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Magnetic anisotropy of LgCa, ;MnO; (LCMO) epitaxial thin films grown or{001) SrTiO; and

LaAlO5 a substrates exhibits strong correlation with substrate-induced strain states as determined by
normal and grazing incidence x-ray diffraction. In a 250 A thick LCMO (0J0film grown on

SrTiO; substrate, an in-plane biaxial magnetic anisotropy is observed, and it is accompanied by a
substrate-induced in-plane biaxial tensile strain. In contrast, the observed magnetic easy axis for a
250 A (110) film grown on LaAlQ; substrate is perpendicular to the film plane, and the
corresponding in-plane strain is biaxial compressive. In both cases the magnetic easy axes are along
the crystallographic directions under tensile strain, indicating the presence of a positive
magnetostriction. In thicker filmg~4000 A)grown on both substrates that are nearly strain relaxed,

the magnetic easy axis lies in the film plane along [{th&0] direction of the(001) substrate.
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Epitaxial thin films of rare earth manganese perovskitedattice parametera] =b!=\2a> andc!=2a". In this let-
exhibit a variety of interesting magnetic and magnetotranster, Miller indices are based on this tetragonal unit cell, in-
port behavior, including the colossal magnetoresistancéicated by a superscript “T.” The tetragonal distortion en-
(CMR) effect! These properties are often quite different ables one to distinguish between the (I1@nd (001}
from intrinsic properties of the bulk materials, and they areoriented films, using off-axis azimuthap x-ray scans:*
evidently due to epitaxial constraints. For instance, strainedhe ability to distinguish the two tetragonal orientations is
(110) SrRuQ; single domain epitaxial thin films show crucial for the study of magnetic anisotropy in LCMO films.
uniaxial magnetic anisotrogywhile the bulk single crystal Detailed thickness-dependent lattice distortions of these
exhibits a biaxial anisotropy.It has been shown® that  films have been described elsewh&te.
substrate-induced strain plays a dominant role in magnetic Our x-ray diffraction experiments show that the LCMO
anisotropy of CMR manganite epitaxial thin films. Strain- thin films grown on LAO @,=3.792 A)substrates are under
dependent properties of epitaxial manganite films are alsa biaxial compressive stress in the growth plane, induced by
important for many potential device applicatiohdt has  a —2.30% lattice mismatch with the substrate. In contrast,
been recognizéahat it is possible to tailor magnetic anisot- the LCMO films grown on STO d,=3.905 A) substrates
ropy and to change three-dimensioni@D) strain states in  show a biaxial tensile stress in the growth plane, which is
epitaxial CMR thin films by varying film thickness and sub- induced by a+0.62% lattice mismatch. These are demon-
strate type. However, 3D strain states and their influence ostrated in Fig. 1 by the normal and Gib-26 scans of 250 A
magnetism of epitaxial CMR manganite thin films have notLCMO films grown on STO and LAO substrates. The out-
yet been studied systematically. of-plane and in-plane lattice parameters of the 250 A film

In this letter we report a systematic study of 3D straingrown on STO ar€3.855+0.002)A and (3.910+0.003)4,
states and magnetic anisotropy of 250 and 4000 Arespectively, indicating an in-plane biaxial tensile strain with
Lag ¢Ca MnO; (LCMO) epitaxial thin films grown on either ¢, = ¢, ,=0.74% and a corresponding out-of-plane uniaxial
(001) LaAlO3 (LAO) or (001) SrTiO; (STO) substrates. The  compression withe,,= —0.68%. In the 250 A film grown on
LCMO films were grown using a pulsed laser depositionLAo, the respective lattice parameters €86917+0.001)3
technique at 700 °C with an oxygen partial pressure of 40Qnd (3.844+0.010)A, leading to a contrasting distortion
mTorr. The lattice parameters an_d 3D strain states were dpith €,,= €,y= —0.99% ande,,=0.92% when compared to
termined by normal and grazing incidence diffracti@iD) its STO counterpart.

