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Abstract

In situ measurements of diffusive particle transport provide insight into tissue architecture, drug 

delivery, and cellular function. Analogous to diffusion-tensor magnetic resonance imaging (DT-

MRI), where the anisotropic diffusion of water molecules is mapped on the millimeter scale to 

elucidate the fibrous structure of tissue, here we propose diffusion-tensor optical coherence 

tomography (DT-OCT) for measuring directional diffusivity and flow of optically scattering 

particles within tissue. Because DT-OCT is sensitive to the sub-resolution motion of Brownian 

particles as they are constrained by tissue macromolecules, it has the potential to quantify 

nanoporous anisotropic tissue structure at micrometer resolution as relevant to extracellular 

matrices, neurons, and capillaries. Here we derive the principles of DT-OCT, relating the detected 

optical signal from a minimum of 6 probe beams with the 6 unique diffusion tensor and 3 flow 

vector components. The optimal geometry of the probe beams is determined given a finite 

numerical aperture, and a high-speed hardware implementation is proposed. Finally, Monte Carlo 

simulations are employed to assess the ability of the proposed DT-OCT system to quantify 

anisotropic diffusion of nanoparticles in a collagen matrix, an extracellular constituent that is 

known to become highly aligned during tumor development.

1. Introduction

Living tissue contains aqueous intra- and extra-cellular spaces where particles undergo 

Brownian motion (self-diffusion). As particles collide with tissue macromolecules or 

surfaces, their diffusion is hindered. In tissues with aligned fibers or elongated pores, 

particle diffusion becomes anisotropic and is best described by a diffusion tensor. The ability 

to image the diffusion tensor has revealed many new insights into in vivo tissue 

ultrastructure. The best-known example is DT-MRI (Basser, Mattiello & LeBihan 1994, 

Mori & Zhang 2006, Mori & Tournier 2014, Mukherjee, Berman, Chung, Hess & Henry 

2008, Melhem, Mori, Mukundan, Kraut, Pomper & van Zijl 2002, Le Bihan, Mangin, 

Poupon, Clark, Pappata, Molko & Chabriat 2001), in which the diffusion tensor of water 
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molecules is mapped to infer the direction and connectivity of neuronal tracts in the brain. 

However, the heterogeneity of tissue causes the typically millimeter-resolution DT-MRI to 

be volume-averaged over multiple tissue components with varying diffusion tensors, while 

better resolution can only be accomplished with excessively long scan times (Le Bihan et al. 

2001). To resolve structural heterogeneity on the cellular scale, dynamic light scattering 

optical coherence tomography (DLS-OCT) is of growing interest. DLS-OCT measures the 

coherence-gated diffusion rate of optically scattering particles along the direction of a single 

probe beam with a resolution on the order of 10 µm (Boas, Bizheva & Siegel 1998). While 

DLS-OCT has been predominantly used in conjunction with flow measurements in blood 

vessels (Lee, Wu, Jiang, Zhu & Boas 2012), it has also been applied for spatially-resolved 

microrheology (Popescu, Dogariu & Rajagopalan 2002, ?). Recently, we have developed a 

type of DLS-OCT to resolve tissue porosity (i.e. pore size) by employing plasmonic gold 

nanorods sensitive to nanoscale pores by merit of their constrained diffusion, and applied the 

method to study mucus hydration and extracellular matrix (ECM) remodeling in vitro 
(Chhetri, Blackmon, Wu, Hill, Button, Casbas-Hernandez, Troester, Tracy & Oldenburg 

2014, Blackmon, Sandhu, Chapman, Casbas-Hernandez, Tracy, Troester & Oldenburg 2016, 

Blackmon, Kreda, Sears, Chapman, Hill, Tracy, Ostrowski & Oldenburg 2017a). However, 

tissues are rarely isotropic in structure, and a single diffusion constant D is insufficient to 

describe particle transport. Here we propose Diffusion Tensor Optical Coherence 

Tomography (DT-OCT) to obtain the coherence-gated diffusion tensor D ̿ to specify diffusion 

in all directions. Because D̿ is a symmetric, second-order tensor, in three dimensions it is 

uniquely determined by six components. To completely characterize the tensor, a minimum 

of six measurements of the decorrelation time from different directions using OCT are 

required. At the same time, the 3 drift velocity components may be independently 

determined.

