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ABSTRACT 

Robert Jarrett Bliton: Engineering high-resolution experimental and computational pipelines to 
characterize human gastrointestinal tissues in health and disease 

(Under the direction of Scott T. Magness) 
 

In recent decades, new high-resolution technologies have transformed how scientists study 

complex cellular processes and the mechanisms responsible for maintaining homeostasis and the 

emergence and progression of gastrointestinal (GI) disease. These advances have paved the way for 

the use of primary human cells in experimental models which together can mimic specific aspects of 

the GI tract such as compartmentalized stem-cell zones, gradients of growth factors, and shear stress 

from fluid flow. The work presented in this dissertation has focused on integrating high-resolution 

bioinformatics with novel experimental models of the GI epithelium systems to describe the 

complexity of human pathophysiology of the human small intestines, colon, and stomach in 

homeostasis and disease. Here, I used three novel microphysiological systems and developed four 

computational pipelines to describe comprehensive gene expression patterns of the GI epithelium in 

various states of health and disease. First, I used single cell RNAseq (scRNAseq) to establish the 

transcriptomic landscape of the entire epithelium of the small intestine and colon from three human 

donors, describing cell-type specific gene expression patterns in high resolution. Second, I used 

single cell and bulk RNAseq to model intestinal absorption of fatty acids and show that fatty acid 

oxidation is a critical regulator of the flux of long- and medium-chain fatty acids across the epithelium. 

Third, I use bulk RNAseq and a machine learning model to describe how inflammatory cytokines can 

regulate proliferation of intestinal stem cells in an experimental model of inflammatory hypoxia. 

Finally, I developed a high throughput platform that can associate phenotype to gene expression in 

clonal organoids, providing unprecedented resolution into the relationship between comprehensive 

gene expression patterns and their accompanying phenotypic effects. Through these studies, I have 

demonstrated how the integration of computational and experimental approaches can measurably 

advance our understanding of human GI physiology. 
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CHAPTER 1: INTRODUCTION 

1.1 INTRODUCTION TO EPITHELIAL BIOLOGY OF THE SMALL INTESTINE, COLON, AND 
STOMACH 

The gastrointestinal (GI) tract is a system of organs that stretches from the mouth to anus 

which coordinate the consumption and digestion of food, absorption of nutrients, excretion of waste, 

and barrier formation to protect the rest of the body from pathogens. A single tube forms the main 

channel of the GI tract, otherwise known as the lumen. The tissues that comprise the organs of the GI 

tract can be divided generally into four main compartments: the mucosa (the epithelium and lamina 

propria), the submucosa, the muscularis propria, and the serosa1-5. Each of these compartments is 

comprised of a variety of epithelial, muscular, nervous, and/or circulatory tissues, among others1-3,6. 

The mucosa is the home to the epithelium which, in the glandular portions of the GI tract, is a single-

cell thick layer of columnar cells that interacts directly with the luminal contents of the GI tract1-3,6,7. 

The epithelium of the esophagus, the most proximal portion of the GI tract, differs significantly from 

the columnar epithelium found in more distal tissues (i.e., the stomach, small intestine, and colon) 

and consists of multiple layers of stratified squamous epithelium1. In epithelium of the stomach, small 

intestine, and colon a wide variety of specialized cell types coordinate to maintain homeostasis in 

their respective organs1,6,8-11. These functions are numerous and include self-renewal of the epithelial 

tissue, absorption of dietary nutrients, production, and secretion of digestive enzymes, sensing of 

luminal contents, coordination with the nervous and immune systems, and regeneration and response 

to injury1-3,6,12-22.  

Gastrointestinal diseases are a major burden to the United States healthcare system and 

their associated costs sum to $135.9 billion annually23. In 2018, research into the pathophysiology of 

the human GI diseases totaled to $1.832 billion and represents a major research area focused on 

developing insights into the health and disease of the GI tract23. These research projects span many 

disciplines and include projects such as large animal studies focused on translating findings into 
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clinically relevant treatments, development of small animal models that can dissect the specific 

genetic perturbations that result in carcinogenesis, engineering of new microphysiological systems to 

tease apart host-microbiome interactions, and sophisticated computational modeling that can help 

predict drug targets for personalized medicine24-27. While these research projects cover a broad range 

of scientific disciplines, they are united in their goal of advancing our understanding of the physiology 

of the human GI tract to ultimately improve diagnosis and treatment of GI diseases and thus improve 

the overall quality of life.  

In recent decades, advances in biochemistry, computer science, and materials science 

(among many others) have coalesced to transform experimental biology from studies that generally 

describe macro-scale observations into a high resolution science that can describe the microscopic 

regulation of biological phenomena. To achieve these results experimental biologists have become a 

new kind of engineer, continuously inventing experimental techniques and technologies that can 

define and quantify the entirety of biological processes in ever-increasing detail. From these efforts, 

gene expression patterns in biological tissues, or transcriptomics, have emerged as a useful tool for 

uncovering new cell types and describing cellular processes at single cell resolution. Developing high-

resolution transcriptomic readouts of complex biological systems represents an approach to achieve 

a more complete understanding of how molecular biology determines human health and disease.  

In the following chapters, I will present research centered on the goal of advancing high-

resolution descriptions of epithelial pathophysiology of the human small intestine, colon, and the 

stomach at homeostasis and in various disease states with a focus on integration of computational 

and experimental methods into cohesive research pipelines. In chapter two, I will present a 

computational survey of the comprehensive gene expression profile of the entire human small 

intestine and colon epithelium at single cell resolution from three donated human intestines. In 

chapter three, I will describe how fatty acid oxidation is important in the transport of medium- and 

long-chain fatty-acids across the human intestinal epithelium. In chapter four, I will use a novel cell 

culture model to evaluate the effect of severe acute hypoxia on proliferation, survival, and cell-cycle 

dynamics of human jejunal stem cells. In chapter five, I will use models of mouse and human gastric 

metaplasia and dysplasia to evaluate the transcriptomic and functional heterogeneity of gastric 
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cancer stem cells. Finally in chapter six, I will provide concluding remarks on the current state of 

research into the physiology of these tissues and future directions for the work presented in this 

dissertation.  

For the remainder of this introduction, I will break down the necessary scientific and 

engineering research and introduce the biological and technical concepts which underpin the work 

presented in this dissertation. First, I will give a more thorough description of the physiology of the 

human stomach and intestines than what I have so far provided. I will describe principles and use of 

in vitro model systems that will help in understanding the experimental models I use in chapters three, 

four, and five. I will conclude this introduction with an overview of the computational and 

bioinformatics concepts used in each chapter.  

1.2 FUNCTIONAL ANATOMY OF THE HUMAN GASTROINTESTINAL TRACT 

1.2.1 The human intestines 

The intestines are attached to the stomach at the pylorus and can be divided into two distinct 

organs, the small intestine, and the colon. The small intestine immediately follows the pylorus and the 

colon, or large intestine, follows the small intestine and connects to the rectum and anus. Both the 

small intestine and colon can be divided into three anatomical regions. The small intestine is divided 

into the duodenum (most proximal), the jejunum, and the ileum (most distal) (Fig 1)1. The small 

intestine connects to the colon at the ileocecal junction, which joins the ileum and cecum and 

connects to the ascending colon. The cecum is a pouch that is home to many microbial species that 

breakdown carbohydrates that are not digestible in the small intestine3. The colon is divided into the 

ascending colon (most-proximal), transverse colon, and descending colon (most-distal), which 

connects to the sigmoid colon, rectum, and anus (Fig 1).  

1.2.3 The small intestinal epithelium 

The key role of the small intestine is to digest food and absorb nutrients and host-defense 

from the commensal resident microbiome2,12-14. The duodenum is the shortest portion of the small 

intestine at about 25cm of length the most proximal portion serves as an intersection of the GI tract 

with the pancreas and gallbladder1,28. At this point, the gastric contents (i.e., chyme) are mixed with 
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pancreatic secretions and bile acids to neutralize the acidic stomach contents and to further facilitate 

digestion3,29. Furthermore, the epithelium of the duodenum senses luminal contents and begins to 

coordinate peristalsis of the intestinal contents through the small intestine and colon1. Immediately 

following the duodenojejunal flexure, the remainder of the small intestine is divided into the jejunum 

followed by the ileum. Proximal to the ileum, the epithelium of the jejunum is characterized by a large 

amount of surface folds and villi (slender projections into the intestinal lumen). The villi provide a large 

surface-area into the intestinal lumen that facilitates most of the nutrient absorption in the small 

intestine1,3. In contrast to the jejunum, the ileum has fewer and shorter villi and specifically absorbs a 

subset of solutes and nutrients (i.e., conjugated bile acids)1.  

Like the gastric mucosa, the intestinal mucosa is glandular in nature. The basic units of the 

intestinal epithelium are the crypt and the villus (Fig 2A). Intestinal crypts are invaginations into the 

epithelium that are home to intestinal stem cells, undifferentiated progenitor cells, and paneth cells. 

Renewal of the entire intestinal epithelium occurs about every 5 days and is driven by the crypt-based 

stem cells8. Stem cells give rise to daughter cells (otherwise known as transit-amplifying and/or 

progenitor cells) that migrate up the crypt-villus axis and differentiate into the variety of lineages that 

fulfill the homeostatic functions of the intestines8. Enterocytes, which make up the bulk of the 

intestinal epithelium have apical microvilli that allow for the absorptive workhorse of the small 

intestine to absorb and transport nutrients into circulation6. Goblet cells, whose name comes from 

their goblet-like shape, are common cells in the intestinal epithelium produce the critical mucus layers 

that lubricate and protect the entire intestinal epithelium6. Endocrine cells are rare hormone-producing 

cells and have been shown to interact directly with the enteric nervous system and act in satiety 

signaling6. While enigmatic, Tuft cells, so named because of their tuft-like microvilli that project farther 

into the lumen than enterocyte microvilli, have been shown to have an important role in detecting 

luminal contents and coordinating with the immune system to clear pathogens6,30. Paneth cells, a 

differentiated cell found specifically in the base of the crypt adjacent to stem cells, have been shown 

to provide necessary support and protection to the stem-cell niche through production and secretion 

of stem-cell maintenance factors and anti-microbial peptides; however, their role in the human 

intestinal epithelium is less clear6,31. 
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1.2.4 The colonic epithelium 

The colon, or the longest part of the large intestine (so-called for its larger diameter), 

functions primarily to store and solidify luminal contents, transport waste to be eliminated from the 

body, and reabsorb critical fluids1,2 . The colon is divided into four regions: the ascending colon (most 

proximal), the transverse colon, the descending colon, and the sigmoid colon, which connects the 

descending colon to the rectum (Fig 2B). The ascending and transverse colon have been shown to 

reabsorb fluids used in digestion as well as absorb products of microbial fermentation (e.g., butyrate, 

thiamin, riboflavin, etc.)1,29. The enteric nervous system and colonic smooth muscle of the ascending 

and transverse colon coordinate to produce motility patterns that continuously mix colonic contents, 

maximizing absorption of fluids, ions, and other compounds as well as solidifying the contents of the 

colon2. In contrast to the more proximal ascending and transverse colon, the descending colon is 

mainly a conduit for excretion of fecal waste that is expelled via mass peristalsis through the sigmoid 

colon and into the rectum1. 

The colonic epithelium is markedly different from the small intestines as the colon lacks villi 

and the colonic crypts are much larger than their counterparts in the small intestine8. Many of the 

same cellular lineages are present in the colon, with a notable exception being the lack of paneth 

cells in the colonic crypt6f. Many of these cellular lineages share a similar role between the small 

intestine, albeit slightly altered. For example, in the colon, the microbial density is much higher than in 

the small intestine and as such the number of goblet cells is much greater in the colon, the colonic 

mucus is much thicker, and is composed differently than the mucus of the small intestine32,33. Colonic 

tuft cells may be another lineage that may fill a different role in the colon than in the small intestine. 

Without paneth cells, colonic tuft cells have been shown to produce a majority of antimicrobial 

peptide31. Also, colonic tuft cells express different receptors from small intestine tuft cells, suggesting 

that they can detect and respond to different microbial cues31.  

1.2.5 Renewal, injury, and repair in the small and large intestinal epithelium 

First described in 1974, the intestinal stem cell, or crypt base columnar cell (CBC), is the 

source of all epithelial renewal in the small intestine and colon34. These cells exhibit two distinct 

properties, multipotency and long-term self-renewal, that define their stem cell ability, or stemness8. 
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Through lineage tracing experiments, Lgr5 was identified as an exclusive marker of ISCs, long-lived 

cells at the base of the crypts capable of homeostatic renewal of the entire crypt-villus unit and 

differentiation into all post-mitotic lineages of the intestines8. Beyond the Lgr5+ ISC, other studies 

have shown the presence of an additional type of stem cell, the reserve stem cell or +4 cell, located 

just above the last crypt-based paneth cell, that is resistant to radiation damage and regenerates the 

intestinal crypt after injury when the normally-cycling CBC population is ablated.35-39 Aside from a 

dedicated pool of reserve stem cells, many studies have begun to point towards the plasticity of 

differentiated secretory and absorptive lineages to migrate downwards into the crypt to repopulate the 

intestinal epithelium40-42. For example, a study from Tetteh et al. showed that when the Lgr5+ CBC is 

ablated with diphtheria toxin, that ALPI+ absorptive progenitors can revert to the stem cell state and 

regenerate the ablated ISCs.43 In contrast to the restricted plasticity of the absorptive progenitors, 

specific differentiated secretory lineages of the intestine, the enteroendocrine cells and the tuft cells, 

possess the ability to dedifferentiate in response to ablation of the intestinal crypt and regenerate the 

entire crypt-villus unit44,45. These dynamic cell populations demonstrate the need to attribute 

stemness not as an innate property restricted to designated Lgr5+ ISCs but as a dynamic plastic 

cellular program that can be induced in response to the changing conditions experienced by the 

epithelium of the GI tract.  

1.2.6 The human stomach 

In the GI tract, the stomach functions to initiate digestion, protect the body from pathogens, 

and control delivery of a meal to the small intestines1,2,46-48. Anatomically speaking, the human 

stomach can be generally separated into two distinct regions, the more-proximal corpus, and the 

more-distal antrum (Fig 3)1,9,10,46 . At the macro level, folds of tissue, called rugae, cover the surface 

of the stomach. These rugae are home to gastric glands, invaginations that contain the functional unit 

of the stomach, the gastric gland1,10,46,48. Gastric glands are comprised of a single layer of epithelial 

cells whose specific composition varies between the corpus and the antrum1,9,46,47. In humans, the 

corpus is home to oxyntic, or acid-producing, glands, whereas the antral glands lack the ability to 

produce acid and mainly produce mucus and other protective proteins1,9,46,47.  
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Within the corpus gland, multiple cell lineages fulfill the various duties of the gastric 

epithelium (Fig 4). Mucous-secreting pit and neck cells produce a mucous barrier that sits on top of 

the epithelial monolayer and functions as a primary defense from the low pH of the stomach and 

pathogens1,9,10,46,47. Acid-secreting parietal cells produce and secrete hydrochloric acid that begins to 

breakdown food49. Most proliferation originates from the isthmus region, with progenitor cells 

migrating away from this region as they differentiate into post-mitotic lineages10,50. The chief cells are 

large, post-mitotic cells that handle producing and secreting digestive enzymes51,52.  

Two distinct stem-cell niches are present in the gastric epithelium. The isthmus region is the 

source of the majority of homeostatic renewal of the gastric epithelium50. These cells lack any 

differentiated features or function (e.g., secretory granules, specialized organelles) and is the main 

location of DNA synthesis in the homeostatic epithelium as evidenced by the uptake of nucleotide 

analogs (i.e., BrdU, EdU)52,53 These cells are the majority of constitutively active multipotent cells in 

the corpus gland52,53. The second stem cell niche has been observed in a subset of the post-mitotic 

chief cells at the base of the gland52,54-57. These chief cells appear to form a long-lived, self-sustaining 

niche that can expand after injury and have been shown to be critical to recovery of the gastric 

epithelium after injury50,52,57. 

1.2.7 The murine stomach 

Notably, the mouse stomach, a predominant animal model for studying the gastric epithelium, 

is significantly different from the human gastric epithelium in one anatomical region, the forestomach9. 

In mouse, the forestomach is in the most proximal portion of the stomach, immediately above the 

esophageal sphincter67,84. Anatomically in humans, this sub-region of the corpus is known as the 

fundus and is home to the deepest gastric glands in the gastric mucosa1. However, in mouse, the 

forestomach is characterized by stratified squamous epithelium instead of the glandular epithelium in 

the humans. These anatomical differences highlight the importance of using human models to study 

gastric physiology. 
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1.2.8 Injury, repair, and the origins of gastric cancer 

In response to injury, the gastric epithelium elicits an inflammatory response to defend 

against further damage and to regenerate the damaged tissue52,54,58-64. A predominant origin of 

gastric injuries and inflammation develops from Helicobacter pylori infection, which is estimated to 

affect half of the world’s population and precedes multiple human disease pathophysiologies 

including peptic ulcer disease, chronic gastric atrophy, and gastric adenocarcinoma25,46,51,60,65-69. H. 

pylori targets the epithelial tight junctions in the stomach, inducing inflammation and an epithelial 

repair process where post-mitotic chief cells transform their cellular state to mount a plastic tissue 

renewal response9,46,70-72. Cellular plasticity refers to the ability of a cell to reversibly assume different 

cellular phenotypes73. Chief cells are a plastic cellular population that respond to inflammation by 

reprogramming into a proliferative mucous cell lineage known as Spasmolytic Polypeptide Expressing 

Metaplasia, or SPEM25,46,51,60,65-67. Chief cell reprogramming into SPEM is further defined by 

disassembly of chief cell secretory machinery and distinct transcriptional changes (e.g., upregulation 

of Tff2, Muc6, CD44v9)51,54,58,64,74-76. A handful of markers (Lgr5, Mist1, Troy, Sox2, Runx1) have 

been used to loosely identify subsets of chief cells with varying abilities to initiate SPEM, suggesting 

the presence of functionally heterogeneous chief cell subpopulations that may have different roles in 

SPEM and the repair process77.  

While the complete pathophysiological progression of gastric cancer is not clearly 

understood, the prevailing hypothesis is that in conjunction with chronic H. pylori colonization, the 

stomach mounts a persistent inflammatory response which mutates normal epithelial recovery 

processes (i.e., SPEM) into dysplastic and neoplastic transformations in the context of genetic 

predisposition, environmental and lifestyle factors25,69,78. Specifically, the cascade from gastric 

precancer to cancer begins with chronic, unresolved SPEM lesions evolving into intestinal metaplasia 

followed by progression into gastric dysplasia79. Gastric dysplasia is classified histologically by mucus 

depletion, elongated, pseudostratified, and irregularly sized nuclei, and irregularly sized glands80. 

Dysplasia is understood as an initiating event in the transformation from precancerous lesions into 

intestinal-type gastric cancer81. Recent studies have identified Trop2 as a reliable marker of cells 

transitioning from metaplasia to dysplasia and may serve as a gastric cancer stem cell marker60,66,82. 
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Cancer stem cells are neoplastic cells (i.e., cells that do not respond to normal cell-cycle regulatory 

cues) that are malignant, give rise to distinct cancers, and play a role in the cancer progression as 

well as development of intratumor heterogeneity and drug resistance83. In conjunction with Trop2+ 

classification, two populations of putative gastric cancer stem cells (GCSC) have been identified in 

the human gastric epithelium a the double positive (DP; CD44v6neg, CD133+, CD166+) and triple 

positive (TP; CD44v6+, CD133+, CD166+) population. Of these two GCSC populations, the DP 

population were specifically shown to drive the evolution into heterogeneous gastric 

adenocarcinoma65. Altogether, these studies highlight the importance of developing viable models of 

gastric carcinogenesis to further study the mechanisms involved in gastric tumorigenesis.  

1.3 ENGINEERED IN VITRO CULTURE MODELS OF THE GASTROINTESTINAL EPITHELIUM  

The physiology of the gastrointestinal epithelium is highly complex to fulfill the broad 

spectrum of roles and duties needed to intake and break down food, absorb nutrients and fluids, and 

form a protective barrier from environmental insults while supporting a commensal microbiome. 

Animal models have traditionally been a predominant method of studying physiologic phenomena 

through genetic, chemical, surgical, and behavioral manipulations because of faithfulness to in vivo 

physiology. Despite the traditional focus of using animal models to study these phenomena, a number 

of recent studies have demonstrated that the major animal models of the gastrointestinal epithelium 

retain major differences to the human GI physiology31,85-89. However, many of the same experimental 

manipulations used in animal studies to define physiologic phenomena are unethical and completely 

unsuitable for use with human subjects. For this reason, a recent set of studies have begun to 

develop in vitro cell culture models using human cells to cleave closer understanding human 

gastrointestinal physiology26,90-105. 

Starting with Henrietta Lacks in 1951, cells have been isolated from human subjects and 

cultured in a laboratory setting106,107. Despite the highly unethical mode by which HeLa cells were 

obtained, these cells have laid the foundation of modern experimental biology107. Historical 

experimental models of the human GI tract have sought to mimic the complex and highly organized 

GI physiology by resorting to cell lines derived from cancer cells (e.g., Caco2, HT-29, SW480, etc.)108. 
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Many of these models have recapitulated various aspects of the GI physiology such as the stiffness 

of the extra-cellular matrix, the 3D porous architecture of epithelium, and mechanical shear forces 

simulating fluid flow109-111. Despite these significant advances, these tumor-derived cell lines do not 

faithfully recapitulate in vivo GI physiology. Specifically, tumor-derived models lack the variety of cell 

types found in the GI epithelium and have different levels of many key functional proteins than those 

found in the healthy GI epithelium in a non-diseased state104,112. Biopsies of healthy human GI 

epithelium have only recently been isolated from human subjects for culture and represent a model of 

the human GI tissue that maintains physiologic relevance to non-cancerous physiology and allows for 

experimental perturbations common in animal model research105,113. In the remaining portions of this 

section, I will outline the common in vitro cell culture models used to study the human GI epithelium 

as well as present an overview of techniques that can be used to engineer novel tissue culture 

systems and allow for extremely specific and controlled experimental designs.  

1.3.1 Two-dimensional models of the GI epithelial monolayer 

The gastrointestinal epithelium is a single-cell thick layer of cells that overlays the underlying 

three dimensional architecture to form the organs of the GI tract. This monolayer of epithelium is 

composed of all the subtypes of cells found in the GI tract, from the self-renewing stem cells to the 

absorptive enterocytes and the mucus-producing goblet cells. Two-dimensional cell culture systems, 

or monolayer systems, seek to mimic the in vivo niches that support the heterogeneity of cell types 

found in this single layer of cells. Monolayer systems are simple to use, easy to scale up, and are 

compatible with a wide variety of experimental techniques97,104,105,114. The key components of 

monolayer systems are extra-cellular matrix, or scaffold, on which the epithelial cells are cultured and 

the media composition. Both components can be tailored to direct the cultured epithelial cells into 

specific states to better model specific aspects of in vivo physiology; for example, maintaining the 

cultured cells as stem cells to study cell cycle dynamics, or differentiating the culture into absorptive 

enterocytes to evaluate transport of nutrients98,104. The scaffold itself can take many forms, namely 

nonporous surfaces (i.e., standard tissue culture plates), semipermeable soft hydrogels, porous 

membranes and micropatterned surfaces that mimic physiological niches94,95,104. Typically, the main 

component of the scaffold is a layer of type 1 collagen hydrogel as it allows for 2D attachment of the 
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epithelial cells in a comparable manner to in vivo physiology and is the proper stiffness to maintain 

both stem cells and differentiated cells in culture. These hydrogels can then be combined with other 

tissue culture devices to engineer specific properties in the culture. For example, overlaying a thin 

coating of the collagen hydrogel over a Transwell™ platform, or other porous membrane, and when 

combined with conditions that differentiate the epithelial cells, recapitulates key properties of the 

epithelium such as apical/basal polarization, brush border and tight junction proteins, and an 

impermeable single layer of cells97,98,104. These kinds of in vitro models enable studies of epithelial 

barrier integrity and permeability, transport of dietary nutrients across the epithelial barrier, targeting 

of apically or basally specific infection models, and production and secretion of biochemical 

compounds such as hormones and cytokines. 

The culture medium for epithelial culture is the other critical component that enables 

monolayer culture to mimic in vivo physiology. While in vitro models seek to control experimental 

conditions to understand biological phenomena, the GI epithelium biology is highly complex and relies 

on the interconnectedness of multiple biological systems to maintain homeostasis. As such, long lived 

culture models of primary epithelial cells were not feasible until Sato and colleagues described the 

essential growth factors (i.e., Wnt3, Rspondin-2, Noggin2, EGF) needed to culture mouse intestinal 

stem cells.101,115 Beyond maintaining the proliferative capacity of stem cells, the medium composition 

can direct the culture to differentiate into the post-mitotic lineages of the gastrointestinal 

epithelium97,98,104. Controlling the spontaneous differentiation of the GI epithelium in vitro enables 

studies of the genetic, transcriptomic, and proteomic dynamics of cellular differentiation and allows for 

experimental perturbations that can tease apart mechanisms of lineage-specific biological processes 

unique in humans and not otherwise possible.  

1.3.2 Three-dimensional cell culture systems 

In vitro studies of primary gastrointestinal tissues were enabled in 2009 by pioneering work 

by Sato and Clevers101. Their work established the Lgr5+ cell as a crypt-based cell in the mouse 

small intestine that can form long-lived three-dimensional structures (i.e., organoids) in vitro that 

recapitulate the crypt-villus axis as well as the stem and all differentiated cell types seen in the small 

intestine. To form an organoid, a stem cell is traditionally cultured in Matrigel™, a collagen- and 
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laminin-rich extracellular matrix (ECM) derived from mouse Engelbreth-Holm-Swarm sarcomas. Upon 

embedding in the Matrigel™, and with proper media composition, stem cells spontaneously 

proliferate, enclose, and organize into a three dimensional structure. Organoid culture systems have 

now been derived from stem cell populations isolated from many other animal models (e.g., pig, cat, 

dog, sheep, etc.) as well as many other organ systems, for example from the brain, kidneys, retina, 

lungs, stomach, among others.112,116 Despite the variety of current organoid models they all share 

specific characteristics that define them as an organoid: they are self-organized, self-renewing, and 

their constituent cells share functionality with their respective organs.  

The use of organoids has been revolutionary in biomedical research. When focusing on the 

gastrointestinal epithelium, organoids have served as an important model for studying many facets of 

GI physiology, specifically stem cell dynamics, tissue regeneration, inflammatory diseases, cancer 

progression, and viral and microbial infection, to name but a few examples117-131. Furthermore, the 

ability of a single cell to form an organoid when cultured in isolation has become an invaluable 

functional measure of stemness, termed organoid formation efficiency, which quantifies the inherent 

stem cell potential. While organoids are useful in vitro models of the gastrointestinal epithelium, they 

are not without their shortcomings. Because of their enclosed form and the necessary ECM, 

organoids are not easily adaptable to transport studies, drug screens, or permeability assays; 

furthermore, batch variability in the production of Matrigel™ hinders experimental replication.  

1.3.3 Engineered microphysiological systems for studying the gastrointestinal epithelium 

Monolayers and organoid culture models both represent reductionist interpretations of the 

gastrointestinal epithelium. Adding complexity to these models through microfabrication of novel 

tissue culture systems enables more direct modeling of specific properties of the gastrointestinal 

epithelium, such as mechanical stretching and compression, shear stress from fluid flow, and 

controlled geometries that can mimic in vivo biochemical gradients, not well captured with more 

simplistic tissue culture systems93,103,132. Microengineered tissue culture systems often rely on the 

same collagen hydrogel matrix used in 2D monolayer systems overlaid on microfabricated 

geometries that mimic the intestinal crypt-villus unit or the colonic crypt99. In these controlled 

geometries, it has been shown that simple gradients of niche factors are enough to polarize the 
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epithelial cells and localize the stem cells at the base of the crypts and the differentiated cells in the 

villi or the luminal surface96,133. The same principle applies to two dimensional geometries as well. 

When micropatterned permeable holes are used to apply controlled gradients of growth factors in 2D 

monolayer cultures, human ISCs form flattened crypt-like areas where the stem and progenitor cells 

remain located over the microholes where the stem cell factor concentration is highest.95,105 

Engineering and microfabrication techniques can also be used to create primary tissue 

culture systems that model specific cellular interactions, disease states, or injuries as well as devices 

that adapt 2D and 3D systems for automated and/or high throughput assays. Coculture systems allow 

for simultaneous culture of at least two separate primary-tissue derived cell populations to study 

specific interactions between them100. In recent work, Kim et al developed a coculture system for 

primary colon epithelium and anaerobic bacteria (L. rhamnosus, B. adolesentis, and C. difficile) to 

enable in vitro assays of infection pathogenesis as well as commensal bacteria26,134. Beyond disease 

and injury models, engineering approaches can also be used to generate tissue culture microarrays 

which speed up in vitro experiments by massively parallelizing standard tissue culture systems. Gracz 

et al developed a high-throughput organoid microarray system (termed the CellRaft Array™, Cell 

Microsystems, Durham NC) which was used to show how mouse paneth cells support the ISC niche 

and enhance organoid formation through contact with stem cells91. This same high throughput system 

was used to identify a subpopulation of dysplastic stem cells in clonal gastric cancer organoids based 

on the rate of clonal organoid formation from sorted gastric cancer stem cells66. Brandenberg et al. 

developed a similar system that used a microcavity array to automate GI stem-cell aggregation into 

organoids, reduce organoid to organoid variability and heterogeneity, screen potential anticancer 

drugs and reveal the screened drugs’ mechanisms of action102. Altogether, while engineered tissue 

culture systems require substantial design skill and thorough experimental validation, their creativity 

allow for exquisitely controlled experiments that establish powerful models in in vivo physiology.  

1.4 BIOINFORMATICS APPROACHES FOR STUDYING THE GASTROINTESTINAL EPITHELIUM 

Historically, biology has been a less quantitative and a more observational science. Recently, 

fundamental developments in molecular biology, computer science, and biochemistry have enabled 

the quantification of biological process at incredibly high resolution. As scientists seek to quantify 
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biological systems, the datasets generated have simultaneously grown larger and more complex as 

novel biological phenomena continue to be described. To grasp the fundamental processing and 

analysis of biological datasets, bioinformatics has emerged as a discipline that merges biology with 

statistics and computer science to generate meaningful insights about the underlying biological world. 

Bioinformatics is, generally speaking, the application of statistics, data science, and computer science 

to biological datasets in order to isolate meaningful biological signals from inherent biological noise136.  

The processing and analysis steps used to isolate these signals is termed a computational 

pipeline, which refers to the series of prescribed steps that help to ensure scientific and statistical 

rigor. These datasets can describe a broad range of biological characteristics generally focused on 

the major biochemical building blocks of life: DNA (e.g., genetic sequencing, chromatin accessibility, 

phylogenetics), RNA (e.g., bulk and single cell RNA sequencing), protein (proteomics, metabolomics, 

computational protein modeling), lipids (e.g., mass spectrometry, metabolomics) and the integration 

of these biomolecules into complex systems through image analysis (e.g., image segmentation), 

systems biology (e.g., network connectivity analysis, flux balance analysis), and even synthetic 

biology (e.g., pathway engineering, predictive modeling)136. While these are all rich disciplines for 

study and discussion, in this dissertation I will focus on the application of two RNA sequencing-based 

approaches to describe the comprehensive gene expression patterns, or transcriptome, of 

gastrointestinal epithelial cells as well as use bioinformatics approaches to quantify the cell-cycle 

dynamics of the same epithelial populations.  

1.4.1 Introduction to RNA sequencing 

RNA sequencing, or RNAseq, quantifies the amount and variety of mRNA present within a 

sample to describe the comprehensive gene expression profile, or transcriptome. From this data, 

biologists can compare the gene expression patterns across cell types, tissues, and experimental 

conditions to interrogate the role of specific genes in biological processes and phenomena. It is worth 

noting that RNA is not sequenced directly to generate RNAseq datasets and instead, once an RNA 

sample has been generated, the sample undergoes a series of processing steps termed library 

preparation before the actual sequencing137. Briefly, library preparation begins by reverse transcribing 

RNA into its complementary DNA (i.e., cDNA) through reverse-transcriptase PCR. Next, 
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fragmentation shortens the strands of cDNA into smaller, uniform pieces which are usable in modern, 

short-read next generation sequencing (NGS) technologies. After fragmentation, the DNA adapters 

and sample barcodes are attached to each fragment of cDNA to allow for multiplexing of many 

samples per sequencing run and to ensure compatibility with NGS technologies. To generate the 

actual nucleotide sequence, NGS technologies generate nucleotide sequence ‘reads’ through cycles 

of adding fluorescently tagged single nucleotides followed by imaging to generate a ’read’138,139. The 

number of generated reads (i.e., sequencing depth) for a sequenced sample is a measure of the 

sensitivity of the sequencing data with more reads being more likely to detect rarely expressed genes. 

Generally, a sequencing depth of 30 million reads is effective for detection of differential gene 

expression patterns between experimental conditions; however, factors such as read length, the 

number of samples sequenced, and the kind and number of experimental and technical replicates 

can influence the sequencing depth needed to assess meaningful transcriptomic differences140-142. 

Furthermore, NGS technology is limited by flow cell surface area, with the total number of reads per 

sequencing run divided stochastically amongst all sequenced samples. Thus, every sample 

sequenced in the same batch will not necessarily be sequenced to the same depth. Using this 

technology, the comprehensive gene expression pattern of biological samples can be generated to 

capture insights into how cells regulate and fulfill their biological duties.  

The simplest use of RNAseq to study biological systems is through bulk RNA sequencing, or 

simply RNAseq. In RNAseq, multiple technical replicates of a specific experimental sample (e.g., 

cultured epithelial cells, homogenized whole tissue from a specific organ, flow-sorted immune cells) is 

lysed with chaotropic salts, RNA is extracted and purified from the lysate, and cDNA libraries are 

prepared and sequenced. Once the sequence data is generated, the sequences must be aligned to 

the genome of the originating species to quantify the frequency of specific transcripts and their 

respective genes139. Reference genomes contain all annotated and described genes from a specific 

organism, around 30,000 individual genes for mice and humans. Computationally, base-by-base 

alignment to a reference genome is difficult, memory-intensive, and time-consuming, thus new 

methods (e.g., Salmon, Kallisto) have emerged that use alignment-free (i.e., pseudoalignment) 

methods to speed up transcript quantification, with minimal loss in accuracy of the alignment143-145. 
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Briefly, pseudoalignment algorithms work by breaking down sequencing reads into nucleotide 

sequences of a specific length, termed a k-mer, where k is number of nucleotides in the sequence. By 

comparing the relative abundance of particular k-mer sequences within a read to an index built from a 

reference transcriptome, reads are probabilistically mapped to likely parent transcripts and combined 

to quantify the relative abundance of transcripts and their respective genes143,144. After genome 

alignment, sample normalization is an important step that enables comparison across samples with 

varying sequencing depths140.  

Once RNAseq samples have been aligned and normalized, they are ready for analysis by the 

bioinformatician. The first step in most RNAseq analysis is checking for replicate similarity within the 

experimental conditions, followed by differential gene expression testing which determines statistically 

significant differences in gene expression across the experimental conditions. The power of RNAseq 

data is the breadth of data present which allows for bioinformaticians to zoom out from individual 

gene expression and weave together expression patterns that describe groups of genes involved in a 

specific biological process. A number of tools exist for uncovering patterns in RNAseq data such as 

Principle Component Analysis (PCA), Gene Ontology (GO) Analysis, Gene Set Enrichment Analysis 

(GSEA), Reactome Pathway Analysis, and others, which, when paired with differential gene 

expression, highlights statistically meaningful gene expression differences between samples that 

correspond to entire biological processes140. For example, when RNAseq was applied to describe the 

differentiation of human jejunal ISCs into absorptive enterocytes in vitro, these tools were used to 

describe the transcriptomic dynamics of fatty-acid handling genes during the multi-day differentiation 

timeline104. While RNAseq is an important and powerful tool for understanding gene expression 

dynamics in biological systems, it is not without shortcomings. Specifically, RNAseq captures only 

one gene expression value for an entire biological sample, thus erasing any cell-to-cell variability in 

gene expression across the sample and masking potentially subtle differences between conditions.  

1.4.2 Single cell RNA sequencing 

Recently, single cell RNA sequencing (scRNAseq) has emerged as a technique for assessing 

the cell-to-cell variability of gene expression patterns in mixtures of diverse cells. In contrast to 

traditional RNAseq, scRNAseq preserves the heterogeneity of gene expression profiles from 
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individual cells in a biological sample, allowing for unprecedented transcriptomic resolution of the 

variety of cellular states and types and subtypes of cells in healthy and diseased tissues146-148. The 

high resolution of scRNAseq does present significant challenges in terms of separating technical 

noise from biological variation149. The preparation of scRNAseq libraries is a crucial step in reducing 

technical noise from scRNAseq data. While both bulk RNAseq and scRNAseq cDNA libraries are 

dependent on reverse transcription of mRNA into cDNA libraries, scRNAseq libraries rely on several 

different approaches to ensure proper segregation and reverse transcription of individual cells mRNA 

profile150.  

The first step in generation of a scRNAseq dataset is single cell dissociation, in which a 

biological sample undergoes enzymatic and/or mechanical digestion to break apart cellular adhesions 

and enrich the sample in individual, unattached cells146. Next, single-cell isolation is performed, 

generally through fluorescence-activated cell sorting (FACS) of specific subpopulations of interest147. 

After isolation, droplet- or plate-based protocols capture single cells into small volumes of liquid that 

contain all of the necessary components to lyse the cells, capture and generate cDNA libraries, and 

tag individual transcripts with a unique cellular barcode and a unique molecular identifier, or 

UMI146,150. The UMI allows for downstream detection of PCR-generated copies of the same mRNA 

molecule as well as splice variants of the same gene146. Finally, the barcoded cDNA libraries are 

pooled, or multiplexed, for sequencing. After sequencing, each UMI and barcode is demultiplexed 

computationally to generate the final raw data output. While current scRNAseq library generation 

protocols are robust and can generate high quality sequencing data, there are several places where 

the output data can be compromised. Cell-to-cell variability in gene expression is inherently stochastic 

and cells can also undergo a process called transcriptional bursting, which can skew the specific 

transcripts detected in each cell146,147. Because of these challenges, scRNAseq raw data must 

undergo rigorous quality control to eliminate as much technical bias as possible from the ultimate 

analysis. 

Preparing scRNAseq data for analysis is a multi-step process that seeks to eliminate as 

much technical noise as possible while preserving any inherent biological variability151. Quality control 

of the sequencing data is the first step in the process and commonly uses three specific metrics to 
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filter out low quality cells and sequence: 1) the number of read counts per barcode (i.e., read depth), 

2) the number of genes per barcode (i.e., breadth of gene expression), and 3) the percent reads per 

barcode that align to mitochondrial genes152-154. Together, these metrics can be used to assess key 

aspects of the sequencing quality on a per barcode basis, establish quantitative thresholds for each 

parameter, and filter out cells that fall outside of these thresholds146. For example, a common error in 

library generation is the encapsulation of more than one cell in a particular droplet or well (i.e., 

doublet or multiplets), which would lead to higher than average read counts for a particular 

barcode153. Mitochondrial reads are also useful as a general measure of cells that are in the process 

of dying, as their outer membrane has already burst and cytoplasmic RNAs are lost, leaving behind 

only mitochondrially-encoded genes to be amplified during library generation153. It is important to note 

that there is no predetermined threshold of ‘sufficient’ quality for scRNAseq datasets to meet; it is only 

possible to judge the data quality based on the performance of the data during the analysis steps of 

the pipeline.  

Like bulk RNAseq, scRNAseq datasets generate a variable amounts of reads for each 

barcode sequenced. As such, read-count depth normalization across the dataset is critical to enable 

effective comparisons of gene expression patterns146,148,155. Several normalization methods have 

already been developed for bulk RNA seq; however, scRNAseq has unique sources of variation and 

thus novel methods of normalization have been developed to address these challenges146,148,155. 

While there are a variety of tools able to produce effective normalization in scRNAseq, there is no 

consensus on a single recommended method of normalization for all scRNAseq data as each method 

is well suited to particular kinds of scRNAseq data146. For example, log transformation (log(x+1)) of 

the depth-normalized matrix is often performed before dimensional reduction analysis to reduce the 

skewness of the data, approximating normal distributions on a per gene basis, and allow for 

differences in gene expression to be reported in terms of log fold changes, a universal measure of 

differences in gene expression146. It is also common to use linear regression to eliminate gene 

expression differences that correlate strongly with particular metrics, such as read depth or 

mitochondrial read percentage to remove technical artifacts, or cell-cycle dependent gene expression 

patterns146.  
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After quality control is complete, a scRNAseq dataset is a cell-by-gene matrix that represents 

the entire gene expression profile (~20,000 genes) of thousands of cells. At this point, many genes in 

this matrix do not contain meaningful biological information and as such further processing is required 

before analysis can take place146,149. Dimensional reduction is an important processing step to 

prepare a scRNAseq dataset for analysis. The goal of dimensional reduction is literally to reduce the 

number of dimensions (i.e., genes), which accomplishes several important objectives: 1) summarizes 

information contained in the reduced subset of genes, 2) lowers use of computational resources, 3) 

reduces technical noise, and 4) enables visualization of high-dimensional data in two or three 

dimensions146,148,149. The first step in dimensional reduction is feature selection, in which a subset of 

genes (1-5k) that capture the most variability (i.e., highest variance-to-mean ratio) are selected for 

downstream analysis149. Next, dedicated dimensional reduction techniques, (e.g., principle 

component analysis, diffusion maps) summarize the variability in the selected features and serve as 

the basis for many downstream analysis and visualization tools146,148,149.  

A primary goal of scRNAseq analysis is to group cells into meaningful groups, or clusters, 

which reflect true biological variability146,149. Clustering analysis is the foundation of most scRNAseq 

analysis and generally uses machine learning algorithms (e.g., Leiden clustering, kNN, etc. ) to 

organize the cells into discrete groups that have similar gene expression profiles in the dimensionally-

reduced expression matrix146,156,157. Many clustering algorithms exist as viable approaches for 

establishing scRNAseq cluster annotations and, like the quality control step, there is no quantifiable 

measure of ‘sufficiently high-quality’ clustering. Achieving successful clustering is an iterative process 

and involves the bioinformatician choosing initial parameters, running the clustering algorithm, 

annotating the output with known cell populations based on known gene expression patterns, 

visualizing the clustering output, and then repeating the cycle with updated initial parameters until the 

clusters of cells reflect known biological variability at a ‘sufficiently’ high level146,157. In contrast to 

actual clustering analysis, visualization of the clustering output relies on non-linear dimensional 

reduction techniques such as t-distributed stochastic neighbor embedding (t-SNE), Uniform 

Approximation and projection method (UMAP), ForceAtlas2, and others to embed the higher 

dimensional data into two or three dimensions146. In these representations (Fig 5) each dot in the 
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graph represents a single cell and then any annotations to the data (e.g., cluster labels, expression 

values of specific genes, quality control metrics, etc.) are overlaid onto the cells through colors. 

Recently, it has been proposed that techniques such as t-SNE or UMAP oversimplify the higher-

dimensional data and do not faithfully represent higher-dimensional relationships in their x-y distance 

or the shape of the data embedding158. Nevertheless, these visualization techniques are easy to 

implement, quick, and still serve as useful tools for visualizing highly complex, multi-dimensional data 

in an easily digestible format.  

Once clusters of single cells have been successfully annotated, then the exploration of the 

scRNAseq dataset can begin. Differential gene expression algorithms can be applied to the resulting 

cell cluster to discover unique marker genes that were not previously described159. Like bulk RNAseq, 

these lists of differentially expressed genes (DEGs) can be used in Gene Ontology (GO) analysis, 

GSEA, Reactome analysis, etc. Introducing experimental conditions before the sequencing allows for 

these kind of analysis to highlight how specific treatments impact the comprehensive gene expression 

profile in a specific population of cells and can describe heterogeneity of cellular states in 

homeostasis, between healthy and diseased tissues, or at various points along specific differentiation 

trajectories31.  

While annotated clustering serves as a useful classification system for cells in scRNAseq, 

biological processes resist static descriptors. Indeed, the cells captured in scRNAseq data are 

dynamic and constantly changing in response to their environment and recently a number of 

advanced analysis techniques have been developed to sufficiently describe these ever-changing 

states160-162. Computational models that seek to describe transition points between cell lineages, 

changes in gene expression patterns, or branches of differentiation are known as trajectory inference 

models. The underlying assumption in these models is that each cell in an scRNAseq dataset 

represents a particular point in a continuous process and the structure of a given process can be 

modeled by minimizing the transcriptional changes between neighboring cells161. Describing cells in 

this fashion assigns each cell a pseudo-temporal position in the process being modeled, assigning 

each cell a numerical order otherwise known as pseudotime. Pseudotime is agnostic to specific 

biological process and only minimizes transcriptional changes starting from an assigned root cell. 
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PAGA or Partition-based graph abstraction, is a dimensional reduction and embedding technique that 

preserves the topology of the high dimensional data and can serve as a supplementary trajectory 

inference tool when combined with pseudotime and appropriate clustering163. RNA velocity is another 

approach to modeling biological trajectories in scRNAseq data. In general, RNA velocity relies on the 

fact that both unspliced and spliced RNA are detectable in output from scRNAseq protocols160,164,165. 

Building on this, RNA velocity uses the rates of change of spliced and unspliced RNA across a 

dataset to estimate gene-specific transcription rates, model the transitions between cell identities, and 

calculate vectors describing likely future cell states160,164,165. While each of these examples 

demonstrates a potential approach to use scRNAseq datasets to describe dynamic biological 

processes, they are still only computational models and require thorough experimentation to validate 

their predictions.  

1.4.3 Application of bioinformatics and deep learning to biomedical image segmentation 

Bioinformatics approaches are generally destructive to the biological samples they seek to 

quantify. Microscopic image capture is a powerful and broadly used method to study cellular contents 

that preserves biomolecules within their cellular context166. Cellular segmentation, or identification of 

the individual cell bodies or nuclei within an image, is the first step to study and quantify biomolecules 

in situ167. Segmentation is simple when cells are unattached and at low density; however, this does 

not hold true for most biological systems166. Manual segmentation is a time consuming and laborious 

process and automated segmentation rely on user-specified parameters that are not easily 

transferrable to different kinds of images167. Recently, deep neural networks have been shown to be 

incredibly effective in other image segmentation contexts (e.g., facial recognition) and are beginning 

to be implemented in cellular segmentation processes168-170. Implementing these algorithms requires 

an iterative process wherein an image is segmented, a scientist corrects the segmentation, updates 

the model, and then reruns the retrained model on a new image. In this fashion, scientists can take a 

generalizable model and adapt it to their specific segmentation needs. The output of cellular 

segmentation is a series of cellular masks that delineate the borders of each segmented cell. Once 

sufficiently trained, these pipelines can automate image segmentation and achieve superior accuracy 

to human segmentation167. When combined with conventional fluorescence imaging techniques, 
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these masks can be overlaid with other fluorescence channels to quantify fluorescence intensity 

within a cell, locate specific proteins within a cell, or even to track cells over time. Altogether, the 

integration of deep learning neural networks with experimental fluorescence imaging and in vitro cell 

culture models creates an experimental-computational pipeline that enables biologists to generate 

previously intractably large fluorescence imaging datasets that can describe the heterogeneity of 

cellular responses to experimental perturbation166,167,169.  

1.5 CONCLUSION 

The emergence and development of molecular biology and bioinformatics in recent decades 

has transformed experimental biology into a high-resolution science that seeks to quantify the 

complexity of biological processes and phenomena. As experimental complexity and computing 

power have evolved, so too has the complexity and size of biological datasets and the corresponding 

analysis techniques needed to effectively describe novel biological findings (e.g., gene expression 

dynamics of cellular plasticity, the identification of new cell types, or predicting lineage differentiation 

trajectories). The research presented in the coming chapters will demonstrate that the integration of 

computational and experimental disciplines represents a unique approach that enables experimental 

biology to cleave closer to human physiologic relevance and advance our understanding of human 

biology in health and disease.   
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1.6 FIGURES 

 
Figure 1.1: General anatomic layout of the human intestines. 
Illustration depicting the layout of the human intestines. The small intestines begin with the proximal 
duodenum, followed by the jejunum, then the ileum. The colon, or longest portion of the large 
intestine, connects to the small intestine at the cecum and starts with the ascending colon, followed 
by the transverse colon and finally the descending colon. 
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Figure 1.2: Cellular composition of the small intestine and colonic epithelium.  
A) Illustration showing the general construction of the crypt and villus in the small intestine. B) 
Illustration showing the general construction of the colonic crypt. 
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Figure 1.3: General anatomical layout of the human stomach. 
Anatomic layout of the human stomach. The stomach connects to the esophagus at the proximal 
corpus and distally to the duodenum at the pylorus.  
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Figure 1.4: Cellular composition of glands of the gastric corpus. 
Gastric glands are regular invaginations that contain all of the stem and differentiated lineages of the 
gastric epithelium. 

  



 

27 

 

 
Figure 1.5: Example UMAP plot showing Leiden clusters of human SI and colonic epithelium 
lineages 
UMAP of all analyzed cells in 25 lineage clusters from chapter 2. See Figure 2.19 for clearly marked 
clusters. 
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CHAPTER 2: A PROXIMAL-TO-DISTAL SURVEY OF HEALTHY ADULT HUMAN SMALL 
INTESTINE AND COLON EPITHELIUM BY SINGLE-CELL TRANSCRIPTOMICS1

2.1 INTRODUCTION 

Colloquially called the ‘gut’, the small intestine (SI) and colon are distinct organs with 

overlapping and unique roles in maintaining health. The gut lumen is lined by epithelial stem and 

differentiated cells that renew weekly1. Cellular roles include absorption, ion balance, hormone 

production, mucus production, and signaling through the luminal-epithelial-immune axis. While 

physiological functions vary along the gut, how lineages differ across the SI-colon axis is poorly 

understood.  

Single-cell RNA sequencing (scRNAseq) approaches have provided unprecedented 

transcriptomic resolution of cells and revealed unappreciated cellular heterogeneity. Human intestinal 

scRNAseq studies often analyze individual regions, with studies on adult colonic2-5, ileal6-8, and 

duodenal9 epithelium available. One study compares adult human ileum and regionally-unspecified 

colon6, and a recent report compiles a regional mosaic using multiple donor samples yet has few 

donors for some regions and provides limited epithelial analysis10. Several human gut regions have 

sparse scRNAseq analysis available, with no scRNAseq studies analyzing differences among regions 

within the human SI or colon.  

Here we comprehensively survey adult human gut epithelium using transplant-grade organs. 

scRNAseq libraries were prepared from epithelial cells from duodenum, jejunum, ileum, and 

ascending- (AC), transverse- (TC), and descending- (DC) colon from three donors. This experimental 

 
1 This chapter previously appeared as an article in Cellular and Molecular Gastroenterology and 
Hepatology. The original citation is as follows: Burclaff, Joseph, R. Jarrett Bliton, Keith A. Breau, 
Meryem T. Ok, Ismael Gomez-Martinez, Jolene S. Ranek, Aadra P. Bhatt, Jeremy E. Purvis, John T. 
Woosley, and Scott T. Magness. "A proximal-to-distal survey of healthy adult human small intestine 
and colon epithelium by single-cell transcriptomics." Cellular and Molecular Gastroenterology and 
Hepatology 13, no. 5 (2022): 1554-1589. 
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design provides a robust library which avoids intra-donor batch effects and is the first to allow 

comparisons between all six regions across the same three individual patients. Using this dataset, we 

probe understudied human lineages including Paneth cells (PCs), BEST4+ cells, and Follicle 

Associated Epithelium (FAE). We define comprehensive transcriptional signatures for lineages along 

the entire gut and generate regional atlases of functional gene families. We further probe how 

lineages might be affected by extrinsic signaling through mapping receptor families and analyzing 

primary gene targets of approved drugs. 

2.2 RESULTS 

2.2.1 Sample processing 

We define SI and colon as ‘organs’ and duodenum, jejunum, ileum, AC, TC, and DC as 

‘regions’. Intestinal tracts were obtained from three disease-free organ donors (Fig. 1), with a 

pathologist verifying healthy mucosa. Epithelium from each region was dissociated to single cells 

using cold protease to preserve RNA integrity and cells were flow-sorted to exclude dead cells and 

doublets prior to sequencing. Cells from each region were stained with Cell Hashtag antibody-oligo 

conjugates11,12 to multiplex regions for library preparation and sequencing, then cells from all regions 

per donor were sorted concurrently to avoid intra-donor batch effects and reduce cost. Readouts 

were filtered for minimum and maximum total counts and maximum mitochondrial gene reads to 

exclude transcriptomes of low-read count cells, multiplets, and likely dead cells, respectively. Hashtag 

deconvolution allowed for more stringent filtering against clusters and contaminating mRNA than 

available in other studies, with cells positive for multiple hashtags removed to filter out likely multiplets 

or cells contaminated with RNA from other cells. Following filtering, transcriptional readouts for 

12,590 total cells were obtained (Fig 2), with consistent read depth and gene counts seen across 

regions. This protocol resulted in median reads (11,378 reads per cell) and median gene counts 

(2851 genes per cell) several times higher than those found in another recent scRNAseq survey of 

the full intestinal tract10. 

Donor datasets were individually processed then combined. Principal components were 

integrated with Harmony13 before dimensional reduction and Leiden clustering14. Most lineages 

formed SI- and colon-specific clusters, suggesting functional differences between organs. One cluster 
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expressed PC and goblet cell (GC) markers, so sub-clustering resolved these lineages (Fig. 3). Our 

final dataset identifies all lineages by organ (Fig. 1B). The integrated dataset shows overlapping cell 

distributions from each donor and region within all major lineages, demonstrating that post-

sequencing hashtag deconvolution preserves transcriptomic features across batches (Fig. 1C-E). 

Cell counts for each region show that all three donors contribute approximately one third (33%) of the 

total cells analyzed for each region and no individual donor provided the majority of cells for any 

specific region, with each donor providing 20-48% of the total cells for every region (Fig 2). 

To define transcriptional signatures for each lineage, we calculated differentially expressed 

genes (DEGs) in both organs for each lineage (Table S1). We also identified DEGs consistently 

enriched across all six regions and in all three donors, defining DEGs that are lineage-specific 

regardless of position in the SI or colon (Table S2). This statistical evaluation provides previously 

unavailable transcriptional signatures for all lineages across the human SI and colon epithelium (Fig. 

1F,G).  

2.2.2 Proliferative Cells 

We found that human Intestinal Stem Cells (ISCs) significantly expressed classical markers 

LGR5, ASCL2, SLC12A2, and RGMB (Fig. 4A,B)15-17. SMOC218 was not a DEG in SI ISCs, as PCs 

were unexpectedly found to express it at higher levels (see PC section). While in situ hybridization 

was used in a previous paper that concluded that OLFM4 marks human colonic ISCs19, our results 

showed colonic OLFM4 levels higher in transit amplifying (TA) cells (Fig. 4C), consistent with mouse 

studies16. RARRES2, a retinoid-response gene with no reported association to the gut epithelium, 

was enriched in colon ISCs, with low SI ISC expression (Fig. 4B).  

SI ISCs had 68 DEGs compared to other SI clusters whereas colon ISCs displayed 109 

DEGs compared to other colon clusters (Table S1, Fig. 5). We identified 46 ISC DEGs enriched 

across both organs, defining an ISC transcriptional signature spanning SI and colon (Table S2). This 

signature includes classical ISC markers and 30 ribosomal genes, consistent with transcriptional 

regulation by ribosomes shown in other stem cell populations20-22. To identify ISC DEGs conserved 

between human and mouse, we compared our 68-gene SI ISC signature with a mouse ISC signature 
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defined by bulk RNA sequencing of flow-sorted Lgr5+ cells18. Surprisingly, only 11 genes overlapped 

between the signatures (Fig. 4D), although it is unclear whether this reflects species differences or 

the higher stringency of scRNAseq and computational analysis compared to bulk sequencing of cells 

sorted using a fluorescent reporter. Conserved genes included classical markers: LGR5, OLFM4, 

ASCL2, RGMB, SLC12A2, and MYC; genes with known ISC function: RNF43, ZBTB38, VDR, and 

CDK6; and one gene absent in ISC literature: TRIM24. These SI, colon, and full-gut ISC signatures 

underline key similarities and differences in proximal-distal human ISCs. 

Leiden clustering separated SI TA cells undergoing S/G2 cell-cycle phases (TA) and M-

phase (TA2) (Table S3,4). We found that DEGs shared across SI TA, SI TA2, and colon TA cells 

(Fig. 4E) were involved in cell cycle, mitochondrial biogenesis, and rRNA processing, consistent with 

the increased mitochondrial load and translation seen as stem cells differentiate in various 

systems20,23-25. Several organ-specific markers of differentiated lineages (Fig. 6) were unexpectedly 

enriched in their respective SI or colon ISC and TA populations (Fig. 4F), hinting that ISCs are 

transcriptionally primed for organ-specificity instead of existing in a pan-intestinal state. This is 

consistent with adult rodent SI ISCs producing daughter cells specific to their originating organ when 

engrafted into alternative sites26,27. Studies defining region/organ-specific chromatin or transcriptomic 

differences in human ISCs were not found; thus, these genes may aid in studying early differentiation 

and chromatin dynamics. 

