era.6,7,8,9 Several large-

scale initiatives push for the generation of materials data, and these have led to massive databases with 

>1,000,000 crystalline materials and their properties.10,11,12,13,14,15,16,17 Now more than ever, researchers 

can rely on data-informed decisions in their everyday research. 

Moreover, materials science data is not limited to well-developed fields or experimentally known 

materials. In fact, high-quality data can be quickly generated for systems that have yet to be synthesized. 
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This provides an important approach to accelerate the arrival of new materials, technologies, and 

understanding. 

Alternative battery systems are an ideal example of this. Decades of research have led to lithium-

ion batteries (LIBs) becoming transformative to our everyday lives, but there is nevertheless an urgency 

to identify alternative setups to meet growing energy demands or resource limits.18,19.20 This includes 

other cation-shuttle batteries (Na+, Mg2+, etc.) or, more recently, anion-shuttle batteries (F- or Cl-).21,22 For 

the latter, the first reversible fluoride-ion battery (FIB) was reported only in 2011, and although they have 

the potential to outperform LIBs, FIB technology has not yet matured.23,24 There is still much to 

understand before FIBs reach commercial use – such as fluoride transport, chemical stabilities, or even 

just ideal material systems. Although little data exists for FIBs, computational methods enable us to make 

informed decisions while optimizing the technology. Computation allows us to explore novel chemical 

compositions, predict thermodynamic/kinetic stabilities, and screen material properties before any 

experimental work is done – and at a significantly faster rate than is possible with synthesis. 

Together, the necessities of data-informed science and of developing new technologies serve as 

the motivations of this dissertation. This work seeks to accelerate broad materials exploration and 

understanding, so many of the methods introduced are generalizable beyond FIBs. To demonstrate the 

concepts and methods, I explore novel halide systems and their closely related counterparts, where I 

show how property predictions are effective in exotic systems with limited experimental data. Through the 

generation of new data and the mining of existing information, I illustrate how materials discovery 

leverages informatics and data science to accelerate the realization of new technologies and 

understanding. 

In this chapter, I introduce the four key subjects of this dissertation: material informatics, electride-

halide material systems, transport in FIBs, and evolutionary structure prediction. Further, I briefly discuss 

the broader perspective/process of materials discovery that motivates the mixture of method development 

and applied science within this dissertation. Thus, this chapter provides the context and components that 

propel the work in the following chapters. 
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1.2 Material Informatics 

When imagining the intersection of data science and materials chemistry, one typically thinks of 

machine learning, artificial intelligence, or deep learning. However, to realize these applications, there 

must first be large amounts of clean, accessible materials data.25 Material informatics serves as the 

connection between materials science and the many exciting ways data can be applied. Specifically, 

material informatics describes the creation (or collection), organization, and distribution of materials 

science data. 

Materials science data can be anything from experimental spectra to ab initio calculations, and 

the diversity of information has led to many separate collection and standardization efforts. Some 

initiatives focus on specialized cases such as XPS spectra, while other projects are dedicated to fully 

theoretical calculations of prototype structures.26,27,28,29 However, the introduction of many smaller, 

specific standardizations introduces a major problem: it becomes challenging to navigate multiple 

datasets because one must learn and adjust to each format first. 

Therefore, the largest and most successful initiatives seek to capture broad data types under 

more encompassing definitions.10,30 This lowers the barrier for entry to others and facilitates the 

incorporation of larger datasets.31 Inclusion ultimately leads to databases that include both experimental 

and computational data, as well as data from many different sources (different ab initio software or 

diverse characterization techniques). Data organization therefore needs to account for many diverse 

scenarios and constantly evolve to account for new and unexpected cases. 

Scrutinizing data organization might seem overdone in some scenarios, but it ultimately enables 

more effective collection and distribution of data. For example, by generalizing the ab initio results of a 

type of calculation (e.g., relaxations, dynamics, electronic structure, etc. ), one can leverage results from 

different codes (e.g., VASP, Quantum Espresso, ABINIT, etc.) into a single database.15,30 Furthermore, a 

unified database simplifies the distribution of data through application or website interfaces. When data 

collection, organization, and distribution are handled within a single codebase, one can quickly build out 

complex features and analyses that would otherwise not be possible.32 

To this end, this dissertation introduces a new framework for material informatics. With materials 

discovery as our primary objective, we build out a suite of functions that handle common calculations, 
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data storage, and user interfaces, where each component prioritizes the ability to scale for millions of data 

entries. We illustrate the utility of material informatics in the context of several example material systems 

as well as in the development of new highly parallel algorithms. 

1.3 Electride-Halide Material Systems 

Electrides have gained considerable attention in recent literature thanks to their applications as 

superconductors, cocatalysts, and solid-state dopants. To this end, a single electride material (Ca2N) has 

demonstrated conductivities competitive with silver33, catalytic activity for ammonia production at low 

temperature34, and sufficient electron doping to induce a phase change in MoTe2.35 These applications 

derive from an electride’s defining property: bare electrons that exist at isolated lattice sites. These lone 

electrons are often referred to as anionic electrons, making a compound such as Ca2N more accurately 

represented with the formula [Ca2N]+·e- (where the oxidation states of Ca and N are 2+ and 3-, respectively). 

This atypical motif is more easily understood by comparing an electride to its halogenated analog. 

For example, [Ca2N]+·e- possesses the chloride analog Ca2NCl. In this electride-halide analog pair (EHAP), 

the structures can be viewed as substitution derivatives of e- for Cl- and vice versa. Here, the EHAP is that 

of a chloride analog, whereas the full electride-halide material system (EHMS) is composed of all halide 

analogs for a given electride (e.g., Ca2N with Ca2NX; X = F, Cl, Br, I) (Figure 1-1). Previously in literature, 

an EHAP has strictly been used to aid in describing an electride; however, in this dissertation, the idea of 

an EHMS is introduced and developed towards (i) synthesizing novel electrides and (ii) producing halide-

ion batteries. 

Electrides have been exclusively made via high-temperature bulk synthesis and within systems 

where the target electride is the thermodynamically favored phase.36,37 Even in these cases, the majority of 

electrides represent extremely challenging syntheses due to competing phases.38 Inspection of the EHMS 

suggests an alternative synthetic approach: low-temperature dehalogenation of the halide analog of an 

electride. If the halide is mobile, one could drive the halide out of the material and form the electride analog 

as a result. Whether this is done via electrochemical or alkali-vapor etching, the low-temperature synthesis 

avoids decomposition to competing phases thanks to kinetic trapping. 

The low-temperature shuttling of halides within EHMS could therefore lead to the synthesis of 

previously inaccessible electrides. This approach is especially appealing for metastable electrides where 
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high-temperature bulk synthesis would result in the decomposition of the desired product and a different 

phase altogether. One of the objectives of this dissertation is therefore to propose a series of candidate 

halide materials for low-temperature deintercalation. 

 

Figure 1-1. An example electride-halide material system. [Ca2N]+·e- (left) with an arbitrary halide 

analog Ca2NX (right). The pair represents an EHAP, as they are isostructural – only differing by 

substitution of e- for X-. All anion derivatives (e-, F-, Cl-, Br-, I-) together make up the EHMS. 

1.4 Fluoride-Ion Batteries and EAX 

Halide batteries are a new and underdeveloped technology relative to cation-shuttle batteries (e.g., 

LIBs).21,22,24 However, they have mostly relied on the same fundamental electrochemical principles. Lithium 

(Li+) has received the most attention because it is the smallest cation, and likewise, most literature on anion-

shuttle batteries is focused almost exclusively on the smallest halide, fluoride (F-).22 The first fluoride ion 

battery (FIB) was reported in 2011, but it required an operating temperature of 150 °C because the solid 

electrolyte displayed poor conductivity at room temperature.23 

Since this pioneering study, there has been a push for improved electrodes and electrolytes, but 

the search has been almost exclusively on alkaline-earth fluorides (fluorite-type crystals), rare-earth metal 

fluorides (tysonite-type crystals), and closely related systems.24,39,40 These structure types exhibit poor 

intrinsic conductivities as pure phases and still often require elevated operating temperatures. Empirical 
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optimization via aliovalent doping, ball milling, and sintering has been effective in producing a few solid 

electrolytes suitable for room-temperature FIBs, but a better understanding of fluoride transport is still 

needed.41,42,43,44,45,46 

Furthermore, known FIB materials still suffer from poor electrochemical stabilities and chemical 

compatibilities. Conversion-based metal fluoride electrodes (e.g., CuF2 and BiF3 cathodes; CeF3, CaF2, and 

MgF2 anodes) remain dominant in existing studies due to their high theoretical capacities, despite their poor 

cyclability caused by large volume changes throughout charging/discharging.24 Alternatively, intercalation-

based electrodes offer improved cyclability but are currently limited to four structure types: Ruddlesden–

Popper (K2NiF4-type)47, Schafarzikite (MSb2O4)48, anion-deficient perovskite (AMO3−γ)49, and layered 

rocksalts (MoS2-type)50. These systems each face critical limitations, such as irreversibility for Schafarzikite 

structures or even lack of chemically compatible solid electrolytes for layered rocksalts. 

More recently, we have predicted that EHMSs possess unique characteristics that make them ideal 

for reversible halide-ion batteries.50 Specifically, we found that electride character greatly affects the 

diffusion mechanism and, in many cases, leads to highly mobile fluoride. The presence of electride 

electrons helps to stabilize the transition state during ionic transport, and further, electride-anion exchange 

(EAX) occurs via a substitution-like process (Figure 1-2). This means that the host lattice does not undergo 

redox during (de)intercalation, which contrasts with all previously known cation and anion-shuttle battery 

materials. EHAPs such as Y2C-Y2CF2 show great promise as high-voltage, high-capacity electrodes for 

FIBs due to EAX, and the discovery of similar compounds will help release high-performance, room-

temperature FIBs.50, 51 

The discovery of EAX also highlights the need for a better understanding of halide diffusion. It 

remains unclear whether EAX is limited to materials with strong electride character or if EAX-like 

mechanisms can be realized in a range of halide systems. It is likely that there are many undiscovered 

materials that demonstrate high fluoride mobility due to this mechanism. We therefore explore halide 

systems (specifically fluorides) to identify further instances of EAX as well as identify new, robust materials 

for FIBs. 
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Figure 1-2. Concept of electron-anion exchange (EAX). The reversible conversion of (a) Y2CF2 to (b) 

[Y2C]2+(e−)2 under an applied bias, where yellow, orange, and red show isosurfaces of the anionic 

electrons at the Fermi level. (c) Battery configuration incorporating [Y2C]2+(e−)2 as an anode, a 

F− electrolyte, and a cathode (e.g., a metal fluoride). (d) Effect of electron-anion exchange on the 

partial density of states in the Y2C system, where IE is the ionization energy and Φ is the work 

function. 

1.5 Evolutionary Structure Prediction 

One can quickly propose many possible EHMSs to explore, which progress to hundreds or 

thousands of candidate materials for EAX or FIBs. However, the majority of these materials may not be 

thermodynamically stable or experimentally synthesizable. In fact, it is exceedingly rare for materials of an 

EHMS (the electride plus all halide analogs) to all be experimentally known, based on existing material 

databases.11 It is therefore essential to have a rapid process to prioritize easily synthesizable 

phases/systems. Rather than going through candidate materials via experimental trial and error, it is far 

more efficient to computationally predict the thermodynamic stability of promising materials. 
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Figure 1-3. Illustration of the evolutionary structure prediction cycle. The cycle begins with randomly 

created structures and (optionally) adds structures from other crystal databases or even other similar 

evolutionary searches. Ab initio calculations are then used to locally optimize each candidate structure 

and evaluate its stability/energy. The best structures are then used to generate new best-guess 

candidates that are evaluated in the next cycle. This process continues until the ground state structure is 

found. 

There are strategies to search for the lowest energy structure for a composition, such as using 

prototype libraries27,28,29, meta-dynamics52,53 or even Monte Carlo sampling54. Of the many approaches, 

ground state phases are most commonly predicted using evolutionary search algorithms.55 Here, phase 

space is explored through a cycle of (i) randomly creating structures, (ii) locally optimizing structures to 

determine their energy, and (iii) using the best structures to generate a new ‘improved’ set of structures. 

This cycle continues until the ground state structure is found (Figure 1-3), and the overall search can 

require thousands of ab initio calculations and millions of CPU hours. As a result, existing evolutionary 

codes struggle to explore beyond simple systems (e.g., a single-phase diagram containing two elements) 

due to computational cost. 
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Thanks to advancements in material informatics, there is now an opportunity to accelerate 

evolutionary structure prediction using prototype libraries, material databases, crystal toolkits, modern 

workflow engines, and more. These advances have largely remained independent from existing 

evolutionary materials discovery software.56,57,58,59,60 Initial attempts to improve data processing in 

evolutionary searches have already shown that systems can be explored orders of magnitude faster, but 

this was limited to file-based transfer of information between legacy code runs.61,62 There is currently no 

existing evolutionary package that fully utilizes modern databases, APIs, and frameworks. However, by 

integrating these features, evolutionary structure prediction can leverage (a) automatic integration of third-

party data and software, (b) data sharing across separate evolutionary searches, and (c) asynchronous 

scaling and distribution of calculations across arbitrary resources. 

These improvements can have a profound impact on how solid-state chemistry is carried out for 

novel chemical systems. On HPC clusters that parallelize hundreds of multicore calculations, predicting 

the thermodynamic stability of phase space can take a week for a single composition and over a month 

for a binary chemical system. However, by reducing this time to days or even under an hour, researchers 

can efficiently identify promising chemical systems/phases and add confidence to their thermodynamically 

driven syntheses. This dissertation therefore introduces a new evolutionary structure prediction software 

that integrates modern practices in material informatics. This ultimately leads to the efficient exploration of 

EHMSs that advance our understanding of FIBs and EAX. 

1.6 Outlook 

The application of materials informatics does not end with EHMSs, FIBs, and evolutionary 

algorithms. These are simply exemplary scenarios where we have already applied our framework. 

Generalized workflows, databases, and user interfaces can serve to accelerate materials discovery in 

many other contexts. This is because materials discovery relies on a constantly evolving cycle of phase 

space exploration, property predictions, and experimental characterization. Many components can be 

derived from the results (new datasets, theoretical models, or promising materials), and new methods can 

be added to accelerate the process. 
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There are far-reaching implications when data is utilized properly. We illustrate this by discussing 

how search strategies (even those with drastically different objective functions) can collaborate and share 

results. While it is outside the scope of this text, our lab is extending the framework to many new and 

exciting applications, such as machine-learned potentials, modeling disorder, cluster expansion, and even 

fitting of experimental spectra. Therefore, throughout this dissertation, keep in mind the importance of 

generalization and the potential applications for materials discovery that go beyond our example systems. 
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CHAPTER 2: CORE CONCEPTS AND WORKFLOWS 

2.1 Introduction 

 Big data and high-throughput calculations have been growing in popularity in material science 

and – during the course of my Ph.D. program – have made their way into the Warren Lab at UNC. Many 

new computational capabilities were introduced to our lab during this time, and now each provides 

essential insights for our experimental work. These new methods range from the adoption of third-party 

software as well as the development of our own alternatives. 

This chapter is dedicated to the underlying concepts and methods that make our computational 

research possible, while Chapters 3-6 focus on the high-level frameworks and materials chemistry 

achieved by applying these concepts and methods. First, we introduce material informatics concepts that 

are essential for maintaining and contributing to our existing code bases, e.g., how data is organized, 

tested, and transferred. Next, we cover how data is generated – i.e., how material properties are 

predicted through common workflows and underlying ab initio methods. Additional in-depth guides and 

details are available within the respective chapters and (more generally) our online documentation. 

2.2 Material informatics and data science 

2.2.1 Python class ontology 

 Materials science ontology (i.e., the many ways we can define and organize materials science 

data) helps to connect related information and analyses.1 At the lowest level, we organize data types in 

Python into "classes'' and "objects". In real life, acetone, acetonitrile, and ethanol are examples of 

solvents. In Python, we say that acetone, acetonitrile, and ethanol are objects of the Solvent class. By 

organizing objects into classes, Python simplifies the way we program. For example, we could design the 

Solvent class to have a property called boiling_point. Then, we could view the property simply by typing 

“acetone.boiling_point”. We (essentially) set rules that, no matter what Solvent we have, its properties can 

be accessed with “example_solvent.example_property”. This might seem silly, but it becomes very 

powerful once we want to start building out new functionality and features. 
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Figure 2-1. Introduction to the Python Structure class. (a) An example bulk crystal structure for 

sodium chloride is shown (left), along with its conventional unit cell (center), and symmetrically reduced 

primitive cell parameters (right). Instead of a graphical interface, (b) the Structure class embeds the same 

crystallographic information in Python (left), which then allows programmatic calculation of properties as 

well as manipulations of the crystal (right). 

In materials science, the class we use most is for crystal structures. We call this the Structure 

class and require that all Structure objects be made of a lattice and a list of atomic sites (Figure 2-1). 

Once the lattice and sites are known, the Structure class allows us to automate the calculation of 

properties, perform complex analyses, or transform the structure in new structures. In the simplest cases, 

this could be calculating the volume, density, or distances between all sites. In more advanced cases, the 

many smaller functions can build up to complex symmetry conversions, diffusion analysis, or evaluation of 

coordination environments.2,3 Together, there are many properties and methods available for objects from 

the Structure class – all built from our simple definition of ‘structure = lattice + sites’. 

Classes are also available for many other common data types, such as Lattice, PeriodicSite, 

Molecule, Element, Ion, Bond, ElasticTensor, and many others. Moreover, similar functionalities may be 

grouped into their own classes – e.g., there is the Transformation class that constitutes some modification 
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to Structure objects (such as a site perturbation). It can become daunting to see how many classes are 

available, but by organizing our code into classes with distinct rules, it becomes easier for others to add 

new features. This is most apparent with the aforementioned Transformation class. We can have a 

diverse set of methods that modify a Structure object (e.g., CubicSupercellTransformation or 

GrainBoundaryTransformation), but all instances share a common “apply_to_structure” method that is 

straightforward to define and use. Thus, the primary goals of Python classes are to (i) organize our code 

and functionality and (ii) prepare for the addition, replacement, and modification of new features. 

Materials science ontology varies greatly depending on the topic being studied, which has 

ultimately led to the development of several Python ecosystems. The most popular of these are the 

Atomic Simulation Environment (ASE)2 and the Python Package for Material Genomics (PyMatGen)3, 

both of which have been actively developed since 2008. Many other software packages borrow concepts 

from and build off ASE and PyMatGen ontologies – giving rise to packages for various subdisciplines in 

materials science.4,5,6,7,8,9,10,11 

The software introduced in this dissertation is no exception. We frequently borrow ontologies and 

even use many third-party functions (i.e., code and utilities from other software) 2,3,12,13 directly within our 

code. This established a reliable starting point by which we could grow out higher-level, advanced 

features, such as a workflow library and full feature database. Our ontology is constantly changing and 

expanding as we incorporate new areas of study, but the core classes (Structure, Workflow, 

DatabaseTable, and WebsiteView) serve as the foundation of higher-level functions. 

2.2.2 Continuous-integration and maintenance 

 As Python classes become interconnected, one small change or typo can easily cascade into 

larger problems elsewhere. For example, if we change the name of a method in the PeriodicSite class, 

methods of the Structure class which uses PeriodicSite will fail as a result. Developers must therefore 

constantly check that their code works as expected, even when a single line of code is changed. 

Developers establish a series of tests and checks to be run whenever a change is made, and the 

automation of this practice is known as continuous integration (CI). 

The CI framework consists of (i) unit tests, (ii) code coverage, (iii) code linting, and (iv) 

documentation. All parts are automated through GitHub CI, an open-source platform for maintaining code. 
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Each component helps maintain code quality and reproducibility, which in turn greatly influence the 

code’s longevity and influence in the field.14 

The most important aspect of CI is the suite of unit tests. Here, a “unit test” runs a single function 

and ensures that the output is the expected one. For example, a simple test is to load NaCl from a file 

and confirm that calling “nacl.volume” returned the expected volume. For all of the software presented in 

this dissertation, we implemented over 700 unique tests that range from accessing structure properties to 

testing multicomponent workflows/webpages. Within Github CI, tests are implemented using PyTest15, 

which uses several plugins for database management16, command-line interface (CLI) emulation17, and 

test parallelization18. Every time a change is made in the code, the test suite determines whether any 

features were broken by the change. 

In addition, code may behave differently on various operating systems or versions of Python. CI 

must ensure that our code works for each configuration. We therefore maintain a matrix of common user 

configurations (e.g., different OSs × different Python versions), and the GitHub CI automatically runs our 

unit test suite with each configuration.19 We also restrict supporting programs (i.e., package 

dependencies) in Python configuration files such as “pyproject.toml”. Together, these test features limit 

users to environments that are confirmed to work and facilitate tracking issues that are unique to specific 

setups. 

Unit tests should evaluate as many of our features as possible. Ideally, all code should be tested, 

but this isn’t always possible in practice due to code complexity, computational costs, and complex 

configurations (i.e., emulating multi-machine setups). To quantify the amount of code that is run during all 

unit tests, Github CI calculates the percent of lines of code that are tested. This is known as coverage. It 

is common for peer-reviewed packages to be published with ~50-75% coverage.15,20,21  At the time of 

publication, our software (presented in Chapter 3) was at 84% coverage, and its coverage fluctuates as 

new features and/or tests are added. As new code is added, it is essential to monitor coverage and 

determine where additional unit tests should be implemented. 

Code linting, that is code style and conventions, ensures code is readable and clean.14 The 

Python community has developed a series of rules to ensure all code is readable to all Python 
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programmers. Code linting is implemented through the Black22 and iSort23 Python packages. We follow 

this standard, so that our code will automatically conform to best practices. 

 The final CI component is documentation. Documentation is hosted on an independent server 

that includes tutorials, guides, and API reference. In earlier versions, we relied on pDoc24 to automatically 

generate a documentation website because this package encouraged users to open and read the source 

code. However, as our software package expanded, we found that code vs. guide organization needed to 

be handled separately. For this reason, we currently use MkDocs25 and MkDocStrings26, which 

automatically build documentation from markdown text files and source code. By integrating MkDocs into 

the Github CI, the website is rebuilt and redeployed after each change is accepted into the code. 

2.2.3 Class abstraction and data conversion 

Even though the definitions of classes such as Structure or Molecule are straightforward, there 

are a surprisingly large number of ways to store, format, and manipulate instances of this data. Moreover, 

scientific groups tend to adopt a particular format and develop all their software and utilities around it.27,28 

Ultimately, this means data sharing between different programs – such as exploring multiple crystal 

databases – becomes nontrivial and frequently forces users to manually carry out such steps.29 

To address this, base classes (e.g., Structure) provide a common entry point that diverse formats 

and software can connect to. This is known as input-output conversion (IO) for file formats and external 

function wrapping (EXT) for integrating other programs’ functionality. IO and EXT methods implement a 

two-step process for users to follow (Figure 2-2). Users (i) indicate the format of input data (e.g., a 

structure file, calculation, database entry, API, etc.) and (ii) immediately gain access to all integrated data 

and functions (e.g., different ab initio software). 

Python’s ability to integrate many different formats and function is particularly powerful. The 

Structure class currently supports IO for VASP (POSCAR), CIF, LAMMPS, and >110 other formats 

through OpenBabel.30 It can also jump between structure-like classes from other packages (e.g., 

PyMatGen3, ASE2, JARVIS31, and SQL database models27). This means that Python methods can switch 

to and from these formats and automate external analyses that rely on them. For example, we can use 

EXT to easily access many different programs for structure creation.2,33,34,35,36,37,38 Although different 

formats and functions are used across these programs (Table 2-1), we can make them all compatible. 
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Regardless of the original program and format, users can always generate new structures with a 

“Creator.new_structure()” method and receive the result as a Structure object. 

Python’s ability to unify disparate database is especially important. Each large large-scale 

database (Materials Project39, AFLOW40, JARVIS31, COD28, and OQMD41) operates under different 

ontologies and interfaces,  which previously made studies that utilize more than one database 

exceedingly rare. However, by using the IO and EXT concepts from above, data from many different 

providers can be unified under a single interface. 

In summary, these examples illustrate how core Python classes can bridge the many features 

and formats developed by the community – making them all available under a common interface. 

 

Figure 2-2. Overview of the Structure class IO/EXT process. Crystal structures can come from a 

variety of input formats (left) that can be converted to a Python Structure object(s) (center). The Structure 

object can be manipulated using core methods and then returned to external programs in their desired file 

formats (right). 
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Table 2-1. Programs for the creation of “random” crystal structures. Each program’s required file 

format is shown to illustrate how Structure IO facilitates program integration. 

Software / Package File Format Interface(s) Supported in our code?** 

AIRSS37 CIF CLI Yes 

ASE2,34 ASE Atoms Python Yes 

CALYPSO36 POSCAR CLI Yes 

GASP35 PyMatGen Structure Python Yes (requires custom patch) 

PyXtal38 PyMatGen Structure CLI or Python Yes 

USPEX32 POSCAR CLI Yes 

XtalOpt33 POSCAR CLI Yes (uses randSpg directly) 

** These are part of the software package that is introduced in Chapter 3. 

 

2.2.4 Distributed computational resources 

Calculations should efficiently scale across all available resources to speed up an analysis. 

These resources could be a single laptop, a collection of desktop personal computers (PCs), commercial 

cloud servers, university high performance computing (HPC) clusters, or some combination of these 

options. Unfortunately, each resource typically has a different networking protocol (e.g., secure shell 

protocol (SSH)) and queue system (e.g., SLURM or PBS).42 To address this challenge, our informatics 

framework is built to communicate entirely through a centralized cloud database. Each resource is added 

by calling a ‘start-worker’ command, where a worker is defined as a resource that runs scheduled 

workflows. This means that a new resource can be started on any computer connected to the internet, 

does not require any prior knowledge of scheduled workflows, and can be added/removed at any point 

without affecting other resources, workflows, or analyses. Thus, our framework allows complex analyses 

to run on a single computer while also quickly scaling across massively parallel resources. 