The concept of DT-OCT is described in Fig. 1. Self-diffusing particles intermittently collide 

with macromolecules such that D is reduced from that in the solvent alone. In anisotropic 

media with elongated pores, particle diffusion is higher in the direction of pore elongation, 

D‖, and lower in the direction of pore contraction, D⊥. A major application of DT-OCT 

would be to quantify the 3D anisotropy of pores in ECM as it relates to the progression of 

breast cancer. The structural and mechanical properties of mammary ECM are modified by 

cancer-associated stromal cells (fibroblasts), and can drive the invasiveness of breast cancer 

(Provenzano, Eliceiri, Campbell, Inman, White & Keely 2006, Wolf, Te Lindert, Krause, 

Alexander, Te Riet, Willis, Hoffman, Figdor, Weiss & Friedl 2013, Cox & Erler 2011). 

Several methods currently exist to study the structure and micro-mechanics of ECM, 

including immunofluorescence (Levental, Yu, Kass, Lakins, Egeblad, Erler, Fong, Csiszar, 

Giaccia, Weninger et al. 2009, Paszek, Zahir, Johnson, Lakins, Rozenberg, Gefen, Reinhart-

King, Margulies, Dembo, Boettiger et al. 2005), multiphoton microscopy(Ajeti, Nadiarnykh, 

Ponik, Keely, Eliceiri & Campagnola 2011), particle tracking rheology (Jones, Hanna, El-

Hamidi & Celli 2014), and atomic force microscopy (Akhtar, Schwarzer, Sherratt, Watson, 

Graham, Trafford, Mummery & Derby 2009). Our DLS-OCT methods (Chhetri et al. 2014, 

Blackmon et al. 2016) enabled for the first time non-invasive measurements of ECM 

nanoporosity, but could not reveal the anisotropy of pores. In Fig. 1 is displayed an artificial 

ECM remodeled by stromal fibroblasts, revealing how the pore anisotropy increases with 
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increasing stromal cells. Importantly, this pore alignment is ”patchy”, i.e., heterogeneous on 

a micrometer size scale, a feature which can only be captured with the proposed DT-OCT 

technique, as non-invasive measurements of pore shape at cellular resolutions do not exist. 

Elucidating pore anisotropy may reveal ordered ECM directionality that is known to 

influence cell migration (Paszek et al. 2005, Cox & Erler 2011, Falzon, Pearson & Murison 

2008), and reveal strain on ECM fibers from stromal cells that signal mechanoreceptors on 

cancer cells (Camp, Elloumi, Roman-Perez, Rein, Stewart, Harrell, Perou & Troester 

2011,?, ?, ?). As such, DT-OCT represents a new tool for spatially resolving ECM pore sizes 

and shapes.

DT-OCT proceeds in close analogy with its DT-MRI counterpart. DT-MRI operates by 

applying a pulse sequence, often a spin-echo pulse, to a population of spins within a 

magnetic field gradient. Because spin precession rate is determined by the local magnetic 

field strength, the rate changes as spin moves along the magnetic field gradient. The spin-

echo pulse sequence subtracts the precessed transverse magnetization phase in the interval 

after the 180° phase-reflecting pulse with that occurring before the pulse. In the absence of 

motion of the spin, the precession phase accumulations before and after the 180° pulse 

exactly cancel, resulting in a strong echo pulse. However, if the spin moves along the 

magnetic field gradient, the precession rate is different before and after the 180° pulse, 

causing a nonzero phase accumulation that modulates the echo pulse. The net phase 

accumulation is proportional to the difference in magnetic fields at the spin’s start and end 

positions. Therefore the motion of the spin due to drift or diffusion is encoded onto the 

phase of the echo signal. Drift is encoded into a phase proportional to the component of the 

velocity along the gradient. As the motion of diffusion is random, the sum of random phases 

from multiple particle motions results in the decay of the spin echo signal with increasing 

precession time. By using two or more spin-echo pulses with different precession time 

intervals, the exponential decay rate of the echo signal may be ascertained, with a greater 

decay rate indicating more spins that diffuse more readily. In practice, the “b-matrix” 

(Mattiello, Basser & Lebihan 1994) of a pulse sequence is tailored to select the directions 

most sensitive to spin motion based on the directions of applied magnetic field gradients. By 

measuring with many pulse sequences that probe different directions, the diffusion rate in 

these directions may be calculated from the measured echo decay rates. These diffusion rates 

are then combined to estimate the diffusion tensor.