Trajectory analyses computationally investigate lineage transitions and have been previously 

used to describe mouse physiology28-31. We used Partition-based Graph Abstraction (PAGA), which 

analyzes transcriptomic similarity between individual cells in different clusters, to define total 

connection strength (connectivity) between progenitor and differentiated populations and to infer 

temporal lineage trajectories32. As expected, absorptive enterocytes (AEs) and ACCs are strongly 

and almost exclusively connected to ISCs and TA cells8,33, while PCs, GCs, and EECs connect 

strongly to the secretory progenitor population (Fig. 4G,H). Consistent with murine findings, tuft cells 

connect weakly but exclusively to secretory progenitors in colon but not in SI34,35. Conversely, SI 

BEST4+ cells connect weakly but exclusively to secretory progenitors while colonic BEST4+ cells 

connect strongly to TA cells. As the strength of a connection depends directly on the number of cells 
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analyzed, future studies that enrich for secretory progenitors and immature but lineage-committed 

crypt-base populations are needed to further strengthen these findings. 

Predicted regional cell cycle phase distributions36 were analyzed in proliferative lineages (Fig. 

4I-K). ISCs showed high G1 and S phase across regions6, while highly-proliferative TA cells largely 

existed in S and G2/M. TC showed lower proportions of TA cells in G2/M than jejunum, reflecting 

regional differences seen in rodents34. Secretory progenitors showed increasing S phase proximally-

to-distally and higher G1 proportion than TA cells. 

2.2.3 Paneth Cells 

Murine PCs play important niche-supporting and antimicrobial roles37, yet little scRNAseq 

analysis covers human PCs. Our data include 49 human PCs, 10-times more than analyzed in recent 

literature9. PCs were defined using DEFA5, DEFA6, ITLN2, and PLA2G2A (Fig. 7A). Since PCs 

cluster alongside GCs and share LYZ expression with BEST4+ cells, classical markers were plotted to 

confirm PC identify (Fig. 7C). Surprisingly, the murine marker Lysozyme (LYZ) was not unique to 

human PCs, with expression also seen in BEST4+ cells and high expression in FAE (Fig. 7B). This is 

consistent with LYZ expression found in fetal human organoids not expected to form PCs38. Other 

human intestinal scRNAseq papers also indicate that LYZ mRNA is not unique to PCs, with one 

showing that LYZ is not a top PC DEG8 and another showing LYZ as a DEG for M Cells10, consistent 

with our findings (Fig 7B, Table S1). This indicates that while human PCs indeed express LYZ, the 

presence of this gene product alone is insufficient to determine PC identity or presence. Importantly, 

our data indicate the cells designated as PCs in a recent scRNAseq publication6 are actually BEST4+ 

cells, as they are marked by high LYZ, SPIB, BEST4, and CA7. Similarly, the colonic ‘Paneth-Like 

Cells’ reported in the study are likely also BEST4+ cells. The rarity of PCs in scRNAseq data (<1% 

here and elsewhere9), and the presence of LYZ mRNA in other lineages in addition to PCs, highlights 

the precise lineage attribution needed when defining human PCs. 

Murine PCs express ISC niche factors including Wnt3, Wnt11, Tgfa, Egf, Dll1, Rspo1, and 

Dll429,37,39,40 , but one report shows human PCs express no WNT3/119. Our data confirm this and 

demonstrate no measurable EGF or RSPO1 and minimal TGFA (Fig. 7D). DLL1 and DLL4 are both 
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expressed higher in secretory progenitors (Fig. 7D). We found no intestinal growth factors enriched in 

PCs (Fig. 7E), suggesting human PCs are not major niche-supporting cells. This agrees with non-

epithelial sources of WNTs and growth factors in the human niche38,41 and echoes mouse biology, 

where PCs support ISCs37 yet are unnecessary for niche maintenance37,42-44. 

Unexpectedly, SMOC2, a murine ISC marker18, was expressed highest in PCs, with other 

markers shown as restricted to ISCs in mouse (LGR5, ASCL2, RGMB) expressed higher in human 

PCs than expected from the mouse data45 (Fig. 7F). Expression of SMOC2 mRNA in human PCs 

was visualized using in situ hybridization, with obvious overlap seen between SMOC2 and LYZ 

protein (Fig. 7F). ISC-PC doublets could provide a possible explanation for these ISC genes 

presenting in PCs, yet lack of many other ISC markers in PCs, notably the nearly complete absence 

of OLFM4, opposes this hypothesis. LGR5, SMOC2, and ASCL2 function in WNT reception15,46-48, 

suggesting human PCs receive WNT signals instead of providing WNT signals37. PC-unique FZD9 

expression further supports a WNT-receptive PC role (Fig. 7H).  

Despite striking differences between mouse and human PCs, both supply antimicrobial gene 

products. Six of the 10 highest-expressed SI antimicrobial peptides are PC-enriched (Fig. 7I). As 

antimicrobial genes comprise half of human PC DEGs (Table S1), PCs largely appear to function to 

protect the ISC niche49.  

2.2.4 BEST4+ cells 

Recent human scRNAseq studies have described a novel intestinal lineage, absent in mice, 

expressing BEST4, SPIB, and CA75, with SI-specific CFTR9,10 and colon-specific OTOP2. As these 

cells are often described by their expression of BEST4, here we label these SI and colon clusters 

‘BEST4+ cells’. Our DEGs encompassed all of the previously defined markers for BEST4+ cells (Fig. 

8A). By comparing with diffusion pseudotime, which infers trajectory50, our data suggested that 

BEST4 is only expressed to high levels as the cells mature (Fig. 8B), and this was confirmed with in 

situ hybridization, with BEST4-high cells never seen in the proliferative crypts of SI (Fig. 8C) or colon 

(Fig. 8D). In line with previous literature9,10, CFTR protein was shown to mark the apical tips of SI 

BEST4+ cells (Fig. 8C) but not colonic BEST+ cells (Fig. 8D). With the function of BEST4+ cells largely 



 

45 

unknown, DEGs were used to predict their physiological roles. DEGs included GUCA2A and 

GUCA2B5, which act as pro-hormones regulating satiety51. Consistent with a previous report, we 

found these genes expressed in SI and colon BEST4+ cells9, yet our database furthers this finding by 

showing that both genes are expressed higher in SI BEST4+ cells than in colonic BEST4+ cells (Fig. 

8E). 

We identified two previously unreported secreted peptides, NPY and BMP3, specifically in SI 

BEST4+ cells (Fig. 8E). NPY expression is unexpected in intestinal epithelium52, and gut BMP3 is 

largely studied for its antitumor roles53. Similar to BEST4, we found that NPY, GUCA2A, and 

GUCA2B expression increased with BEST4+ cell maturation, while BMP3 expressed independently of 

maturation (Fig. 8F). Interestingly, EECs express receptors for all four genes, suggesting EEC-

BEST4+ cell crosstalk (Fig. 8E).  

Since NPY is proposed to affect gastrointestinal (GI) motility and energy homeostasis54,55, we 

probed if NPY correlated with genes induced following meals. We found strong positive correlations 

across SI regions for each donor between SI BEST4+ cell NPY expression and AE expression of SI 

(R=0.82) and APOA4 (R=0.86), which are induced by dietary sugar56 and fat57 (Fig. 8G). We found 

further positive correlations with AE genes involved in dietary metabolism (Table S5), and negligible 

correlation with housekeeping genes ACTB (R=-0.22) or GAPDH (R=-0.08), suggesting post-prandial 

induction of SI BEST4+ NPY expression. Further SI BEST4+ cell DEGs included ADRA2A and 

CHRM3, receptors involved in intestinal motility58 (Table S1), reinforcing that SI BEST4+ cells 

regulate intestinal motility following meals. 

 BEST4+ cells likely absorb dietary heavy metals. Metallothioneins, which bind heavy metals 

and prevent toxicity59-61, were described in colonic BEST4+ cells5, yet we find seven metallothioneins 

specifically enriched in SI BEST4+ cells (Fig 8H) alongside STEAP2, a metalloreductase for copper 

and iron62, suggesting SI BEST4+ cells maintain SI metal ion homeostasis61-63. Our data indicate 

BEST4+ cells perform diverse roles within the intestinal epithelium, laying the groundwork for 

functional studies. 
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2.2.5 Tuft Cells 

Tuft cells are chemosensory cells which regulate type-2 immune reactions64-66 in the intestinal 

epithelium through IL-25 signaling in response to pathogenic metabolites67-69. SI and colon tuft cells 

share many classical markers9,70 (Fig. 9A, Table S1,S2). DCLK1, a key murine marker69, was not 

observed. SUCNR1, a G-protein coupled receptor mediating SI IL-25 release71, was negligible in 

colon, suggesting SI and colon tuft cells differentially detect succinate-producing pathogens (Fig. 

9B,C). Colonic tuft cells likely detect umami-chemosensory cues (e.g., microbe-derived free amino 

acids) with heterodimeric umami taste receptor subunits TAS1R1 and TAS1R3 (Fig. 9B,C)72. 

Downstream taste signal transduction genes are enriched in SI and colon tuft cells64,65, with SI-

specific GNAT3 likely activating PDE4D to decrease intracellular cAMP/cGMP73 (Fig. 9B). This 

suggests human SI tuft cells have multiple responses to succinate-producing microbes (e.g., N. 

brasiliensis), whereas colonic tuft cells respond to other microbial taxa.  

Beyond triggering type-2 immunity, tuft cell DEGs allow broad interaction with the adaptive 

and innate immune systems. Tuft cell DEGs implicate ubiquitin-mediated proteasome degradation, 

with enriched SCF complex components (SKP1, CUL3, FBXO32, RBX1) initiating exogenous antigen 

processing for presentation74,75 to the MHC1 antigen presentation complex (Fig. 9D). This suggests 

tuft cells interact with the adaptive immune system following luminal stimuli. Human tuft cells also 

uniquely express unappreciated Toll-Like Receptors (TLR9 , TLR5, and TLR4) which bind 

bacterial/viral DNA, flagellin, and lipopolysaccharide (LPS), respectively (Fig. 9D)76-79. Expression of 

the LPS coreceptor CD14 across tuft cells77 (Fig. 9D) supports this novel role in bacterial-related 

immune responses.  

Tuft cells exhibit possible auto-regulatory mechanisms for these pathogen-response 

pathways. Tuft cells express heterodimeric IL-25-specific receptor components (Fig. 9D) which may 

create a positive feedback loop to amplify IL-25 signaling80. SIGIRR may also negatively autoregulate 

the TLR4-LPS response81-83. These implicate tuft cells as dynamic sentinels linking luminal contents 

to the immune system. 
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Tuft cells produce antimicrobial peptides in the SI to complement those produced by PCs 

(Fig. 7G). In the colon, which lacks PCs, tuft cells express six of the top ten colonic antimicrobial 

peptides (Fig. 9E). Human and murine tuft cells also produce neuro- and immunomodulatory 

compounds. We find genes necessary for acetylcholine synthesis, communication with neurons84, 

and enzymes involved in eicosanoid and Prostaglandin D2 production, which broadly regulate 

inflammation85 (Fig. 9F). These analyses suggest tuft cells regulate luminal microbes, communicate 

with the nervous system, and effect systemic immune responses.  

2.2.6 Goblet Cells 

GCs produce membrane-bound and secreted mucin glycoproteins that lubricate the gut, act 

in signaling, support commensal bacteria, and form the protective mucus barrier67,86-88. DEGs include 

classical markers CLCA1, MUC2, and TFF3, with colonic GCs expressing higher WFDC2, consistent 

with previous findings5 (Fig. 10A). Pathway enrichment analysis of DEGs confirmed GCs principally 

act in mucus production and secretion, with top-enriched pathways including glycosylation, Golgi/ER 

vesicle transport, and unfolded protein response (Table S6) 89-92. We found secreted MUC2 and 

transmembrane MUC13 expressed across organs and colon-enriched MUC1, MUC4, and MUC5B 

(Fig. 10B,C). While GCs are considered the major intestinal mucus producers, we also map 

glycocalyx-forming transmembrane mucins, which protect against pathogenic bacteria93,94, in AEs and 

ACCs (Fig. 10D).  

GCs are commonly considered homogenous, however GCs in the mouse colon were recently 

separated into functionally distinct groups, with inter-crypt GCs (icGCs) producing more permeable 

mucus than crypt-resident GCs (crGCs)95. Human colonic secretory progenitors and GCs 

subclustered into similar groups corresponding with differentiation status and marked by genes 

defined in mouse GC heterogeneity95 (Fig. 10E-H). Distinct icGCs on the colon surface were 

visualized using immunofluorescence, with RAB27A localized to the surface GC cells (Fig. 10I). 

Some mucus secretion genes (MUC2, ZG16) were expressed highest in icGCs, consistent with 

icGCs constitutively secreting mucus96, and this was supported by higher MUC2 seen in surface GCs 

via immunofluorescence (Fig. 10I, K). Notably, crGCs and icGCs expressed different mucin genes 

(Fig. 10C J), as verified with immunofluorescence showing crypt base-specific MUC5B protein 



 

48 

expression (Fig. 10K) and consistent with distinct mucus production in humans shown via lectin 

staining95. Similar SI sub-clusters were observed with less-obvious mucin differences (Fig. 11). The 

physiological significance of this human GC heterogeneity necessitates further functional studies.  

2.2.7 Enteroendocrine Cells 

EECs secrete hormones to communicate throughout the body. EEC hormone profiles have 

been characterized at the single-cell level in mice, using EEC reporters to enrich for this rare 

lineage97,98. However, transcriptomic differences exist between mouse and human EECs97,99. Human 

organoids with an EEC reporter yielded sufficient EECs for scRNAseq analysis, though potential 

differences from primary EECs are unclear97. While several human scRNAseq studies include EECs4-

6,9,10, our 154 EECs represent the largest scRNAseq dataset of primary human EECs to our 

knowledge. 

Regional expression of hormones and other signaling machinery in EECs was surveyed (Fig. 

12A-C). An early study immunostaining regional biopsies found SI-segregated CCK, GAST, GIP, 

NTS, MLN, and SCT100. Our data confirm this bias but additionally detects low levels of CCK, NTS, 

MLN, and SCT in colonic EECs, suggesting higher sensitivity of scRNAseq. Colonic NTS and CCK 

expression was also absent in a study analyzing region-unspecified colon6, emphasizing the 

importance of analyzing all colon regions. Fatty acid receptors FFAR1 and FFAR2 were enriched in 

SI EECs, with FFAR4 specific to colon (Fig. 12C). EECs also express several hormone receptors, 

indicating crosstalk amongst EECs. Novel gut-brain crosstalk was recently described, with murine 

EECs forming synapses with the vagus nerve101-103. 31 DEGs from SI and colon EECs are in the 

GOCC_Presynapse list (Fig. 12D) and 33.7% of genes in the GOCC_Presynapse list expressed 

highest in EECs (Fig. 12E), suggesting a human equivalent of these mouse EECs, termed 

neuropods102. These patterns describe EEC crosstalk within the gut and between the gut and brain, 

further illuminating newly appreciated functional roles of EECs. 

EECs are classified into subtypes by hormone expression104,105. A regional breakdown of 

individual EECs was constructed to visualize EEC subtypes (Fig. 12F). Enterochromaffin cells appear 

in each region, and ileal L-cells were undetected. Multiple EECs express 8-10 hormones, expanding 
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on studies identifying poly-hormonal EECs106,107. GAST and GIP largely segregated from duodenal L-

cells yet overlapped in jejunum. We note rare NPY expression in MLN+ and GHRL+ EECs in jejunum 

and AC. Future studies combining our EECs with additional regional datasets will hopefully improve 

our understanding of EEC subclusters. 

2.2.8 Absorptive Enterocytes and Colonocytes 

AEs and ACCs perform nearly all intestinal absorption108. Three AE Leiden clusters and two 

ACC clusters were consistent with increasing maturity, reflecting other reports4,9,33, and one cluster 

largely from Donor 3 ileum (AE2) separated from other AEs (Fig. 1C,13B). A DEG signature was 

defined by comparing DEGs from all AEs and all ACCs. Surprisingly, only five DEGs were shared 

across SI and colonic absorptive populations (Fig. 13A), indicating stark organ differences. AE2s 

expressed mature AE markers (Fig. 13B) alongside bile acid absorption genes109 (Fig. 13C). It is 

unclear why ileal AEs of Donor 3 clustered separately. Possible explanatory donor-specific 

demographics include Donor 3 having the lowest BMI, being the only African-American, and the only 

donor with Type II diabetes. Meal timings across donors might also induce unique expression 

patterns, as described for certain genes56,57.  

Macro- and micro-nutrient handling was mapped across all AEs and ACCs (Fig. 13D). Most 

fatty acid, glucose, and cholesterol transporters were SI-enriched, with regional data revealing 

increasing expression from duodenum through ileum for most genes (Fig. 13D). Digestive enzymes 

exhibited ileal enrichment except for the duodenum-specific serine protease 

TMPRSS15/Enteropeptidase110. Ion transporters showed the most regional differences, with 

SLC25A3 and SLC4A4 spanning all regions, colon-enriched SLC26A2, and SI-enriched SLC9A3R1. 

Finally, SCNN1 sodium transporter subunits were colon-enriched, possibly regulating colonic water 

uptake. This regional map expands upon previous organ-level analyses, emphasizing the importance 

of the ileum in digestion. 

Intestinal barrier function, largely conferred by cell-junction proteins, is essential for well-

regulated absorption and antimicrobial defense111. Regional mapping of the 20 highest-expressed cell 

junction genes (Fig. 13E) demonstrated equal expression of many cell-junction genes across AEs 
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and ACCs, while others exhibited regional enrichment. Claudins (CLDN) are primary determinants of 

tight junction barrier function and epithelial integrity108,111. CLDN1 and CLDN15 were SI-enriched and 

CLDN3, CLDN4, and CLDN7 were highest in TC. Notably, no cell junction genes were expressed 

highest in DC. Ulcerative colitis often originates in the distal large intestine, raising the possibility that 

higher junction protein expression in AC and TC might protect against certain inflammatory 

conditions112-114.  

Aquaporins (AQPs) are the major intestinal transcellular water transporters115. We confirm a 

previous report showing elevated AQP3, AQP7, and AQP11 in ileum versus colon and colon-enriched 

AQP8 (Fig. 13F); however, we find AQP1 widely expressed6. Aquaglyceroporin (AQP3, AQP7, 

AQP10) expression is highest in mature AEs (Fig. 13G) and increases from duodenum to ileum 

alongside lipid metabolism genes (Fig. 13D,F). This suggests AQP-mediated glycerol transfer 

functions in AE triglyceride processing. We note unappreciated AQP1 specificity in ISCs and TA cells 

and uniquely restricted AQP8 expression in the most mature late ACCs in the AC (Fig. 13H). These 

distinct differences suggest specific physiological roles that should be functionally interrogated. 

2.2.9 Follicle-Associated Epithelium 

Rare FAE cells reside in small puncta throughout the intestines116. FAE includes microfold 

(M)-cells, which transport luminal antigens to resident immune cells117. M-cells have almost 

exclusively been explored in mice118-120 or using directed differentiation in vitro121, with only one 

scRNAseq study isolating healthy human M-cells10. Our dataset includes a 19-cell cluster from a 

single donor (Donor 2) enriched for M-cell markers122-124 and immune crosstalk genes while still 

expressing EPCAM (Fig. 14A). We defined 145 DEGs (Table S1), finding many FAE-unique genes 

(Fig. 14). Pathway enrichment analysis implicates these DEGs in immune cell interactions, verifying 

expected M-cell function (Table S7). Several murine M-cell-specific markers117,123,125, were either 

widely expressed or absent (Fig. 14), suggesting species functional differences. Since this data 

arises from a small set of cells from a single donor, future studies are necessary to fully define these 

cells, possibly through enriching for FAE using recently described methods116.  
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2.2.10 Receptors/Drugs 

We finish by designing two approaches demonstrating how to find associations between 

lineages, receptors, and drug targets. Major receptor families were surveyed across lineages and 

classified as high-, intermediate-, or low-expressing (File S1, Table S8). The five highest-expressing 

genes per family were grouped across lineages (Fig. 15A). Several patterns appear from these 60 

receptors: 20 receptors appear highest-expressed in tuft cells, 11 in EECs, 10 in AE/ACC, 9 in FAE; 

12 villi-enriched vs 3 crypt-enriched; 4 SI-enriched vs 0 colon-enriched; and many uniquely mark 

individual lineages (12 in tuft cells, 3 in EECs, etc.), showing potential ways to target regions and 

lineages.  

To test the novelty of these observations, we reviewed literature regarding the 12 receptors 

found to be unique to tuft cells. We found direct literature connections to human or mouse intestinal 

tuft cells for only 5/12 (TRPM5, ITPR2, HTR3E, IL13RA1, IL17RB), with no connection found for 

seven (GABRA4, ADGRG6/GPR126, SIGIRR, ITGB5, KIT, PTPRJ, TLR9). These seven 

unappreciated lineage-specific receptors arose from just 60 receptors in one lineage, and our full 

dataset includes 669 total receptors (Fig. 15B, File S1). This receptor atlas across lineages, organs, 

regions, and donors provides a powerful foundation to explore how extrinsic signals from local 

microenvironments, dietary and microbial influences, and pharmaceuticals may affect intestinal 

epithelial lineages. 

We next explored how pharmacological agents might directly affect the intestinal epithelium. 

Few drugs deliberately target the intestinal epithelium126-129 and common GI side effects are often 

unexplained at the cell-lineage level130. We found 498 FDA-approved drugs had 232 primary gene 

targets expressed in our gut epithelial dataset (Fig. 16A, Table S9). Beyond primary targets in the gut 

epithelium, lineages express many enzymes that can functionalize drugs through metabolism127-129. 

We show gene expression for Phase I and Phase II drug metabolism enzymes by lineage with 

highest expression in the intestinal epithelium (Fig. 16A) and quantified gene expression by lineage 

and region (Table S10). We find CES2, which metabolizes the cancer drug irinotecan into biologically 

active SN-38131, to be the highest-expressed Phase I metabolism gene in the SI, with AE enrichment. 

Interestingly, UGT1A1, the Phase II enzyme which inactivates SN-38132, has low gut epithelial 
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expression (Table S10). This suggests that irinotecan may experience prolonged activation in the gut, 

advancing the idea that orally administered irinotecan might be effective against intestinal cancers133-

135. Our easily searchable dataset quantifies expression of genes important for intestinal metabolism 

of endobiotics, environmental toxicants, and pharmaceuticals. 

As an example of a disease-focused approach, we evaluated primary gene targets of drugs 

prescribed for inflammatory bowel disease (IBD). Most IBD drugs are anti-inflammatory or 

immunomodulatory, so primary targets are often not expressed in the intestinal epithelium, yet our 

database shows nine primary gene targets of eight IBD drugs have epithelial expression (Fig. 16B). 

We mapped epithelial expression of their primary target genes to locate potential off-target effects 

(Fig. 16C). We found high FKBP1A, a tacrolimus (Prograf®) target, in the little-understood BEST4+ 

cells. Mycophenolate mofetil (CellCept®) targets IMPDH2 and IMPDH1 were expressed in 

proliferative crypt populations and EECs, respectively. The methotrexate target DHFR was highest in 

TA and progenitor cells, while the tofacitinib (Embrel®) target JAK1 has broader expression. Since 

functional protein expression is not always found in the same cells as mRNA translation, especially 

given the quick cellular turnover of the intestine136, we stained for protein expression of the top three 

highest expressed gene targets that appear enriched in specific cell types: FKBP1A, IMPDH2, and 

DHFR. We found all three proteins enriched in the lineages implicated by our transcriptional data (Fig 

16D), highlighting the usefulness of our dataset for predicting drug targets. These drugs can be orally 

administered and primary targets in the epithelium could explain common GI side effects137-139. This 

small subset of drug targets highlights a spectrum of potential unintended epithelial effects on ISC/TA 

renewal, EEC hormonal regulation of appetite and gut motility, and unknown effects from other 

lineages.  

Personalized precision medicine is an emerging field motivating new technologies140. We 

used our drug-target atlas to assess regional variability of tacrolimus, mycophenolate mofetil, and 

tofacitinib target genes, FKBP1A, IMPDH2, and JAK1, across individual donors to inform potential 

patient-dependent effects (Fig. 16E). Higher colonic expression of all three targets suggests patients 

may experience colon-specific off-target effects. Comparing donors potentially hints at susceptibility 

to drug side-effects, with Donors 2 and 3 generally expressing target genes higher than Donor 1. 
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While three donors are insufficient for statistically significant conclusions, we provide a framework to 

generate observations to inform larger studies. We hope our lineage-, regional-, and donor-specific 

data on primary drug targets will aid gastroenterology and pharmacology to better understand 

potential intestinal drug effects.  

2.3 DISCUSSION 

In this study, we provide a comprehensive cell-level transcriptomic view of the SI and colon 

epithelium with regional resolution across multiple humans. Our analyses independently confirm and 

advance prior studies, define important differences between mouse and human, and highlight how 

lineages vary along the proximal-distal axis. We include easy-to-search tables for DEGs, receptors, 

and drug targets that can be interrogated by most investigators and trainees. Overall, our database 

provides a foundation for understanding individual contributions of diverse epithelial cells across the 

length of the human intestine and colon to maintaining physiologic function. 

Our experimental design has many unique strengths. We use healthy transplant organ tissue 

from three adult male donors varying in age, race, and BMI to characterize intestinal epithelial cells 

from duodenum through DC. DNA-oligo hashtag antibodies allowed a single library per donor for all 

six regions to be sequenced together, saving cost, and avoiding intra-donor batch effects while 

preserving biological variability. The hashtag antibodies also allowed for increased stringency when 

filtering for mutliplets and contamination. Analyzing cells across six regions allowed for 

comprehensive transcriptional signatures of genes significantly enriched in each lineage across the 

entire gut from three donors. We map cell cycle, mucins, hormones, transporters, digestive genes, 

and barrier function genes along the regions of the SI and colon. We show drastic differences in PC 

growth factor expression from mouse literature and highlight the insufficiency of LYZ for uniquely 

marking human PCs. We use PAGA to infer differentiation trajectory for each lineage and suggest 

organ-specific maturation for tuft and BEST4+ cells. We propose novel tuft cell interactions with 

pathogens and the immune system. Finally, our survey of receptors and primary drug targets across 

lineages highlights the utility and ease of our database to find previously undescribed gene 

expression. The regional differences found throughout our study highlight the importance of regional 

selection when studying the gut, yet many colonic scRNAseq studies do not specify sample region or 
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mention if pooled samples are from consistent regions. We hope our database serves as a resource 

to understand how drugs affect the intestinal epithelium and as guidance for future precision medicine 

approaches.  
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2.4 FIGURES 

 
Figure 2.1: Sample processing  
A) Schematic for isolating single epithelial cells from 6 intestinal regions for 3 donors and then using 
hashtag antibodies to sequence cells from all regions side-by-side. B) UMAP of all analyzed cells in 
25 lineage clusters. See Figure 19 for clearly marked clusters. C–E) UMAP of all cells colored by (C) 
donor or (D and E) region. F and G) Heatmaps showing unique markers for major lineages in (F) SI 
and (G) colon. See Supplementary Table 1 for total DEGs for each lineage. Schematics in panel A 
were created with BioRender.com. Duo, Duodenum; FACS, fluorescence-activated cell sorter; Ile, 
Ileum; Interm, intermediate; Jej,Jejunum; Sec. Prog., Secretory Progenitor; UMAP, Uniform Manifold 
Approximation and Projection. 
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Figure 2.2: Patient characteristics and cell counts.  
A) Donor information. B) Cells collected per donor region. C) Small intestinal lineages collected per 
donor. D) Colonic lineages collected per donor. E) Small intestinal lineages per donor region. F) 
Colonic lineages per donor region. 
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Figure 2.3: Determining final lineage clusters.  
A) Initial Leiden clustering for all cells. B) Splitting EEC and secretory progenitors by organ. C-D) An 
ITLN1-high cluster, all from SI, contains cells expressing PC markers (DEFA5, DEFA6, ITLN2, LYZ) 
along with cells expressing GC marker MUC2. (C) cluster defined by ITLN1; (D) UMAP expression of 
PC and GC markers within the ITLN1-high cluster. E) Subclustering to define Paneth and goblet cells. 
F) Dotpot showing expression of classical PC and GC genes across the new PC and GC clusters. 
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Figure 2.4: Proliferative Crypt Populations.  
A) Heatmap of DEGs in ISCs vs. other lineages (top; red: classical markers), SI vs. colon ISCs 
(middle), and colon vs. SI ISCs (bottom). B) UMAP of LGR5, OLFM4, and RARRES2 expression. C) 
Dot plot showing expression of LGR5, OLFM4, and RARRES2 across proliferative lineages of the SI 
(left) and colon (right). D) Venn Diagram showing overlap between our human ISC signature and a 
previously described murine signature. E) Heatmap of DEGs in TA cells vs. other lineages (top), SI 
vs. colon TA cells (middle), and colon vs. SI TA cells (bottom). F) Dot plot showing DEGs defined in 
SI- or colon-specific mature lineages expressing within organ-delineated ISCs and TA cells. G,H) 



 

59 

Partition-based graph abstraction (PAGA) showing connectivity between major lineages in SI (G) and 
colon (H) to infer maturation trajectory. Line thickness represents connectivity strength. I-K) Regional 
cell cycle phase distribution in ISCs (I), TA cells (J), and secretory progenitors (K).  

 
Figure 2.5: DEG Dot plots for each lineage.  
Dot plots showing expression of top 20 DEGs for each lineage, as sorted by expression fold-change 
above the cluster with the next highest expression. DEGs included are genes significantly enriched in 
the lineage in both the SI and colon (if applicable). 
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Figure 2.6: Organ-specific lineage DEGs.  
Relating to Fig. 4F, UMAPs showing expression of DEGs from mature lineages found to be higher 
enriched in SI or colon ISCs and TA cells. 
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Figure 2.7: Paneth Cells.  
A) Heatmap of DEGs in PCs vs. other lineages (red: classical markers). B) Dot plot showing 
Lysozyme mRNA expression across FAE, BEST4, Paneth, and tuft cell lineages. C) Dot plot showing 
expression of PC, goblet, and BEST4+ cell classical markers across the PC, goblet, and BEST4+ cell 
clusters. D) Dot plot showing growth factors shown to be expressed in murine PCs in previous 
literature across human SI lineages. E) Dot plot showing all members of major intestinal growth factor 
families which show detectable expression in PCs across SI lineages. F) Heatmap showing PC (top) 
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and ISC markers (bottom) across all SI ISCs (left) and PCs (right). G) Immunofluorescence staining 
for LYZ protein (magenta), in situ hybridization showing SMOC2 mRNA (white), and nuclei (blue) in a 
human ileum crypt base. Max projection of eight 0.5µm optical slices. Scale bar: 20µm. H) Dot plot 
showing expression of all Frizzled family receptors across SI lineages. I) Dot plot showing 10 highest-
expressed antimicrobial peptides across SI lineages. 
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Figure 2.8: BEST4+ Cells.  
A) Heatmap of DEGs in BEST4+ cells vs other lineages (top; red: classical markers), SI vs. colon 
BEST4+ cells (middle), colon vs. SI BEST4+ cells (bottom). B) UMAPs showing all SI (left) and colon 
(right) BEST4+ cells colored according to predicted diffusion pseudotime or expression of BEST4 
mRNA. C-D) in situ hybridization showing BEST4 mRNA (magenta), immunofluorescence staining 
CFTR protein (white), and nuclei (blue) in human jejunum (C) and colon (D). Scale bars: 100µm, 
scale bars in zoomed panels: 20µm. E) Dot plot showing secreted genes (top) and their receptors 
(bottom) across lineages. F) UMAPs of BEST4+ cells showing predicted diffusion pseudotime and 
expression of secreted peptides. G) Expression of NPY, SI, and APOA1 across regions for each 
donor. H) Dot plot showing genes involved in metal-binding and endocytosis across lineages. 
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Figure 2.9: Tuft Cells.  
A) Heatmap of DEGs in tuft cells vs. other lineages (top; red: classical markers), SI vs. colon tuft cells 
(middle), and colon vs. SI tuft cells (bottom). B) Dot plot showing tuft cell enrichment of genes specific 
to taste signal transduction. C) Organ-specific signal transduction in SI vs. colon tuft cells. D) Dot plot 
showing tuft cell-enriched genes enabling interactions with innate and adaptive immune system. E) 
Dot plot showing 10 highest-expressed antimicrobial peptides across colon lineages. F) Dot plot 
showing tuft cell-specific genes for producing acetylcholine, eicosanoids, and prostaglandins. 
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Figure 2.10: Goblet Cells.  
A) Heatmap of DEGs in GCs vs. other lineages (top; red: classical markers), SI vs. colon GCs 
(middle), and colon vs. SI GCs (bottom). B) Dot plot showing expression of the nine highest-
expressed mucins across GCs and proliferative and absorptive lineages of the SI and colon (blue: 
gel-forming mucins). C) Dot plot showing the nine highest-expressed mucins across GCs by region. 
D) Dot plot showing expression of the nine highest-expressed mucins in all absorptive enterocytes 
and colonocytes by intestinal region E) Leiden sub-clustering of colon GCs. F) Diffusion pseudotime 
of colon GCs. G) UMAP of MUC2 expression in colon GCs. H) Dot plot showing markers of murine 
GC subpopulations in the human colon GC subclusters defined in (E). I) Immunofluorescence 
staining for protein expression of RAB27A (white), MUC2 (magenta), and nuclei (blue) in human 
colon. 2µm optical slice. Scale bar: 50µm. J) Dot plot showing expression of mucins in colonic 
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intercrypt goblet cells (icGC), crypt-resident goblet cells (crGCs), and early goblet cells. K) 
Immunofluorescence staining for protein expression of MUC5B (white), MUC2 (magenta), and nuclei 
(blue) in human colon. 2µm optical slice. Scale bar: 50µm. 

 
 
 
Figure 2.11: SI goblet cell subclustering. 
A) (Left) Leiden subclustering of SI goblet cells, with subclusters named according to genes with high 
expression. (Middle) UMAP of SI goblet cells marked by diffusion pseudotime. (Right) UMAP of SI 
goblet cells marked by MUC2 expression. B) Dot plot showing expression of mucins in SI GC 
subpopulations. C) Dot plot showing expression of mouse-implicated markers of GC subpopulations 
in human SI GC subclusters. 
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Figure 2.12: Enteroendocrine Cells.  
A) Heatmap of DEGs in EECs vs. other lineages (top, red: classical markers), SI vs. colon EECs 
(middle), and colon vs. SI EECs (bottom). B) Dot plot of EEC regional hormone gene expression. C) 
Dot plot of EEC expression of select receptors by region. D) Dot plot showing expression of DEGs of 
SI or colon EECs that are present in the GOCC_Presynapse gene list. E) Pie chart of all genes within 
the GOCC_Presynapse gene list shown by lineage in which they have highest expression (SI and 
colon lineages are combined when applicable). F) Heatmap showing hormone expression in each 
individual EECs. 
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Figure 2.13: Absorptive cells.  
A) Heatmap of DEGs in absorptive cells vs. other lineages (top) AEs vs. ACCs (middle), and ACCs 
vs. SI AEs (bottom). B) UMAPs showing AE2 Leiden cluster (top) and cells by region (bottom). C) Dot 
plot of classical Mature AE markers and top 10 DEGs for AE2 cluster. D) Dot plots showing regional 
expression of genes involved in digestion and absorption in all AEs and ACCs. E) Dot plots showing 
20 highest-expressed cell junction genes in AEs and ACCs by region. F) Dot plots showing regional 
aquaporin expression in AEs and ACCs. G) Dot plot showing aquaporin expression across lineages. 
H) UMAPs of late ACCs showing predicted diffusion pseudotime (left) and AQP8 expression (right). 
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Figure 2.14: Follicle Associated Epithelium.  
A) (Top) Dot plot showing expression of EPCAM and conserved M-cell markers and other genes 
known to interact with the immune system across lineages. (Bottom) genes implicated in mouse M-
cells that are not specific to human FAE. B) Dot plot showing expression of top 20 FAE DEGs across 
lineages. 
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Figure 2.15: Extrinsic receptors and drug targets.  
A) Dot plot showing expression of the five highest-expressing members of each major receptor family 
by lineage. Top: small intestinal lineages; Bottom: colonic lineages. B) Pie chart showing receptor 
genes expressed in the intestinal epithelium by lineage with highest expression. 
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Figure 2.16: Drug Targets.  
A) Pie charts of primary targets of all approved drugs (left) and all Phase I (center) and Phase II 
(right) drug metabolism genes expressed in the intestinal epithelium shown by lineage with highest 
expression. B) Primary targets of drugs used to treat IBD found to have expression in the intestinal 
epithelium. C) Dot plots showing expression of primary targets of drugs used to treat IBD by lineage 
split into High, Mid, and Low Expressing tables for better visualization. Note scaling changes between 
tables. D) Left: in situ hybridization showing BEST4 RNA (white) and immunofluorescence staining for 
FKBP1A protein (magenta) and nuclei (blue) in human jejunum (top) and colon (bottom). Center: 
immunofluorescence staining for IMPDH2 protein (magenta), KI67 (white), and nuclei (blue) in human 
jejunum (top) and colon (bottom). Right: immunofluorescence staining for DHFR protein (magenta), 
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KI67 (white), and nuclei (blue) in human jejunum (top) and colon (bottom). 2µm optical slice for all. All 
scale bars: 50µm. E) Dot plot showing expression of the top three higest expressed targets of IBD 
drugs in the intestinal epithelium across regions and split by donor. 

 
Figure 2.17: Tissue histology.  
Hemotoxylin and eosin stained tissues from each region for all three donors. All scale bars = 200 µm 



 

73 

 
Figure 2.18: FACS strategy.  
FACS strategy for gating out cell fragments, likely doublets, and dead cells. 
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Figure 2.19: Final clusters shown by organ  
(top) Final lineage clusters used for the rest of the analyses in our study. (Bottom) Lineage clusters 
split by region. 
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Figure 2.20: Hashtag deconvolution.  
A) Per donor hashtag noise distributions. Blue dotted lines indicate 99th percentile values for noise. 
Values above this line were called positive for a specific hashtag. B) (left) K-medoid clustering for 
each donor based only on hashtag reads. Cells positive (p<0.01) for mulitple hashtags are removed 
as likely multiplets. Cells are called as negative if they do not surpass the noise threshold for all 
hashtags, (right) k-medoid clustering with final hasthag labelling for non-multiplet cells. 
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Figure 2.21: Filtering for cell quality.  
Total counts, N genes, and mitochondrial gene percentages shown for each donor before and after 
filtering; (top) pre-filtering and (bottom) post filtering (A) by donor and (B) by region. Note differences 
in Y axes between pre-filtering and post-filtering rows. 

Supplmental tables and materials can be found in the article available online or upon request of the 
authors. 
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2.5 TABLES 

Reagent Company Catalog number 

 N-acetylcholine Millipore Sigma (St. 
Louis, MO) A9165 

 dPBS Gibco (Jenks, OK) 14190-144 
 Na2HPO4 Millipore-Sigma S7907 
 KH2PO4 Millipore Sigma P5655 
 NaCl Millipore Sigma S5886 
 KCl Millipore Sigma P5405 

 Sucrose Fisher Scientific 
(Hampton, NH) 220-1 

 D-sorbitol Fisher Scientific 439-500 

 Y27632 Selleck Chemical 
(Houston TX) S6390 

 EDTA Corning (Corning, 
NY) 46-034-Cl 

 Dithiothreitol Fisher Scientific 172-5 
 Protease VIII Millipore Sigma P5380 

 Advanced DMEM/F12 Gibco 12634-010 

 Bovine serum albumin Fisher Scientific BP1600-1 
 TotalSeq anti-human hashtag 
antibodies 

BioLegend (San 
Diego, CA) B0251-B0256 

 10% neutral buffered formalin Fisher Scientific 22-050-105 

 Histo-clear National Diagnostics 
(Atlanta, GA) HS2001 

 Triton X-100 MP Biomedicals 
(Irvine, CA) 02194854-CF 

 Prolong Gold Antifade Reagent Invitrogen (Waltham, 
MA) P36930 

 Xylenes Millipore-Sigma 534056 

 RNAscope Multiplex 
Fluorescent Reagent Kit v2 

Advanced Cell 
Diagnotics (Newark, 
CA) 

323100 

Antibodies     
 AnnexinV-APC BioLegend 640920 

 Lysozyme 
Diagnostic 
Biosystems 
(Pleasanton, CA) 

RP028 

 CFTR Cystic Fibrosis 
Foundation A570 

 Mucin 2 (Ccp58) 
Santa Cruz 
Biotechnology 
(Dallas, TX) 

sc-7314 
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 RAB27A Proteintech 
(Rosemont, IL) 17817-1-AP 

 MUC5B Millipore Sigma HPA008246 

 FKBP1A Thermo Fisher 
(Waltham, MA) PA1-026A 

 IMPDH2 Proteintech 12948-1-AP 
 DHFR Proteintech 15194-1-AP 
 Ki-67 monoclonal antibody 
(SolA15), APC Invitrogen 17-5698-82 

 Donkey anti-rabbit IgG (H+L), 
Alexa Fluor 488 Invitrogen A-21206 

 Cy3 AffiniPure F(ab')2 fragment 
donkey anti-rabbit IgG (H+L) 

Jackson 
Immunoresearch 
(West Grove, PA) 

711-166-152 

 Alexa Fluor 647 AffiniPure 
donkey anti-mouse IgG (H+L) 

Jackson 
Immunoresearch 715-605-150 

 Bisbenzimide Millipore Sigma 14530 
RNAscope probes     

 Hs-SMOC2 Advanced Cell 
Diagnotics 533921 

 Hs-BEST4 Advanced Cell 
Diagnotics 481501 

 TSA cyanine 3 reagent pack Akoya Biosciences 
(Marlborough, MA) SAT704A001EA 

 TSA cyanine 5 reagent pack Akoya Biosciences SAT715A001EA 

Table 2.1: Reagents used 

  Donor 
1 

Donor 
2 

Donor 
3 

Minimum genes >500 >800 >500 
Mitochondrial reads, % <75 <50 <75 
Minimum counts >3000 >1000 >3000 
Maximum counts <50,000 <30,000 <50,000 

Table 2.2: Filtering parameters 
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2.7 METHODS 

Donor Selection 

Human donor intestines were received from 3 male organ donors, aged 29, 45, and 53 years 

(details in Figure 2), from HonorBridge (Formerly Carolina Donor Services, Durham, NC) with the 

following acceptance criteria: age ≤65 years, brain-dead only, human immunodeficiency virus 

negative, hepatitis negative, syphilis negative, tuberculosis negative, coronavirus disease-2019 

negative, and no bowel surgery, severe abdominal injury, cancer, or chemotherapy. Pancreas donors 

were excluded to avoid duodenum loss. The University of North Carolina Institutional Review Board 

determined this study does not constitute human subjects research. 

Tissue Processing 

Intestines were transported on ice in University of Wisconsin Cold Storage Solution (Bridge to 

Life, Northbrook, IL). Tissue dissection began within 8 hours of cross-clamping. Fat/connective tissue 

were trimmed and intestinal regions were separated: duodenum (most-proximal 20 cm), 

jejunum/ileum splitting remaining SI, and colon split into thirds for AC/TC/DC (Figure 17). Two 3 × 3 

cm mucosectomies were isolated from the center of each region for dissociation. 

Mucosectomies were incubated in 10 mmol/L N-acetylcholine in Dulbecco’s phosphate-

buffered saline (dPBS) at room temperature for 30 minutes to remove mucus, then washed in ice-cold 

chelating buffer141 + 100 μmol/L Y-27632. Tissues were incubated in chelating buffer with 2 mmol/L 

EDTA and 0.5 mmol/L dithiothreitol, then shaken to remove crypts. High-yield shakes were pooled by 

region, with SI shakes pooled to approximate 1:1 villus to crypt tissue by cell mass. Crypts and villi 

were dissociated to single cells using 4 mg/mL Protease VIII in dPBS + Y-27632 on ice for 

approximately 45 minutes with trituration via a P1000 micropipette every 10 minutes. Cells were 

checked under a light microscope and then filtered. 
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Sample Preparation 

Single cells were washed with dPBS + Y-27632, resuspended in Advanced Dulbecco’s 

modified Eagle medium/F12 + 1% bovine serum albumin + Y-27632, and then stained with AnnexinV-

Allophycocyanin (APC) (1:100) and 1 TotalSeq Anti-Human Hashtag Antibody (1:100, Biolegend, San 

Diego, CA) per region to track all 6 regions with a single library preparation1. 

Cells were washed and resuspended in Advanced Dulbecco’s modified Eagle medium + 1% 

bovine serum albumin + Y-27632 for sorting on a Sony Cell Sorter SH800Z (Sony, Tokyo, Japan) to 

enrich for live single epithelial cells (Figure 18). There were 25,000 cells that passed Annexin V 

live/dead parameters and were fluorescence-activated cell sorter isolated for each region, then 

different cell hashing antibodies were added to cells from each of the 6 regions before pooling for 

library preparation. An additional live/dead analysis was performed after pooling and approximately 

10,000 cells from the pooled population were loaded onto the Chromium Next GEM Single Cell 3’ 

GEM, Library and Gel Bead Kit v3.1 (PN-100012, 10x Genomics, Pleasanton, CA) for complementary 

DNA library preparation Sequencing was performed on an Illumina NextSeq 500 (Illumina, San 

Diego, CA). 

Immunofluorescence and In Situ Hybridization 

Tissue samples adjacent to the sections dissociated for single-cell dissociation were 

dissected from each region and then fixed in 10% neutral buffered formalin overnight at 4°C. The 

following day, tissues were washed 3 times in water and then stored in 70% ethanol until embedding 

in paraffin wax. Embedded tissues were sectioned onto glass slides. 

For immunofluorescence, sections were deparaffinized and rehydrated using Histo-clear 

(Great Lakes IPM, Vestaburg, MI) and an ethanol gradient. Sections were permeabilized with 0.3% 

Triton X-100 (Thermo Fisher Scientific, Waltham, MA) for 20 minutes, then blocked with 3% bovine 

serum albumin for 30 minutes at room temperature. Sections then were incubated with primary 

antibodies (Table 1) in blocking buffer overnight at 4°C. The following day, the sections were washed 

in PBS and then incubated with secondary antibodies in blocking buffer for 1 hour at room 

temperature. Finally, slides were treated with bisbenzamide (MilliporeSigma, Burlington, MA) and 
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coverslips were mounted using Prolong Gold Antifade Reagent (Thermo Fisher Scientific, Waltham, 

MA). 

Data preparation and Hashtag Calling 

Harmony (Harmonypy, v0.0.5) was used to integrate the top 40 principal components from 

each dataset for clustering and visualization13. Leiden clustering was initialized with a kNN graph 

(k=10 neighbors) and a Leiden resolution of 0.9214 to resolve most expected physiological lineages 

(Fig. 19) UMAPs were initialized with PAGA embedding of  Leiden clusters14,32, then non-epithelial 

EPCAM-negative lineages were eliminated. Regional hashtag deconvolution followed published 

methods: raw hashtag read counts were normalized using centered log ratio transformation followed 

by k-medoid clustering (k=6 medoids for donor 1, k=7 medoids for donors 2 and 3)11. Hashtag noise 

distributions were determined by removing the highest-expressing cluster, then fitting a negative 

binomial distribution to the remaining cells. Cells were considered positive for a hashtag with counts 

above the distribution’s 99th percentile (p<0.01) threshold. Cells positive for multiple hashtags were 

excluded as likely doublets (Fig. 20). 

Data processing, filtering, doublet removal, feature selection 

After sequencing, single-cell fastq files were aligned to reference transcriptome GRCh38 with 

the 10X Cell Ranger pipeline (V4.0.0), and downstream analysis was performed with scanpy (v1.7.2). 

Annotations for cell cycle phase predictions were added following previously published methods36. 

Quality filtering thresholds for each donor are shown in Table 2 and Figure 21. Following filtering, 

read counts were log-transformed and normalized to the median read depth of Donor 2, which had 

the fewest read counts. Variability due to gene expression count, mitochondrial percentage, and cell-

cycle gene expression were regressed out by simple linear regression.  Highly variable genes were 

identified with the Seurat method1 (min_dispersion = 0.2, min_mean = 0.0125, max_mean = 6), 

identifying 2777 genes that were subsequently used for principal component analysis. Genes were 

scaled to have a mean of zero and unit variance. 
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Identifying transcriptionally distinct sub-clusters 

Subclustering was performed to isolate Paneth cells from SI goblet cells, which cluster 

together in the overall dataset. For Paneth cells, the ‘SI_ITLN1-high’ cluster was subset from the main 

dataset and 40 principal components were recalculated and re-harmonized. Leiden clusters were 

recalculated on the new principal components based on the same 2777 highly variable genes as the 

initial dataset with Leiden resolution = 0.15 and k = 15 neighbors.  

Further subclustering on SI and colon goblet cells was performed to show goblet cell 

heterogeneity in the SI and colon separately. For colon goblet cells, leiden clustering settings were as 

follows: k = 5 nearest neighbors, leiden resolution = 0.3, and 4000 highly variable genes were 

calculated based on 22 recomputed principal components from the colon goblet cells subset. For SI 

goblet cells, leiden clustering settings were as follows: k = 10 nearest neighbors, leiden resolution = 

0.4, and 2000 highly variable genes were calculated based on 19 recomputed principal components 

on the SI goblet cell subset.  

Online Databases 

Human homologs for mouse genes were defined using Ensembl version release 1042. 

Pathway enrichment analysis was performed using Reactome3, with focus given to pathways with 

false discovery rate (FDR) <0.05, as calculated by over-representation analysis, and full reports are 

included as supplemental files. Common drugs prescribed for ulcerative colitis and Crohn’s disease 

were curated using online literature. Comprehensive receptor family lists and primary target genes for 

all approved drugs were downloaded from Guide to Pharmacology4. Phase I and Phase II Drug 

metabolism genes were defined via Reactome3. 

Trajectory Analysis  

To infer differentiation trajectories, subcustered cell populations were separated into SI and 

colon as previously described. For each dataset, PAGA (v1.2) was then performed on a k-nearest 

neighbor graph of 20 neighbors constructed from 40 principle components. The resultant transition 

connectivity matrix was filtered to remove spurious connections (SI > 0.08, colon > 0.09).  
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Differential expression analysis 

To determine genes that consistently mark a lineage, as determined by previously described 

leiden clustering,  in all three donors, the dataset was first separated into small intestine- and colon-

specific data. For each organ, depth-normalized expression of each gene was used fit to a negative 

binomial general linear model with the diffxpy package (v0.7.4). A Wald test was used to iterate 

through all cell lineages, testing a null model in which only donor-specific batch effects were included, 

𝑥𝑥𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 

against an alternative model where a cell’s inclusion in the current test lineage was included 

as a binary independent variable, correcting for multiple testing using the Benjamini-Hochberg 

procedure.  

𝑥𝑥𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝛽𝛽2𝐿𝐿𝐿𝐿𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  

Each test was then repeated independently on each donor including at least 10 cells of the 

lineage, excluding donor as a covariate. A gene was determined to be a marker gene for a particular 

lineage if it met these thresholds: 

(1) Maximum expression in the lineage of interest 

(2) q value < 0.05 in the combined dataset and all three donors individually 

(3) minimum log2-fold-change (compared to the next highest expressing lineage) > 0.25 

(4) Mean in-lineage normalized expression > 0.2 
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CHAPTER 3: A PLANAR CULTURE MODEL OF HUMAN ABSORPTIVE ENTEROCYTES 
REVEALS METFORMIN INCREASES FATTY ACID OXIDATION AND EXPORT 2 

3.1 INTRODUCTION 

The small intestinal (SI) epithelium is a selective barrier that serves as the point of entry for 

essential micro- and macronutrients to meet energy demands and preserve general homeostatic 

functions. Lipids are the most energy dense of the macronutrients and are absorbed by the SI 

epithelium1. The majority of dietary lipids are triglycerides and are broken down by the stomach and 

intestinal lumen into fatty acids and monoglycerides1. Fatty acids are then taken up by absorptive 

enterocytes, the predominant cell type of the SI epithelium1. Lipids can then be metabolized and used 

by absorptive enterocytes for cellular functions like energy production, membrane synthesis, and 

storage as lipid droplets2 or distributed to the body by the well-accepted lipoprotein-lymphatic system 

and by the less appreciated fatty acid-portal vein pathway3–5.  

Investigating uptake, metabolism, and export of dietary fatty acids, here collectively called 

‘fatty acid-handling’ in vitro is challenging due to the historical lack of physiologically relevant culture 

models. As metabolic disorders such as dyslipidemia, diabetes and obesity1,6,7 are on the rise8,9, there 

is strong interest in evaluating how genetics10–12 and environmental factors, such as alterations in gut 

microbiota13–16 and eating behaviors1,6,7, are associated with fatty acid-handling mechanisms, which 

by nature are complex to study in humans or animal models. Limitations of 3D organoid cultures, 

ethical considerations of human research, and inadequacies of animal models compound the 

challenges and limit scientific progress toward solutions for these and other metabolic diseases. In 

this regard, an absorptive enterocyte cell culture platform using primary human cells and coupled with 

 
2 This chapter previously appeared as an article in Cellular and Molecular Gastroenterology and 
Hepatology. The original citation is as follows: Gomez-Martinez, Ismael, R. Jarrett Bliton, Keith A. 
Breau, Michael J. Czerwinski, Ian A. Williamson, Jia Wen, John F. Rawls, and Scott T. Magness. "A 
planar culture model of human absorptive enterocytes reveals metformin increases fatty acid 
oxidation and export." Cellular and Molecular Gastroenterology and Hepatology (2022). 
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simple and sensitive detection of fatty acids and their metabolites would represent a significant 

improvement and address many of the limitations of existing in vitro culture models 

Traditionally, cell culture models of human SI epithelium have largely relied on cancer or 

immortalized murine cell lines (i.e., Caco-217, ICCL-218, etc.), which retain properties consistent with 

undifferentiated states19,20,21. Organoid culture models have become popular alternatives because 

they are typically derived from primary intestinal epithelial stem cells (ISCs) and can differentiate into 

the main mature lineages of the differentiated gut epithelium22,23. Organoids are small (~100-1000µm 

diameter) spherical structures cultured in thick hydrogels. They are comprised of polarized cells 

where the enclosed apical or ‘luminal’ surface precludes application of fatty acids to the 

physiologically relevant surface to mimic dietary absorption23. Organoids can be cultured with the 

apical surface facing outward (apical-out organoids)24; however, this causes the basal surface to be 

enclosed and inaccessible, preventing sampling of exported or metabolized lipids. Collectively these 

factors limit interpretations, reduce throughput, and prohibit analyses necessary to accurately assess 

fatty acid-handling across the absorptive enterocyte monolayer. 

Conventional methods to detect fatty acids has relied on using radioisotope- and heavy 

isotope-labeled fatty acid analogs25–31. These isotope-labeled fatty acids are thought to behave 

similarly to native fatty acids in absorptive, metabolic, and export processes25–31; however, special 

safety precautions and sophisticated downstream analytics (e.g., mass spectrophotometry) are 

required, limiting access of these assays to many investigators. Fluorescently-labeled fatty acids 

represent an attractive alternative because they do not require special handling, are sensitive, 

commercially available, and can be detected using a variety of common instruments and methods 

(e.g., plate readers, microscopes, thin layer chromatography)32. For example, BODIPYTM (B) is a 

brightly fluorescent fluorophore, and B-fatty acid analogs have been shown to mimic endogenous 

fatty acid metabolism and transport, making it an effective tracer for fatty acids in lipid-handling 

studies32–36. Importantly, unlike isotopically labeled fatty acids, fluorescently labeled fatty acids also 

permit imaging of fatty acid-handling in live and fixed cells35,36. 
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Our group has recently developed methods for culturing and indefinitely expanding primary 

human ISCs as 2D monolayers37. ISCs cultured this way can then be transferred to TranswellTM 

inserts, cultured to confluence, and then terminally differentiated into absorptive and secretory 

lineages found in vivo37,38. Monolayers cultured on permeable Transwell inserts are in contact with 

apical and basal reservoirs where factors, drugs, and metabolites can be easily added or sampled 

throughout an experiment37. Unlike organoids, monolayers grow as planar sheets rather than spheres 

suspended in thick hydrogels, allowing use of imaging systems that are in common use in basic 

science laboratories, robotic drug screening and validation platforms.  

Our study here has two primary goals; the first is to develop and validate a new culture 

system to study fatty acid-handling, and second is to use the system to demonstrate utility for 

evaluating the impact that a set of drugs has on fatty acid oxidation and export of fatty acid 

metabolites. We take an approach that first defines the baseline transcriptomic state of relevant lipid-

handling genes and then tailor culture conditions to mimic the in vivo lipid-handling gene profiles. 

Readouts for fatty acid-handling are designed for practicality, sensitivity, and high-throughput 

applications. Using this new system, we pharmacologically inhibit and potentiate fatty acid oxidation 

and observe changes in fatty acid export that informs a hypothesis that fatty acid oxidation increases 

export of medium- and long-chain fatty acid metabolites across the basolateral membrane. This is 

tested and the findings reveal new biological insights into the role of fatty acid oxidation on export of 

fatty acids with implications for understanding blood-glucose regulation and appetite control. 

3.2 RESULTS 

3.2.1 Single-cell transcriptomics of jejunal and ileal human mucosa define early, intermediate, 
and mature nutrient-handling enterocytes  

First, we sought to characterize the baseline transcriptomic profiles of human absorptive 

enterocytes in vivo to guide the development of an in vitro model of human fatty acid-handling. The 

distal SI (jejunum and ileum) represents the majority of absorptive epithelium in the human SI39; 

however, lipid-handling transcriptional profiles of jejunal and ileal absorptive lineages have not been 

fully described at the single-cell level. Endoscopic biopsies have enabled single-cell transcriptomics 

to be performed on human duodenal40 and ileal41 mucosa; however, single-cell transcriptomics has 
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only recently been reported for the jejunum42,43, with limited characterization of absorptive 

function39,43.. To further define absorptive function of the distal SI, single-cell RNA-sequencing 

(scRNAseq) was performed on primary jejunal and ileal epithelium isolated from a healthy organ 

donor. To identify the distinct cell types captured in the dataset, dimensional reduction was 

performed44, revealing that the cell populations represented the major reported cell lineages in the 

human SI epithelium40 (Fig. 1A). Most cells in the dataset clustered separately from the minority 

secretory lineages (enteroendocrine, goblet, BEST4+, and tuft). This main cluster was comprised of 

cells consistent with ISCs, transit-amplifying (TA) cells, and absorptive enterocytes (Fig. 1A). The 

high viability, quality, and capture of the full complement of major SI epithelial lineages provided a 

strong foundation for transcriptomic characterization. 