6—26 scans, using a four-circle x-ray diffractometer. Mag-  crystallographic textures can also play an important role
netic measurements were carried out using a Quantum Dgy determining magnetic anisotropy in LCMO films. The
sign superconducting quantum interference deY®QUID)  near degeneracy of (110and (001J reflections has made it
magnetometer. Special sample holders were used to positigfpossible to distinguish the two out-of-plane textures using
the samples along chosen crystallographic directions. the normalé—26 scans alone. Instead, off-axis azimutkal

The bulk LCMO target is a distorted perovskite with a gcans of nondegenerate reflections, such as (1{221),
pseudocubic lattice parameteraﬁ=3.881A. The tilting of  gng (113J, are used to identify the texture. The 250 A
the MnQ; octahedra results in a tetragonal structure with. cpmoO film grown on STO exhibits a pure (001)normal
texture, as illustrated in Figs(&) and 2(b)by the ¢ scans of
@Electronic mail: eom@acpub.duke.edu the (111Y reflection. The pure (001)texture is indicated by
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o ) ) FIG. 3. Magnetic hysteresis loops at 5 K with fields applied aldap
FIG. 1. X-ray normal and grazing incidence diffracti¢@ID) 6—26 scans [010]" (open circles)[110]" (closed circles), anfi100]" (triangles)for a

for 250 A LCMO epitaxial films grown ori1) (001) SrTiO; and (b) (001) 250 A LCMO epitaxial film grown on(001) SrTiO; substrate, andb)

LaAlO, _substrates. The dotted Iin_es indicate bukkvalues of LC_:MO_, and 010]™ (closed circles)[110]™ (open circles)[001]T (closed triangles), and
the vertical arrows indicate the film peaks. Insets: schematic diagrams qf,

T ) L
cross-sectional view of the strained lattices. 111]" (open trianglesfor a 250 A LCMO epitaxial film grown or{001)
LaAlO; substrate.

the observed four peaks at every 90° interval along (001) measured in order to probe the effects of magnetic anisot-

[Fig. 2(a)). and no peaks along (110Fig. 2(b)]. The in- ropy. The behavior at 5 K for the 250 A LCMO film grown
plane epitaxial arrangement deduced from the scans is o

LCM P —— 4 LOMO 11101TISITi on STO is shown in Fig. 3(a). The magnetization perpen-
CMO [110]'ISrTiO4100], an ) CMO [110] ISITiO; dicular to the film, after it has been corrected for the demag-
[010]. In contrast, the corresponding (111p scans for the o avion effect, exhibits a high saturation fiett} (~10
250 é film grown on LAO indicate tThe presence of a purey ne) and nearly zero remanent magnetizatip, indicating
(110)' normal texture with no (001) oriented grains, as

that the magnetic hard axis is alop@01]" with film plane
shown in Figs. 2(cand 2(d). The observed four peaks shown gnet XIS | 0go1]" with film p

N A ; being magnetically easy. In-plane magnetization loops are
in Fig. 2(c)indicate the presence of two orthogonal m—pIanenearly square, and they saturate much faskéy~2 kOe)
domains. ' '

ori ion-d d i h i | The observed saturation magnetizatiod § is about 3.4
rientation-dependent magnetic hysteresis loops WerﬁB/Mn, and the coercive fieldH) is about 300 Oe. The

higher remanence for the behavior alop@10]" (nearly

B vy S — 5 (110) mormal orientation(©) equal toM,) compared to that of thg110]" indicates that
z 2 “F the magnetic easy axis is along the in-pla@d0" direc-
= 2 3% tions, and that the magnetization alofifL0]" in zero field
E B20E 504 “29’“_,0] relaxes back to the nearest easy axis. The observed behavior
= B rop LOMOLAO G corresponds to the characteristics of biaxial anisotropy. The
L e T T less than 100% remanence for the easy-axis magnetization is
® (degree} @ (degree)

likely to be the result of structural inhomogeneity. The ob-
served behavior for the 250 A LCMO film grown on LAO is

2.0

715 Z entirely different, as shown in Fig.(8). In this cgse, the
%“’ 20 A LOMORSTO 'v: perpendmglar_ magnetlza_non I(_Jop‘aeld along[11Q] ) after
205 (110) normal orientation g 250 A LCMOILAO demagnetization corrections is nearly square with a near
= @ ~ Y (001 normal orientation 100% remanence and a highdg (~800 Oe), when com-
O e a0 e 500 500 oo pared to the in-plane behavior witH~8 kOe andH,
@ (degree) @ (degree)

~400 Oe[see Fig. 8)]. In contrast to the film grown on

FIG. 2. Off-axis azimuthalp scans of(111) reflections for a 250 A LCMO STO, the observed magnetic easy axis for the film on LAO is
epitaxial thin film grown on001) SrTiO; corresponding tda) (001)and(b) . ) T 4 .