DT-OCT is similarly able to quantify the drift and diffusion of particles. Like its DT-MRI 

counterpart, to determine the motions of a particle using OCT, the backscattered OCT 

signals captured at two or more time intervals are compared, although unlike MRI, they are 

correlated in post-processing. At an initial time, the position of a particle is encoded onto the 

phase of the backscattered signal. At a later time, drift and diffusion have moved the particle 

and a new position is encoded onto the phase. The difference between these two optical 

phases is analogous to the residual phase encoded onto a moving spin after a spin-echo pulse 

sequence. The gradient of the phase difference between the incident and scattered 

electromagnetic fields, that is, the difference of the incident and scattered wave vectors, is 

analogous to the applied magnetic field gradient of MRI for determining in which direction 

particle motion is detected. Drift, or the motion of the particle at a uniform speed in a 

particular direction, produces a periodic modulation of the phase which is the conventional 
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Doppler shift as measured by OCT. Diffusion, which is caused by solvent molecules 

randomly colliding with the particle, displaces the particle in a random direction with a 

mean-squared displacement proportional to the time between observations. Unlike drift 

which produces a deterministic phase variation of the backscattered signal, the signal 

variation due to diffusion becomes exponentially decorrelated as time progresses, just as for 

MRI. Because OCT can acquire axial scans at rates exceeding tens of kHz, an 

autocorrelation of the backscattered signal may be estimated on time scales over many 

orders of magnitude. The decorrelation time may be characterized by fitting an exponential 

decay time constant τ to the autocorrelation of the backscattered OCT signal. With 

knowledge of the center wavelength λ of the illumination, refractive index n, and the 

corresponding scattering vector q = 4τn/λ, the diffusion constant is estimated as D = 1/τq2. 

This diffusion constant, for isotropic media, parameterizes the probability distribution of the 

particle’s position as time progresses, as described by the Fokker-Planck equation.

In this paper we develop the theory of anisotropic diffusion and drift in the frequency-

domain in Section 2. The autocorrelation of the backscattered optical signal from diffusing 

and drifting particles in a coherence volume is then derived in Section 3. In Section 4, it is 

explained how to find the linear equations that relate the components of the drift velocity 

and diffusion tensor to the decay times. In Section 5, the six optical illumination directions 

for best estimating the diffusion tensor are determined through numerical optimization given 

a finite numerical aperture, and in Section 6, an example hardware implementation for 

rapidly assessing tissue along these six directions is proposed. A simple example of DT-

OCT of axisymmetric diffusion is given in Section 7, and in Section 8, Monte Carlo 

simulations are performed to simulate DT-OCT measurements of nanoparticles diffusing in 

ECM with anisotropic, axisymmetric pores.

2. Frequency-domain drift and diffusion

To determine the backscattered optical signal that is received from a population of particles 

undergoing drift and diffusion, it is convenient to first solve for the frequency-domain or 

Fourier transform of the particle density. It is assumed that the diffusion tensor and drift 

velocity in the medium are slowly varying relative to the spatial scale of the particle 

concentration gradient. This is a transient analysis that assumes an initial condition, 

however, the transient analysis also models temporal fluctuations of the particle density due 

to thermal excitations and therefore is subsequently used to calculate the correlations in 

particle density with time. Furthermore, collisions between particles are neglected and so the 

particles diffuse independently. We start with Fick’s law applied to a time-dependent particle 

density ρ(r), given a diffusion tensor field D̿, drift velocity field v, and a time-dependent 

particle flux J, all functions of position r in the medium:

(1)
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In this derivation, the ∇ gradient operator is the column vector , ∇T is the 

divergence operator row vector  applied to each column of a matrix or vector, and 

∇∇T is the Hessian matrix operator which is each element of the Hessian matrix applied to a 

scalar. The diffusion equation is derived by applying particle conservation :

(2)

If the diffusion tensor and velocity field are slowly spatially varying compared to the particle 

concentration gradient, then:

(3)

and the ∇TD̿∇ρ and ρ∇Tv terms may be omitted:

(4)

To solve for the particle density, we use its Fourier transform:

(5)

with V being the domain of integration of the volume containing the particles. This is 

inserted into Eq. 4, giving:

(6)

which may be rewritten as:

(7)

which is solved as an initial value problem with known particle concentration at t = 0. The 

solution for t ≥ 0 is:

Marks et al. Page 5

Phys Med Biol. Author manuscript; available in PMC 2019 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(8)

with u(t) being the unit step function as the impulse response to a point of infinite density (a 

Dirac delta function) should be causal.