In human duodenum and ileum, absorptive enterocytes are sub-categorized as early, 

intermediate, and mature based on maturation state40,45. Genes associated with these three 

absorptive enterocyte sub-sets were also observed in jejunal and ileal Leiden-clustering (Fig. 1A). 

Jejunal and ileal absorptive enterocytes clustered together demonstrating a high degree of 

transcriptomic similarity between these cells. Since Leiden-cluster boundaries appear artificially 

binary, each cell was independently interrogated using a computational score comprised of curated 

gene sets that would predict cell lineages for each Leiden-cluster. Three different curated gene sets 

from prior studies were used to identify different cell cycle stages46, ISCs47–49, and absorptive 

enterocytes41 (Fig. 1B-D). The cell-cycle score showed most cycling cells are strongly associated at 

one end of the cluster, which is consistent with cells exhibiting the strongest ISC score (Fig. 1B,C). 

By contrast, cells with the highest absorptive enterocyte score were strongly associated with the 

opposite end of the same cluster (Fig. 1D). Twenty ISC signature genes that were reported to be the 

most highly expressed genes in human ileal ISCs41 were also highest in jejunal ISCs (Fig. 1E). These 

ISC-associated genes gradually decreased in jejunal absorptive enterocyte populations consistent 

with differentiation (Fig. 1E). Conversely, 20 of the most highly expressed absorptive enterocyte 

signature genes identified in human ileal mature absorptive enterocytes41 were lowest in jejunal ISCs. 

These absorptive enterocyte-associated genes gradually increased in jejunal absorptive enterocyte 
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populations as they differentiated. (Fig. 1F). Together these data suggest jejunal absorptive 

enterocytes follow a similar maturation trajectory as duodenal and ileal cells from other reports40,41,45. 

3.2.2 Computational lineage trajectory analyses reveal human absorptive enterocytes 
progress through maturation stages with increasing fatty acid-handling gene expression 

 A recent study of murine jejunal villi described an absorptive enterocyte maturation program 

wherein spatially distinct zones along the villus were used to define absorptive enterocyte functions 

(e.g., antimicrobial functions towards the base, lipoprotein secretion towards the tip)50. Whether 

human absorptive enterocytes also progress through maturation states corresponding to distinct 

functions along the length of the villus is unknown. Progressive expression of mature absorptive 

enterocyte markers in our jejunal dataset (Fig. 1F) led to the hypothesis that human absorptive 

enterocyte clusters correspond to lineages with distinct gene expression profiles of maturation along 

the villus. To test this hypothesis, we used a computational framework based on the rate of change of 

spliced and unspliced mRNA ratios (i.e., RNA velocity)51 and a differentiation-specific RNA velocity-

based metric (i.e., latent time) (Fig. 1G,H)52. Human jejunal cells were used in the analysis to be 

consistent with previous mouse studies50. Vectors calculated based on the solved dynamical model of 

RNA velocity predict a trajectory of ISCs gradually differentiating to mature absorptive enterocytes 

(arrows, Fig. 1G). Next, a latent time value between 0 and 1 was assigned to each cell to order cells 

along the trajectory modeled by the RNA-velocity vectors (Fig. 1H). A latent time of 0 means that the 

cell has yet to enter the modeled trajectory whereas a latent time of 1 means that the cell has 

progressed completely through the modeled differentiation pathway. Through combining RNA velocity 

and latent time, we demonstrate a single path of likely cell transitions from ISCs into early absorptive 

enterocytes, followed by intermediate absorptive enterocytes and culminating with mature absorptive 

enterocytes (Fig. 1G,H).  

To visualize the number of differentially expressed genes (DEGs) between these maturation 

states (i.e., early absorptive enterocyte, intermediate absorptive enterocyte, and mature absorptive 

enterocyte), the 1,537 identified DEGs from these populations were plotted against all jejunal ISCs, 

early absorptive enterocytes, intermediate absorptive enterocytes and mature absorptive enterocytes 

as ordered by the calculated latent time (Fig. 1I, Table S3). ISCs and mature absorptive enterocytes 
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had the largest amount of DEGs (732 and 592, respectively) with early absorptive enterocytes and 

intermediate absorptive enterocytes only having 106 and 107 DEGs, respectively (Table S3). The 

pattern of gene expression showed that genes highest in ISCs gradually turn off as the cells mature 

(Fig. 1I). Conversely mature absorptive enterocyte genes begin to turn on in the early absorptive 

enterocyte and intermediate absorptive enterocyte states (Fig. 1I).  

In situ hybridization was performed on jejunal tissue sections from the same donor to validate 

the predicted computational trajectory by locating marker genes for each maturation stage to points 

along the villus (Fig. 1J,K). Consistent with our predictions, OLFM4 (ISC marker) localized to the 

crypt base, DMBT1 (antimicrobial function) was found in the upper crypt and lower villus, FABP1 (lipid 

chaperone) was enriched in the mid-villus region, and APOA4 (chylomicron assembly) was enriched 

at the villus tip (Fig. 1K). Consistent with findings in mice, human absorptive enterocytes appear to 

perform distinct functions as they differentiate along the crypt-villus axis50. 

The cell maturation analyses were next further refined using curated gene sets specific for 

fatty acid handling (Fig. 2). Expression of genes associated with chylomicron assembly (APOA1, 

APOA4, APOB) were enriched in intermediate absorptive enterocyte and mature absorptive 

enterocyte populations, while distinct subsets of genes involved in regulating fatty acid transport 

(CD36, SLC27A1, SLC27A5) and fatty acid oxidation (CPT1A, PPARG, PPARGC1A) were 

differentially enriched in each maturation state, suggesting discrete regulation of these lipid-handling 

mechanisms along the villi (Fig. 2). Together these findings support distinct transcriptional states and 

associated lipid-handling mechanisms with each absorptive enterocyte maturation stage along the 

crypt-villus axis in the human jejunum. 

3.2.3 Characterization of culture model by scRNAseq demonstrates differentiation of human 
jejunal ISCs generates highly pure monolayers of absorptive enterocytes 

In prior work, our group developed platforms that promote robust, long-term expansion of 

human ISCs37. When cultured on Transwell culture systems, ISCs can be induced to differentiate into 

absorptive enterocytes with strong barrier function and used for transport studies53,38 (Table 1). The 

Transwell membrane allows for application and retrieval of fatty acids and their metabolites from the 
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apical and basal reservoirs, respectively. Both are crucial parameters not available in organoids that 

enable mechanistic studies of fatty acid-handling in vitro.  

To define cell phenotypes and characterize lineage purity at single-cell resolution, scRNAseq 

was performed on ISCs under expansion conditions53 (Fig. 2) and absorptive enterocyte monolayers 

after 5-days of differentiation (Fig. 3A). Inhibition of Notch signaling is required for specification of the 

secretory lineage54,55. Because we initiated differentiation by removal of ISC growth factors without 

addition of a Notch inhibitor, we hypothesized that ISCs would follow an absorptive rather than 

secretory differentiation trajectory. Leiden clustering of ISC expansion and differentiation conditions 

showed two distinct clusters unique to each media formulation (Fig. 3B). 40% of cells in the ISC 

cluster were predicted by computational methods to be in either S- or G2/M-phase, whereas >99% of 

cells in absorptive enterocyte differentiation conditions were predicted to be in G0/G1-phase (Fig. 

2C).  

Computational cell cycle predictions cannot distinguish between cells in G1 or cells that have 

left the cell cycle, thus, scoring of ISC- and absorptive enterocyte-gene profiles was performed to 

assess if differentiation conditions were sufficient to confer terminal differentiation towards an 

absorptive fate (Fig. 2D). ISC and absorptive enterocyte scores were generated for cells grown in in 

vitro monolayers using curated gene sets that identify either ISCs or absorptive enterocytes (Fig. 3D). 

This scoring revealed that in vitro monolayers showed higher expression of ISC genes in expansion 

conditions and higher expression of absorptive enterocyte genes in differentiation conditions (Fig. 

3D). Very rare cells expressing markers of classic secretory lineages (goblet cells, enteroendocrine 

cells, tuft cells, BEST4+ cells) were observed (Fig. 3E). These data demonstrated that culture 

conditions promoted ISC differentiation towards an absorptive cell fate and indicate the potential to 

model physiological absorptive enterocyte differentiation in vitro.  

3.2.4 Culture methods developed in 96-Transwell format drive time-dependent ISC 
differentiation and absorptive enterocyte maturation described by transcriptomic states 

Absorptive enterocyte planar monolayers were scaled to a 96-well Transwell format for high-

throughput applications. Transepithelial Electrical Resistance (TEER) was used to monitor barrier 

integrity56 over 15 days of ISC expansion (4 days) and absorptive enterocyte differentiation (12 days) 
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(Fig. 4A). As expected57, ISC conditions produced a stable and low TEER, while differentiation media 

(DM) produced an immediate and progressive increase in TEER that peaked at 7 days of 

differentiation (Fig. 4A). The progressive increase in TEER suggests changes in gene expression 

patterns consistent with mature absorptive enterocytes. To confirm this at the transcriptomic level, 

bulk RNA sequencing (bulk RNAseq) was performed on absorptive enterocytes in differentiation 

conditions for 0, 2, 5, 7, 10, and 11 days (Fig. 4B). Principal component analysis (PCA) demonstrated 

tight agreement between technical replicates and showed rapid and large transcriptomic changes 

following just 2 days of differentiation (Fig. 4B). Bulk RNAseq of absorptive enterocyte monolayers 

revealed a trajectory of progressive transcriptional changes through time (Fig. 4B). Expression of top 

in vivo DEGs (Fig. 4C) were expressed at corresponding maturation time points in vitro (Fig. 4D), 

suggesting an intrinsic program of progressive absorptive enterocyte maturation that begins upon 

removal of ISC niche growth factors.  

To further determine the optimal time points to investigate fatty acid-handling (i.e., fatty acid 

transmembrane transport, fatty acid oxidation, lipid droplet formation, chylomicron secretion and 

Triglyceride metabolic processes) the expression of key genes in these processes was evaluated. 

There was a general increase in fatty acid-handling genes as cells matured both in vivo and in 

vitro (Fig. 5A). Linear correlation was used to quantitatively describe the extent of similarity between 

in vivo and in vitro fatty acid-handling gene expression during absorptive enterocyte maturation (Fig. 

5A,B). Pairwise comparisons of mean lipid-handling gene expression values revealed that absorptive 

enterocytes at day 7 are more similar to intermediate- and mature-absorptive enterocytes than ISCs 

and early absorptive enterocytes (Fig. 5A, B). Thus, TEER and expression profiles of key fatty acid 

handling genes were used as criteria to inform the optimal window to investigate fatty acid handling 

within our model system. Based on these criteria seven days of differentiation (D7) was the only time 

point to show both high TEER and close similarity to in vivo mature absorptive enterocyte gene 

expression of fatty-acid handling genes. For this reason, we chose to assay fatty acid handling 

in differentiated absorptive enterocytes following seven days of directed differentiation. 
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3.2.5 High-throughput planar absorptive enterocyte cultures produce robust epithelial barriers 
and preserve fatty acid-handling functions detected by fluorescent fatty acid conjugates 

High TEER and transcriptomic data suggest that absorptive enterocyte monolayers could 

serve as an effective in vitro model for human absorptive enterocyte lipid-handling. Strong barrier 

function is required for accurate interpretation of fatty acid-handling by absorptive enterocytes since a 

leaky barrier would allow fatty acids to bypass the absorptive enterocyte monolayer. As a means to 

provide sensitive readouts for fatty acid-handling that is accessible to most laboratories, we adopted 

fluorescent analogs that can be easily detected by fluorescent plate reader and thin layer 

chromatography. To validate barrier function, 10kD Dextran conjugated to Alexa FluorTM 647 

(Dextran-647), a non-absorbable fluorescent polysaccharide, was applied to the apical monolayer 

surface followed by quantification of basolateral fluorescence at 2, 4 and 6 hours of apical exposure 

(Fig. 6A). There were nearly undetectable levels of Dextran-647 (< 0.2 pmols) in the basal reservoir 

at any time point, whereas Transwells without cells allowed > 30 pmols to diffuse through and 

reached an equilibrated concentration within ~4 hours. These data demonstrate strong barrier 

function and show that significant epithelial barrier defects can be readily detected by Dextran-647 

signal in the basal reservoir as early as 2-hours post-exposure.  

BODIPY (B) is a bright fluorophore that has a different fluorescent signature than Dextran-

647, facilitating separate detection of these two molecules by plate readers. B-fatty acid analogs have 

been used extensively for lipid-trafficking and metabolism studies in vitro and in vivo and are 

considered to be accurately handled by absorption, metabolism, and export mechanisms58–62. Thus, 

to characterize fatty acid-handling properties of absorptive enterocyte monolayers, we applied the 

medium-chain fatty acid analog B-C12 to the apical surface of absorptive enterocyte cultures for 6 

hours (Fig. 4B). Apical (input) and basal (output) media was collected, and absorptive enterocytes 

were lysed after 6 hours of apical exposure (Fig. 4B). Thin layer chromatography (TLC) was used 

detect and quantify input B-fatty acids as well as metabolized and exported B-fatty acid products. A 

combination of polar and protonating solvents was used to resolve the complex mixture of B-fatty 

acids and metabolites (Fig. 6D,E). B-labeled fatty acid standards were applied to the TLC plate in a 

separate lane and unknown fatty acid-species of different carbon-chain lengths were extrapolated 
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(Fig. 6C). These methods were scaled for the 96-well Transwell system using less than 170 µl of 

media or cell lysate. A previous study62 using TLC to identify B-lipid species with the same solvents 

used in this study reported naturally fluorescent bands that do not correspond to B-lipids and are 

labelled here as NFB (Fig. 6D,E). TLC demonstrated clear separation of key fatty acid-species in all 

three reservoirs (i.e., Apical, Cellular, Basal) indicating robust sensitivity of this approach for detection 

of a broad range of fatty acid-species (Fig. 6D). 

To evaluate fatty acid-handling by absorptive enterocyte monolayers, B-C12 was incubated 

with absorptive enterocyte monolayers for 6 hours followed by TLC analysis to identify the B-fatty acid 

or B-metabolites in each reservoir (i.e., Apical, Cellular, Basal). TLC demonstrated that most of the B-

labeled species in the apical reservoir were medium-chain fatty acids (B-C12, B-C8 and B-C6) (Fig. 

6D,E). A short-chain species consistent with B-C4 was also detected in the apical reservoir at a lower 

level (Fig. 6D,E). In the intracellular reservoir, the largest species were triglycerides, indicating robust 

fatty acid esterification, and phospholipids indicative of B-C12 being metabolized and incorporated 

into the lipid bilayers63. In the cell lysates, fatty acids were some of the lowest B-lipid species 

suggesting dynamic metabolism, diffusion, and mobilization. In the basal reservoir, fatty acids were 

the predominant B-lipid species with a smaller fraction consisting of triglycerides suggesting basal 

export of fatty acids and chylomicrons (Fig. 6D,E). Together these data demonstrate robust detection 

of input B-fatty acids, a broad range of the derivative metabolites, and their relative distributions in 

each reservoir as the B-lipids are processed by absorptive enterocytes. 

3.2.6 Inhibiting fatty acid oxidation in absorptive enterocyte monolayers decreases basolateral 
export of oxidized fatty acid species 

We next explored the utility of the platform for investigating small molecule perturbations on 

fatty acid oxidation. Etomoxir, a CPT1 (Carnitine palmitoyl transferase 1) inhibitor, was used to inhibit 

fatty acid oxidation. When CPT1 is inhibited, fatty acids cannot be imported into the mitochondria 

where fatty acid oxidation normally catabolizes longer-chain fatty acids to smaller-chain fatty acids64 

(Fig. 8G). CPT1A is robustly expressed in primary human absorptive enterocytes both in vivo and in 

vitro at Day 7 of differentiation (Fig. 5A). Etomoxir was used at a concentration of 100 µM due to 

recent reports65–67 of off-target effects at high concentrations (>100 µM). After pretreatment with 
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etomoxir, a variety of different chain-length B-fatty acids (short-chain fatty acid; B-C5, medium-chain 

fatty acid; B-C12 or long-chain fatty acid; B-C16) were applied to the apical reservoir to mimic 

postprandial absorptive enterocyte exposure to fatty acids in vivo. Media from the basal reservoir was 

taken at 2-, 4- and 6-hours after application of fluorescent fatty acids (Fig. 7A). The impact of 

etomoxir on basal export of fatty acids and fatty acid metabolites was evaluated in real-time by total 

fluorescence detection by plate reader, and TLC was used to identify BODIPY-labeled metabolites 

using small volumes of media from the 96-well Transwell platform (Fig. 8A-C).  

Strong barrier function through the duration of B-fatty acid and etomoxir treatment was 

confirmed by lack of Dextran-647 in the basal reservoir (Fig. 7B). When B-C5 was the apical input 

fatty acid, basal fluorescence did not significantly change when fatty acid oxidation was inhibited (Fig. 

7A). By contrast, when B-C12 and B-C16 were the apical input fatty acids, fatty acid oxidation 

inhibition significantly reduced basal-reservoir fluorescence (Fig. 7A). TLC demonstrated that the 

most abundant lipid species in the basal reservoir of B-C5 treated cultures was B-C5 (Fig. 8A), 

suggesting that this fatty acid passively diffused through absorptive enterocyte monolayers, as fatty 

acids become increasingly water soluble as chain-length decreases68. For control cultures (vehicle) 

treated with B-C12 and B-C16, the most predominant lipid species corresponded to B-C6 (Fig. 8B,C), 

indicating catabolism of B-C12 and B-C16.  

 Following treatment of B-C12 and B-C16 cultures with the fatty acid oxidation inhibitor, 

etomoxir, B-C6 significantly decreased (Fig. 8B,C). In B-C12 treated cultures, etomoxir caused the 

apical input fatty acid (B-C12) to be the predominant lipid species in the basal reservoir (Fig. 8B). In 

cultures exposed to apical B-C16, etomoxir treatment did not result in B-C16 being the predominant 

lipid species in the basal reservoir (Fig. 8C). These findings suggest that long-chain fatty acids (> B-

C12) are less amenable to passive diffusion than short- (B-C5) and medium- (B-C12) chain fatty 

acids. Together these data indicate that fatty acids of shorter-chain length (B-C5, B-C6) are more 

amenable to basal export by absorptive enterocytes than fatty acids of longer-chain length (B-C12, B-

C16), which appear to require catabolism via fatty acid oxidation to generate a shorter fatty acid 

derivative (B-C6) that can then be readily exported or diffuse to the basal reservoir.  
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While total basal-reservoir fluorescence and TLC show that etomoxir reduces fatty acid 

export in B-C12 and B-C16 cultures, these results cannot rule out the possibility that etomoxir 

reduces basal-reservoir fluorescence by inhibiting apical fatty acid import thus resulting in less 

intracellular fatty acid available to undergo fatty acid oxidation. To test whether etomoxir reduced 

apical fatty acid import, fluorescence from the apical reservoir of B-C12 and B-C16 treated cultures 

was quantified following 6-hours of etomoxir treatment (Fig. 8F). If etomoxir reduced fatty acid import, 

there would be more total B-fatty acid fluorescence in the apical reservoir compared to control, 

however, the data demonstrated the opposite, that etomoxir significantly reduced apical reservoir 

fluorescence in cultures exposed to B-C12 and B-C16 (Fig. 8F). These results support the conclusion 

that etomoxir does not reduce apical fatty acid uptake.  

The finding that etomoxir significantly reduced both apical and basal reservoir fluorescence 

was somewhat surprising and raised the hypothesis that impaired fatty acid oxidation resulted in 

accumulation of B-fatty acids in the cellular reservoir. To test this, absorptive enterocyte monolayers 

were treated with B-C12 or B-C16 along with vehicle or etomoxir. Following 6 hours of apical 

exposure, absorptive enterocyte monolayers were imaged to quantify cellular fluorescence (Fig. 

8D,E). Etomoxir significantly increased cellular reservoir fluorescence in B-C12/16 treated cultures, 

further supporting the conclusion that impaired fatty acid oxidation reduced fatty acid export (Fig. 

8D,E). Together, these data support the conclusion that medium- and long-chain fatty acids are 

catabolized by fatty acid oxidation to smaller-chain fatty acids that can be exported as free fatty acids 

(Fig. 8G). 

3.2.7 Metformin and C75 potentiate fatty acid oxidation in absorptive enterocyte monolayers 
and increase basolateral export of oxidized fatty acids 

To further support a role for fatty acid oxidation in regulating basal export of B-fatty acids, it 

was hypothesized that treating absorptive enterocyte monolayers with drugs that augment fatty acid 

oxidation would result in increased fatty acid export. To test this hypothesis, absorptive enterocyte 

monolayers were independently treated with metformin and C75, drugs that demonstrate fatty acid 

oxidation augmentation in other cell types69,70. Metformin, commonly known as an anti-diabetic drug, 

potentiates fatty acid oxidation by preventing formation of the CPT1 inhibitor malonyl-CoA71 and C75, 
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a weight-loss-inducing drug, potentiates fatty acid oxidation by increasing CPT1 activity72 (Fig. 9F). 

Following metformin or C75 exposure, B-C12 or B-C16 were applied to the apical reservoir to mimic 

post-prandial fatty acid exposure. Media from the basal reservoir was collected at 2-hour intervals for 

6 hours and total fluorescence was quantified to measure fatty acid export. Metformin and C75 

significantly increased fluorescence in the basal reservoir of B-C12 and B-C16 treated monolayers 

(Fig. 9A). Strong barrier function through the duration of B-fatty acid and agonist treatment was 

confirmed by lack of Dextran-647 in the basal reservoir (Fig. 9B). TLC was performed to determine 

the lipid species exported to the basal reservoir of B-C12 and B-C16 cultures (Fig. 9C,D). A lipid 

species corresponding to B-C6 was the most abundant B-fatty acid species in the basal reservoir of 

B-C12 and B-C16 treated cultures (Fig. 9C,D) indicating that B-C6 is the primary B-fatty acid 

metabolite exported.  

To probe whether the B-fatty acid export effects were dependent on fatty acid oxidation, 

absorptive enterocyte monolayers exposed to B-C12 or B-C16 were co-treated with each of the fatty 

acid oxidation potentiators, C75 or metformin, and the fatty acid oxidation inhibitor, etomoxir. After 

6hrs of B-fatty acid exposure and drug treatment, basal reservoir fluorescence was quantified. 

Etomoxir blocked the ability of C75 and metformin to increase basal reservoir fluorescence in cultures 

exposed to B-C12 and B-C16 (Fig. 9E), supporting the conclusion that metformin and C75 function in 

a fatty acid oxidation-dependent manner to increase basal export of oxidized long- and medium-chain 

fatty acid metabolites (Fig. 9F).  

3.3 DISCUSSION  

Once born from an ISC, progenitor cells transition through a number of lineage states during 

their 7-day lifespan in vivo73. Mouse studies suggest the absorptive lineage transitions through 

functional maturation states classified as early-, intermediate-, and mature-phases as they migrate up 

the villus axis50. These functional maturation states are associated with different biological roles 

related to antimicrobial functions early-on and progress into nutrient handling function toward their 

late and terminal maturation stage50. Here we demonstrate by single-cell transcriptomics that human 

jejunal absorptive enterocytes in vivo generally share a similar maturation defined by early-, 

intermediate- and late-maturation phases. Importantly, these states correlate with discrete lipid-
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handling gene profiles as absorptive enterocytes mature. While our study focused on lipid-handling 

genes and mechanisms, the transcriptomic datasets will be useful to evaluate aspects of nutrient 

handling (i.e., carbohydrate, protein, and vitamin metabolism) in primary human absorptive 

enterocytes. 

The absorptive lineage is the default pathway taken by progenitor cells unless the master 

regulator of secretory lineage fate, Atoh1, is expressed55. Chromatin states across the genome are 

associated with hardwiring of some lineage-specification programs74,75, and dynamic chromatin states 

have been described as cells move through ISC to secretory and absorptive lineage states74,75. Data 

presented here demonstrate that removal of ISC maintenance factors from ISC monolayers promote 

a stereotypical absorptive enterocyte lineage program in an epithelial autonomous manner 

suggesting human absorptive enterocytes are hardwired to undergo progressive maturation over 

time. Since our in vitro absorptive enterocyte monolayer system generally mimics in vivo absorptive 

enterocyte maturation and lifespan, it is highly suited to define the intrinsic nature of chromatin 

dynamics through human absorptive enterocyte maturation and is amenable to testing how extrinsic 

influences such as dietary factors or the microbiome might influence chromatin states and associated 

gene expression.  

The majority of dietary lipids consist of long-chain fatty acids. long-chain fatty acids undergo 

intracellular esterification to triglycerides, are packaged into chylomicrons, exported through the basal 

membrane, and distributed through the lymphatic system1,2. Previous studies have demonstrated that 

short-chain fatty acids and medium-chain fatty acids can bypass the chylomicron-lymphatic pathway 

and pass unesterified into the portal vein76. Because long-chain fatty acids can be oxidized to short-

chain fatty acids and medium-chain fatty acids via fatty acid oxidation, we hypothesized that fatty 

acids derived from fatty acid oxidation of long-chain fatty acids could be exported through the basal 

membrane as free fatty acids. Using our culture system, we demonstrate for the first time that 

smaller-chain fatty acids generated from fatty acid oxidation of long-chain fatty acids can be exported 

unesterified across the basal membrane of absorptive enterocytes. We demonstrate a dependency 

on fatty acid oxidation in regulating basal export of long-chain fatty acid derived fatty acids as their 

basal export was decreased by inhibiting fatty acid oxidation with etomoxir and increased by 
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enhancing fatty acid oxidation with C75 and metformin. This novel pathway of long-chain fatty acid 

derived fatty acid export might explain why patients with abetalipoproteinemia exhibit distribution of 

the majority of dietary fatty acids yet are unable to secrete chylomicrons77. 

Basal export of free fatty acids regulated by fatty acid oxidation could be involved in other 

physiological responses to dietary lipids, disease etiologies, and pharmaceuticals that target fatty acid 

oxidation pathways. Our findings demonstrate that metformin, a satiety-inducing/glucose-lowering 

drug, enhances basal fatty acid export. Stimulation of free fatty acid receptors, which are restricted to 

the basal surface78 of enteroendocrine cells72 immediately adjacent to absorptive enterocytes, 

stimulate secretion of glucose-lowering GLP-1 and satiety-inducing PYY79 gut hormones. Reports 

demonstrate that metformin elicits intestinal GLP-1 secretion by enteroendocrine cells and that this 

effect significantly contributes to systemic glucose-lowering80. This raises the possibility that the 

absorptive enterocyte-enteroendocrine cell axis utilizes fatty acid oxidation to augment basal fatty 

acid export, which may be a mechanism underlying some of the efficacy of metformin. 

Importantly, exposure of metformin to immortalized enteroendocrine cell lines fails to 

stimulate GLP-1 secretion suggesting metformin does not act directly on enteroendocrine cells to 

stimulate GLP-1 secretion but rather through a more complex mechanism81. In light of our results 

demonstrating metformin increases fatty acid export, metformin may act to increase GLP-1 secretion 

via an absorptive enterocyte-fatty acid oxidation-enteroendocrine cell axis. In this scenario apically 

localized medium-chain fatty acids and long-chain fatty acids are absorbed by absorptive enterocytes, 

catabolized to shorter-chain fatty acid species that can passively diffuse through the basolateral 

membrane where they interact with nearby free fatty acid receptors on enteroendocrine cells to 

stimulate GLP-1 release. Further development of our absorptive enterocyte culture system to support 

co-culture of enteroendocrine cell and absorptive enterocytes with loss- and gain-of-function for key 

fatty acid oxidation genes will be required to test this hypothesis.  

Aside from basic science applications, our high-throughput 96-well absorptive enterocyte 

culture platform is highly suitable for drug screening and validation. Compared to standard 12-well 

Transwell plates, scaling the platform to 96-wells increases the plate form factor by 8 while 
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simultaneously requiring approximately 8-times less cells. This substantially increases the number of 

biological and technical replicates that can be performed per plate and reduces plate-to-plate 

variability when performing experiments to evaluate therapeutic indices for a drug. Real-time 

quantification of fatty acid mobilization through the epithelial barrier by plate reader allows for kinetic 

studies while the planar format of these cultures facilitates simultaneous high-content microscopic 

readouts. While the absorptive enterocyte monolayer surface and reservoir sample volumes are 

small, we show there remains sufficient material for RNA-sequencing and highly sensitive detection of 

B-conjugated fatty acids and metabolites by plate reader and TLC. The scalability, physiological 

relevance, and sensitivity of our platform to detect changes in fatty acid-handling could facilitate the 

discovery of treatments for metabolic disorders impacted by intestinal fatty acid-handling such as 

obesity, dyslipidemia, and diabetes.  
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3.4 FIGURES 

 
Figure 3.1: Single-cell transcriptomics of healthy human absorptive epithelium.  
(A–D) Unbiased Leiden clustering of primary jejunum and ileum. (A) Identification of cell types. (B) 
Inferred cell-cycle state based on expression of previously categorized G1, G2M, and S phase–
associated genes.44 (C) ISC score based on expression of established ISC genes LGR5, OLFM4, 
ASCL2, SMOC2, and SOX9. (D) Absorptive enterocyte score based on expression of established 
absorptive enterocyte genes APOA1, APOA4, APOC3, ALDOB, and SEPP1. (E and F) Gene 
expression of ISCs, and absorptive enterocyte populations identified in panel A. (E) Expression of top 
20 ISC genes previously identified in human ileum.41 ∗LGR5 was not within the top 20 ISC genes 
previously identified in human ileum, but it was included for reference. (F) Expression of top 20 
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absorptive enterocyte genes previously identified in human ileum.41 (G) Bottom right: Vectors 
calculated based on a dynamic model of RNA velocity showing likely cell transitions of ISCs, early 
absorptive enterocytes, intermediate absorptive enterocytes, and mature absorptive enterocytes. Top 
left: Schematic showing likely positions of identified ISCs and absorptive enterocyte populations along 
the crypt–villus axis. Note that secretory and ileal lineages were removed from the analysis to focus 
on the relationship between ISCs and maturing of jejunal absorptive enterocytes. (H) A latent time 
value between 0 and 1 was assigned to each cell to order cells along the trajectory modeled by RNA 
velocity. A latent time of 0 means that the cell has yet to experience any differentiation in the modeled 
trajectory whereas a latent time of 1 means that the cell has progressed completely through the 
modeled differentiation pathway. (I) Identified human jejunal absorptive enterocytes were ordered 
based on latent time (x-axis) and DEGs of identified human ISCs and absorptive enterocyte 
populations were plotted on the y-axis. ∗LGR5 was not among the top 20 ISC genes identified in 
human Ileum.41 (J) UMAPs showing expression of select DEGs from the population of cells along the 
ISC to mature absorptive enterocyte differentiation axis. (K) In situ hybridization of ISCs and early 
absorptive enterocyte DEGs OLFM4 and DMBT1, respectively (left). In situ hybridization of 
intermediate absorptive enterocyte and mature absorptive enterocyte DEGs FABP1 and APOA4, 
respectively (right). AE, absorptive enterocyte; DAPI, 4′,6-diamidino-2-phenylindole; mRNA, 
messenger RNA; UMAP, uniform manifold approximation and projection. 

 
Figure 3.2: Expression of lipid-handling genes in in vivo ISCs and human absorptive 
enterocyte populations.  
Genes were selected from Gene Ontology (GO) terms relating to lipid metabolic processes. Fatty acid 
binding protein genes were selected manually and not derived from GO terms (bottom left). The 



 

113 

following genes were not detected in our data set and were excluded: DGAT2L7P, MIR29B1, 
MIR30C1, MIR548P, APOA2, PLIN4, ABCD2, GRM1, NTSR1, SLC17A6, SLC17A7, SLC1A6, 
ABCD2, and TWIST1. 

 
Figure 3.3: Single-cell transcriptomics of 2D ISCs and absorptive enterocyte cultures. 
(A) Schematic of isolation, expansion, and differentiation of ISCs from the jejunum of a healthy organ 
donor. (B) Unbiased Leiden clustering of collagen-grown ISCs (green) and ISCs differentiated for 2 
days (orange). (C) Inferred cell-cycle state based on expression of previously categorized G1, G2M, 
and S phase–associated genes44. (D) Left: ISC score based on expression of established ISC genes 
LGR5, OLFM4, ASCL2, SMOC2, and SOX9. Right: Absorptive enterocyte score based on expression 
of established absorptive enterocyte genes APOA1, APOA4, APOC3, ALDOB, and SEPP1. (E) 
Expression of secretory lineage markers MUC2, CHGB, TRPM5, and BEST4. AE, absorptive 
enterocyte; BEST4, bestrophin 4; CHGB, chromagranin B; Duo, duodenum; EEC, enteroendocrine 
cell; Ile, ileum; Jej, jejunum; MUC2, mucin2; TRPM5, Transient Receptor Potential Cation Channel 
Subfamily M Member 5; UMAP, uniform manifold approximation and projection. 
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Figure 3.4: RNAseq shows a time-dependent absorptive enterocyte maturation program in 
jejunal ISCs in vitro.  
(A) TEER of jejunal ISCs (n = 12 Transwell cultures). ISCs were maintained in expansion media for 3 
days and then switched to differentiation media for 12 days. TEER was monitored daily. Red triangles 
indicate time points at which cells were lysed for bulk RNAseq. A Kolmogorov–Smirnov test was 
performed comparing TEER between day 0 (D0) and D1–D7. ∗∗∗∗P < .0001. (B) Principal component 
analysis of sequenced transcriptomes. (C) Expression of the top 30 DEGs in ISCs, early absorptive 
enterocytes, intermediate absorptive enterocytes, and mature absorptive enterocytes. (D) In vitro 
expression of the top 30 in vivo ISC, early absorptive enterocyte, intermediate absorptive enterocyte, 
and mature absorptive enterocyte DEGs. SNHG19, SNHG25, and NEAT1 were not detected in our 
in vitro data set and were excluded. ∗LGR5 was not among the top 30 DEGs in ISCs but it was 
included for reference. 
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Figure 3.5: RNAseq shows a time-dependent lipid-handling program in jejunal ISCs in vitro.  
(A) Expression of a curated set of fatty acid–handling genes in vivo (left) and in vitro (right). Genes 
were curated from the genes in Figure 2. (B) Matrix showing linear regression plots for lipid-handling 
genes. Each dot represents the mean expression for a lipid-handling gene. The x-axis represents the 
mean (n = 3 samples per time point) expression from in vitro bulk RNAseq data. The y-axis 
represents the mean expression for each cluster from in vivo scRNAseq data. The dotted line shows 
the line that was used to calculate residuals and is drawn with slope = 1 (i.e., mean expression of 
in vitro differentiation bulk RNAseq data perfectly matches in vivo scRNAseq mean expression for 
each cluster). Red dots indicate the lowest residual sum of squares for each row (i.e., lowest residual 
for each time point sampled in the in vitro differentiation experiment). (C) Residual plot of key lipid-
handling genes. FA, fatty acid. 
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Figure 3.6: Application of fluorescent polysaccharide and fatty acid show integral barrier and 
fatty acid handling in vitro.  
(A) Left: Schematic showing application of Dextran-647 to the apical surface of absorptive 
enterocytes or empty Transwell cultures. Right: Subsequent sample collection and fluorescence 
quantification via plate reader. ISCs were differentiated for 7 days before application of 1 umol/L 
Dextran-647. A total of 50 uL media from the basal reservoir was removed at 2, 4, and 6 hours from 
empty Transwell inserts or absorptive enterocyte cultures and replaced with fresh differentiation 
media; Bonferroni multiple comparisons test. ∗∗∗∗P < .0001. (B) Schematic of B-C12 application to 
absorptive enterocyte Transwell cultures and subsequent retrieval from apical, cellular, and basal 
reservoirs. (C) TLC (polar) of basal media from absorptive enterocyte cultures after 6 hours of 
incubation with B-C12 (left). Retention factor (RF) of B-C5, B-C12, and C16 standards were used to 
generate a standard curve to infer the chain length of fatty acids whose RF values do not correspond 
to B–fatty acid standards used (right). (D and E) TLC of apical, cellular, and basal reservoirs of 
absorptive enterocyte Transwell cultures after 6 hours of B-C12 application using polar and 
protonating solvents. A previous study57 using TLC to identify B-lipid species with the same solvents 
used in this study reported NFBs that do not correspond to B-lipids used. ∗Location of B-C4, B-C6, 
and B-C8 were inferred from panel C. Experiments were performed in triplicate (n = 3 absorptive 
enterocyte Transwell cultures). AE, absorptive enterocyte; B, BODIPY; B-C4, B-C6, B-C8, B-C12, B-
C16, BODIPY–fatty acids; FA, fatty acid; TAG, triglyceride. 
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Figure 3.7: Etomoxir reduces fatty acid export.  
(A) Left: Schematic showing basal reservoir sampling after application of B–-fatty acids to the apical 
surface of absorptive enterocyte Transwell cultures and subsequent quantification of basal 
fluorescence via plate reader. Right: Quantification of basal fluorescence from B-C5–, B-C12–, and B-
C16–treated absorptive enterocyte cultures treated with vehicle (dimethyl sulfoxide), or etomoxir. 
Bonferroni multiple comparisons test. ∗∗∗∗P < .0001. A total of 50 uL basal media was collected and 
quantified by plate reader at 2, 4, and 6 hours after fatty acid application. (B) Quantification of 
Dextran-647 in the basal reservoir of absorptive enterocyte monolayers from basal samples of fatty 
acid–handling screens taken at 2, 4, and 6 hours. Bonferroni multiple comparison test. ∗∗∗∗P < .0001. 
Experiments were performed in triplicate (n = 3 absorptive enterocyte Transwell cultures). ANOVA, 
analysis of variance; B-Cx, BODIPY lipids. 
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Figure 3.8: Inhibiting fatty acid oxidation reduces fatty acid export.  
(A–C) TLC of basal-reservoir media collected 6 hours after vehicle or etomoxir and B-C5, B-C12, or 
B-C16 application. A previous study57 using TLC to identify B-lipid species with the same solvents 
used in this study reported NFBs that do not correspond to B-lipid standards used. Approximate 
locations of NFBs are labeled. ∗Location of B-C4, B-C6, and B-C8 were inferred from Figure 6C. (B 
and C) Right: Quantification of the fluorescence contributed by the B-C6 band divided by the 
cumulative fluorescence of all bands in each TLC lane. Unpaired t test. ∗∗∗∗P < .0001. (D and E) 
Cellular-reservoir fluorescence of B-C12– or B-C16–treated absorptive enterocyte Transwell cultures 
treated with vehicle (dimethyl sulfoxide [DMSO]) or etomoxir. Unpaired t test. ∗∗P < .01, ∗∗∗∗P < 
.0001. Scale bars: 100 um. (F) Apical-reservoir fluorescence of B-C12– or B-C16–treated absorptive 
enterocyte Transwell cultures treated with vehicle (DMSO) or etomoxir. Unpaired t test. ∗P < .05, 
∗∗∗∗P < .0001. (G) Schematic showing proposed mechanism of reduced B–fatty acid export by 
etomoxir. B-fatty acids were applied at a concentration of 20 µmol/L. Etomoxir was applied at a 
concentration of 100 µmol/L. Experiments were performed in triplicate (n = 3 absorptive enterocyte 
Transwell cultures). B-Cx, fluorescence coming from all B-lipids in basal, apical, or cellular reservoirs; 
Eto, etomoxir; FA, fatty acid; FAO, fatty acid oxidation; TAG, triglyceride; Veh, vehicle. 
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Figure 3.9: Enhancing fatty acid oxidation augments fatty acid export.  
(A) Quantification of basal-reservoir fluorescence from B-C12– or B-C16–treated absorptive 
enterocyte cultures treated with vehicle (dimethyl sulfoxide [DMSO]), C75, or metformin (Met). 
Bonferroni multiple comparisons test. ∗P < .05, ∗∗∗P < .001, ∗∗∗∗P < .0001. (B) Quantification of 
Dextran-647 in the basal reservoir of absorptive enterocyte monolayers from basal samples of fatty 
acid–handling screens taken at 2, 4, and 6 hours. Bonferroni multiple comparison test.∗∗∗∗P < .0001. 
Experiments were performed in triplicate (n = 3 absorptive enterocyte Transwell cultures). (C and D) 
Left: TLC of basal-reservoir media from B-C12– or B-C16–treated absorptive enterocyte cultures 
treated with vehicle, C75, or metformin. Right: Quantification of the fluorescence contributed by the B-
C6 band divided by the cumulative fluorescence of all bands in each TLC lane. Bonferroni multiple 
comparisons test. ∗P < .05, ∗∗P < .01. (E) Basal-reservoir fluorescence of B-C12–treated cultures 
treated with either vehicle, C75, metformin, C75 and etomoxir, or metformin and etomoxir. 
Fluorescence was measured 6 hours after B–fatty acid application. Bonferroni multiple comparisons 
test. ∗P < .05, ∗∗P < .01, ∗∗∗P < .001, and ∗∗∗∗P < .0001. (F) Proposed mechanism of enhanced fatty 
acid export by C75 and metformin. Concentrations of C75, metformin, and etomoxir were 40 µmol/L, 
3 mmol/L, and 100 µmol/L, respectively. A previous study57 using TLC to identify B-lipid species with 
the same solvents used in this study reported NFBs that do not correspond to B-lipid standards used. 
∗Location of B-C4, B-C6, and B-C8 were inferred from the experiment in Figure 10. Experiments were 
performed in triplicate (n = 3 absorptive enterocyte Transwell cultures). ACC, acetyl-CoA carboxylase; 
AMPK, AMP-activated protein kinase; B-Cx, BODIPY-lipids; FA, fatty acids; FAO, fatty acid oxidation; 
Met, metformin; TAG, triglyceride; Veh, vehicle. 
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Figure 3.10: Fluorescence-activated cell sorter (FACS) density plots showing FACS gating 
strategy for sorting live cells from dissociated human small intestine.  
Titles above plots indicate the gate from where the cells came (i.e., the previous density plot). (A) 
Initial doublet discriminator, with exclusion of likely red blood cells and immune cells. (B) Forward-
scatter–based doublet discriminator. (C) Back-scatter–only doublet discriminator. (D) Forward-scatter 
width-based doublet discriminator. (E) Final gate used to distinguish live cells based on negative 
gating for Annexin V-APC. (F and G) Violin plots showing distributions of quality control (QC) 
parameters including the number of total reads per cell, number of genes counted in each cell, and 
the percentage of mitochondrial reads per cell. (F) Prefiltering distribution of QC parameters. (G) 
Postfiltering distribution of QC parameters. (H) Region of cells overlaid on UMAP. BSC, backscatter; 
FSC, forward scatter; Jej, jejunum; Ile, ileum; UMAP, uniform manifold approximation and projection. 

3.5 TABLES 

Reagent Stock solution EM DM 
L-WRN–conditioned 
medium   50%   

Advanced DMEM/F12 1× 50% 100% 
Glutamax 100× 1× 1× 
HEPES 1 mol/L 10 mmol/L 10 mmol/L 
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Primocin 50 mg/mL 50 ug/mL 50 ug/mL 
N-acetyl-cysteine 1 mol/L 1 mmol/L 1 mmol/L 
Murine EGF 250 ug/mL 50 ng/mL 50 ng/mL 
Nicotinamide 1 mol/L 10 mmol/L   
B27 50× 1×   
Gastrin 1 mg/mL 10 nmol/L   
PGE2 1 mmol/L 10 nmol/L   
A8301 5 mmol/L   500 nmol/L 
SB202190 30 mmol/L 3 µmol/L   
Y27632 10 mmol/L 10 µmol/L   

Table 3.1: Tissue culture media conditions 

 In vivo scRNASeq In vitro scRNASeq 

Minimum genes >500 >1000 

Percent mitochondrial 
reads <75% <50% 

Minimum counts >3,000 >5,000 

Maximum counts <50,000 <80,000 

Table 3.2: Quality control parameters for scRNAseq 

Reagents Company Catalog number 
L-WRN cells ATCC (Manassas, VA) CRL-3276 

Advanced DMEM/F12 Thermo Fisher (Waltham, 
MA) 12634010 

Glutamax, 100× Thermo Fisher (Waltham, 
MA) 35050061 

1 mol/L HEPES buffer Corning (Corning, NY) 25-060-CI 
Primocin VWR (Radnor, PA) MSPP-ANTPM2 

N-acetyl-cysteine MilliporeSigma (Burlington, 
MA) A9165 

EGF, murine Peprotech (Rocky Hill, NJ) 315-09 

Nicotinamide MilliporeSigma (Burlington, 
MA) N0636-100G 

B27 Thermo Fisher (Waltham, 
MA) 12587-010 

Gastrin MilliporeSigma (Burlington, 
MA) G9145-1MG 

PGE2 Peprotech (Rocky Hill, NJ) 3632464 

A 83-01 MilliporeSigma (Burlington, 
MA) SML0788-5MG 

SB202190 Peprotech (Rocky Hill, NJ) 1523072 
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DPBS Thermo Fisher (Waltham, 
MA) 14190-144 

Matrigel Corning (Corning, NY) 354230 

Y27632 Selleckchem (Houston, TX) S6390 

Etomoxir MilliporeSigma (Burlington, 
MA) E1905-5MG 

C75 Cayman Chemical (Ann 
Arbor, MI) 10005270 

Metformin Cayman Chemical (Ann 
Arbor, MI) 13118 

Dimethyl sulfoxide MilliporeSigma (Burlington, 
MA) D2650-5X5ML 

Glyoxal solution 40 wt % in 
H2O 

MilliporeSigma (Burlington, 
MA) 128465 

TrypLE Express Thermo Fisher (Waltham, 
MA) 12605010 

Dextran 647 Thermo Fisher (Waltham, 
MA) D22914 

a-BODIPY 530/550-C12-
HPC 

Thermo Fisher (Waltham, 
MA) D3792 

BODIPY FL C16 Thermo Fisher (Waltham, 
MA) D-3821 

BODIPY FL C12 Thermo Fisher (Waltham, 
MA) D-3822 

BODIPY-FL C5 Thermo Fisher (Waltham, 
MA) D-3834 

BODIPY 493/503 Thermo Fisher (Waltham, 
MA) D-3922 

18:1-18:1-C11 TopFluor TG Avanti Polar Lipids 
(Birmingham, AL) 810298C-1mg 

Na2HPO4 MilliporeSigma (Burlington, 
MA) S7907 

KH2PO4 MilliporeSigma (Burlington, 
MA) P5655 

NaCl MilliporeSigma (Burlington, 
MA) S5886 

KCl MilliporeSigma (Burlington, 
MA) P5405 

Sucrose Thermo Fisher (Waltham, 
MA) BP 220-1 

D-sorbitol Thermo Fisher (Waltham, 
MA) BP439-500 

EDTA Corning (Corning, NY) 46-034-Cl 
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DTT Thermo Fisher (Waltham, 
MA) BP172-5 

Protease VIII MilliporeSigma (Burlington, 
MA) P5380 

Bovine serum albumin Thermo Fisher (Waltham, 
MA) BP1600-1 

TotalSeq-B0251 anti-
human hashtag 1 antibody BioLegend (San Diego, CA) 394631 

TotalSeq-B0251 anti-
human hashtag 2 antibody BioLegend (San Diego, CA) 394633 

TotalSeq-B0251 anti-
human hashtag 3 antibody BioLegend (San Diego, CA) 394635 

TotalSeq-B0251 anti-
human hashtag 4 antibody BioLegend (San Diego, CA) 394637 

TotalSeq-B0251 anti-
human hashtag 5 antibody BioLegend (San Diego, CA) 394639 

TotalSeq-B0251 anti-
human hashtag 6 antibody BioLegend (San Diego, CA) 394641 

Annexin V-APC BioLegend (San Diego, CA) 640920 

RNAqueous-Micro Total 
RNA Isolation Kit 

Thermo Fisher (Waltham, 
MA) AM1931 

Chromium Next GE M 
Single-Cell 3’ GEM, Library 
and Gel Bead Kit v3.1 

10x Genomics (Pleasanton, 
CA) PN-100012 

RNAscope Probe - Hs-
FABP1-C3 

Advanced Cell Diagnostics 
(Newark, CA) 534801-C3 

RNAscope Probe - Hs-
APOA4 

Advanced Cell Diagnostics 
(Newark, CA) 857841 

RNAscope Probe - Hs-
OLFM4-C2 

Advanced Cell Diagnostics 
(Newark, CA) 311041-C2 

RNAscope Probe - Hs-
DMBT1 

Advanced Cell Diagnostics 
(Newark, CA) 478711 

Table 3.3: Reagents used 
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3.6 MATERIALS AND METHODS 

Donor Selection 

Human donor intestines were accepted and received from HonorBridge (formerly Carolina 

Donor Services, Durham, NC) based on the following donor acceptance criteria: age ≤ 65 years, 

brain-dead only (as opposed to donation after cardiac death), negative for HIV, Hepatitis, RPR 

(syphilis), tuberculosis, or COVID-19. Tissue from a 29-year-old Caucasian male was used for single 

cell dissociation and scRNAseq. Tissue from a 51-year-old African American male was used for 

tissue culture, in situ hybridization, scRNAseq of collagen grown ISCs and absorptive enterocyte 

monolayers and bulk RNAseq. Human donors had no history of bowel surgery, severe abdominal 

injury, cancer, or chemotherapy. Increased risk donors (i.e., history of incarceration or intravenous 

drug use) were accepted, provided negative infectious disease results. Additionally, donor cases 

where the pancreas was placed for transplant were excluded given that pancreatic transplants require 

removal of proximal small intestinal tissue.  

Organ resection and single cell dissociation 

Whole human intestines were transported to UNC Chapel Hill in ice-cold University of 

Wisconsin Solution, with tissue dissection beginning within eight hours of cross-clamping. First, fat, 

and connective tissue were trimmed from the donated organs and intestines were subdivided into six 

regions following measurement. For the small intestine, the proximal 20 cm was deemed Duodenum. 

Jejunum and ileum were determined through an even split of the remaining small intestine. Two 3x3 

cm2 resections were isolated from the center of jejunum and ileum for dissociation.  

Resections were incubated in 10 mM NAC at room temperature for 30 min to remove mucus, 

then tissue was moved to ice-cold Isolation Buffer which consisted of 5.6 mM Na2HPO4, 8.0 mM 

KH2PO4, 96.2 mM NaCl, 1.6 mM KCl, 43.4 mM Sucrose, 54.9 mM d-sorbitol, and 100 µM Y27632, 

then washed several times by gently inverting the tubes. Tissues were then incubated in Isolation 

Buffer with 2 mM EDTA and 0.5 mM DTT, then shaken vigorously to remove crypts. Shakes were 

repeated several times, checking for crypts and/or villi each time. High-yield small intestinal shakes 

were pooled to approximate 1:1 villus to crypt tissue by cell mass. Crypts and villi were dissociated to 

single cells using 4 mg/mL Protease VIII in DPBS + Y27632 on ice for ~45min with trituration via a 
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P1000 micropipette every 10 min. Dissociation was checked on a light microscope then clumps were 

removed using filtration.  

Cell sorting, library prep, and sequencing 

Single cells were washed with DPBS + Y27632 then resuspended in Advanced DMEM/F12 + 

1% Bovine Serum Albumin + Y-27632. AnnexinV-APC (1:100) was added for live/dead staining and 

one TotalSeq Anti-Human Hashtag Antibody per region to allow for tracking all six regions with a 

single library preparation. Cells were washed with Advanced DMEM/F12 + 1% BSA + Y27632 then 

resuspended in the same solution for sorting on a Sony Cell Sorter SH800Z. Cells were gated using 

forward and backward scatter and AnnexinV to enrich for live single epithelial cells (Fig. 10A-E). 

Annexin V staining demonstrated high viability (95.7%) of single cells with 1,788 having passed 

quality filtering (Fig. 10E). 25k cells were collected from each separate region, then all regions were 

combined before sequencing. Library prep was performed with the Chromium Next GEM Single Cell 

3’ GEM, Library & Gel Bead Kit v3.1. Sequencing was performed on an Illumina NextSeq 500.  

Single cell RNA sequencing data processing 

After sequencing, reads were aligned to reference transcriptome GRCh38 with the 10X Cell 

Ranger pipeline. Mapped reads were filtered and counted by barcode and UMI and then transformed 

into an AnnData object using the Python implementation of scanpy (v1.7.2). Annotations for cell cycle 

phase were added following previously published methods82. The number of genes, number of UMIs, 

and percent mitochondrial expression for all cells in each sample were visualized and used to identify 

thresholds for high-quality cells to include in further analysis(Fig. 10F,G).83. Quality control 

parameters for both datasets are found in Table 2  

Following filtering, read counts were log-transformed and normalized to the median read 

depth of the dataset. For both single cell sequencing experiments no batch correction was performed 

as each dataset was analyzed separately. Variability due to read count, percentage of mitochondrial 

reads and cell cycle phase were regressed out by simple linear regression. Highly variably genes 

were identified using Seurat v2. 2,585 and 4,186 highly variable genes were used for principal 

component analysis for the in vivo and in vitro scRNAseq datasets, respectively. Counts for each 
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gene were scaled to have a mean of zero and unit variance. A kNN-graph was constructed with 10 

neighbors was used to calculate Leiden clusters for both in vivo and in vitro scRNAseq datasets (In 

vivo clustering parameters: Leiden resolution = 0.5, num_neighbors = 10, num_pcs = 40; in vitro 

clustering parameters: Leiden resolution = 0.1, num_neighbors = 10, num_pcs = 15) and EPCAM-

negative cells were removed from the in vivo dataset84. PAGA was used to initialize UMAP 

embeddings of Leiden clusters85.  

Regional hashtag deconvolution followed published methods for both scRNAseq datasets. 

Briefly, raw hashtag read counts were normalized using centered log ratio transformation followed by 

k-medoid clustering (k=6 medoids). Hashtag noise distributions were determined by removing the 

cluster with highest expression of a specific hashtag, then a negative binomial distribution was fit to 

the data of the remaining cells. Cells were considered positive for a hashtag if counts for the specific 

hashtag were above the distribution’s 99th percentile (p<0.01) threshold. Cells positive for multiple 

hashtags were excluded as likely doublets. Cells called for colon and duodenum were removed from 

the dataset. For in vitro data, only hashtags 1 and 3 were kept for analysis.  

RNA Velocity 

Velocyto 0.17.16 was used to generate the initial loom file and scvelo 0.2.4 was used for all 

integration of spliced/unspliced loom file integration with the processed anndata object and all 

subsequent trajectory analysis51,52. Briefly, to ensure connectedness of dataset, clusters that 

corresponded to stem cells and the different stages of enterocyte differentiation were used for 

trajectory analysis. All other clusters were removed from the dataset and the remaining clusters were 

reprocessed and reclustered. The resulting dataset was integrated with the spliced and unspliced 

read counts and 4100 highly variable genes were kept for fitting to the RNA velocity dynamical model. 

For moment calculation, num_pcs = 40 and num_neighbors = 50. Function arguments for calculating 

RNA velocity vectors and latent time were default values except for the specification of the dynamical 

model in scvelo.tl.velocity.  
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Differential gene expression for scRNASeq 

Differential expression analysis was performed using the de.test.wald function in the Python 

implementation of diffxpy (version 0.7.4)86. From the output data, significant DEGS (q <0.05) were 

attributed to the cluster with the highest mean value for each gene.  

Linear correlation analysis 

Read count data from both datasets were normalized to the same value then log-

transformed. Mean expression values for each lipid-handling gene were calculated per-scRNAseq 

cluster and per group of in vitro differentiation bulk RNAseq. Pairwise comparisons of mean gene 

expression values for each in vivo differentiation state and each in vitro differentiation state were 

made (Fig. 5B). A line was drawn representing a perfect correlation of in vitro bulk RNAseq 

expression to in vivo scRNAseq expression (Fig, 5B). Residuals for each lipid-handling gene were 

calculated based on the deviation from this line. The residual sum of squares thus represents a 

quantitative measure of the overall similarity of expression of lipid-handling genes between each in 

vivo differentiation state and each in vitro differentiation state, with a lower value indicating a better fit 

to the line describing a perfect correlation.  

2D Collagen scaffold preparation  

2D collagen scaffolds were made by diluting ice-cold type I rat tail collagen (Corning; 354236) 

to 1 mg/mL in ice-cold neutralization buffer according to an established protocol38. Briefly, 6-well 

tissue-culture plates (Corning; 3516) were incubated at 37C for 1 hour before 1 mL of diluted rat-tail 

collagen was poured into each well. After collagen was poured to each well of a 6-well plate, plates 

were tilted to completely coat the bottom of each well. Plates were then incubated at 37C for 1 hour 

before being overlaid with 3 mLs of room-temperature DPBS. Collagen scaffolds were kept overlaid 

with DPBS at room temperature until seeded with ISCs.  

2D collagen ISC culture and passaging 

Primary human jejunal crypts of Lieberkühn were isolated and cultured on 2D collagen 

scaffolds according to an established protocol38. Briefly, following isolation, crypts were suspended in 

EM with 10 mM Y27632 at a density of ~1,667 crypts/mL. DPBS was removed from 6-well collagen 
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coated plates and immediately seeded with 3 mLs of suspended crypts. Media was removed the 

following day and replaced with fresh EM without Y27632. Media was changed every other day.  