In practice, we have used this architecture to run up to 100,000 calculations per day across all of 

UNC’s available HPC clusters (LongLeaf, DogWood, KillDevil, WarWulf, etc.) and automatically feed the 

results back to a central database for analysis. As our calculations continue to grow in size, we anticipate 

this will scale to include all of the lab’s desktops and even HPC clusters from collaborating universities. 

Importantly, different resources can be subgrouped (or “tagged”) for specific types of workflows, which 

ensures that work is run by optimal resources and that shared resources are not overused. 
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Additional advantages of this architecture become apparent through example use cases. These 

cases are demonstrated in chapters 4-6. All chapters illustrate massive parallel high-throughput searches 

and analyses while also illustrating how cross-resource data sharing accelerates analyses. 

 

Figure 2-3. Setup for distributed computational resources. (a) All users, workflows, and resources are 

connected to a cloud database, which manages all scheduled calculations. Clusters vary in complexity 

from a laptop with one CPU to an entire HPC system with thousands of CPUs (e.g., WarWulf, DogWood, 

LongLeaf, KillDevil, etc.). Workers are given access to a subset of the cluster’s resources (e.g., two 

threads of a laptop’s CPU or 2000 threads of a cluster) to perform a workflow. On a cluster, workers are 

created and run within the cluster’s job scheduler, such as SLURM. (b) An example log file for a single 

worker, which shows it working through a series of workflows. 
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2.2.5 Data serialization and transfer 

Because our calculations are distributed across separate computer networks, we must be able to 

efficiently transfer data among them. There are many strategies to do this, ranging from creating a shared 

file system to sending bits of data through an internet connection. Furthermore, data must first be 

packaged in a machine-readable format before it can be transferred. This process is known as 

serialization, and it greatly affects transfer speed.43 For example, if we have a Structure object that needs 

to be sent to a remote resource, we (i) convert that object to a condensed format, (ii) send the condensed 

data to the new resource, and (iii) rebuild a matching Structure object from the condensed data. This 

process is closely related to the general process of data conversion (section 2.2.3); here, we must 

carefully select which data to convert and send for our use case. Regardless of the method, both 

serialization and transfer must be fast, scalable, and robust. 

Currently, we implement serialization through Monty44, a package maintained by the PyMatGen 

team, where Python objects are written to/from a JavaScript Object Notation (JSON) format. For classes 

and objects where JSON serialization has not been configured, we use cloudpickle44 to handle complex 

objects and prevent data loss. Looking forward, serialization must be optimized in scenarios with large, 

complex objects such as BandStructure or DensityOfStates, where serialization and transfer can become 

rate limiting. Optimization can be achieved by condensing the data (e.g., using JSON) or by using an 

alternative serialization engine such as MessagePack46. However, until serialization becomes rate-

limiting, JSON and cloudpickle are effective and preferred. 

Once serialized, we can address how data is physically transferred. Step (ii) above suggests that 

data is sent directly from one resource to another (i.e., from a local PC to a remote cluster); however, in 

practice, we use an intermediate resource that is dedicated entirely to data transfer and distribution. A 

user would send their data to this single server, which then handles transfer to all other resources. Much 

like a single base class simplifies data conversion (Figure 2-2), a single endpoint for data transfer 

simplifies how resources connect and communicate with one another (Figure 2-3). 

There are several options for this central data store: in-memory databases, Structured Query 

Language (SQL) databases, or a web API. For example, software such as Redis47 is designed specifically 

for data orchestration and data caches, serving as an in-memory database from which resources can 
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rapidly write/read data. In-memory servers, however, lose data when a resource crashes. Therefore, we 

implement data transfer directly through our SQL database, which saves data to disk and is thus 

recoverable after a resource failure. SQL databases are the most robust and efficient way to orchestrate 

data transfer, but a case can be made against their required setup. Specifically, such databases require a 

direct user connection and (in most cases) installed software to access much of the API. For this reason, 

web APIs such as REST (representational state transfer) or GraphQL (graph query language) are 

frequently implemented. In simple terms, these APIs are how we can access databases from a website 

URL – no installations are required beyond a common web browser such as Chrome or FireFox. The API 

maintains a single database connection and serves JSON-serialized data to authenticated users. While 

we prefer direct SQL connections in most cases, our software also provides a REST API for those who 

want to programmatically access data without any software dependencies. 

The centralized cloud storage of serialized data allows us to share data across remote resources 

in a simple and efficient manner. There are many options on how to implement each of these 

components, and optimal choices depend on the desired function. For now, we heavily use JSON 

serialization and direct SQL connections, but it is important to keep their alternatives in mind as software 

demands grow and change. 

2.3 Workflows for predicting material properties 

2.3.1 The workflow engine 

The calculation of material properties frequently follows a set of steps and rules, and these 

procedures can be automated to enable the calculation of thousands of materials. Many workflow libraries 

have been built within the materials science community to achieve exactly this. Some are specific to partner 

software (such as AbiPy48 for ABINIT49), while others are built for more general packages (e.g., Atomate50 

for VASP51, and LAMMPS52). Regardless of the program they use, all workflow packages build out a 

workflow engine by which they can define and orchestrate their workflows. 

Workflows are  defined by grouping units of work into ‘tasks’ and then deciding how these tasks 

should be distributed to the available resources. Existing workflow engines (JobFlow53, FireWorks54, 

AirFlow55, etc.) implement workflows as directed acyclic graphs (DAGs), where tasks are connected in a 
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specific direction and individual steps never repeat. This rigidity greatly restricts the manner in which 

workflows can be defined and submitted. Instead, our framework adopts DAG-free tasks where task 

connectivity is not required so that any Python logic is allowed. This strategy is implemented through the 

use of newer workflow engines and task executors such as Prefect56 and Dask57. Here, any Python code 

is wrapped with a single class method, so developers can decide whether to define tasks. This also allows 

workflows to be used within one another (i.e., nested workflows). The DAG-free framework leads to pythonic 

workflows that have total control over logic and orchestration of individual tasks. 

 

Figure 2-4. Overview of dynamic S3Workflows. (a) A supervised-staged-shell (S3) workflow runs a file-

based program while monitoring and fixing common errors until the run completes successfully. 

S3Workflows are used to build workflows for VASP, where an example workflow (b) can dynamically control 

input settings and errors to watch for. Many more features are available with these workflows. 
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Pythonic workflows allow us to leverage class-based inheritance for common functionality such as 

calling an external program, handling input/output files, and monitoring files for common errors or issues. 

Our framework includes a base supervised-staged-shell workflow (S3Workflow) to handle this common 

process (Figure 2-4a). S3Workflows automate writing inputs, monitoring jobs, fixing errors, and loading 

output files back into Python through a single modular interface. To illustrate its utility, we have fully 

reimplemented many of the Materials Project’s presets and >20 error handlers for VASP (checks for 

convergence issues, incorrect smearing for metals/nonmetals, batch job wall times, etc.), where these 

features were previously distributed across several packages and modules.3,39,50,58 By integrating all of this 

into a S3Workflow, we were able to develop over 50 unique and dynamic workflows and establish a toolkit 

to create additional custom workflows with minimal effort. 

2.3.2 Density functional theory settings 

All density functional theory (DFT) calculations were performed with the Vienna ab initio Simulation 

Package (VASP)51. Projector-augmented wave (PAW) potentials were used to describe core electrons, 

while the generalized gradient approximation (GGA) Perdew–Burke-Ernzerhof (PBE) functional was used 

for the exchange-correlation contribution to total energy.59,60 Furthermore, Grimme DFT-D3 and Hubbard 

U corrections were used to account for long-range dispersion forces and local/semi-local deficiencies, 

respectively, where noted.61,62,63 Alternative functionals (e.g., LDA64, SCAN65, HSE66) are also implemented 

and frequently used with our workflow framework. 

General settings (e.g., for k-point grids, convergence criteria, and smearing partial occupancies) 

depended on both the type of analysis being performed and the structure itself. For example, many 

relaxations were performed at varying quality in different analyses, such as lower quality settings when 

analyzing tens of thousands of structures and higher quality settings once promising candidates were 

identified. This ultimately led to >50 unique workflow presets, including >10 presets for ionic relaxations 

alone. Moreover, within a single preset, many settings/corrections were dynamically determined from 

preconfigured defaults, e.g., specific compositions and elements would have U values automatically set. 

We therefore encourage readers to view the full configurations by directly interacting with our software, 

either through the CLI or source code (Figure 2-4b). 
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2.3.3 Ionic relaxations 

Crystal structures are often optimized using a series of increasingly strict tolerances, which we 

have automated. For example, our evolutionary search algorithm relies on rapid rough relaxations of 

randomly generated (and often highly unreasonable) structures, so a series of four relaxations and one final 

static energy calculation are performed for each structure. The first relaxation uses a fixed volume and a 

0.75 Å-1 Monkhorst-Pack k-point grid, where a conjugate-gradient algorithm is applied with convergence 

criteria of 2.0 × 10−2 eV/atom for energy, and 1.0 × 10−2 eV/Å for max force. Then, the convergence settings 

are gradually increased up to the final relaxation, which uses an RMM-DIIS algorithm67, 1.0 × 10−5 eV/atom 

for energy, 1.0 × 10−3 eV/Å for max force. Follow-up calculations and analyses relax structures using higher 

quality Materials Project and MIT project settings.3,29 

2.3.4 Population Analysis 

Oxidation state analysis – i.e., the assignment of electron density populations to individual atoms 

– greatly affects our interpretation of electride systems and their analogs. However, the presence of lone 

electrons in electrides greatly complicates the prediction of oxidation states. We therefore carried out 

multiple analyses using a series of partitioning algorithms, and we also outline other potential techniques 

that are worth investigating. 

Oxidation states of ionic materials are most often determined via Bader analysis68, where charge 

density is partitioned using zero-flux surfaces. For electrides, Bader analysis requires the introduction of 

“dummy” atoms located at the maxima of electride density to properly assign populations.69 However, due 

to the low total electron density in electride regions (relative to atomic sites), Bader analysis struggles to 

identify zero flux surfaces around these known electride sites. This ultimately leads to underestimation of 

electride character and overestimation of the e- density on neighboring atoms (Table 2-2, red). 

For this reason, electrides are typically evaluated using the electron localization function (ELF).70 

Here, voxel quantities correspond to the probability of finding an electron of the same spin as a reference 

electron in a region. In other words, smaller probabilities correspond to an electron that is already localized 

and stable in a region of space. Localization probabilities vary greatly between crystal structures, but by  
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Figure 2-5. Charge density and ELF isosurfaces of example ionic and electride structures. Charge 

densities (top) often fail to partition electride electron density in layered electrides, whereas ELFs (bottom) 

show a clear region when electride electron localization occurs. ELF data can be further used to assign 

charge densities in electrides (see Table 2-2). 

Table 2-2. Oxidation state assignments via Bader and Bader/ELF methods. Columns correspond to 

the oxidation states assigned to composition elements (left to right, in the same order they appear in the 

chemical formula). 

 Bader Analysis Bader Analysis w. ELF reference 

NaCl +0.867 -0.867 -- +0.965 -0.965 -- 

Ca2N(e-) +1.005 -2.011 0 +1.694 -2.399 -0.988 

Ca2NF +1.411 -1.928 -0.895 +1.678 -2.415 -0.941 

Ca2NCl +1.401 -1.947 -0.856 +1.693 -2.434 -0.951 

Sr2N(e-) +0.968 -1.933 0 +1.683 -2.395 -0.971 

Sr2NF +1.408 -1.918 -0.898 +1.680 -2.426 -0.935 

Sr2NCl +1.396 -1.933 -0.858 +1.692 -2.439 -0.946 

Y2C(e-)2 +1.263 -2.270 -0.256 (total) +2.308 -3.041 -1.576 (total) 

Y2CF2 +1.941 -2.202 -0.839 +2.386 -3.035 -0.868 

Y2CCl2 +1.841 -2.186 -0.748 +2.374 -3.006 -0.871 
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examining ELF isosurface values, one can arrive at a qualitative representation of electride character 

(Figure 2-5). 

We sought to introduce a new partitioning strategy that addressed the shortcomings of Bader 

analysis and ELF visualization. Specifically, the Bader algorithm is used to find zero-flux surfaces in the 

ELF (instead of charge density), and then the surfaces are used to partition charge density. We found that 

this approach effectively captures the expected oxidation states in both common ionic materials and 

electrides (Table 2-2). We do note, however, that the oxidation states of ionic materials (e.g., NaCl) are 

slightly overestimated relative to Bader analysis. 

Alternative strategies to evaluate electride character are also actively being explored. This includes 

common methods such as partitioning the projected density of states (PDOS) using predicted ionic radii 

from Bader analysis.71 This approach, however, is extremely sensitive to changes in radii, so inaccuracies 

from Bader analysis (which are significant in electride systems) are a major source of concern. Alternatively, 

one can evaluate chemical bonding using crystal orbital overlap populations (COOP) in newer programs 

such as LOBSTER.72 LOBSTER is currently unable to add empty atoms for electrides but support for 

electride materials is being actively developed. 

2.3.5 Ionic Mobility 

 One can predict ionic mobility using many different computational techniques. Common 

approaches include nudged elastic band (NEB) and molecular dynamics (MD), and each technique can be 

implemented with either ab initio or empirical potentials. Within this dissertation, we focus on the ab initio 

calculation of NEB barriers because of their high accuracy. 73 

In many cases, we also made approximations to our NEB analysis, such as small supercells, 

reduced images, and/or partial relaxation of endpoints. For example, our high-throughput analysis includes 

midpoint-only NEB calculations where endpoints are roughly relaxed. This meant that the predicted barriers 

were only the minimum possible barrier for each pathway. This is because the true transition state may lie 

off the midpoint, leading to a higher barrier than what is calculated here. Thus, many of our approximations 

can be viewed as an extension of Trottier et al.’s explicit-error approach74 combined with empirical pre-

relaxations utilized by Smidstrup et al75. 
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 However, for the most promising materials, full NEB analyses were performed. This included large 

supercells (R=10 Å), seven pathway images, and Materials Project convergence settings. All symmetrically 

pathways in a structure were evaluated, where each unique pathway was identified using pymatgen-

diffusion’s distinct path finder3 with two criteria: (1) pathways were limited to 5 Å in length, and (2) only the 

five shortest symmetrically unique pathways per structure were considered. 

2.3.6 Electronic Structure 

Band structure (BS) and density of states (DOS) calculations are frequently performed to gain 

insight into a crystal’s electronic structure. Our framework includes workflows for calculating band structures 

using different levels of theory and corresponding VASP functionals. Specifically, BS and DOS workflows 

exist for LDA64, PBE60, SCAN65, and HSE66 functionals. Each of these workflows replicate settings used by 

Atomate.50 Although these many workflows exist for quick use on a crystal structure, all high-throughput 

electronic structure calculations were run using PBE, which is known to systematically underestimate band 

gaps.76 We selected this workflow because the high-throughput nature of our calculations prevents higher 

quality calculations using SCAN or HSE. 

2.3.7 Additional workflows 

 Beyond relaxations, population analysis, ionic transport, and electronic structure calculations, there 

are many more workflows implemented in the Simmate code. This includes configurations for the 

calculation of elastic tensors and NMR shifts, as well as large-scale workflows for machine-learned potential 

creation (using DeePMD77), cluster expansion models (using CLEASE78), and evolutionary structure 

prediction (see Chapter 6). It is outside the scope of this work to cover all 50+ workflows and their use 

cases, so we encourage readers to reference the Simmate documentation for more information. 
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CHAPTER 3: SIMMATE: A FRAMEWORK FOR MATERIALS SCIENCE 

Adapted from: Sundberg, J.D. ; Benjamin, S.S. ; McRae, L.M. ; Warren, S.C. Journal of Open-Source 
Software, 7(75), 4364. Copyright 2022 Journal of Open-Source Software. 

3.1 Introduction 

Over the past decade, the automation of electronic structure codes has led to many large-scale 

initiatives for materials discovery, such as the Materials Project1, AFLOW2, OQMD3, JARVIS4, and 

others5,6,7. Each of these projects facilitates the creation and distribution of materials science data to the 

broader research community through databases, workflow libraries, and web interfaces. However, each 

software ecosystem (i.e., the collection of software used by a specific project) still possesses several 

pain-points for users attempting to implement new standards for computational research. No ecosystem 

provides a cohesive, vertical framework that runs without extensive user configuration. Proper setup 

involves learning how (i) workflows are defined/orchestrated, (ii) how databases are built/accessed, and 

(iii) how website interfaces/APIs make results accessible to the community, where each component 

requires learning a new package and, more importantly, learning how that package integrates with others. 

As a result, it can be difficult to integrate several smaller packages when building production-ready 

servers and databases for materials science research. To address this, we developed the Simulated 

Materials Ecosystem (Simmate). 

3.2 Statement of Need 

Simmate strives to simplify the process for researchers who are setting up a full-featured server. 

For the purposes of beginners, we desired a framework that could run locally without requiring any 

additional setup. For the purposes of experts, we sought to enable scaling of calculations across any 

number of resources and to facilitate the addition of new functionality. Simmate accomplishes these goals 

by (i) building on top of popular, well-established packages for workflow orchestration, database 

management, and materials science analysis and (ii) distributing our software as an "all-in-one" package 
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that integrates all of these features. This is contrary to analogous software ecosystems that maintain 

custom packages and distribute solutions as separate programs. 

For example, while other materials science ecosystems write workflow managers and task 

distribution from scratch (e.g., Fireworks8 or AiiDA6), we instead use high-level, beginner-friendly 

packages such as Dask9 and Prefect10. Using well-established packages also extends to our choice of 

website framework (Django11) and underlying materials analysis toolkit (PyMatGen12). The use of popular 

packages lets Simmate users take advantage of these packages' large user communities, abundant 

guides, and robust coding standards, while Simmate handles the integration of these packages in the 

context of materials science. This greatly facilitates the addition of new features while also enabling best 

practices. 

To understand our aim to be an “all-in-one” solution, it is useful to compare Simmate with the 

collection of packages developed by the Materials Project1. The Materials Project is powered by many 

smaller packages, each with a specific use case – e.g., Atomate for a workflow library13, Fireworks for 

workflow orchestration8, Custodian for error handling14, EMMET for schemas/APIs15, MPContribs for third-

party data16, and many others. Each of these are powerful tools, but it can require significant effort and 

expertise to properly integrate several packages into a full-featured server. Meanwhile, Simmate contains 

modules for each of these features within a single, larger package – e.g., within our workflows, 

workflow_engine, database, and website modules. By maintaining these features within a single space, 

high-level integrated features can be more readily developed. This includes features that are unique to 

Simmate, such as dynamically built REST APIs and website interfaces. There is also a run-server 

command that compiles all features (including user-defined projects) with minimal setup. Many 

comparisons can be made between Simmate modules and existing packages from the materials science 

community, but most notably, Simmate focuses on the unification of components for high-level features 

and capabilities. 

At the lowest level, Simmate is designed specifically for materials science research and the 

calculation of materials properties. While our current implementation is focused on periodic crystals and 

ab initio calculations, the framework is built around abstract data types and functionality. This allows easy 
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integration of third-party software and databases. For example, we currently distribute data from other 

providers (COD17, Materials Project1, OQMD3, and JARVIS4) as well as orchestrate calculations from 

popular DFT codes (e.g., VASP18). Each of these integrations benefits by inheriting from our core data 

types, which implement features such as error handling and job recovery for workflow integrations, as well 

as the automatic generation of Python APIs, REST APIs, and website interfaces for results and 

databases. Moreover, data can be converted to other useful Python objects, such as those from 

PyMatGen12 or ASE19, allowing further analysis of the materials. 

Because Simmate removes many obstacles to advanced computation, we anticipate that this 

code will be utilized by beginners and experts alike. Thus, our tutorials are written for researchers who 

have never used the command-line or Python. However, as users become comfortable, they can begin 

exploring the underlying API and integrated packages for advanced features. Together, these features 

help Simmate bridge the gap between the existing ecosystems of materials science software while 

making production-ready implementations as easy as possible. 

3.3 Supporting Information 

Herein, we provide additional context that was not included in the original 2022 JOSS manuscript. 

These supplementary sections give a brief overview of the functionality available in Simmate as well as 

how to explore our available resources. However, we emphasize that this is simply an overview of a few 

features and details on where more information can be found. The full specification and guides on how to 

use Simmate are contained within our source code repository, documentation, and website. 

3.3.1 Documentation, guides, and tutorials 

 Exploration of Simmate’s functionality is guided through our online documentation, which is 

currently hosted at https://jacksund.github.io/simmate/home/. The documentation includes a landing 

page, getting-started tutorials, full parameter specifications, in-depth API guides, and a change log 

(Figure 3-1). The many different categories serve to both guide beginners and enable advanced users to 

build out complex features. 

 Our guides have gone through many iterations of trials and feedback. This includes several lab 

workshops where >10 students work through tutorials and provide feedback/insight where necessary. 

https://jacksund.github.io/simmate/home/
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However, as Simmate continues to evolve, so will its documentation. There is always room for 

improvement. For this reason, all users may suggest changes to the documentation directly within the 

interface. Users may edit the documentation in plain text, and if changes are accepted, the 

documentation website is automatically rebuilt and redeployed through our GitHub CI. 

 

Figure 3-1. Simmate’s online documentation. The guides are organized into searchable sections 

(white text, top of screen), where each section has many subcategories (black text, left column) to teach 

users how to use and add to the software. 

3.3.2 A brief overview of modules 

Because Simmate strives to be an all-in-one server and toolkit, there are many diverse features 

available. Although code that covers expansive features is typically broken down into several smaller 

software packages8,12,13,14, we instead organize these features into submodules and apps. This allows 

each submodule and app to work out of the box and without configuration. At the time of writing, there are 

12 top-level Simmate modules into which all features are organized (Table 3-1). Throughout our modules, 

we opt for verbose names. This allows beginners and experts to more rapidly navigate our code. 
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Many modules have direct analogs to those in other materials science packages, such as 

software of the Materials Project ecosystem1 (Table 3-2). We therefore provide an “Alternatives” page that 

helps describe the relationships of Simmate features to other codes. Those familiar with materials science 

packages can easily find the direct replacement and, more importantly, recognize where they can apply 

familiar concepts within the much larger Simmate codebase. It is important to note that Simmate does not 

aim to be a total replacement of alternative software listed. Instead, our code illustrates how such features 

fit within a larger, more integrated ecosystem. This ultimately leads to significant changes in design that 

can guide future development of both Simmate and alternative programs. 

Table 3-1. The top-level Simmate modules and their descriptions. 

Module name Description 

calculators third-party programs that run analyses for us (e.g., VASP or DeepMD) 

command_line makes some common functions available as commands in the terminal 

configuration the default Simmate settings and how to update them 

database defines how all Simmate data is organized into tables and lets you access it 

file_converters reformat to/from file types (e.g., POSCAR –> CIF) 

toolkit the fundamental functions and classes for Simmate (e.g., the Structure class) 

utilities contains simple functions that are used throughout the other modules 

visualization visualizing structures, 3D data, and simple plots 

website runs the simmate.org website and REST API 

workflow_engine tools and utilities that help submit calculations as well as handle errors 

workflows common analyses used in materials chemistry 

conftest utilities for running unit tests and only for contributing developers 

 

Table 3-2. Comparison of Simmate to alternative materials science software. 

Component Materials Project Simmate 

Workflow submission Fireworks8 Prefect, Dask, & workflow_engine.execution module 

Workflow library Atomate13 The workflows module and custom apps 

Tasks & Error handling Custodian14 The workflow_engine module 

IO to different programs pymatgen.io12 The calculators module 

Database backend MongoDB SQLite, Postgres, or any engine supported by Django 

Database API EMMET15 The database.base_data_types module 

Web API mapidoc1 Built dynamically by the website module 

Utilities & core classes pymatgen12 The toolkit module (built w. pymatgen) 

Website components crystaltoolkit20 The website.core_components module 

Third-party data mpcontribs16 The database.third_parties module 
Note: many more comparisons can be made as well 



41 

3.3.3 A brief overview of user interfaces 

There are several ways users can interact with Simmate’s features – such as through our 

website, the command line, or Python. Each interface differs in its development status and what is 

required from the user. 

First, new users (and especially those new to coding) will begin by interacting with the website 

interface at https://simmate.org/ (Figure 3-2). One can explore everything contained within the Simmate 

database, including user-run workflows as well as third-party data from COD, JARVIS, Materials Project, 

OQMD, and AFLOW. Users can also programmatically interact with our data using a standardized REST 

API interface (Figure 3-3). Unfortunately, however, even though the website is the first thing a user sees, 

it is often the last place functionality reaches due to limited time and development resources. 

There are many more features available once Simmate is installed locally and then accessed 

through the command line interface (CLI) or Python. The CLI is reserved for the most commonly 

 

Figure 3-2. Simmate’s website interface. This shows the homepage where users can search major 

databases. Advanced filtering criteria and additional API views are limited to the “Third-party Data” tab 

(left column). 

https://simmate.org/
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Figure 3-3. Simmate’s interactive REST API interface. The interface is built off the Django-REST 

framework, and one can quickly filter and paginate search results and directly convert them to JSON. 

 

 

Figure 3-4. Simmate’s command line interface. The output shown is from the base ‘simmate --help’ 

command. Subcommands and options are listed below in teal-colored text. 
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accessed functions from each module. This includes utilities for building the initial database, submitting 

workflow runs, and connecting clusters/workers. The CLI attempts to closely match the Python module 

organization by grouping commands under similar names (Figure 3-3). Meanwhile, the Python interface 

interacts with the source code directly. All of Simmate’s advanced features are therefore available in 

Python first, and the command line and website then follow for the most popular use cases. 