(110) normal orientations, and for a 250 A LCMO film grown ¢601) perpendicular to film along' thE‘:l:.I'O] direction. A
LaAlO; corresponding téc) (110)and(d) (001) normal orientations. Insets: The observed magnetic anisotropy for the two 250

schematic diagrams of the crystallographic domain structures. LCMO films exhibits strong correlation with respect to their
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N LCMO film grown on LAO the observed-0.99% in-plane

8 biaxial compressive strain corresponds to a compressive
stress of about-5x 10'°dyne/cnt using a Young’s modu-

] lus of 5% 10'?dyne/cni.1? From this we obtain the respec-

] tive N and K, values to be 1510 ° and —1.2

x 10° erg/cnt. Similarly, the respective values for the 250 A

] LCMO film grown on STO, which is under &0.74% in-

] plane tensile strain, arex310 ° and + 1.8 X1 erg/cnt. As

[~ T T T [ T T T ¥ T
400 -_ 4000 A [110]S ,-.'75"'
[ LCMO/STO |

M (emu/cc)

-200
] expected from the above discussion, the negafiyef the
-400 T=5K A former confirms the presence of a uniaxial easy axis, and the
A—— o positive value of the latter confirms an easy plane. The pres-
10000 -5000 0 5000 10000 ence of a positive magnetostriction in the LCMO films is
H (Oe) also confirmed by this estimate. Comparable magnetostric-

FIG. 4. Magnetic hysteresis loops at 5 K with fields applied along thetlon and uniaxial anisotropy constants were found in LCMO

in-plane[110] of the substratéopen circlesjand along the normdl001]4 f!lms 1ggr0wn py molecular beam e%'t.aiyn Y'doPed LCMO
(closed trianglesfor 4000 A LCMO films grown on STO. The subscript films,™ and in Lg /Srp sMnO; films™ in which K, was de-
“S" denotes Miller indices of the substrate. duced from torque magnetometer measurements.

In summary, we have studied the effect of 3D strain

3D strain states discussed above. The observed in-plane (Letes on magnetic anisotropy of epitaxial LCMO films

axial compressive stress and the corresponding out—of-plar’% own on two t?{p?‘s dq(O?l)substtr)gtes, Slr T'tf Tlﬂ L?AI()i,,
uniaxial tensile strain in the film grown on LAO appear to ur x-ray results indicate unampiguously that the two types

induce the observed perpendiculariaxial anisotropy, while of s_ubsttrat:es qud iﬁ thfg&rg]?:'on o\:vtwohcorrttar? ptotr;]dlng do-
the in-planebiaxial tensile stress in the film grown on STO main structures in the 1ms. VWe show that the mag-

seems to give rise to the in-plabéaxial anisotropy. In both netic anisotropy of strained LCMO epitaxial films correlates

. . e .Ftrongly with the nature of the substrate-induced 3D strain
cases, the magnetic easy axis is along the direction of tensi

T . - seiates, such that the magnetic easy axis is along the direction
strain, indicating the presence of a positive magnetostriction . L -
in LCMO films 11 of tensile strain, indicating the presence of a positive mag-

In order to probe the contributions of stress-induced annetostrlctlon. Strain relaxation in the thicker films leads to

: X - ' >
isotropy and the intrinsic magnetocrystalline anisotropy tothe formation of both (001)and (110J oriented grains, and

. : . ; the corresponding magnetic easy axis lies in the film plane
the magnetic anisotropy of LCMO films, 3D strain stafes along the[110] direction of the substrate.

and magnetic anisotropy .of strain relaxed thick films Were i work was supported by the David and Lucile Pack-
measured. The observed in-plane and out-of-plane lattice pa-