6-well collagen ISC cultures were passaged when they became ~70% confluent according to 

an established protocol38. Briefly, ISC containing collagen scaffolds were detached from the tissue 

culture plate by applying a 1 mL pipette tip to the side of the well and moving the tip around the entire 

perimeter. Once the collagen scaffold detached from the well, it was transferred to a 5 mL canonical 

using a 1 mL pipette. Next, 1 mL of EM and 10 mM Y27632 were added to the 5 mL conical 

containing the collagen scaffold and ISCs. To digest the collagen scaffold, 100 µL of collagenase type 

IV was added to the conical and incubated at 37C for 10 minutes. Once the collagen is dissolved, 

ISCs are pelleted at 800g for 3 minutes. The supernatant is removed and ISCs are resuspended in 5 

mLs of DPBS. ISCs are pelleted and supernatant removed as before. To dissociate ISC monolayers, 

ISCs are resuspended in 150 uL of TrypLE containing 10 mM Y27632 and incubated at 37C for 5 

minutes. Following incubation, ISC monolayers are triturated by pipetting up and down 10 times 

against the bottom of the tube with a 1 mL pipette. Note that ISC monolayers were not dissociated to 

single cells. Following trituration, ISCs were pelleted, and supernatant aspirated as before. ISCs were 

resuspended in 9 mLs of EM with 10 mM Y27632 and seeded in 3 6-well collagen scaffolds at 3 mLs 

per well. Passaging was performed until desired number of cells were obtained. 

Transwell preparation, ISC seeding, expansion and differentiation 

Transwells were prepared according to an established protocol38. Briefly, the apical surface of 

12-well (3460; Corning) or 96-well (7369; Corning) Transwell inserts was overlayed with ice-cold 1% 

Growth Factor Reduced Matrigel (Matrigel) diluted in ice-cold DPBS. Transwell plates were left 

incubating at 37C in 5% CO2 overnight. Inserts were rinsed by replacing the 1% Matrigel with DPBS 

the following day. Following Transwell preparation, 2D collagen ISC monolayers were dissociated as 

previously described and ISCs were suspended in EM containing 10 mM Y27632 at ~280K cells/mL. 

Suspended ISCs were seeded on the apical surface of Transwell inserts (500uls for 12-well 

Transwells, 150 uL for 96-well Transwells). EM was added to the basal reservoir at the time of 

seeding (1.5 mLs for 12-well Transwells, 240 uL for 96-well Transwell). Apical and basal media was 
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replaced the day after seeding with fresh EM without Y27632. To induce differentiation, EM in apical 

and basal reservoirs was replaced with DM to initiate differentiation.  

Adapting 2D Transwell cultures for 96-well Transwell plates 

For scaling to 96-well Transwell cultures, 25 mL media reservoirs and a 12-channel pipette 

were used for transferring 1% Matrigel, DPBS and media to 96-well Transwell plates. 96-well 

Transwell inserts were covered with a hydrophobic porous film (Genesee Scientific; 12-631) to 

minimize well-to-well variability due to evaporation while maintaining gas exchange. For inducing 

differentiation in 96-well Transwell cultures, EM in the apical and basal surface was replaced with DM 

(100 uL apical, 240 uL basal). 

Single cell dissociation of Transwell epithelial monolayers  

Media was removed from ISCs expanded on collagen and from absorptive enterocytes on 

12-well Transwell inserts and washed with 1x DPBS. 1.5 mLs of 3 mM EDTA in PBS was applied to 

ISCs expanded on collagen and on apical and basal reservoirs of 12-well Transwell cultures until 

most cells were lifted off the collagen or Transwell surface as determined by visual inspection every 2 

minutes under an inverted microscope. EDTA was aspirated using a P1000 micropipette and 

redistributed over the Transwell surfaced to facilitate detachment of cells from the Transwell at 2-

minute intervals until the majority of cells had detached. After the cells detached, 1.5 mLs of DPBS 

was applied to each well and rinsed by aspirating and re-applying the EDTA/DPBS. Cells were then 

aspirated and pelleted by centrifugation at 500 x g for 5 minutes. The supernatant was removed and 

replaced with 1 mL of 4 mg/mL cold protease in DPBS. Cells in cold protease were incubated on ice 

and pipetted semi-vigorously 10 times every 2 minutes before visual examination of dissociation 

under an inverted light microscope. This was repeated until all cells were singlets. Following single 

cell dissociation, the cold protease was quenched with Advanced DMEM/F12 + 1% FBS. Cells were 

pelleted as described above and resuspended in Advanced DMEM/F12 + 1% FBS. 

Bulk RNA sequencing preparation, processing, and analysis 

To investigate the dynamic changes in gene expression as ISCs differentiate into absorptive 

enterocytes in vitro, RNA-seq was performed on human intestinal epithelial monolayers immediately 
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before seeding onto Transwells (D0) and at Days 2, 5, 7, 10, and 11 (D2, D5, D7, D10, D11) of 

differentiation on Transwells. N=3 samples were collected from each time point and RNA was 

extracted using RNAqueous-Micro Total RNA Isolation Kit according to manufacturer’s protocols and 

stored at −80°C. RNA quality was assessed prior to library preparation by using the Agilent 2100 

Bioanalyzer to determine the RNA integrity number (RIN)87. After confirmation that each sample had 

a RIN of at least 8, integrated fluidic circuits (IFCs) for gene expression and genotyping analysis were 

prepared using the Advanta™ RNA-Seq NGS Library Prep Kit for the Fluidigm Juno™ and 

sequenced with the Fluidigm Biomark™ HD system. Gene level expression was obtained through 

pseudo alignment of reads to human genome GRCh38 using Kallisto88. Expression values for plotting 

were obtained by TMM normalization across all samples using EdgeR package89. Sequencing data 

from each time point were combined and then were normalized to the dataset median and log 

transformed. Principal component analysis was done with scikitlearn (v0.24.0). 

Transepithelial Electrical Resistance (TEER) 

Barrier integrity of 96-well Transwell cultures was monitored by quantifying TEER using 

EVOM or EVOM3 (World Precision Instruments) TEER meters in conjunction with STX100C96 

electrodes (World Precision Instruments).  

Basal fluorescence quantification 

100 µM Etomoxir, 40 µM C75, 3 mM metformin or vehicle (DMSO) were suspended in 100uls 

of DM and applied to the apical surface of absorptive enterocyte Transwell cultures for 1 hour. 

Following incubation, apical media was replaced with 100 uL of DM containing drugs or vehicle, 1 µM 

Dextran, Alexa Fluor 647 (Dextran-647) and 20 µM of either BODIPY-FL C5, -C12 or -C16 (Fig. 7B, 

9B) . Basal media (50 uL) was collected at 2, 4 and 6 hours and replaced with an equivalent volume 

of DM. Quantification of basal fluorescence was performed using a Caraustar Plus Microplate 

Reader. Fluorescence arbitrary units (AU) were converted to pmols using a standard curve. 

Thin Layer Chromatography 

For the assessment of fatty acid-handling via TLC (Fig. 4), BODIPY-FL C12 was applied to 

the apical surface of absorptive enterocyte Transwell cultures. Apical and basal media was collected 
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after 6 hours. Cells were released from Transwell inserts via application of 100 uL of 1x TrypLE 

Express containing 10 mM Y27632. Cells were lysed by undergoing 3 freeze-thaw cycles. Lipid 

extracts were generated from apical and basal media along with cell lysates using the Bligh and Dyer 

method 90. Lipid extracts were resuspended in 100% ethanol and spotted on silica gel TLC plates. 

Lipid species were separated by placing spotted silica gel plates in a glass chamber containing either 

a polar (chloroform/ethanol/triethylamine/water, 30:34:30:8 mL) or protonating (petroleum ether/ethyl 

ether/acetic acid, 30:34:30:8 mL) solvent.  

The following BODIPY analogs were used to identify lipid species; BODIPY-FL C5 (B-C5), -

C12 (B-C12), -C16 (B-C16), BODIPY 493/503 (B) and β-BODIPY-FL C12-HPC (phospholipids). 18:1-

18:1-C11 TopFluorR TG is a triglyceride conjugated to a fluorophore with similar properties (chemical 

structure and excitation/emission) as BODIPY and was used to infer the location of triglycerides on 

TLC plates due to BODIPY-Triglyceride analogs not being commercially available at the time of this 

publication. Only basal media samples were collected and assessed via TLC from the experiments in 

figure 5 and figure 6. Following incubation in solvent, spotted silica gel plates were dried and scanned 

on an iBright FL 1000 Imager to detect fluorescent lipid species. Excitation and emission channels 

were set to 455-485 and 508-557 respectively. A previous study62 using TLC to identify B-lipid 

species with the same solvents used in this study reported naturally fluorescent bands that do not 

correspond to B-lipids and are labelled here as NFB.  

The chain-length of unknown B-labeled fatty acids that appeared in the basal media of 

absorptive enterocyte cultures was inferred by generating a standard curve of the retention factors 

(RFs) of B-FA standards and their chain-length. The RF of the unknown B-labelled fatty acids was 

used to interpolate the chain-length using the standard curve mentioned previously (Fig. 10). The 

three unknown B-FAs corresponded to B-C4, B-C6, and B-C8 (Fig. 10). 

Microscopy of primary human jejunal tissue 

Post-mortem human jejunal tissue was fixed by incubating in 10% neutral buffered formalin 

overnight at 4C. Tissue was rinsed 3x in water 3 times the following day and stored in 70% ethanol 

until embedded. Tissue was embedded in paraffin wax. Glass slides were prepared by sectioning 
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embedded tissue. In situ hybridization was performed using RNAscope probes according to the 

recommended protocol (Table 2). Images were taken using an LSM710 confocal microscope (Zeiss). 

Microscopy of 2D absorptive enterocyte monolayers 

Absorptive enterocyte monolayers were treated with vehicle or 20 µM etomoxir and exposed 

apically to B-C12 or B-C16 for 6 hours. After 6 hours of apical B-C12 or B-C16 exposure, absorptive 

enterocyte monolayers were rinsed with fresh DM and fixed in 40% glyoxal solution for 20 minutes. 

Following fixation, absorptive enterocyte monolayers were rinsed with 1x DPBS. Next, the Transwell 

membrane containing the fixed absorptive enterocyte monolayers were removed from the Transwell 

inserts and placed on glass slides. Absorptive enterocyte monolayers were then overlayed with 

mounting media and covered with a glass coverslip. Fluorescent images used for quantification were 

taken at 20x magnification on an Olympus IX2-UCB Microscope. Representative fluorescent images 

of absorptive enterocyte monolayers in figure 5 were taken at 40x magnification on a Keyence BZ-

X810 microscope. 

Code and data availability 

Sequencing datasets will be available on the NCBI Gene Expression Omnibus under 

accession number GSE186583. Python scripts demonstrating the main parts of our analysis will be 

available on GitHub. 
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CHAPTER 4: HYPOXIA PRIMES INTESTINAL STEM CELLS TO RESPOND TO EXTRINSIC 
INTERLEUKIN SIGNALS AND INTRINSIC DOWNSTREAM MEDIATORS OF INFLAMMATION3 

4.1 INTRODUCTION 

Cellular respiration in complex multi-layered tissues relies on a constant supply of oxygen to 

maintain healthy physiologic states. The intestinal epithelium is a highly vascularized tissue that is 

perfused by a vast network of vessels that terminate in capillary beds where oxygen is released to 

adjacent cells in a local microenvironment.2 In the crypt-villus epithelial architecture, cells can 

experience marked differences in physiologic oxygen concentrations where crypt-based cells 

experience higher oxygen levels compared to cells at the villus tips.3 Along the crypt-villus axis a 

steep oxygen gradient is present wherein microenvironments that are within just ~100 cell distances 

experience ~10-fold difference in oxygen concentration.4 While lower oxygen concentrations within 

the gradient are tolerated as normal, sudden or dramatic changes in the magnitude and duration of 

oxygen loss can lead to pathological hypoxia5. Conserved and highly sensitive evolutionary 

mechanisms found across simple and complex organisms respond to abnormal oxygen levels by 

triggering a rapid transcriptional response to spare cell viability and preserve cellular functions6,7.  

In humans, overt intestinal hypoxic events present as larger mesenteric vasculature occlusion 

brought on by bowel strangulation, aneurysm, organ harvest for small bowel transplantation and 

neonatal necrotizing enterocolitis.8 These acute injuries are classified as ischemic and unless rapidly 

resolved there is profound and unrecoverable tissue death. Beyond acute ischemia, chronic 

inflammation in the intestines can induce so called ‘inflammatory hypoxia’ wherein a massive 
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Pozdin, Ming Yao, Amanda L. Ziegler, Anthony T. Blikslager, Michael A. Daniele, and Scott T. 
Magness * - These authors contributed equally to this work 



 

140 

infiltration of immune cells into the epithelial microenvironment shifts metabolic demand for oxygen 

and diminishes local oxygen supply5,9-12. Further reduction in the epithelial oxygen supply results from 

the associated vasoconstriction and disruption of capillary beds caused by the immune response4,6,13. 

Studies demonstrate inflammatory responses can produce localized and chronic hypoxic episodes in 

the intestinal stem cell (ISC) zone potentially leading to impaired ISC renewal, differentiation, and ISC 

death.13,14.  

At the molecular level, the rapid transcriptional response to low oxygen is mediated by 

hypoxia-inducible factors (HIFs)12. The HIF response appears to be a universal property of cells 

across various tissues and is likely an adaptation that enables cells facing injury or disease to modify 

cellular functions to preserve viability when oxygen levels fall below physiologic ranges.6,7 The master 

regulator of the hypoxic response is the constitutively-expressed transcription factor, HIF1α, which is 

immediately targeted for degradation in normoxic conditions. Under hypoxia, HIF1α degradation is 

inhibited through well-established mechanisms, rapidly accumulates, and, dimerizes with HIF1ß to 

exerts transcriptional control on a broad range of downstream target genes (e.g., VEGFA, BNIP1, 

etc.) that regulate cell survival, proliferation, metabolism, and cell migration12,15. HIF-transcriptional 

responses have primarily been studied in the context of cancer cells, since a large body of evidence 

points to HIF-regulated hypoxia conditioning that can promote tumor growth and invasiveness of 

cancer cells12,16,17. The robust in vitro culture of cancer cells has facilitated progress towards 

understanding hypoxia in cells with abnormal growth properties, however, the lack of similarly robust 

culture methods for normal/non-transformed cells has limited studies designed to understand hypoxic 

responses outside of cancer contexts18.  

Ischemia-Reperfusion injury (IR) has been studied at the tissue level in porcine and human 

translational models14,19-21. IR-injury can be defined as the collective injury cause by the lack of 

oxygen on one hand, and on the other, injury caused by reperfusion of oxygenated blood, which 

produces toxic reactive oxygen species (ROS), and promotes further inflammation8,13,14. Collectively, 

studies demonstrate short term (30 minute) ischemia followed by reperfusion is well tolerated and 

recoverable, however, longer ischemic times (>45 minutes) followed by reperfusion produces 

profound loss of barrier function, increased translocation of endotoxin, and substantial inflammatory 
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response characterized by immune cell infiltration and release of inflammatory cytokine mediators 

into the local microenvironment10,12,22. These studies primarily evaluate the post-mitotic intestinal 

epithelium and demonstrate that differentiated cells are exquisitely sensitive to IR-injury13,23,24. 

Importantly, cellular injury due to hypoxia is a separate injury event than injury caused by reperfusion 

of tissues with oxygenated blood8,14,25,26. The unique and overlapping mechanisms underlying each 

injury type are not well understood, and few in vivo studies specifically uncouple the hypoxic episode 

from the re-prefusion event, limiting the ability to distinguish the different contributions of each type of 

injury mechanism to cellular biology.  

At the cellular level, in vivo studies suggest that hISCs may exhibit high tolerance to hypoxic 

episodes13,27. After prolonged IR-injury (1-4 hours) in pigs there is a reduction of active ISC (aISC) 

markers, Lgr5 and Sox9, but increases in the reserve ISC (rISC) marker, Hopx, suggesting Hopx+ 

cells might represent an IR-injury-tolerant ISC27. In an experimental model of human intestinal IR-

injury, very rare apoptotic cells are appreciable in the crypt zone beginning after 2 hours of IR-injury 

suggesting that hISCs are highly resistant to prolonged hypoxic events20. In mice, ischemic 

preconditioning of intestinal tissue improves tissue repair and reduces cell death suggesting hISCs 

are able of engaging hypoxia-dependent mechanisms to survive and then promote regeneration 

when conditions are favorable28,29 Despite the important findings in rodent and translational models, 

hypoxia-dependent mechanisms that preserve human ISC function remain unknown. 

Investigating the impact of hypoxia on hISCs has been historically limited by the inability to 

indefinitely culture hISCs, the lack of high-resolution in vitro platforms where oxygen levels can be 

exquisitely tailored and accurately monitored in real time, and ethical considerations of human 

research that preclude in vivo experimentation. In this study, we engineered a microphysiological 

system (MPS) that delivers multiple durations and magnitudes of hypoxia to primary hISCs. The MPS 

allows for precise remote monitoring and control of oxygen concentrations in real-time at the cell 

surface interface. We use the MPS to create multiple durations of hypoxic episodes and evaluate 

dynamic transcriptomic changes by tissue-level transcriptomics. We evaluate the impact of hypoxic 

episodes on ISC function using high-throughput single-ISC organoid assays. We quantify the impact 

of hypoxia and inflammatory signals on DNA synthesis and cell death. Our findings have broad 
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implications for understanding the role in which inflammatory hypoxia can impact ISC behavior in 

gross clinical presentation of IR-injury to focal ischemic events that occur in IBD-related hypoxia. 

4.2 RESULTS 

4.2.1 A new microphysiological system (MPS) enables precise regulation, real-time monitoring 
of oxygen levels at the cell-media interface, and easy imaging. 

To address the limitations of sensitivity, accuracy and scale in existing environmental culture 

systems that create a hypoxic environment, we developed a novel MPS the size of a standard 

microscope slide where oxygen levels could be tailored to precise levels. The MPS design consists of 

2 major structural components, 1) the 3D-printed light- and air-tight container required for 

phosphorescence detection and hypoxia induction in the closed system and 2) an acrylic five-well 

tissue culture plate which sits inside of the sealed chamber and each well containing a hydrogel 

scaffold that facilitates ISC expansion30 (Fig. 1A,B). The MPS was devised as a closed system in 

which ambient air flowed over each well via continuous delivery of mixed gases. A biocompatible 

integrated phosphorescent oxygen sensor (iPOB) was placed on the hydrogel scaffold surface to 

provide real-time oxygen measurements specifically at the cell-media interface (Fig. 1C)18. Oxygen 

levels were quantified by the iPOB using Near Infrared (NIR) phosphorescence lifetime fluorimetry 

which measures the oxygen-dependent decrease in phosphorescence lifetime to determine local 

oxygen concentration (Fig. 1C)31. The iPOBs are reusable, highly sensitive, and capable of detecting 

a broad range of oxygen levels created by an off-chip gas mixer32. (Fig. 1D, S1) The MPS design 

accounts for easy access to refresh media, add compounds, and perform a variety of downstream 

assays including microscopy, transcriptomic analysis, and immunostaining (Fig S1). The MPS is 

fabricated from relatively inexpensive commercially available materials and can be sterilized and 

reused many times. Notably, the MPSs can be linked in parallel to accommodate complex 

experimental designs. Together, these demonstrate an ideal model system for evaluating the effect of 

hypoxia on hISCs. 

4.2.2 The MPS supports culture of proliferative human epithelial monolayers that respond to 
an induced hypoxic environment 

We recently developed methods that support indefinite 2- monolayers, isolated Dimensional 

(2D) expansion of proliferative human intestinal epithelial cells (IECs), or from primary intestine or 
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colon30. Under normoxic conditions (i.e., 37°C, 5% CO2, and remainder atmospheric air), IEC 

monolayers can be grown on a defined hydrogel and media formulation that supports hISC expansion 

while repressing differentiation30. This method was used to culture primary jejunal hISCs isolated from 

small intestinal crypts of an organ transplant donor on the MPS. Initial characterization of the 

proliferative IEC monolayer was performed in the MPS under normoxic conditions by immunostaining. 

The monolayers demonstrated DNA uptake as measured by S-phase marker EdU, expression of 

ISC/progenitor cell marker, SOX9 33,34, and epithelial cell tight junction protein, Occludin (OCLN) (Fig. 

1E). These results demonstrate the MPS is biocompatible with primary human IECs that are 

consistent with proliferating ISC/progenitor cell populations.  

Next, the functional stemness of human IECs cultured on the MPS under normoxia was 

evaluated. IECs were cultured on the MPS as proliferative monolayers under atmospheric O2 levels, 

dissociated to single cells and plated in Matrigel™ on a CytoSort Array to assess organoid forming 

efficiency (OFE), a proxy for in vivo ISC activity,35-37. Single cells in the microwells were identified, 

quantified, and candidate hISCs were individually tracked over a 6-day culture period to determine 

whether an organoid formed. The data demonstrate ~4% of single cells cultured in the MPS under 

ISC expansion conditions generated an organoid (Fig. 1F), which is consistent with OFE of FACS-

isolated hISCs from a Lgr5-EGFP expressing reporter gene mouse and also consistent with human 

organoid derived hISCs cultured for the same period of time in synthetic matrices37,38. These findings 

demonstrate that hISCs cultured as 2D monolayers on the MPS maintain ISC properties and similar 

ratios to those observed in vivo and in 3D organoid systems.  

We next sought to define the speed at which severe hypoxia could be achieved and 

maintained in the MPS and measure baseline O2 levels at the cell-media interface under normoxia. 

Oxygen concentrations of <1% (below 10 µM) are considered severely hypoxic but not anoxic39. An 

iPOB was added to the epithelial cell surface, and real-time oxygen levels at the cell-media interface 

were measured for 24-hours (Fig. 1G, inset). The data show the MPS produced a rapid hypoxic 

environment of 0.3% Oxygen (3 µM) within ~30 minutes, which was constantly maintained during the 

24-hour experiment (Fig. 1G). Interestingly, when proliferative IEC monolayers were cultured in 

normoxic conditions as a control, cellular respiration reduced oxygen levels at the cell-media interface 
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from 18% (180 µM) to 3.5% (35 µM) in the MPS. These data demonstrate physiologic O2 metabolism 

of proliferative IECs produces in just 30-minutes a steady-state flux of O2 that is 5-fold less that 

atmospheric oxygen levels. Nearly all cells have adapted to tolerate low oxygen levels by engaging 

the HIF response that is mediated post-transcriptionally by the HIF1α transcription factor12. To confirm 

whether proliferative IECs in the MPS were experiencing a HIF-response at 0.3% O2, qPCR was 

performed to detect expression of canonical HIF1α target genes that are typically upregulated during 

hypoxia. After 24-hours of hypoxia, HIF1α demonstrated little transcriptional change as expected 

since its activity is mediated by post-transcriptional stabilization40,41. By contrast, the set of classic 

HIF1α target genes (VEGF, SCL2A1/GLUT1, BCL2, BNIP3) were all significantly upregulated 

compared to normoxic controls (Fig. 2A)42-44. Together these findings show the MPS produces 

consistent IEC culture conditions, generates a rapid and sustained hypoxic environment for prolonged 

periods, and demonstrates that an O2 tension of 0.3% (3 µM) is sufficient to activate a canonical 

hypoxia response inside proliferative human IECs.  

4.2.3 Human ISC monolayer cultures survive after 48hrs of severe hypoxia with no loss of 
functional stemness  

Next, we sought to explore the extent to which hISCs can survive severe hypoxia. hISCs 

were exposed to severe hypoxia (<1% O2 as measured by the iPOB) in the MPS for 6, 24, 48, or 72 

hours and viability was by staining for early apoptosis marker, Annexin V (Fig. 2B).45 Flow cytometric 

quantification of Annexin V negative cells demonstrates ~90% of the cells survive through 48 hours of 

severe hypoxia. However, at 72 hours of severe hypoxia, there was a significant decrease in viability 

as measured by Annexin V-negative staining, from 90% viable in normoxic controls to 65% viable 

after 72-hrs of hypoxia. To determine how longer hypoxia would impact ISC function, monolayers 

were exposed to 24-hours or 48-hours of hypoxia or normoxia as a control in the MPS; then 

monolayers were dissociated to single cells and applied to CellRaft™ Arrays (CRAs) for high-

throughput and accurate quantification of organoid forming potential. CRAs enable up to ~10,000 

hISCs to be plated in microwells on a small device and each ISC can be evaluated for organoid 

forming potential over time37,46. Here, we quantified the number of viable single cells and organoids 

derived from ISCs after 6 days of culture on the CRAs (Fig. 2C,D). Quantifying organoid formation 
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efficiency (OFE) demonstrated a significant decrease (~2.5-fold) in OFE when cells were exposed to 

24-hours of hypoxia (Fig. 2C). When we performed a longer 48-hour hypoxia exposure, the OFE after 

6 days was indistinguishable from normoxia controls (Fig. 2D).  

To assess the dynamics of ISC marker gene expression during the first 48 hours of severe 

hypoxia, we performed qPCR for ISC marker gene OLFM4 after 6, 24, and 48 hours of normoxia or 

hypoxia (Fig 2E) 47. Interestingly, OLFM4 expression was significantly decreased after as little as 6 

hours of severe hypoxia, with subsequent time points showing a gradual recovery. Nevertheless, 

OLFM4 expression remained significantly decreased at each time point relative to normoxic controls. 

Immunostaining for HIF1α in IECs under these durations of hypoxia shows a significant accumulation 

of HIF1α only at 24-hrs of severe hypoxia (Fig. 2F,G). No significant change in HIF1α was observed 

at 6-hrs, which may indicate tolerance of proliferative IECs to short hypoxic episodes. Lack of HIF1α 

accumulation at 48-hrs of hypoxia is likely due a dampening of the HIF-response, wherein cells 

reequilibriate to tolerate new and sustained low O2 levels following a robust HIF-response5.  

These findings established a clear timeframe for further investigation into the mechanisms 

engaged in response HIF1α accumulation in IECs during short-, medium-, and long-term severe 

hypoxia by which IECs resist death and preserve functional stemness and viability. These data 

suggest that while there are dynamic changes regarding functional stemness as measured by OFE 

over 48 hours of hypoxia, the gene expression patterns of IECs under hypoxia begin to shift after 6 

hours of hypoxia and maintain different levels of gene expression through 48 hours of hypoxia. 

Moreover, these data indicate that IEC function after 24-hours of severe hypoxia (<1% oxygen) is 

substantially impaired and suggest there are hypoxia-regulated mechanisms that are enhancing ISC 

survival and preserving ISC function in a time-dependent manner.  

4.2.4 Hypoxia primes a ISC transcriptional state to respond to extrinsic interleukin signals and 
intrinsic downstream mediators of inflammation.  

To evaluate the time-dependent gene expression changes engaged in response to hypoxia 

and HIF1α accumulation, RNA-sequencing was performed on proliferative IECs cultured under 

normoxia and severe hypoxia for 6-, 24- and 48-hours. (Fig. 3A). Principal Component Analysis 

(PCA) demonstrated high reproducibility between technical replicates (n = 3) for each timepoint and 
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revealed global transcriptomic changes in hISCs between normoxic and hypoxic samples, similar to 

what was seen in the OLFM4 qPCR data (Figs. 2E, 3A). The normoxic samples clustered together 

on the first Principal Component (PC) together with the 6hr hypoxic samples, which slightly deviated 

from the normoxic samples on the second PC. By contrast, the 24hr and 48hr samples clustered 

together but deviated significantly from all other samples on the first and second PC. These findings 

indicate a marked shift in global transcriptomic response in proliferative IECs at 24hrs of severe 

hypoxia, furthermore this transcriptomic shift is aligned with the notable HIF1α accumulation and 

significant decrease in OFE after 24-hrs of hypoxia (Fig. 2C,F). 

To better understand potential molecular and physiological context associated with these 

time-dependent transcriptomic changes, Gene Set Enrichment Analysis (GSEA) (Fig. 3B) was used 

to comprehensively evaluate the gene expression changes observed in our RNA sequencing data. 

GSEA ‘terms’ were ranked based on significance and relevance to key biological processes that 

might impact IEC proliferation, immune responses, survival, and apoptosis. GSEA Normalized 

Enrichment Scores (NES) indicate that hypoxia-related genes are highly enriched at all timepoints 

compared to controls, providing confidence in these pathway-based analysis tools48,49 GSEA findings 

indicate IEC monolayers regulate a subset of pathways consistently across all hypoxia durations 

while other pathways are regulated in a dynamic manner. Specifically, transcriptomic analyses on IEC 

monolayers revealed enriched gene sets for inflammatory signaling through specific interleukin-

mediated pathways, (e.g., Inflammatory Response, IL6 JAK STAT3 Signaling, and IL2 STAT5 

Signaling) (Fig. 3B).  

Interestingly, within these upregulated gene expression patterns there was noticeable 

enrichment of the interleukin (IL) receptors, particularly in the gene groups that demonstrated 

hypoxia-dependent upregulation (Fig. 3B). Because inflammation is either the cause or strongly 

associated with hypoxia, the transcriptomic data was interrogated to evaluate expression of a 

comprehensive panel of interleukin receptors5,6,9. Of 45 IL-receptors, 91% demonstrated expression 

across all durations of hypoxia. Differential gene expression between normoxic and hypoxic 

environments revealed a subset of IL-receptors were regulated by hypoxia in a dynamic time-

dependent fashion (Fig. 3C). IL6R, IL10RB, and IL22RA1 demonstrated significant and consistent 
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hypoxia-dependent up-regulation and IL17RB demonstrated down-regulation that persisted from 

early- to late-stage hypoxia exposure (Fig. 3C).  

Other interleukin receptors demonstrated transient upregulation unique to one of the three 

hypoxic durations. IL1R2 could be classified as an early-transient responder as it increased early 

during hypoxia exposure but normalized to control levels during mid- to late-hypoxia durations (Fig 

3C). IL17RE was a transient mid-responder (only up at 24 hours of hypoxia), and IL1R1, IL18R1 and 

IL20RA demonstrated mid-responder characteristics but were unique in that they were over-all 

downregulated at 24hrs of hypoxia (Fig. 3C-E). IL13RA1 was a unique late-responder (Fig. 3E). The 

significant trends were verified by qPCR for the sub-set of IL-receptors that were consistently 

upregulated (IL6R, IL10RB, IL22RA1) or downregulated (IL17RB) (Fig. 3F). These results highlight 

time-dependent changes in IL-receptor expression during a hypoxic event, and interestingly point to 

the potential priming of hISCs to respond to interleukins secreted into the microenvironment during 

different times of hypoxia or later from blood circulation post-reperfusion, as previously reported in a 

human intestinal IR model.20 

4.2.5 Severe hypoxia increases ISC numbers in G1 phase and IL1α, IL2, IL4, IL25 exhibit 
hypoxia-dependent regulation of cell cycle phases  

Interleukins signal through their cognate receptors and regulate signaling cascades such as 

STAT3 and others that impact cellular proliferation50-52 . We first determined the impact of hypoxia on 

regulating proliferation and cell cycle phases. ISC monolayers were pulsed with EdU (S-phase) for 

the last 2 hours of culture and then co-stained for the pervasive cell-cycle marker KI67 (Fig 4A). The 

number of cells in S-phase (EdU+) or in any cell cycle phase (Ki67+) were quantified using a machine 

learning model. Confocal images were used to train the algorithm for precise Bisbenzimide+ nuclear 

segmentation. Approximately, 150,000 nuclei were automatically identified (i.e., segmented) across 

all experimental conditions (Fig 4B) 53,54. After segmentation, Ki67 and EdU channels were overlaid 

onto the automatically segmented nuclei to quantify the mean fluorescence intensity and percent of 

cells positive for each cell cycle marker on a per nuclei and per colony basis. To quantify the number 

of cells in mitosis (M-phase) condensed chromosomes were highly stained by Ki67 channel and 

morphologically identifiable (Fig 4C).  
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Hypoxic ISC cultures showed approximately 67.2% of cells in the cell cycle, a significant 

decrease when compared to the 78.9% of cells in the cell cycle in normoxia, as measured using the 

general proliferation marker Ki67 (Fig 4D). More granular analysis revealed reductions in the number 

of cells in S-phase (EdU+) and M-phase (mitotic bodies) demonstrating severe hypoxia over 24hrs 

induces a pervasive negative regulation of proliferation (Fig 4D-F). To determine whether hypoxia 

caused a specific arrest or delay in any particular cell cycle stage, we leveraged a finding that Ki67 

expression levels can be used to reliably predict cell cycle phases.55 Ki67 has recently been 

described as a graded marker for cell cycle progression and exit, with the lowest levels of Ki67 in 

G1/G0 phase, an intermediate level during S-phase, and the highest levels in G2/M phase55. We 

evaluated the levels of Ki67 in ISCs for each segmented nuclei and found significantly lower levels 

under severe hypoxia. The lower levels of Ki67, combined with the significant decrease in S- and M-

phase cells, suggests that 24 hours of severe hypoxia likely causes either G1 arrest, lengthens G1, or 

causes ISCs to exit the cell cycle and differentiate (Fig. 4E-G).  

To determine whether hypoxia-dependent regulation of IL-receptors had functional 

consequences on ISC proliferation, ISC monolayers were treated with cognate interleukins (i.e, IL1α, 

IL1β, IL2, IL4, IL6, IL10, IL13, IL17A/F, IL22, and IL25) under normoxia or hypoxia for 24 hours. After 

quantifying each cell cycle parameter described above, ILs had no significant impact on the number 

of proliferating cells under 24hrs of hypoxia as measured by Ki67 (Fig 4D). However, IL1α induced a 

significant 4.19% reduction in S-phase cells (EdU+)(Fig 4H) and IL2, IL4, and IL25 increased the 

prevalence of M-phase cells (mitotic bodies)(Fig 4I,M).  

4.2.6 IL1β, IL2, IL4, IL6, IL10, IL13 exposure after 24hrs of hypoxia improves ISC survival  

We next sought to define the functional behavior of hISCs following 24 hours of hypoxia, with 

and without the influence of key interleukins, whose receptor expression was already shown to be 

upregulated in IECs during hypoxia (Fig. 3C-E). We treated single cells isolated from either hypoxic 

or normoxic MPS with each IL and looked for organoid survival measured as clonal organoid forming 

efficiency (OFE) after 8 days in normoxic culture (Fig 5A). Similar to OFE assays in the CellRaft 

arrays (Fig 2C,D) we found that hypoxia and reperfusion also induced a decrease in organoid 

formation efficiency at 24 hours in the absence of exogenously supplied ILs (Fig. 5B). When treated 
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with individual ILs from the previously defined set of 10, organoid formation efficiency in hypoxic IECs 

were rescued when treated with IL1β, IL2, IL4, IL6, IL10, IL13 and IL25 (Fig 5C-H). These findings 

point to IL-dependent survival mechanisms during and after severe hypoxia. 

4.3 DISCUSSION 

For a discussion of hypoxia in the small intestine, it is important to state that physiologic in 

vivo pO2 levels inside the small intestine have been reported to be between 30 and 77 mmHg (3.9 to 

10% O2).56-58 There is a steep oxygen gradient inside the intestinal lumen, from the vascularized 

submucosa to the anaerobic zone.3 Moreover, ingestion of nutrients (glucose) causes the intestinal 

submucosa to undergo absorptive hyperemia, metabolically demanding more than 200% of the total 

cardiac output to supply blood to the superior mesenteric artery for intestinal oxygen extraction.59,60 

Although capillary recruitment increases as chyme passes through each region the intestine, 

absorptive hyperemia cannot prevent a drop of at least 10 mmHg (1.32% O2) in oxygen tension 

during digestion.61 Keeping all this variation in physiologic oxygen in mind, a pathophysiologic 

intestinal oxygen (hypoxic) concentration can be defined for any magnitude of oxygen below 3% that 

activates cellular hypoxic response. For the purpose of in vitro human intestinal epithelial studies, we 

defined severe hypoxia as local oxygen tension below 10 µM (1% O2).  

Certain durations and magnitudes of hypoxia in in vitro culture systems have been shown to 

either promote or repress pluripotency and self-renewal of other stem cell populations. ‘Physiologic 

hypoxia’ is a state where cells in an anatomical niche experience lower oxygen that other regions but 

persist in a tissue. Stem cells isolated from other organs have shown distinct responses to different 

magnitudes of hypoxia. For example, human cardiac stem cells display increased proliferation when 

cultured inside specialized physiologic hypoxia (5% oxygen) incubators for 24 hours but increased 

quiescence, as evident from reduced β-galactosidase activity, p16 protein expression, and 

mitochondrial content when cultured in severe hypoxic (0.5% oxygen) chambers.62 In another study of 

hepatic stem cells, stemness was promoted in liver physiologic hypoxia (10% oxygen), as evident 

from increased expression of specific liver stem cell markers CK19, Sox9, EpCAM, and Lgr5 via 

immunofluorescence and Western blot analysis and single-cell colony-forming assay, but repressed 
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by severe hypoxia when cultured in a 1% oxygen environment.63 Both studies show that physiologic 

hypoxia cultures, specific to each organ system, support stemness in stem cells.  

Most recently, colonic epithelial stem cells cultured (in an air-liquid interface) on Transwell® 

membranes inside a hypoxic (2%) incubator for 21 days remained undifferentiated, with more CD44+ 

(undifferentiated) cells and less UEA1+ (goblet) cells than colonic epithelial cells cultured in a 

normobaric incubator.64 Although it is known that hyperoxic (21%) oxygen often disrupts stem cell 

culture65,66, the lower limit of oxygen necessary to maintain stemness has not been defined for human 

intestinal epithelial stem cells. We found that IEC cultured in severe hypoxia for at least 24 hours 

remained competent to differentiate into mature enterocytes.  

In addition to understand how physiologic hypoxia and severe hypoxic cultures impact IEC 

function, there are also clinical situations where low oxygen is presented in an intestinal injury. 

Specific windows of time in which ischemic tissue is under low oxygen tension, or more likely severely 

hypoxic, is important to determine whether or not to explant tissues and isolate hISCs for further 

expansion and later repair. Our results indicate that IEC function can be sustained following up to 48 

hours of severe hypoxia, but 72 hours of hypoxia reduces IEC viability. Jejunal segments of tissue 

cannot be collected during routine biopsies or elective surgeries due to their location in the middle 

region of the small intestine. Moreover, ischemic injury cannot be decoupled from reperfusion injury 

following the removal of mesenteric surgical clamps, as blood flow returns oxygen back to the injury 

site and damaging reactive oxygen species initiate a cascade of inflammation.14 Although 

inaccessible, the jejunum represents the segment of the small bowel most susceptible to vascular 

injuries, as it contains longer villi, were large networks of capillaries reside, than either the duodenum 

or the ileum. Using primary hISCs isolated from human jejunal tissue, we were able to investigate the 

impact of hypoxia, a consequence of ischemic injury, on IEC function in isolation.  

We found that human IEC cultured under severe hypoxia upregulate downstream targets of 

HIF1A, as compared to human IEC cultured in normoxia. This means the intestinal MPS could 

facilitate HIF1A activation in primary intestinal epithelium and provide a microenvironment to sustain 

severe hypoxia for at least 72 hours. Following 24 hours of hypoxia, the intestinal epithelium 
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presented a slight but significant increase in cell proliferation. Once removed from MPS, dissociated 

to single cells, and reintroduced to normoxia in 3D Matrigel culture, IEC displayed a subsequent 

decrease in organoid formation, as compared to normoxic ISC. Therefore, reoxygenation decreased 

IEC survival, as compared to normoxic IEC that had higher organoid formation. Contrastingly, after 48 

hours of hypoxia, IEC created more organoids than normoxic ISC. This finding shows an extended 

period of hypoxia may be required for IEC to adapt and perhaps better survival reoxygenation. This is 

supported by the bulk RNA sequencing and pathway analysis, which shows at 48 hours of hypoxia 

the top pathways are related to metabolism and responses to hypoxia and oxygen levels, whereas at 

24 hours the top two pathways are for regulation of cell death and apoptosis.  

Apart from pathway analysis, bulk sequencing provided identification of specific upregulated 

genes following 3 different periods of hypoxia. Interestingly, interleukin receptors were among the top 

upregulated genes following hypoxia, as compared to normoxic time-matched controls. Of note, 

IL22RA1 was significantly upregulated at all 3 hypoxic periods, with the highest fold change after the 

early 6-hour period. IL10RB and IL6R were among the genes significantly upregulated after 6-hour 

hypoxia and 24-hour hypoxia, respectively. IL6 has been shown to inhibit enterocyte cell death in vivo 

following ischemia reperfusion injury in the murine small bowel.67 In a mouse crypt organoid model, 

exogenous IL6 was shown to promote crypt organoid proliferation and increase stem cell numbers.68 

In more recent mouse model, endogenous IL6 was shown to be needed to mitigate epithelial injury 

following focal irradiation.69 These studies suggest IL6 can rescue enterocytes following ischemic and 

irradiation injuries, but the impact of IL6 on hypoxic IEC remains to be seen. Future studies using the 

intestinal MPS in combination with IL6 treatment and hypoxia exposure could show both IEC 

proliferation and organoid survival. IL25 has been shown to be primarily produced by intestinal tuft 

cells in response to luminal infection by parasitic helminths and to stimulate a type-2 immune 

response which directly results in differentiation of the epithelium toward goblet cells and tuft cells as 

a means to clear the infection70-75. Our results suggest that IL25 may also directly act, in conjunction 

with inflammatory hypoxia, on the ISCs to drive epithelial proliferation and generate more tuft goblet 

cells to clear the cause of the inflammation and after the resolution of the hypoxic event to repopulate 

the normal intestinal lineages. Future studies using the MPS and IL25 could examine the specific 
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mechanisms by which IL25 and hypoxia couple to drive epithelial proliferation and survival as a 

means of treating other inflammatory diseases of the intestines, such as inflammatory bowel disease 

or ulcerative colitis76-78.  

MPS built to study cellular responses to controlled environmental factors offer many 

advantages over standard tissue culture plates and bulky incubators. Our intestinal MPS with 

integrated oxygen sensors provides real-time tracking of oxygen levels at the cell-media interface. As 

we learn more about how oxygen impacts stem cell fate, the potential to change culture conditions to 

meet the needs of a stem cell in the particular cell-cycle or differentiation phase can be realized. 

Here, we provide a novel system to measure and adjust oxygen concentrations at the 3D cell-scaffold 

interface. We found that primary human intestinal epithelial stem cells respond to low levels of oxygen 

by increasing proliferation and some important markers of stemness, but there were also signs of 

increased inflammatory cytokine markers which should be further investigated. In vitro, hypoxia 

initiates a cascade of interleukin receptor activation in human ISC, potentially facilitating future 

immune responses. The addition of important immune cell types, such as leukocytes and innate 

lymphoid cells, into our intestinal MPS would be beneficial to discovering the mechanisms underlying 

the cascade of inflammation following intestinal ischemia. Moreover, we aim to develop similar 

platforms to investigate other primary stem cells and optimize oxygen culture conditions across many 

organ tissues. 
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4.4 FIGURES 

 
Figure 4.1: Development of a tunable hypoxic microphysiological system (MPS) with 
integrated oxygen sensors and primary human intestinal epithelium.  
A) Schematic of exploded view of MPS compartments. Barbed connectors screwed into the 
photopolymer resin top lid provide gas flow into and out of the device. A rubber gasket seals gas flow 
into and out of the Polymethyl methacrylate (PMMA) gas exchange channel. The gas exchange 
channel frame is bonded to the PMMA culture chamber and PMMA base support. A photopolymer 
resin bottom frame supports the entire PMMA device, and screws attach the top lid to the bottom 
frame to seal the MPS closed. The optics front-end connects via a µUSB-to-HDMI cord to a 
phosphorescence-lifetime fluorimeter detector and interrogates the middle culture well, where the 
integrated phosphorescence-based oxygen biosensor (iPOB) is located. B) (left) Top view 
photograph of a standard microscope glass slide (75 x 25 mm) and dime, for reference, placed above 
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the MPS with iPOB (black arrow) inside well 3 and red and blue dyes in wells 1 and 5 and 2 and 4, 
respectively. (middle) 1 well brightfield image of confluent monolayer of cells. (right) Inset from 1 well 
brightfield image shows magnified confluent cell monolayer. C) (top) Side view photograph of MPS 
with middle well containing the green iPOB. (bottom, left) Schematic of iPOB integrated into hydrogel 
to measure oxygen at the cell layer inside the cell culture well. The iPOB is composed of poly(2-
hydroxyethyl methacrylate) gels functionalized with palladium-benzoporphyrin derivatives (Pd-BPD). 
The photoluminescence excitation and detection wavelengths are 630 nm and 800 nm, respectively. 
(bottom, right) Schematic of porphyrin-based luminescence. In high oxygen, luminescence from the 
triplet state in porphyrin is quenched by energy transfer to molecular oxygen, resulting in a correlated 
decrease in phosphorescence lifetime. In the absence of oxygen, porphyrin molecules are excited by 
LED from the detector and phosphoresce with increased lifetime. D) Plots of 8 oxygen concentration 
versus time (7.5 hours) measurements from the iPOB inside the MPS, with 8 different mixed gas 
inputs, show generation of 8 established oxygen environments. E) Brightfield image of human 
intestinal epithelial stem and progenitor cells grown inside a MPS well to confluence. Red fluorescent 
images show tight junction structures between epithelial cells marked by the protein Occludin, stem 
cells marked by Sox9, and proliferative cells marked by EdU. In all fluorescent images, nuclei are 
marked by Bisbenzimide in blue. F) Organoid Forming Efficiency (%) measured over 6 days from 
single cells isolated from MPS after 5 days in culture. (Insets) A single organoid grown inside a single 
well within the microarray platform and imaged on Day 2, Day 4, and Day 6. G) Oxygen concentration 
tracked using the iPOB inside MPS containing the human intestinal epithelium for 24 hours with 
normoxic and hypoxic culture environments. (Inset) Schematic of human intestinal epithelium grown 
inside the MPS on top of the hydrogel scaffold. The integrated phosphorescence-based oxygen 
biosensor (iPOB, green) is situated within the human intestinal epithelium to measure oxygen at the 
cell-media interface. 

 
Figure 4.2: Primary human intestinal epithelium cultured under hypoxia inside 
microphysiological system shows dynamic response to different durations of hypoxia 
A) RT-qPCR results of human intestinal epithelium for downstream HIF1A targets (BNIP3, GLUT1, 
VEGFA) after 24 hours of normoxia or hypoxic environment exposure. Fold Change is calculated with 
∆Ct, as compared to the 18S rRNA gene. B) Flow cytometry results of human intestinal epithelial 
single cells quantified for Ki-67 after 24 hours of culture in normoxia or hypoxia inside separate MPS. 
C) Results of Functional Stemness Assay plotted as Organoid Forming Efficiency (OFE %) for 24-
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hour normoxic and hypoxic samples after 6-days of 3D Matrigel™-embedded culture. D) Results of 
Functional Stemness Assay for 48-hour normoxic and hypoxic samples after 6-day of 3D Matrigel™-
embedded culture. E) qRT-PCR results of human intestinal epithelium isolated from MPS active stem 
cell marker (OLFM4) after 6 hours, 24 hours, and 48 hours of normoxia or hypoxia culture inside 
separate MPS. F) Human intestinal stem cells cultured on collagen scaffolds as 2D monolayers 
showing dynamic changes in HIF1A IF staining over different durations of acute hypoxia. G) Mean 
pixel intensity from HIF1A staining in F over different durations of normoxia or hypoxia. 

 
Figure 4.3: Characterizing the transcriptomic response to different durations of hypoxia from 
primary human intestinal epithelium cultured under hypoxia inside microphysiological system 
A) Principle component analysis of RNA-seq results showing clusters of replicate samples from each 
time point (6, 24, 48 hours) and condition (normoxia or hypoxia). Bulk RNA-sequencing samples were 
sequenced from a range of 39 to 93 million reads. B) Hallmark GSEA results for differentially 
expressed genes at each time point of hypoxia shown. C) Cross sample normalized gene expression 
is shown with (standard deviation) under 6 hours normoxic or hypoxic conditions for interleukin 
receptors in which at least one time point if significantly different. D) Cross sample normalized gene 
expression is shown with (standard deviation) under 24 hours normoxic or hypoxic conditions for 
interleukin receptors in which at least one time point if significantly different. E) Cross sample 
normalized gene expression is shown with (standard deviation) under 48 hours normoxic or hypoxic 
conditions for interleukin receptors in which at least one time point if significantly different. F) qRT-
PCR for IL receptor genes that are consistently up or down regulated at either 6, 24, or 48 hours of 
hypoxia. 
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Figure 4.4: Interleukins and acute hypoxia couple to dynamically regulate cell cycle 
progression in human intestinal epithelium cultured under severe hypoxia for 24 hours inside 
microphysiological system  
A) Experimental schematic to assess impact of hypoxia and interleukins on cell cycle progression in 
human intestinal epithelial cells. B) (Left) Example of raw confocal imaging data showing Nuclei, 
Ki67, and EdU staining; (Right) Example of segmented nuclei generated from Cellpose automated 
segmentation algorithm. C) Example of mitotic bodies found in Ki67 channel. D) % of Ki67+ cells in 
normoxia and hypoxia conditions without treatment from interleukins. Dots represent per-colony 
averages of single cell mean-pixel intensity values from separate normoxic or hypoxic colonies. E) % 
of EdU+ cells in normoxia and hypoxia conditions without treatment from interleukins. Dots represent 
per-colony averages of single cell mean-pixel intensity values from separate normoxic or hypoxic 
colonies. F) % of Mitotic Bodies counted per colony in normoxia and hypoxia conditions without 
treatment from interleukins. Dots represent per-colony averages of single cell mean-pixel intensity 
values from separate normoxic or hypoxic colonies. G) Histogram showing distribution of normalized 
KI67 mean pixel intensities across Normoxic and Hypoxic conditions without interleukin treatments. 
Table shows key descriptive statistics that highlight statistically significant differences in distributions. 
H) Quantification of cell cycle progression metrics from D-F for IL1 family cytokines IL1α and IL1β. I) 
Quantification of cell cycle progression metrics from D-F for IL2 family cytokines IL2 and IL4. J) 
Quantification of cell cycle progression metrics from D-F for IL6 family cytokine IL6.  K) Quantification 
of cell cycle progression metrics from D-F for IL10 family cytokines IL10 and IL22. L) Quantification of 
cell cycle progression metrics from D-F for IL13 family cytokines IL13. M) Quantification of cell cycle 
progression metrics from D-F for IL17 family cytokines IL17A/F and IL25. **** p<0.0001 by Kolgorov-
Smirnov test of cumulative distributions. 
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Figure 4.5: Interleukins and reoxygenation rescue hypoxia-induced loss of stem cell activity 
A) Experimental schematic to assess impact of hypoxia, then reoxygenation and interleukins on 
functional stem cell activity. B) Impact of hypoxia and reoxygenation on functional stem cell activity 
without treatment of interleukins. C) Impact of hypoxia and reoxygenation plus IL1 family cytokines on 
functional stem cell activity. D) Impact of hypoxia and reoxygenation plus IL2 family cytokines on 
functional stem cell activity. E) Impact of hypoxia and reoxygenation plus IL10 family cytokines on 
functional stem cell activity. F) Impact of hypoxia and reoxygenation plus IL17 family cytokines on 
functional stem cell activity. G) Impact of hypoxia and reoxygenation plus IL6 family cytokines on 
functional stem cell activity. H) Impact of hypoxia and reoxygenation plus IL13 family cytokines on 
functional stem cell activity. 
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Supplemental Figure 4.1: Gas mixing chip integrated into microphysiological system to 
generate 8 different oxygen environments.  
A) Schematic of complete microphysiological system design with mixed gaseous in tanks leading into 
flow meters. Flow meters connect into humidification 15 mL conicals filled with sterile PBS. 
Humidified gases travel into each input of the gas mixer chip, and 8 concentrations of gases exit 
individual outlets to connect into separate microphysiological systems (devices). Device oxygen 
concentration is monitored using detectors that send information to a laptop located beside the 
incubator. B) Images taken of each component of the system. C) COMSOL Multiphysics results for 
the simulated gas mixtures from each outlet of the gas mixing chip. D) Image of the gas mixing chip 
and measured output oxygen concentrations recorded inside individual devices. 
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4.5 MATERIALS AND METHODS 

Primary human crypt isolation and intestinal epithelial stem cell culture.  

A surgical specimen of human small intestine (jejunum) was obtained from a donor at UNC 

Hospitals with consent of the patient (under the approved protocol UNC IRB #14- 2013). Villi and 

crypts were detached from the specimen by incubation in a chelating buffer for 75 min at 20°C 

followed by vigorous shaking in a 50 mL conical tube. The chelating buffer was composed of EDTA (2 

mM), dithiothreitol (DTT, 0.5 mM, freshly added), Na2HPO4 (5.6 mM), KH2PO4 (8.0 mM), NaCl (96.2 

mM), KCl (1.6 mM), sucrose (43.4 mM), D-sorbitol (54.9 mM), pH 1⁄4 7.4.78 Released crypts were 

expanded as a monolayer on a neutralized collagen hydrogel as described previously.29 Briefly, 

crypts were placed on the top of 1.0 mg/mL collagen hydrogels (1 ml into each well of 6-well plate 

(T1006; Denville, Holliston, MA)) at a density of 5,000 crypts/ well and overlaid with 4 ml of Expansion 

Media (EM) containing 10 mmol/L Y-27632 (S1049; SelleckChem). EM contains a mixture of 

advanced Dulbecco’s modified Eagle medium/F12 medium (12634010; ThermoFisher) and Wnt-3A, 

R-spondin 3, noggin (WRN) conditioned medium (WRN medium prepared in lab from L-WRN cells 

(CRL- 3276; ATCC) following a published protocol79 at a volumetric ratio of 1:1, and supplemented 

with GlutaMAX (35050061; ThermoFisher), B27 supplement without vitamin A (12587010; 

ThermoFisher), 10 mM HEPES (15630-080; ThermoFisher), 1.25 mM N-acetyl cysteine (194603; MP 

Bio, Santa Ana, CA), 10 mM nicotinamide (N0636; Sigma-Aldrich), 50 ng/mL epidermal growth factor 

(315-09; Peprotech), 2.0 nM gastrin (AS-64149; Anaspec), 10 nM prostaglandin E2 (14010; Cayman 

Chemicals), 3.0 µM SB202190 (S1077; Selleckchem), 100 U/mL penicillin-streptomycin (15140122; 

ThermoFisher), and 50 mg/mL primocin (ant-pm-1; InvivoGen, San Diego, CA). EM was used to 

expand the epithelial cell numbers as monolayers or organoids. Y-27632 was present only in the first 

48 hours of cell culture and was not added to subsequent media changes. The medium was changed 

every 48 hours. When the cell coverage was greater than 80% (typically 5 to 7 days), the epithelium 

was dissociated to fragments to seed onto the intestinal MPS.  

Fabrication of primary human intestinal microphysiological system (MPS).  

The human intestinal MPS was fabricated from materials polymethyl methacrylate (PMMA) 

and photopolymer resin (Formlabs, Inc.). PMMA provided an optically transparent material with a low 
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oxygen diffusion coefficient that could be sterilized and reused.80 The photopolymer resin provided a 

3D printable bottom frame to support the PMMA device and simultaneously house the optical reader 

oxygen measurements. The cell culture chamber and gas exchange channels were fabricated from 

5.8 mm and 1.5 mm-thick polymethyl methacrylate (PMMA) sheets (44352, 44292; US Plastics). The 

microfluidic culture region was composed of 5 rectangular wells, with dimensions of 11.6 mm by 7.0 

mm each. The rectangular gas channel on top of the wells was 70 mm by 45 mm by 1.5 mm. The 

bottom and top pieces of PMMA were laser cut from a 1.5 mm-thick PMMA sheet, while the middle 

piece, for the cell culture wells, was laser cut from a 5.8 mm-thick PMMA sheet. Briefly, to remove 

dust and burr material with minimal cracking, each PMMA surface was quickly wiped with 100% IPA 

solution and air-dried. All 3 pieces were pressed together between two sheets of brass using a 

pneumatic heat press (SwingPress 10-0403; Across International). Annealing was performed with the 

heat press set at 100°C and 300 psi for 2 hours, then the bonded device was cooled for 3 hours at 

room temperature. A rubber gasket was laser cut and placed on top of the PMMA layer to seal the 

device, prior to bolting together. The device was tested for leaks using red and blue dyed water and 

cracks were sealed by application of dichloromethane to the seams. A neutralized collagen hydrogel 

(2.0 mg/ml) was cast into each well of a prefabricated PMMA device and allowed to polymerize at 

37°C for 1 hour. 250 µL of 1X DPBS was overlaid on the polymerized hydrogel and allowed to pre-

swell for at least 5 hours at room temperature. DPBS was removed and the hydrogel was rinsed three 

times before overlaying with 250 µL of EM containing hISCs that had been mechanically dissociated 

by pipetting 10 times until cells were ~1-10 cell-clumps. Once the hISCs formed a confluent 

monolayer, an integrated phosphorescent oxygen sensor (iPOB) was added to the epithelium to 

measure oxygen.  

Real-time monitoring and control of oxygen concentration in 3D culture 

Oxygen concentration in the system was continuously measured with an integrated 

phosphorescent oxygen sensor (iPOB) using Near Infrared (NIR) phosphorescence lifetime 

fluorimetry. The iPOB is composed of porous poly(2-hydroxyethyl methacrylate) (pHEMA) gel 

functionalized with palladium-benzoporphyrin derivatives (Pd-BPD) that respond to local oxygen 

concentrations via phosphorescence quenching.31 The iPOB (Profusa, Inc., San Francisco, CA) has 
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been manufactured in a variety of sizes, but for all experiments a disk-shaped, 5 mm diameter and 

0.5 mm thickness, iPOB was used. The optics front-end of the NIR phosphorescence lifetime 

fluoroscope (Profusa, Inc., San Francisco, CA) was inserted into the support frame below the MPS. 