3.3.4 Example workflow input and outputs 

 Users can easily build custom workflows but, most often, will begin with the prebuilt workflow 

library. Either way, workflows can be submitted through the website interface, command line, or Python. 

Currently, the command line is the preferred method. Submitting with the command line involves 

configuring a settings file and then running that file with Simmate, which handles the different stages of 

the workflow, organizing new files created, and loading results into the database. To illustrate, we will 

show two example workflow runs – one a single-step ab initio calculation and a second that orchestrates 

hundreds of ab initio calculations and analyzes the results. 

 

Figure 3-7. Example workflow for a MD simulation. The (a) input YAML file, (b) monitoring and run log, 

and (c) example output plot are shown to help understand the different aspects of a workflow. For (c), 

plots are written as interactive HTML files using Plotly. 

 The first example is a single VASP calculation that executes a variable-temperature molecular 

dynamics simulation. One can generate a YAML (or TOML) settings file that describes what should be 
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run (Figure 3-7a). At a minimum, only the workflow name and input structure need to be provided, but 

many optional parameters are also available to tune VASP parallelization, start/end temperatures, 

simulation time, structure standardization, and more. Given only these settings, calling the command 

‘simmate workflows run example.yaml’ will gather input files (INCAR, POTCAR, POSCAR, etc.), run 

VASP, monitor (and fix) the job for common errors, read results into the database, and write summary 

files. For an MD run, the only summary file is a plot showing how energy, forces, and temperature vary 

during the simulation (Figure 3-7c). 

 

Figure 3-8. Example workflow for an evolutionary search. Screenshots are shown for (a) the input 

YAML file, (b) monitoring and run logs, (c) all output files and subdirectories, and (d) three of the 

interactive HTML plots available. 

 For the second example, we illustrate how Simmate can orchestrate hundreds of structure 

relaxations within an evolutionary search algorithm. This workflow generates many structures, runs a 

series of relaxations on each, mutates/strains the lowest energy structures, and analyzes all results on a 

cycle. Despite the many moving parts for a search, the configuration settings only require a composition. 
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There are, however, many optional settings that modify how structures are created or transformed, as 

well as how structure relaxation behaves (Figure 3-8a). Each individual relaxation has outputs analogous 

to the MD example, but for the higher-level evolutionary search, much more is available. The informatics 

framework makes it easy to evaluate search convergence, error in relaxation series, distinct structures, 

and much more (Figure 3-8c). With all results stored in the database, more in-depth analyses are 

possible as well.  
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CHAPTER 4: HIGH-THROUGHPUT DISCOVERY OF FLUORIDE-ION CONDUCTORS VIA A 
DECOUPLED, DYNAMIC, AND ITERATIVE (DDI) FRAMEWORK 

Adapted from: Sundberg, J.D.; Druffel, D.D.; McRae, L.M.; Lanetti, M.G.; Pawlik, J.T.; Warren, S.C. npj 
Computational Materials, 8, 106 (2022). Copyright 2022 Nature Public Journals. 

4.1 Summary 

Fluoride–ion batteries are a promising alternative to lithium–ion batteries with higher theoretical 

capacities and working voltages, but they have experienced limited success due to the poor ionic 

conductivities of known electrolytes and electrodes. Here, we report a high-throughput computational 

screening of 9747 fluoride-containing materials in search of fluoride-ion conductors. Via a combination of 

empirical, lightweight DFT, and nudged elastic band (NEB) calculations, we identified >10 crystal systems 

with high fluoride mobility. We applied a search strategy where calculations are performed in any order 

(decoupled), computational resources are reassigned based on need (dynamic), and predictive models are 

repeatedly updated (iterative). Unlike hierarchical searches, our decoupled, dynamic, and iterative 

framework (DDI) began by calculating high-quality barrier heights for fluoride-ion mobility in a large and 

diverse group of materials. This high-quality dataset provided a benchmark against which a rapid calculation 

method could be refined. This accurate method was then used to measure the barrier heights for 6797 

fluoride–ion pathways. The final dataset has allowed us to discover many fascinating, high-performance 

conductors and to derive the design rules that govern their performance. These materials will accelerate 

experimental research into fluoride–ion batteries, while the design rules will provide an improved foundation 

for understanding ionic conduction. 

4.2 Introduction 

Rapid progress in batteries that shuttle cations has led to their widespread use. Although lithium–

ion batteries dominate the market for high-energy-density batteries, there are considerable efforts to 

develop alternate cation shuttles, including magnesium, sodium, and zinc1. Here, we explore a divergent 

strategy for ion-shuttle batteries: the development of materials that conduct fluoride (F-)2. Comparatively, F- 

has a low atomic mass, large theoretical capacity, and high natural abundance3. Furthermore, because it 
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is the most electronegative element, F- is stable against oxidation and could therefore yield batteries that 

operate at extreme voltages. 

Despite these promising properties, fluoride-ion batteries (FIBs) have received little development. 

This is largely because the few existing fluoride-ion conductors have modest transport and low stability4,5,6. 

For example, the first reversible FIB, reported in 2011, achieved good fluoride-ion mobility only at 150 °C7. 

Since this initial breakthrough, improved conductors have been considered for FIBs, including BaSnF4, 

PbSnF4, Sm0.95Ca0.05F2.95, and Ce0.975Sr0.025F2.975, which all achieve improved conductivity (>1 × 10−4 S cm−1 

at 20 °C; ~300 meV energy barrier) but lack stability at extreme potentials8,9,10,11,12,13. This challenge with 

stability was especially notable with our development of Y2CF2 and Sc2CF2 as anodes, which operate at 

extreme potentials that fall outside the stability window of most fluoride–ion electrolytes3,14,15,16. Therefore, 

there is a strong need to identify fluoride-ion conductors. 

Because so few materials have been examined as possible fluoride-ion conductors, we suspected 

that there may be many high-performance materials that are yet undiscovered. While most studies on 

mobility have surveyed a limited number of structure types or systems17,18,19,20,21,22,23,24,25,26, large-scale 

analyses of ionic mobility27,28,29,30 have used hierarchical calculations (Figure 4-1a). In the hierarchical 

approach, simplified models are used to select candidates for more rigorous calculations, such as nudged 

elastic band (NEB) or molecular dynamics (MD). This is an efficient approach for generating ionic mobility 

databases and identifying promising materials, but it also has limitations. Most importantly, the existence 

of selection criteria requires a good understanding of the materials being studied, which was not the case 

for F-conduction. In addition, the removal of candidates at early stages does not allow one to assess 

whether the selection criteria are biased or incorrect; final candidates simply reinforce current models. 

These limitations of standard hierarchical studies led us to examine an alternate approach in our search for 

fluoride-ion conductors. 

To this end, we employ a high-throughput search of fluoride-ion conductors using a decoupled, 

dynamic, and iterative (DDI) framework (Figure 4-1b). In this framework, calculation stages are not 

hierarchical but are instead performed in any order (decoupled), predictive models are repeatedly updated 

during the search (iterative), and computational resources are reassigned as models change and materials 
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are re-ranked (dynamic). A full account of the DDI framework will be presented elsewhere; instead, this 

manuscript describes the application of the DDI framework to the search for fluoride-ion conductors. In this 

search, we screened approximately 10,000 fluoride-containing structures, identified several crystal systems 

as promising conductors, and developed heuristics for quickly assessing ion transport in other materials. 

These materials will inspire future investigations of electrodes and electrolytes, while the heuristics will 

enable future high-throughput studies and provide a basic understanding of the factors that govern fluoride 

transport. 

 

Figure 4-1. Comparison of hierarchical and DDI (dynamic, decoupled, and iterative) search 

strategies. (a) Hierarchical searches perform successive calculations of increasing quality and 

computational cost, but low-quality predictors are used to remove most candidates. This strategy is possible 

only when heuristics are already known, and it does not allow selection criteria to change at later stages. 

(b) The DDI strategy used in this study creates a high-quality reference dataset, which is then used to create 

and iteratively refine rapid calculations. We used this approach to develop a rapid calculation for fluoride 

mobility and to predict barrier heights for a large pool of candidates. 

4.3 Results 

4.3.1 Design strategy of the DDI framework 

The typical strategy for high-throughput searches is to proceed from low-quality to high-quality 

calculations in distinct stages and with fixed cut-off criteria. However, when no preexisting models or 

heuristics exist, early-stage criteria cannot be accurately selected, and good candidates may be 



51 

erroneously removed due to the larger error involved in the initial calculations. Moreover, the removal of 

candidates without subjecting them to high-quality calculations does not allow one to test the accuracy of 

the selection criteria. We, therefore, developed a framework where all workflows can be run 

independently, and low-quality calculations are not required prerequisites for intensive calculations. This 

allowed us to produce a constantly growing set of high-quality NEB calculations against which the low-

quality calculations could be iteratively assessed. These assessments allowed us to refine our models 

and reallocate computational resources as the high-throughput search progressed. This strategy can be 

described as decoupled, dynamic, and iterative (DDI). 

The DDI strategy is possible with workflow management software commonly used in the 

materials science community (such as AiiDA31, Atomate32,33, AFLOW34, and others35,36,37,38), but we utilize 

a custom framework in this study. While a technical discussion of the framework will be presented 

elsewhere, our source code has been made publicly available39, and we provide a high-level comparison 

to previous search strategies in the supporting information. Overall, computational resources are 

allocated via a centralized database server and asynchronous task executors. We define a task executor 

as a computational resource that requests and runs the candidates based on a priority ranking. For 

example, if the priority function of an NEB calculation is based solely on pathway length, the task 

executor will search the database for the shortest pathway yet to be calculated and run the NEB 

calculation. Task executors work through the database, and candidates may be deprioritized but are 

never removed. Thus, the DDI strategy creates an ongoing queue where uncompleted calculations are 

ranked according to priority. 

4.3.2 Generating a pool of candidate pathways 

The DDI framework requires a database of candidates, where dynamic priority ranking allows us 

to add new candidates even after the search has started. For our fluoride mobility calculations, individual 

candidates are not structures but instead pathways within a structure. This is because structures can 

contain multiple symmetrically unique diffusion pathways, where each unique pathway should be 

evaluated independently. A crystal’s cumulative diffusion network and long-range barrier for transport can 

then be evaluated using dimensional analysis, as described in our supporting information. Thus, we 
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generated a starting pool of candidate pathways, built into the option to introduce new pathways, and 

identified promising candidates using the lowest-energy percolating pathway. 

We used all fluoride-containing structures from the Materials Project database (version 2021-02-

08)40, yielding 9747 structures. Symmetrically unique pathways – each represented by a unique 

combination of start and end crystallographic sites – were identified for each structure using pymatgen-

diffusion’s distinct path finder41 with two criteria: (1) pathways were limited to 5 Å in length, and (2) only 

the five shortest symmetrically unique pathways per structure were considered. Although these choices 

limited our collection of candidate pathways, we examined whether these longer pathways were 

physically reasonable. Individual pathways longer than 5 Å required fluoride movement beyond its first- or 

second-nearest neighbor, leading to unfavorable interactions (Supplementary Figure 4-S3), and we also 

found that the shortest pathways within a structure yielded the lowest barriers (Supplementary Figure 4-

S4). Thus, we concluded that loosening these criteria (leading to the addition of new candidate pathways) 

was unnecessary in the scope of this study. This produced 43,352 candidate pathways, and no other 

criteria were applied to limit or remove candidate pathways. These 40,000+ pathways establish a 

constant work-in-progress for the most computationally intensive calculations such as NEB, and we report 

on that progress herein. 

4.3.3 Generating a high-accuracy reference dataset 

The first step in our evaluation of candidates was the calculation of a high-quality reference 

dataset. Compared to standard hierarchical workflows, which perform high-quality calculations only on 

candidates selected by low-quality predictions, we instead selected a diverse subset of materials for 

these high-quality calculations. This provided reference values against which we could judge and 

iteratively refine our low-quality predictions. The DDI strategy allowed this dataset to cumulatively grow 

during our study (currently, N = 299), which further enabled iterative evaluation of low-quality predictions. 

The most rigorous calculation used to assess fluoride transport was a midpoint-only NEB 

relaxation. Specifically, we calculated the diffusion barrier for pathways by fully relaxing the start, end, 

and midpoint supercell structures (R = 10 Å) via NEB, where the midpoint structure was prerelaxed by an 

image-dependent pair potential surface (IDPP) to improve our starting point42. Even though full 



53 

relaxations were performed, the use of a single structure in NEB means that the predicted barrier is only 

the minimum possible barrier for the pathway. This is because the true transition state may lie off the 

midpoint, leading to a higher barrier than what is calculated here. Thus, this calculation can be viewed as 

an extension of the Trottier et al.43 explicit-error approach combined with empirical prerelaxations utilized 

by Smidstrup et al.42. This was selected over a full climbing image NEB44 analysis of promising pathways 

because the supercell relaxations required are extremely expensive, even with substantial efforts45,46,47,48 

made in this area. 

In building this reference dataset, various priority-ranking functions were utilized by our task 

executors, and these functions evolved throughout our search. Initial calculations were orchestrated by 

random selection of pathways. The reference dataset was then used to identify trends and establish 

heuristics, and these models prioritized future calculations for the reference dataset. Thus, as our 

reference dataset grew, we updated our models and their influence on priority queues (Figure 4-1b). The 

flexibility of our priority functions also allowed us to focus on specific structure types or compositions in a 

subset of executors. This was particularly useful when we identified an interesting structure type and 

wanted to analyze similar candidates by NEB. Together, all these executors and various ranking functions 

worked to cumulatively produce the final dataset of NEB results. 

At the time of publication, 299 pathways successfully converged for this midpoint-only NEB 

calculation, and all these pathways are listed in Supplementary Table 4-S1. These reference calculations 

allowed us to evaluate the lower quality calculations described below. 

4.3.4 Developing a rapid calculation within the DDI framework 

Because the computational cost of NEB limited its use to fewer than 300 pathways out of >40,000 

(<0.7% total), we sought to identify a faster calculation to estimate energy barriers. We therefore used 

small supercells (R = 7 Å) on the initial, final, and midpoint structures to calculate energy barriers, but 

these smaller supercells are still similar in size to those used in other high-throughput searches27,28,29,30. 

To further reduce the computational cost, the initial and final structures were not relaxed, while the 

midpoint image was relaxed using the IDPP method42. IDPP is an empirical method that uses bond 

lengths to produce a relaxed structure that is similar to that produced by NEB. With these steps to reduce 
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computational cost, it became feasible to calculate thousands of pathways rather than hundreds. At 

present, we have calculated 8497 pathways via this method, and 6797 (80%) have been completed 

successfully. 

We expected that these faster calculations would have a large error because of electrostatic 

repulsion among small supercells49, the absence of complete relaxation, and the possibility that the 

transition state was not located at the pathway’s midpoint43. To quantify the error in these calculations, we 

compared them to the more rigorous midpoint-only NEB calculations described above. We observed a 

moderate correlation between the approximated barriers (Eapprox) and the NEB barriers (ENEB) (Fig. 4-2, 

green), with a median error (Eapprox-ENEB) of +165 meV and a standard deviation of 427 meV. This is a 

large error distribution compared to typical DFT barrier predictions. Nevertheless, the approximation 

successfully isolates pathways with low-energy barriers. Specifically, 165 out of 167 (98.8%) pathways 

predicted to have Eapprox < 1.0 eV, in fact, have ENEB < 1.0 eV. Despite this agreement, our approximation 

also results in a large number of false negatives, where 6 out of 29 (20.7%) pathways with Eapprox > 1.5 eV 

actually have ENEB < 1.0 eV. The tendency to overestimate the barrier is consistent with the use of a small 

supercell, which can destabilize the transition state49. However, because this error is systematic, it can be 

corrected. 

To reduce the systematic error in Eapprox, we used a linear regression between our static 

approximation and fully relaxed NEB. The linear regression was updated as we collected NEB data, 

which allowed us to iteratively improve our empirical correction. At the time of publication, the empirical 

correction (in eV) is: 

𝐸𝑁𝐸𝐵 = 0.549 × 𝐸𝑎𝑝𝑝𝑟𝑜𝑥 + 0.119 

This correction greatly reduces the systematic error (Figure 4-2, blue). The median error is reduced from 

+165 meV to −9 meV, and the standard deviation is reduced from 427 meV to 318 meV. 

With the goal of further improving the approximation, we explored additional strategies to refine 

the trade-off between computational cost and error reduction. The DDI framework allowed us to explore 

alternative versions of the approximated calculation because we can initiate task executors that are 
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independent of preexisting executors. We therefore examined how alternative relaxation convergence 

criteria would affect the calculation’s efficiency and accuracy. Start, midpoint (NEB), and end supercell 

structures (R = 7 Å) were relaxed to an ionic convergence of 0.5 meV, and all ionic steps were analyzed 

for convergence and CPU usage (Supplementary Figure 4-S5). This allowed us to understand how 

convergence criteria affect computational cost and calculation accuracy. 

Our results show that as the convergence criteria are improved, the calculation accuracy also 

improves. However, decreasing the convergence criteria below 100 meV does not further improve the 

errors’ standard deviation, likely because the accuracy is not limited by convergence but rather by the use 

of a small supercell. Compared to a static-IDPP calculation, stopping the calculation at a 100 meV 

convergence increased the computation cost by 1.6x, decreased the median error from 165 to 92 meV, 

and reduced the standard deviation in the error from 427 to 330 meV (Fig. 2, red). We sought to further 

reduce the error using an empirical correction of the data, as we did above. We performed a linear 

regression on our data but added a second term that sought to account for the residual forces in the 

structure due to incomplete relaxation: 

𝐸𝑁𝐸𝐵 = 0.856 × 𝐸𝑎𝑝𝑝𝑟𝑜𝑥 − 0.153 × 𝐹𝑟𝑒𝑙 + 0.033 

where Frel is a measure of the forces that remain on atoms in the incompletely relaxed structures. Frel is 

found by calculating the Euclidean vector norm of the force for all atomic sites in each of the start, end, 

and midpoint structures; Frel is the difference in the Euclidean vector norm between the midpoint and start 

(or end) structures, whichever is larger. 

The Frel empirical coefficient of −0.153 implies that structures with higher Frel will often 

overestimate barriers. Although Frel has the primary purpose of correcting for incomplete relaxation, it also 

provides a partial correction for our use of small supercells49. 

When linear regression is applied as an empirical correction, this fit yields an updated median 

error of −10 meV and a standard deviation of 286 meV. This is a drastic improvement from our original 

uncorrected static calculation that gave a median error of 165 and standard deviation of 427 meV. 

However, this is only a modest improvement in accuracy compared to the empirically corrected static 
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calculation, which had a median error of −9 meV and standard deviation of 318 meV. Given that this small 

improvement in accuracy comes with a 60% increase in computational cost, we decided that our 

empirically corrected static approximation (described in the preceding section) would best balance 

computational costs with accuracy. Thus, by using this approximation, we were able to calculate 6797 

barriers to identify promising materials. This overall strategy was enabled by our DDI framework, which 

simplified the process of testing different approximations and iteratively correcting errors without 

interrupting or restarting the search. 

 

Figure 4-2. Error distributions of approximated barrier heights relative to reference NEB barrier 

heights (R = 10 Å). The static pathway (green) as well as the partially relaxed pathway (red) used smaller 

supercells (R = 7 Å). Empirical corrections to barrier height were made for the static (blue) and partially 

relaxed (black) calculations using linear regression as described in the text. The partially relaxed 

calculations (red, black) were performed on a subset of pathways (N = 170). Gray regions are centered 

about the mean in (a) and the linear regression in (b), where the region width shows the standard 

deviation. 

4.3.5 Identifying heuristics for fluoride-ion transport 

At the time of publication, we completed 6797 empirically corrected static calculations. These 

calculations provide a high-quality dataset for fluoride-ion transport and provide us with the opportunity to 
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identify heuristics. In fact, during the course of this study, we iteratively assessed the growing database 

for trends. This allowed us to use emerging trends to prioritize calculations on materials with promising 

characteristics. 

Although heuristics for fluoride-ion transport have not been described previously, heuristics for 

cation transport have been developed30,45,50,51,52. For example, the size of free-volume networks, bond 

lengths, and pathway lengths were used to predict the ionic mobility of lithium, sodium, and zinc27,28,29,30. 

These heuristics were also applied to empirically predict fluoride transport in 1,500 materials53. Because 

of our recent discovery of a distinct transport mechanism in some anion conductors3, it is unlikely that 

heuristics for cation transport generally apply to anions. In the following section, we sought to use our ab 

initio calculations to evaluate whether heuristics based on sterics, charge, and pathway length could be 

applied to fluoride diffusion. 

We evaluated the sterics of the diffusing atom by treating atoms as hard spheres and measuring 

their overlap along the diffusion pathway. The overlap was quantified using the change in ionic radii 

overlap (ΔIRO), where ionic radii were obtained by using bond valence analysis. The ΔIRO descriptor 

uses the same underlying principles of sterics and charge as other software, such as SPSE27 and 

SoftBV50, which evaluate free volumes for cationic diffusion. 

Initially, we hypothesized that ΔIRO would correlate strongly with barrier height because overlap 

between fluoride and neighboring atoms in the transition state would be unfavorable. Unexpectedly, we 

did not find a clear relationship between ΔIRO and barrier height. As we analyzed our data, however, we 

found that materials with a small ΔIRO and high barrier often had pathways where significant bond-

breaking occurred. We also observed that increasing overlap between fluoride and anions (cations) 

resulted in larger (smaller) barriers. We therefore refined our model to incorporate both increasing overlap 

(positive ΔIRO) and bond breaking (negative ΔIRO) and distinguished between neighbors that were 

cations (ΔIROcation) and anions (ΔIROanion). For each type of ΔIRO, we used the maximum value for F- with 

each of its neighbors. The revision of our incorrect hypothesis highlights the value of the DDI strategy in 

contrast to traditional hierarchical searches. If this had been a hierarchical search, our incorrect 

hypothesis would have removed promising materials, and we might not have identified our error. 
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Figure 4-3. Understanding the role of sterics and charge on barrier height based on 6797 

pathways. The diffusing fluoride’s change in ionic radii overlap was separately evaluated for neighboring 

anions (ΔIROanion) and cations (ΔIROcation). All measurements were performed on the IDPP-relaxed path 

in R = 7 Å supercells, and the barrier corresponds to the static, midpoint-only approximation discussed in 

the main text. Each hexagon bin is colored using the average barrier of all pathways in that region. 

This updated model is presented in Figure 4-3. The smallest barriers for fluoride transport occur 

when, in the transition state, the fluoride moves towards cations (positive ΔIROcation) and away from 

anions (negative ΔIROanion). Small barriers can also occur with a modest decrease in fluoride-anion 

distances or a modest increase in fluoride-cation distances. However, when fluoride-anion distances 

decrease more than ~0.5 Å or when fluoride-cation distances increase more than ~1.0 Å, barriers rapidly 

grow. Overall, the data show that anions in the vicinity of the diffusing fluoride have an especially 

profound influence on fluoride transport. 

Even though this updated model considers the distinct roles of cations and anions, it does not 

consider the number of ions or the magnitude of their charge. To measure the change in electrostatic 

energy of the diffusing ion, we calculated the Ewald energy along the empirically relaxed pathway  
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Figure 4-4. Understanding fluoride transport using pathway length (left column, a, c, e) and the 

change in Ewald energy (ΔEEwald) (right column, b, d, f). Pathways for all structure types show 

moderate correlation with (a) pathway length and (b) ΔEEwald. When pathways were analyzed structure 

type-by-structure type (c–f), we observed much tighter distributions for barrier heights. However, many 

structure types display barrier heights that are independent of these predictors (Supplementary Figure 4-

S6). Trendlines and error bars for each subplot depict the mean and standard deviation of barrier heights 

within binned regions, respectively. 

(ΔEEwald). Here, we expected that positive changes in Ewald energy (corresponding to more unfavorable 

electrostatic environments) would occur in higher energy pathways. This is corroborated by the positive 

trend of ΔEEwald with approximated DFT-calculated barriers (Figure 4-4b). Nearly all pathways with an 
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unfavorable change in ΔEEwald greater than 5 eV have a barrier greater than 1.5 eV, which indicates that 

ΔEEwald is a promising empirical predictor of high barrier pathways. 

The final heuristic that we present is based on the hypothesis that longer pathways have higher 

barriers54. In Figure 4-4a, we plot pathway length and barrier height and find that virtually all pathways 

shorter than 3.8 Å have barriers under 2.0 eV, but pathways longer than 3.8 Å often have much larger 

barriers. The radial distribution function in Supplementary Figure 4-S3 helps explain these observations: 

pathway lengths over 3.8 Å often require that fluoride moves not to a nearest-neighbor fluoride vacancy 

but to a second nearest-neighbor fluoride vacancy. Therefore, fluoride-ion conductors generally have 

lower barriers for shorter paths (Supplementary Figure 4-S4), which is consistent with heuristics for cation 

diffusion. 

Up to this point, this section shows how heuristics can be applied to the entire population of 

fluoride-ion conductors. However, the large standard deviation for each of these relationships shows that 

these heuristics have limited explanatory or predictive value. We therefore sought to understand whether 

the standard deviation could be reduced by comparing only those structures that share the same 

structure type. Several exemplar structure types are presented in Figure 4-3 and the SI (Supplementary 

Figure 4-S6). Interestingly, we find that these broad heuristics (e.g., barrier height increases with pathway 

length) describe a small number of structure types but that these heuristics are incorrect for most 

structure types. For example, we observe that the barrier height remains constant as the pathway length 

increases in many structure types. It therefore becomes clear that our general heuristics are often untrue 

for specific structure types, even if they are true for the overall population. 