' ard Fellowship(CBE), the NSF Young Investigator Award
rameters of a 4000 A LCMO film grown on STO a&8885 (CBE), ONR g(rant Iilo N00014-95-1?0513 ar?d NSE Grant
+0.0005)A and(3.867+0.0007A, respectively. In the case ’ ' ’

: S No. DMR 9802444. F.T. acknowledges support from NSF
of a 4000 A film grown on LAO, the respective in-plane andGrant Nos. DMR 9703419 and DMR 9601825.

out-of-plane values arg.889+0.004A and(3.871+0.001)

A. The lattice parameters for both samples are very close to

the bulk value, so that the effect of stress-induced anisotropys. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L.
iS expected to be Sma”_ However, unlike their 250 A coun- H. Chen, Scienc264, 413(1994); S. Jin, T. H. Tiefel, M. McCormack, H.

terparts, the thicker films contain a mixture of (00nd 2"7' 2587?'f;é5'3' H. Chen, R. Ramesh, and D. Schurig, Appl. Phys. Lett

(110)" normal orientations? with the amount of the former  2q 'Gan, C. B. Eom, L. Wu, and F. Ts(i press).
about 2/3 of the total. The observed orientation-dependentG. Cao, S. McCall, M. Shepard, J. E. Crow, and R. P. Guertin, Phys. Rev.

magnetization loops for the two 4000 A LCMO films indi- B 56 321(1997),
. . .. . %Y. Suzuki, H. Y. Hwang, S.-W. Cheong, and R. B. van Dover, Appl. Phys.
cate that their magnetic easy axes are biaxial, along the in-| . 71 140(1997).

plane(110)directions of the substrate or along #G0" of 5J. O’'Donnell, M. S. Rzchowski, J. N. Eckstein, and I. Bozovic, Appl.
the (001} texture, as shown in Fig. 4 for the behavior of the Phys. Lett.72, 1775(1998).

: $C. Kwon, M. C. Robson, K.-C. Kim, J. Y. Gu, S. E. Lofland, S. M.
LCMO/STO sample at5 K. In the absence of stress-induced Bhagat, Z. Trajanovic, M. Rajeswari, T. Venkatesan, A. R. Kratz, R. D.

anisotropy and in the presence of predominantly (6ato- Gomez, and R. Ramesh, J. Magn. Magn. Mat&®2, 229(1997).
mains, it is reasonable to conclude that the observed behavs. Jin, M. McCormack, T. H. Tiefel, and R. Ramesh, J. Appl. Phs.
ior corresponds to the intrinsic magnetocrystalline anisotropy, 8929 (1994).

T . X . . . . M. T. Johnson, P. J. H. Bloemen, F. J. A. den Broeder, and J. J. Vries,
of (001)" oriented films, which gives rise to magnetic easy Rep. Prog. Phys59, 1409(1996),

plane in (001]. °C. B. Eom, R. J. Cava, R. M. Fleming, J. M. Philips, R. B. van Dover, J.
From the measured magnetic hysteresis loops of the 250H. Marshall, J. W. P. Hsu, J. J. Krajewski, and W. F. Peck, Jr., Science
A LCMO films, we have estimated the magnetostriction con-,, 258 1766(1992). _
d th niaxial anisotro constafit in order to R. A. Rao, D. Lavric, T. K. Nath, C. B. Eom, L. Wu, and F. Tsui, Appl.
stantA and the uniz ropy L in o Phys. Lett.73, 3294(1998).
guantify the stress-induced anisotropy of LCMO films. Stan-'1B. D. Cullity, Introduction to Magnetic MaterialsAddison—Wesley,
dard expressions for the stress-induced anisotropy Figld Reading, MA, 197, p. 268.

=3\o/Ms and K, =3\ o121 were used withs the biaxial 12 American Institute of Physics Handbgadited by D. E. GragMcGraw—
. L . Hill, New York, 1972, pp. 3-126.
stress in the film, andis along magnetic hard axes were 13y R |harra, P. A. Algarabel, C. Marquina, J. Blasco, and J. Garcia, Phys.

assumed to be approximately equalHq,. In the 250 A Rev. Lett.75, 3541(1995).