The oxygen concentration was controlled via a PMMA gas-mixing microfluidic chip with tubing 

connecting outlets from the gas-mixing chip to the inlets of each MPS. The gas-mixing chip was 

previously used to generate 8 concentrations of mixed gas, ranging from less than 3 µM of oxygen to 

180 µM.(SF. 1)32 Gas flow to the gas-mixing chip was regulated using an air flow control valve 

(62005K313; McMaster-Carr) and monitored with a mass flow meter with digital output (GFMS-

010061; Aalborg GFM). Hydrated mixed gas exiting the gas-mixing chip was introduced into 

individual MPS at a rate of 5 mL/min to prevent media evaporation. Within 30 minutes, the gas 

mixture equilibrated with the local MPS environment to generate the desired oxygen concentration at 

the hydrogel surface-media interface where oxygen was measured using the iPOB (Fig. 1D). The 

intestinal epithelium inside MPS was cultured in environments made from mixed gases and compared 

to intestinal epithelium statically cultured in a normobaric incubator with an oxygen environment of 

186 µM.  

Immunocytochemistry 

To assess the impact of various durations and magnitudes of hypoxia on IEC proliferation, 

primary human intestinal epithelium and single cells isolated from each MPS chamber were stained 

for Ki-67. For Ki-67 staining of intestinal epithelium following hypoxia, the intestinal MPS was opened 

and media was removed from each chamber. Intestinal epithelium on top of the collagen hydrogels 

were fixed with 4% PFA for 15 minutes. After fixation, samples were rinsed once with 1X PBS and 

overlaid with PBS. Samples were permeabilized for 15 minutes with 0.5% Triton-X 100 in 1X PBS. 

Samples were blocked for 30 minutes with a 3% BSA solution. After blocking, samples were stained 

for proliferation marker Ki-67 Alexa Fluor 647 (1:250 dilution in 3% BSA, Cat. No. 652407; 

BioLegend) for 1 hour and nuclei counterstain bisbenzimide (1:1000 dilution in 1X PBS, Cat. No. 

1155; Millipore Sigma) for 5 minutes at room temperature. To look at cell-cell contacts, tight junction 

protein occludin (Cat. No. 13409-1-AP; Proteintech) was added for 1 hour, followed by incubator with 

the secondary antibody Cy3 (Cat. No. C2306; Sigma) for 2 hours. After staining, the gels were 
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overlaid with 1X PBS and stored at 4°C until imaging. All samples were imaged with a Olympus 

(Waltham, MA) IX81 microscope, using Metamorph Basic (Molecular Devices, San Jose, CA) 

software, and image analysis was performed with ImageJ.79  

Organoid forming efficiency (OFE) assay and Fluorescence-activated cell sorting (FACS) of 
live cells 
 

Following MPS culture, human intestinal epithelium was dissociated into single cells, sorted 

using a flow cytometer, and suspended in Matrigel® on a quad Cell Raft Array (CRA) platform (Cell 

Microsystems, Durham, NC).37 Briefly, each sample was retrieved and placed in a separate conical. 

500 U/mL Collagenase IV (17104019; Gibco) was added to breakdown the scaffold and incubated for 

10 minutes at 37ºC. After centrifugation, the cell pellet was rinsed twice in DPBS and re-suspended in 

150 µL of 0.5 mmol/L EDTA in DPBS with 10 mmol/L Y-27632 and incubated for 5 minutes at 37ºC. 

The fragments were further dispersed by triturating 30 times using a 200 µL pipet tip. After 

centrifugation, the cell pellet was re-suspended in 500 µL TrypLE Express (12605-036; Gibco) with 10 

mmol/L Y-27632 and incubated for 5 minutes at 37°C. The cell suspension was gently triturated 7 

times using a 28.5-gauge insulin needle to further dissociate. 500 µL of EM was added to quench the 

reaction, and cells were pelleted and rinsed once in EM. After pelleting again, cells were re-

suspended in 200 µL of EM containing 1% FBS. Immediately before FACS, APC Annexin V (1:200, 

640941; Biolegend) was added to cells for live/dead discrimination. After staining, cells were rinsed in 

EM and filtered through 0.4 µm FACS tube top filter (352235; Corning). 5,000 Annexin V- live cells 

were isolated via FACS and re-suspended in 250 µL of Growth Factor Reduced Matrigel® (354230; 

Corning). Cell-gel suspensions were plated in each chamber of the quad CRA. To cover the CRA, 

each array was centrifuged at 200 x g for 5 minutes. CRAs were polymerized for 20 minutes at 37°C 

in an incubator and then overlaid with EM containing 10 mmol/L Y-27632. Media was replaced every 

2 days. To determine OFE, the CRA was scanned, and the total number of organoids was counted on 

day 2, day 4, and day 6. The OFE (%) was calculated as the total number of organoids created in one 

CRA chamber, divided by 5,000 cells and multiplied by 100. FACS and flow cytometry were 

performed using a SH800Z Cell Sorter (Sony Biotechnology, San Jose, CA).  
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Flow cytometry 

Cells collected from normoxic and hypoxic MPS were dissociated following the protocol 

above up to the step of addition of TrypLE Express. Following trituration with the insulin needle and 

quenching with the EM, cells were pelleted and re-suspended in 100 µL of 1X DPBS. Approximately 

50,000 cells from each chamber were fixed by adding 400 µL of 4% PFA solution while being 

constantly vortexed to prevent cell aggregation. After fixation, single cells were pelleted and re-

suspended in 0.3% Triton-X for 15 minutes to permeabilize the cell membrane. Single cells were 

pelleted and re-suspended in a staining solution of DMEM containing 1% FBS and anti-Ki-67 Alex 

Fluor 647 (1:250 dilution in 3% BSA, Cat. No. 652407; BioLegend) for 1 hour on ice. After staining, 

cells were rinsed in PBS and filtered through 0.4 µm FACS tube top filter (352235; Corning). Ki-67-

positive single cells were quantified by flow cytometry.  

qRT-PCR 

To assess the expression of genes that are responsive to hypoxia, human intestinal epithelial 

samples from each MPS were collected for qRT-PCR analysis. Briefly, cells attached to collagen 

hydrogels were lysed in 200 µL of RNA Lysis buffer (AM1931; ThermoFisher). Total RNA was 

extracted using RNAqueous-Micro Total RNA Isolation Kit (AM1931; ThermoFisher) according to 

manufacturer’s protocols. cDNA was generated from ~2 ng of total RNA from each sample using 

iScript Reverse Transcription Supermix for qRT-PCR (170-8891; BioRad) according to 

manufacturer’s protocols. cDNA was diluted 1:20 and 1 µL was used for qRT-PCR using Taqman 

probes (Applied Biosystems) (Table II) and SsoAdvanced Universal Probes Supermix (1725281; 

BioRad) according to manufacturer’s protocols. qRT-PCR was carried out in a StepOnePlus Real 

Time PCR System (Applied Biosystems). For each sample and experiment, triplicates were made 

and normalized to 18S mRNA levels. Fold change was expressed relative to normoxic controls using 

∆∆CT analysis.80 All statistics for gene expression were generated using a Student’s t-test. In all 

statistical analysis, p < 0.05 was considered significant.  

Bulk RNA-sequencing 

To investigate the dynamic response of IEC to hypoxia at the whole transcriptomic level, we 

performed RNA-seq on human intestinal epithelium exposed to 6 hr, 24 hr or 48 hr of hypoxia inside 
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intestinal MPS, along with normoxic control intestinal MPS which were cultured for each respective 

time point with no hypoxia exposure. RNA samples were collected from each intestinal MPS and 

Total RNA was extracted using RNAqueous-Micro Total RNA Isolation Kit (AM1931; ThermoFisher) 

according to manufacturer’s protocols and stored at −80°C. To assess RNA quality prior to 

submission for sequencing, an RNA integrity number (RIN) was measured using the Agilent 2100 

Bioanalyzer. After confirmation that each sample had a RIN of at least 8, integrated fluidic circuits 

(IFCs) for gene expression and genotyping analysis were prepared using the Advanta™ RNA-Seq 

NGS Library Prep Kit for the Fluidigm Juno™.  

Informatics 

Gene level expression was obtained through pseudo alignment of reads to human genome 

GRCh38 using Kallisto.81 Principal component and sample correlation analysis were done with 

Bioconductor packages Biobase, cluster and qvalue.82 Expression values for plotting were obtained 

by TMM normalization across all samples using EdgeR package and differential expression between 

groups was calculated from raw pseudo counts with DESeq2.83,84 AmiGO48 was used to initially 

visualize the ontologies for each time point and the Database for Annotation, Visualization and 

Integrated Discovery (DAVID)85,86 provided gene ontology enrichment analysis for bioprocess 

pathway analyses on the 2000 most significantly upregulated genes for each time point, where an 

adjusted P value was computed using the Benjamini-Hochberg method (Table III).  
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CHAPTER 5: HIGH THROUGHPUT CULTURE AND RNA SEQUENCING OF CLONAL 
ORGANOIDS REVEALS HETEROGENEITY OF HUMAN GASTRIC DYSPLASTIC STEM CELLS4 

5.1 INTRODUCTION 

Gastric cancer is the third most common source of cancer related deaths worldwide87. Gastric 

cancer develops in the context of chronic gastric inflammation presenting as unresolved metaplasias 

that appear to spontaneously progress into dysplasia and neoplasia in the context of genetic 

predisposition and environmental and lifestyle factors88-90. The characteristics that determine the 

ability of a single dysplastic cell to acquire neoplastic traits and progress into full-blown gastric cancer 

are not well understood; however, recent studies indicate that small populations of gastric cancer 

stem cells may be present in dysplastic populations and are responsible for progression from 

dysplasia into neoplasia91,92. Cancer stem cells (CSCs) are single cells that are the source of tissue 

renewal and broad cell-type heterogeneity found within tumors and are implicated in tumor 

metastasis93. Furthermore, CSCs are considered to be a significant factor in determining 

chemotherapeutic efficacy and development of treatment resistance as a single CSC can regenerate 

the tumor if the entire CSC population is not effectively ablated93.  

Currently, most studies evaluating gastric cancer progression have occurred in animal 

models90. However, most of these models do not faithfully recapitulate the progression from 

metaplasia to dysplasia as it is observed in humans and cannot dissect the role of individual 

dysplastic cells to progress into neoplasia. Recent work by the Choi group has pioneered in vitro 

organoid models of the metaplastic, dysplastic, and neoplastic transformations seen in primary 

human tissues91,92,94. These organoid lines are shown to be multipotent, recapitulate important 

phenotypic markers of the gastric precancerous cascade, and spontaneously give rise to clonal 

 
4 Full list of contributing authors: R. Jarrett Bliton, Ekaterina Ellyce T. San Pedro, Keith A. Breau, 
Jimin Min, Allysa Stern, Jessica Hartman, Jim Goldenring, Eunyoung Choi, and Scott T. Magness 
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organoids of different size, shape, and cellular composition, demonstrating the functional 

heterogeneity seen in CSC populations in vivo.  

High throughput clonal organoid culture has been used to standardize and speed up organoid 

phenotypic characterization and to associate the phenotypic and targeted transcriptomic 

consequences of stem cell-niche dynamics and cellular differentiation37,95. However, to date, 

transcriptomic characterization of high-throughput organoid cultures has been limited to targeted 

qPCR which does not describe the comprehensive gene expression profile associated with a given 

phenotype37. Furthermore, variation of gene expression in organoid cultures have been described 

with either bulk RNAseq or single cell RNAseq, but studies evaluating the transcriptomic profile of a 

single clonally derived organoid are absent from the literature95. These studies are important to 

conduct as they can highlight how seemingly homogeneous starting populations of single cells 

ultimately become organoids of varied sizes or morphologies, suggesting an inherent functional 

heterogeneity underlying the outward appearance of biological similarity. Indeed, studies designed to 

associate comprehensive gene expression data with phenotypic heterogeneity would be useful to 

describe macroscale biological phenomena such as tumor mutation and metastasis and development 

of chemotherapeutic resistance in solid tumors. 

In this work, I present an integrated workflow for culturing, isolating, and generating RNAseq 

libraries from single clonally derived organoids in an automated and high-throughput fashion. Single 

organoid RNAseq libraries are prepared from the mRNA extracted from an individual clonally derived 

organoid and we show that library generation is robust against gene dropout and the resulting 

sequencing data preserves biological variability, even with low amounts of RNA input to the library 

generation step. We describe the relation of individual organoids to their sibling organoids cultured in 

conventional Matrigel™ patties and associate phenotypic differences to distinct transcriptomic 

differences.  
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5.2 RESULTS 

5.2.1 Determining engineering strategies for achieving high throughput clonal organoid 
isolation 

I began developing a clonal organoid sequencing workflow by outlining the entire workflow 

from clonal organoid culture and RNA extraction to quality control of sequencing data and eventually 

inter-organoid gene expression comparisons (Fig 1). Next, I identified potential challenges with each 

of these steps and critical process parameters that would inform the overall quality of the inputs (i.e., 

RNA input, RNA quality), the output (i.e., sequencing depth, mapping efficiency, number of genes 

detected), and potential challenges with each of these metrics. For example, clonal organoid culture 

and isolation is challenging and, before this study, the only reported strategies to isolate clonal 

organoid populations were limited dilutions and other highly manual and time-intensive 

processes37,46,96. Furthermore, the quantification of RNA quantity and quality would be challenging as 

a single organoid would likely generate low concentrations of RNA that are close to the limit of 

detection for the most sensitive systems (50pg/µL on the Agilent 2100 BioAnalyzer with an RNA Pico 

kit). Beyond these sample generation and processing challenges, computational techniques for 

comparing entire gene expression profiles between individual organoids have not been described. 

Finally, I outlined potential engineering solutions to each of these anticipated challenges.  

By compartmentalizing these steps and their potential challenges before starting 

experimentation, I was able to work on many of these steps in parallel, and thus more quickly and 

efficiently achieve my desired goal of high-throughput clonal organoid sequencing. In the remaining 

figures, I will present my results optimizing each step and develop two specific recommendations for 

future scientists hoping to perform clonal organoid sequencing.  

5.2.2 Achieving high throughput automated isolation of clonal organoids with CellRaft™ 
arrays and the Cell Microsystems AIR System.  

CellRaft arrays have been previously described as a high throughput platform which 

separates single cells into individual PDMS/polystyrene microwells to enable 3D study of intestinal 

stem cell niche dynamics37. Despite the power of the CRA-platform in this context, I sought to use the 

CRAs as a basis for robotic cl25Monal organoid isolation to facilitate downstream clonal organoid 



 

176 

sequencing. My goal was to engineer a reproducible workflow which enables automated and high-

throughput isolation of rafts containing clonal organoids via the CellRaft AIR™ system.  

Before beginning the optimization process, I assessed potential problems likely to arise 

during automated clonal organoid isolation on the CRAs that could result from the embedding of 

organoids in the thick layers of extracellular matrix (ECM), as all organoids in the previous study were 

previously isolated manually37. Adapting the CRA for automated clonal organoid isolation presents 

several challenges, specifically: 1) the adhesive nature of the polymerized layer of thick Matrigel™, 2) 

the size of the CellRafts used in the previous work, 3) and the lack of real-time feedback to guide the 

AIR system during automated release (Fig 2A). The thick hydrogel coating is necessary to provide 

ECM for single cells to grow into 3D organoids; however, these thick coatings form adhesive bonds 

that overlay the entirety of the CellRaft Array and prevent any individual raft from being released into 

the array reservoir for collection. Furthermore, the small size of the previously used rafts would drive 

organoids to overgrow their home raft and into neighboring rafts, possibly resulting in organoid fusion 

and precluding individual organoid isolation.  

As previous reports have described intestinal organoids growing in dilute Matrigel™, or 

suspension, cultures I began optimizing culture conditions by reducing the amount of Matrigel™ on 

the array97. My initial trials at 0.8mg Matrigel™/mL produced promising results as budded intestinal 

organoids formed, indicating that intestinal organoids were maintaining similar complex morphologies 

as they do in fully embedded Matrigel™ cultures (Fig 2B). Nevertheless, despite the promising 

morphological results, 0.8mg Matrigel™ failed to create a significant increase in raft collection over 

undiluted Matrigel™ conditions.  

At this point, I began to pursue several optimizations tactics with Cell Microsystems to better 

adapt the AIR system for high throughput organoid culture and isolation. After several iterations, a 

combination of tactics was found to generate reliably high efficiency organoid isolations from the AIR 

system (Fig 2C). These optimized conditions are: 1) culturing organoids in a suspension culture of 

dilute Matrigel instead of conventional embedding based cultures, 2) increasing the size of the rafts 

from 200x200 µm to 500x500 µm, 3) development of a new needle design which allows dynamic 
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feedback during automated raft release, and 4) a different plating workflow which involves prechilling 

the array before seeding the suspension organoid culture on ice and maximizing sedimentation of the 

dilute ECM and cell suspension into induvial rafts, as have been described previously46,95,97. After 

completing these optimizations, we validated these parameters to work for culturing clonal human 

gastric dysplastic organoids and maintain high efficiency of raft release (Fig 3C,D) and met a 

minimum collection efficiency of 80% (76/96 rafts) of rafts collected for downstream transcriptomic 

characterization.  

5.2.3 Evaluation of quality of cDNA libraries generated from single clonal organoids on the 
Standard Biotools Advanta system 

The amount of RNA being used to generate a cDNA library is a critical parameter to 

generating a high-quality cDNA library. If too low of a concentration of RNA is used, then the mRNA 

molecules of lowly expressed genes transcripts may not be captured in the first reverse-transcription 

step, precluding these genes from being included in downstream analysis. Furthermore, with the goal 

of the workflow to isolate large amounts of clonal organoids I sought to automate as much of the 

clonal organoid sequencing workflow as possible. Thus, to accomplish quick and consistent cDNA 

library preparation from small amounts of RNA isolated from clonal organoids, I chose to use the 

Standard Biotools Juno system in combination with the Advanta IFC chip, a microfluidic cDNA library 

generation system that can generate 48 cDNA libraries simultaneously, to generate the clonal 

organoid cDNA libraries for sequencing.  

I began by assessing the technical capabilities of the Juno system to generate cDNA libraries 

with small amounts of RNA extracted from a single organoid. To this end, the Juno system and 

Advanta chip have only been validated by Standard Biotools to a lowest total RNA input concentration 

of 10ng/3.6uL (2.777 ng RNA/µL) and a minimum RIN of 798. As a single mammalian cell is estimated 

to have 10-30 pg of total RNA, a single organoid would need have between 300 and 1000 cells to 

generate sufficient RNA, assuming a lossless RNA extraction process.  

To determine the feasibility of extracting sufficient high-quality (RIN>7) RNA from a single 

clonal organoid, we isolated 17 clonal organoids from CRAs containing either metaplastic (n=8 clonal 

organoids) or dysplastic (n=9 clonal organoids) mouse gastric organoid lines and subjected these 
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organoids to RNA extraction with the RNAqueous Microkit. Extracted RNA yields follow an 

exponential growth relationship with organoid diameter (R2 = 0.954, Fig 3A), whereas RIN was less 

correlated with organoid diameter (r2 = 0.116, Fig 3B). Interestingly, only two organoids generated 

enough RNA to meet the minimum validated threshold of 10 ng of RNA for the Juno/Advanta system. 

The small number of organoids meeting this minimum threshold validated the need to assess 

feasibility of using low RNA inputs to generate cDNA libraries with the Juno system and Advanta IFC.  

To directly associate the impact of the amount and quality of RNA extracted from a single 

organoid on sequencing quality, cDNA libraries were generated from these 17 clonal organoid 

samples and sequenced to an average depth of 30 million reads. Interestingly, neither the total RNA 

input nor the RIN were predictive of the ultimate quality of sequencing as measured by the number of 

mapped reads or mapping efficiency, which together describe the number of total reads that align to a 

specific gene and the rate at which the gross reads align to specific genes, respectively (Fig 3C). 

These results suggest that assessing the RNA quality and quantity before sequencing may be of little 

importance to the ultimate sequencing quality; however, more clonal organoid samples that do not 

meet the minimum quality and quantity thresholds would need to be tested to fully assess this 

predictive relationship.  

Next, I adapted the Juno system to explore the feasibility of generating cDNA libraries of 31 

robotically isolated clonal organoids cultured on CRAs and isolated under the optimized conditions 

previously described (Fig 2). Robotically isolated organoids were smaller than the manually isolated 

organoids at time of isolation and none met the minimum quality or quantity thresholds described by 

Standard Biotools nor was there a strong predictive relationship between organoid diameter and 

these metrics (Fig 3D,E). The poor correlation between organoid diameter and total RNA yield in the 

robotically isolated organoids suggests that these samples were at or below the limit of detection for 

RNA (50pg/µL) on the BioAnalyzer.  

To test the effect of the low RNA quality and quantity from the robotically isolated organoids 

on sequencing quality, I subjected all 31 organoids to automated library prep on the Juno system, 

regardless of reported concentration or RIN (Fig 3F). These results show that while total RNA input is 
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not correlated with sequencing data quality, RIN values below 7 are relatively more predictive of 

sequencing quality than the values above 7 (Fig 3C). Nevertheless, the results of the linear 

regression of total RNA and RIN against the number of mapped reads and the mapping efficiency 

indicate that total RNA and RIN are, at best, poorly predictive of sequencing data quality, as 

measured by the number of mapped reads and the mapping efficiency.  

Finally, since 46 clonal organoids across these conditions failed to generate enough RNA to 

meet the minimum RNA threshold prescribed for use on the Juno system, I trialed vacuum 

concentrating RNA samples with an Eppendorf Vacufuge™. These results show an average 2.5-fold 

increase in RNA concentration and an inconsistent effect on RIN, demonstrating a potential method 

for concentrating RNA samples prior to cDNA library generation on the Advanta system that should 

be further validated in future studies (Fig 3G). Together, these data support my previous findings that 

assessing RNA quality and quantity may not be a useful step in predicting sequencing data quality 

from low amounts of RNA from individual clonal organoids.  

5.2.4 Assessing the impact on RNA input on technical variation in library quality  

As the majority of single clonal organoids do not generate enough RNA to meet minimum 

prescribed thresholds for total RNA input to library preparation, I sought to assess the technical 

variation in sequencing quality that could be directly caused by amounts of RNA comparable to my 

reported values from clonal organoids (Fig 3A,D). To describe the relationship between RNA amount 

and sequencing quality, I extracted RNA from bulk gastric organoid cultures and titrated the bulk 

solution to a range of standard inputs that corresponded to the RNA input amounts provided by 

Standard Biotools (100ng and 10ng) and the range of RNA extracted from single clonal organoids 

(1ng, .5ng, and 0.1ng) to create a titration curve of RNA input which would be subject to automated 

cDNA library prep on the Juno system. With this experiment I would be able to determine the impact 

of the RNA input amount on sequencing quality as measured by the number of mapped reads, the 

mapping efficiency, the number of genes detected, and the mean gene expression values.  

After library preparation, the resulting cDNA libraries were sequenced to at least 25 million 

reads to assess variation in sequencing quality due only to the differing RNA input concentration (Fig 
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4A). The output sequencing data shows that all titrated samples generated greater than 25M reads 

and had high mapping efficiency >70% (Fig 4B)99,100. While each sample surpasses the minimum 

read depth, the amount of input RNA does appear to impact the breadth of genes detected in the 

standard dilutions, with 100ng and 10ng samples containing ~17.5k genes detected, 1ng and 0.5ng 

samples detecting ~15k genes, and 0.1ng detecting ~13k genes (Fig 4C).  

To describe the impact of titrated RNA amounts on the distribution of mean gene expression 

values, I compared the relative frequencies of mean gene expression values for each gene detected 

in the titrated standards. These frequency distributions show that the overall shape of mean gene 

expression values is maintained across all titrated standards, except for 0.1 ng of RNA input, 

suggesting that RNA input amount does not meaningfully impact the distribution of mean gene 

expression values at or above 0.5ng (Fig 4D). While four of the five concentrations shared similar 

mean gene expression distributions, the 0.1ng inputs showed a distinctly lower value of mean gene 

expressions distribution and a shoulder of mean gene expression values around 0, suggesting that at 

this ultra-low amount of RNA input, there are certain genes that dropout and are not detected in the 

sequencing data. Together, these data support my initial hypothesis that the Juno system would be 

amenable to generate cDNA libraries below the validated threshold 

Next, I repeated these experiments with titrated RNA standards (10ng, 1ng, 0.5ng, 0.25ng, 

0.1ng) extracted from bulk cultures of sister organoids to the human dysplastic organoids tested in 

Fig 3B and subjected these titrated standards to cDNA library prep on the Juno system. Read count 

data for titrated standards above 0.5ng are consistent with my previous findings, but values below 

0.5ng have low total read counts and highly variable mapping efficiencies (Fig 4E,F). The number of 

total genes detected is also decreased across all RNA amounts, with the 0.25ng and 0.1ng standards 

detecting fewer than 10k genes (Fig 4G). The mean gene expression profiles for the 0.25 and 0.1ng 

also deviate significantly from the higher concentrations (Fig 4H). Altogether, these results 

demonstrate that while low amounts of RNA can introduce a level of technical noise to the 

quantitative measures of sequencing quality, the effects are most pronounced at or below 0.25ng of 

total input.  
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5.2.5 Single clonal organoids can generate high-quality sequencing data 

I next sought to describe the quality of the sequencing data generated from the manually and 

robotically isolated sets of clonal organoids. To begin, I adapted a quality control and processing 

pipeline previously described in Burclaff and Bliton et al101. Following alignment and qc of the 

manually isolated organoids, 15/17 organoids generated sequencing libraries with read depths >30M 

reads and 16/17 single organoids had sequencing mapping efficiencies > 75% (Fig 

5A,B)81,99,100,102,103. Furthermore, these clonal organoid gene expression profiles contain between 15k 

and 17.5k genes, falling within the range of total genes detected in the standard RNA dilutions 

between 0.5ng and 100ng of total input (Fig 5C). The consistency between the number of genes 

detected in the titrated standards and in each clonal organoid suggests that while there may be 

variability in the number of genes detected in each organoid samples, this variability falls within an 

expected range of genes detected from the titrated standards.  

The robotically isolated organoids showed much more variation in terms of the ultimate read 

counts (Fig 5D). Three specific distributions of read counts were seen from the robotically isolated 

organoids with 48.4% (15/31) organoids having fewer than 0.3M reads, 12.9% (4/31) organoids 

having between 2.9 and 12 million reads, and 38.7% (12/31) having between 12 million and 154 

million reads (Fig 5D). The distribution of the mapping efficiencies for the robotically isolated 

organoids followed a bimodal distribution with most organoids with more than 2.5 million reads also 

having >65% mapping efficiency (Fig 5E). Finally, the gene expression profiles of most clonal 

organoids (16/31) contained >10k unique genes, a level comparable with range of genes detected in 

the titrated standards with the remaining organoids having less than 2.5 million reads and <65% 

mapping efficiency (Fig 5F). Altogether, these data demonstrate that clonal organoid samples can 

generate RNAseq data of comparable quality to titrated bulk RNA standards and suggests that clonal 

organoid RNAseq data likely has appreciable levels of biological variation.  

5.2.6 Clonal organoid RNA seq identifies a subset of organoids that express higher levels of 
gastric dysplastic stem cell markers 

After determining that my clonal organoid sequencing data preserves biological variation, I 

sought to describe the heterogeneity of gene expression profiles observed in both sets of clonal 
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organoid populations. Principle component analysis (PCA) of the manually isolated clonal organoids 

demonstrates that clonal dysplastic organoids cluster closely to the titrated dysplastic RNA standards 

with the metaplastic organoids scattered away from the dysplastic group (Figs 6A,B). Even when the 

titrated standards are removed from the PCA, the dysplastic and metaplastic organoids group 

separately, demonstrating an inherent difference in the gene expression profiles between these two 

groups of organoids (Fig 6C). As these two cell lines are isolated from distinct points along a well 

described cancer progression pathway, these differences in gene expression are to be 

expected90,92,104. Furthermore, quality metrics such as RIN, RNA input, and the number of mapped 

reads do not appear to have a distinct impact on the clonal organoid PCA plots, suggesting that any 

variation in these two principle components is likely reflecting true biological variation (Fig 6D-F). 

Leiden clustering analysis of manually isolated clonal organoids supports this interpretation as the 

two organoid lines cluster into separate groups, with no mixing between the two groups (Fig 6G,H)105.  

To assess inter-organoid heterogeneity of gene expression profiles, differential gene 

expression profiles from the metaplastic and dysplastic organoid lines were assessed. A 

subpopulation of dysplastic cells, termed double positive dysplastic stem cells (DP-DSC) because of 

their positive staining for CD133+ and CD166, have been shown to evolve into multiple types of 

gastric cancers91. Thus, to determine consistency of my clonal organoid sequencing data with 

previous results, I used this DP-DSC gene expression signature as a  reference to compare against 

the clonal organoid gene expression profiles from metaplastic and dysplastic clonal organoids. As is 

expected, the dysplastic organoids show consistently higher expression of dysplasia (DP-DSC) 

markers when compared to the metaplastic organoid (Fig 6I,J). These results also suggest novel 

markers that have not been reported as dysplasia markers before such as Wnt7b, Zic3, and Nrg1 

(Fig 6J). These differences demonstrate that clonal organoid sequencing is faithful to biological 

differences and can also be used to identify novel candidate marker genes.  

Next, I applied the same analysis pipeline from the manually isolated organoids onto the 

robotically isolated organoids to determine if the sequencing results captured gene expression 

differences between clonal dysplastic gastric organoids isolated from dysplastic human tissues. 

Similar to the manually isolated organoids, most of the robotically isolated clonal organoids grouped 
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closely to the titrated RNA standards (Fig 6K). Upon initial examination, the 0.25ng and 0.1ng RNA 

standards accounted for most of the variance on the second principle component, so to better capture 

the variance in the single organoid data, these standards were dropped from future analysis (Fig 6L). 

When analyzed without the titrated standards, organoid morphologies appear to describe some of the 

underlying differences in gene expression profiles with PC1 separating 6 of 7 cystic organoids onto 

the left side of PC1 and 7 of 9 columnar organoids onto the right side of PC1 (Fig 6M). Consistent 

with the manually isolated organoids, quality metrics (i.e., RIN, RNA input, and the number of mapped 

reads) for the robotically isolated organoids do not show a particular trend along either PC 1 or 2, 

suggesting that differences in gene expression profiles captured by PCA are not due to technical 

artifacts (Fig N-P).  

Leiden clustering analysis was performed to determine if cystic or columnar morphologies are 

associated with specific gene expression patterns(Fig 6Q,R). Two distinct clusters were detected, 

with both clusters containing a mixture of cystic and columnar morphologies. The mixed composition 

of the two Leiden clusters suggests that a given morphology does not necessarily maintain a 

consistent gene expression profile across organoids and that individual organoids that appear similar 

may have distinct gene expression differences. Together, these clustering analyses suggest that 

sequencing data from the robotically isolated clonal organoids captures gene expression differences 

between individual organoids and across two different organoid morphologies. 

Finally, to associate potential transcriptomic states to the two mixed-morphology Leiden 

clusters, DEG analysis was performed on the two clusters. Initial comparisons of the human genes to 

their mouse orthologues from the DP-DSC signature show that cluster 1 is more highly enriched for 

many genes associated with the DP-DSC population (e.g, WNT5B, FZD9, N4BP2L1, etc.) suggesting 

these organoids are more dysplastic than the organoids in cluster 2 (Fig 6S). Moreover, when 

mapping the DP-DSC gene expression pattern onto organoid morphology, DP-DSC marker gene 

expression appears to not be specific to either organoid morphology (Fig 6T). This suggests that 

morphology is not necessarily predictive of DP-DSC marker gene expression patterns. Gene 

expression differences between Leiden clusters also highlights potential novel DSC marker genes, for 

example ACSM3, ADSS1, or NMU (Fig 6U). Overall, this platform can describe the association 
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between the development of phenotype and gene expression profile in clonal organoids from a mixed 

single cell population, providing unprecedented resolution into the relationship between 

comprehensive gene expression patterns and their accompanying phenotypic effects.  

5.3 DISCUSSION 

In this work, I present the development and validation of a first of a kind high-throughput 

clonal organoid sequencing workflow. I began by addressing the challenges of adapting the AIR 

system for high throughput organoid culture, identifying several technical improvements needed to be 

made and developing strategies to overcome these challenges. Specifically through my preliminary 

trials, I found: 1) culturing organoids in suspension culture on the CRA, instead of embedded in thick 

overlays of Matrigel™, was sufficient to allow for rafts to be released into the reservoir of the array 

and maintain conventional organoid morphologies, 2) dynamic feedback on raft attachments to 

neighboring rafts helps organoid isolation, 3) larger rafts would reduce organoid overgrowth into 

neighboring rafts, and 4) optimization of the entire cell seeding workflow would maximize organoid 

formation in suspension culture. Together, these engineering solutions produced reliably high 

organoid isolation efficiency for clonal organoids on the Cell Microsystems AIR system. 

Next, I sought to determine if a single organoid would generate enough RNA of sufficient 

quality to generate meaningful RNAseq data. I quantified the relationships between various QC 

metrics (RIN, total RNA, organoid diameter, mapped reads, and mapping efficiency) across 48 

organoids from 3 different organoid lines and determined that the RIN and the total RNA input do not 

have strong predictive value on the ultimate sequencing quality in terms of mapped reads or mapping 

efficiencies, but that the amount of RNA does likely have an impact on the number of genes that are 

detected. While RIN and RNA amounts are not strongly predictive of the sequencing quality, this may 

be a result of being close to the limit of detection for RNA concentration on the BioAnalyzer system, 

thus biasing the RIN quantification values.  

As only 2 organoids generated enough RNA to meet the minimum thresholds of the Juno 

automated library prep system, I next sought to characterize the potential technical noise from using 

low inputs of RNA during library preparation. To assess this, I used titrated RNA standards that 
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covered a range of RNA input values corresponding to the amounts of RNA I measured from a single 

organoid. These results indicate that the amount of RNA input does impact the number of genes 

detected with concentrations below 0.25ng detecting the fewest genes. Furthermore, these low 

concentrations also appear to influence the overall distribution of mean gene expression values. 

These results together suggest that input RNA amounts below 0.5ng may introduce a large amount of 

technical noise in the output sequencing data.  

From these results, I next sought to characterize the sequencing quality of single clonal 

organoid libraries. From the 48 organoids that I isolated, 45.8% (22/48) generated more than 25 

million reads and 64.6% (33/48) having mapping efficiencies >65%. Mapping efficiency appears to be 

the most useful metric when predicting the quality of organoids sequencing data as any organoid 

above this 65% threshold also had >10k unique genes detected, indicating a range of unique genes 

that was comparable to the ranges present in titrated RNA standards from their sister organoids  

Next, to determine if these higher quality sequencing libraries could provide insight into inter-

organoid gene expression differences, I subjected the 31 highest quality organoids to an adapted 

scRNAseq processing pipeline. From this analysis, I determined that the single organoid sequencing 

preserves biological variation between metaplastic and dysplastic mouse organoids and that these 

differences are robust against quality metrics such as RIN, RNA input, and the number of mapped 

reads. When evaluating gene expression differences between distinct morphologies in human 

dysplastic organoids, Leiden clustering demonstrated one cluster of mixed-morphology organoids that 

expressed higher levels of gastric dysplastic stem cell markers, suggesting that morphology is not 

predictive of the overall gene expression pattern of a given organoid. Furthermore, the observation 

that both cystic and columnar organoids express marker genes associated with the DP-DSC gene 

expression signature suggests that cystic and columnar morphologies may be transient states and 

that both kinds of organoids could potentially develop into gastric cancer.  

In this work, I present a platform that can describe the relationship between phenotype and 

gene expression profile in clonal organoids from a mixture of single cells. unprecedented resolution 

into the relationship between comprehensive gene expression patterns and their accompanying 
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phenotypic effects. From these findings, I have compiled my results into a decision tree to guide the 

design of future clonal organoids sequencing experiments (Fig 7). As high-resolution tools continue to 

be developed to assess new biological phenomena, the connection of phenotype to gene expression 

is important to consider. Specifically, cancer stem cells are believed to be important to such 

processes as the development of resistance to chemotherapy and tumor growth and metastasis93. 

Identification of early stages of these represent promising avenues for the development of more 

effective treatments and therapies.  
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5.4 FIGURES 

 
Figure 5.1: Workflow schematic of challenges to address to achieve high throughput clonal 
organoid sequencing. 
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Figure 5.2: Engineering challenges for automated release of clonal organoids from the CMS 
AIR system.  
A) Images show rafts from a 200x200µm CellRaft™ Array that were plated with undiluted Matrigel. 
(Left) Rafts are released from the surrounding PDMS array but are not able to enter the reservoir of 
the array because of their lingering attachment to the surrounding PDMS and neighboring CellRafts. 
(Right) Images show organoids overgrowing the confines of the 200x200µm CellRaft Arrays and 
merging with other organoids. B) Image of mouse intestinal Sox9-EGFP organoids on 3D 500x500µm 
CellRaft Arrays showing that organoids cultured in suspension culture conditions maintain critical 
phenotypic parameters such as lumens, crypt-buds, and similar fluorescence patterns. C) Results of 
optimization to the CMS AIR system for high throughput 3D clonal organoid culture. Optimized 
conditions include: 1) 0.24mg Matrigel™/mL suspension culture, 2) Larger 500x500 µm rafts, 
3)Concentric needle over objective, and 4)Cold-seeding single cells D) Tile scan of 96 well U-bottom 
plate at 2x magnification showing 83/96 wells containing rafts robotically collected from the CMS AIR 
system. Insets zoom in on one specific well to show resulting organoid size and morphology. All scale 
bars represent 200 µm. 
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Figure 5.3: Evaluation of quality of cDNA libraries generated from single clonal organoids on 
the Standard Biotools Advanta system.  
A) Organoid diameter (µm) versus log10 of the total RNA yield from each organoid. Y-axis represents 
log10 RNA yields. R2 describes the goodness of fit for a nonlinear regression to the non-log 
transformed data. B) Organoid diameter (µm) versus detected RIN values. RIN is a measure of 
18S/28S RNA and generally describes the quality of RNA present in a sample. r2 describes the 
goodness of fit for a linear regression on the non-log transformed data. C) Linear regressions of total 
RNA input and RIN against sequencing quality metrics of number of mapped reads and mapping 
efficiencies. D) Organoid diameter (µm) versus log10 of the total RNA yield from each clonal organoid 
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isolated on the AIR system. Y-axis represents log10 RNA yields. R2 describes the goodness of fit for a 
nonlinear regression to the non-log transformed data. E) Organoid diameter (µm) versus detected 
RIN values for automatically isolated organoids. RIN is a measure of 18S/28S RNA and generally 
describes the quality of RNA present in a sample. r2 describes the goodness of fit for a linear 
regression on the non-log transformed data. F) Linear regressions of total RNA input and RIN against 
sequencing quality metrics of number of mapped reads and mapping efficiencies G) Results of pilot 
for concentration RNA from a single nonclonal organoid (n=3) in preparation for concentration RNA 
samples from clonal organoids. 

 
Figure 5.4: Impact of titrated RNA libraries on automated cDNA library preparation on the 
Standard Biotools Juno & Advanta system.  
A) Amount of reads (millions) that were present in each replicate (n=3 per standard concentration) of 
the diluted RNA standards from sister organoids to the clonal organoids in Fig 2 A-C. B) Mapping 
efficiency from each replicate from A. Mapping efficiency is a measure of how many reads from A 
align with a known gene. C) Number of unique genes detected from each standard concentration. D) 
Frequency distribution of the mean value for each gene detected in each diluted RNA standard. X-
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axis represents the log10 of the actual mean gene expression value from n=3 replicates for each 
standard. Y-axis represents the relative frequency of each mean expression value detected in the 
dataset. E) Amount of reads (millions) that were present in each replicate (n=3 per standard 
concentration) of the diluted RNA standards from sister organoids from Fig 2D-G . F) Mapping 
efficiency from each replicate from E. G) Number of unique genes detected from each standard 
concentration from E. H) Frequency distribution of the mean value for each gene detected in each 
diluted RNA standard. X-axis represents the log10 of the actual mean gene expression value from n=3 
replicates for each standard. Y-axis represents the relative frequency of each mean expression value 
detected in the dataset 

 
Figure 5.5: Quality evaluation of output sequencing from individual clonal organoids. 
A) Number of reads from the two categories of clonal organoids (n=17), metaplastic (n=8) and 
dysplastic (n=9), that map to a distinct gene. B) Mapping efficiency of raw read counts (not shown) 
from single clonal organoids from metaplastic and dysplastic mouse stomachs. C) Number of unique 
genes detected from all standard concentrations except 0.1 ng, displayed alongside number of genes 
detected for each clonal organoid. D) Number of reads from the two categories of clonal organoids 
(n=33) robotically isolated using the AIR system that map to a distinct gene. E) Mapping efficiency of 
raw read counts (not shown) from single clonal organoids from dysplastic human stomachs F) 
Number of unique genes detected from all standard concentrations except 0.25 and 0.1 ng, displayed 
alongside number of genes detected for each clonal organoid.  
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Figure 5.6: Comprehensive gene expression analysis of manually and robotically isolated 
clonal organoids.  
A) Principle component analysis (PCA) of sequencing data from 5C. PCA is a linear dimensional 
reduction technique that represents in 2D the variation present in higher dimensional datasets. B) 
PCA showing labels of groups of samples of all standards and single organoids that passed quality 
filtering thresholds. 16 clonal organoids passed minimum quality thresholds. C) Principle component 
analysis of single clonal organoids from metaplastic and dysplastic mouse stomachs. D-F) Quality 
metrics overlaid onto clonal organoid PCA. G-H) UMAP-embeddings of Leiden clustering results from 
metaplastic and dysplastic mouse organoids. I) Differentially expressed genes (DEGs) from 
comparing clonal metaplastic and dysplastic organoids and cross-referenced to DP-DSC signature 
from Min et al 2022. Gene expression values represent the normalized ratio to the maximum gene 
expression value. J) Differentially expressed genes (DEGs) from comparing clonal metaplastic and 
dysplastic organoids. Gene expression values represent the normalized ratio to the maximum gene 
expression value. K) PCA of clonal organoids from dysplastic human stomachs compared to titrated 
RNA standards from 4G. L) PCA showing labels of groups of samples of all standards and single 
organoids that passed quality filtering thresholds. 16 clonal organoids passed minimum quality 
thresholds. M) PCA of single clonal organoids cross-referenced to organoid morphology at time of 
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isolation. N-P) Quality metrics overlaid onto clonal organoid PCA 6M. Q-R) UMAP embeddings of 
Leiden clustering results from metaplastic and dysplastic mouse organoids. S) Differentially 
expressed genes (DEGs) from comparing Leiden clusters from 6R and cross-referenced to DP-DSC 
signature from Min et al 2022. T) Differentially expressed genes (DEGs) from comparing organoid 
morphology at time of isolation and cross-referenced to DP-DSC signature from Min et al 2022. U) 
Differentially expressed genes (DEGs) from comparing Leiden clusters 

 
Figure 5.7: Process flow diagram showing quality control thresholds and the number of clonal 
organoids that meet each threshold  
Each quality control metric discussed (organoid diameter, RIN, RNA concentration, mapping 
efficiency, mapped reads, and the number of genes in each organoid) is divided by their respective 
thresholds. Filtering steps are separated into RNA-based and computational quality control and 
filtering. At each point in the decision tree, the number of organoids that fit within certain thresholds of 
quality are described.  
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5.5 MATERIALS AND METHODS 

Mouse gastric organoid culture  

Meta4 mouse organoids were cultured as previously described, with slight modifications92. 

Organoids were cultured in 25 µL Matrigel™ and 250 µL of mouse intesticult organoid growth 

medium with 0.1% Y27632, 1% penicillin/streptomycin, and 0.1% primocin. 

Human gastric organoid culture 

Gastric organoid culture was performed as previously described91. Briefly, organoids were 

cultured in 25µL Matrigel™ patties on conventional 48-well tissue culture treated plates. Culture 

medium was Human Intesticult organoid culture medium supplemented with 33% cancer associated 

fibroblast conditioned medium with 1% of Penicillin/Streptomycin, 0.1% y27632, and 0.1% primocin. 

Medium was changed every two days.  

CellRaft™ Array culture and organoid isolation 

Clonal dysplastic gastric organoids were plated on 3D CellRaft Arrays (CRA) as previously 

described at a concentration of 15k cells/array. Briefly, 3D CRAs were washed three times for 3 mins 

with sterile DPBS and following the last wash, fresh DPBS was added to the main reservoir and the 

array incubated at 4°C for at least 30 minutes to cool the array prior to seeding Matrigel™ and cell 

suspension. Five mLs of dilute Matrigel™ (0.24 mg Matrigel™/mL culture medium) were prepared 

prior to seeding to cells. Immediately prior to seeding cells, cold DPBS was removed from the array 

and replaced with two mL of the dilute Matrigel™ mixture and kept on ice. The desired volume of cell 

suspension was resuspended in 1mL of the dilute Matrigel™ and added dropwise to the array. 

Finally, the last two mL of dilute Matrigel™ were added to the array perimeter to draw the cells in 

suspension to the microwells. Following this, the array is incubated at 4°C for at least 20 minutes to 

allow for cells and Matrigel™ to settle into the microwells. After this incubation, the cells and array are 

moved to a 37°C incubator to facilitate Matrigel™ polymerization and cell culture. Arrays were 

scanned within 16 hours of cell seeding and then every other day to monitor clonal organoid growth. 

Organoid formation was assessed on day 7 after seeding on the arrays and organoids that could be 

traced back to a single initiating cell were isolated on days 8 to 10 of culture into 100uL of culture 

medium in a 96 well U-bottom plate  
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RNA extraction, quality control, library preparation, and sequencing 

RNA samples were extracted by using the Aurum 96 well total RNA isolation kit (single clonal 

organoids) or an RNAqueous micro kit for titrated bulk RNA and eluted into 40uL molecular biology 

grade water. After extraction, RNA was analyzed with an Agilent 2100 BioAnalyzer RNA Pico kit. 

Eluted clonal organoid RNA was concentrated using an Eppendorf Vacufuge™ at 25C for 30 minutes 

or until a final sample volume was less than 10uL. Bulk RNA from conventional cultures was diluted in 

molecular biology grade water to achieve desired input concentration in 3.6 µL of RNA sample and 

submitted as 15 wells of a Standard Biotools Advanta RNA library preparation. The entirety of RNA 

sample for clonal organoids were submitted after concentration for the remaining 33 wells of the 

Advanta chip. Full-length cDNA libraries were prepared at the UNC Advanced Analytics Core using 

the Advanta RNA-Seq XT NGS Library Prep Kit II, 48.Atlas integrated fluidics circuit (IFC), and Juno 

instrument (Standard BioTools, p.k.a. Fluidigm). Poly(A) RNA was captured by oligo (dT) beads, 

eluted, and fragmented. First-strand cDNA was then reverse-transcribed using random primers. 

Second-strand cDNA was generated using a template-switching oligo to preserve strand orientation. 

Illumina adapter sequences and unique dual indexes were then added to the cDNA using PCR. The 

cDNA from each sample was then harvested from the IFC, pooled according to molar ratio, and 

enriched using a second round of PCR with Illumina P5 and P7 primers. The pooled libraries were 

cleaned using AxyPrep MAG PCR beads (Axygen) and quantified using both the Qubit HS DNA kit 

(Thermo Fisher) and the KAPA Universal Illumina Library Quantification kit (Roche). Average 

fragment size distribution was assessed using the Agilent 2100 Bioanalyzer HS DNA kit. The libraries 

were then sequenced at the UNC High Throughput Sequencing Facility using a NextSeq 2000 

instrument and P3 flow cell (Illumina) in 2 x 50 bp format.  

Data Processing, Filtering, Doublet Removal, and Feature Selection 

After sequencing, single-cell fastq files were mapped to their corresponding genes with 

Kallisto or Salmon, and downstream analysis was performed with scanpy (v1.7.2)81,102,106. Quality 

filtering thresholds for single organoids were: minimum genes <3000, minimum counts > 2.9M107. 

After filtering, TMM-normalized read counts were log-transformed, and variability resulting from gene 

expression count and mitochondrial percentage were regressed out. Highly variable genes were 
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identified with the Seurat method (min_dispersion = 0.2; min_mean = 0.0125; max_mean = 6). 5440 

genes were identified as highly variable and used for principal component analysis  identifying 5440 

genes that subsequently were used for principal component analysis108. Genes were scaled to have a 

mean of zero and unit variance109. 

Differential expression analysis 

To evaluate statistically significant genes between leiden clusters, the depth-normalized 

expression of each gene was used to fit to a negative binomial general linear model with the diffxpy 

package (v0.7.4). A Wald test was used to compare each Leiden cluster, correcting for multiple 

testing using the Benjamini–Hochberg procedure. A gene was determined to be a marker gene for a 

particular lineage if it met the following thresholds: (1) q value < 0.05 and (2) a minimum log2 fold-

change (compared with the other Leiden cluster) greater than 1. 
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CHAPTER 6: CONCLUSIONS AND FUTURE DIRECTIONS  

6.1 OVERALL SUMMARY 

In the past two decades, multiple advances in the ex vivo culture of primary-tissue derived 

stem cells have enabled the development of entirely new approaches to developing experimental 

models of the human gut30,110,111. Concurrent advances in high-resolution biotechnologies have begun 

the definition of complex cellular processes and biological at single-cell resolution. Nevertheless, 

despite countless technical advances, the conventional forms of ISC culture and the devices used for 

experimental perturbations relied on large amounts of bulk cultures; precluding many higher 

resolution experimental approaches due to the inability to generate enough tissue. During my time in 

the Magness Lab, microphysiological culture platforms and devices developed by myself and my 

group members addressed many issues surrounding scaling; however, the new bottleneck became 

how to assess and quantify the impact of extrinsic influences (such as oxygen tension and nutrient 

absorption) in these microphysiological systems. The body of work presented here represents my 

efforts to address several technical challenges inherent to scaling microphysiological systems. The 

first challenge was the integration of an array of conceptual approaches to engineer a computational 

pipeline that could profile the proximal-to-distal axis of the human intestinal epithelium at single cell 

resolution and serve as a benchmark for future in vitro studies described in this thesis. The second 

challenge was to develop and optimize a workflow for high-throughput culture and isolation of 

gastrointestinal organoids as a clonal models of tumor development. Below is a summary of my 

findings, interpretation of the results, and conclusions to draw meaningfulness to advancement of 

science in my field of study. 

The work described in chapter 2 serves as a foundation for physiological relevance to the in 

vitro culture models developed by the Magness Lab. To complete this project, I engineered a 

computational pipeline to integrate single cell RNA sequencing (scRNAseq) gene expression data 

from all 6 regions of the small intestine and colon from three healthy adult human organ donors. In 
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this project, I described the comprehensive gene expression patterns for each lineage in the human 

intestinal epithelium and outline key differences between human physiology and common animal 

models of intestinal physiology. Some of the most important findings are: 1) Lysozyme does not mark 

Paneth cells in humans; 2) OLFM4 marks small intestinal stem cells, but not colonic stem cells; 3) 

BEST4+ cells, a cell type unique to humans and not present in animal GI models, likely regulate 

satiety, gut motility, and heavy metal homeostasis; and 4) tuft cells are enriched for many receptor 

genes, and likely detect many pathogen-associated signals beyond those that have been reported in 

literature. This study advanced our understanding of the intestinal epithelium by providing the highest 

resolution and most complete description of cell-type specific gene expression profiles. In summary, 

this survey of the intestinal epithelium will serve as the gold-standard for assessing physiologic 

relevance of tissue culture models and can be used to develop better treatments for intestinal 

diseases. From the current state, this survey could be built upon by including more donors from 

different demographic groups to fully capture the variety of gene expression profiles across different 

ethnicities, genders, and age groups.  

In Chapter 3, I sought to use the data generated in chapter 2 to engineer a more 

physiologically relevant in vitro tissue that mimicked intestinal differentiation and nutrient absorption. 

To complete this goal, I generated a time-course of RNAseq data describing absorptive enterocyte 

differentiation and developed a quantitative framework for comparing in vivo and in vitro gene 

expression. From this work, I found that in vitro differentiated enterocytes are closest to their in vivo 

counterparts after 7 days of differentiation. From here, these differentiated enterocytes were treated 

with different fluorescent fatty acids and various chemical perturbations, which validated intact and 

functional fatty acid oxidation processes in the engineered absorptive enterocyte cultures. We used 

these to describe how fatty acid oxidation is a critical step in the flux of metabolites from long- and 

medium-chain fatty acids through absorptive enterocytes. Altogether, my findings inform how to 

integrate culture conditions and time to reproducibly create an in vitro cell culture platform that 

faithfully models absorption of nutrients in the human intestine. Beyond the experimental conclusions, 

this work can serve as a first step to understanding the molecular mechanisms behind nutrient 

absorption in the human and could be used as a culture model develop treatments for dietary 
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diseases such as celiac disease or diabetes, which are first influenced by the absorptive enterocytes 

lining the gut.  

In chapter 4, I wanted to develop a ex vivo culture system that could be used to understand 

the impact of hypoxia – or lack of oxygen – specifically on primary derived human intestinal stem 

cells. Hypoxia is a common feature that initiates and fuels many diseases of the GI epithelium such 

as inflammatory bowel disease, ulcerative colitis, and GI tumors6,11,16; however, in vitro models 

capable of integrating primary human ISCs in a tunable microphysiological system (MPS) have not 

been developed to study acute and chronic hypoxic events. Our group developed and optimized a 

MPS to study the effect of severe acute hypoxia (≤ 1% O2) on hISCs and mimics in vivo events during 

inflammatory hypoxia where a rapid influx of immune cells to the mucosa consumes all available 

oxygen resulting in localized hypoxia or a stroke event where a vessel near the mucosa is occluded 

reducing blood flow and oxygen transport. The MPS is a multicomponent device where a 5-well 

culture chamber created by xxx in the same dimensions of microscope slide. The well-chambers are 

a sealed in a 3D printed light tight housing to create a closed system where ambient oxygen is 

flushed using mixed gas (95% N2 5% CO2). Oxygen tension is monitored in real-time at the cell-media 

interface using an integrated phosphorescence based sensor18.  

I used this hypoxia device to probe dynamic transcriptional responses in human ISCs. With 

this system, I show that human ISCs initiate a significant transcriptional response at 24 hours of 

hypoxia and increase expression of a set of interleukin receptors that prime hISCs to receive 

extraneous signals in the form of interleukins (ILs). While I show that hypoxia alone causes a 

profound loss of ISC proliferation, my findings indicate that IL2, IL4, and IL25 can override hypoxia-

dependent cell cycle arrest and, in the case of IL2, IL4, and IL25, preserves ISC function. The overall 

impact of these ILs on ISCs primed by hypoxia is unknown; it could be that these interleukins drive 

ISCs to proliferate and differentiate into tuft and goblet cells to resolve the cause of the inflammation 

or it could be that these interleukins result in higher levels of cell death by driving proliferation of 

damaged cells. Additional studies are being performed to address these possibilities. This model 

system can be used for future studies looking at mechanisms for preserving stem cell viability and 

can potentially be used to develop treatments for inflammatory GI diseases.  
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In chapter 5, I developed and optimized a workflow for high throughput clonal organoid RNA 

sequencing to study clonal tumor cell evolution. In the context of cancer progression, where single 

cancer stem cells can drive tumor development, treatment resistance, and metastasis, it is important 

to evaluate the plasticity and multipotency of clonal cell populations. While conceptually this workflow 

can be used to study clonal cancer cell evolution in a broad range of cancer types, I developed my 

system to study cancer progress in the gastric epithelium. I began this process by evaluating the 

technical challenges preventing CellRaft™ Arrays (CRAs) and the Cell Microsystems AIR system 

from being used in high throughput organoid culture and developed optimized conditions for high 

throughput clonal organoid culture that included: 1) culturing organoids in suspension culture of 

0.24mg Matrigel™/mL, 2) increasing the raft size to prevent organoids from overgrowing rafts, 3) an 

improved needle design that provided real-time image based guidance to robotic isolations, and 4) 

development of a cold-seeding workflow to maximize organoid formation in suspension culture.  

Overall, this study describes a platform that can describe association between the 

development of phenotype and gene expression profile in clonal organoids from a mixed single cell 

population, providing unprecedented resolution into the relationship between comprehensive gene 

expression patterns and their accompanying phenotypic effects. When viewed in a broader context, 

this approach represents a novel approach for studying the inherent differences within single-cell 

populations and for modeling variability of biological responses across heterogeneous cell 

populations. For example, future work with the CRA platform could involve studying the development 

of treatment resistance in cancer stem cell populations by treating clonal organoids with a 

chemotherapeutics drug and isolating the surviving organoids to determine the kind and variety of 

genetic mutations and the associated gene expression profile responsible for reduction in 

chemotherapeutic activity.  

6.2 CLOSING REMARKS 

The work presented in this dissertation has focused on advancing the use of high resolution 

bioinformatics approaches to describe the complexity of human pathophysiology of the human small 

intestines, colon, and stomach in homeostasis and disease. Through these efforts I have 

demonstrated that the integration of computational and experimental approaches represents a novel 
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approach in modern biomedical research that measurably enhances our understanding of human GI 

physiology. These studies represent novel and impactful research projects and have already 

contributed meaningfully to the field of human GI research. It is my hope that these projects continue 

be useful to the scientific community in the years to come.  
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APPENDIX 1: CULTURING HOMOGENEOUS MICROTISSUES AT SCALE5 

A1.1 MAIN 

Organoids — microtissues derived from the organs of animal models or from patient biopsies, 

and used for the ex vivo modelling of physiology and disease1,2,3 — typically grow as self-organizing 

and self-renewing rounded structures that maintain populations of stem cells and of specialized cells 

with phenotypes akin to those found in vivo4. Contemporary organoid-culture methods are susceptible 

to producing large variations in the phenotypic characteristics of organoids, particularly in their size, 

shape, cell-lineage ratios and functional properties4,5. The inability of many organoid-culture systems 

to reproducibly control organoid development, and a lack of phenotypic standards, often preclude 

independent confirmation and direct comparison of published findings5,6. These shortcomings also 

hinder the development of reproducible large-scale assays and the use of organoids as preclinical 

models by the pharmaceutical industry and by regulatory agencies. 