Although we find that general heuristics are poor predictors of ionic mobility, in specific structure 

types, our plots of barrier height vs. pathway length or ΔEEwald have very small standard deviations. These 

small standard deviations suggest that, when analyzed structure type-by-structure type, pathway length 

and Ewald energy are actually good predictors of barrier height. For example, given a specific structure 

type and pathway length, our dataset allows us to accurately predict the barrier height of a yet-unknown 

material. The fact that simple structural or electrostatic features can yield the barriers of unexplored 

compositions will be extremely useful in future explorations of other materials. Furthermore, we propose 
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that our final dataset can be used to identify features beyond those found in this study. This can also 

extend to the development of complex descriptors via machine-learning and active-learning approaches, 

which may outperform the predictive capabilities of general heuristics. 

4.3.6 Exploring the final dataset 

By applying the DDI strategy to a large group of fluoride-containing crystals, we calculated 6797 

approximate barriers and 299 NEB barriers. Because of the iterative refinement, the error in the 

approximate barriers is modest (std. deviation = 318 meV). While the magnitude of this error indicates that 

Eapprox should not be compared directly with experimental values, our results are sufficiently accurate to 

identify promising materials for further study. Moreover, although our calculations focused on single-

vacancy diffusion in single crystals, many candidates may benefit from exploration at different 

stoichiometries and higher vacancy concentrations. To encourage follow-up studies on these materials, 

the full dataset is made available with common querying flags (e.g., hull energy) in the SI. To illustrate this 

dataset’s contents, we outline and apply three example use cases: (a) exploration of specific 

compositions, (b) identification of structure types for 2-D fluoride intercalation, and (c) identification of 

inexpensive solid-state electrolytes. 

Table 4-1 Subset of promising Pb-containing phases. The calculated band gaps aid in identifying 

applications. 

Material Materials project ID Eapprox (meV) (all paths listed) Band gap (eV)40 

PbF4 mp-341 497, 724, 770, 1057 2.00 

PbF2 mp-315 542, 1141 4.44 

SnPbF4 mp-20815 323, 467, 610, 779 3.46 

BiPb2F7 mp-1227492 166, 367, 387 2.66 

Pb3IF5 mp-1220040 182, 278 3.12 

AgPbF6 mp-1206101 232, 724 0.22 

BaPbF6 mp-19799 419, 495, 645, 916 2.89 

PdPb2F6 mp-1209528 157, 160, 371 1.13 

 

First, we sought to identify conductors in our dataset based on composition, and because our 

dataset is large and diverse, we hypothesized that we could explore families of chemically related 

materials. For example, lead is a common component of known fluoride-ion conductors, so we examined 
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all Pb-containing systems in our dataset. This yielded 58 different structures, and a small sample of these 

structures (8 out of 58) is shown in Table 4-1. 

Here, we can see Pb-F systems commonly used in FIBs, including PbF2, PbF4, and 

SnPbF4
13,55,56. We also find many common mixed fluorides, including BiPb2F7, that have been explored as 

fluoride conductors57. In addition to finding some of the previously known high-performing materials, our 

search also identified fluoride-ion conductors, such as Pb3IF5. This suggests that the strategy of 

incorporating a small amount of a larger halide may yield many high-performance materials. 

Using other query flags, such as anonymous formulas, this approach can be extended to 

compositionally related systems as well. For example, searching for all structures that have an 

anonymous formula of AB3 results in 121 distinct structures. This includes all tysonite LaF3-type crystals 

(MF3), where each was predicted to have at least one low-barrier diffusion pathway (<1 eV). This 

therefore captured all known tysonite fluoride-ion conductors (M=La, Ce, Pr, Nd) and several additional 

conductors (M=Li, Cu, Y, Dy, Lu, Np, Pu)4. Likewise, searching for all AB2 structures results in 65 

structures. These results include all known fluorite CaF2-type (MF2) conductors (M=Cd, Pb, Ba, Ca, Sr) as 

well as several additional conductors (M=Hg, Eu, Ti), which we list in order of increasing barrier4. The 

trend in barrier height among the known conductors agrees well with experimental measurements 

(Pb < Ba < Sr < Ca)58,59,60. These example searches illustrate the quality of our dataset and how it can 

assist the exploration of fluoride-ion conductors by composition. 

As a second approach for identifying materials, we can explore our dataset by structure-type. For 

example, in cation shuttle batteries, intercalation electrodes have been used to improve cyclability relative 

to conversion electrodes. However, in FIBs, conversion-based electrodes are used in the majority of 

studies, and to our knowledge, only four intercalation structure types have been proposed: Ruddlesden–

Popper (K2NiF4-type)61, Schafarzikite (MSb2O4)62, anion-deficient perovskite (y-AMO3)63, and layered 

rocksalts (MoS2-type)3. We therefore searched for layered structures that could facilitate intercalation. 

To identify intercalation structures, we searched for layered structure types that have (a) 2-D 

percolation networks for fluoride and (b) at least three stable structures with a pathway barrier height 

between 0 and 1 eV. Figure 4-5 categorizes the resulting materials by structure type. None of these six  
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Figure 4-5. Structure types for fluoride intercalation in layered materials. These six structure types 

contain at least three stable compositions (Ehull = 0 eV), each with a predicted pathway barrier between 0 

and 1 eV. Each structure type shows an example crystal structure and its composition. The corresponding 

bar charts show barriers of compositions with the same structure. Compositions labeled by a green bar 

are thermodynamically stable, while gold is metastable according to the Material Project database40. 

structure types have been previously explored for fluoride intercalation. We emphasize that criterion (b) 

limited the number of structure types that we highlight here; in fact, our dataset includes a very large 

number of unexplored structures. For example, our search finds the promising material Ho2CF2 (MoS2-

type, barrier = 258 meV) but fails to find three or more promising candidates because the Materials Project 

does not yet include Y2CF2 or Sc2CF2, which are even more promising as fluoride-intercalation 

electrodes3,14,15,16. 

A third and final strategy for identifying promising materials would consider the needs of specific 

applications. Here, we search our dataset for solid-state electrolytes that are stable, inexpensive, and 

fluoride-conducting. This is accomplished by filtering our dataset with the following conditions: (a) the 

structure is stable, (b) the bandgap is greater than 3.5 eV, (c) the barrier height is below 700 meV, (d) the 

raw element cost is less than $125 per kg and $125 per mole, (e) the material’s percolating network is 3-
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D, and (f) the material does not contain mobile cations. This results in 12 structures that are shown in 

Table 4-2. 

These 12 structures include a few well-known fluoride-ion conductors (PbF2, LaF3, InF3, and 

NdF3) but primarily consist of materials. The remaining results include promising but unexplored binary 

and ternary fluorides. The sole binary, GaF3, possesses a higher barrier and cost but still merits further 

exploration for fluoride conductivity as either a pure or mixed phase. The results also contain many 

promising ternary materials that have not been considered fluoride-ion conductors. Among these, we 

highlight ZnTiF6 and MgTiF6, which are isostructural to InF3. These two materials have the lowest barriers 

in this set of results (55 and 324 meV), and the oxidation states of Zn2+, Mg2+ and Ti4+ suggest that F− will 

be the only mobile ion. Moreover, the redox stability of Ti3+ would facilitate the formation of F- vacancies 

necessary for conduction. 

Table 4-2 Candidate materials for cost-effective solid-state electrolytes. 

Material 
Materials 
project ID40 

Eapprox (meV) (all 
paths listed) 

Has it been 
synthesized? (COD 
ID)66 

Is it a known 
F- conductor? 

NdF3 mp-18511 −40, 24 Yes (cod-1010985)a Yes67 

PbF2 mp-315 542, 1141 Yes (cod-9009027) Yes59 

LaF3 mp-905 564, 637, 684, 750 Yes (cod-9008114) Yes7 

InF3 mp-6949 618, 652, 1048, 4682 Yes (cod-1535574) Yes68 

GaF3 mp-588 665, 674, 1372, 6218 Yes (cod-8100893) No 

ZnTiF6 mp-1539332 55, 366 No69 b No 

MgTiF6 mvc-14678 324, 435 No70 b No 

BaZnF4 mp-3881 489, 561, 603 Yes (cod-2104457) No 

BaTiF6 mp-8291 500, 533, 978 Yes (cod-1545628)a No 

Zr3InF15 mp-34291 570, 597, 597 No No 

SrZrF6 mp-1208602 585, 836 Yes71 Yes71 
a The COD structure specified is not an exact symmetry match to the Materials Project structure. 
b The material was synthesized as a hexahydrate, but the dehydrated crystal was not reported. 

 

4.4 Discussion 

In this work, we introduced a high-throughput strategy to identify fluoride-ion conductors. An 

important component of our strategy was the development and validation of a low-cost, high-accuracy 

DFT method that yielded barrier heights for a large number of fluoride-containing materials. This dataset 
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has allowed us to describe heuristics for the movement of fluoride and to identify many promising 

structure types for fluoride-ion conductors that have not been previously explored. 

The development of FIBs has been limited by the few electrolytes and electrodes known, but our 

results now give many interesting materials to target for experimental exploration. In the context of 

electrolytes, some of the most exciting materials are the category M1M2F6 (e.g., ZnTiF6 and MgTiF6), for 

which there are many low-barrier conductors available from lightweight and inexpensive elements. From 

the standpoint of electrode development, many of the materials identified here may be suitable for either 

intercalation or conversion reactions as electrodes. These and many other applications may emerge from 

this dataset, which is available as an online database for download and searching (see SI). 

As an alternative to hierarchical searches, our DDI strategy has demonstrated several 

advantages. Hierarchical searches must apply cutoff criteria based on initial understandings, but because 

no preexisting heuristics existed for F- transport, this approach was not possible. Thus, rather than 

removing candidates using unvalidated predictors, the DDI strategy allowed us to update the ranking of 

candidates as our understanding of F- transport improved. Our DDI strategy therefore enables the 

exploration of systems where there is little prior knowledge. This approach is certainly not limited to 

calculations of ionic conduction, and if adopted more widely, it could greatly improve our ability to explore 

material systems and properties. 

4.5 Supporting Information 

4.5.1 DDI Priority Queues 

Traditionally, high-throughput hierarchical searches are carried out via depth-first or breadth-first 

searches (Figure 4-S1, top-left/top-right), whereas we orchestrated calculations based on dynamic, 

decoupled, and iterative priority queues (Figure 4-S1, bottom). Depth-first searches carry out all 

calculations for a single structure within a single workflow, where it is analyzed to completion or until it 

fails an intermediate check (e.g., DFT is skipped if the empirical method predicts a high barrier). Thus, all 

candidate materials are submitted to a fixed queue at the start of a study. Breadth-first searches run a 

specific analysis on all candidate structures, after which a cutoff is selected to determine which 

candidates continue (e.g., once all empirical analysis is completed, only the top 10% of candidates 
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continue to the next level). Thus, candidates are submitted at each stage, where priority can be adjusted 

between stages but not after submission. The strategy used in this study removes any cutoff criteria and 

prerequisites for each structure and calculation level, allowing calculations to be completed via a flexible 

priority queue. Rather than submitting candidates to a queue, candidates are requested by task executors 

in order of priority. Reranking of candidates occurs while task executors are requesting new candidates 

for a calculation. We updated the ranking of candidates throughout our study, where only illustrative 

examples were discussed in the main text (e.g., our priority based on incorrect ΔIRO was replaced with a 

reprioritized using our updated ΔIRO model). 

4.5.2 DFT Parameters 

Ab initio calculations used with VASP72 with the Materials Project’s precursor input settings (MIT 

relaxation and NEB sets)32. Error handling used Custodian41 with standard, lightweight error handlers 

associated with MD calculations in Atomate32. For static calculations, we reduced the electronic 

convergence criteria to 1x10-3 eV for a moderate increase in throughput. 

4.5.3 Supercell Pathway Initialization 

 Prior to any analysis, structures were reduced to primitive cells at 0.1 Å tolerance and then 

converted to an LLL lattice-basis73. The supercell structures were generated by scaling sanitized 

structures until each lattice vector was a minimum length (R), e.g., R=10 Å for NEB and R=7 Å for all 

other analyses described in the main text. For all calculations, pathways were prerelaxed by IDPP.42 This 

was performed on all sites in the supercell to avoid the common assumption of a rigid host lattice. 

4.5.4 Dimensional Analysis 

Dimensionality of both host lattices and percolating pathways were determined via the Larson 

scoring parameter with the most probable value being reported.74 Atomic connectivity of host lattices was 

determined by removing all fluoride in the structure and then analyzing with the CystralNN algorithm.75 

Pathway connectivity was determined by two methods for each individual path: (1) dimensionality of the 

individual diffusion pathway when including all symmetrically-equivalent paths and (2) dimensionality 

when including all pathways of equal or shorter length. On a single-pathway basis, only 17% (7,226) were 

determined to be percolating, whereas this increased to 42.8% (18,569) if paths of equal or shorter length 
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were included. For each crystal, the Larson scoring parameter was also used to determine the 

dimensionality of overall fluoride diffusion networks (as described in the following section). 

4.5.5 Barrier Height for Long-range Transport 

The preceding section showed that long-range transport (i.e., percolative transport) can vary in its 

complexity. In the simplest case, long-range transport can occur when a fluoride achieves percolative 

transport with a single type of hop. For this case, the barrier for long-range transport is the same as the 

barrier for the single hop (Figure 4-S2, top). In more complex cases, percolation requires two or more 

different types of hops–that is, long-range transport requires the use of two or more symmetrically distinct 

pathways. For this case, the barrier for long-range transport is equal to the energy difference between the 

highest and lowest energies along the overall route (Figure 4-S2, bottom). In a material that has multiple 

percolative routes, we report the lowest barrier for long-range transport.  Results are provided in 

“percolating_networks.csv”. Fluoride mobile structures (overall Eapprox < 1 eV) that are described by one 

symmetrically unique pathway occur more frequently in our dataset (1,203 structures) compared to 

fluoride mobile structures that require more than one unique pathway to be percolating (56 structures). 

This is consistent with our input structures being primarily high-symmetry, single-crystal structures. 

4.5.6 Structure Type Matching 

We started by matching each structure to the AFLOW Encyclopedia of Crystallographic 

Prototypes76,77,78; however, this only matches 20% structures. We therefore performed anonymous 

matching with all remaining structures at a tolerance of 0.1 Å, yielding 1,207 unique structure-type 

groupings that contained at least two equivalent structures. 

4.5.7 Cost Analysis 

The prices for compositions were predicted using pymatgen’s cost database, which uses raw 

element pricing that is aggregated from several source webpages.79,80 Using their sources, prices were 

updated, and we used prices from the “Prices of Chemical Elements” table when there was disagreement 

between costs.80 The original sources of the aggregated data are provided on the corresponding 

webpages. 
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4.5.8 Supporting Figures and Table 

 

Figure 4-S1. Illustration of our dynamic priority queue (bottom) in comparison to commonly 

applied depth-first (top-left) and breadth-first (top-right) searches. Hierarchical calculations are 

composed of different calculation “levels” of increasing quality and computational expense, where three 

levels are shown in this schematic (Structure Check, Empirical Estimation, and DFT Analysis). 

 

Figure 4-S2. Example energy profiles for long-range diffusion. (top) Percolation occurs via a network 

of pathways hops that are symmetrically equivalent. (bottom) Percolation occurs via a network of 

pathways that include multiple unique hops. 



69 

 

Figure 4-S3. The cumulative fluorine-fluorine (F-F) radial distribution function (RDF) for all 

structures in this study. Prior to summing RDFs across all structures, individual-structure RDFs are 

normalized to RDF(r)max=1 as well as gaussian filtered to absorb finite differences across structures. Only 

F-F pairings of up to 5 Å (green) are considered for vacancy diffusion in this study, while those greater 

than 5 Å (grey) are excluded. 

 

Figure 4-S4. Pathway length (L) relative to the shortest fluoride pathway (Lmin) in a structure. The 

lowest barrier pathway in each structure (the pathway in which E=Emin) is indicated in green and all other 

pathways are in grey. In 70.5% of structures, the shortest pathway of the structure also has the lowest 

barrier. Within a structure, as the difference in path lengths becomes larger, the percent likelihood that the 
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longer pathway has a lower barrier decreases exponentially (blue). Only those structures with at least two 

DFT-calculated barriers are included. 

 

Figure 4-S5. Relaxation of pathways under variable convergence criteria. Relaxations were run to an 

ionic convergence of 0.5 meV, and individual ionic steps were analyzed for accuracy and CPU usage at 

different stages of convergence. This small supercell calculation (R=7 Å) was compared to reference NEB 

barriers (R=10 Å), where error bars are the standard deviation in barrier error. The first datapoint (static) 

is exactly equivalent to our initial static approximation, while full relaxation (0.5 meV) is approximately 

equivalent to our reference dataset (R=10 Å). This allows us to estimate that the use of a 7 Å supercell 

rather than a 10 Å supercell increases barrier heights by approximately 200 meV. We remind the reader 

that our linear regression method corrects for this systematic error. 
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Figure 4-S6. (Continues on next page) 
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Figure 4-S6. Simple predictors for fluoride mobility based on pathway length and change in Ewald 

energy (ΔEEwald). A subset of common structure types are presented, where each row is a single 

structure type – labeled with an anonymous formula, example composition, and example crystal structure 

from the structure type. This figure is an extension of Figure 4-4 in the main text. 
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Table 4-S1. All converged midpoint-only NEB calculations. Note that these barriers represent the 

minimum possible barriers for each pathway. Negative ENEB occurs in pathways where start/end 

structures are not representative of the true ground state, even after relaxation. This data (along with 

additional table headers) is also available in the CSV format in pathway_calculations.csv. 

Pathway ID Structure ID 
Reduced 
Formula Ehull (ev) 

Pathway 
Dimensionality Eapprox (corrected) (eV) ENEB (eV) 

594 mp-10175 KCdF3 0.026 3 0.415 -1.090 
869 mp-989178 ScOF 0.084 2 0.366 -0.628 
293 mp-1216625 TiOF2 0.048 2 0.306 -0.537 
151 mp-973778 Hg3F 0.162 3 0.225 -0.383 
6625 mp-556194 SrSbSe2F 0.011 2 0.108 -0.353 
633 mp-998358 MgAgF3 0.033 3 0.301 -0.178 
1230 mp-1216550 TlBiF4 0.010 2 0.381 -0.084 
3 mp-2175 TlF 0.036 3 0.605 -0.028 
18924 mp-27355 Pb2OF2 0.000 1 0.450 -0.024 
1184 mvc-11360 BiOF 0.001 1 0.340 -0.013 
8764 mp-1103397 BaSnF4 0.000 2 0.292 -0.013 
1565 mp-8962 Rb2HgF4 0.000 2 0.329 -0.011 
8701 mp-1210620 LuSeF 0.019 2 -0.053 -0.001 
1046 mp-5606 AlTlF4 0.002 2 0.815 0.004 
10373 mp-1207668 TmSeF 0.000 2 -0.057 0.008 
9924 mp-3632 YSF 0.026 2 0.114 0.008 
1563 mp-555850 LuSF 0.000 2 0.002 0.023 
11004 mp-1212164 Hg3(SeF)2 0.000 3 0.462 0.031 
1198 mp-753594 BiOF 0.000 2 0.350 0.033 
1113 mp-556646 RbFeF4 0.016 2 0.230 0.037 
2647 mp-758604 LiAgF2 0.054 3 0.246 0.064 
8685 mp-27167 Sn2IF3 0.000 1 0.340 0.077 
71 mp-8177 HgF2 0.000 3 0.180 0.086 
8383 mp-27373 SnClF 0.000 1 0.402 0.101 
24817 mp-16915 BaTiOF4 0.000 1 0.358 0.101 
30390 mp-555048 NaAlCdF6 0.000 1 0.307 0.102 
109 mp-706 HgF 0.000 2 0.348 0.103 
3857 mp-1210270 Na2YF6 0.000 2 0.331 0.105 
659 mp-7482 RbHgF3 0.000 3 0.265 0.117 
674 mp-9006 Ho2CF2 0.000 2 0.258 0.133 
1044 mp-5606 AlTlF4 0.002 2 0.555 0.137 
389 mp-558852 FeF3 0.011 3 0.238 0.139 
14150 mp-1209528 PdPb2F6 0.000 1 0.160 0.141 
7852 mp-1021492 Cd4SF6 0.028 2 0.171 0.156 
754 mp-13819 KAgF3 0.000 3 0.420 0.161 
14151 mp-1209528 PdPb2F6 0.000 1 0.157 0.165 
368 mp-998761 TlNiF3 0.011 3 0.440 0.167 
32573 mp-998758 TlHgF3 0.000 1 0.303 0.171 
1258 mp-10931 HoSF 0.000 2 0.547 0.178 
1515 mp-1025338 Tl2CuF4 0.000 2 0.298 0.179 
1052 mp-10086 YSF 0.000 2 0.521 0.184 
3856 mp-1210270 Na2YF6 0.000 1 0.322 0.185 
80 mp-241 CdF2 0.000 3 0.239 0.198 
2719 mp-1080135 SrZnAsF 0.000 2 0.569 0.198 
923 mp-974603 HgF2 0.008 3 0.328 0.200 
27922 mp-18832 K2VO2F3 0.000 1 0.152 0.200 
22328 mp-905 LaF3 0.000 0 0.564 0.205 
11844 mp-7580 Hg3(SF)2 0.000 3 0.516 0.208 
888 mvc-16450 CaSnF4 0.043 2 0.518 0.215 
7860 mp-1021492 Cd4SF6 0.028 2 0.229 0.215 
20184 mp-1013726 Cd4SF6 0.008 1 0.265 0.218 
19202 mp-9628 KCdF3 0.000 1 0.466 0.227 
2055 mp-555014 Rb2MnF5 0.000 1 0.208 0.230 
2228 mp-6949 InF3 0.000 2 0.618 0.238 
5486 mp-4360 NaCdF3 0.000 1 0.501 0.239 
1537 mp-1147757 CuPb2(OF)2 0.117 2 0.182 0.239 