Although organoid heterogeneity is influenced to some degree by stochastic biological 

processes, the initial cellular composition, the physical proximity of individual organoids, and random 

organoid densities inherent to conventional organoid-culture systems, all promote undesired 

phenotypic variability7,8,9. It is well accepted that even under highly controlled processes for hydrogel 

formulation and growth-factor supplementation, neighbouring organoids in three-dimensional (3D) 

culture can be significantly different in morphology and function10,11,12. Matthias Lutolf and colleagues 

now report in Nature Biomedical Engineering the development of microwell arrays for the systematic 

and high-throughput assessment of highly homogenous organoids in 3D culture13. 

Lutolf and co-authors’ microwell arrays were designed to fulfil three specific criteria: individual 

microwells should promote the rapid aggregation of epithelial stem cells — a crucial step to achieve 

homogeneous and properly formed organoids; individual microwells should separate individual 

organoids effectively; and microwells should act as an artificial stem-cell niche for the development of 

stem-cell aggregates into organoids. The authors achieved these design goals by using soft 

 
5This appendix previously appeared as an article Nature Biomedical Engineering. The original citation 
is as follows: Bliton, R. J., & Magness, S. T. (2020). Culturing homogeneous microtissues at scale. 
Nature Biomedical Engineering, 4(9), 849-850. 
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lithography to fabricate moulds for the production of hydrogels with arrayed concave microwells. The 

hydrogels were positioned in conventional tissue-culture plates and are thus compatible with many 

imaging modalities. The fabrication process is amenable to various hydrogel materials and microwell 

geometries, and can thus produce culture systems for organoids differing in size and complexity14. 

The authors then benchmarked and validated the microwell-array system. Starting with fluorescent 

Lgr5+ intestinal stem cells (Lgr5 is a protein marker of adult stem cells) isolated from genetically 

engineered mice, stem-cell aggregates formed in microwells within 30 minutes of seeding, by gravity 

sedimentation. Within 24 hours, the stem-cell aggregates showed apical and basal polarization — an 

important morphological characteristic of intestinal organoid culture14. After inducing stem cells to 

differentiate, ‘crypt buds’ formed, indicating that the patterns and compartmentalization of stem cells 

and differentiated cells were consistent with those of intestinal organoids cultured in conventional 3D 

Matrigel. Importantly, the system promoted highly reproducible organoid morphologies, and 

immunostaining confirmed the presence of major differentiated lineages of the murine intestinal 

epithelium (including enterocytes, Paneth cells, enteroendocrine cells and goblet cells). 

To test the impact of the number of seeded stem cells on organoid homogeneity, Lutolf and 

co-authors seeded 10, 50, 100 or 200 cells per microwell. Aggregates starting with 10 cells or less 

showed poor survival. Organoids formed from 50 seeded cells were able to polarize properly, but 

were not able to bud successfully under differentiation conditions. Wells seeded with average 

densities of 100 and 200 cells showed growth patterns that were similar to those of organoids that 

polarize and form buds under differentiation conditions. The authors also show that the size of the 

microwells has a strong influence on organoid longevity: organoids cultured in 400-μm-diameter 

microwells were maintained for 8 days before showing signs of organoid death, whereas organoids 

cultured in 800-μm-diameter microwells persisted for 15 days before showing a similar decline in 

health. This suggests that the operating parameters of a culture system, such as the volume of 

culture medium and the timing of medium changes, dictate the ultimate size of the organoids. 

The authors then benchmarked the phenotypic variability of organoids produced in the 

microwell arrays against organoids produced through conventional 3D culture methods. Specifically, 

organoid area and the number of budding structures were used as end-point measures to describe 
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the variability of organoid progeny derived under four different culture conditions: single intestinal 

stem cells in Matrigel (a conventional organoid culture); intact crypt fragments in Matrigel; 

homogeneous single intestinal stem cells in microwell arrays; and non-homogeneous single intestinal 

stem-cell aggregates in microwell arrays15. The authors show that the homogeneity of the initiating 

cell population affected the homogeneity of the derived organoids. Specifically, arrays of pure Lgr5+ 

stem cells produced organoids more homogeneous in area and amount of budding, whereas the 

most heterogeneous starting population (organoids derived from crypt fragments) displayed higher 

variability in the same metrics (Fig. 1). The microwell arrays promoted faster development of assay-

ready organoids, enabled the developmental tracing of individual organoids from single cells, and 

better supported downstream workflows (such as immunostaining, and genomic and transcriptomic 

analyses). Overall, the microwell arrays produced more homogenous organoids, and more rapidly, 

than conventional methods. 

Lutolf and colleagues also show that the microwell arrays can be used to perform automated 

high-throughput drug screens on human colorectal cancer organoids. Organoids cultured in microwell 

arrays were assayed by using a robotic compound-screening machine, and accurately reproduced 

previously reported drug responses. Interestingly, a screen of 80 compounds using high-content 

imaging on arrayed colorectal cancer organoids revealed a previously unobserved swelling 

phenotype during the administration of subtoxic levels of the kinase inhibitor afuresertib. Subsequent 

bulk RNA sequencing of afuresertib-treated organoids and untreated cancer organoids revealed 

changes in 100 genes involved in morphogenesis, development, and differentiation, and in 139 genes 

involved in the production of extracellular-matrix components. 

Lutolf and co-authors’ microwell arrays could be used to support the culture and analysis of 

clonal organoids derived from single stem cells to, for example, screen CRISPR–Cas9-edited stem-

cell populations so as to investigate their heterogeneity, or to study rare cell types that come from 

limited starting material such as patient biopsies16,17. They may also be suitable for co-culturing the 

variety of cell types found in stem-cell niches or tumour microenvironments, and for the assembly of 

more sophisticated microtissues for the modelling of complex physiological processes or disease 

states. Overall, the microwell-array form promotes reproducible stem-cell aggregation, significantly 
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reducing organoid heterogeneity. The system is highly customizable and robust for the study of 

primary-tissue-derived organoids with minimal extracellular matrix. And arrays of highly homogenous 

organoids are suitable for the automated, high-throughput phenotypic screen. The authors’ approach 

therefore addresses significant obstacles that have historically impaired the rigor and reproducibility 

of organoid studies and that have prevented the broad adoption of organoids as models for drug-

screening and diagnostic applications. 

A1.2 FIGURES 

 
Figure A1.1: Microwell arrays increase the homogeneity of organoids cultured in them. 
Organoids formed in arrays initially containing 100 single cells per microwell (top row), regardless of 
whether the cells were a homogenous population (rightmost column) or unsorted (third column), are 
more homogenous (bottom row) after a few days than those that started as single cells or as crypt 
fragments in Matrigel drops. The number of days of culture is indicated on each image. Scale bars, 
200 μm. Figure reproduced with permission from ref. 13, Springer Nature Ltd. 
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APPENDIX 2: DYSPLASTIC STEM CELL PLASTICITY FUNCTIONS AS A DRIVING FORCE FOR 
NEOPLASTIC TRANSFORMATION OF PRECANCEROUS GASTRIC MUCOSA6 

A2.1: INTRODUCTION 

Gastric cancer is the fifth most common cancer worldwide and the third leading cause of 

cancer-related mortality.1,2 Intestinal-type gastric cancer occurs more frequently than diffuse-type 

gastric cancer and develops within a cascade of precancerous metaplasia progression to dysplasia 

and adenocarcinoma.3,4 Gastric dysplasia is the focal neoplastic lesion, which has the highest risk of 

intestinal-type gastric cancer development, and has been generally recognized as the initiation event 

in neoplastic transformation from precancer to cancer.5 To detect the risk of cancer development in 

dysplasia, histopathological investigations have been conducted with several markers highly 

expressed in both gastric dysplasia and adenocarcinoma, such as Cox-1 and Cldn7,6,7 and our group 

has identified Trop2 as a novel dysplasia marker specifically upregulated in the transition between 

incomplete intestinal metaplasia and dysplasia.8 However, the cellular plasticity or regulatory 

mechanisms of dysplastic cells during the neoplastic transformation remains largely unknown. 

Stem cells are considered a key source for cellular biological functions with self-renewal and 

differentiation capacities. In cancer development, cancer stem cells (CSCs) are a small subset of 

cancer cells that contribute to intratumor heterogeneity and cancer progression or drug resistance in 

tumor lesions.9 In particular, CSCs may evolve from precancerous stem cells by clonal expansion, 

followed by sequentially acquired mutations or epigenetic regulation,10,11 and those precancerous 

stem cells may lead to the carcinogenic transition of dysplasia. Therefore, identification of distinct cell 

populations, which function as stem/progenitor cells that likely represent the foci of precancerous 

initiation and progression, is crucial. Several studies in the field of gastric carcinogenesis have 

reported the expression of putative CSC markers such as CD133, Musashi-1, and CD44v6 in gastric 

precancerous tissues.12, 13, 14 Nevertheless, the presence of de novo stem cells that function as 

 
6 This appendix previously appeared as an article in Gastroenterology. The original citation is as 
follows: Min, Jimin, Changqing Zhang, R. Jarrett Bliton, Brianna Caldwell, Leah Caplan, Do-Joong 
Park, Seong-Ho Kong et al. "Dysplastic Stem Cell Plasticity Functions as a Driving Force for 
Neoplastic Transformation of Precancerous Gastric Mucosa." Gastroenterology 163, no. 4 (2022): 
875-890. 
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cancer-initiating cells in the precancerous lesions still remains obscure because of the lack of 

surrogate markers or appropriate model systems. 

Kras activation and amplification is one of the major oncogenic mechanisms frequently 

present in intestinal-type gastric cancer.15,16 We have previously studied the roles of Kras activation 

during gastric carcinogenesis using a transgenic mouse model that induces active Kras expression in 

normal chief cells.17 We also studied the cellular characteristics and dynamic behaviors of dysplastic 

cells using a dysplastic organoid model established from the active Kras-induced dysplastic glands.18 

The dysplastic organoids recapitulate common cytological and histological phenotypes of human 

dysplasia and highly express Trop2, a dysplastic marker.8,17,18 We identified several dysplastic 

subpopulations, including putative DSC subpopulations such as CD44v6neg/CD133+/CD166+ (DP) and 

CD44v6+/CD133+/CD166+ (TP) cells.18 

Here, we have sought to understand the biological functions of the 2 putative DSC 

subpopulations in homeostatic regulation and neoplastic changes of dysplasia using dysplastic 

organoids established from the Kras-induced mouse model and from human patient samples with 

dysplasia. We have identified Trop2+/CD133+/CD166+ DSCs as a key stem cell population that 

perpetuates heterogeneous cell lineages in dysplasia through Wnt ligand-independent CK1α/β-

catenin signaling activation. We have also defined the oncogenic potential and clonal evolution ability 

of the DSCs during dysplasia evolution to adenocarcinoma leading to further tumor cell heterogeneity 

and mutational burden. We also suggest activation of CK1α as a potential therapeutic target for 

intervention in dysplasia progression. 

A2.2: MATERIALS AND METHODS 

Organoid Culture and Drug Treatment 

Meta4 dysplastic organoids were previously established from corpus stomachs of Mist1-

CreERT2Tg/+;LSL-K-ras(G12D)Tg/+ (Mist1-Kras) transgenic mice.17,18 The Meta4 organoids have 

been maintained without morphological and phenotypical changes by continuous freezing, thawing, 

and passaging over 4 years after derivation. All of the Meta4 organoids, DSC-derived spheres, and 

tumor spheres were cultured in Matrigel (ECM, Sigma, St Louis, MO) with Mouse IntestiCult medium 
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(StemCell Technology, Vancouver, Canada) supplemented with 1% of penicillin/streptomycin (Gibco, 

Waltham, MA) in 48-well plates and medium was replaced every 3 days. The organoids were split 

every 5 to 7 days before they formed budding structures. 

To perform Wnt pathway studies, Wnt and R-spondin (Rspo) conditioned media were 

prepared as described in Supplementary Table 1. Wnt, Rspo, and Noggin conditioned medium were 

provided from Vanderbilt Digestive Diseases Research Center. Meta4 organoids were split, 

embedded in Matrigel, and overlayed with Wnt/Rspo conditioned media after Matrigel polymerization 

at 37°C. The organoids were cultured for 3 to 7 days. Three Wnt pathway regulators, Salinomycin, 

Pyrvinium pamoate, and LGK-974 (all from MedChemExpress) were dissolved in dimethyl sulfoxide 

(DMSO) at a stock concentration of 200 μM, 20 μM, and 20 μM, respectively. Meta4 or human 

organoids were split and cultured in the Mouse or Human IntestiCult media for 1 to 2 days until they 

formed 3-dimensional spherical structures, then the media was switched to Wnt and Rspo free media 

(Wneg/Rneg) containing either DMSO vehicle or a final concentration of 1 μM of Salinomycin, 100 nM of 

Pyrvinium, 100 nM of LGK-974, and cultured for 3 days. The JuLITM stage, a Real-Time Cell History 

Recorder (NanoEntek), and an EVOS M7000 inverted microscope were used to obtain phase-

contrast images of organoids. All experiments were repeated at least 3 times. 

Tumor Formation in Nude Mice 

Total live dysplastic cells, CD133neg/CD166neg (Non-DSCs), CD44v6neg/CD133+/CD166+ (DP-

DSCs) and CD44v6+/CD133+/CD166+ (TP-DSCs) were isolated from 5 to 7 48-well plates of Meta4 

organoids by fluorescence-activated cell sorting (FACS) 5 to 7 days after splitting. Tumor spheres 

generated from either cystic adenocarcinoma (CysAC) or tubular adenocarcinoma (TubAC) were 

dissociated from 20 wells of 48-well plates 3 days after splitting. After the cell sorting or dissociation, 

15,000 or 30,000 cells per injection were mixed with 100 μL of Matrigel (Corning, Corning, NY) with 

0.1% Y-27632 on ice. 

Female Nu/J nude mice at 6 weeks of age (Jackson Laboratory, Bar Harbor, ME) were used 

to perform the tumorigenicity assay. The care, maintenance, and treatment of mice used in this study 

followed protocols approved by the Institutional Animal Care and Use Committee of Vanderbilt 

University and each experimental group contained 3 to 5 mice. The 100 μL of Matrigel mixture 
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containing cells were subcutaneously injected into both flanks of the mice. Tumor size and weight 

were measured twice a week using a caliper and tumor volume was calculated by length (L) × width 

(W)2. At 3 to 13 weeks after the injection, all mice were killed and tumor masses were resected. The 

resected tumors were used for hematoxylin and eosin (H&E) staining, immunostaining, establishment 

of tumor spheres, or single-cell RNA-sequencing (scRNAseq). 

 

Human Tissue Specimens and Organoid Generation 

Tissue microarray construction from gastric cancer patient tissues was approved by the 

institutional review board (IRB) of Seoul National University Hospital, Seoul, Korea (IRB No. H-1209-

037-424). Two tissue microarray slides with a total of 90 tissue cores (76 dysplastic, 8 metaplastic, 4 

normal corpus, and 2 normal antrum) were used for immunofluorescence staining and subsequent 

immunohistochemistry. 

To establish human metaplastic or dysplastic organoids, fresh tissue specimens were 

obtained from patients who underwent curative gastrectomy at Seoul National University Hospital 

(IRB No. H-1806-166-954). Approximately 5 cm of tissue strips were resected from intestinal-type 

gastric cancer to adjacent noncancerous lesion in direction to the corpus and used for organoid 

generation. All information of each patient was anonymized and de-identified before the experiments. 

The clinicopathological information such as Lauren classification, World Health Organization 

classification, tumor location, TNM stages, and Microsatellite Instability status is provided in 

Supplementary Table 2. 

The tissue strips were washed in ice-cold phosphate-buffered saline with 100 μg/mL of 

Primocin and cut into pieces using a razor blade. Each tissue piece was divided into 2 pieces for 

pathological examination by H&E staining and establishment of organoids. Stomach mucosa was 

separated from serosa along the muscle layer using cell scrapers, minced using a tissue chopper, 

and incubated in prewarmed digestion buffer at 37°C with shaking at 220 rpm for 30 minutes. After 

the digestion, prewarmed quenching buffer was added and the dissociated glands were centrifuged at 

300g for 5 minutes. Pellets were washed in 5 mL of prewarmed quenching buffer, strained through a 

100-μm cell strainer and centrifuged. The glands-containing pellets were mixed with ice-cold Matrigel 
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and plated in a 48-well plate and incubated 37°C for 30 minutes to polymerize the Matrigel, then 

Human IntestiCult medium (StemCell Technology) supplemented with 1% of penicillin/streptomycin, 

0.2% of MycoZap (Lonza, Walkersville, MD), and 0.1% Y-27632 was added. 

A2.3: RESULTS 

A2.3.1 DP- and TP-DSCs Display Molecular Similarity as CSCs, but Distinct Functional Cell 
States 

For a molecular characterization of the DSCs, we performed RNA-sequencing using FACS-

isolated DP- (CD44v6neg/CD133+/CD166+) and TP- (CD44v6+/CD133+/CD166+) DSCs from Trop2+ 

Meta4 dysplastic organoids.18 When comparing highly expressed genes between the 2 DSC 

subpopulations, more than 85% of the genes overlapped each other with similar gene ontology 

profiles (Figure 1A and Supplementary Figure 1A). Many genes related to stem cell– and cancer-

related pathways, such as Ctnnb1 (Wnt), Ccnd1 (Wnt/Cell cycle), and Ywhaz (EGF/PI3K/VEGF), 

were highly expressed in both DSC subpopulations (Figure 1B and Supplementary Figure 1B). 

Differentially expressed gene analysis revealed 1318 upregulated genes related to transcription 

regulation, homophilic cell adhesion, and PI3K-Akt or Wnt pathways in DP-DSCs and only 53 

upregulated genes of unknown function in TP-DSCs (Figure 1C and D, Supplementary Figure 1C and 

F). Interestingly, the Wnt pathway-related signature was observed in both profiles, and Fzd9, Wnt6, 

and Wnt10a were expressed only in DP-DSCs (Supplementary Figure 1D and E). These results 

demonstrated similar CSC-like molecular signatures between the 2 DSC subpopulations, but the 

profiles of DP-DSCs displayed more active and functional stem cell–like characteristics than TP-

DSCs. 

A2.3.2 Isolated DP-DSCs Can Give Rise to Multiple Cell Lineages and Maintain the Cellular 
Composition 

In dysplastic glands of Mist1-Kras mouse stomachs,17 the 2 DSC subpopulations were 

distinguished by 2 lineage-specific markers, CD44v9, a metaplasia marker,19 and Trop2, a dysplasia 

marker8 (Supplementary Table 3). While TP-DSCs were present at the base of glands where the 

CD44v9+/Trop2neg or CD44v9+/Trop2+ intermediate cells are located (Supplementary Figure 2A, 

yellow arrow), DP-DSCs were present in the region spanning the transitioning cell zone from 

metaplastic to CD44v9neg/Trop2+ dysplastic cells (Supplementary Figure 2A, red arrow). We also 



 

215 

observed heterogeneous cell lineages between CD44v9+/Trop2+ intermediate cells and 

CD44v9neg/Trop2+ dysplastic cells in Meta4 organoids (Supplementary Figure 2B). 

To assess the DSC plasticity, we performed a 3-dimensional long-term culture of isolated DP-

, TP-DSCs, or CD133neg/CD166neg non-DSCs from Meta4 organoids. Only DP- and TP-DSCs formed 

spheres with distinct sphere formation efficiency, as we have previously observed,18 and the spheres 

recapitulated the Meta4 organoid phenotypes at 1 week by expressing Trop2, CD44v9, and Cttn, an 

invasion marker (Figure 1E and F and Supplementary Figure 2C). The spheres derived from both DP- 

and TP-DSCs generally maintained their cell lineages and a similar cellular ratio of non-DSCs, DP-, 

and TP-DSCs after continuous passaging (Supplementary Figure 2D–F). Although the spheres 

displayed dysplastic histology (Supplementary Figure 2G), a distinct differentiation ability with 

complicated structures between DP- and TP-DSCs was observed (Figure 1E). Although differentiated 

cell lineages from TP-DSCs were restricted to CD44v9+/Trop2+ intermediate cells, DP-DSCs showed 

more complicated dysplastic features including multilayering of cells with disorganized nuclei and a 

dynamic differentiation capacity into multiple cell lineages, including various mucus-secreting cells 

including periodic acid–Schiff (PAS)+ cells, Alcian blue (AB)+, or Tff3+ goblet cells (Figure 1H and I). 

Fully differentiated dysplastic cells, CD44v9neg/Trop2+ cells, were mainly observed in spheres derived 

from the DP-DSCs (Figure 1I, arrow). The different sphere formation and differentiation abilities were 

also confirmed using DP- or TP-DSCs directly isolated from Mist1-Kras mouse stomachs (Figure 1E 

and G–I). Therefore, these data demonstrated that DP-DSCs have a better ability to differentiate into 

various cell types than TP-DSCs, implying that the DP-DSCs display an active state of dysplastic 

stem cells (Supplementary Figure 2H). 

A2.3.3 DP-DSCs Lead to the Evolution of Dysplasia Into Various Stages of Gastric Cancer 

To elucidate whether DSCs are responsible for the evolution of dysplasia toward 

adenocarcinoma, total Meta4 cells, sorted non-DSCs, DP-, or TP-DSCs from Meta4 organoids were 

injected subcutaneously under the flank of immunodeficient nude mice (Figure 2A). Only DP-DSCs 

successfully engrafted with a 33% formation rate from 15,000 cells at 7 weeks after the injection and 

the engraftment efficiency was increased to 75% after 30,000 cell injection (Figure 2B). The 

engraftments retained dysplastic phenotypes, positive for Trop2, Sox9, and Cttn, as well as CD133 
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and CD166, confirming the presence of DP-DSCs (Figure 2C). Importantly, groups of cells positive for 

Cdh17, an intestinal-type gastric cancer–related marker,20 were observed and EpCAM, an epithelial 

cell marker, was strongly positive, whereas the Meta4 organoids were Cdh17-negative (Figure 2C 

and Supplementary Figure 3A). Moreover, Masson’s trichrome staining demonstrated recruitment to 

the engraftment sites of stromal cells and collagen fibers with desmoplastic reactions, which 

frequently occur around malignant neoplasms (Figure 2C, arrow). Many Pdgfrα+ or α-SMA+ fibroblasts 

and F4/80+/CD163neg nonpolarized macrophages or dendritic cells were recruited to the stroma 

surrounding the epithelial cells. Furthermore, many Ki67+ cells were observed in the engraftments, 

whereas only a few cleaved caspase-3+ apoptotic cells were present (Figure 2C). However, no 

PECAM+ endothelial cells and only rare Vegf+ cells, which are pro-angiogenic cells,21 were observed 

around the engraftments (Figure 2C and Supplementary Figure 3B). 

Notably, engraftment formation from DP-DSCs resulted in 100% solid tumor formation 13 

weeks after the injection and total Meta4 cells also formed tumors (Figure 2D and F), but no 

engraftment or tumor was observed from non-DSCs (Supplementary Figure 3C). DP-DSC–derived 

tumors were significantly larger than total Meta4-derived tumors and developed central vein 

formation, which supports tumor growth, and 40% of DP-DSC–injected mice required euthanization 

even earlier than 13 weeks because of the skin ulceration caused by tumor overgrowth (Figure 2E 

and F). Both total Meta4 cells and DP-DSCs developed heterogeneous types of tumors: either cystic 

adenocarcinoma (CysAC) or high-grade TubAC including stromal invasion, desmoplastic stroma, and 

even single invasive tumor cells (Figure 2G and H, arrows, Supplementary Table 4). Interestingly, the 

Trop2+ dysplastic cells were still present in the CysAC lesions, but decreased in the high-grade 

TubAC lesions (Figure 2I, arrows, and Supplementary Figure 3D). EpCAM was expressed uniformly 

in the cancer cells, and Ki67+ cells were distributed throughout the lesions (Figure 2I and 

Supplementary Figure 3D). The Cdh17+ cell zones were surrounded by α-SMA+ fibroblasts and 

F4/80+ immune cells, suggesting that neoplastic transformation of DSCs may be facilitated by the 

recruited microenvironment (Figure 2I and Supplementary Figure 3D). In particular, PECAM+ 

endothelial cells were observed around the cancer cells, indicating the intratumor vascularization 
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(Figure 2F and I, and Supplementary Figure 3D). Therefore, these results provide direct evidence of 

the spontaneous malignant transformation of DP-DSCs into multiple types of gastric adenocarcinoma. 

A2.3.4 DP-DSC–derived Tumors Recapitulate Tumor Heterogeneity and Genetic Alterations 
Commonly Observed in Human Gastric Cancers 

To assess the molecular and cellular heterogeneity of the DP-DSC–derived tumors, we 

performed scRNA-seq22 using CysAC and TubAC cells. The t-distributed stochastic neighbor 

embedding plot clearly showed distinct subpopulations of epithelial cells in both tumor types, 

including dysplastic, cancer, and dysplastic/cancer intermediates with different distribution patterns 

between tumor types (Figure 3A). Although the dysplastic subpopulations, highly expressing Cldn7, 

Sox9, CD9, and a DSC marker, CD133, were more enriched in the CysAC, the dysplastic/cancer 

intermediates and cancer cell subpopulations, expressing many known cancer-related genes such as 

S100a6, Tbx20, Rack1, and Cfl1, were more enriched in the TubAC (Figure 3B). Immune cell 

subpopulations, expressing Lyz2, Ccr1, Slfn4, and Ccl323 (Figure 3C), and a fibroblast subpopulation, 

expressing Pdgfra, Col5a3, Mmp2, and Loxl123 (Figure 3D) were also identified. 

These heterogeneous transcriptome signatures were validated in the tumors. Although 

dysplastic cells, positive for Trop2, Sox9, CD133, Cldn7, and CD9, were widely distributed in 

epithelial cells of CysAC, multiple lesions in TubAC were negative for those proteins, and especially, 

Trop2 was lost in the TubAC tissues with many Ki67+ proliferating cells (Figure 3E–G). Pdgrfα+ 

fibroblasts, immune cells, such as neutrophils (Ly6B2), T-lymphocytes (CD4), B-lymphocytes (CD19), 

macrophages/dendritic cells (F4/80), and T-helper cells (CD3), as well as Vegf+ cells were observed 

in the stromal regions of both CysAC and TubAC, indicating that the tumor formation might be 

supported by recruited microenvironment and increased angiogenesis (Figure 3G–J). Therefore, 

these data suggest that clonal expansion of DP-DSCs can lead to progression of dysplasia to multiple 

types of gastric adenocarcinomas and establish tumor microenvironments. 

We additionally examined the self-renewal ability of cancer cells from both CysAC and 

TubAC. Cells dissociated from both tumors formed spheres and grew continuously (Supplementary 

Figure 4A). Consistent with our observation of distinct marker expression patterns, CysAC spheres 

showed partial loss of Trop2 and TubAC spheres were completely negative for Trop2, indicating that 
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the established tumor spheres recapitulate the primary tumor phenotypes (Figure 4A). In addition, 

sphere formation efficiency and growth rate were significantly higher in TubAC cells compared with 

CysAC cells (Figure 4B–D). 

We next performed whole-exome sequencing using dissociated cells from CysAC (n = 2) or 

TubAC (n = 3) spheres to identify additional somatic mutations acquired during the DSC evolution to 

cancer cells. In comparison with the mutation patterns in cells from Meta4 organoids, more than 

10,000 single-nucleotide variants and 2500 indels were identified in both tumor types (Supplementary 

Figure 4B) and approximately 15% to 20% of the mutations occurred in coding regions 

(Supplementary Figure 4C and D). The mutation profiles were compared with the genomic mutation 

data available from The Cancer Genome Atlas.15 Sixty-seven genes of the top 100 genes abundantly 

mutated in human gastric cancers were also mutated in CysAC and/or TubAC, demonstrating similar 

genetic mutation signatures between the mouse DP-DSC–derived tumors and human gastric cancers 

(Figure 4E). Both tumor types repeatedly showed mutations in genes that have critical roles in human 

gastric cancer development and progression, including Arid1a (2 of 2 of CysAC and 2 of 3 of TubAC), 

Cdh1 (all 5 tumors), Fat4 (all 5 tumors), and Cdkn2a (all 5 tumors). Also, unique gene mutations, 

including Wnt pathway-related genes, such as Rnf43 (1 of 2 of CysAC) and Apc (2 of 3 of TubAC), 

were also identified in either CysAC or TubAC cells (Figure 4F). In particular, many mutations 

occurred in functional domains of the key genes, such as Rnf43, Cdkn2a, and Apc, suggesting 

genetic alternations in key genes involved in signal transduction or interaction with other molecules 

during the dysplasia evolution (Figure 4G). Therefore, these results indicate that the mutations 

acquired during the DP-DSC evolution may facilitate development of multiple types of gastric 

adenocarcinoma. 

We further characterized the progression of the 2 tumor types by reimplantation of 

dissociated CysAC or TubAC cells from the established tumor spheres under the flanks of 

immunodeficient nude mice. The injected tumor cells rapidly formed solid tumors within 3 weeks. As 

we observed that TubAC cells showed high proliferation activity and contained more cancerous cells, 

tumor sizes from the TubAC cells were approximately 5 times larger than those from CysAC cells 

(Figure 5A and B), but their original histology did not change (Figure 5D and E and Supplementary 
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Table 4) and increased PECAM+ and Vegf+ cells were observed only in TubAC cell-derived tumors 

(Figure 5E). However, the CysAC cell-derived tumors continuously grew and eventually progressed to 

TubAC-type, negative for Trop2 but positive for Cdh17, with vascular invasion at 7 weeks (Figure 5A 

and C–E, and Supplementary Table 4). Thus, these results suggest that clonal evolution of DSCs can 

lead to the sequential progression of gastric adenocarcinomas (Figure 5F). 

A2.3.5 Regulation of CK1α Activity Suppresses Growth and Survival of DSCs 
Because we identified many Wnt pathway-related signatures in the transcriptome profiles of 

DSCs, we next examined whether the DSC plasticity is maintained by the Wnt pathway. We cultured 

Meta4 organoids in 3 different Wnt and Rspo conditioned media, Wnt/Rspo-supplemented (W+/R+), 

Wnt-depleted (Wneg/R+), and Wnt/Rspo-depleted (Wneg/Rneg). All spheres grown in the 3 conditions 

displayed similar morphologies with Trop2 and Ki67 expression (Supplementary Figure 5A and D) 

and underwent differentiation into the Tff3+ goblet cells (Supplementary Figure 5E). β-catenin 

activation was confirmed at the protein level in both cytoplasmic and nuclear fractions of the 

organoids (Supplementary Figure 5B). Importantly, more than 75% of Trop2+ cells were DP-DSCs in 

all 3 conditions (Supplementary Figure 5C), and the proportion of non-DSCs and DSCs in Wneg/Rneg 

condition was maintained with a similar level over time (Supplementary Figure 5F). These data 

suggest that DSCs can self-renew and differentiate independently from external Wnt/Rspo 

stimulation. 

Because the maintenance of dysplastic organoid growth and cell lineages by the DSCs was 

independent from exogenous Wnt stimulation, we next evaluated whether inhibition of downstream 

signaling of Wnt pathway can control the DSC activity. We treated Meta4 organoids with 2 drugs 

approved by the Food and Drug Administration, Pyrvinium, a CK1α activator, and Salinomycin, a 

lipoprotein receptor-related protein 5 and 6 (LRP5/6) receptor inhibitor, in Wneg/Rneg media for 3 days 

(Figure 6A). The Meta4 organoids treated with either Salinomycin or Pyrvinium displayed a significant 

reduction in size with only 13.5% and 5.0% of survival rates, respectively (Figure 6B–D). Although 

surviving organoids displayed clear internal lumens (Supplementary Figure 5G), Pyrvinium-treated 

organoid structures were more disrupted and contained many pyknotic cells (Figure 6B and E). 

Live/dead cell staining and FACS analysis confirmed the significant increase of organoid death after 
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Pyrvinium treatment, whereas many live cells still remained in the Salinomycin-treated organoids 

(Figure 6F and G). Importantly, the proportion of DSCs in the remaining live cells was also 

significantly decreased after Pyrvinium treatment, indicating that CK1α regulation targets DSCs 

(Figure 6H). These results were confirmed by decreased expression in Pcna and Ki67, and increased 

expression in cleaved caspase-3 (Figure 6I). In addition, Trop2 expression was decreased in 

Pyrvinium-treated organoids compared with Salinomycin-treated organoids and Cttn was not detected 

in either condition, suggesting loss of the invasive phenotype (Figure 6I). We note that blocking Wnt 

ligand secretion using LGK-974, a porcupine inhibitor, did not affect organoid growth or survival 

(Supplementary Figure 5H), but a direct targeting of the downstream mediator, CK1α, using the 

Pyrvinium with the minimum effective dose at 100 nM was sufficient to suppress the organoid growth 

and survival (Supplementary Figure 5I). 

We further examined whether Fzd9, an upregulated Wnt receptor in DP-DSCs, is associated 

with the β-catenin activation. Although Fzd9 was detected only in dysplastic organoids and expressed 

in cell membranes with or without Wnt/Rspo addition (Supplementary Figure 5J–L), Fzd9 knockdown 

in Meta4 cells did not show any changes in Tcf7 expression, a transcription factor regulated by β-

catenin activation (Supplementary Figure 5M and N), indicating that Fzd9 might not be a key receptor 

controlling the DP-DSC activity. However, a direct knockdown of Ctnnb1 in Meta4 cells significantly 

reduced Tcf7 expression (Supplementary Figure 5O and P). We additionally treated isolated DP-

DSCs from Meta4 organoids with either Salinomycin or Pyrvinium to confirm whether the drugs just 

arrested proliferation activity in surviving DSCs. DP-DSCs treated with DMSO formed many spheres 

within 7 days and further showed dynamic morphological changes 7 days after DMSO withdrawal. 

Although the DP-DSCs treated with Salinomycin successfully reformed spheres after drug withdrawal, 

100% of Pyrvinium-treated DP-DSCs failed to reform spheres, indicating direct effects of Pyrvinium 

on the DSC survival (Figure 6J and K). Therefore, these data suggest that the DSC activities and 

survival are dependent on downstream mediators of the Wnt pathway, such as CK1α and β-catenin, 

rather than Wnt ligands or receptors. 
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A2.3.6 Cellular Activity of TROP2+/CD133+/CD166+ DSCs in Human Dysplasia Can Be 
Controlled by Pyrvinium 

Given that our findings indicate DSCs are a fundamental source for maintaining dysplastic 

cell lineages and the evolution of dysplasia toward cancer, we next investigated the existence of 

DSCs in human dysplasia. We first examined the expression of 3 DSC markers, CD44v6, CD133, 

and CD166, in human patient tissues with normal, metaplastic, dysplastic, and intestinal-type gastric 

cancer lesions. Although CD166 was present in all stages and CD44v6 was expressed from 

metaplasia, CD133 was the only marker specifically expressed in dysplasia and cancer 

(Supplementary Figure 6A). To evaluate further the presence of DSCs during metaplasia progression 

to dysplasia, we immunostained a set of human tissue microarrays for CD44v6 and CD133 to 

distinguish 2 DSC populations as well as CD44v9 and TROP2 to discern transitioning or dysplastic 

glands. 

CD133+ cells were only observed between the CD44v9+/Trop2+ metaplasia-to-dysplasia 

transitioning zone and the CD44v9neg/Trop2+ dysplastic cell zone, suggesting the de novo production 

of DSCs during metaplastic cell progression to dysplastic cells (Supplementary Figure 6B). In 

particular, 32.9% of dysplastic cores (25 of 76) contained CD44v6neg/CD133+ cells (DP-DSCs) 

predominantly in CD44v9neg/Trop2+ dysplastic cells (84%, 21 of 25) and 38.2% (29 of 76) contained 

CD44v6+/CD133+ cells (TP-DSCs) mainly in the CD44v9+/Trop2+ transitioning zone (96.6%, 28 of 29) 

(Figure 7A, B, and D, and Supplementary Figure 6C). Multiplex immunostaining for KI67 in the same 

tissue arrays demonstrated a significantly higher proliferation rate for DP-DSC–containing glands 

(80%, 20 of 25), compared with those of TP-DSC-containing glands (31%, 9 of 29) (Figure 7C and D). 

These findings are consistent with the presence of DSCs in Mist1-Kras mouse stomachs 

(Supplementary Figure 2A).18 

We next established metaplastic and/or dysplastic organoids from intestinal-type gastric 

cancer patient tissues with noncancerous lesions adjacent to cancer (Figure 7E). The collected 

tissues were identified as metaplasia or dysplasia by histological examination and predominant 

expression of lineage markers (Figure 7F). Dysplastic organoids displayed strong TROP2 expression 

with only a few cells positive for metaplasia markers, CD44v9 and AQP5,24 and consisted of 87% of 
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TROP2+ DSCs (Figure 7G). However, metaplastic organoids showed strong expression of AQP5 and 

CD44v9 with no TROP2 expression (Figure 7F). TROP2+/CD133+/CD166+ DSCs isolated from the 

dysplastic organoids self-renewed and formed many dysplastic spheres with multilayering of cells and 

disorganized nuclei (Figure 7I), whereas no sphere formation was observed from non-DSCs 

(Figure 7H) as observed in the mouse DSCs and non-DSC cultures (Figure 1E). The human DSCs 

also differentiated into TROP2+ dysplastic cells (Figure 7J), as well as various mucin-secreting cells, 

including PAS+ cells and AB+ or TFF3+ goblet cells (Figure 7K and L). 

To assess inhibitory effects of the Wnt pathway in human dysplasia, we treated human 

metaplastic and dysplastic organoids with Salinomycin or Pyrvinium in Wneg/Rneg media for 3 days. 

Metaplastic organoids did not grow well, but they remained viable and retained spherical structures 

(Figure 7M). However, growth of dysplastic organoids was remarkably diminished by the 2 drugs, and 

especially Pyrvinium treatment significantly increased organoid cell death (Figure 7M and N). We 

additionally treated 2 mixed-type organoid lines that expressed all 3 markers, Trop2, CD44v9, and 

AQP5, with the drugs (Supplementary Figure 6D). We observed similar morphological and 

histological changes in some organoids after the treatment; however, only 1 organoid line treated with 

Pyrvinium showed a significant increase in organoid death (Supplementary Figure 6E and F). This 

result suggests that the organoids that responded to Pyrvinium might contain more dysplastic cells. 

Furthermore, direct targeting of isolated DSCs from dysplastic organoid lines resulted in 100% DSC 

death after the Pyrvinium treatment. However, Salinomycin-treated DSCs survived and reformed 

spheres 7 days after drug withdrawal, consistent with the data in mouse DSCs (Figure 7O and P). 

Therefore, these results suggest that targeting a downstream molecule, CK1α, can selectively control 

the growth and viability of human DSCs and may be a promising strategy to prevent neoplastic 

transformation from dysplasia to gastric cancer. 

A2.4 DISCUSSION 

Genetic and cellular pathogenesis of dysplasia progression or evolution is a major question 

for a mechanistic understanding of the carcinogenic process from noncancerous stages. Our results 

suggested for the first time that Trop2+/CD133+/CD166+ DSCs are de novo stem cells initially 

developed in precancerous lesions and drive the carcinogenic process in gastric cancer development. 
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Transcriptome profiling revealed highly similar molecular identities of 2 DSC subpopulations showing 

that DP- and TP-DSCs are not 2 different types of stem cells, but their stem cell states and functional 

activities were distinguishable. Although the TP-DSCs were likely dormant stem cells only related to 

the transitioning cell lineages between metaplasia and dysplasia, DP-DSCs were more associated 

with manifestation of the proliferative dysplasia phenotype with tumorigenic potential. 

Carcinogenic transformation of dysplasia into the multiple tumor types was triggered by clonal 

expansion and evolution of the single type of noncancerous stem cells. Although both mouse and 

human DSCs showed dynamic differentiation capacity into multiple cell lineages, such as dysplastic 

cells and intestinal goblet cells (Figure 1 and 7), the DSCs did not evolve into cancerous cells in vitro. 

As previous studies reported that premalignant cell lineages were still present during cancer initiation 

and more cancer-cell–related markers are increased during cancer progression in human gastric 

cancer,23,25 the DP-DSCs promoted an activated niche and evolved into heterogeneous cell lineages 

by recruiting all the components necessary for the tumor microenvironment, including a desmoplastic 

stroma, tumor vascularization, and various types of immune cells from the host mice. Thus, the 

recruited microenvironment may be important for the expansion and evolution of DSCs toward cancer 

cells. In particular, genetic mutations commonly observed in human gastric cancers were also 

acquired during the DSC evolution. Sequential genetic mutations, such as in APC, KRAS, RNF43, 

and CDKN2A, have been well-defined in a multistep process of colon and pancreatic 

carcinogenesis.26,27 Gastric cancer has a molecular complexity with diverse mutational 

signatures15,16,28,29; however, it is not yet clear whether any sequential genetic changes can be 

observed in gastric carcinogenic cascade. The 2 types of DSC-derived tumors demonstrated distinct 

mutational heterogeneity and showed several genetic signatures of human gastric cancer molecular 

subtypes, such as Cdh1 mutation (genomically stable; GS)15 (Figure 4). Therefore, the acquisition of 

additional mutations following Kras activation may be a sequence of genetic priming in DSCs as 

cancer-initiating cells during the evolution process. The Wnt pathway is critical for stem cell 

homeostasis, and mutations in Wnt pathway–related genes can cause cancer initiation.30 DSCs could 

maintain dysplasia homeostasis without external Wnt/Rspo, whereas normal gastric organoids 

require external Wnt ligands for growth.31 Inhibition of Wnt ligand secretion did not affect dysplastic 
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organoid growth or survival (Supplementary Figure 5H), indicating that the β-catenin activation status 

in DSCs is maintained in a Wnt ligand-independent manner.32,33 Thus, Wnt ligand-independent β-

catenin activation through CK1α controls the DSC stemness and mutations in the Wnt pathway 

downstream genes, such as Rnf43 and Apc, might drive neoplastic transformation of DSCs by 

dysregulation of CK1α activity. 

In our previous study, inhibition of Kras signaling using a MEK inhibitor, Selumetinib, 

diminished aggressive behaviors of dysplastic organoids, but did not affect the dysplastic cell 

heterogeneity or survival, which is maintained by DSCs.18 Pyrvinium, a CK1α agonist, is a widely 

used anti-anthelmintic drug that has anticancer and anti-CSC effects.34,35 CK1α is not only a 

downstream regulator of the Wnt pathway, but also mediates crosstalk between the Wnt pathway and 

other signaling pathways, such as hedgehog, autophagy, and cell cycle.36 Notably, CK1α activation 

using Pyrvinium could selectively block regeneration and viability of both mouse and human DSCs, 

whereas the inhibition of LRP5/6 receptor using Salinomycin did not show a significant effect on 

organoid survival. Current management guidelines for gastric dysplasia are limited to endoscopic 

resection or local surgical excision only for small and focal lesions.37,38 Therefore, controlling the DSC 

activity by CK1α regulation may be an effective approach to reduce the risk of dysplasia progression. 

Also, identification of other signaling pathways that also regulate CK1α activity in DSCs merits further 

investigation. 

In summary, our findings not only highlight key mechanisms of dysplasia evolution to 

heterogeneous types of adenocarcinomas through the DSC stemness and plasticity, but also provide 

important insights that could allow targeted therapeutic intervention by controlling the DSCs and a 

preventive treatment approach to reduce the risk of early gastric carcinogenesis. 
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A2.5 FIGURES 

 
Figure A2.1: RNA-sequencing data and cellular functions of DP- and TP-DSCs.  
(A) Similarity matrix based on top 2000 genes in DP- or TP-DSCs and the percentages of overlapping 
genes. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping of top 434 of 500 genes 
commonly observed in both DSCs. (C, D) Gene set enrichment analysis (GSEA) of biological process 
(C) and KEGG (D) using upregulated genes in DP-DSCs. (E) Phase-contrast images of isolated non-
DSCs, DP-, and TP-DSCs from Meta4 organoids or Mist1-Kras mouse stomachs in Matrigel at 0, 1, 
or 4 weeks. (F, G) Quantitation of the number of spheres from isolated non-DSCs, DP-, and TP-DSCs 
from Meta4 organoids (F) or Mist1-Kras mouse stomachs (G). Mean ± SD (n = 3 or 4). Paired t-test. 
∗P < .05. (H, I) H&E and AB/PAS (H) and co-immunostaining for Trop2 and CD44v9 or Tff3 and 
Hoechst (I) in DSC-derived spheres at 4 weeks. Arrows (H) and dotted boxes (I) indicate enlarged 
area. Arrows in (I) denote CD44v9neg/Trop2+ dysplastic cells or Tff3+ goblet cells. 
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Figure A2.2: Evolution of DP-DSCs toward heterogeneous types of gastric cancer.  
(A, D) Experimental scheme of isolated DSC-injection study created with BioRender.com. (B) Bright-
field (BF) images of injection sites at 7 weeks after injection. Dotted areas indicate engraftments. 
Graph shows engraftment rates. (C) H&E, Masson’s trichrome (MT), or co-immunostaining for Sox9, 
Trop2, Cttn, CD44v6, CD133, CD166, Cdh17, EpCAM, Pdgfrα, α-SMA, Ki67, Cleaved caspase-3 
(CC-3), F4/80, CD163, P120 (epithelial cells), or PECAM in DP-DSC–derived engraftments at 7 
weeks after injection. Dotted boxes indicate enlarged area. (E) Tumor volumes in each group for 13 
weeks. Paired t-test. ∗P < .05, ∗∗P < .01, ∗∗∗P < .001. (F) BF and H&E images of tumors from total 
Meta4 cells or isolated DP-DSCs at 13 weeks after injection. Arrows denote CysAC (black) or TubAC 
(red) lesions. Graph shows tumor formation rates. (G) H&E or MT staining of CysAC or TubAC 
tissues from total Meta4 cells or isolated DP-DSCs. Arrows denote desmoplastic response areas. (H) 
H&E of each histological feature is indicated by arrows. Dotted boxes indicate enlarged area. (I) Co-
immunostaining for Trop2, Cdh17, EpCAM, α-SMA, F4/80, PECAM, or Ki67 in whole tumor tissues. 
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Figure A2.3: Cell heterogeneity of DP-DSC–derived tumors.  
(A) The t-distributed stochastic neighbor embedding (t-SNE) plot overlayed with cells from CysAC or 
TubAC (top) or cell clustering into 11 subpopulations (bottom). (B–D) t-SNE plot overlayed with 
expression of representative genes (blue) in each subpopulation, dysplastic/cancer (B), immune (C), 
or fibroblast (D). (E–J) Co-immunostaining for Sox9, Trop2, CD133, Cldn7, CD9, or Pdgfrα (E, F, G) 
or Ly6B2, CD4, CD19, F4/80, CD3, or Vegf (H, I, J) in CysAC or TubAC. Arrows indicate enlarged 
area and dotted areas denote Sox9- or Cldn7-negative cancer regions in (E) and (F). 
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Figure A2.4: Genetic alterations acquired during the DP-DSC evolution.  
(A) Phase-contrast images or immunostaining for Trop2 in Meta4 organoids, CysAC- or TubAC-
derived spheres in Matrigel. (B–D) Phase-contrast images (B), quantitation of the number (C), or 
diameters (D) of spheres derived from 1000 or 5000 cells dissociated from the tumor spheres at day 
12. Mean ± SD (n = 3). Each dot in (D) indicates a sphere diameter cumulated from 3 independent 
experiments. Unpaired t-test. ∗∗P < .01, ∗∗∗P < .001, ∗∗∗∗P < .0001. (E) Oncoplot of coding mutations 
in CysAC or TubAC. Top row indicates top 100 genes abundantly mutated in human gastric cancer 
cases (n = 165) and the following 5 rows indicate gene mutations in 5 independent tumors, CysAC 
(n = 2) or TubAC (n = 3). (F) Venn diagram presenting unique or overlapping genes between CysAC 
and TubAC. Genes affected by at least 1 mutation were classified into CysAC, TubAC, or both. (G) 
Schematic domain structures of Rnf43, Cdkn2a, and Apc with somatic mutations in Meta4 organoids, 
CysAC, or TubAC created with BioRender.com. ARM, armadillo repeat; BD, binding domain; SP, 
signaling peptide; TM, transmembrane domain. 
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Figure A2.5: Examination of tumorigenic abilities of DP-DSC–derived tumor cells. 
(A) BF images of tumors developed from CysAC or TubAC cells at 3 and 7 weeks after injection. (B, 
C) Tumor volumes in each group at 3 weeks (B) and 7 weeks (C). Two-way analysis of variance. 
∗∗∗∗P < .0001. (D) Quantitation of the proportion of cystic or tubular histology in the CysAC- (n = 10) 
or TubAC- (n = 20) derived tumors. Mean ± SD. (E) H&E or co-immunostaining for PECAM and Trop2 
or Vegf and Cdh17 in CysAC- or TubAC-derived tumors. Nuclei were counterstained with Hoechst 
and dotted boxes indicate enlarged area. (F) Graphical diagram of clonal evolution of DP-DSCs 
towards CysAC or TubAC created with BioRender.com. 
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Figure A2.6: Treatment of Salinomycin and Pyrvinium in Meta4 organoids.  
(A) Schematic illustration of target molecules of Salinomycin and Pyrvinium in the Wnt pathway 
created with BioRender.com. (B) Phase-contrast images of Meta4 organoids treated with DMSO 
vehicle, 1 μM of Salinomycin, or 100 nM of Pyrvinium for 3 days. (C, D) Quantitation of diameters (C) 
or the number of surviving organoids (D) before and after the treatment. Mean ± SD (n = 4). Each dot 
in (C) indicates an organoid diameter cumulated from 4 independent experiments. Paired t-test. ∗∗P < 
.01, ∗∗∗∗P < .0001. (E, F, and I) H&E (E), live/dead (Calcein AM/ethidium homodimer-1 [EthD-1]) cell 
staining (F) or co-immunostaining for Trop2, Cttn, Ki67, Pcna, Cleaved caspase-3 (CC-3), or P120 (I) 
after the treatment. Dotted boxes depict enlarged area. (G, H) Quantitation of the number of live and 
dead cells (G) or non-DSCs and DSCs among live cells (H) after the drug treatment. Mean ± SD (n = 
3). Paired t-test. ∗P < .05. (J) Phase-contrast images of DP-DSCs isolated from Meta4 organoids 7 
days after drug treatment and 7 days after drug withdrawal. (K) Quantitation of the number of 
surviving organoids after drug treatment and withdrawal. Mean ± SD (n = 3). 
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Figure A2.7: Evaluation of DSC activities in human gastric dysplasia.  
(A) Quantitation of the number of dysplastic tissue cores (n = 76) containing DP-DSCs 
(CD44v6neg/CD133+) and/or TP-DSCs (CD44v6+/CD133+). (B, C) The percentages of dysplastic 
tissue cores containing DP- or TP-DSCs in CD44v9+ and/or TROP2+ cell zones (B) or in Ki67+ cell 
zones (C). (D) Representative images of H&E or multiplexed-immunostaining for TROP2, CD44v6, 
CD44v9, CD133, and KI67. Dotted boxes indicate enlarged area of a DP- or TP-DSC zone. Arrows 
indicate a KI67-positive DP-DSC-zone in CD44v9neg/TROP2+ dysplastic glands or a KI67-negative 
TP-DSC-zone in CD44v9+/TROP2+ transitioning glands. (E) Representative picture of surgical 
specimens from patients with gastric cancer. Box indicates the collected region. (F) H&E (top) or co-
immunostaining for TROP2 and CD44v9 in patient tissues with metaplasia or dysplasia (middle) or 
co-immunostaining for TROP2, CD44v9, and AQP5 in organoids derived from the tissues (bottom). 
(G) The percentages of TROP2+ cells or TROP2+ DSCs in dysplastic organoids. Mean ± SD (n = 3). 
(H) Phase-contrast images of isolated non-DSCs and DSCs from human dysplastic organoids in 
Matrigel at 0, 1, or 4 weeks. Dotted boxes indicate enlarged area. (I, K) Images of H&E (I) or AB/PAS 
(K) staining. Arrows denote enlarged area. (J, L) Co-immunostaining for TROP2, CD44v9, and AQP5 
(J) or TFF3 and Hoechst (L) in DSC-derived spheres at 4 weeks. Dotted boxes indicate enlarged 
area. Arrows denote TROP2+ dysplastic cells (J) or TFF3+ goblet cells (L). (M) Phase-contrast images 
at day 0 or merged with images captured after live/dead (Calcein AM/ethidium homodimer-1 [EthD-1]) 
cell staining 3 days after the treatment in metaplastic or dysplastic organoids. (N) Quantitation of the 
number of metaplastic (n = 2) or dysplastic (n = 5) organoid lines positive for Calcein AM (live) or 
EthD-1 (dead) after treatment with either Salinomycin or Pyrvinium. Mean ± SD. Paired t-test. ∗P < 
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.05. (O) Phase-contrast images of isolate DSCs from human dysplastic organoids 7 days after 
treatment and 7 days after drug withdrawal. (P) Quantitation of the number of surviving organoids 
after the drug treatment and withdrawal. Mean ± SD (n = 3). 
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APPENDIX 3: HETEROGENEITY AND DYNAMICS OF ACTIVE KRAS-INDUCED DYSPLASTIC 
LINEAGES FROM MOUSE CORPUS STOMACH7 

A3.1 INTRODUCTION 

Intestinal type-gastric cancer, the most common type of gastric cancer1,2, develops within a 

field of metaplastic mucosal lineages. Neoplasia in the stomach corpus represents the most 

prominent example of cancer developing through a cascade of metaplastic, dysplastic and neoplastic 

changes1,3,4. Previous studies by our group and others using a number of different mouse models 

have identified the initiating steps of gastric carcinogenesis, such as spasmolytic polypeptide-

expressing metaplasia (SPEM) development and its progression to intestinal metaplasia (IM)5,6,7,8. 

Although SPEM and IM are considered as central to the development of gastric cancer9, it is still 

unclear whether these metaplasias have a capacity to evolve directly into neoplasia. Furthermore, the 

identity of dominant signaling pathways or master regulators promoting metaplasia progression to 

neoplasia remain unclear, in part because no mouse models to date recapitulate the full spectrum of 

gastric carcinogenesis 

A tumor in many types of cancers, including gastric cancer, is composed of many different 

cell populations, including cancer cells, immune cells, mesenchymal cells and endothelial cells. 

Cancer cells themselves have heterogenous intra-tumor populations10,11. This cellular heterogeneity 

can be caused by altered gene activation with or without genetic mutations in individual cells12,13. 

Upregulation of Kras activity, a key signaling pathway contributing to gastric cancer development and 

progression, has been observed in up to 40% of human intestinal type gastric cancers14,15,16. Recently 

our investigations using a mouse model, which induces active Kras expression in Mist1-expressing 

chief cells in the stomach corpus mucosa, showed that metaplasia progression is controlled by Kras 

activity and reversed by an inhibitor of MEK, a downstream mediator of the Kras signaling 

pathway5,17. However, the cellular mechanisms or biological functions of Kras activation on cellular 

heterogeneity during metaplasia transition to neoplasia remain obscure. 

 
7 This appendix previously appeared as an article published in Nature Communications. The original 
citation is as follows: Min, Jimin, Paige N. Vega, Amy C. Engevik, Janice A. Williams, Qing Yang, 
Loraine M. Patterson, Alan J. Simmons et al. "Heterogeneity and dynamics of active Kras-induced 
dysplastic lineages from mouse corpus stomach." Nature communications 10, no. 1 (2019): 1-16 
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Cancer stem cells are considered a central source of the diverse cell populations in cancer 

and have essential roles in cancer cell differentiation, tumor growth, recurrence and even cancer 

metastasis and therapeutic treatment resistance18,19. Therefore, intra-tumor heterogeneity has 

become a crucial factor in determining successful therapeutic treatments. In gastric cancer, cellular 

heterogeneity is commonly observed and a variety of putative markers for cancer stem cells are 

present in human gastric cancer tissues20,21,22. However, the cellular heterogeneity and the presence 

of stem cells in dysplasia as a precursor of gastric cancer have not been explored. Thus, the cellular 

heterogeneity and plasticity within the dysplastic niche contributing to gastric cancer initiation and 

progression are largely unknown. 

In this study, we report the development of in vitro gastric metaplastic and dysplastic 

organoid models to investigate the cellular characteristics and behaviors of metaplasia and dysplasia 

in the stomach corpus. These organoid lines recapitulate the phenotypes and characteristics 

observed in the gastric carcinogenesis cascade, as observed in activated Kras-induced mouse 

models and in human gastric cancer. We also define the cellular heterogeneity and distinct 

phenotypes of dysplastic cells and identified two different stem cell populations in dysplasia. 