74 

10891 mp-19956 Ba2InO3F 0.000 2 0.538 0.241 
8967 mp-755244 LiVF4 0.103 3 0.400 0.243 
20704 mp-28855 Cd4OF6 0.000 2 0.281 0.246 
32575 mp-998758 TlHgF3 0.000 1 0.293 0.254 
8021 mp-7386 NaAgF4 0.000 2 0.473 0.254 
4 mp-7592 AgF 0.000 3 0.403 0.262 
2981 mp-1880 SbF3 0.000 1 0.572 0.265 
8328 mp-753257 LiCuF4 0.000 1 0.594 0.266 
19201 mp-9628 KCdF3 0.000 1 0.504 0.267 
1354 mp-10930 TbSF 0.000 2 0.547 0.267 
22193 mp-867665 LiV3(OF3)2 0.000 1 0.188 0.267 
7889 mp-998422 CuAgF3 0.013 3 0.325 0.279 
20281 mp-17972 Zn2Hg2OF6 0.000 3 0.464 0.284 
9196 mp-765559 LiAgF4 0.000 1 0.473 0.285 
20334 mp-17745 Mn2Hg2SF6 0.465 3 0.422 0.288 
20707 mp-28855 Cd4OF6 0.000 1 0.318 0.290 
22327 mp-905 LaF3 0.000 0 0.637 0.291 
14004 mp-1105287 Ti4Pb2O9F2 0.007 1 0.310 0.296 
1120 mp-3931 SmSF 0.000 2 0.551 0.298 
22805 mp-555667 RbFeF4 0.000 1 0.219 0.306 
19805 mp-31132 Hg4OF6 0.000 1 0.357 0.307 
9862 mp-776264 LiFeF4 0.000 1 0.205 0.310 
9504 mp-27175 InOF 0.000 1 0.156 0.313 
4649 mp-1078631 SrBiS2F 0.009 2 0.124 0.313 
560 mp-6951 RbCdF3 0.000 3 0.454 0.315 
9488 mp-2284 AgF2 0.009 1 0.338 0.320 
39 mp-1391 Ag2F 0.000 2 0.400 0.320 
10892 mp-19956 Ba2InO3F 0.000 2 0.941 0.321 
2631 mp-1080514 SrF3 0.000 1 0.252 0.329 
4668 mp-998418 MgAgF3 0.018 2 0.353 0.332 
32946 mp-776692 LiFe2F7 0.007 1 0.234 0.332 
2001 mp-752467 NbO2F 0.000 1 0.168 0.333 
9869 mp-1176702 LiFeF4 0.005 1 0.221 0.339 
3178 mp-22398 FeF3 0.007 3 0.205 0.347 
1750 mp-1206532 Tl2NiF4 0.000 2 0.343 0.348 
2229 mp-6949 InF3 0.000 3 0.652 0.355 
15221 mp-556497 RbNi2F6 0.042 3 0.305 0.357 
1322 mp-23008 PbBrF 0.000 2 0.479 0.357 
4666 mp-998418 MgAgF3 0.018 3 0.371 0.367 
18221 mp-3795 NaZnF3 0.000 1 0.571 0.367 
3998 mp-551403 Ba2Fe2S2OF2 0.005 2 0.204 0.368 
8226 mp-1206495 Pb2BrOF 0.000 1 0.411 0.369 
16537 mp-757118 LiMn2F6 0.024 2 0.347 0.371 
32103 mp-34291 Zr3InF15 0.000 0 0.571 0.378 
9842 mp-560449 K3Ni2F7 0.000 2 0.561 0.379 
2941 mp-549058 Ba2Fe2Se2OF2 0.000 2 0.229 0.379 
4179 mp-1206410 Pb2IOF 0.000 1 0.388 0.382 
1517 mp-1025338 Tl2CuF4 0.000 2 0.312 0.383 
485 mp-5566 KCuF3 0.000 3 0.389 0.384 
13051 mp-756285 V2OF5 0.001 1 0.156 0.385 
6301 mp-7767 RbAgF3 0.000 1 0.458 0.386 
1910 mp-1079320 BaZnAsF 0.000 2 0.392 0.387 
23246 mp-777875 LiFeF4 0.009 1 0.255 0.390 
12802 mp-559450 FeF3 0.011 3 0.437 0.392 
8524 mp-554517 NaMnF4 0.000 1 0.356 0.396 
786 mp-5878 KZnF3 0.000 3 0.527 0.397 
3470 mp-541384 MnF3 0.026 2 0.339 0.399 
2338 mp-1095151 BaCdAsF 0.000 2 0.551 0.402 
22932 mp-559739 RbVOF3 0.000 1 0.375 0.404 
2464 mp-556560 MnF3 0.000 1 0.356 0.408 
3489 mp-541384 MnF3 0.026 3 0.344 0.410 
7679 mp-3682 KCuF3 0.000 2 0.361 0.413 
2688 mp-1086652 BaAgSF 0.000 2 0.461 0.414 
2329 mp-1078562 SrAgSF 0.005 2 0.420 0.416 
2075 mp-1079647 BaAgSeF 0.000 2 0.528 0.418 
2772 mp-752927 LiAgF2 0.040 2 0.225 0.418 
3068 mp-1080029 Ba2Mn2Se2OF2 0.000 2 0.283 0.418 
3933 mp-1079717 Sr2Ti2Sb2OF2 0.000 2 0.385 0.423 
3599 mp-1079747 Sr2Ti2As2OF2 0.000 2 0.327 0.424 
1063 mp-759883 BiOF 0.009 2 0.493 0.424 
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9361 mp-8161 CaPdF4 0.000 2 0.510 0.425 
536 mp-555036 KCrF3 0.087 3 0.583 0.441 
9838 mp-560449 K3Ni2F7 0.000 2 0.448 0.441 
7178 mp-23104 Pb2ClOF 0.000 1 0.437 0.447 
26 mp-1009009 LiF 0.288 3 0.392 0.447 
1866 mp-752931 Li2MnF4 0.086 2 0.198 0.449 
30388 mp-555048 NaAlCdF6 0.000 1 0.505 0.450 
11007 mp-757235 Li2CuF4 0.031 3 0.420 0.458 
2462 mp-556560 MnF3 0.000 1 0.355 0.462 
7363 mp-8858 RbCuF3 0.000 2 0.527 0.464 
22400 mp-27210 RbTlF4 0.000 1 0.412 0.467 
1154 mp-7715 AgF2 0.000 1 0.557 0.471 
660 mp-7482 RbHgF3 0.000 2 0.888 0.472 
19964 mp-504704 Ni2Hg2OF6 0.000 3 0.632 0.476 
3232 mp-1078216 Sr2Ti2Bi2OF2 0.000 2 0.492 0.477 
31516 mp-558123 V2Ge(O2F)2 0.000 1 0.342 0.478 
1948 mp-1078949 BaMnSbF 0.009 2 0.309 0.479 
603 mp-1099572 MnInF3 0.031 3 0.543 0.480 
8484 mp-776164 LiFeF4 0.005 1 0.322 0.480 
10312 mp-558059 LiMnF4 0.000 1 0.438 0.485 
1686 mp-1078453 BaAlGeF 0.000 2 0.228 0.488 
3437 mp-1080128 SrMnSbF 0.044 2 0.328 0.491 
13776 mp-1208602 SrZrF6 0.000 0 0.836 0.492 
3908 mp-1080828 KCuF3 0.001 1 0.296 0.492 
23256 mp-777875 LiFeF4 0.009 1 0.335 0.494 
931 mp-5394 LaSF 0.000 2 0.594 0.496 
3339 mp-588 GaF3 0.000 2 0.665 0.497 
1981 mp-562468 TiF3 0.002 3 0.485 0.504 
3199 mp-1078693 BaCdSbF 0.000 2 0.557 0.505 
23765 mp-8892 LiInF4 0.000 1 0.577 0.507 
122 mp-246 TiF3 0.000 3 0.479 0.510 
528 mp-341 PbF4 0.000 2 0.771 0.513 
39097 mp-558599 K2Mn2P2O7F2 0.000 1 1.677 0.515 
31060 mp-1194849 Na3MoO4F 0.000 1 0.376 0.518 
657 mp-554973 TlCuF3 0.000 3 0.348 0.518 
22326 mp-905 LaF3 0.000 0 0.684 0.523 
22291 mp-28778 KScF4 0.000 1 0.613 0.523 
9633 mp-3125 K3Zn2F7 0.000 2 0.562 0.525 
9409 mp-759601 MnOF 0.029 3 0.423 0.531 
2091 mp-1080650 BaCuSF 0.004 2 0.668 0.534 
2904 mp-559931 VF3 0.000 2 0.321 0.541 
9630 mp-3125 K3Zn2F7 0.000 2 0.570 0.545 
3338 mp-588 GaF3 0.000 3 0.674 0.547 
32927 mp-998759 TlCdF3 0.000 1 0.573 0.548 
10319 mp-558059 LiMnF4 0.000 1 0.453 0.554 
1569 mp-8962 Rb2HgF4 0.000 2 0.322 0.563 
22938 mp-559739 RbVOF3 0.000 1 0.612 0.568 
13608 mp-780857 Li2VOF4 0.000 1 0.465 0.569 
11471 mp-753202 Li5CuF8 0.002 2 0.335 0.578 
2837 mp-29764 RbHF2 0.000 1 1.566 0.585 
1873 mp-557610 K2MnF4 0.000 2 0.698 0.593 
22329 mp-905 LaF3 0.000 0 0.749 0.598 
1980 mp-37473 TiOF2 0.079 3 0.416 0.601 
2916 mp-559931 VF3 0.000 3 0.361 0.605 
3186 mp-12444 SrCuSF 0.000 2 0.759 0.607 
17926 mp-1105117 Ni3Sb4(OF)6 0.003 3 0.455 0.615 
12054 mp-2632 TlF3 0.000 1 0.497 0.615 
18855 mp-505066 NaFeF3 0.000 1 0.460 0.623 
72 mp-8177 HgF2 0.000 3 1.034 0.633 
3231 mp-13287 BaCuTeF 0.000 2 0.734 0.633 
527 mp-341 PbF4 0.000 2 0.497 0.643 
1152 mp-1227733 BaSnF4 0.058 2 0.468 0.647 
10431 mp-3881 BaZnF4 0.000 1 0.561 0.649 
3504 mp-9195 BaCuSeF 0.000 2 0.686 0.663 
33893 mp-1214575 Ba5Mn3O12F 0.000 1 0.425 0.671 
8963 mp-755244 LiVF4 0.103 3 0.410 0.692 
1231 mp-1216550 TlBiF4 0.010 2 1.113 0.694 
7149 mp-1111671 K2LiInF6 0.000 2 1.647 0.697 
10434 mp-3881 BaZnF4 0.000 1 0.489 0.698 
1103 mvc-14177 MgTiF4 0.207 2 0.617 0.717 
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2764 mp-557539 MoF3 0.000 2 1.000 0.730 
2649 mp-1080438 SrAgTeF 0.000 2 0.731 0.741 
1097 mp-22964 PbClF 0.000 2 0.533 0.748 
27180 mp-1208058 TlBi3F10 0.000 3 0.769 0.764 
1456 mp-8226 ThNF 0.000 2 0.634 0.783 
13779 mp-1208602 SrZrF6 0.000 0 0.585 0.797 
1286 mp-3637 YOF 0.000 2 0.652 0.801 
1096 mp-1072193 ErOF 0.000 2 0.640 0.810 
7312 mp-1111108 K2NaAsF6 0.000 0 0.469 0.819 
534 mp-560976 KNiF3 0.000 3 0.393 0.820 
34685 mp-1228113 Ba5P3O12F 0.000 1 0.417 0.825 
1199 mp-753594 BiOF 0.000 2 1.263 0.826 
971 mp-1072114 HoOF 0.000 2 0.666 0.832 
77 mp-315 PbF2 0.000 3 0.542 0.836 
3513 mp-4829 Na2ThF6 0.000 2 0.934 0.844 
1173 mp-1072208 DyOF 0.000 2 0.674 0.847 
78 mp-315 PbF2 0.000 3 1.141 0.850 
1008 mp-14093 TbOF 0.000 2 0.684 0.865 
1540 mp-8111 LaOF 0.005 2 0.608 0.865 
20709 mp-28855 Cd4OF6 0.000 2 0.882 0.879 
1316 mp-5479 RbAlF4 0.001 2 0.790 0.880 
10221 mp-754589 VOF 0.000 3 0.712 0.884 
2643 mp-16742 BaAgTeF 0.000 2 0.764 0.901 
17 mp-504731 EuF2 0.000 3 0.696 0.912 
9587 mp-754758 Li2FeO2F 0.003 2 0.162 0.914 
1233 mp-1220682 NaYF4 0.001 2 0.684 0.915 
1454 mp-1221036 NaErF4 0.002 2 0.708 0.924 
1366 mp-1220708 NaHoF4 0.001 2 0.685 0.928 
2905 mp-560338 CrF3 0.000 3 0.720 0.932 
1107 mp-7100 LaOF 0.000 2 0.684 0.938 
234 mp-10694 ScF3 0.000 3 0.780 0.952 
892 mvc-16450 CaSnF4 0.043 2 1.093 0.954 
5398 mp-1111927 K2LiCrF6 0.000 0 0.603 0.959 
9959 mp-1209982 NaMoO3F 0.000 1 0.557 0.965 
1870 mp-557610 K2MnF4 0.000 2 0.797 1.007 
9588 mp-754758 Li2FeO2F 0.003 2 0.347 1.009 
76 mp-8177 HgF2 0.000 3 1.124 1.033 
11845 mp-7580 Hg3(SF)2 0.000 3 1.047 1.038 
340 mp-3654 RbCaF3 0.000 3 0.854 1.047 
9634 mp-3125 K3Zn2F7 0.000 2 0.900 1.062 
4845 mp-1113712 Rb2AgPdF6 0.000 2 1.342 1.068 
28 mp-1029 BaF2 0.000 3 0.788 1.095 
747 mp-2706 SnF4 0.000 2 0.884 1.096 
837 mp-998739 MgTlF3 0.000 3 0.805 1.101 
41 mp-2741 CaF2 0.000 3 0.813 1.104 
26410 mp-2943 KY3F10 0.000 3 1.005 1.114 
40 mp-981 SrF2 0.000 3 0.817 1.138 
26538 mp-1211612 KDy3F10 0.000 3 1.036 1.141 
18463 mp-27714 H3OF 0.000 1 1.306 1.141 
1725 mp-9583 K2ZnF4 0.000 2 0.869 1.143 
1614 mp-31212 K2MgF4 0.000 2 0.847 1.157 
3398 mp-13339 EuCuTeF 0.009 2 0.795 1.158 
24785 mp-1211478 KHo3F10 0.000 3 1.054 1.164 
2 mp-11718 RbF 0.000 3 1.028 1.176 
977 mp-1873 ZnF2 0.000 1 1.234 1.188 
33762 mp-6669 Sr5P3O12F 0.000 1 0.611 1.191 
9852 mp-560449 K3Ni2F7 0.000 2 0.592 1.195 
1875 mp-557610 K2MnF4 0.000 2 0.953 1.226 
2585 mp-1091416 SrCuTeF 0.018 2 0.871 1.239 
9754 mp-554144 K3Mn2F7 0.000 2 0.900 1.256 
9110 mp-34081 NaYF4 0.000 1 1.685 1.260 
3772 mp-1111110 K2LiScF6 0.000 2 1.904 1.260 
11 mp-463 KF 0.000 3 1.077 1.298 
4032 mp-560963 Rb2NaMoF6 0.000 2 1.750 1.309 
1403 mp-555934 VF2 0.000 3 1.113 1.331 
20490 mp-15073 BaSmC2O6F 0.000 2 0.973 1.379 
832 mp-5347 KAlF4 0.017 2 1.020 1.400 
1319 mp-5479 RbAlF4 0.001 2 1.007 1.408 
1056 mp-22951 BaIF 0.000 2 0.899 1.442 
1335 mp-556382 EuClF 0.000 2 0.921 1.463 
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13695 mp-29946 IO2F 0.000 1 2.190 1.485 
925 mp-23046 SrIF 0.000 2 0.965 1.490 
8 mp-682 NaF 0.000 3 1.081 1.501 
7458 mp-1111112 K2LiGaF6 0.000 2 2.107 1.502 
897 mp-3448 KMgF3 0.000 3 1.022 1.508 
31422 mp-6280 Al2Si(O2F)2 0.000 1 1.235 1.548 
3341 mp-588 GaF3 0.000 1 1.372 1.587 
7263 mp-1113857 Rb2AlAgF6 0.000 2 2.002 1.595 
21970 mp-10234 Sr2BN2F 0.000 1 1.338 1.607 
26320 mp-6160 Rb2PO3F 0.000 1 1.267 1.662 
349 mp-3654 RbCaF3 0.000 2 1.444 1.692 
1949 mp-7604 Mg3NF3 0.000 3 1.219 1.698 
1397 mvc-3135 TiZnF4 0.346 2 0.467 1.721 
214 mp-24199 LiHF2 0.000 2 1.458 1.782 
5400 mp-1111927 K2LiCrF6 0.000 2 1.903 1.895 
3233 mp-1078216 Sr2Ti2Bi2OF2 0.000 2 1.626 2.002 
53 mp-2741 CaF2 0.000 3 1.790 2.018 
32278 mp-1195159 Tb2SeOF2 0.000 1 1.814 2.024 
1805 mp-557938 HfVF6 0.000 2 2.034 2.030 
1296 mp-3637 YOF 0.000 2 2.216 2.045 
513 mp-557257 KVF3 0.000 2 1.633 2.046 
213 mp-24199 LiHF2 0.000 2 1.272 2.055 
123 mp-246 TiF3 0.000 2 1.560 2.061 
1174 mp-1072208 DyOF 0.000 2 2.240 2.085 
5454 mp-560936 Rb2NaCrF6 0.000 2 1.818 2.161 
5490 mp-1114702 Rb2LiScF6 0.000 2 2.176 2.303 
13103 mp-11166 BaZnCO3F2 0.000 2 2.634 2.319 
118 mp-282 TiF2 0.248 3 1.077 2.323 
1034 mp-9488 SmOF 0.000 2 1.877 2.330 
930 mp-23046 SrIF 0.000 2 2.014 2.454 
1485 mp-23070 BaBrF 0.000 2 2.318 2.493 
1183 mp-7738 LaSeF 0.000 2 2.352 2.496 
2839 mp-29764 RbHF2 0.000 1 2.808 3.026 
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CHAPTER 5: HIGH-THROUGHPUT DISCOVERY OF LAYERED  
ELECTRIDES FROM FLUORIDE ANALOG SYSTEMS 

5.1 Summary 

 Electrides possess exceptional electronic properties due to lone electrons in distinct lattice sites, 

where their lone electrons behave as anions would in traditional ionic materials. Despite their fascinating 

properties, few inorganic electrides have been experimentally realized because they are primarily 

explored through high-temperature bulk synthesis, which typically yields only the most stable polymorphs. 

Here, we propose an alternative low-temperature synthetic strategy for electrides via the etching of halide 

materials. To identify candidate materials for this synthetic approach, we outline a search strategy for the 

high-throughput discovery of novel electrides from all known materials, and we illustrate this approach 

using a smaller dataset of layered fluoride-ion conductors. This resulted in several candidate electrides 

and structure types that can be explored via low-temperature defluorination and, more importantly, 

confirmed that many more electrides are accessible as kinetically trapped phases rather than as 

thermodynamic ground states. Our search results support our strategy for the dehalogenation of known 

materials, which can give rise to a broader class of electride materials. These previously inaccessible 

materials will advance our understanding of the divergent properties of electrides and facilitate their 

applications as highly reducing and conducting systems. 

5.2 Introduction 

Traditional ionic solids are composed entirely of cation and anions, and all electrons are associated 

with individual atoms. However, in rare cases, ionic solids can diverge from our fundamental chemical rules 

and possess electrons that are not associated with any atomic orbital – i.e., lone electrons that occupy 

distinct lattice sites and behave as anions.1 These materials are known as electrides. 

The anionic electrons in electrides give rise to exceptional electronic properties, which have 

attracted considerable attention in recent literature.1,2,3 While traditional ionic solids are frequently hard, 

brittle, and electrically insulating, electrides can be soft, malleable, and among the most conductive 
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materials known. To this end, a single electride material (Ca2N, which can also be written as [Ca2N]+·e-) 

has demonstrated conductivities competitive with silver4, high catalytic activity in challenging reactions5,6, 

and electron donating effects that exceed alkali metals7. In addition to serving as superconductors, 

cocatalysts, and solid-state dopants, these electron-rich materials have more recently been proposed as 

high-voltage, high-capacity anodes for anion-shuttle batteries.8 Surprisingly, an investigation of anion 

shuttling proposed that electride character fundamentally alters the mechanism and redox process by which 

anions are (de)intercalated.8 Thus, electrides have proven to be an exciting class of materials with diverse 

applications, and further, their unique characteristics are continuing to reshape and challenge our chemical 

understanding. 

Unfortunately, however, there are only a limited number of synthesizable electrides and, as a result, 

the chemical boundaries that define where one is likely to find electrides remain unknown.2 Candidate 

electrides have been proposed from high-throughput searches of all existing compounds9,10,11,12, but these 

materials frequently possess minimal or no electride character after further investigation. Electride electrons 

are highly reducing and high energy, and it is therefore no surprise that a relatively small number of 

thermodynamically stable electrides exist. Moreover, the majority of known electrides fall within a few 

structure types where the electride character is stable.2 Because of this, elemental substitution of known 

electrides has been more successful in realizing new electride compounds relative to high-throughput 

computational searches.13,14 Ultimately, experimentalists need a more effective strategy to identify new 

electrides and understand their properties. 

Because electrides are frequently observed in chemically strained systems (induced by 

incommensurate stoichiometries or even extreme mechanical pressures)15,16,17, we propose that the 

majority of electride materials exist as metastable phases. Low-temperature syntheses should therefore be 

explored to avoid decomposition of these chemically strained systems. Inspired by recent reports 

(de)intercalation of layered electrides8 and on fluoride mobility18, we propose that low-temperature removal 

of halides will result in previously inaccessible electride materials. Thus, this work outlines a generalizable 

strategy for electride synthesis and proposes several candidate materials and structure types to investigate 
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via this approach. Our findings suggest that dehalogenation can produce the first metastable electride 

materials and provide novel electrides that further our chemical understanding. 

5.3 Design strategy for novel electrides 

In the past, the synthesis of inorganic electrides has been exclusively carried out via high-

temperature reactions, which limits known electrides to systems that are thermodynamically 

favored.1,2,3,13,14 However, even in these cases, the synthesis of electrides can be extremely challenging 

due to the similar energy of competing phases. Therefore, an alternative strategy is needed that would 

kinetically favor the desired phase. 

In contrast to high-energy electrides, inorganic halides are often dynamically stable and easier to 

synthesize as pure phases.19,20 For example, the bulk synthesis of a layered electride [Y2C]2+·(e-)2 is highly 

sensitive to reaction parameters and frequently contains mixed phases, whereas its fluoride-substituted 

analog (Y2CF2) gives highly crystalline phases and is less susceptible to oxidation.21 With this in mind, we 

also emphasize that lone electride electrons (e-), hydrides (H-), and halides (X=F-, Cl-, Br-, I-) can be viewed 

as likely substitutions due to their similar oxidation states (e.g., e- for X- and vice versa) (Figure 1-1). For 

example, an inorganic fluoride can be etched to produce an electride according to the half-reaction: 

[𝑌2𝐶]2+(𝐹−)2 +  2 𝑒− → [𝑌2𝐶]2+(𝑒−)2 +  2 𝐹−   

Analogous half reactions can be written for hydride and other halides as well. We can generalize the base 

electride (Y2C) to produce a more general half reaction, where X is any halide and E is the base lattice for 

any electride/halide: 

[𝐸]2+(𝑋−)𝑛 +  𝑛 𝑒− → [𝐸]2+(𝑒−)𝑛 +  𝑛 𝑋−   

Considering the prevalence of inorganic halides, this model suggests an alternative synthetic 

approach for electrides: the low-temperature dehalogenation of the electride’s halide analog. Thus, we 

propose electrochemical or chemical dehalogenation to form new, previously inaccessible electrides. This 

can also be a preferable synthetic strategy relative to the high-temperature melts often used for known 

inorganic electrides. Here, we focus on the discovery of novel electrides to expand our understanding. We 

therefore sought to identify known halide materials that are promising for dehalogenation. 
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For candidate materials, either an electrochemical bias or chemical etching strategy must be 

thermodynamically and kinetically favorable at low temperature. To this end, we have recently predicted 

that electrides can undergo reversible intercalation of fluoride at room temperature, which suggests our 

strategy is indeed viable for known electrides such as Y2C.8 We therefore propose that fluoride mobilities 

and reduction potentials can provide insight into whether electrochemical fluorination of other halide 

materials is possible – even at slightly elevated temperatures (e.g., <200°C). For chemical etching, we also 

propose that halide materials can be converted using highly reducing alkali metals such as lithium: 

[𝐸]2+(𝑋−)𝑛 +  𝑛 𝐿𝑖 → [𝐸]2+(𝑒−)𝑛 +  𝑛 𝐿𝑖𝑋   

We note that in addition to lithium metal, other reducing metals can be substituted. Regardless of the 

reducing agent, this process will require good halide transport and likely require the reducing agent to be 

in a liquid or vapor phase at low temperatures. Overall, both electrochemical and alkali-metal strategies 

should be evaluated when looking at potential halide systems, so this study investigates both routes for all 

candidate materials. 

5.4 Selecting candidate materials 

Evaluating all known halide materials would be an ambitious and computationally expensive task. 

Even for a single metric such as fluoride mobility, standard methods can require hundreds of CPU hours 

for a single compound22,23, and further, follow-up analyses that evaluate dynamic or thermodynamic 

stabilities simply add to this challenge. We must therefore limit this study to a subset of model material 

systems. 

Fortunately, we have previously explored all known fluoride materials to identify those with high 

fluoride mobility – a central requirement to our proposed synthetic strategy.18 This ultimately led to fluoride 

mobility predictions across ~7,000 ionic pathways, and many of these fluoride-ion conductors could be 

promising candidates for low-temperature fluoride removal. In fact, our dataset includes fluoride analogs 

for well-known electride structure types, such as Ho2CF2, which is isostructural with other M2C (M=Sc, Y, 

Gd, Tb, Dy, Ho) and M2N (M=Ca, Sr, Ba) electrides. We therefore use this dataset of ionic mobilities to limit 

our search for low-temperature dehalogenation candidates. 
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Figure 5-1. The dimensionality of fluoride-electride networks. A network’s dimensionality is based on 

the connectivity of the anionic electron lattice positions. Shown are superlattices of the 1-D electride La5Pb3 

(left), 2-D electride Ca2N (middle), and 3-D electride Cs3O (right), where the electride network is in yellow. 

Insets are alternative perspectives of the superlattice. It is important to note that Cs3O is likely not a 3-D 

electride in reality, as each anionic electron site is largely isolated (>6 Å separation) and e- exchange 

between positions would be extremely rare. We still show it as such to serve as an example because no 3-

D electrides have been reported. 

In addition to fluoride being mobile, the removal of fluoride from a host lattice also requires a 

percolation pathway for fluoride to diffuse along. We refer to this pathway as the dimensionality of the 

fluoride (and electride) network (Figure 5-1).24 Historically, layered (2D) electrides have been the most 

widely used in applications such as electron donors and battery electrodes. Most notably, a single 2D 

structure type (rocksalt MoS2-type) has also been the focus of the majority of inorganic electride research.2 

We seek to focus this study on the discovery of new 2D electrides to build upon current understandings 

and technologies. 

To complete our input criteria, we also limit our search to materials that contain at least 2 elements 

other than fluoride and that have good thermodynamic stability. The former criterion excludes metal 

fluorides (MFx), while the latter ensures that our starting fluoride is indeed synthesizable. Together, we 

arrive at the following filtering criteria for our fluoride-mobility dataset given in Sundberg et al.18: (i) the host 

lattice dimensionality is 2D, (ii) the fluoride/electride percolation network is 2D, (iii) the fluoride structure 

contains at least three elements, (iv) there is a fluoride diffusion pathway with a barrier below 1 eV, and (v) 
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the hull energy (Ehull) is below 100 meV. This resulted in 233 fluoride materials that served as the starting 

candidate materials for this study. 

While we limit our search to layered fluorides, we emphasize that both our previous study and 

methods used here are applicable to other percolation types (1D and 3D) and other hydrides/halides (H-, 

Cl-, Br-, I-). This study thus serves as a model for the exploration of other systems and the realization of 

novel electride materials. 

5.5 Characterization of candidate materials 

5.5.1 Structure optimization 

 The 233 layered fluorides were then used to generate potential electrides. This was done by 

removing all fluoride species from each structure and then geometrically optimizing the result. Relaxations 

were run using Materials Project settings25 through the Simmate workflow framework26. To quickly identify 

which structures were particularly interesting (or problematic), we evaluated the relaxation results for 

excessive changes in volume. 

 Electride electrons can vary in their effective size relative to other -1 anions, which indicates that 

the removal of fluoride may lead to expansion or contraction of the layered structures’ interlayer.2 This can 

be seen in two example systems, Ca2NF and Y2CF2. In the former, removal of fluoride causes the lattice 

volume to change by +12.3%, while in the latter, fluoride removal results in a -7.7% volume change. Despite 

having isostructural host lattices, an electride electron’s effective size can result in different lattice changes. 

In some cases, however, instability of the host lattice structure would result in extremely large compression 

of the lattice and even result in atomic rearrangement upon defluorination. This is particularly important to 

consider because we removed fluoride from structures whose host lattices have not yet been analyzed for 

dynamic stability. Thus, the relative volume change during relaxations can be used to identify structures 

unlikely to exist as electride materials. 