A3.2 RESULTS 

A3.2.1 Establishment of metaplastic or dysplastic organoids 

To study the cellular characteristics and behaviors of metaplasia and dysplasia, we first 

established two different organoid lines derived from Mist1-Kras mouse stomach corpus mucosa. As 

we have previously reported5, H&E staining confirmed the development of metaplasia at 3 months 

after tamoxifen injection and the presence of glands with dysplastic cells at 4 months after tamoxifen 

injection (Fig. 1a). We isolated glands in gastric tissues from the Mist1-Kras stomach corpus at 3 or 4 

months after tamoxifen injection and plated them in Matrigel for 3-dimensional (3D) culture. The 

isolated glands formed spherical structures one day after plating in Matrigel (Fig. 1b). All of the 

organoid lines have undergone continuous passaging following derivation for over 1 year and form 

distinguishable structures in 3D cultures (Supplementary Fig. 1B, C). 
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We assessed growth and phenotypic changes in the organoids. While gastroids derived from 

normal stomach corpus mucosa form only spheroid structures23,24 (Supplementary Fig. 1D), the 

Meta3 and Meta4 organoids displayed more dynamic behaviors and complex structures. Both Meta3 

and Meta4 organoids formed complicated budding or cyst-like structures with patches of Ki67-positive 

cells between 2 and 4 weeks in 3D culture (Fig. 1c and Supplementary Fig. 1E). Each organoid line 

generated from three independent mouse tissue samples showed complex structures with budding 

formation at 2 weeks in culture (Supplementary Fig. 1A). The budding formation in Meta4 was 

significantly increased at both 1 and 2 weeks in culture, compared to Meta3 organoids, and about 

50% of Meta4 organoids showed budding structures at 2 weeks in culture (Fig. 1e). The Meta3 

organoids developed large budding structures with a single monolayer of cells throughout most of the 

organoids within budding extensions (Fig. 1d). In contrast, the Meta4 cells displayed more 

disorganized organoid structures with multiple layering of cells, common cytological characteristics of 

dysplastic epithelial cells (Fig. 1d, red arrow). This observation is consistent with the phenotypes 

displayed in thicker glands along with glandular fission at the gland bases in vivo in Mist1-Kras mouse 

corpus at 4 months after tamoxifen injection (Fig. 1a). We additionally examined the histological 

phenotypes of Meta3 and Meta4 organoids. Both Meta3 and Meta4 organoids expressed CD44v9 

and Sox9 (Supplementary Fig. 2A). Also, expression of Cdx1, which is considered a marker for IM, 

was occasionally observed in both Meta3 and Meta4 organoids (Supplementary Fig. 2A, white 

arrows). In particular, Meta4 organoids continuously expressed Cortactin, which has critical roles for 

cancer cell invasion and migration25,26,27,28, through many rounds of passaging (Supplementary 

Fig. 2B). Thus, these organoid lines displayed unique characteristics of metaplastic lineages with 

Meta3 cells reflecting IM and Meta4 cells showing more dysplastic phenotypes. 

A3.2.2 Distinct characteristics of Meta3 and Meta4 organoids 

We used inDrop single-cell RNA-sequencing (scRNAseq)29,30,31,32, and the Seurat pipeline33,34 

to characterize further the Meta3 and Meta4 organoid lines as metaplastic or dysplastic, respectively 

(Supplementary Fig. 3A). Dimension reduction by PCA and visualization with t-Distributed Stochastic 

Neighbor Embedding (t-SNE)35 showed that the Meta3 and Meta4 samples separated almost entirely, 

suggesting major transcriptomic differences between the two organoid lines (Fig. 2a and 
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Supplementary Fig. 3B, C). Unsupervised clustering and differential expression analyses revealed 

that the Meta3 sample has low heterogeneity and no subpopulations (cluster 1), while the Meta4 

sample consists of a small, Meta3-like subpopulation (metaplastic, cluster 1’) and a dominant, Meta4-

specific subpopulation (cluster 2) (Fig. 2a, Supplementary Figs. 4A-F and 5A, C). Genes upregulated 

in cluster 1’ cells were also upregulated in the Meta3 sample (Fig. 2a-c and Supplementary Fig. 5A, 

C). Differential expression analysis between clusters 1/1’ and 2 revealed several upregulated genes 

that support the metaplastic and dysplastic characterization of the organoids (Fig. 2b). Both Meta3 

and Meta4 cells have high expression of many key markers of metaplasia, such as Wfdc2, Mal2, and 

Gpx2, and cancer stem cell (CSC) marker genes, such as Cd44, CD133 (Prom1), and CD166 

(Alcam) (Fig. 2c). Several differentially expressed genes between Meta3 and Meta4 were validated 

by qPCR (Supplementary Fig. 5B). PANTHER gene ontology analysis36 using upregulated genes for 

Meta3 and Meta4 samples (Supplementary Data 1) revealed upregulation of structural molecule 

activity and translation regulator activity in the Meta4 sample compared to the Meta3 sample 

(Fig. 2d). Taken together, the transcriptomic profiles of Meta3 and Meta4 samples are distinct and 

confirmed the cellular characteristics of Meta3 and Meta4 organoids as metaplastic or dysplastic 

organoids. 

A3.2.3 Implanted Meta4 organoids engrafted in mouse stomachs 

To assess whether the dysplastic cells can survive and grow in vivo, we performed an 

orthotopic implantation study using Meta4 organoids. We implanted tdTOM-positive Meta4 organoids 

into the anterior stomach wall of C57BL/6 wildtype mice and sacrificed mice at 1 month after 

implantation. The implantation resulted in 40% local engraftment of Meta4 organoids within 1 month. 

The engraftments were mostly cystic and we did not observe gross tumors derived from Meta4 after 

implantation surgery. It is important to note that we also implanted Meta3 organoids into the stomach 

wall of C57BL/6 wildtype mice, however, no engraftment of Meta3 organoids was observed at 1 

month after the implantation. A representative H&E stained image of engraftment demonstrates that 

Meta4 engrafted in the muscular layer of stomach and immune cells were infiltrating around the 

engraftment (Fig. 3). The engrafted cells were positive for tdTOM confirming that the origin of 

engraftment was Meta4 organoids and staining for phosphoERK1/2 and pan-cytokeratin, an epithelial 
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cell marker, indicated that the engrafted cells were epithelial cells with active Kras signaling. The 

engrafted cells were positive for CD44v9 and Ki67, demonstrating that the engrafted cells maintained 

the characteristics of Meta4 organoids and were proliferative. In addition, we stained for Vimentin 

(VIM), which is a marker for epithelial-mesenchymal transition in cancer cells, and cortactin. We 

observed many apically oriented Cortactin-expressing engrafted cells, while only a few cells showed 

VIM immunoactivity (Fig. 3, white arrows). Therefore, this result shows that dysplastic cells, but not 

metaplastic cells, can survive and propagate in vivo. 

A3.2.4 Cellular behaviors of Meta4 can be altered by MEK inhibition 

To examine whether the inhibition of the Kras signaling pathway can alter changes in cellular 

structures or behaviors and cell survival, we treated the Meta4 organoids with Selumetinib, a MEK 

inhibitor, at one or two days after passaging when the organoids show spheroidal structures. The 

inhibition of the Kras signaling pathway by Selumetinib was confirmed by decreased expression of 

phospho-Erk1/2 in three different Meta4 lines, while total Erk1/2 protein expression after the 

Selumetinib treatment was not changed (Supplementary Fig. 6A, B). Most Meta4 organoids treated 

with Selumetinib for 3 days showed decreased viability and the dead cells were extruded into the 

organoid lumen (Fig. 4a and Supplementary Fig. 6C and Supplementary Movie 1). However, some 

Meta4 organoids showed an ability to survive and retained spherical structures despite the 

Selumetinib treatment for 3 days, although they did not show an increase in size and showed 

decreases in Ki67 gene expression level and Ki67-positive cells (Fig. 4a, b and Supplementary 

Fig. 6E, F). The Selumetinib-treated Meta4 organoids showed a thin epithelial layer and formed 

rounded spheroidal shapes, whereas the DMSO vehicle-treated organoids showed a thicker epithelial 

layer and irregular spheroidal shapes (Fig. 4c). We next stained Meta4 organoids with antibodies 

against intestinal enterocyte apical membrane markers, including UEAI, Villin and F-actin to examine 

the structural changes in treated cells. While the Meta4 organoids treated with DMSO vehicle did not 

show apical brush border staining, F-actin, Villin and UEAI strongly stained the apical membranes of 

Meta4 cells after Selumetinib treatment (Fig. 4c). Finally, the remaining Meta4 organoids after MEK 

inhibition did not survive after three passages, indicating that the Meta4 organoids do not sustain 

prolonged growth under MEK inhibition condition (Supplementary Fig. 6D). 
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These findings suggested that the Meta4 cells transitioned into a more differentiated state 

towards an absorptive intestinal enterocyte phenotype. qPCR with primers for intestinal lineage 

marker genes confirmed altered differentiation of the Meta4 organoids treated with Selumetinib, with 

increased the expression of Tff3 and Gpx2, but expression of the intestinal stem cell marker, Lgr5 

was decreased (Fig. 4d). 

Transmission electron micrographs of the Meta4 organoids treated with either DMSO vehicle 

or Selumetinib also showed remarkable differences and some similarities. The Meta4 cells treated 

with DMSO vehicle showed less complete polarization with a lack of clear lateral cell–cell contacts or 

basal surface attachment. Although both organoids displayed features of polarity, as they clearly 

showed microvilli on the apical surface, the Meta4 organoids treated with DMSO vehicle showed 

signs of piling and an increase in electron dense material (Fig. 4e). In contrast, the Selumetinib-

treated cells showed luminal content and a larger compartment of cytoplasmic vesicles similar to the 

early stages of autophagy (Fig. 4e). Taken together, the data suggest that the Selumetinib-treated 

Meta4 cells are differentiating into an absorptive cell phenotype after MEK inhibition. 

We additionally examined whether the Meta3 organoids showed these dynamic changes 

after MEK inhibition. The Meta3 organoids treated with Selumetinib for 3 days also did not grow in 

size (Supplementary Fig. 7A, B). While UEAI and Villin were not present in the DMSO vehicle-treated 

Meta3, the apical membrane markers were strongly expressed in Selumetinib-treated Meta3 

(Supplementary Fig. 7C), and enterocyte lineage marker genes, such as Tff3 and Gpx2, as well as 

Lys (Lysozyme) and Cdx1 were also increased (Supplementary Fig. 7D). Furthermore, the 

immunostaining for Villin in the stomachs of Mist1-Kras mice treated with Selumetinib for 2 weeks at 3 

months after tamoxifen injection confirmed an increase in Villin expression in the apical membrane of 

remaining metaplastic cells after the Selumetinib treatment (Supplementary Fig. 7E). These results 

suggest that MEK inhibition in both Meta3 and Meta4 cells inhibits growth and promotes the 

differentiation of cells into enterocyte-like lineages. 
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A3.2.5 Dysplastic behaviors are altered by Cortactin localization 

Since MEK inhibition promoted apical differentiation and altered the morphology of Meta4 

organoids, we next performed soft agar colony formation assays as a measure of anchorage 

independent growth to examine whether the Meta4 cells can be controlled by MEK inhibition in vitro. 

The Meta4 organoids treated with DMSO vehicle survived and grew larger in soft agar. However, 

many Meta4 organoids treated with Selumetinib failed to survive or showed arrested growth within 3 

days of Selumetinib treatment (Supplementary Movie 2) and fewer colonies survived at 2 weeks in 

the Selumetinib-treated Meta4 compared to DMSO-treated Meta4 (Fig. 5a). While the Meta4 cells 

treated with DMSO vehicle formed higher numbers of colonies with a size of at least 100 μm diameter 

(80.77 ± 14.98) and grew into larger colonies (179 ± 8.37 μm), the colony number for Selumetinib-

treated Meta4 was significantly decreased (34.43 ± 14.44), and the average size of colonies was 

slightly smaller (159 ± 13.98 μm) than DMSO vehicle-treated colonies (Fig. 5b, c). In addition, 

histological examination of surviving colonies in DMSO vehicle-treated wells displayed very 

disorganized dysplastic cell phenotypes similar to those we have observed in a long-term 3D culture 

of Meta4 organoids in Matrigel. In contrast, the surviving colonies in Selumetinib-treated wells 

showed rounded morphologies consisting of a monolayer of cells with very well-aligned and basally 

located nuclei, even in organoids that had grown to substantial sizes (Fig. 5d). These data suggest 

that the MEK inhibition alters the growth behavior of Meta4 organoids. 

To examine an aggressive characteristic of the Meta4 organoids, we next examined the 

changes of Cortactin protein in Meta4 organoids after MEK inhibition. In 3D culture, Cortactin protein 

was observed in the apical membrane area of both DMSO vehicle-treated and Selumetinib-treated 

Meta4 organoids (Fig. 5e). In 2D monolayer culture, Cortactin was generally observed in the 

cytoplasm. However, in DMSO vehicle-treated Meta4 cells, Cortactin was also observed at the 

lamellipodia of cells at the leading edge of cell migration (Fig. 5f, white arrows). In contrast, the 

Cortactin expression at the lamellipodia was dramatically reduced after Selumetinib treatment and 

accumulated within the peri-nuclear region of the cells. At the same time, the expression of phospho-

Ezrin, which is an apical brush border membrane marker in intestinal epithelial cells, was increased at 
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the lamellipodia in Meta4 cells surviving Selumetinib treatment (Fig. 5f, white arrows). These data 

support the loss of aggressive phenotypes in Meta4 cells after MEK inhibition. 

A3.2.6 Molecular changes in Meta4 cells after MEK inhibition 

To evaluate transcriptomic changes and to define altered subpopulations or cellular 

heterogeneity of Meta4 after MEK inhibition, we performed scRNA-seq in Meta4 cells treated with 

either DMSO vehicle only or Selumetinib for 3 days29,30,31,32. We analyzed 2471 DMSO vehicle-

treated Meta4 cells and 905 Selumetinib-treated Meta4 cells using the Seurat pipeline and our own 

subpopulation-matching algorithm33,34 (Supplementary Fig. 8A-C). Dimension reduction by PCA and 

visualization with Uniform Manifold Approximation and Projection (UMAP)37 showed that the DMSO 

vehicle-treated and Selumetinib-treated Meta4 samples separated almost entirely, suggesting major 

transcriptomic differences among DMSO vehicle-treated and Selumetinib-treated cells (Fig. 6a, 

Supplementary Fig. 8D-F). Gene ontology analysis using differentially expressed genes between the 

two samples (Supplementary Data 1) and the PANTHER classification system36 also supported the 

distinct gene expression profiles (Fig. 6b, c). DMSO vehicle-treated Meta4 cells exhibited upregulated 

structural molecule activity and binding related genes, such as Krt7, Krt8, and Krt18, which are also 

diagnostic markers in gastric cancer pathology38 (Fig. 6b-d, Supplementary Fig. 12A). Selumetinib-

treated cells exhibited upregulation of catalytic and transporter activity, such as Gpx2, Gclm, Gclc, 

and Akr1b3 and downregulation in the expression of stress markers, most notably Clu (Fig. 6b-d, 

Supplementary Fig. 12A). 

To identify subpopulations of cells within DMSO vehicle-treated and Selumetinib-treated 

Meta4 samples, we performed unsupervised clustering analysis on each dataset (Supplementary 

Figs. 8G and 9A-H). Since the subpopulations within these samples were not aligned and could not 

be directly compared due to the perturbation of Selumetinib treatment, we performed a 

subpopulation-matching analysis that matches similar cell types between two samples using gene 

signatures (Supplementary Fig. 10A-C). This subpopulation-matching method identified four cell 

subpopulations present in both DMSO-vehicle and Selumetinib treatment groups, but the 

subpopulations differed in proportion in the samples (Fig. 6a, Supplementary Fig. 11B). Differential 

expression analysis identified many genes unique to each subpopulation in the context of DMSO-
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vehicle or Selumetinib treatment (Supplementary Fig. 11A). We next analyzed the characteristics of 

subpopulations using known markers of cancer, CSCs, SPEM, IM, proliferation, and normal gastric 

cells between matched subpopulations across the Selumetinib treatment (Fig. 6d). To investigate 

further the proliferative features in each subpopulation, we assessed the expression levels of genes 

specific to cell cycle stages39. This analysis revealed a strong proliferative signature in subpopulation 

3 in the DMSO vehicle-treated sample (Fig. 7a, b), and the subpopulation 3 also expressed high 

levels of the proliferation markers, Pcna and Mki67 (Fig. 6d). In addition to high expression of cell 

cycle and proliferation genes, subpopulation 3 highly expressed markers of CSCs and cancer-related 

genes, compared to the other three subpopulations (Fig. 6d). Although subpopulation 4 did not exhibit 

proliferative characteristics, there was high expression of many genes related to CSC or cancer. In 

addition, the data also showed a moderate increase in genes for normal gastric cells after MEK 

inhibition. 

To investigate further the transcriptional activity of the subpopulations across Selumetinib 

treatment, we predicted the activity of transcription factors based on the expression of their target 

genes using DoRothEA40. Subpopulation 3 of the Selumetinib-treated Meta4 sample displayed 

significant decreases in activity of several transcription factors only in the MEK pathway, including E2f 

and Ets family members, compared to subpopulation 3 of the DMSO vehicle-treated Meta4 sample 

(Supplementary Fig. 12B, C). Taken together, these results confirmed the cellular heterogeneity of 

Meta4 organoids, including subpopulations expressing cancer-related genes. 

A3.2.7 DSC populations present in Meta4 have different stemness 

From our scRNA-seq data analysis of Meta3 and Meta4 cells, we observed expression of 

known cancer stem cell marker genes such as CD133 (Prom1) and CD166 (Alcam)41 in both Meta3 

and Meta4 (Fig. 2c). To identify whether the cells in Meta3 and Meta4 expressing CD133 and CD166 

can be considered pre-cancerous stem cells, we isolated CD133+/CD166+ cells from Meta3 or Meta4 

organoids and performed qPCR for metaplastic, stem cell-related and proliferation markers. While the 

expression of many stem cell-related genes such as Cd44, CD133 (Prom1) and CD166 (Alcam) were 

significantly enriched in sorted CD133+/CD166+ Meta4 cells, those markers did not show significant 
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changes, except Aldh1a1 and Pcna, in sorted CD133+/CD166+Meta3 cells (Supplementary Fig. 13A, 

B). 

To identify the DSCs and determine the extent of heterogeneity of Meta4 organoids, the 

Meta4 cells were dissociated and subjected to high-throughput functional analysis by micro-CellRaft 

Arrays (CRAs)42,43. Flow cytometry data demonstrated two populations of DSCs: 

CD44neg/CD133+/CD166+ (Double-positive) and CD44+/CD133+/CD166+cells (Triple-positive) 

(Fig. 8a). In contrast, we observed Cd44 gene expression in both DSC subpopulations from the 

scRNA-seq data analysis (Fig. 6d), but gene expression data would include all CD44 variant isoforms 

including CD44v9. The antibody used for sorting recognizes CD44v6, but not CD44v9. Single cells 

from each population were applied to CRAs and cultured for 8 days to determine clonal survival and 

sphere forming efficiency (Fig. 8b-d). Figure 8e shows that Double-positive cells, which are negative 

for CD44, produced clones 4.6-times more efficiently than Triple-positive cells. These results suggest 

functional differences in stemness between Double-positive and Triple-positive DSCs. 

To assess whether the DSCs are also present in vivo, we stained for the markers, which we 

used for clonal analysis, in the Mist1-Kras mouse stomach corpus at 4 months after tamoxifen 

injection (Fig. 8g). Based on staining for the expression of CD44, CD133 and CD166 proteins, we 

identified two DSC subpopulations in vivo: the Triple-positive cells were located at the base of the 

glands (white arrows) and the Double-positive cells were located right above the Triple-positive cell 

zone (yellow arrow). Both of the populations expressed Sox9 and CD44v9, validating the same 

phenotype of DSCs present in Meta4 organoids. Many more Double-positive cells were co-positive 

for Ki67 compared to Triple-positive cells (Fig. 8f, g). We additionally stained the Mist1-Kras mouse 

stomach corpus at 3 months after tamoxifen injection using same markers. Although the scRNA-seq 

data analysis displayed significant expression of the stem cell marker transcripts in Meta3 organoids 

(Fig. 2c), only CD166 protein was present in the membrane of cells located at the base of IM glands 

and no expression for CD44 and only weak expression of CD133 were observed in cells of the IM 

glands (Supplementary Fig. 13C). These results suggest that the Double-positive DSCs represent a 

more proliferative stem cell population and the Triple-positive DSCs are less proliferative putative 

stem cell population. 
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We further examined whether the spheres derived from the isolated DSCs can survive and 

be propagated. We initially observed fewer numbers of spheres derived from the Triple-positive DSCs 

and very few spheres from the Triple-negative cells, compared to the number of spheres from 

Double-positive DSCs, similar to the CRA culture data (Figs. 8e, 9a, b). Interestingly, the spheres 

from both Double-positive and Triple-positive DSCs were successfully passaged and showed similar 

sphere expansion rates after passaging (Fig. 9a, b). At passage 2, 87.44 ± 6.49% of cells in the 

spheres from the Double-positive DSCs sustained the cell fate as Double-positive and 83.99 ± 7.95% 

of cells in the spheres from the Triple-positive DSCs were Double-positive DSCs. Interestingly, the 

proportions of the Double-positive DSCs in the spheres either from the Double-positive 

(90.56 ± 9.76%) or Triple-positive DSCs (92.49 ± 5.25%) were still maintained through passage 4 

(Fig. 9c). In addition, Triple-positive DSCs, as well as Triple-negative cells were detected in spheres 

derived from both Double-positive and Triple-positive DSCs (Fig. 9c). This result implies that the two 

different stem cell populations can interconvert their cell identity between each other and can undergo 

terminal differentiation into Triple-negative cells. 

A3.3 DISCUSSION 

In this study we have established gastric metaplastic and dysplastic organoid lines that 

recapitulate many features of the gastric carcinogenesis cascade observed in mouse models and 

human patient samples. The organoid lines display distinguishable structures and dynamic behaviors, 

pathological phenotypes and molecular signatures. Both organoid lines showed active Kras-

dependent alterations in cellular behaviors and morphological structures. They have been continually 

passaged, undergone freezing and thawing following derivation, and maintained distinguishable 

structures as metaplastic or dysplastic organoids in 3D cultures. The Meta4 organoids demonstrated 

aggressive characteristics and cellular heterogeneity, including clonogenic growth and engraftment 

following orthotopic reimplantation into the stomach wall. 

Intestinal type-gastric cancer arises within a dynamic metaplastic milieu populated initially by 

SPEM with progression to IM5,6. Since Dr. Correa first identified the association of IM with the 

development of intestinal type-gastric cancer several decades ago44, many studies have sought to 

understand the cellular mechanisms initiating SPEM development5,6,8 and progression to IM in 
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association with chronic inflammation7,45,46,47. However, evaluation of dysplasia, an initial feature of 

neoplastic changes in gastric carcinogenesis, has been hampered by both a lack of cell lines for 

gastric metaplasia or dysplasia and an absence of mouse models that develop true neoplasia as 

seen in humans. The Meta4 organoids showed prominent phenotypes consistent with dysplastic 

cells. These phenotypic characteristics were driven by active Kras expression in Meta4 cells derived 

from the Mist1-Kras mouse5. However, inhibition of MEK, a downstream mediator of the Kras 

signaling pathway, led to a remarkable regression of dysplastic structures and behaviors. These 

insights suggest that active Kras signaling might be one of the dominant signaling cascades driving 

gastric carcinogenesis from pre-cancerous stages to cancer. 

Comparative analysis of transcriptome profiles of Meta3 and Meta4 cells using scRNA-seq 

also identified distinct molecular signatures in Meta4 cells as dysplastic cells compared to Meta3 cells 

as metaplastic cells. The Meta4 cells displayed increases in binding or structural molecule activity-

related genes including gastric cancer related genes compared to the Meta3 cells. In contrast, Meta4 

cells expressed lower levels of IM marker genes such as Tff3 and Gpx2 than Meta3 cells, which 

demonstrate characteristics more consistent with IM. While the Meta4 cells expressed increased cell 

structure or dysplastic function-related genes, the surviving cells after Selumetinib treatment 

increased metabolism-related gene expression. 

The characteristics of Meta4 cells as dysplasia might be maintained by the two DSC 

populations. The high-throughput functional analysis using micro-CRAs demonstrated two possible 

DSC populations, one proliferative and the other relatively less-proliferative. The proliferative DSCs 

were Double-positive for two cancer stem cell markers, CD133 and CD166, but negative for CD44, 

which is commonly used to isolate stem cell populations in many tissues48,49,50. In contrast with the 

expression of CD44v6, which is recognized by the flow sorting antibody, these Double-positive cells 

do express CD44v9, which is upregulated in metaplasia and early stage gastric cancer and was used 

to validate Meta4 engraftment (Figs. 3, 8g). Nearly 30% of these Double-positive DSCs were 

proliferative in clonal survival and spheroid forming efficiency, but both Double-positive and Triple-

positive DSC populations displayed flexibility in cell fate conversion and differentiation. We also 

identified signatures of the two different subpopulations representing proliferative and less-
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proliferative DSCs in the scRNA-seq data analysis. The proportion of the DSC population by marker 

expression was increased from 13.2% to 49.3% after the MEK inhibition, however the increased DSC 

population was not proliferative in surviving Meta4 organoids after MEK inhibition. Also, the surviving 

dysplastic cells did not sustain continued growth under MEK inhibition, although there were still DSC 

marker-positive populations. These results suggest that the Double-positive DSCs might be a source 

for maintaining the dysplastic cell lineages, and stem cell behaviors can be controlled by MEK 

inhibition. However, all the experiments in this study were performed in vitro using Meta3 and Meta4 

organoids. Therefore, the fundamental mechanisms of DSC differentiation into dysplastic cells and 

their evolution into neoplastic stages, as well as alternative functions or responses of the two DSC 

populations to extrinsic influences during gastric carcinogenesis in vivo, remain unclear. Also, it is not 

apparent whether the cells surviving MEK inhibitor treatment are displaying a signature of normal 

lineage cell differentiation, as we observed in Mist1-Kras mice in our previous study5. Therefore, 

further studies are necessary to elucidate the full spectrum of the functional capacity of the DSCs 

present in dysplasia as precursors of gastric cancer cells. 

Taken together, we have established two organoid lines derived from active Kras-induced 

mouse stomach corpus. These organoid lines represent an in vitro model system displaying 

characteristics of intestinalizing metaplasia, as well as dysplasia. Our study provides insights into a 

role for Kras activation in gastric carcinogenesis and the presence of distinct dysplastic stem cell 

populations, which might be important for maintaining dysplastic cell lineages and neoplastic 

transition. 
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A3.4 FIGURES 

 
 
Figure A3.1: Establishment and characterization of Meta3 and Meta4 organoid lines. 
a H&E stained slides show stomach mucosa used to isolate metaplastic or dysplastic glands only 
from the corpus area of Mist1-Kras mouse stomachs at 3 or 4 (Meta3 or Meta4) months after 
tamoxifen injection. Dotted boxes indicate enlarged area. Scale bars indicate 100 μm. b Phase 
contrast images of Meta3 and Meta4 organoids captured 0, 1, and 7 days after plating in Matrigel. 
Red arrows indicate budding structures. Scale bars indicate 50 μm. c Phase contrast images of 
Meta3 and Meta4 captured at 2 or 4 weeks in 3D culture. Scale bars indicate 50 μm. d Paraffin 
embedded sections from Meta3 or Meta4 organoids at 4 weeks in 3D culture examined by H&E 
staining. Red boxes indicate enlarged area. Red arrow indicates a representative multilayered area of 
Meta4. Scale bars indicate 100 μm. e Quantitation of the average budding rate in Meta3 and Meta4 at 
1 or 2 weeks in 3D cultures. Source data are provided as a Source Data file. Data are presented as 
mean values with standard deviation (n = 9). P-values were calculated using unpaired two-tailed t-
test. **P = 0.004; ****P < 0.0001. 
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Figure A3.2: Single-cell RNA sequencing analysis of Meta3 and Meta4 cells. 
a t-SNE plot with overlay of Meta3 and Meta4 samples (left) and clustering of Meta3 and Meta4 
datasets into subpopulations 1, 1’, and 2 (right). b Heatmap of the top 50 (approximately) upregulated 
genes found by differential expression analysis between subpopulations 1/1’ and 2. Upregulated 
genes were defined as those expressed in at least 25% of the cells in the sample with at least 0.1 log 
fold-change over the other subpopulation. P-values were calculated using a two-tailed the Wilcoxon 
Rank Sum test with Bonferroni correction and were <0.05. Rows correspond to individual genes and 
columns are individual cells, arranged by sample and subpopulation. Yellow corresponds to high 
expression, black corresponds to neither high nor low expression, and purple corresponds to low 
expression. c Dot plots showing selected markers for GCSCs, SPEM, IM, proliferation, and normal 
gastric epithelium, displayed by sample and subpopulation (left). Dot plots of upregulated genes 
identified by differential expression analysis of subpopulations 1’ and 2 within only the Meta4 sample, 
displayed by subpopulation and sample, including both Meta3 and Meta4 (right). The dot size 
represents the percent of cells within the subpopulation with detected expression of the gene and 
color intensity reflects the average expression in those cells with detectable gene expression. d 
PANTHER gene ontology classification results using the top 50 upregulated genes from differential 
expression analysis between Meta3 and Meta4 samples. 
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Figure A3.3: Orthotopic implantation of Meta4 organoids in mice. 
H&E stained slides show engrafted area in the stomach muscularis layer at 1 month after 
implantation. Immunostaining for an epithelial cell marker, pan-cytokeratin (pan-CK), a marker for 
Kras signaling downstream, phospho-ERK1/2 (pERK1/2), an EMT marker, Cortactin (CTTN), a 
metaplasia and gastric cancer marker, CD44v9, a proliferation marker, Ki67 and the red fluorescent 
protein tdTomato (tdTOM, red) with Vimentin (VIM, green). Dotted box indicates enlarged inset area. 
Scale bars indicate 100 μm. Source data are provided as a Source Data file. 

 
Figure A3.4: Examination of cellular changes in Meta4 organoids after MEK inhibition. 
a Meta4 organoids were treated with either DMSO containing control media or Selumetinib (1 μM) 
containing media for 3 days. Phase contrast images were captured before and 3 days after the 
DMSO vehicle or Selumetinib treatment. Scale bars indicate 500 μm. b Diameters of Meta4 organoids 
were manually measured before and after either DMSO vehicle or Selumetinib treatment. Data are 
presented as mean values with standard deviation. P-values were calculated using unpaired two-
tailed t-test. ****P < 0.0001. c Co-immunostaining for markers of enterocyte apical membrane, UEAI, 
Villin and F-actin in paraffin sections of Meta4 treated with either DMSO vehicle or Selumetinib. Scale 
bars indicate 50 μm. d Expression of intestinal lineage marker transcripts after Selumetinib treatment. 
Quantitative PCR showing relative expression of intestinal lineage marker genes (Lgr5, Lys, Tff3, 
Cdx1, Cdx2, Gpx2, Ctfr, Villin, and Muc2), a CSC marker (panCD44) and metaplasia markers 
(CD44v9 and Clu) 3 days after Selumetinib treatment. Lys, Cdx1, Cdx2, and Muc2 were not detected. 
Data are presented as mean values with standard deviation (n = 3). P-values were calculated using 
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unpaired two-tailed t-test. *P < 0.05 (0.01; Gpx2), **P < 0.005 (0.002; Cftr, 0.009; CD44v9), 
***P < 0.005 (0.0003; Villin), ****P < 0.0001 (Lgr5, Tff3, panCD44). e Transmission electron 
micrographs (TEM) of Meta4 organoids treated with either DMSO vehicle (above) or Selumetinib 
(below) for 3 days. Dotted boxes indicate enlarged area. Scale bars indicate 2 microns or 500 nm. 
Source data are provided as a Source Data file. 

 
Figure A3.5: Inhibition of dysplastic behaviors of Meta4 organoids by MEK inhibition. 
a–d Inhibitory effect of Selumetinib treatment in soft agar culture for 2 weeks. a Phase contrast 
images show that colony formation was diminished by the treatment with Selumetinib (1 μM). Scale 
bars indicate 2 mm. b Colony diameter histogram shows the distribution of colony sizes. Mean value 
of diameters; DMSO vehicle treated Meta4 = 150.13 ± 47.2 μm and Selumetinib treated 
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Meta4 = 133.13 ± 41.8 μm. c Graph shows a decrease in the number of colonies by Selumetinib 
treatment. Colonies over 100 μm in size were counted using a Gelcounter. Data are presented as 
mean values with standard deviation (n = 9). P-values were calculated using two-tailed Welch’s test. 
*P = 0.04. d Paraffin embedded sections of Meta4 organoids treated with either DMSO vehicle or 
Selumetinib at 2 weeks after in soft agar culture were examined by H&E staining. Scale bars indicate 
20 μm. e Immunostaining for Cortactin (red) and an apical membrane marker, phospho-Ezrin (pEzrin, 
green) in Meta4 organoids at 10 or 28 days after 3D culture in Matrigel, or Meta4 treated with either 
DMSO vehicle or Selumetinib (1 μM) for 3 days. Nuclei were counterstained with DAPI (blue). Dotted 
boxes indicate enlarged area. Scale bars indicate 100 μm. f Immunostaining for Cortactin (red) and 
apical membrane markers, F-actin (blue) and pEzrin (green) in 2D monolayer cultured Meta4 treated 
with either DMSO vehicle or Selumetinib (1 μM) for 3 days. Nuclei were counterstained with DAPI 
(gray). Arrows indicate lamellipodia and dotted boxes indicate enlarged area. Scale bars indicate 
20 μm. Source data are provided as a Source Data file. 

 
Figure A3.6: scRNA-seq analysis of Meta4 cells treated with either DMSO or Selumetinib. 
a UMAP of DMSO-treated and Selumetinib-treated Meta4 samples with sample overlay (left) and 
subpopulation-matched cluster overlay (right). b PANTHER gene ontology classification results from 
DMSO vehicle-treated and Selumetinib-treated Meta4 samples. Top 300 differentially expressed 
genes in either DMSO vehicle-treated or Selumetinib-treated Meta4 samples were used for the 
analysis. c Heatmap of upregulated genes in DMSO vehicle-treated or Selumetinib-treated samples. 
Upregulated genes were defined as those expressed in at least 50% of the cells in the sample with at 
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least 0.75 log fold-change over the other sample. P-values were calculated using a two-tailed 
Wilcoxon Rank Sum test with Bonferroni correction and were <1e−40. Rows correspond to individual 
genes and columns are individual cells, arranged by sample and subpopulation. Yellow corresponds 
to high expression, black corresponds to neither high nor low expression, and purple corresponds to 
low expression. d Dot plots showing selected markers for cancer and gastric cancer (left), as well as 
markers for gastric cancer stem cells (GCSCs), SPEM, IM, proliferation, and normal gastric 
epithelium (right). Results are shown for matched subpopulations (1–4) and split by treatment (DMSO 
vehicle or Selumetinib). The dot size represents the percent of cells within the matched subpopulation 
with detected expression of the gene and color intensity reflects the average expression in those cells 
with detectable gene expression. 
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Figure A3.7: Cell cycle state in Meta4 cells treated with either DMSO or Selumetinib. 
a Heatmap of cell cycle genes categorized by phase in DMSO vehicle-treated and Selumetinib-
treated Meta4 samples. Rows correspond to individual genes and columns are individual cells, 
arranged by sample and matched subpopulations. Yellow corresponds to high expression, gray 
corresponds to neither high nor low expression, and black corresponds to low expression. b Dot plots 
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showing cell cycle meta-genes for each cell cycle phase. Results are shown for matched 
subpopulations (1–4) and split by treatment (DMSO vehicle or Selumetinib). The dot size represents 
the percent of cells within the matched subpopulation with detected expression of the gene and color 
intensity reflects the average expression in those cells with detectable gene expression. 

 
Figure A3.8: Identification of dysplastic stem cells in Meta4. 
a–e Clonal sphere forming efficiency from Meta4 subpopulations. a Meta4 organoids were 
dissociated to single cells, stained for CD44, CD133, CD166, and FACS isolated. Following doublet-
discrimination and dead cell exclusion, CD133/CD166 positive cells (gray gate) were applied (red 
arrow) to a CD44 positive gate to distinguish between double-positive CD44neg/CD133+/CD166+ 
(orange gate) and triple-positive CD44+/CD133+/CD166+cells (green gate). Double-positive and 
Triple-positive cells were collected by FACS and applied to CRAs. b Immediately after plating, single 
cells were quantified and their physical address on the CRA was determined. c, d After 8 days of 
culture, spheres were quantified and their physical address on the CRA was determined. Upper-
panels are low magnification of each CRA containing 2025 wells. Red-boxes indicate the regions in 
the higher magnification images depicted in the lower panels. e Spheres-Forming Efficiency (SFE) of 



 

257 

clonal events was determined by quantifying the number of spheres that developed from all single cell 
events at t = 0. There were 619 Double-positive clonal events identified in the CRAs, and 28.9% of 
those generated spheres (orange chart). There were 509 Triple-positive clonal events identified in the 
CRAs, and 6.3% of those generated spheres (green chart). The data represent binary outcomes. f 
Quantitation of immunofluorescence staining of Ki67-positive cells in either Double-positive (DP) or 
Triple-positive (TP) cell zone in Mist1-Kras mouse stomach corpus at 4 months after tamoxifen 
injection. Data are presented as mean values with standard deviation (n = 12). P-values were 
calculated using paired two-tailed t-test. g Immunostaining for CSC markers, CD44 (basolateral 
membrane), CD133 (apical membrane) and CD166 (basolateral membrane), metaplasia and gastric 
cancer markers, Sox9 and CD44v9, and a proliferation marker, Ki67 in Mist1-Kras mice at 4 months 
after tamoxifen injection. Yellow arrow indicates Double-positive (DP) cells and white arrow indicates 
Triple-positive (TP) cells. Dotted boxes indicate enlarged area. Scale bars indicate 100 μm. Source 
data are provided as a Source Data file. 
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Figure A3.9: Expansion of spheres derived from single dysplastic stem cells in Meta4. 
a Phase contrast images of spheres derived from isolated Triple-negative (TN), Double-positive (DP) 
or Triple-positive cells (TP) at passage 0 (P0), 2 (P2) and 4 (P4). Images were captured at about 1 
week after plating (P0), at day 5 of P2, at day 5 of P4. TN (CD44neg/CD133neg/CD166neg) cells 
were isolated as a control population. Scale bars indicate 1000 μm. b Quantitation of the number of 
spheres formed from the Triple-negative (TN), Double-positive (DP) or Triple-positive (TP) cells at P0, 
P2, and P4. Data are presented as mean values with standard deviation (n = 3). P-values were 
calculated using paired two-tailed t-test. *P = 0.048 (DP vs. TP at P0); n.s., not significant. c 
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Representative FACS profiles of the Triple-negative (TN), Double-positive (DP) and Triple-positive 
(TP) cells analyzed in unsorted Meta4 organoids and spheres derived from isolated DP or TP cells at 
P2 and P4. CD44 positive gate was used to distinguish DP and TP cells (right graphs) among 
CD133+/CD166+cells (top right boxes, middle graphs) or to distinguish TN cells (left graphs) from 
CD133neg/CD166neg cells (bottom left boxes, middle graphs). The percentage of each TN, DP, and 
TP cells was not significantly different between unsorted Meta4, DP and TP at P2, and DP and TP at 
P4. Source data are provided as a Source Data file. 

A3.4 MATERIALS AND METHODS 

Mice 

The generation of Mist1-CreERT2Tg/+;LSL-K-ras(G12D)Tg/+ (Mist1-Kras), mice has been 

described previously5. Briefly, all the Mist1-Kras mice were maintained on a C57BL/6 background. 

Five mg of tamoxifen dissolved in corn oil with 10% ethanol was administered to male or female mice 

at 8 weeks of age by subcutaneous injection, once per day for 3 consecutive days, and mice were 

sacrificed at 3 months, or 4 months after tamoxifen injection to collect stomach tissues. All mice were 

housed five per cage in a room with a 12 h light/dark cycle in the Vanderbilt University animal facility. 

Water and chow were provided ad libitum. The care, maintenance, and treatment of the mice used in 

this study followed protocols approved by the Institutional Animal Care and Use Committee of 

Vanderbilt University. 

Gland isolation and organoid generation 

Stomach corpus tissues were removed from C57BL/6 wild-type mice or Mist1-Kras mice, cut 

along the greater curvature of the stomach and washed in ice cold PBS. The antrum tissue area was 

removed with a razor blade and stomach corpus mucosa was separated from serosa along the 

muscle layer using cell scrapers. The corpus mucosa was incubated in the pre-warmed digestion 

buffer (Advanced DMEM/F12 + 5% FBS + 1 mg/mL collagenase type Ia + 1/100 DNAse I) at 37 °C with 

vigorous shaking at 220 rpm for 30 min and added stopping buffer (Advanced DMEM/F12 + Y-27632 

and 1 mM DTT), then strained through 100 μm cell strainer to remove remaining tissue clumps. The 

dissociated glands were centrifuged at 300×g for 5 min to pellet glands, removed supernatant and 

repeated twice. The supernatant was removed and the pellets were resuspended with ice cold 

Matrigel (ECM, Sigma). Thirty microliter of gland/Matrigel mixture containing about 100–200 glands 

was plated in wells of 48 well plates and left the plates at 37 °C incubator for 30 min. Three hundred 
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microliter of Mouse Intesticult (StemCell Technology) medium with a ROCK inhibitor, Y-27632, was 

added in each well and medium was replaced every 3 days. 

Organoid culture and selumetinib treatment 

Selumetinib (AZD6244, Selleckchem) was dissolved in DMSO to obtain 1 mg/mL of stock 

solutions and stored at −20 °C. Organoids were split and grown in Matrigel without a ROCK inhibitor, 

Y-27632, for 1–2 days until the organoids grew as spherical structures at around 100 μm in size 

before Selumetinib treatment. To perform 2D monolayer cultures, the organoids were split and 

seeded onto 1% Collagen I-coated chamber slides. The organoids were then treated with Intesticult 

media without Y-27632 containing either DMSO or a final concentration of 1 μM of Selumetinib for 3 

days. For passaging organoids after Selumetinib treatment, the organoids were passaged at day 9 

with the Intesticult media containing either DMSO or a final concentration of 1 μM of Selumetinib 

without Y-27632. To perform long-term Selumetinib treatment, the Intesticult media containing either 

DMSO or a final concentration of 1 μM of Selumetinib were exchanged every 3 days. To assess the 

effects of Selumetinib treatment on growth, an EVOS FL inverted microscope was used to capture 

phase contrast images of organoids and to measure the sizes of organoids before and after the 

Selumetinib treatment. The JuLITM stage, a Real-Time Cell History Recorder (NanoEntek), was also 

used to monitor the growth and morphological changes of the organoids in real-time. The phase-

contrast images of the organoids were captured every 30 min using the JuLITM stage at each 

condition for 3 days and movies were generated. All experiments were run in triplicate and repeated 

at least two or three times. 

Immunofluorescence staining 

Immunostaining for formaldehyde-fixed paraffin-embedded (FFPE) organoids was performed 

according to a standard protocol. To prepare the FFPE organoids, organoids with Matrigel were fixed 

in 4% Paraformaldehyde (PFA) at room temperature for 30 min with gentle rocking followed by a 

wash in PBS at room temperature for 10 min. The fixed organoids with Matrigel were preserved in the 

HistoGelTM (Thermo Fisher Scientific), then processed according to a standard histological protocol 

for paraffin embedding. Organoid paraffin sections or Mist1-Kras mouse stomach paraffin sections 

were de-paraffinized in Histoclear solution (Electron Microscopy Services) and rehydrated in a series 
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of ethanol washes (100%, 95%, 70%). Antigen retrieval was performed using a target retrieval 

solution, pH 6 (Dako) in a pressure cooker for 15 min. Sections were incubated in Serum-free Protein 

Block solution (Dako) at room temperature for 1.5 h. Primary antibodies were diluted in Antibody 

Diluent with background reducing components (Dako), then applied and incubated at 4 °C overnight. 

After three washes in PBS, secondary antibodies diluted in Antibody Diluent (Dako) were incubated at 

room temperature for 1 h followed by three washes in PBS. For nuclei counterstaining, sections were 

incubated in PBS with DAPI (0.2 μg/mL) at room temperature for 5 min, followed by three washes in 

PBS. All fluorescence images were acquired using a Zeiss Axio Imager M2, equipped with a SPOT 

Explorer camera using SPOT Basic software. Image overlay and preparation were performed in 

Adobe Photoshop. 

For immunostaining of whole mount organoids, organoids were fixed in 4% PFA at room 

temperature for 30 min followed by a wash in PBS for 10 min. The organoids were permeabilized 

using 0.3% Triton X-100 in PBS at room temperature for 30 min followed by blocking with 10% normal 

donkey serum (NDS) in PBS at room temperature for 1 h followed by three washes in PBS for 10 min 

each. Primary antibodies were diluted in PBS with 1% NDS and incubated at 4 °C for overnight 

followed three washes in PBS containing 0.1% Tween 20 (PBS-T) for 20 min each. Secondary 

antibodies were diluted in PBS with 1% NDS and incubated at room temperature for 2 h followed by 

three washes in PBS-T for 20 min each. For nuclei counterstaining, DAPI (0.2 mg/mL) in PBS was 

added and incubated at room temperature for 5 min followed by three washes in PBS-T. ProLong 

Antifade Reagent was added to wells and organoids imaged using either a Zeiss LSM 710 or a Nikon 

A1R confocal microscope. Primary antbodies used were: CD444v9 anti-rat (Cosmo Bio CAC-LKG-

M002, 1:25,000); Cdx1 anti-rabbit (Thermo Scientific PA5-23056, 1:500); Sox9 anti-Rabbit (Millipore 

Ab5535, 1:1500); CD44 anti-mouse (Invitrogen MA5-15462, 8E2F3, 1:1000); CD133 anti-rat 

(eBioscience 14-1331-80, 13A4, 1:100); CD166 anti-rabbit (Abcam ab109215, 1:250); Ki67 anti-rat 

(Biolegend 652402, 16A8, 1:200); Villin-1 anti-rabbit (Cell Signaling Technology 2369, 1:300); 

Vimentin anti-mouse (Sigma-Aldrich V6630, V9, 1:300); Pan-CK anti-rabbit (Dako Z0622, 1:4000); 

Phospho-Ezrin anti-rabbit (Cell Signaling Technology 3726, 48G2, 1:300); Cortactin anti-mouse 

(Millipore 05-180, clone 4F11, 1:1000); Phospho-ERK1/2 anti-rabbit (Cell Signaling Technology 
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4370S, 1:2000); RFP anti-rabbit (Rockland 600-401-379, 1:500); FITC-conjugated UEAI-lectin (Sigma 

L9006, 1:2000); Alexa Fluor™ 647 Phalloidin (Invitrogen A22287, 1:100). Species-specific secondary 

antibodies (1:500) were purchased from ThermoFisher and details are in the Supplementary Table 1. 

Orthotopic implantation 

Meta4 organoids were washed in ice cold PBS to remove Matrigel and approximately 100 

organoids were mixed with 50 μL of Cultrex BME (Cultrex® Basement Membrane Matrix, Type 3). 

Before surgery, the mice were treated with subcutaneous injection of a dose of buprenorphine 

hydrochloride (0.05 mg/kg; Temgesic, BD Pharmaceutical System). Both male and female C57BL/6 

mice were used for the experiment. Eight-week old mice were sedated with 2% isoflurane inhalation 

anesthesia. The stomach was exposed through a small abdominal incision and the BME mixture 

containing organoids was injected into the stomach muscularis layer using a 26 G × 3/8 inch syringe 

needle (BD Pharmaceutical system), and then the stomach was replaced into the abdominal cavity. 

After surgery, the mice were treated with subcutaneous injection of 3 doses of buprenorphine 

hydrochloride (0.05 mg/kg; BD Pharmaceutical System) and of ketoprofen (5 mg/kg; BD 

Pharmaceutical System). All survival surgery procedures followed protocols approved by the 

Institutional Animal Care and Use Committee of Vanderbilt University. 

FACS 

Meta4 organoids were first cultured and passaged in 30 μL of Matrigel with 300 μL Mouse 

Intesticult media in a 48-well tissue culture plate. Fifteen to twenty wells of the Meta4 organoids were 

dissociated to single cells for FACS by removing media, and washing each Matrigel plug with 1 mL of 

PBS for 1 min each, then 500 μL of TrypLE (Thermo Fisher, USA) was added to each well. The Meta4 

in TrypLE were consolidated by transferring to a 15 mL conical tube. An additional 500 μL of TrypLE 

was used to rinse all wells to collect all remnants of organoids. The Meta4 in TrypLE were incubated 

between 11 and 12 min in a 37 °C water bath, and triturated every 2–3 min to assist in breaking up 

cells. This time was empirically determined to produce the most single cells without compromising cell 

viability. The TrypLE was quenched using 300 μL of FetalPlex serum (Gemini Bioproducts, USA) and 

Advanced DMEM (Thermo Fisher, USA) was added to a 15 mL total volume to washing cells. The 

tube was held on ice for 10 min, and the cells were pelleted at 500×g for 5 min at 4 °C. The media 
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was removed, and cells were resuspended in 1.5 mL of Mouse Intesticult with 1% FetalPlex, and kept 

on ice until antibody staining for FACS. Single color controls were set up by aliquoting 25 μL of the 

cell suspension into a 1.5 mL tube, and adding 1 μL of antibody or live/dead stains. For live/dead cell 

detection SytoxBlue and AnnexinV-PacBlue were used. For cell sorting, all antibodies were added to 

the remaining cell suspension at 1:100 dilution and incubated on ice for 45 min. The live/dead stains 

were not added until immediately prior to FACS. Cells were washed by adding Advanced DMEM with 

10 µM Y27632 (wash media) to a 1.5 mL volume and pelleting at 2000×g for 3 min. The staining 

media was aspirated, and the cells were washed once more as described with 1.5 mL of wash media. 

The cells to be sorted were resuspended in 500 μL of Mouse Intesticult with 10 µM Y27632, and 

live/dead stains were added at 1:1000 for SytoxBlue, and 1:100 for AnnexinV-PacBlue. Single color 

controls were used to determine positive and negative staining and to establish gating parameters for 

sorting. Double positive (CD44−, CD133+, CD166+), Triple positive (CD44+, CD133+, CD166+) or 

Triple negative (CD44−, CD133−, CD166−) cells were sorted into separate tubes using a Sony 

SH800 FACS instrument or a FACSAria III (BD Biosciences). Five thousand cells each were plated in 

wells of 48-well plates and the plates were maintained at 37 °C in an incubator for 30 min. Three 

hundred microliter of Mouse Intesticult (StemCell Technology) medium was then added in each well 

and was replaced every 3 days. Once the cells grew as spherical structures, the spheres were 

passaged. For FACS analysis, the spheres were dissociated 5 to 7 days after passaging, before the 

spheres began budding formation, and stained with antibodies following the same protocol used for 

the cell sorting. Gating strategy is indicated in Supplementary Fig. 14. The cells were analyzed using 

a LSR II flow cytometer (BD Biosciences). All experiments were repeated three times. Antibodies and 

stains used for FACS were Alexa Fluor® 700-CD44 anti-mouse (Biolegend 338813, 5 µL/106 cells in 

100 µL); Alexa Fluor® 647-CD133 anti-rat (Biolegend 141215, 0.5 mg/mL); PE-CD133 anti-rat 

(Biolegend 141204, Clone 315-2C11, 0.2 mg/mL); PE-CD166 anti-goat (R&D systems FAB1172P, 

10 µL/106 cells); Fluorescein-CD166 anti-goat (R&D systems, FAB1172F, 10 µL/106 cells). 

Soft agar assay 

0.8% melted agarose gel was added onto wells of 24 well plates as a base layer and 

solidified at 4 °C for about 5 min. About 50 organoids were mixed with 250 μL of 0.48% melted 
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agarose and overlaid onto the solidified base layer, followed by incubation at 4 °C for about 5 min. 

Mouse Intesticult media containing with either DMSO or Selumetinib was added to wells and 

incubated at 37 °C for two weeks. Media was exchanged every three days. The JuLITM Stage was 

used for live imaging of colony formation for first 3 days and the experiment was continued for a total 

of 2 weeks. GelCountTM was used to count colony numbers before and after the assay. The 

organoids were then fixed in 4% PFA at room temperature for 30 min, followed by a wash in PBS for 

10 min. The fixed organoids preserved in agarose were then processed according to a standard 

histological protocol for paraffin embedding. 

inDrop single cell RNA sequencing 

Organoids from 5–8 wells in 48-well plates were pooled together by removing media and 

washing each Matrigel plug with 1 mL of cold PBS for 1 min each, followed by dissociation into single-

cell suspensions using TrypLE (gibco). Single-cell encapsulation and sequencing was performed as 

previously reported29,32. Briefly, cell viability was determined by counting Trypan Blue positive cells. 

The single-cell suspension was further enriched with a MACS dead cell removal kit (Miltenyi) prior to 

encapsulation and the density of cells was calculated by counting. Single cells were encapsulated 

and barcoded using the inDrop platform (1CellBio) with an in vitro transcription library preparation 

protocol4,5. After library preparation, the samples were sequenced using Nextseq 500 (Illumina) using 

a 150 bp paired-end sequencing kit in a customized sequencing run (50 cycles read 2, 6 for the index 

read, rest for read 1). Samples were multiplexed in a single sequencing run. 

After sequencing, reads were filtered, sorted by their barcode of origin, and aligned to the 

reference transcriptome using the inDrop pipeline5,30. Mapped reads were quantified into UMI-filtered 

counts per gene and barcodes that correspond to high-quality cells were retrieved based on the 

previously established inflection point method, resulting in the pre-processed data table31. This 

resulted in 500 cells from the Meta3 sample, 500 cells from the Meta4 sample, 2471 cells from the 

DMSO-treated Meta4 sample, and 905 cells from the Selumetinib-treated Meta4 sample. The 

accession numbers for the data reported in this paper are NCBI Gene Expression Omnibus (GEO): 

GSE121940. 
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Analysis of pre-processed scRNA-seq data was carried out in RStudio version 3.5.2 and 

Seurat version 3.0.0 (refs. 33,34). Functions use default arguments unless specified. Because the 

samples were encapsulated together with the inDrop platform and sequenced together in the same 

lane, we assumed no batch effects, as we have shown in a previous experimental design, and 

therefore, no batch corrections were performed 2. 

The following steps were performed separately for each pre-processed sample or, when 

appropriate, combined samples as previously described7,33. A Seurat object was created for the 

individual and combined samples using Seurat’s CreateSeuratObject function. The number of genes, 

number of UMIs, and percent mitochondrial expression for all cells in each sample was visualized 

(Supplementary Fig. 3A and 8A, B). The NormalizeData, FindVariableFeatures (vst method with 2000 

features), and ScaleData Seurat functions were used to normalize, scale and center, and to find 

highly variable genes (HVGs) (Supplementary Fig. 8C). HVGs were not used for Meta3 and Meta4 

samples. Principle component analysis (PCA) was performed using Seurat’s RunPCA function using 

only HVGs as features for dimension reduction when appropriate (Supplementary Figs. 3B-C, 8D-

E, 9A-B, E-F). The jackstraw method (Seurat’s JackStraw function with 30 PCs) or the ElbowPlot 

function was used to determine the PCs to use for UMAP (Seurat’s RunUMAP function) or t-SNE 

visualization (Seurat’s RunTSNE function)37,51 (Figs. 2a, 6a and Supplementary Figs. 4A,C,E, 8F, 9C-

D, G-H). Seurat’s FindNeighbors and FindClusters functions were used for clustering (Figs. 2a, 6a 

and Supplementary Figs. 4A,C,E, 8G) and subpopulation-matching was performed for DMSO vehicle-

treated and Selumetinib-treated Meta4 samples, as detailed below. Differential expression analysis 

was performed using Seurat’s FindMarkers and FindAllMarkers functions. To determine the 

appropriate number of clusters in each sample, the clustering resolution parameter was adjusted and 

differential expression analysis was performed on all clusters—the appropriate number of clusters is 

the minimum number of clusters with differentially expressed genes in all subpopulations 

(Supplementary Figs. 4A-F, 9D,H). Cell cycle genes were selected based on the lists published in 

Fig. 2 and Table 2 by Whitfield et al.39. To determine activity for each phase of the cell cycle, library 

size-normalized count data was then normalized gene-wise for cell cycle genes. Next, the average 

expression of these normalized values for cell cycle genes within each phase (G1-S, S, G2, G2-M, 
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and M-G1) was calculated and a meta-gene for each phase was created. Thresholds for differentially 

expressed genes are reported in figure legends. 

Seurat’s clustering methods did not identify matched subpopulations in DMSO-treated and 

Selumetinib-treated samples and clustering inappropriately identified more subpopulations in the 

DMSO-treated sample than in the Selumetinib-treated sample (Supplementary Fig. 8G). Therefore, 

we developed an algorithm that matches subpopulations across a perturbation, such as drug 

treatment, in order to identify similar subpopulations based off gene expression signatures. We used 

clustering results on individual samples (DMSO-treated and Selumetinib-treated) from the Seurat 

pipeline (Supplementary Fig. 9D,H) and matched these subpopulations between samples based off 

gene signatures. The following steps were performed for each dataset (DMSO-treated or 

Selumetinib-treated Meta4 samples) separately until specified. Counts form pre-processed data 

tables were normalized by library size for single-cells, multiplied by a factor of 1000, and transformed 

by computing the hyperbolic sine. Subpopulations identities were assigned arbitrary color identities to 

visualize them in t-SNE space (Supplementary Fig. 10A). Next, a 2-sample students t-test assuming 

unequal variance and unpaired samples was used to find significant differences in genes across 

subpopulations within a sample. For each gene, all cells within a subpopulation were compared to the 

remaining cells in the sample using the transformed data. Next, the fold change for each gene was 

found in a similar fashion using transformed data, where the fold change is the arithmetic difference 

between the mean of the cells within the subpopulation and the mean of the remaining cells, for each 

gene. In order to identify which fold changes were significant, the p-values calculated previously were 

used with a significance threshold of 0.001. These steps allow identification of significantly different 

fold changes for each subpopulation and each gene. The fold changes were discretized to values of 

1, −1, and 0 to indicate significantly upregulated genes, significantly downregulated genes, and non-

significant genes, respectively. Together, these discrete values make up the gene signature for each 

subpopulation within DMSO-treated or Selumetinib-treated Meta4 samples. To compare gene 

signatures in all subpopulations across the samples, we determined if the discretized values are 

identical between subpopulations, which is considered a match. Matches are determined for all genes 

from all combinations of samples, and the total number of matches are summed for each of these 
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combinations. In order to identify if these matches are significant, a permutation approach was used. 