The distribution of volume changes for all relaxations is shown in Figure 5-2a, where 143 (of 194 

completed relaxations) structures change less than ±20%. This is consistent with many layered electrodes 

that experimentally expand/contract by ±5-15%.28 Larger volume changes are possible in certain instances, 

but are usually accompanied by significant decomposition.28,29 Therefore, we consider modest volume 
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changes (< ±20%) to indicate the most promising candidates for the low-temperature formation of stable 

electride materials. 

 

Figure 5-2. Distribution of volume changes and electride characteristics upon defluorination. 

Fluoride was removed from all candidate structures, and the resulting structure was relaxed. (a) The 

distribution of volume changes (relative to the original fluoride structures) illustrates the variable effective 

size of electride electrons and the collapse/rearrangement of the host lattice. (b) Structures that undergo 

smaller changes were evaluated via Bader-ELF analysis by placing empty atoms at previously occupied 

fluoride sites, and the mean electron density for each overall structure is given. 

5.5.2 Structure matching 

 All relaxed structures were also matched to known phases/systems in the Materials Project 

database25 to identify which electride candidate materials were previously synthesized. Structure matching 

was performed using (i) exact symmetry matching and (ii) fingerprint similarity matching. 

For (i), the structure matcher implemented in PyMatGen was used with default symmetry 

tolerances, which are very loose (vector lengths = 0.2 Å, vector angles = 5°, and site coordinates = 0.3 Å) 

to capture slight distortions.30 This resulted in 12 of the 233 structures being matched to known phases in 

the database. 11 of these 12 structures are fluorides of the Matlockite structure type and are primarily metal 

sulfides (Figure 5-3a). The matching structures were actually of the NaCl-rocksalt structure type, which is 

a slight distortion of the Matlockite host lattice. This suggests that when fluoride is removed from these 

materials, the host lattices will likely collapse across the interlayer spacing. We performed short molecular 

dynamics simulations on these defluorinated materials at 1000 K and, as expected, the structures collapsed  
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Figure 5-3. Defluorinated structures matched to experimentally known phases. (a) Matlockite 

fluorides (left) were matched to rocksalt metal sulfides (right), indicating that the MS host lattice likely 

collapses upon defluorination. However, this matching does suggest that the rocksalt crystals may form 

electrides under high pressure. (b) Ba2ZnF6 defluorination occurs in both the inter- and intralayer, where a 

surprisingly small change in volume is observed after ~66% loss in atomic density. 

to rocksalt structures within 1 picosecond. These metal sulfides are therefore incompatible with our 

proposed low-temperature synthetic strategies. However, these rocksalt phases may still form electrides 

under extreme pressure (as is done with other electron-rich materials such as sodium metal). We therefore 

suggest that this series of rocksalt metal sulfides be investigated under high-pressure environments. 

The extra structure matched was the Ba2Zn-Ba2ZnF6 electride-halide analog (Figure 5-3b), which 

undergoes a surprisingly small volume change of -8.26% during defluorination and the electride Ba2Zn 

phase <1 meV above the hull. Fluoride intercalation unexpectedly occurs in both the inter- and intra-layer 

of the Ba2Zn layers. We therefore highlight Ba2Zn as a material of interest for electride research due to its 

incommensurate, electron-rich stoichiometry of Ba vs. Zn and unusually high threshold for anion 

intercalation (200% atomic capacity). 
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For structure matching via fingerprint similarities (ii), we applied the CrystalNN fingerprint31 through 

the MatMiner code32. This fingerprint allows us to capture structures with similar coordinates and structure 

types and, as is particularly important for layered materials, capture matches that have different stacking 

sequences. To our surprise, only one new structure match is found (compared to exact structure matching). 

A match was found for Ho2C-Ho2CF2, which is already an experimentally known electride.33 This finding 

confirms that defluorination does indeed produce electride materials, but the lack of other matches suggests 

that nearly all of our candidate materials are novel compounds. 

5.5.3 Thermodynamic stability 

We then performed database searches of the electride chemical systems to evaluate which ones 

were previously explored and to identify competing phases. 28 of the 233 electride analogs (12%) did not 

have any known structures in the same chemical system – i.e., the candidate material BaSrPdO2 would 

have no known phases in the BawSrxPdyOz compositional space (where variables w, x, y, and z are >0). 

These candidate compounds correspond to chemical systems that are poorly explored, and full phase 

searches would be required to understand the thermodynamic plausibility of such structures. Additionally, 

149 out of 233 electride analogs had structures with matching reduced compositions in the database. 

However, because exact structure matching only gave matches for 14 structures (see discussion above), 

the remaining 135 structures are likely metastable phases. These searches indicate that the large majority 

of systems are unexplored phases or compositions and that more robust thermodynamic analysis is 

required to evaluate the stability of our candidate electrides. 

In the simplest approach, we can compare the thermodynamic stability of our candidate electrides 

to known materials in the database. Simmate uses updated pseudopotentials relative to the Material 

Project database, so we recalculated known stable phases for the full chemical system of our candidate 

electride phases. These several hundred materials were reoptimized using the Simmate workflow engine, 

and then calculated enthalpies were used to predict the hull energy (Ehull) for each candidate electride. 

From these results, only two structures (Li2V2O4 and Na4Pd2) are predicted to be on the hull, while 32 of 

233 have Ehull < 100 meV. This is consistent with our predictions from structure matching and systems 

search, which suggested that nearly all candidate electrides are metastable. However, we reemphasize 
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that metastable electrides are in fact the expected outcome of this search strategy. This agrees with our 

expectation that the majority of existing electrides are metastable due their electron-rich and chemically 

strained compositions, which reinforces the need for a low-temperature synthetic strategy to 

experimentally realize novel electrides. 

5.5.4 Low-temperature defluorination 

 Above, we proposed the low-temperature synthesis of electrides driven by an electrochemical 

bias or a strong reducing agent. Here, we evaluate possible reactions by predicting (i) deintercalation 

potentials for fluoride and (ii) the reaction enthalpies to reduce each candidate fluoride.  

 To approximate the intercalation potential of inserting an electride electron into an inorganic 

fluoride (vs. Li/Li+), we adopt the method reported by Druffel et al.8 and provide an overview of this 

approach using Y2CF2 as an illustrative example. Because the solvation energy of fluoride cannot be 

easily calculated, we approximate this term using the ionization energy of lithium metal and solvation 

energy of lithium fluoride:  

                                          𝑌2𝐶𝐹2(𝑠) + 2 𝐿𝑖(𝑠) → [𝑌2𝐶]2+(𝑒−)2(𝑠) +  2 𝐿𝑖𝐹(𝑠)                        ∆𝐆𝐫𝐱𝐧   

                                                             2 𝐿𝑖𝐹(𝑠) → 2 𝐿𝑖(𝑠𝑜𝑙𝑣𝑎𝑡𝑒𝑑)
+ + 2 𝐹(𝑠𝑜𝑙𝑣𝑎𝑡𝑒𝑑)

−                       ∆𝐆𝐬𝐨𝐥𝐯 

                                     2 𝐿𝑖(𝑠𝑜𝑙𝑣𝑎𝑡𝑒𝑑)
+ + 2 𝑒− → 2 𝐿𝑖(𝑠)                                                               𝐄𝐫𝐞𝐝

𝐋𝐢+
 

                                             𝑌2𝐶𝐹2(𝑠) + 2 𝑒− → [𝑌2𝐶]2+(𝑒−)2(𝑠) +  2 𝐹(𝑠𝑜𝑙𝑣𝑎𝑡𝑒𝑑)
−                 𝐄𝐞−𝐢𝐧𝐭

𝐘𝟐𝐂𝐅𝟐 

∆Grxn is approximated using the enthalpy of the solid reaction via DFT, neglecting the change in entropy. 

∆Gsolv uses an experimental value of the energy of solvation of LiF (21.13 kJ/mol) in the ionic liquid, 1-

butyl-3-methylimidazolium trifluoromethanesulfonate ([C4C1im][OTf]). Through the Nernst equation, we 

can relate the Gibbs free energy of the reduction reaction to the voltage of the cell vs. Li/Li+. This gives 

the relation: 

𝐸𝑒−𝑖𝑛𝑡𝑣𝑠.  𝐿𝑖/𝐿𝑖+

𝑌2𝐶𝐹2 =
∆𝐺𝑟𝑥𝑛 +  ∆𝐺𝑠𝑜𝑙𝑣

−𝑛𝐹
  

+ 
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where F is the Faraday constant and n is the number of electrons transferred. Thus, we can predict an 

approximate intercalation potential by calculating the ΔGrxn of the fluoride analog (e.g., Y2CF2) with Li 

metal to form the electride analog and LiF (repeating the equation from above): 

                                          𝑌2𝐶𝐹2(𝑠) + 2 𝐿𝑖(𝑠) → [𝑌2𝐶]2+(𝑒−)2(𝑠) +  2 𝐿𝑖𝐹(𝑠)                        ∆𝐆𝐫𝐱𝐧   

 Coincidentally, this is also one possible reaction to chemically etch our candidate fluoride 

structures with a strong reducing agent (i.e., Li metal). We therefore use this general reaction to evaluate 

all of our candidate materials for both electrochemical and chemical removal of fluoride: 

[𝐸]2+(𝐹−)𝑛 +  𝑛 𝐿𝑖 → [𝐸]2+(𝑒−)𝑛 +  𝑛 𝐿𝑖𝐹   

 This calculation resulted in 171 of the 233 fluorides with a favorable (negative) ΔGrxn with Li metal, 

indicating that in many cases this would be a viable synthetic route. We do note, however, that this analysis 

neglects electride stability as well as the possibility of using a stronger reducing agent than Li metal. Our 

findings from other analyses are therefore higher priority when identifying the most promising candidate 

materials, and in some cases, a stronger reducing agent should be considered. We therefore provide 

theoretical Einterc and ΔGrxn not as a required criterion but instead as a guide for possible experimental 

investigation. 

5.5.6 Electride character and electronic structure 

 Hitherto, we have predicted the thermodynamic stabilities and synthetic strategies for candidate 

materials, but we have not yet confirmed that these materials are in fact electrides after fluoride removal. 

To do this, oxidation states and electride character can be evaluated via several techniques, but it is 

important to consider how the presence of lone (and sometimes diffuse) electride electrons complicates 

population analyses.34,35 

The most commonly applied strategy is to visualize the electron localization function (ELF).35,36 The 

ELF corresponds to the probability of finding an electron of the same spin in a region of space. Thus, smaller 

probabilities correspond to a more localized electron. Furthermore, recall electrides are characterized by 

high electron density at lattice sites where there are no atomic species. Other high-throughput searches for 

electrides have sought to quantify ELF by drawing an ELF isosurface and then integrating charge densities 
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within these confined regions.9 Unfortunately, however, localization probabilities vary greatly between 

crystal structures, and this process can frequently give inconsistent results across different compositions 

and structure types. 

 Meanwhile, for traditional ionic solids, oxidation states are frequently determined by Bader analysis, 

where charge density is partitioned in a consistent manner using zero-flux surfaces of the charge density.37 

While extremely robust for most ionic solids, Bader analysis struggles to evaluate electride materials due 

to the low total electron density in electride regions (relative to atomic sites). This ultimately leads to 

underestimation of the electride character, where the electron density is incorrectly assigned to one of the 

neighboring atoms. 

We therefore introduced a new partitioning strategy that addresses the shortcomings of Bader 

analysis and fixed-cutoff ELF isosurfaces. Specifically, we use the Bader algorithm to find zero-flux surfaces 

in the ELF in a consistent manner, and then these surfaces are used to partition the charge density. We 

found that this approach effectively captures expected oxidation states in both common ionic materials and 

electrides (see Section 2.3.4). 

We expect that electride electrons localize in the same lattice sites as fluoride from the original 

structure. Therefore, using the Bader/ELF method and fluoride materials as templates, we introduce 

“empty” atoms where electride electrons would be expected and use these sites to quantify the electride 

character. This process was automated and applied to all candidate materials, where 109 of 233 materials 

completed successfully. Workflow failures were caused either by failed convergence of the Bader algorithm 

or by the host lattice distorting during relaxation, which led to our algorithm’s inability to match electride-

halide pairings and insert empty atoms. 

As expected, the results show that the majority of materials possess 0-1 electrons at expected 

electride sites. The distribution of mean electron density per site (Figure 5-2b) shows two clear groups of 

materials, centered at 0e-/site and 0.9e-/site. We interpret this to be the separation of materials that do and 

do not form electrides, respectively. Only 17 of the 109 materials contained zero electride character (0e-

/site), whereas the large majority (75 total, 69%) of defluorinated structures contained >0.5e-/site. We also 

note that several compounds contain >2 e-/site, but after closer inspection of these materials, it was found 
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that the extremely high electride characteristics are an artifact of misassigning atomic charge densities to 

electride sites. This occurred in materials where volume changes were in excess of -40%, resulting in empty 

atoms being placed too close (<1 Å) to atomic sites. These results indicate that etching (i.e., removal or 

deintercalation) of F- species from known inorganic fluorides frequently leads to electride formation. 

5.6 Exploring the final dataset 

 Finally, we analyze the results from section 5.5 to identify the most promising candidates for 

defluorination. We filter down to electride materials that (i) are within 100 meV of the hull, (ii) undergo 

volume changes of < ±10%, and (iii) have > 0.2 e- per vacancy site. This results in eight final materials that 

can be considered for higher quality calculations. 

 Of these eight materials, the most notable entry is the Ho2C-Ho2CF2 system, which is also the only 

previously known electride expected from our search strategy. This indicates that our final criteria are 

successful at isolating promising electride candidates. Furthermore, the lack of other isostructural electrides 

(e.g., Y2C) highlights how this study is limited by known fluorides in the Materials Project database. Thus, 

there is a need for a more general search of promising structure types and prediction of new fluoride 

materials. 

Three crystals of these eight materials are derived from Matlockite fluoride structures, which we 

found are likely to collapse to rocksalt crystals upon defluorination (see discussion above). Therefore, these 

three structures (NdTe, BaBr, and EuCl) should instead be evaluated for electride characteristics under 

extreme pressure rather than low-temperature defluorination. 

The remaining four materials are our most promising candidates for low-temperature defluorination 

(Figure 5-4). Two of these are isostructural oxides (YOF and LaOF), and others are BaAlGeF and 

Sr2Ti2As2OF2. All materials show electride character upon defluorination but to varying degrees (0.47 to 

0.82 e- per site). This constitutes a broad range of electride character that has not been previously observed. 

Historically, definitions of electrides and traditional ionic materials have been categorical, but our recent 

findings show that electride electrons can hybridize with nearby atomic orbitals13; our observation of a broad 

range of electride character further supports that intermediate electride characteristics are possible and, 

more generally, electride character is tunable. 
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Furthermore, we propose that the structure types of these materials can be used to identify 

additional electride candidates, much like how Ho2C corresponds to a wide array of isostructural electrides.2 

For example, BaAlGeF (AgLaOS-type) has 18 isostructural materials that are within the dataset – but all 

were excluded due to our strict criterion for volume change (< ±10%). Further investigation of each structure 

type can lead to more promising candidates for defluorination that may have been excluded otherwise. 

Lastly, we note that all of our candidate materials are predicted to be metastable (9 – 92 meV above 

the hull). Even the experimentally-synthesized phase for Ho2C is predicted to be +25 meV, which highlights 

the synthetic plausibility of these compounds and the margin of error for our calculations. Nevertheless, 

these findings are consistent with our expectation that defluorination (and, more generally, dehalogenation) 

leads primarily to chemically strained geometries that are conducive to electride formation. 

 

Figure 5-4. Candidate electride materials to target via low-temperature defluorination. These four 

materials were isolated from the initial pool of 233 structures that each began with their fluorinated 

analog. For each crystal structure (a-d), the left image is the bare crystal showing the layered structure, 

while the right image is the same crystal with an ELF isosurface applied. In each crystal’s interlayer 

space, localized electron density is observed, which is expected for electrides. 
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5.7 Conclusions 

 Overall, we have outlined a novel synthetic strategy for the realization of electrides through low-

temperature dehalogenation and illustrated the high-throughput prediction of candidate materials for this 

approach. By focusing on a previous report of fluoride-ion conductors18, we analyzed >200 candidate 

fluorides for their potential to form metastable electrides. This resulted in several novel systems and 

structure types to be tested via our low-temperature synthetic approach. Furthermore, our findings 

indicate that the results are largely limited by the scope of known fluorides, and theoretical prediction of 

similar systems can also lead to promising candidate materials. Our synthetic and search strategies are 

generalizable beyond fluoride systems, and we now have strong evidence that many more metastable 

electrides exist within other halides and hydrides. 
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CHAPTER 6: ASYNCRONOUS EVOLUTIONARY STRUCTURE PREDICTION DRIVEN BY 
INFORMATICS AND THIRD-PARTY DATABASE INTEGRATIONS 

6.1 Summary 

Evolutionary search algorithms have become an essential tool for materials discovery because of 

their ability to predict thermodynamically favored phases using only composition as an input. 

Unfortunately, evolutionary structure prediction involves thousands of local DFT optimizations that begin 

from fully random inputs, and existing implementations struggle to share results across separate runs. 

Here, we introduce a new software for evolutionary search strategy integrated with the Simmate 

framework. Simmate handles data management and workflow orchestration and allows us to introduce 

(a) improved starting points using third-party crystal databases, (b) data sharing across separate 

evolutionary searches, and (c) asynchronous scaling and distribution of calculations across arbitrary 

resources. Even without seed structures and cross-search data sharing, our new search algorithm led to 

a speedup of over 10x for structure prediction of fixed compositions relative to leading evolutionary codes. 

Furthermore, we estimate another order of magnitude improvement when seeds and cross-search 

features are active. Our search can scale to complex chemical systems and to over 11 million structures 

(+ energies and site forces) per week. Our evolutionary search framework will greatly accelerate phase 

space exploration, facilitate massive collaborative efforts/result sharing, and lead to the largest crystal 

dataset yet developed. We anticipate that this dataset will be leveraged for many far-reaching 

applications. 

6.2 Introduction 

Despite the many years of material exploration, the vast majority of unique crystalline materials – 

likely over 99.9% – remain undiscovered.1,2 These undiscovered materials may offer stronger steels, 

better catalysts, improved transistors, and many other solutions to urgent societal problems.3 We 

therefore need a fast and efficient way of identifying new materials so that society can harness their 

benefits. 
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Currently, the prediction of novel material structures most widely employs evolutionary search 

algorithms, which require thousands of ab initio calculations and millions of CPU hours, even for a single 

binary phase diagram.4 Existing evolutionary codes struggle to explore beyond simple systems due to 

computational cost, and further, these codes are unable to share information across evolutionary 

searches without repeating calculations.5,6,7,8,9,10 Since the release of these evolutionary codes, the larger 

academic community has made substantial progress on workflow orchestration and data management 

and has produced many large crystal databases.11,12,13,14,15,16 However, these advances have largely 

remained independent from existing evolutionary materials discovery software. 

Here, we introduce a new evolutionary algorithm within the Simmate framework17, which 

integrates well-established packages for data management, workflow orchestration, and material science 

analysis. Simmate enables many novel features in the context of evolutionary structure prediction, 

including (a) automatic integration of third-party data and software, (b) data sharing across separate 

evolutionary searches, and (c) asynchronous scaling and distribution of calculations across arbitrary 

resources. Moreover, the automatically built database API allows us to optimize a search's core 

components, e.g., structure creation and transformation. Together, Simmate’s high-level framework and 

our new benchmarks have allowed us to accelerate the prediction of binary systems by over an order of 

magnitude relative to other search algorithms. 

Within this chapter, we first provide an overview of the structure prediction challenge, existing 

prediction strategies, and the core components of an evolutionary search. Using this background 

information as our reference point, we then describe our search strategy using the ground-state prediction 

for individual compositions, followed by more intensive “variable-composition” calculations that explore a 

full chemical system. We then report our benchmarks and comparisons of core components across all 

evolutionary search algorithms and describe how they influence search speed/efficiency. Finally, we 

provide a perspective on how our new search algorithm and resulting database can accelerate 

complementary fields of materials science. 
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Figure 6-1. Illustration of generational and asynchronous evolutionary searches. Generational 

searches (top) batch submit N structures, wait for all calculations to finish before the results are analyzed, 

and then submit a new batch of structures (i.e., a new generation). The waiting step causes 

computational resources to hang until the slowest calculation finishes, leading to inefficient use of 

resources. This work introduces an asynchronous search with seed structures (bottom). Rather than 

beginning a search with random guesses, seed structures are created from known materials and 

prototypes pulled from popular crystal databases. These improve the search’s starting point. Whenever a 

calculation is completed, it is immediately replaced with a new submission to maintain a constant number 

of calculations in the queue. Importantly, to maximize information transfer, structure creation (and parent 

selection) is performed at run time rather than before job submission. 

6.3 An overview of phase space complexity 

Most materials remain undiscovered due to the scale of compositional space that needs to be 

searched along with the slow rate at which researchers are capable of characterizing a single 

composition. To illustrate this issue, we can look at a ternary system such as the scandium-carbide-

fluoride system (Sc-C-F). Here, even when we exclude disordered phases and only consider highly 

crystalline phases (< 30 atoms in the unit cell structure), we are still left with 4,306 unique reduced 
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compositions (ScxCyFz) to consider. Experimental exploration of a single composition (e.g., Sc2C) can 

take many years. This is exemplified by the identification of the competing phases and thermodynamic 

stability of Sc2C, which required many studies carried out across several different decades.18 

With everything above considered, we can quickly realize that detailed exploration of all 

compositions in a single ternary system is not feasible. Exploration must therefore be guided by chemical 

intuition and computational predictions. The necessity of guided exploration is exacerbated when we 

consider the number of possible ternary systems (~1 million systems for 100 unique elements) and how 

compositional space complexity scales exponentially for systems with more than three elements (e.g., ~9 

billion unique systems with 5 different elements).19 Experimental exploration is too slow here, so a rapid 

and systematic way of computationally predicting desirable phases is essential. 

Moreover, the computational exploration of even a single composition represents an enormous 

challenge. This is due to the high number of degrees of freedom available when creating potential 

structures: 6 from lattice vector lengths/angles and 3×N for each xyz coordinate of N total atoms. Even 

when the problem is simplified, there are 1011 (100 billion) possible configurations for a fixed lattice (10 

Å3/atom), discrete atomic sites separated by 1 Å, and 10 atoms of a single element (A10).19 This scales 

exponentially to 1047 configurations for a two-element A15B15 composition. Consideration of all 

configurations is simply not possible. 

The number of possible compositions – combined with the complexity of a single one – illustrates 

the core challenge of materials discovery and exploration: how can we efficiently explore and identify 

systems? The next generation of high-performance materials may come from yet undiscovered 

compounds, so we must begin to address this challenge. 

6.4 Existing search strategies 

As a result of phase space complexity, the computational prediction of a composition's 

thermodynamically favored phase has been a topic of extreme interest. There are many diverse 

strategies – ranging from prototype libraries20,21,22 to Monte Carlo sampling5 – that ‘search’ for the lowest 

energy structure. These existing search strategies can be evaluated on (i) whether a search starts in a 
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promising region of phase space, (ii) to what degree a search can improve on the best structure as it 

progresses, and (iii) the overall computational cost of the search. 

The most straightforward structure prediction strategies involve the creation of best-guess 

structures from existing materials and prototypes. It is well-established that similar compositions often 

possess equivalent phases, e.g., many +1 cation / -1 anion solids possess a rocksalt structure type. It is 

therefore very effective to take known systems and substitute them into a desired composition. This has 

given rise to large initiatives such as the OQMD and AFLOW databases13,14, which iterate through a 

library of prototype structures20,21,22 to produce several million theoretical structures. While these 

strategies are computationally inexpensive and produce reasonable guesses, they are unfortunately 

incapable of identifying novel structure types and have no way to determine if the lowest-energy structure 

has been identified. They must be paired with other search strategies or experiments to add confidence to 

the results. 

Best-guess and prototype structures can also be used for dynamics-based approaches, where a 

series of simulations/distortions are applied to arrive at a local thermodynamic minimum. This strategy is 

analogous to the experimental high-temperature annealing of a material. The popularity of these search 

strategies has led to many variant algorithms, including meta-dynamics23,24, simulated annealing25, and 

basin hopping26. Collectively, however, dynamics-based approaches cannot guarantee that the starting 

structure is reasonable and will only be able to improve to a nearby local minimum. In other words, there 

is no guarantee that the final structure is also the energetically global minimum. Furthermore, dynamics 

runs require large supercells, which are computationally expensive to evaluate. Dynamics-based search 

strategies have therefore become limited to systems where there is a high confidence in the input 

structure and a detailed understanding of phase transformations is desired. 

In a vastly different approach, one may want to search the phase space without a biased ‘best-

guess’ input. One can search phase space through Monte Carlo sampling of randomly created structures, 

paired with a mechanism to select and improve upon best structures. For example, evolutionary structure 

prediction iteratively mutates best structures until the ground state phase is found.19 Particle swarm 

optimization and other genetic algorithms behave in a similar manner, where (generally) the method of 
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structure selection and mutation subtly varies between each approach.27 This group of search algorithms 

is very effective at evaluating the promising regions of phase space on the fly and, more importantly, 

improving the best candidate structures in multiple regions of phase space. As a result, they perform the 

best in blind tests for structure prediction when compared to full Monte Carlo and dynamics-based 

strategies.28 However, despite their widespread use and success in materials discovery, genetic 

algorithms still require the evaluation of hundreds of crystal structures for a single composition and 

thousands of structures when evaluating full chemical systems. The robustness of this technique 

therefore comes at a high computational cost. 

In summary, there are many approaches to predict and search for ground state structures – each 

with differing total computational costs and confidence of results. The material science community has 

most recently begun combining the advantages of each of these different methods, but there is still no all-

in-one solution to complex phase space exploration. 

6.5 Evolutionary Structure Prediction 

Evolutionary structure prediction applies the concept of biological natural selection when 

exploring materials phase space: (a) initial structures are randomly generated and evaluated for their 

thermodynamic stability (as a measure of “survival fitness”), (b) the best of these structures are used to 

generate new derivative and transformed structures (emulating reproduction and potentially desirable 

mutations), and (c) structure creation and transformation is repeated for many “generations” until the 

search converges to the ideal ground state phase (Figure 1-3). 

The search algorithm is straightforward from a bird’s-eye view, but there are a plethora of 

strategies to modify the underlying components of a search – namely, how new and “parent” structures 

are created, evaluated, and mutated. Moreover, additional scrutiny can be placed on mechanisms for 

duplicate removal, convergence criteria, fitness measurement, or even data management. As a result, 

many evolutionary searches and genetic algorithms have been reported over the past decade. These 

include USPEX6, XtalOpt7, CALYPSO10, GASP9, ASE-GA8, and AIRSS5. There are many similarities 

between each program from a high-level perspective, but their underlying components vary greatly. 

These components are essential in the optimization of the overall search’s efficiency, which is why each 
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program has seen drastically different levels of success and adoption by the materials community. We 

provide a detailed comparison of core components in Section 6.8 of this manuscript, but for the time 

being, we will focus on the end result of underlying component optimization: the overall search strategy 

and efficiency. 

When looking at the overall search strategy, it is important to consider the bounds of a search. 

One can explore a single composition (e.g., SiO2 or Mg4Si4O12) or full chemical system (e.g., Si-O or Mg-

Si-O), and in addition, the target structures can be limited to crystalline bulk materials, films, 

nanoparticles, or any other phase constraints. Because they are the most straightforward and best dictate 

the search efficiency of multi-composition systems, we begin with the prediction of crystalline bulk 

materials of a single composition. 

6.6 Single composition search 

A successful search algorithm must be able to efficiently and robustly predict the 

thermodynamically favored phase of a given composition and stoichiometric factor. Here, we define a 

composition as a specific stoichiometry (or ratio) of elements, while the total number of atoms in the final 

structure dictates the stoichiometric factor. For example, we could evaluate the composition of MgSiO3 at 

different stoichiometric factors: Mg2Si2O6 (factor=2) and Mg4Si4O12 (factor=4). To evaluate our search 

algorithm, we use a series of nine fixed compositions that were selected from benchmarks of past reports 

on evolutionary search algorithms29: Fe1, Si2, C4, Ti2O4, Si4O8, Al4O6, Si4N4O2, Sr4Si4N8, and Mg4Si4O12. 

6.6.1 Input and configuration 

For each compositional search, our software requires minimal user configuration but enables the 

flexibility to scale and modify search behavior. Thanks to integration with the Simmate framework17, a 

search can be submitted as a single workflow in various formats (YAML, TOML, Python, Bash, etc.). For 

example, we show a minimal input file in the YAML format in Figure 3-8a. The use of custom settings and 

methods for structure creation, transformation, and more are supported through the full list of optional 

parameters. Throughout this section, we discuss the default settings used, and a more in-depth 

discussion on advanced setting modification is available in our online documentation. 
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6.6.2 Starting structures 

In other evolutionary search programs, a single composition search is initialized with randomly 

created structures of the target stoichiometric factor along with user-provided “seed” structures. Together, 

randomly created structures and seed structures make up the “first generation” of the candidate phase, 

from which the cycle of “natural selection” and “genetic mutations” will follow. Our search algorithm 

follows this pairing of random and seed structures, although there are important differences in how we 

generate these starting structures. 

The first key advancement is the automatic generation of seed structures. Simmate is integrated 

with several third-party databases and facilitates the addition (and creation) of new datasets – meaning 

searches can easily begin with (i) all known theoretical or experimental phases, (ii) reasonable 

substitutions of known structures, and (iii) creation of structures from prototypes. This creates a batch of 

seed structures to submit at the beginning of an evolutionary search. Because querying external 

databases is only performed once and not repeated thereafter, we refer to these as “single-shot” structure 

sources. 

For (i), we currently include structures from the COD16, Materials Project11, OQMD13, and 

JARVIS12 databases. We also provide guidance on how others might add new datasets from an Excel 

file, list of CIFs, or hosted API. We note that, in some cases, input datasets may already include the 

ground-state phase and experimentally known phases. Nevertheless, by still running the evolutionary 

search, one can add confidence to the ground state structure as well as discover new and competing 

phases. 

For (ii), we use known structures of chemically similar compositions as templates for new inputs. 

For example, a search on Y2CF2 would predict that fluoride is chemically similar to other halogens (Br, Cl, 

I), and our software will query other databases for all Y2CX2 (X=Br, Cl, I) structures, convert the resulting 

structures to Y2CF2 via substitution, and then submit them to the search. The same can be done with 

carbon, yttrium, or even multiple elements at once. The matrix of potential substitutions is generated 

using pymatgen’s substitution module30,31, which is based on data mining of the Materials Project 
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database11. We extended the predicted compositions to structures in COD, OQMD, and JARVIS as well – 

increasing the number of possible matches. 

For (iii), the AFLOW prototype libraries20,21,22 are used as template structures. While several 

methods for structure generation are supported, the default behavior is to only grab prototypes exactly 

matching the anonymous formula (e.g., all AB2C2 prototypes for Y2CF2). Structures are then substituted 

into the target composition and submitted to the search. We note that the prototypes are limited to those 

available through the PyMatGen package, but there are opportunities to extend the prototype library (see 

Section 6.9.2). 

There are also differences in our strategy used for the randomly generated input structures. While 

several algorithms for generating random structures exist and are supported (see section 6.8.1), our 

default method follows the algorithm used by PyXtal and RandSpg software packages.7,32 Here, high 

symmetry structures are generated by randomly selecting possible Wyckoff site combinations from a 

randomly selected space group. However, the validation of the created structures differs within our 

algorithm. Lattice volumes and minimal atomic distances are determined from the most likely oxidation 

states of the composition, where initial values are based on hard sphere packing of atoms. Tolerance 

values can also be updated as the search progresses. Furthermore, structure validation is performed 

using Simmate’s extension to common MatMiner featurizers33, such as the partial radial distribution 

fingerprint. This ensures that a diverse pool of structures is submitted at the start of a search and 

duplicate structures are not submitted thereafter. 

Together, automatically generated seed structures and high-symmetry random structures 

establish a much-improved starting point for evolutionary structure prediction. In fact, because seed 

structures frequently capture the ground state structure, we choose to exclude these seeds from our initial 

benchmarks. This helps to ensure that our evolutionary search is indeed efficient and robust when 

starting from ab initio inputs. 

6.6.3 Workflow orchestration & database storage 

Initial candidate structures are often very far from the ground state phase, so one must efficiently 

relax each to its local minimum. Local optimization allows individual structures to move to regions of 
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improved phase space – greatly reducing the phase space complexity problem to regions bound by 

chemical constraints. For this reason, all existing evolutionary structure prediction software programs 

integrate with third-party programs to evaluate and locally optimize structures. This includes empirical 

models or ab initio calculations using programs such as LAMMPS34, VASP35, Quantum Espresso36, or the 

many others available37,38. 

Local optimizations in evolutionary searches also introduce many unique challenges due to their 

scale and diverse range of inputs. Input structures are error prone due to potentially high energy and 

unreasonable starting points; hundreds or thousands of calculations need to be efficiently run in parallel; 

and the results from the plethora of data and output files (sometimes >1 TB across thousands of 

relaxations) must be efficiently and effectively stored. Thanks to Simmate’s workflow and database 

framework, these challenges are much easier to address. 

Simmate’s workflow framework allows integration of any user-defined workflow and is particularly 

well-equipped for calling external file-based programs with monitoring and error recovery. At the time of 

writing, Simmate primarily includes scientific workflows that use the VASP software35, where the majority 

of workflows are direct equivalents to those used by the Materials Project39. Furthermore, full 

reimplementation of the Materials Project’s error handlers for automatic error detection and recovery is 

also included.40 By default, each structure in an evolutionary search undergoes a series of five relaxations 

that gradually increase in quality and whose parameters are dynamically determined based on input 

structure and composition. Together, this workflow setup means that minimal user configuration is 

required, relaxations are robust to common errors, new workflows can be easily incorporated, and 

advanced setup/monitoring features can be quickly appended to workflows. 

In addition to robust individual structure runs, the challenges of scale and orchestration are also 

effectively addressed with the Simmate framework. Typically, evolutionary software will have users 

specify and configure a high-performance computing (HPC) cluster queue system (e.g., SLURM or PBS) 

and then submit specific structures/files to the system. This requires configuration of computational 

resources and a direct connection between the search resources – often limiting computational resources 

to those that are (i) officially supported by the team of the evolutionary-search software and (ii) resources 
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that share a file system. Instead, Simmate’s workflow engine is agnostic to where and what computational 

resources are used. Here, resources communicate indirectly through the database backend. This means 

that a new resource can be started anywhere, requires only an internet connection, and does not require 

any prior knowledge of submitted workflows or searches. Searches can therefore distribute parallel 

calculations across multiple HPC clusters, user desktops, and/or cloud computing services. Resources 

are added by simply calling a ‘start-worker’ command (worker = a resource that runs scheduled 

workflows), and workers can be added or removed at any point during the search without affecting search 

behavior. Thus, Simmate allows evolutionary searches to run on a single computer and then quickly scale 

to massively parallel and diverse setups. 

Lastly, Simmate facilitates storage and access of relaxation results. Evolutionary search 

programs frequently store only essential thermodynamic information and remove output files to save on 

disk space. However, we find that the large amount of data produced by evolutionary searches can have 

far-reaching applications in materials science, such as the production of a community database of diverse 

structures, atomic forces, and energies (see Section 6.9.2). We therefore sought to optimize result 

archives and build database APIs. Each workflow can optionally remove duplicate data and output files 

(e.g., potential files) and compress outputs to archives (e.g., zip or tar files). Furthermore, Simmate’s 

database models automatically populate the database with common filtering criteria and build our website 

interfaces, REST APIs, and Python ORM. As a result, data can be simultaneously used (and added to) 

from multiple searches or even separate studies. In other words, regardless of what led to the submission 

of a workflow, its results can be used across any search or follow-up analysis. Cloud database integration 

therefore plays a central role in optimizing data analysis and reuse. 

Together, workflow orchestration and database storage empower the many local optimizations of 

an evolutionary search. The ability to recover from errors, scale across arbitrary resources and share 

results between analyses has diverse implications – both in how a search is performed and how results 

enable new independent studies. 
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Figure 6-2. Evolutionary search convergence for Sr4Si4N8. An evolutionary search without seed 

structures begins with random structure creation, which often produces high energy and unreasonable 

phases (left). The evolutionary cycle of creation and transformations gradually improves on the best 

structure(s) and ultimately leads to the thermodynamic ground state structure (right). 

6.6.4 Progression of new structures 

Up to this point, we have established the initial inputs and a working framework to locally optimize 

structures and manage results. We now turn to how our search progresses and arrives at improved 

structures. The primary mechanism of evolutionary search algorithms is the creation of new structures 

from the ‘best fitness’ individuals who have been previously evaluated – and repetition of this process to 

convergence (Figure 6-2). Thus, we need to continuously take the best structures and attempt to improve 

them through transformations. 

The iterative cycle is typically done in batches (i.e., a “generation” of structures), but this can lead 

to underutilization of computation resources. Specifically, evolutionary algorithms will submit a group of 

structures and then wait until all calculations complete before submitting the next group of improved 

structures. Separate from the materials science community, asynchronous evolutionary searches have 

been shown to increase candidate throughput by up to 75% and to have searches converge an order of 
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magnitude faster.41 Here, a fixed number of scheduled workflows is maintained in the job queue at all 

times, which we refer to as a “steady state” of candidate structures. Whenever a workflow is completed, a 

new workflow is immediately scheduled to replace it. At no point does the search block wait for a group of 

structures to finish and, as a result, the downtime of computational resources is minimized. We therefore 

adopt this asynchronous search strategy. 

In an asynchronous search strategy, it is important to consider when parent structures are being 

selected and when new transformed structures are being generated. Structure generation prior to job 

submission is suboptimal because it does not leverage new data acquired while the workflow was in the 

job queue. To illustrate, let us say we generated and submitted a structure that sits in the job queue for >1 

hour. During this queue time, other calculations are running that may contribute to the evolutionary search 

and may produce new best structures, and in hindsight, we would have preferred to generate our 

structure using these new best structures. Therefore, our search generates new structures only at the 

instant before they are needed so that the utilize the most current data available. Our steady state search 

of structures therefore follows a dynamic, decoupled, and iterative (DDI) search strategy, which we have 

reported elsewhere.42 

The total number of steady-state structures is maintained through a combination of structure 

creation and transformation sources. In contrast to “single-shot” sources that are submitted once and then 

never again, steady-state sources are submitted continuously until the search converges. For example, 

one simple transformation that can be applied to best structures is a coordinate perturbation (i.e., small 

atomic displacements to break cell symmetry) and, by default, our search will maintain five submitted 

calculations of this type in the queue at all times. As soon as one structure finishes, a new structure is 

submitted immediately to take its place. 

Other transformations include heredity, soft mutation, mirror mutation, lattice strain, rotational 

mutation, atomic permutation, and extreme symmetry reduction. The majority of these transformations are 

built off functionality in the ASE43 and PyMatGen30 packages and are commonly seen across all 

evolutionary structure prediction codes. A steady state of randomly created structures is also maintained 

throughout the search, as this prevents the search from becoming trapped in a local minimum. Together, 



114 

random creation and the pool of transformations are used to generate new structures that progress the 

search. 

We note, however, that there are additional steady-state sources active when the dataset 

contains results from other searches. For example, search results from chemically similar compositions 

can be used to accelerate another ongoing search. The most straightforward of these is identical to our 

substitution-based inputs, where template structures are pulled from other evolutionary search results, 

rather than third-party databases. When active, this means that a key finding from one search will 

propagate and accelerate other active searches. Other, more complex cross-search transformations are 

possible with variable composition search, which we discuss later. Even though these are among the 

most successful and important transformations in our search algorithm, we exclude these structure 

sources during our single composition benchmarks. This is because they are not immediately active in a 

clean Simmate installation, and further, we wish to benchmark from ab initio inputs. When no data are 

available, these sources silently shut down and do not affect the search algorithm. 

In summary, there is a diverse combination of random creations, transformations, and cross-

search collaboration occurring throughout a single-composition search. While it is possible to adjust the 

steady-state amount of each source during the search, dynamic updating of these settings is not yet 

automated, as some evolutionary codes support.44 We find that the default values effectively converge 

searches toward the ground state structure and report on the search efficiency of this setup herein. 

6.6.5 Search results 

We evaluate the efficiency and effectiveness of our search algorithm using total CPU time and 

real time, rather than past reports on evolutionary search algorithms that emphasize the total number of 

structures evaluated. These times better represent the practical usefulness of the overall method and how 

rapidly the search algorithm is able to progress. Furthermore, we have found that search speed can be 

improved significantly with the structure generation and optimization methods, where the total number of 

structures metric does not capture these improvements. Nevertheless, we still report the total number of 

structures required for our single composition searches (Fe1, Si2, C4, Ti2O4, Si4O8, Al4O6, Si4N4O2, 

Sr4Si4N8, and Mg4Si4O12), but we emphasize that fixed-composition searches are slower and less 
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desirable than the variable composition searches discussed in the following section. Single composition 

searches give us a starting point to evaluate how long our evolutionary search algorithm takes. 

The end of a search – specifically, the stopping of steady-state sources – is determined by 

several possible stop conditions. The primary stopping criterion checks for convergence of structure 

energies, where the search is considered converged if the best structure does not improve by a set 

tolerance (e.g., 1 meV/atom) after the evaluation of many new structures (e.g., 200 new structures). 

However, to rapidly benchmark our search, the user may provide an expected structure as an input, and 

the search is stopped when that structure appears in the search results. Herein, we report evolutionary 

search results on our benchmark compositions up to the ‘expected structure’ stop condition. 

A series of fixed composition searches are carried out to determine the search speed and 

efficiency. Each composition is evaluated 10 times using an independent and empty database, and the 

search results are reported in Table 6-1. We also compare these search results to equivalent searches 

using USPEX (v10.5.0) (Figure 6-3). Our results indicate that Simmate is faster than USPEX by factors of 

8x to 39x for smaller systems (<20 atoms). Further, it appears that USPEX is prone to phase trapping in 

>10 atoms, causing searches to fail at finding the ground state phase. For example, Simmate found the 

Si4N4O2 ground state phase in ~20 minutes on average, while USPEX failed to find the ground state after 

~3 days. 

Even with this massive speedup from Simmate, we emphasize that there is plenty of room to 

improve. We found that in larger systems, Simmate would rapidly identify promising regions of phase 

space, but improvements within promising regions was significantly slower. This is observed in a search 

for SrSiN2 shown in Figure 6-2, where final stages of the search correspond to >50% of the calculation 

time. This indicates that Simmate requires more intelligent transformations or simply optimization of 

existing ones. Thus, we find that Simmate is better optimized for phase space exploration of crystalline 

bulk phases (<20 atoms), and furthermore, Simmate requires optimization of structure transformations 

before high atom counts (>30 atoms) are recommended. 

 



116 

 

Figure 6-3. Comparison of search times for Simmate (v0.12.0) and USPEX (v10.5.0). All searches 

are parallelized across 100 jobs, where N=100 corresponds to the steady state in Simmate and the 

generation size in USPEX. The relative search time of TUSPEX vs. TSimmate is given above the USPEX 

entries. For the USPEX searches: Fe1 failed due to structure creation; Sr4Si4O2 was terminated after the 

11th generation because the search was trapped without ever finding the ground state; and the Sr4Si4N8 

search is still actively running at the time of submission but has not yet found the ground state. 

Table 6-1. Benchmark evolutionary searches for fixed compositions without seeds or cross-

search transformations. All searches were parallelized over 100 jobs with 4 cores each, and the 

reported times reflect when the target structure was first identified. 10 searches were performed for each 

composition, and metrics below are the mean values. 

Composition 
Target structure 
(MP-id) 

Atoms per 
structure (#) 

Structures until 
ground state (#) 

Total real 
time (min) 

Total CPU 
time (hr) 

Fe1 mp-13 1 6 0.28 0.09 

Si2 mp-139 2 19 0.35 0.35 

C4 mp-48 4 116 1.61 4.24 

Ti2O4 mp-390 6 146 4.56 14.50 

Al4O6 mp-1143 10 74 3.39 8.01 

Si4O8 mp-6945 12 312 15.61 64.68 

Si4N4O2 mp-4497 10 388 19.74 89.82 

Sr4Si4N8 mp-4549 16 1118 242.28 1355.57 

Mg4Si4O12 mp-603930 20 5755 1073.57 6212.00 
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6.7 Variable composition searches. 

Predicting the ground state phase of a specific composition and stoichiometric factor is only one 

part of the materials discovery challenge, as we must still address the exponential growth of phase space 

complexity and the full range of possible stoichiometries in variable compositions. In the simplest case, 

we must consider a single composition search done with a variable number of sites in each structure 

(e.g., MgxSixO3x where x=1, 2, 3, …). However, to identify exciting and unexpected phases, we must also 

efficiently explore full chemical systems (e.g., MgxSiyOz, where x, y, and z each range from 0-1). Running 

a full fixed composition on the millions of possible compositions would not be possible. We must therefore 

reevaluate our search strategy for complex variable compositions. 

We find that phase space exploration can be addressed by considering two factors: (1) both 

phase space complexity and computational cost scale exponentially with the number of atoms in the 

structure, and (2) similar compositions will possess similar phases and search results. These points 

suggest that (a) we can learn about a system more rapidly by evaluating many smaller structures before 

spending time on larger ones and that (b) we can leverage results from computationally cheaper and 

similar searches to speed up more-complex searches. As a result, we propose that the most efficient way 

to explore complex phase space is to begin with simple, high-symmetry compositions and systematically 

transition to more complex, low-symmetry phases over time. 

Our systematic strategy is starkly different from those used by existing materials prediction 

programs, which instead rely much more heavily on evolutionary search concepts.4,6 We elaborate on our 

approach and its differences by looking at three variable composition searches of increasing complexity: 

a composition with variable number of sites, a full binary chemical system, and a full ternary chemical 

system. 

6.7.1 Variable number of sites 

When other evolutionary algorithms implement searches with a variable number of sites, very 

little is changed from the fixed composition search. The most common strategy is to introduce initial 

structures with a distribution of site counts and new mutations that manipulate site counts. However, this 
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introduces expensive calculations at the beginning of the search, which slows preliminary phase 

exploration. 

Instead, we begin our search with the smallest stoichiometric factor and systematically work up to 

the target factor. For example, a search on Mg4Si4O12 would begin by running a fixed-composition search 

on MgSiO3, followed by searches on Mg2Si2O6, Mg3Si3O9, and finally Mg4Si4O12. Thus, a “variable-nsites” 

search (nsites = number of atomic sites) is effectively a series of fixed composition searches of increasing 

size. This is done because the computational cost of relaxing individual structures typically scales with the 

number of atoms in the structure cubed (N3). It is therefore much more efficient to explore phase space 

using smaller structures in the beginning and, once promising regions of phase space are identified, 

adjust the search for lower-symmetry phases. 

However, there is one exception to our stepwise approach: the point at which variable-nsite seed 

structures are submitted. Here, seed structures for all stoichiometric factors are submitted up front 

because they are often the best candidate materials. The variable composition search will then progress 

systematically after these seed structures, regardless of which ones result in the lowest energy structures. 

This ensures that prototypes and known structures for larger cells are calculated immediately, rather than 

waiting for earlier search stages to finish. 

This stepwise approach is successful only if information can be passed between each stage of 

the search, e.g., the results of the MgSiO3 search must be used to speed up the Mg2Si2O6 search, which 

is in turn used for the Mg3Si3O9 search. Currently, this is done through several steady-state 

transformation sources. Structures with fewer sites are either combined to generate larger cells (i.e., 

structure splicing) or transformed into supercell derivatives. These transformations ensure that the most 

promising local geometries are maintained while long-range ordering is exploredWith these new 

transformations, the progression of new structures builds off those described in the fixed composition 

search (e.g., cross-search collaboration and common transformations). 

6.7.2 Binary system search 

Searches for full binary systems are also carried out in a stepwise fashion (Figure 6-1). Similar to 

variable-nsite searches, a binary system search involves a series of fixed-composition searches that are 
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performed with increasing site counts (N) and phase complexity. For example, the yttrium-carbon system 

involves running the following fixed-composition searches in order: N=1 (Y1, C1), N=2 (Y2, Y1C1, C2), N=3 

(Y3, Y2C1, Y1C2, C3), N=4 (Y4, Y3C1, Y2C2, Y1C3, C4), and so on. This process continues up to a user-

specified maximum number of allowed sites. Similar to the variable-nsite search, we also submit seed 

structures for all possible compositions before any search is started. Our approach utilizes rapid, simple 

searches to accelerate the exploration of more complex systems. 

In addition to transformations from fixed and variable-nsite compositions, binary systems are 

made more efficient via cross-composition mutations. These mutations are particularly successful 

because similar compositions frequently have similar structures. For example, it is likely that the ground 

state structure for Y10C9 is a disordered form of the Y1xC1x ground state structure. New transformations 

therefore pull from nearby compositions and carry out element permutations, random site removals, and 

random substitutions. 

An additional strategy to improve the search efficiency is to identify specific categories of wasteful 

DFT calculations from conventional evolutionary algorithms and prevent them from running. This includes 

(i) compositions where the ground state structure is already known, (ii) low-symmetry structures, and (iii) 

unstable compositions. To address (i), our search algorithm skips single element compositions by default, 

instead making them reliant on seed structures. For (ii), time may also be wasted on compositions with 

high stoichiometric factors (e.g., Y20C20, factor=20) because the ground state structure is typically higher 

symmetry and was found in earlier searches. We therefore limit searches to a maximum stoichiometric 

factor (the default is factor=4) and encourage users to run more robust fixed-composition searches after 

the binary search completes. And for (iii), unstable compositions can be optionally skipped/stopped if we 

do not expect to find a stable structure. In other words, we can skip a composition if no structures are 

found within 500 meV/atom of the hull. Currently, however, this condition is not applied by default 

because reliable cutoffs are still being tested. Together, these considerations allow us to focus on the 

most promising and truly exploratory compositions. 

Even though our smaller fixed-composition searches utilize an evolutionary algorithm, our overall 

strategy for the binary system search should not be considered evolutionary. Specifically, our individual 
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fixed-composition searches are evolutionary searches, while the collective search of the full chemical 

system is not. This is different from existing search algorithms, which explore binary systems by 

evaluating all compositions simultaneously.4,6 Instead, we opted for a systematic implementation to better 

control which compositions and phases are explored. We anticipate that this will lead to more efficient 

exploration of binary phase space. 

 

Figure 6-4. Example hull diagram from a binary-system search.  Binary searches are carried out as a 

series of fixed-composition searches of increasing complexity, where each fixed search corresponds to a 

yellow/orange vertical line of sample structures on the hull diagram. The results are plotted using the 

PyMatGen library, which outputs figures and interactive Plotly figures. 