The gene signatures for the DMSO-treated sample were randomized 100 times using the 

randomizeMatrix function from the picante R package. Next, these 100 permutations of DMSO-

treated subpopulation gene signatures were compared to all Selumetinib-treated subpopulation gene 

signatures, as described before. This yielded a distribution of 100 values for the number of matches 

that are expected to occur by chance. This allowed us to determine if the number of actual matches 

between subpopulations in samples is significantly greater than the number of matches that occur by 

chance (threshold of 4 standard deviations), indicating the subpopulations from the two samples are 

similar cell types or states (Supplementary Fig. 10A). The gene signatures for these matched 

subpopulations are those genes that matched across treatment and are visualized in a heat map 

using the pheatmap R package (Supplementary Fig. 10B). This method determines, in a quantitative 

manner, if cell types (i.e., subpopulations) are conserved across a treatment or condition, and 

additionally, identifies a gene signature for those subpopulations that are matched. To confirm that 

the subpopulation-matching method is robust, we performed differential expression analysis for each 

matched-subpopulation, as described above, and visualized the results (Supplementary Fig. 10C). 

These matched subpopulations were used to analyze the DMSO-treated and Selumetinib-treated 

Meta4 samples (Fig. 6a). Software and algorithms used for scRNA-seq data analysis are reported in 

Supplementary Table 2. 

Transcription factor activity was estimated for single cells in DMSO-treated and Selumetinib-

treated samples using the DoRothEA package (v2) developed by Garcia-Alonso et al.40. Only 

transcription factor-target interactions at the highest confidence score (A) were used in our analysis. 

Statistical comparisons were made between matched subpopulations in DMSO-treated vs. 

Selumetinib-treated samples. Statistically significant results are reported as those with a signal to 

noise ratio of >0.4 and an adjusted p-value (Wilcoxon test with Benjami-Hochberg multiple testing 

correction for all transcription factor activities) >0.01. 

PCR 

Total RNAs were extracted from Meta4 organoids treated with ether DMSO vehicle or 1 μM 

Selumetinib for 3 days using Trizol (Invitrogen), and cDNAs were synthesized using iScript reverse 
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Transcription Supermix (Bio-Rad). Triplicate cDNA samples were used to perform PCR using 

DreamTaq Green PCR Master Mix (Thermo Scientific) or GoTaq Green Master Mix (Promega). For 

DreamTaq, the PCR condition was as follow: 94 °C for 2 min, 35 cycles of 94 °C for 30 s, 55 °C for 

30 s and 72 °C for 30 s, and a final extension at 72 °C for 2 min. For GoTaq, the PCR condition was 

as follow: 94 °C for 2 min, 35 cycles of 94 °C for 30 s, 55 °C for 30 s and 72 °C for 1 min, and a final 

extension at 72 °C for 10 min. The primer sequences are indicated in Supplementary Table 1. 

Quantitative real-time PCR 

Meta3 or Meta4 organoids treated with either DMSO vehicle or 1 μM Selumetinib for 3 days 

and sorted by FACS were used to extract total RNAs and cDNAs were synthesized using iScript 

reverse Transcription Supermix (Bio-Rad). Triplicate cDNA samples were used to perform 

quantitative real-time PCR (qPCR) using SsoAdvancedTM Universal SYBR Green supermix and a 

CFX96 Real-Time PCR Detection System (Bio-Rad). The primer sequences used are shown in 

Supplementary Table 1 and data was analyzed using CFX Maestro software (Bio-Rad). 

Western blot 

Proteins were extracted from Meta4 organoids treated with either DMSO vehicle or 1 μM 

Selumetinib for 1 day using M-PER lysis buffer (Thermo Fisher Scientific) with protease and 

phosphatase inhibitor cocktails. The protein concentration was measured by the Direct Detect IR 

spectrometer (Millipore). Eight μg of total protein were loaded onto a Mini-Protean TGX Precast Gel 

(Bio-Rad) and transferred to a nitrocellulose membrane (Bio-Rad). The membranes were blocked 

with the Odyssey blocking solution (LI-COR Biosciences) for 1 h at room temperature and incubated 

overnight at 4 °C with primary antibodies diluted in the Odyssey blocking solution (LI-COR 

Biosciences) supplemented with 0.2% Tween-20. Primary antibodies used for western blot were 

ERK1/2 anti-rabbit (Cell Signaling Technology 4695, 1:1000); Phospho-p44/42 MAPK (Erk1/2) anti-

rabbit (Cell Signaling Technology 4370S, D13.14.4E, 1:2000); β-Actin anti-mouse (Sigma A5316, AC-

74, 1:2500). After primary antibody incubation, the membranes were washed three times in TBS-T 

and incubated with IRDye 800CW donkey anti-rabbit (LI-COR Biosciences 926-32213, 1:15,000) or 

IRDye 680LT donkey anti-mouse secondary antibody (LI-COR Biosciences 926-68022, 1:15,000) for 
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1 h at room temperature. The membranes were washed three times with TBS-T and imaged with an 

Odyssey imaging system (LI-COR Biociences). 

Transmission electron microscopy 

Organoid samples were prepared and processed by the Vanderbilt Cell Imaging Shared 

Resource, Vanderbilt University. Briefly, Meta4 organoids treated with either DMSO vehicle or 

Selumetinib (1 μM) were washed in 0.1 mol/L cacodylate buffer and fixed in buffer (2% 

paraformaldehyde, 2.5% glutaraldehyde, and 0.1 mol/L cacodylate buffer) at room temperature (RT) 

for 1 h, then at 4 °C for 4 days or overnight. Organoids were washed with 0.1 mol/L cacodylate buffer 

at room temperature for 10 min, treated with 1% osmium tetroxide in 0.1 mol/L cacodylate buffer for 

1 h at RT, and washed with 0.1 mol/L cacodylate buffer for 10 min at RT, then with distilled water for 

10 min at RT. Samples were subjected to 2% uranyl acetate en bloc for 30 min for additional contrast. 

The samples were then washed in water before proceeding to ethanol dehydrations. Organoids were 

dehydrated through an ethanol series (from 30 to 100%), then incubated for 5 min in 100% ethanol 

and propylene oxide (PO), followed by two exchanges of pure PO. The organoids were infiltrated with 

Epon 812 resin (Electron Microscopy Sciences, Hatfield, PA) and PO (1:3) for 30 min at RT, and then 

infiltrated with Epon 812 resin and PO (1:1) for overnight at RT. Next day, the samples went through 

a resin:PO (3:1) exchange for 3 to 4 h, and then were incubated with pure epoxy resin overnight. The 

next day, the organoids were incubated in two more changes of pure epoxy resin, then allowed to 

polymerize at 60 °C for 48 h. Ultrathin sections (70 to 80 nm thick) were cut and collected on 300-

mesh copper grids. The sections were stained with 2% uranyl acetate and then with Reynold’s lead 

citrate. The organoids were observed using a Philips/FEI T-12 Tecnai T12 electron microscope 

(Vanderbilt Cell Imaging Shared Resource, Vanderbilt University, Nashville, TN). 

CellRaft array culture and analyses 

Five thousand double-positive or triple positive cells were applied in 1 mL of Advanced 

DMEM with 10 µM Y27632 into a CellRaft Array (CRA) (Cell Microsystems, USA) containing 2025 

microwells (CRA quad-well) each with 200 µm2 dimensions. This number of cells produced between 

500–600 single cells per well. The CRAs were centrifuged at 10×g at 4 °C for 5 min to ensure that 

each cell was at the bottom of the well. The media was carefully removed and replaced with 250 µL of 
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Matrigel. CRAs were re-centrifuged at 4 °C for 5 min to ensure cells remained at the bottom of the 

wells. The CRAs were carefully placed at 37 °C for 20 min to polymerize the Matrigel, and then 500 µL 

of Mouse Intesticult was added to each well of the quad-well array. The arrays were tile imaged at 

40×-original magnification immediately after initial plating, and then again at Day 8 after plating when 

fully developed gastroids formed. CRAs were incubated at 37 °C under 5% CO2 and a humidified 

atmosphere. Intesticult media without Y27632 was replaced every two days. Meta4 sphere forming 

efficiency (SFE) was determined by quantifying the number of Meta4 at Day 8 that developed from 

single cells. 

Statistics and reproducibility 

For quantitation of budding organoids in Meta3 and Meta4, a total of 50 to 100 organoids 

were considered from three representative images taken from three wells of each organoid line at ×4 

magnification. The number of organoids with budding structures were manually counted. For 

measurement of organoid size after Selumetinib treatment, a total of 75 organoids were used from 

two representative images taken from three wells of each condition at ×4 magnification. The 

experiments were repeated twice. Organoids showing their entire area in the images were only 

considered for measurement and diameters were manually measured for each organoid. For counting 

colony numbers after the soft agar assay, colonies of at least 100 μm diameter from three wells of 

each treatment condition were counted using Gelcounter software and the experiment was repeated 

three times. The average values from each condition were compared by One-way ANOVA, paired t-

test or Wilcoxon signed-rank analyses for multiple comparison using Graphpad Prism. *P < 0.05, 

**P < 0.005, ***P < 0.0005, ****P < 0.0001. scRNA-seq statistical thresholds and methods are 

specified in the respective methods section and figure legends. All experiments were repeated at 

least two times. 
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APPENDIX 4: A LEAKY HUMAN COLON MODEL REVEALS UNCOUPLED APICAL/BASAL 
CYTOTOXICITY IN EARLY CLOSTRIDIOIDES DIFFICILE TOXIN EXPOSURE8 

A4.1 INTRODUCTION 

Clostridioides difficile is a toxin-producing bacterium that causes C. difficile infection (CDI), 

with symptoms ranging from mild diarrhea to severe colitis and associated with life-threatening 

illnesses such as toxic megacolon and bowel perforation.1 CDI has a tremendous economic burden, 

costing an estimated $6.3 billion in annual healthcare expenses in the U.S. alone.2 Patients with 

greater CDI risk include those who are immunocompromised, receiving broad-spectrum antibiotics, or 

battling a leaky gut, often due to underlying chronic illness such as inflammatory bowel disease 

(IBD).2, 3 While fidaxomicin and vancomycin remain first-line antibiotics for patients with CDI, the high 

treatment costs,4 emergence of antibiotic-resistant strains,5 and increase in recurrence rates6 

especially for hypervirulent strains (≥ 23%)6, 7 are growing problems.  

C. difficile damages the colonic epithelium by secreting Toxin A (TcdA), Toxin B (TcdB), and 

binary toxin C. difficile transferase (CDT). CDT is produced by approximately 20% of C. difficile 

strains, but it receives less clinical attention given that CDT-producing strains lacking TcdA and TcdB 

are nontoxigenic in vitro.8, 9 TcdA and TcdB (TcdA/B) are homologous glucosyltransferases that bind 

to various host cell receptors, enter cells via endocytosis, and inactivate Rho-family GTPases by 

monoglucosylation.10 This ultimately results in cytoskeletal disassembly, tight junction collapse, 

cytopathic cell rounding, and eventual apoptosis.11-15 While the TcdA/B receptor distribution likely 

impacts the onset of cytopathic events, this distribution has not been thoroughly mapped across the 

proximal-distal axis of the human gut or across epithelial cell lineages. A comprehensive map of C. 

difficile toxin receptors across all undifferentiated and differentiated lineages would address a major 

gap in knowledge and serve as a foundation to better understand mechanisms of toxin interactions 

with the epithelium, disease onset, progression, and resolution.  

 
8This appendix was submitted for publication to American Journal of Physiology – Gastrointestinal 
and Liver Physiology. The original citation for the preprint is as follows: Ok, Meryem T., Jintong Liu, 
R. Jarrett Bliton, Caroline M. Hinesley, Ekaterina Ellyce T. San Pedro, Keith A. Breau, Ismael Gomez-
Martinez, Joseph Burclaff, and Scott T. Magness. "A Leaky Human Colon Model Reveals Uncoupled 
Apical/Basal Cytotoxicity in Early Clostridioides difficile Toxin Exposure." bioRxiv (2022). 
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Alternatives to antibiotic therapies are becoming an attractive approach to treat CDI; 

however, physiologically relevant preclinical models of the human colon to test new therapies are 

lacking. Historically, C. difficile toxicity models relied on non-intestinal cell types (e.g., Vero, HeLa) or 

colon cancer cell lines (e.g., T84, HT-29, Caco-2).16-19 However, colon cancer cells do not express 

physiological transporters/carriers found in healthy human colonic epithelium (hCE), and they 

phenotypically resemble small intestinal enterocytes.20, 21 While TcdB is more cytotoxic than TcdA in 

T84 cells and non-intestinal epithelium,22, 23 TcdA is more potent than TcdB in 3D human intestinal 

organoids (HIOs) and jejunal enteroid-derived monolayers.24, 25 Although a significant improvement in 

physiological accuracy, 3D organoids—in which the apical cell surface faces inward inside an 

enclosed epithelium—do not allow easy simultaneous access to apical/basal cell surfaces to apply 

toxins or assess barrier function using transepithelial electrical resistance (TEER) or permeability 

assays. Moreover, HIOs are induced to differentiate from pluripotent stem cells in vitro and the 

resulting organoids are more similar to fetal small intestine26 than colon, which is the predominant site 

of CDI,27 giving these findings limited generalizability to the sensitivity of adult differentiated hCE to 

TcdA/B. Thus, more physiologically accurate culture systems are essential to mimic in vivo colonic 

epithelium and investigate the impact of TcdA/B on hCE. 

Currently, there are no established quantitative culture systems that simultaneously evaluate 

the apical versus basal impact of TcdA/B on hCE. C. difficile toxins are secreted in the lumen and 

thought to interact first with the apical aspect of the intestinal or colonic epithelial barrier.28 However, 

receptor studies in colon cancer cell lines28, 29 and in non-human, non-intestinal epithelial cells30 

reveal that some TcdA receptors locate to the basal side of the cell, making them inaccessible to 

TcdA when there is an intact physiological epithelial barrier. This raises the possibility that a healthy 

epithelial barrier may be more refractory to apical TcdA cytotoxicity than previously believed, but this 

has yet to be tested in hCE. Likewise, while some TcdB receptors localize to the basal aspect of the 

epithelium,31-33 their full apical/basal distribution remains unclear,34, 35 though functional studies in 

HIOs show distinct apical and basal differences in barrier disruption.24 Thus, we designed a model to 

quantify the magnitude and time-course of apical/basal toxicity, which could inform whether early 

clinical interventions should target apical versus basal hCE. 
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Here, we establish a physiologically relevant in vitro model of C. difficile TcdA/B toxicity using 

primary adult intestinal stem cell (ISC)-derived hCE monolayers. Building upon our previous methods 

of culturing primary ISCs from healthy human donor organs and differentiating these ISCs into a 

functional epithelial layer,36-38 we develop a highly sensitive assay system for evaluating early-stage 

intestinal barrier injury and late-stage cytotoxic events associated with TcdA/B. Our tissue 

engineering approach focuses on producing an epithelium that closely mimics in vivo colonic tissue, 

which we use to assess C. difficile-relevant transcriptional and phenotypic differences between hCE, 

human small intestinal epithelium (hSIE), and Caco-2 cells. Using this system, we test the temporal 

dynamics of apical and basal TcdA/B toxicity, measure the effect of a leaky epithelium on toxin 

activity, and present biological insights into the impact of apical and basal cytotoxicity of TcdA/B. 

A4.2 RESULTS 

A4.2.1 A Single-Cell Survey of Human Gut Epithelium Reveals Organ and Lineage Variability of 
C. difficile Toxin-Relevant Genes 

Expression of C. difficile-relevant gene sets have not been characterized across the epithelial 

lineages of the small intestine and colon. To address this, we interrogated single-cell transcriptomic 

data across all lineages in small intestine and colon from three healthy human adult donors (Fig. 

1A)39 and evaluated the magnitude of toxin receptor expression (Fig. 1B).28, 29, 31, 34, 40, 41 In general, 

the ISC, transit-amplifying (TA), and absorptive lineages in the small intestine and colon exhibited 

more toxin receptor expression and with higher magnitudes compared to the secretory lineages. 

Notably, follicle-associated epithelium (FAE) uniquely expressed high levels of the TcdB receptor 

FZD7 (Fig. 1B). Lineage-specific C. difficile toxicities have not been evaluated; thus, these findings 

provide a foundation to investigate such questions. 

Next, we sought to evaluate the C. difficile-relevant genes in the two key cell types involved in 

the initiation and resolution of C. difficile infections. The absorptive lineages are the predominant cell 

types in the small intestine and colon and experience first-line exposure to C. difficile, and the ISCs 

are responsible for regenerating the epithelium after damage. We surveyed curated gene sets for 

toxin receptor, Rho GTPase, and tight junction expression in ISCs and mature absorptive cells in six 

regions across the proximal-distal axis of the small intestine (Duodenum, Jejunum, Ileum) and colon 
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(Ascending, Transverse, Descending) (Fig. 2A). For the toxin receptor genes, sucrase-isomaltase is 

a small intestine-specific brush border enzyme;42 thus, it is not expected to be meaningfully 

expressed in the colon, as demonstrated by the data (Fig. 2A). When comparing the remaining 

receptors between small intestinal and colonic ISCs, there was no difference in HSP90B1 and LSR, 

FZD5 was significantly higher in colonic ISCs, and LRP1 and NECTIN3 were higher in small intestinal 

ISCs (Fig. 2B). In mature absorptive cells of the small intestine and colon, all receptors except for 

LRP1 and small intestinal-specific SI were significantly higher in colon (Fig. 2B). For classic Rho-

family GTPases (CDC42, RAC1, and RHOA),43-45 which are terminal targets of C. difficile toxins, no 

specific gene demonstrated statistically significant differences between small intestinal and colonic 

ISCs (Fig. 2C, D). However, in mature absorptive lineages, RAC1 was modestly but significantly 

higher in small intestine, and CDC42 and RHOA were higher in the colon (Fig. 2C, D). 

We analyzed tight junction proteins, which are known to be disrupted as a terminal effect of 

toxin-induced Rho GTPase glucosylation.14 A subset of 34 genes were selected from a published 

curated gene set based on classification of “tight junction” or “tight junction-associated” genes.46 

Fifteen genes with the highest mean expression in mature small intestinal and colonic absorptive 

lineages were grouped by transmembrane versus intracellular proteins and their expression was 

characterized across regions and lineages of the small intestine and colon (Fig. 2E). Claudin (CLDN) 

genes CLDN3, CLDN4, and CLDN7, which aid in forming selective barriers to macromolecules (such 

as C. difficile toxins) and ions,47 are highly expressed across all ISCs and mature absorptive cells, 

with notably higher expression in mature absorptive lineages of the colon (Fig. 2F). CLDN15 showed 

unique and high expression in the ISCs and mature absorptive lineages of the small intestine. ISCs 

and mature absorptive lineages across all small intestinal and colonic regions demonstrated broad 

expression of the remaining tight junction genes, which were generally expressed at lower magnitude 

than the claudins (Fig. 2F). These findings highlight variability in small intestinal and colonic regions 

and lineages that could lead to functional differences in intestinal epithelial barrier function and likely 

influence CDI onset and progression. 
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A4.2.2 Transcriptomics Show hCE Monolayers Mature Over Time to Mimic In Vivo Mature 
Absorptive Colonocytes 

With the single-cell transcriptomic data serving as the in vivo benchmark for physiological 

relevance, we sought to determine whether colonic ISCs could be differentiated in vitro to closely 

mimic the absorptive colonocytes in vivo. We also compared the transcriptomics of differentiated hCE 

monolayers to differentiated Caco-2 monolayers in an effort to establish which model more closely 

aligned to in vivo transcriptomic lineage states. To differentiate hCE monolayers, primary crypt-

derived ISCs from the descending colon (DC) were first expanded on collagen-coated hydrogels as 

previously described.38 DC tissue was chosen given that CDI primarily manifests as colitis in the distal 

colon.27 Once confluent, these cells were then plated onto Matrigel-coated TranswellTM inserts in 

expansion media (EM) containing ISC growth factors (Wnt3a, R-spondin 3, and Noggin) for 4 days 

during which they continued to proliferate to form a confluent monolayer. To differentiate the colonic 

ISCs, differentiation media (DM) was applied to ISCs for an additional 4 days (Fig. 3A). RNA was 

isolated from hCE monolayers at various timepoints (EM Day 1, EM Day 4 = DM Day 0, DM Day 2, 

and DM Day 4), and transcriptomics was used to verify differentiation and characterize cell 

maturation.  

Principal component analysis (PCA) showed subtle transcriptomic changes while in EM (EM 

D1, DM D0) but substantial changes along principal component 1 and principal component 2 after 2 

days of differentiation (DM D2), indicating large expression changes between Day 0 and Day 2 of 

colonic ISC differentiation (Fig. 3B). There were fewer transcriptomic changes between Day 2 and 

Day 4 of differentiation, indicating relatively stable transcriptomes during this time window. We 

compared hCE transcriptomics to 21-day differentiated Caco-2 cells to determine if Caco-2 

transcriptomics tracked with differentiated hCE. Caco-2 cells were markedly separated from colonic 

ISCs and all stages of hCE differentiation in PC1, highlighting that differentiated Caco-2 monolayers 

are significantly different than the primary tissue-derived hCE monolayers (Fig. 3B).  

We further characterized the differentiation of hCE monolayers at a more granular level to 

determine if time of differentiation could “mature” the monolayers to a transcriptomic state that 

resembles mature absorptive colonocytes in vivo. We curated two gene sets from the in vivo single-
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cell transcriptomic data as the standard for comparison, one from the colonic ISCs and one from the 

mature absorptive colonocytes (i.e., late ACCs).39 The hypothesis was that replacement of EM with 

DM would shift the transcriptomic state of the monolayers away from the ISC signature and closer to 

the mature absorptive colonocyte signature. The data show that hCE monolayers at EM Day 1 are 

more closely aligned with the in vivo colonic ISC signature, but these similarities decrease over four 

days of differentiation where the magnitude of most colonic ISC genes is reduced (Fig. 3C). By 

contrast, 21-day differentiated Caco-2 cells still exhibit higher expression of many colonic ISC genes, 

notably LGR5 and ASCL2 (Fig. 3C).  

Conversely, when gene signatures of hCE and Caco-2 monolayers are compared to the in 

vivo late ACC signature, hCE cells show increased magnitude of gene expression at DM Day 2 which 

stabilized through DM Day 4 (Fig. 3D). In most instances, the 21-day differentiated Caco-2 genes 

more closely aligned with the expression patterns of EM Day 1 and DM Day 0, which is reflective of a 

persistent undifferentiated state and further highlights the less mature state of differentiated Caco-2 

cells (Fig. 3D). To characterize the extent of the undifferentiated state between differentiated hCE 

and Caco-2 monolayers, curated gene sets associated with S- and G2/M-phase cell cycle stages 

were analyzed.48 We hypothesized that differentiated hCE monolayers would express relatively lower 

levels of S- and G2/M-phase genes while Caco-2 monolayers would show upregulated expression of 

these genes. The data show that 21-day differentiated Caco-2 monolayers express higher levels of 

nearly all genes associated with cell cycling, notably the cell proliferation markers MKI67 and PCNA 

(Fig. 3E). Finally, gene set enrichment analyses were performed using the full gene signature of in 

vivo colon ISCs (108 genes) and in vivo late ACCs (215 genes).39 Consistent with our earlier 

observations, Caco-2 monolayers are significantly enriched for stem-like genes compared to hCE 

monolayers (Fig. 3F), whereas hCE monolayers are significantly enriched for late ACC genes 

compared to Caco-2 monolayers (Fig. 3G). These findings emphasize that hCE monolayers are more 

terminally differentiated and more aligned with the in vivo late ACC gene signature, which likely 

translates into better functional equivalence compared to Caco-2 cells. 



 

281 

A4.2.3 Differentiated hCE Monolayers Exhibit Stronger TEER Barrier Properties Than Caco-2 
or hSIE Monolayers 

Our findings point to substantial gene expression differences in lineage states between 

differentiated hCE and Caco-2 monolayers. Human small intestinal organoids and monolayers have 

been used to model TcdA/B toxicities; thus, we also compared barrier functions of hCE and hSIE 

monolayers. In prior work, we established a method for culturing healthy human jejunal monolayers 

and tracking cell maturation using transepithelial electrical resistance (TEER),36 a non-invasive 

quantitative technique that is widely accepted to measure epithelial integrity.49 Here, we applied 

similar principles to differentiated hCE (DC), hSIE, and Caco-2 monolayers and characterized the 

variation in barrier properties as measured by TEER between multiple donors (Fig. 4A).  

Daily TEER measurements were performed during monolayer expansion and differentiation 

(Fig. 4B). In hCE monolayers from three healthy human donors, TEER was measured for 4 days in 

EM followed by 4 days in DM (Fig. 4C). After just one day of DM exposure, hCE TEER reached an 

average value of 1000-2000 Ω x cm2, consistent with a tight epithelial barrier.49 While the individual 

TEER profiles varied by donor, the steep increase in hCE TEER after switching to DM was consistent 

across all three donors. It is noteworthy that both Caco-2 and hSIE monolayers did not reach high 

resistance like hCE cultures, with values staying below 500 Ω x cm2 (Fig. 4D, E). This finding is 

consistent with previous jejunal TEER studies even after 12 days of differentiation,36 supporting the 

notion that hCE monolayers have a different barrier strength profile than hSIE or Caco-2 monolayers, 

which exhibit lower barrier strength profiles. Thus, differentiated Caco-2 cells, which have a baseline 

TEER that is much lower than that of differentiated hCE and is more consistent with ISCs and hSIE, 

may not accurately report C. difficile toxin sensitivities in the colon. 

A4.2.4 Colonic Monolayers Exhibit a Dose-Dependent Early Cytotoxicity to TcdA, but Not 
TcdB, After Apical Exposure  

By Days 2-4 of differentiation, hCE monolayers show transcriptional signs of maturation (Fig. 

3B, D) and TEER is sufficiently elevated, indicating a tight barrier (Fig. 4C). A drop in TEER at later 

timepoints is inherent to these differentiated primary culture systems since these cells undergo a 

natural ~5-day lifespan after leaving the stem/progenitor cell state. Interestingly, this may be an 

intrinsically programmed lifespan as mouse and human epithelial cells in vivo exhibit a similar 
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lifespan.50 Given these features of the culture system, toxin experiments were initiated on Day 3 of 

differentiation at time t = 0 (Fig. 5A) as this was between 2 timepoints that closely mimic the in vivo 

maturation state, exhibits a relatively high barrier function as measured by TEER, and provides a 

sufficient window to perform toxicity assays prior to the cells’ terminal lifespan. 

To evaluate the sensitivity of the system to detect cytotoxic effects by TEER, three doses of 

TcdA and TcdB were applied apically to mature hCE monolayers. A dose of 30 pM was used as 1X 

as this is a physiological concentration identified in patients with active CDI.51 TcdA or TcdB at doses 

of 30 pM (1X), 150 pM (5X), and 300 pM (10X) were applied to differentiated hCE, and TEER 

changes were monitored during the first 12 hours and after 24 hours based on prior evidence of 

cytotoxicity within that timeframe (Fig. 5B).25, 52 hCE monolayers apically exposed to TcdB at any 

dose did not show a significant drop in TEER over 24 hours of exposure. Unlike TcdB, TcdA 

demonstrated a dose-dependent toxicity whereby 5X and 10X increasingly hastened the onset of 

barrier loss as measured by TEER (Fig. 5B). These findings indicate that the hCE culture system is 

sufficiently sensitive to detect the impact of clinically relevant concentrations of TcdA and shows that 

TcdA apical exposure is more toxic than TcdB apical exposure at a molar-to-molar ratio. 

A4.2.5 Basal Exposure to C. difficile Toxins A/B Produces More Rapid and Severe Cytotoxicity 
Than Apical Toxin Exposure 

The lack of overt TcdB cytotoxicity when applied to the apical aspect of hCE monolayers was 

surprising given that TcdB is associated with severe toxicity in other systems.22, 23, 53 The observation 

that differentiated hCE monolayers were refractory to apical TcdB exposure prompted the question as 

to whether hCE and hSIE monolayers possess inherently different apical and basal toxin sensitivities. 

Etiologically, this is an important distinction to evaluate since our data imply that a healthy hCE 

monolayer may be highly resistant to apical C. difficile toxins. If TcdA/B have more potent effects 

when in contact with the basal aspect of cells, then CDI may primarily promote clinical sequelae when 

the epithelial barrier is compromised due to conditions that cause a leaky gut epithelium, at which 

point TcdA/B can access the basal aspect of the cell and cause rapid onset of toxicity. To evaluate 

differential sensitivities of apical and basal C. difficile toxin at a molar-to-molar ratio, 1X (30 pM) toxin 
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was applied to either the apical or basal reservoirs of Transwells with differentiated hCE or hSIE 

monolayers from three separate human donors (Fig. 5C, D). 

TcdB applied to the apical aspect of differentiated hCE monolayers from three different 

donors demonstrated either no cytotoxicity or limited and delayed toxicity at 12 hours post-TcdB 

exposure (Fig. 5C). By contrast, there was rapid and substantial cytotoxicity as early as 2 hours (on 

average, ~4.7 hours) when TcdB was applied to the basal aspect of the monolayers across all 

donors. Similarly, there was a trend of significantly delayed toxicity for TcdA when applied to the 

apical aspect of the monolayers compared to when TcdA was applied to the basal aspect of cells. For 

2 donors, the monolayers demonstrated limited apical TcdA cytotoxicity at 12 hours, whereas basal 

exposure to TcdA resulted in rapid onset of cytotoxicity as early as 2 hours (on average, 4 hours) 

post-exposure across all three donors (Fig. 5C). Interestingly, Donor 2 monolayers were more 

sensitive to apical application of both TcdA/B, and Donor 3 monolayers demonstrated delayed onset 

of cytotoxicity for both TcdA/B compared to the other two donor monolayers. Overall, TcdA/B 

demonstrated more cytotoxicity when exposed to the basal aspect of cells. Consistent with this, hCE 

monolayers were refractory to apoptosis at 24 hours after apical TcdA or TcdB exposure, while basal 

toxin exposure caused obvious signs of apoptosis (Fig. 5E). Differential toxin sensitivities observed 

between donors is interesting and may reflect genetic backgrounds that render the differentiated hCE 

monolayers more or less responsive to the mechanisms of toxicity, which could be useful for 

determining patient-specific responses. 

Single-cell RNAseq data of the C. difficile receptor gene expression profiles demonstrated 

that 2 out of the 3 known TcdA receptor genes (SI and LRP1) have significantly higher gene 

expression in mature absorptive lineages of the small intestine versus colon (Fig. 2B). Thus, we 

hypothesized that differentiated hSIE monolayers would be more sensitive than differentiated hCE 

monolayers to TcdA. When TcdA was applied to the apical aspect of monolayers, substantial 

cytotoxicity was observed in hSIE monolayers as early as 2 hours (on average, 4 hours) (Fig. 5D). By 

comparison, differentiated hCE demonstrated limited apical TcdA cytotoxicity in 2 donors with a late 

onset of 12-24 hours (on average, 12 hours across all donors) (Fig. 5C). These findings show that 

differentiated hSIE is more sensitive to apical exposure to TcdA compared to differentiated hCE. Of 
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note, TcdA/B cytotoxicity in Caco-2 monolayers is more consistent with trends observed in the hSIE 

monolayers compared to the hCE monolayers, with rapid sensitivity to apical TcdA within 2-4 hours 

and a relatively slower response to basal TcdB (Fig. 5F). This highlights that, despite being derived 

from colon epithelial cancer, Caco-2 cells respond to toxins more like hSIE than hCE monolayers. 

A4.2.6 A Leaky hCE Induced by NSAIDs Reduces Apical Barrier Protection From TcdB 

Our results so far suggest limited sensitivity to TcdB on the apical/luminal surface of the 

human colon, but enhanced TcdB toxicity when applied to the basal surface. We hypothesized that 

toxin translocation from the apical to the basal side may be initiated or enhanced by a “leaky gut”, a 

term used to describe a broad range of underlying genetic, disease, or injury states that create 

increased intestinal paracellular permeability.54 NSAIDs in general are associated with colitis,55 and 

diclofenac (DCF) in particular has demonstrated a significantly increased risk of C. difficile-associated 

diarrhea.56, 57 Diclofenac, a commonly prescribed NSAID, has been previously shown to induce a 

leaky gut in primary hSIE.58 Clinically relevant dosing of 1 mM was determined based on translating a 

typical therapeutic dose of 50 mg oral diclofenac into local concentrations of diclofenac between 300-

1600 µM within the intestinal lumen.59-61 

While TEER is an effective method to monitor ion flux across a damaged epithelial 

monolayer, it may not accurately report flux of toxin-sized molecules. To test whether a leaky gut 

induced by diclofenac initiates apical-to-basal translocation of toxin-sized molecules, a permeability 

assay was designed using hCE monolayers to monitor the translocation of conjugated dextrans from 

the apical to basal reservoir after toxin exposure (Fig. 6). Large molecular weight dextrans should 

remain in the apical reservoir of the Transwells if there is a healthy epithelial barrier. FITC-Dextran 

(250 kDa) was chosen because it is similar to the molecular weight of TcdB (~270 kDa), which would 

provide insight into the time course in which a TcdB-sized particle would be able to pass 

paracellularly when the epithelial barrier is damaged. In the first 12 hours, apical diclofenac exposure 

alone induced modest leakiness which was compounded by the apical addition of TcdB, as measured 

by FITC-Dextran permeability (Fig. 6). Of all the TcdB experimental conditions, increased 

permeability was only observed in the diclofenac/TcdB condition at 12 hours, consistent with the idea 

that epithelial barrier damage was allowing TcdB to interact with the basal aspect of the monolayer. 
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At 24 hours, apical diclofenac/TcdB continued to show significantly increased permeability of FITC-

Dextran, trending toward permeability levels that are only induced by direct application of TcdB to the 

basal side of the hCE monolayer (Fig. 6). Taken together, these findings further reveal that a leaky 

colonic epithelial barrier can enhance the cytotoxic effects of apical TcdB exposure, likely through a 

mechanism whereby TcdB gains access to the basal aspect of the epithelial monolayer. 

A4.3 DISCUSSION 

In this work, we describe uncoupled apical and basal toxicity of C. difficile TcdA/B on hCE in 

multiple healthy human donors. We demonstrate that toxin sensitivities differ between hCE and hSIE, 

which could be related to different magnitudes of toxin receptor distribution across anatomical regions 

of the gut as revealed by our transcriptomic data. This interpretation is supported by findings that 

some toxin receptors are preferentially located on the apical versus basal surface of small intestinal 

or colonic epithelium.28-33, 40 The importance of identifying uncoupled apical/basal magnitude and time 

course of TcdA/B cytotoxicities is that these findings may help inform the approach to develop more 

effective therapeutic modalities. As basal toxin exposure has more substantial cytotoxic effects, the 

use of luminal therapeutics such as probiotics or toxin-neutralizing drugs could be used as 

prophylaxis to prevent toxins from reaching the basal surface where they have more potent effects. 

This also has important clinical implications for patients with underlying intestinal epithelial barrier 

dysfunction, suggesting that they may have greater sensitivity to C. difficile toxins due to basal 

receptor interactions. 

While 3D organoids and 2D monolayers are becoming more widely used to study host-

microbe interactions, here we specifically tailor and characterize a first-in-kind 2D monolayer system 

in vitro that closely mimics the transcriptomic state of late ACCs found in vivo. We then focus the 

assay development in the system to detect the first signs of barrier loss caused by C. difficile toxins. 

Although preclinical intestinal models traditionally focus on genetically homogenous Caco-2 cells and 

other cell lines,16-19, 62-65 our transcriptomic data and barrier strength readouts show that Caco-2 cells 

remain in a relatively undifferentiated state and have a more similar barrier function profile to hSIE 

monolayers. This suggests that the hCE monolayers developed in our system are likely a more 
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accurate preclinical model to evaluate toxin effects that are observed in the primary anatomical 

location in patients affected by CDI.27 

The use of cancer cell lines such as Caco-2 as models to investigate biological mechanisms 

or preclinical models for drug testing comes with some advantages, such as ease/low cost of use and 

reproducible readouts. On the other hand, they suffer from homogenous responses that likely will not 

report the variability of responses observed in the human population. We view the inherent variability 

observed between hCE monolayers derived from different donors as an advantage as it has the 

potential to capture variability that exists in the human population. In this study, healthy transplant-

grade tissue from three adult male donors varying in age and race/ethnicity was used. However, the 

ease of the hCE toxicity assay renders it scalable to additional donor demographics for increased 

representation of variable responses between humans. For example, Donor 2 appeared to be 

unusually sensitive to apically applied TcdA. While we cannot attribute a cause, unlike the other two 

donors, Donor 2 is White, and there is evidence to suggest that White patients demonstrate a higher 

CDI rate than patients of other races or ethnicities.66 While we acknowledge that sample sizes would 

have to be increased to confirm a statistical association, this example shows that our system allows 

sufficiently sensitive detection of toxin responses between humans. On-going efforts to bank ISCs 

from female and pediatric donors will allow us to evaluate the role of sex and age on C. difficile 

toxicity. Notably, this could increase the predictive value of our system as a preclinical model and 

address a substantial limitation of the genetically homogenous Caco-2 cell line. 

Another major strength of this model is that it allows us to consider C. difficile toxin effects as 

a multi-step process: early barrier dysfunction (initial TEER drop) which leads to increased 

paracellular permeability (FITC-Dextran basal accumulation), cell rounding, and then eventual 

cytotoxic cell death (apoptosis) (Fig. 7). Whereas currently used cell culture cytotoxicity assays that 

characterize cell rounding are subjective, non-standardized, and require 24 to 48 hours of 

incubation,67 our platform sensitively and quantitatively captures deleterious effects of TcdA/B in as 

little as 2 hours. Notably, while this platform was designed to evaluate the earliest events in toxicity on 

differentiated epithelium, the transcriptomic data show that this platform could also be used to 

evaluate the impact of toxins on the stem/undifferentiated cell lineages, which to-date has not been 
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fully characterized but has clinically relevant implications for wound healing and epithelial 

regeneration in CDI.68 Overall, this platform represents a flexible system and a strong experimental 

foundation to evaluate mechanisms of cell death or other aspects of cellular toxicities for development 

of new therapeutic approaches. 

Beyond studying C. difficile toxicity, the hCE platform established here can be utilized for a 

wide range of translational research applications, such as evaluating the toxicity of other pathogens, 

modeling a leaky/inflamed hCE, and drug screening. While we tailored the hCE monolayers in this 

study to detect and monitor the impacts of C. difficile toxins A/B, our methodological approach could 

be applied to other host-microbe interactions. For example, Vibrio cholerae and toxigenic Escherichia 

coli, which both are associated with life-threatening diarrhea, produce toxins that impact other colonic 

physiological properties such as water and ion transport that could be further characterized using the 

transcriptomic and experimental tools highlighted in this study.69, 70 Additionally, given that intestinal 

barrier defects are associated with a variety of human pathologies and diseases, the leaky gut model 

could be expanded to study other disease states associated with intestinal barrier defects including 

IBD, celiac disease, and irritable bowel syndrome54 to understand how these underlying conditions 

could potentiate disease etiology and negative effects of pathogenic microbes. 
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A4.4 FIGURES 

 
Figure A4.1: Single-cell transcriptomics demonstrates variations in expression patterns and 
magnitude of C. difficile toxin receptor genes across all intestinal epithelial cell lineages.  
(A) Healthy human organ donor demographic information for single-cell RNAseq data. (B) Dot plot 
showing the fraction of expressing cells (circle size) and magnitude (color) of expression for known C. 
difficile toxin receptor genes across all small intestinal and colonic epithelial cell lineages. SI, Small 
Intestine; ISC, Intestinal Stem Cell; TA, Transit-Amplifying; AE, Absorptive Enterocyte; Interm., 
Intermediate; Sec. Prog, Secretory Progenitor; EEC, Enteroendocrine Cell; FAE, Follicle-Associated 
Epithelium; C, Colon; ACC, Absorptive Colonocyte. 
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Figure A4.2: Single-cell RNAseq survey of C. difficile-toxin relevant genes reveals organ and 
lineage variability.  
(A) Dot plots comparing C. difficile toxin receptor genes across small intestinal and colonic epithelial 
regions in stem cells (left) and mature absorptive cells (right) and (B) corresponding significance bar 
graphs. (C) Dot plots comparing Rho GTPase family genes by intestinal region in stem cells (left) and 
mature absorptive cells (right) and (D) corresponding significance bar graphs. (E) Dot plots 
comparing curated tight junction genes by intestinal region in stem cells (left) and mature absorptive 
cells (right) and (F) corresponding significance bar graphs. All bar graphs show fold-change in reads 
per 10,000 genes (RP10K) across 3 donors for colon normalized to small intestine, mean ± SD. *q < 
0.05, **q < 0.01, ***q < 0.001, ****q < 0.0001. Duo, Duodenum; Jej, Jejunum; Ile, Ileum; AC, 
Ascending Colon; TC, Transverse Colon; DC, Descending Colon. 
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Figure A4.3: Bulk RNAseq reveals Caco-2 monolayers remain stem-like and hCE monolayers 
mature over time to mimic in vivo late absorptive colonocytes.  
(A) Schematic of expansion and differentiation of human colonic epithelial (hCE) monolayers on 
Transwells. (B) Principal component analysis of sequenced transcriptomes. Matrix plots comparing 
hCE and Caco-2 cells (n = 3 Transwells each) using top 30 differentially expressed genes (DEGs) for 
(C) colon intestinal stem cells (ISCs) and (D) late absorptive colonocytes (ACCs) versus the rest of 
the colon, and (E) S-phase and G2/M-phase genes in descending colon (DC) vs. Caco-2 cell 
monolayers. Gene set enrichment analysis for DC in differentiation media (DM) Day 4 (red) and 
differentiated Caco-2 cells (blue) using gene sets consisting of (F) all in vivo colon ISC DEGs, and (G) 
all in vivo late ACC DEGs. 
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Figure A4.4: Human colonic epithelial cells exhibit elevated TEER during differentiation 
compared to Caco-2 or small intestinal epithelial monolayers.  
(A) Healthy human organ donor demographic information for transepithelial electrical resistance 
(TEER) assays. (B) Schematic and timeline for TEER (i.e., ionic conductance) measurements during 
differentiation of human intestinal epithelial monolayers. Monolayer TEER measurements for (C) 
human colonic epithelium, achieving a tight epithelial barrier within 1-day differentiation media (DM) 
exposure (N = 3 donors, n = 15 Transwells/donor for all days except n = 3 Transwells/donor for Day 4 
DM), (D) Caco-2 cells (n = 21 Transwells), and (E) human small intestinal epithelium (N = 3 donors, n 
= 15 Transwells/donor). TEER values were compared against TEER at DM D0 (or Caco-2 Day 1) 
using a 1-way repeated measures ANOVA with Bonferroni correction. Each data point represents the 
mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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Figure A4.5: Basal C. difficile TcdA/B exposure induces more rapid cytotoxicity than apical 
toxin exposure in differentiated human colonic epithelium.  
(A) After seeding cells on Transwells in expansion media (EM) and switching to differentiation media 
(DM), TcdA or TcdB was added on DM Day 3 (D3) at t = 0 for 24 hours. (B) Dose-response of 
differentiated human colonic epithelium (hCE) to apical TcdA or TcdB at 30 pM (1X), 150 pM (5X), or 
300 pM (10X); n = 4 Transwells, mean ± SD. TEER is reported as % of initial value (at t = 0). Kruskal-
Wallis test with Benjamini-Hochberg correction was used. *q < 0.05, **q < 0.01, ***q < 0.001. 
Monolayer TEER measurements for differentiated (C) hCE and (D) human jejunal epithelium. (E) 
Representative immunofluorescence staining (CC3, cleaved-caspase 3; Nuclei, bisbenzimide) and 
brightfield image (Control) of fixed apical/basal TcdA or TcdB-treated hCE, 24 hours post-treatment. 
Images were taken using a Zeiss LSM710 confocal 10X objective and ZEN 2011 acquisition software, 
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with post-acquisition processing using FIJI. All scalebars = 50 µm. (F) TEER measurements for 
differentiated Caco-2 monolayers after apical or basal addition of TcdA or TcdB. For C, D, and F, 
toxins were added to DM at 1X = 30 pM; N = 3 donors for human colon and jejunum, and n = 3 
Transwells, mean ± SD. 1-way ANOVA followed by Dunnett’s multiple comparisons test were used. 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.  

 
Figure A4.6: A leaky human colonic epithelium induced by diclofenac reduces apical barrier 
protection from TcdB.  
Schematic showing TcdB-sized FITC-Dextran (250 kDa) added to the apical surface of Transwells 
with or without differentiated human colonic epithelium (hCE), +/- TcdB, and +/- diclofenac and 
resulting permeability (n = 3 Transwells). Permeability data shows cumulative FITC-Dextran (pmol) 
transported from apical to basal compartments of Transwells. Tx = treatment. Each data point 
represents the mean ± SD. 1-way ANOVA followed by Dunnett’s multiple comparisons test were 
used. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 

 

 
Figure A4.7: Human colonic epithelial cell platform detects early evidence of C. difficile 
toxicity.  
TcdA and TcdB enzymatic toxins are secreted by C. difficile, bind to host receptors, enter cells via 
endocytosis, and inactivate Rho-family GTPases by monoglucosylation. This results in early barrier 
injury, increased paracellular permeability to toxins, cell rounding, and eventual apoptosis. 

A4.5 MATERIALS AND METHODS  

Donor Selection 

Human transplant-grade donor intestines were obtained from HonorBridge (Durham, NC) and 

exempted from human subjects research by the UNC Office of Human Research Ethics. Donor 

acceptance criteria were as follows: age 65 years or younger, brain-dead only, negative for human 
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immunodeficiency virus, hepatitis, syphilis, tuberculosis, or COVID-19, as well as no prior history of 

severe abdominal injury, bowel surgery, cancer, or chemotherapy. Pancreas transplant donors were 

also excluded due to excision of proximal small intestinal tissue. Human intestinal tissue from three 

male donors (aged 29, 45, and 53 years) was used for scRNAseq.39 Colonic tissue from a 34-year-old 

Hispanic male was used for bulk RNAseq, immunofluorescence staining, and monolayer studies 

involving FITC-conjugated dextrans. Tissue from the same donor, in addition to tissue from a 51-year-

old African American male and a 29-year-old Caucasian male, was used for TcdA and TcdB apical 

versus basal cell surface studies comparing colon and small intestine. 

Single-cell RNA Sequencing Processing and Analysis 

Single-cell data was obtained from our previously published human intestinal dataset (Gene 

Expression Omnibus accession number: GSE185224), sequenced using an Illumina NextSeq 500 

(Illumina, San Diego, CA).39 All processing and analyses were completed using scanpy (v1.7.2).71 

Read counts were normalized to the median read depth of the data set and log-transformed.  

Bulk RNA Sequencing Preparation, Processing, and Analysis 

To examine the changes in gene expression as colon stem cells differentiate into late 

absorptive colonocytes (ACCs) in vitro, RNAseq was performed on hCE monolayers that were 

harvested the day after seeding onto Transwells (EM Day 1), immediately prior to switching to DM 

(Day 0), and on Days 2 and 4 of differentiation on Transwells. For Caco-2, RNAseq was performed 

using cells harvested on Day 22 of differentiation. Three technical replicates were collected at each 

time point, and RNA was extracted via the RNAqueous-Micro Total RNA Isolation Kit (AM1931; 

ThermoFisher, Waltham, MA) according to the manufacturer’s protocol.  

Before cDNA library preparation, RNA quality was determined by quantifying RNA integrity 

number (RIN), the ratio of 28s/18s RNA present, and RNA concentration in each sample. All samples 

used in library preparation had a RIN of at least 7. RIN was determined with the RNA 6000 Pico Kit 

for the Agilent 2100 Bioanalyzer. The Advanta RNA-Seq NGS Library Prep Kit for the Standard 

BioTools (formerly Fluidigm) Juno was used to prepare cDNA libraries for sequencing. Bulk 

sequencing was run on a NovaSeq 6000 instrument using one lane of an S4 v1.5 flow cell (Illumina), 
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2B paired-end reads, 150x read length. The Kallisto package was used to quantify transcript 

abundance which were pseudoaligned to human genome GRCh38. The output gene expression 

matrix was normalized using TMM normalization. Principal component analysis was performed with 

scikitlearn (v0.24.0, Rocquencourt, France).72 Gene set enrichment analysis (GSEA) was performed 

with normalized bulk RNAseq data using GSEA v4.2.373, 74 and previously published gene signatures 

for colon ISC and late ACC clusters versus the rest of the colon.39 

Collagen Hydrogel Scaffold Preparation 

6-well tissue-culture plates (3516; Corning, Corning, NY) for expansion were coated with ice-

cold type I rat tail collagen (354236; Corning, Corning, NY) in neutralization buffer based on an 

established protocol.75 Briefly, after being incubated at 37ºC in 5% CO2 for 1 hour, sterile tissue-

culture plates were coated with 1 mL of diluted (1 mg/mL) rat-tail collagen for each well. Plates were 

incubated at 37ºC in 5% CO2 for 1 hour, then 3 mL room-temperature 1X Dulbecco's phosphate-

buffered saline (DPBS) (14040141; Thermo Fisher Scientific, Waltham, MA) was added onto each 

well. Plates were then kept overlaid with DPBS at room temperature for ≥ 2 weeks prior to use. 

Primary Human Crypt Isolation and Intestinal Epithelial Stem Cell Culture 

Surgical specimens of human small and large intestines were obtained from donors at 

HonorBridge (formerly Carolina Donor Services, Durham, NC). Crypts from desired regions (Jej, DC) 

of each donor were detached from the specimen as previously described36, 37, 39 using a chelating 

buffer76 composed of EDTA (2 mM), dithiothreitol (DTT, 0.5 mM, freshly added), Na2HPO4 (5.6 mM), 

KH2PO4 (8.0 mM), NaCl (96.2 mM), KCl (1.6 mM), sucrose (43.4 mM), D-sorbitol (54.9 mM), pH 7.4. 

Released crypts were expanded as a monolayer on a neutralized collagen hydrogel as described 

previously.36-38  

Briefly, crypts were placed on the top of 1 mg/mL collagen hydrogels (1 ml into each well of 

6-well plate) at a density of 10,000 crypts/well, overlaid with 3 mL of Expansion Media (EM) 

containing 10 mmol/L Y-27632 (S1049; SelleckChem, Houston, TX), and incubated at 37ºC in 5% 

CO2. See Table 1 for small intestine and colon EM formulations. EM was used to expand the 

epithelial cell numbers as monolayers; media was changed the day after seeding and every 48 hours 
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afterwards. When the cell coverage was greater than 80% (typically 4 to 6 days), the epithelium was 

dissociated to fragments to seed onto either 6-well tissue-culture plates coated with collagen 

hydrogels for continued expansion, or onto 12-well Transwell inserts (3460; Corning, Corning, NY) 

coated with 1% Matrigel for experiments. 

Transwell Preparation and Intestinal Epithelial Stem Cell Differentiation 

Briefly, 500 µL ice-cold 1% Growth Factor Reduced Matrigel (354230; Corning, Corning, NY) 

diluted in ice-cold DPBS was added to the apical surface of 12-well Transwell inserts. Transwell 

plates were then incubated at 37ºC in 5% CO2 overnight and then rinsed 2-3 times with 1X DPBS. 

Dissociated intestinal epithelial stem cells that were expanded on collagen hydrogels were 

resuspended in 500 µL of EM per Transwell insert and seeded on the apical surface of each insert at 

an approximate density of 1.5 x 105 cells/cm2. 1.5 mL of EM was added to the basal reservoir at the 

time of seeding. Both the apical and basal media were replaced with fresh EM the day after seeding. 

After sufficient cell coverage on Transwells (e.g., no visible monolayer gaps), on Day 4, Differentiation 

Medium (DM)77 (Table 1) was used to initiate differentiation as well as during toxin experiments. 

Caco-2 Cell Culture and Differentiation  

Caco-2 cells (HTB-37; ATCC, Manassas, VA) were grown on a 10 cm polystyrene tissue 

culture-treated dish (430167; Corning, Corning, NY) in Dulbecco's Modified Eagle Media + 10% fetal 

bovine serum + 1% penicillin-streptomycin based on an established protocol (Table 2).78 Caco-2 

media was changed every 2 days until desired confluency was reached. Two 60% confluent 10 cm 

dishes were seeded onto 24 inserts in a 12-well Transwell plate coated with 30 µg/mL collagen in 1X 

DPBS. Spontaneous differentiation of Caco-2 monolayers was allowed to occur over 21 days, and 

media was changed every 2 days until the start of toxin experiments on Day 22. 

C. difficile Toxins Information  

Toxin A (SML1154; Sigma-Aldrich, St. Louis, MO) and Toxin B (SML1153; Sigma-Aldrich, St. 

Louis, MO) were reconstituted in purified water and then diluted to 30 pM, 150 pM, or 300 pM (for 

dose-response) in DM before adding to differentiated cells or Caco-2 on Transwell plates. These 

native toxins are purified from C. difficile strain VPI10463 (toxinotype 0) which is from Clade 1 (as 
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opposed to Clade 2 strains for which TcdB does not appear to bind FZDs).79 30 pM (1X) was chosen 

as a clinically relevant concentration based on ultrasensitive digital enzyme-linked immunosorbent 

assays (ELISAs) for TcdA and TcdB conducted on clinical specimens that tested positive for 

cytotoxicity.51  

Transepithelial Electrical Resistance (TEER) Measurements 

Intestinal epithelial barrier integrity was quantified via transepithelial electrical resistance 

(TEER) using an EVOM2TM paired with STX2 electrodes (World Precision Instruments, FL). TEER 

was measured daily during differentiation and every 2 hours after adding toxin for 12 hours, followed 

by a 24-hour timepoint. Toxin was added on DM Day 3 (DC) or DM Day 4 (jejunum). For Caco-2, 

TEER was measured every two days (starting day 1) and media was changed every 2 days during 

spontaneous differentiation. For Caco-2 TEER measurements in the presence of toxin, TcdA or TcdB 

was added to the apical side of Transwell inserts on Day 22. 

Microscopy and Immunofluorescence Staining of Differentiated Human Colonic Epithelium 

After the 24-hour timepoint, control and TcdA or TcdB-treated primary human colonic 

epithelial monolayers were fixed in 4% paraformaldehyde in PBS at 37ºC for 15 minutes. Cells were 

then permeabilized in 0.5% Triton-X100 at room temperature for 20 minutes, followed by blocking 

with 3% BSA in PBS for 1 hour at room temperature. The cells were treated with primary antibody 

against cleaved-caspase 3 (1:300, 9661S; Cell Signaling Technology, Danvers, MA) and incubated at 

4ºC overnight. The cells were then washed with a rinse solution consisting of 0.1% BSA, 0.2% Triton-

X100, and 0.05% Tween-20, then incubated with Alexa Fluor 488-conjugated donkey anti-rabbit 

antibody (1:500, 711-545-152; Jackson ImmunoResearch, West Grove, PA) and bisbenzimide H 

33258 (1:1000, B1155; Sigma-Aldrich-Aldrich, St. Louis, MO) diluted in 3% BSA in PBS for 1 hour at 

room temperature. Cells were washed in 1X DPBS twice prior to microscopy. Images were captured 

using an LSM700 confocal microscope (Zeiss, Jena, Germany) 10X objective and ZEN 2011 

acquisition software, with post-acquisition processing using FIJI.80 
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Basal Fluorescent Dextran Quantification and Diclofenac Permeability Assays 

Permeability assays were conducted as previously described.36 Briefly, 250 kDa FITC-

Dextran (FD250S; Sigma-Aldrich, St. Louis, MO) was chosen to mimic the size of TcdB (270 kDa). 

FITC-Dextran was diluted to 1 µM in DM and added to the apical side of 12-well Transwell inserts 

with or without 30 pM TcdB. Basal media (100 µL) was collected every 2 hours for 12 hours and 

replaced with an equivalent volume of DM (or DM with TcdB), followed by a 24-hour timepoint. Basal 

collections were added to a 96-well microplate for fluorescence-based assays (M33089; 

ThermoFisher, Waltham, MA). FITC-associated fluorescence was measured by CLARIOstar Plus 

Microplate Reader (BMG Labtech, Ortenberg, Germany) after excitation at 483 nm and detection at 

530 nm. Relative fluorescence units were converted to picomoles using a standard curve. Diclofenac 

sodium salt (157660; MP Biomedicals, Solon, OH) was reconstituted in DMSO and diluted to 1 mM in 

DM containing FITC-Dextran with or without TcdB.  

Statistics  

For comparing gene expression in scRNAseq data (Fig. 2B, D, and F), significance was 

calculated by negative binomial regression with the diffxpy python package (v0.7.4) using the Wald 

test and Benjamini-Hochberg correction. TEER values at each day of DM (or Caco-2 media) were 

compared against TEER at D0 (or Caco-2 Day 1) using a 1-way repeated measures ANOVA with 

Bonferroni correction (Fig. 4C-E). Experimental TEER values were compared against vehicle control 

for dose-response data (Fig. 5B) using the Kruskal-Wallis test with Benjamini-Hochberg correction 

due to data non-normality, and in Fig. 5C, D, and F using a 1-way ANOVA followed by Dunnett’s 

multiple comparisons test. 1-way ANOVA followed by Dunnett’s multiple comparisons tests were 

used to compare FITC-Dextran permeability between control and experimental groups (Fig. 6).  
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