6.7.3 Complex and >2 element chemical systems 

It is also possible to explore chemical systems with more than 2 elements using our software, but 

we are not yet able to dynamically prioritize promising regions of phase space. For example, while 

exploring a ternary system such as Y-C-F, we might quickly learn that compositions such as YC8Fx are 

unlikely to give stable phases, whereas compositions such as Y2CFx would be much more likely to be on 

the hull. Currently, ternary systems are explored in the same manner as our binary systems, where all 

compositions are evaluated in order of increasing atom count. Our software is still able to rapidly explore 

these systems, but because we do so in a brute-force way, we outline promising systematic search 

strategies that can be used to accelerate the current algorithm. 
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Before discussing these systems, we first want to clarify what is meant by complex chemical 

systems. Here, complex systems are the connection or linear combination of multiple compositions, as 

opposed to pure elements. For example, (Y2C)x(Y2CF2)1-x could be considered a complex composition. 

Other complex systems can also be drawn out using likely reagents. For example, Y-C-YF3 would be a 

complex ternary system corresponding to a search for Yx+zCyF3z phases. Together, these complex 

systems help define compositional boundaries to explore within larger systems. 

In the previous section (6.7.2), we found that a systematic search leads to significant speedups in 

binary system exploration, relative to full evolutionary searches. Ternary and other complex chemical 

systems (e.g., Y-C-F and Y2C-Y2CF2, respectively) are equivalent to a series of many binary systems, so 

we expect an even larger speed up for >2 element searches. Indeed, it has been previously reported that 

systematic exploration of ternary systems is successful where full evolutionary searches are not.44 

However, the optimal systematic search strategy has not yet been determined. 

Most recently, the COPEX search algorithm44 proposed a systematic exploration of binary and 

fixed-composition phases using USPEX. Here, a ternary system is explored by (1) starting with simple 

binary phases (e.g., Y-C, Y-F, and C-F), then (2) moving to complex binary system searches where 

endpoints are stable binary phases (e.g., (Y2C)x(YF3)1-x), and finally (3) continuing with new binary phase 

links between stable phases (e.g., (Y2C)x(Y2CF2)1-x). Fixed-composition and full-evolutionary ternary 

searches are carried out in tandem with this process but have a smaller influence on phase space 

exploration. To understanding this systematic algorithm, it helps to compare the exploration of a ternary 

diagram to the process of a spider creating its web (Figure 6-5a). Noting this analogy and that there are 

aptly named “random walk” search algorithms45, we therefore refer to the COPEX algorithm as a “web 

walk” through candidate compositions, where nodes of the web are stable compositions. 

An alternative systematic strategy can also be built off our binary search algorithm. In that 

algorithm, we run independent fixed-composition searches of increasing complexity. The same can be 

done for many-element systems. Because this would screen all possible compositions for a fixed site 

count before repeating for higher site counts, the algorithm can be visually compared to sonar scans of 

increasing quality (Figure 6-5b). We therefore refer to this search algorithm as “stepwise scanning”. To 
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implement this algorithm successfully, we must accurately identify which compositions to skip or stop 

while the search progresses. This ensures that time is not spent in regions with high formation energies 

and no thermodynamically stable phases. 

Other strategies can also be explored based on the target system and desired output. For 

example, if we only want the ternary structure with the highest formation energy and do not care for other 

stable phases, one can utilize linear search algorithms to rapidly find the desired composition. 

In summary, we propose both web-walk and stepwise-scanning search algorithms as promising 

search strategies. It remains to be seen which of these will be most efficient and robust – or if another, 

unidentified algorithm would outperform these. However, for now, both algorithms should provide initial 

systematic means to explore complex chemical systems. The key factor remains: Simmate provides an 

efficient means of exploring individual compositions, making these higher-level searches possible. 

 

Figure 6-5. Illustration of web-walk and stepwise-scanning search algorithms. Searches for complex 

chemical systems and >2 element systems are possible within Simmate but have not yet been optimized 

for systematic exploration of the most promising subsystems. (a) Web-walk and (b) stepwise-scanning 

algorithms are two promising routes to explore complex phases efficiently, where a combination of these 

algorithms (via smaller parallel searches) can also be explored. 
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6.8 Benchmarking core components 

Hitherto, we have presented our search algorithm assuming default settings, but we now turn to 

how our search was optimized and how further improvements can be made. We found that orders of 

magnitude improvement in search speed can be achieved through tuning of individual components, 

namely, structure creation, transformation, selection, and validation. There are diverse implementations of 

these components from many different software packages, and abstraction in the Simmate framework 

allows us to directly compare their performance. We therefore utilize Simmate’s database framework for 

an informatics-driven analysis of core components. 

6.8.1 Random structure creation 

Structure creation is arguably the most important component of evolutionary structure prediction. 

Even if all other components work perfectly, a search may never find the ground state if the created 

structures do not identify promising regions of phase space. Moreover, extremely successful structure 

creation can negate the need for an evolutionary search altogether. At a minimum, structure creation 

must identify promising regions of phase space and rely on other components for local optimization and 

nearby phase exploration. 

The most promising input structures come from existing data and experiments. This includes 

structures pulled from third-party databases, past calculations, and prototype libraries as well as probable 

substitutions of structures from these sources. We therefore attribute much of our search efficiency to its 

improved input seed structures and ability to pull from other similar search results. These sources do not, 

however, discover new and unexpected regions of phase space. 

For broader phase space exploration, we must turn to random structure creation, which is 

challenging due to the number of possible structure configurations (section 6.3). We can only efficiently 

explore phase space by (1) limiting possible configurations to those most likely to be low-energy and (2) 

ensuring we sample many diverse regions of a phase space. 

For (1), we can establish reasonable lattices and atomic distances. Given only a composition, we 

predict the total atomic volume by determining the most likely oxidation states for each element and then 

calculating total ionic volumes under hard sphere packing (at ~50% packing efficiency). When generating 



124 

the lattice for this target volume, we choose to favor a more cubic and symmetric lattice. Therefore, vector 

lengths (a, b, c) are selected to be normally distributed in length, and angles (alpha, beta, gamma) are 

randomly selected from a range of 60°-120°. Lastly, atomic sites are placed randomly within the lattice 

under the condition that no sites are too close together – specifically, no closer than 75% of the summed 

ionic radii of two sites. Together, the resulting lattice and atomic positions provide a reasonable input 

structure, which can then be relaxed using the local optimization method (e.g., DFT or empirical force 

fields). 

For (2), however, randomly created structures poorly sample phase space. On average, fully 

random structure creation leads to structures with similar unstable energies and glass-like amorphous 

ordering.46 Converting these structures to higher symmetries via transformations is challenging and low 

probability, so it is better to improve structure crystallinity and symmetry during creation. 

Structures are therefore created using random symmetry constraints from the 230 possible space 

groups. Lattice creation remains the same as discussed before, where vectors and angles are under the 

added constraints of the desired space group, e.g., a=b=c and α=β=γ=90° for cubic systems. Meanwhile, 

the insertion of atomic sites is no longer straightforward. Rather than placing sites anywhere in the unit 

cell, sites are limited to the asymmetric unit for the corresponding space group – that is, the portion of the 

unit cell that can be used to produce the entire unit cell via the space group’s symmetry operations. 

Depending on the atomic coordinates used for this asymmetric unit, a site may correspond to one or more 

atoms in the full unit cell after symmetry operations are applied. Each of these sites in the asymmetric unit 

are therefore represented by Wyckoff sites. For example, in a cubic cell, a new atomic site inserted at the 

Wyckoff site with coordinates (0,0, z) (z is between 0 and 1) will correspond to 3 symmetrically identical 

sites after symmetry is applied: (z, 0, 0), (0, z, 0), and (0,0, z). Because adding a single site in fact inserts 

multiple atoms, the selection of Wyckoff sites and their insertion must be carefully considered to prevent 

the creation of unrealistic structure, but there are multiple ways to approach this problem. 

The first approach is a random walk strategy. Here, a random Wyckoff is selected, inserted into 

the asymmetric unit, and then checked for (1) site distances and (2) composition compatibility (i.e., the 

element counts are added to the desired composition after symmetry is applied). If the site passes these 
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checks, a new site is inserted and evaluated. If the check fails, the site is removed, and a new attempt is 

made. If a new site repeatedly fails, the algorithm will take a step backwards and remove a previously 

accepted site. This process repeats until a valid structure with the desired composition and number of 

sites is produced. 

The second approach utilizes the fact that there are a finite number of valid Wyckoff site 

combinations for the final structure. All possible Wyckoff sites are generated up front, and then a random 

combination is selected and used to generate all atomic sites at once. If atomic distance tolerances are 

not met, the Wyckoff combination generates new coordinates again until either a valid structure is 

successfully made or a maximum number of attempts is reached (and a new combination is selected). 

We refer to this as the random-symmetry-combo strategy. 

The fully-random, random-symmetry-walk, and random-symmetry-combo approaches to random 

structure creation have been widely employed in software for evolutionary structure prediction. The 

following implementations have been integrated into Simmate and are compatible with our evolutionary 

search: ASE8, PyXtal47, XtalOpt7 (RandSpg32), USPEX6, CALYPSO10, GASP9, AIRSS5, and custom 

Simmate implementation. ASE, GASP, and AIRSS rely on the fully-random algorithm; USPEX and 

CALYPSO implement the random-symmetry-walk; and PyXtal, XtalOpt, and Simmate use the random-

symmetry-combo algorithm. Thus, we can gauge each algorithm's effectiveness by benchmarking all 

programs. We note, however, that lattice and atomic distance constraints frequently differ from Simmate’s 

defaults that are described above. 

We evaluated structure creation algorithms using the following compositions: Fe1, Si2, C4, Ti2O4, 

Si4O8, Al4O6, Si4N4O2, Sr4Si4N8, and Mg4Si4O12. Each creator was used to randomly create 500 structures, 

which is a relatively small sample size compared to the 230 possible space groups that can be selected. 

However, thanks to DFT geometry optimization, we found that identical structures often result from 

diverse input structures; in fact, we frequently see duplicate structures from < 10 atom compositions after 

relaxation. Thus, we find that a 500 structure sample size adequately represents the distribution of 

possible structures while also limiting the total computational time required. The 500 structures for each 

composition were used to evaluate a creator’s (i) creation time, (ii) initial & relaxed structure similarities, 
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(iii) initial & relaxed energies, and (iv) CPU times for relaxation. The Simmate workflows for “static-

energy.vasp.quality04” and “relaxation.vasp.staged” were used for energy determination and local 

optimization of all structures, respectively. 

The average time required to create a new structure varies greatly between each program (Figure 

6-6). This is because creation time is affected by many different factors: the programming language, the 

programmer’s ability to implement the algorithm efficiently, the tolerances used to accept/discard 

structures, and the creation algorithm itself. Each of these components also affects how the program 

scales for larger structures. For example, all random-symmetry-combo creators (Simmate, PyXtal, and 

XtalOpt) each use the same algorithm but differ greatly in their speed and scalability due to different 

programming languages (Python for Simmate and PyXtal; C for XtalOpt), code quality, and tolerances. 

The results indicate that XtalOpt is the most efficient of these implementations, where the majority of 

computational time is attributed to Simmate's wrapper overhead for the XtalOpt library IO/EXT (e.g., time 

spent spawning a process for their program and reading output files back into Python). Furthermore, 

creation with GASP is extremely fast and scalable compared to other fully random algorithms, but this is 

likely due to their very forgiving tolerances for atomic distances and large lattice volumes. We therefore 

attribute diverse creation times to the many variables that also affect program speed. 

We emphasize that creation times for all programs are negligible compared to local optimization 

times (discussed below), and these findings should not exclude any program from use in an evolutionary 

search algorithm. However, materials science is progressing toward machine-learned potentials for rapid 

local optimization, and there may be a point where creation times become rate-limiting and a much more 

important metric. But, until these potentials are utilized in evolutionary structure prediction, we do not 

need to discredit any program based on creation times alone. 

Currently, it is more useful to evaluate structural diversity. Here, we use the CrystalNN fingerprint 

to calculate a statistical representation of a structure as a multi-dimensional vector, and the distribution of 

distances among all vectors is used as a measure of diversity.48 Lower distances (i.e., more similar 

vectors) correspond to more similar structures. 
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The different creation algorithms can clearly be distinguished before and after structure relaxation 

(Figure 6-7). Perhaps counterintuitively, we see that fully random structure creators produce many similar 

structures with a limited diversity, which is in good agreement with previous reports.29 Indeed, this result is 

expected because a fully-random structure is likely to generate a homogenous mixture, which is naturally 

similar to another homogenous mixture. In contrast, symmetry-based algorithms produce more diverse 

structures, but there is still a notable difference between random-symmetry-walk and random-symmetry-

combo symmetry algorithms. Our findings indicate that the random-symmetry-combo algorithm produces 

a greater diversity in output structures and therefore a better sample of phase space. Furthermore, the 

advantage of the random-symmetry-combo algorithm is increased at more complex compositions 

because structural diversity decays more rapidly for fully random and random-symmetry walk. This 

indicates that a random-symmetry-combo is the optimal choice for phase space exploration, especially for 

structures with >10 atoms. 

We can apply these findings to explain locally optimized structure energies as well. Ideally, lower 

energies are better, but only as long as the low energy structures are also structurally diverse. In the 

distribution of final energies, we can see that fully random algorithms such as ASE and GASP produce 

structures at lower energies on average, but the small distribution of energies (i.e., small 25-75% quartile 

ranges) indicates that we are arriving at similar structures. Combined with the lower fingerprint distances 

of these structures, we further corroborate the idea that fully random structure creation leads to many 

similar glassy/amorphous-like structures. The same is true for random-symmetry-walk structures, which 

produce lower-energy but less diverse structures on average. 

These findings suggest that fully random and random-symmetry walk algorithms can still have an 

important role in evolutionary structure prediction. These algorithms may efficiently identify a promising 

region of phase space, while the random-symmetry-combo algorithm efficiently explores more diverse 

regions. One can introduce a small sample of fully random and random-symmetry walk structures at the 

start of the search (a single-shot source) and then prioritize random-symmetry combo structures as the 

search progresses (as a steady-state source). Thus, optimal search strategies may implement a 

combination of input structures from each of these different algorithms. 
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Energies prior to local optimization were excluded from the analysis above because we find that 

(a) initial energies are largely dependent on tolerances used during structure creation and (b) 500 

structures insufficiently samples the distribution of possible structures. Nevertheless, we found that the 

distribution of energies for all programs and algorithms is surprisingly high, with a median energy above 

+0 eV/atom in some cases. This highlights how randomly generated structures are still poor estimates 

even when many tolerances and symmetry constraints are used. It also emphasizes how evolutionary 

structure prediction is heavily dependent on local optimization. 

This highlights the importance of efficiently and robustly relaxing structures to local minima. 

These optimizations are the rate-limiting step for evolutionary searches, so any improvement in relaxation 

speed will have a profound effect. In fact, we found that relaxations of structures created by Simmate run 

an order of magnitude faster than those created by USPEX and two orders of magnitude faster than 

those created by CALYPSO (Figure 6-8). We attribute this to the improved starting point of each structure 

– via more accurate lattice volumes, atomic distance tolerances, and higher symmetry structures. 

To confirm this, we increased the distance tolerances for structure creation and reevaluated the 

relaxation time. The stricter tolerance led to a halving of the median calculation time for structures and led 

to a small increase in structure diversity (Figure 6-9). We rationalize these results using two factors. First, 

these higher tolerances more accurately represent realistic, low energy structures, where lower energy 

structures take less time to geometrically optimize. Second, lower tolerances are analogous to high-

energy molten salts, where optimization tends to yield more disordered, glassy phases – analogous to 

rapid quenching of a molten phase. Higher tolerances therefore lead to more diverse phases and faster 

relaxations. 

The increase in relaxation speed and structural diversity are both desirable outcomes, and we 

propose that further optimization of these parameters can improve evolutionary search speed and 

throughput. Moreover, these tolerances can build off of existing search results to dynamically update 

these parameters as a search progresses. 

In summary, significant progress has been made in the optimization of structure creation. We 

have evaluated key algorithms and programs and presented a new Simmate creator that produces 
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diverse structures that are rapidly relaxed to local minima. We have also presented promising routes to 

further improve structure creation in the context of evolutionary search – specifically, utilizing a 

combination of input structures from different algorithms and dynamically updating creation tolerances as 

a search progress. Together, these findings will help accelerate the exploration and discovery of novel 

phases. 

 

Figure 6-6. CPU time for random-symmetry-combo structure creators. Three different software 

packages are shown, and even though they implement an identical creation algorithm, there are many 

other factors (see main text) that affect creation speed and scalability. 
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Figure 6-7. Structural similarities for different structure creation algorithms. There are three 

algorithms that are commonly used: random-symmetry-combo (top), random-symmetry-walk (middle), 

and fully-random (bottom). 
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Figure 6-8. CPU times for local optimization of random structures. Simmate uses the random-

symmetry-combo algorithm, which is highly sensitive to the tolerance values used (top). Stricter 

tolerances correspond to faster calculations, especially in larger systems. Optimization of Simmate’s 

algorithm also leads to massive speedup relative to other structure prediction software (bottom). 
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Figure 6-9. Final energies of random structures created under different distance cutoffs. Relative to 

the original values in our software (Simmate), lower-energy structures are created when atoms are 

required to be further apart (Simmate - strict). 

6.8.2 Structure transformations 

 With so many possible structural transformations, it is important to evaluate the relative impact 

and success rate of each transformation. It is also likely that a transformation’s relevance depends on the 

composition being tested or even how much the transformation has been used already. For example, one 

transformation may perform better on more disordered structures (i.e., higher atom counts) but should not 

be used until the search is largely converged (i.e., after >500 individuals). Steady-state sources and their 

relative proportions should therefore be dynamically determined and even change as the search 

progresses. 

 Rather than a predefined benchmark, transformations should instead be evaluated by analyzing 

search results over hundreds of compositional searches. The history of transformations can be used to 

determine the success rate (“success” = the transformation led to a lower energy structure than the 

parent structures) of each as well as how the probability of success varies across search stages and 

different compositions. Through this analysis, steady-state values can be optimized to favor the most 

successful transformations and do so at optimal stages of the search. 
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6.8.3 Parent structure selection 

 Many parent selection strategies have been developed for genetic algorithms, but Simmate 

currently implements only the most basic and common strategies.49 Simmate uses tournament selection 

by default, where 20% of all individuals are randomly selected, and then the best individual of this random 

sample is used as a parent structure. Therefore, the lower energy an individual structure is, the more 

likely it will be chosen. Other selection methods operate under the same idea: best structures should 

have a higher probability of being selected to “reproduce”. Truncated, roulette wheel, rank, or Boltzmann 

selection methods are among the others that could be applied.49 There is no clear indication of which 

selection method performs the best in the context of structure prediction, so it is unclear how much an 

impact optimization will have here. What is known is that a mixture of parent selections and 

transformations is essential to drive a search forward: if selection and transformations are repeatedly 

generating identical structures, a search can become trapped in a local region of fingerprint space, 

making the search grossly inefficient. 

6.8.4 Structure similarity and fingerprints 

 Despite the extreme number of possible crystal structures, a compositional search can often 

produces duplicate structures. This occurs because very different input structures can relax down to a 

common local minimum and, further, minor transformations of parent structures can lead to identical child 

structures. Identifying and removing these duplicate structures is important for optimal parent selection, 

interpreting results, and avoiding repeated calculations. 

To address this, our search algorithm validates new structures by examining their fingerprints. 

Originally, the default fingerprint was the partial radial distribution function (pRDF), which captures the bond 

distance and atomic density of neighboring atom pairs. However, pRDFs are sensitive to small changes in 

structure volume, while we are more interested in removing duplicates that have matching coordinates. We 

therefore switched to the partial CrystalNN fingerprint48, which quantifies the coordination environments for 

each element type. Initial testing shows that the frequency of duplicate structures is reduced relative to the 

pRDF fingerprint, but relative to pRDF, CrystalNN does not effectively capture structure arrangement 
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beyond the first nearest neighbors. An optimal fingerprint that captures short-range coordination and long-

range ordering is therefore needed if Simmate is to efficiently explore >20 atom compositions. 

6.9 Future Outlook 

6.9.1 Ability to collaborate and scale 

The Simmate database and workflow framework can allow collaborative efforts at a scale that 

was previously not possible. This includes sharing computational resources and/or results. 

Only an internet connection is needed to contribute, so resources across multiple universities and 

the globe can collaborate on highly parallel workflows. The only limit to the number of resources is from 

the database server itself (i.e., the maximum queries/connections it can accept at any time), but this can 

always be scaled to accommodate. 

Importantly, it is also possible to share results and a database without sharing computational 

resources. This is a critical feature for some collaborations. Sharing computational resources can be 

costly and lead to security issues, whereas sharing only results is simple and often preferred. This can be 

done through labeling of computational resources, or in extreme cases, sharing of archive files instead of 

a shared database server. 

Sharing data has important implications for accelerating projects and reducing the repetition of 

calculations. This is illustrated through the collaboration of similar or overlapping projects. For example, 

two researchers may be exploring the Y-C-F and Sc-C-F systems, where the C-F results can be shared 

and the similarity of scandium and yttrium can be used to generate promising seed structures. Without 

database sharing, each researcher would be running duplicate calculations on C-F and spend more time 

finding promising phases. Adding to this example, a third researcher could have a custom algorithm 

(completely separate from an evolutionary search) that explores promising fluoride-conducting materials 

from the Materials Project database. Here, if the researcher ran calculations on structures within the Y-C-

F or Sc-C-F, then the other two researchers could automatically use those results in their search. Thus, 

diverse projects can share results – regardless of a project’s motivation or priorities. 
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Therefore, one of Simmate’s major goals is to get as many researchers to share a database as 

possible. As the user base grows, Simmate will facilitate new collaborations and avoid unnecessary 

repetition of calculations. 

6.9.2 World's largest crystal dataset 

Because each evolutionary search can result in tens of thousands of calculations, this work will 

result in the world’s largest and most diverse database of high-quality structure energies and forces. 

To illustrate the potential scale of this dataset, we can look at what resulted from our structure 

creator benchmarks. The benchmarks involved submitting a staged relaxation workflow across 7 different 

creators, 9 compositions for each creator, and 500 structures for each composition. The workflow 

submitted was a series of 5 relaxations and 1 static energy, so all creator benchmarks resulted in a total 

of 189,000 DFT calculations. When we explore what was automatically stored in the Simmate database, 

we find more than 4.5 million ionic steps and the data for each (energy, lattice stress, atomic forces). 

Moreover, all of these calculations were completed in one week and on a single HPC cluster (WarWulf, a 

25-node cluster maintained by the Warren Lab). 

The potential scale of the database becomes substantially larger when we consider searches for 

many chemical systems, the ability to scale across multiple HPC clusters, and the ability to load archives 

from contributors’ searches. For example, over one week, we ran a ternary system search on Y-S-F, 

which involved ~120,000 total structures and a total of ~720,000 DFT calculations. This produced 11.75 

million ionic steps, and all structures, energies, and atomic forces were stored in our cloud database. It is 

reasonable to expect this amount of data from each system search, and Simmate could easily exceed >1 

billion ionic steps stored in a year. We have prepared for this scale of data by building a database server 

with the ability to extend storage capacity and by optimizing our database storage and archives. 

Simmate’s database engine is therefore primed for an enormous scale of materials data. 

The massive scale of this data becomes even more apparent when we compare it to existing 

database providers (Table 6-2). The Materials Project is the most widely used database, with only 

~150,000 structures, while the AFLOW is the largest, with ~2.5 million structures. We anticipate Simmate 

will easily exceed these numbers in a year's time and, because Simmate is built to scale, we also include 
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these other provider databases within ours by default. Furthermore, we expect to have significantly larger 

structural diversity due to the nature of evolutionary searches, while other databases are primarily limited 

to ground-state and experimental structures. 

The Simmate database has been built to make the most out of all evolutionary search results. 

Evolutionary searches produce a large and diverse dataset of crystal structures, energies, and atomic 

forces, so the incorporation of a materials informatics framework makes the data analysis and distribution 

much more impactful. Simmate will make the data available through standardized APIs and web 

interfaces, allowing others to use the datasets for diverse applications. 

Table 6-2. Scale of a database from evolutionary search results relative to other third-party 

databases supported by Simmate. Simmate’s values are estimates based on our preliminary proof-of-

concept calculations on the Y-S-F ternary system. 

Provider Number of Structures Av. Sites per Structure Archive Size 

Simmate >11 million per week < 20 >2 GB per week 

JARVIS 55,712 ~10 8.0 MB 

Materials Project 137,885 ~30 45.2 MB 

COD 471,664 ~248 1.16 GB 

OQMD 1,013,521 ~7 79.2 MB 

AFLOW 2,959,509 ~5 1.06 GB 

 

6.9.3 Accelerating nearby fields of material science 

Our software and dataset can also serve to accelerate the modeling and understanding of 

structure-property relationships. This is largely due to the distribution of our large dataset to the 

community, which will promote diverse studies beyond just structure prediction. 

For example, the dataset of energies and atomic forces can be used to accelerate the 

development of machine-learned potentials. Data mining and machine-learning studies require many 

atomic configurations to build accurate models, and Simmate search results can provide this input. Past 

studies have been successful using – most commonly – the Materials Project dataset or user-run 
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molecular dynamics simulations. However, with the introduction of the Simmate dataset, the quality of 

these models may improve drastically and open up new applications. 

Similarly, search results can be data mined to produce a spin-off dataset – such a new prototype 

library. Evolutionary searches are well positioned to identify new structure types for stable and metastable 

phases, and by going through all search results, one could contribute new template structures to the 

AFLOW prototype encyclopedia or even establish a new prototype library altogether. Not only would this 

facilitate the discovery of new materials, but it would also lead to a more complete ‘map’ of phase space 

and our understanding of phase stabilities. 

Machine-learned potentials and prototype libraries are two obvious examples of how our dataset 

can be used, but many more avenues are possible. Ranging from property prediction to accelerated 

simulations, the possibilities will be grounded in the quantity and quality of data available. We aim to meet 

these needs through our material informatics framework and are excited to see how it enables the 

discovery of next-generation, high-performance materials.  
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