For calculating correlations of optical signals in the subsequent section, it is helpful to 

specify the correlations between particle positions for the initial state ρ̃(q, 0) to estimate the 

temporal autocorrelation of the particle ensemble. If there are N identical particles at starting 

points ri at time t = 0, then:

(9)

and the spatial Fourier transform of the initial state is:

(10)

The expected value of the magnitude 〈|ρ̃(q, 0)|2〉 is given by:

(11)

If the particles are assumed to be positioned independently and |q| ≠ 0, then 〈exp[iqT](ri − 

rj)]〉 = 0 for i ≠ j and therefore 〈|ρ̃(q, 0)|2〉 = N.

3. Autocorrelation of the backscattered optical signal

The optical signal backscattered from particles within a coherence-gated volume received by 

OCT is typically detected interferometrically either using time- or frequency-domain OCT 

(Leitgeb, Hitzenberger & Fercher 2003). The detected signal is the interference between the 

light backscattered from the particles and a reference wave, giving rise to the speckled 

image. As particles move a significant fraction of the wavelength, the speckle fluctuates, 

giving rise to the dynamic signals that we use to infer drift and diffusion. Optical scattering 

occurs at discontinuities of the electric susceptibility due to the presence of the particles in 

an otherwise uniform background medium. Typically the incident field on the particles is a 
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Gaussian beam and the collected scattered signal is the projection onto the same incident 

field mode (Fercher, Drexler, Hitzenberger & Lasser 2003, Ralston, Marks, Carney & 

Boppart 2006). The radius of curvature of a focused beam is infinity at the focus, and so near 

the focus the incident field mode is approximated by a plane wave with wave vector k and 

magnitude Ẽ0. For simplicity, each particle is assumed to have an isotropic particle 

polarizability α so that the medium electric susceptibility is given by χe = ρα and a scalar 

field model (no polarization) is used. Given this, the complex-valued monostatic 

backscattered power measured from the object is given by:

(12)

In practice, the complex-valued signal is inferred from real-valued power measurements by 

separating a temporal signal and its time-reflected conjugate signal using the Fourier or 

Hilbert transform. The correlations of the received power at two different time points for a 

given incident wave vector k can now be calculated. Consider the autocorrelation of the 

complex-valued power signal received from the wave vector k as a function of delay τ:

(13)

Inserting the definitions of the signal s(k, t):

(14)

Next, the Fourier transform of ρ(r, t) is inserted from Eq. 5 as ρ(r, t) = (2π)−3 ∫ d3q ρ̃(q, t) 
exp (−irTq):

(15)

Interchanging the order of integration between r, q and r′, q′:
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(16)

The integrals over r and r′ evaluate to delta functions:

(17)

The integrals over the delta functions evaluate to:

(18)

Now we insert the solution of Eq. 8, which is the spatial Fourier transform of the time-

varying particle density:

(19)

As it is assumed that no data is sampled for t < 0, the unit step functions enforce that the 

autocorrelation is taken only over a signal at times t ≥ 0. The unit step functions restrict the 

integration bounds on time, so that for τ > 0, the bounds are from 0 to ∞:

(20)

Likewise for τ < 0, the bounds are from −τ to ∞, which results in an autocorrelation 

function that is the complex conjugate of Eq. 20. |ρ̃(2k, 0)|2 is dependent on the initial 

positions of the particles, but this factor only scales the autocorrelation, as expressed in Eq. 

11, and does not change its rate of decay. Inserting the expected value 〈|ρ̃(2k, 0)|2〉 = N 
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under the assumption that initial particle positions are uncorrelated into Eq. 20, it is found 

that:

(21)

for τ ≥ 0 where N is the number of particles being observed, with τ < 0 being the Hermitian 

conjugate of the above.

4. Calculating the diffusion tensor and drift velocity from the 

autocorrelation

To determine the diffusion tensor D̿ and the drift vector v, a focus volume is probed from 

several directions ki as shown in Fig. 1. In practice, the incident angle to the focus is 

determined by the position of the beam in the entrance pupil of objective. At each position, 

the interference signal is measured and its sample autocorrelation Γi(ki, τ) is calculated from 

the signal samples s(k, t). Examining the logarithm of Γi(k, τ) measured for each direction 

ki:

(22)

The value of 2kT (iv + 2D̿k) may be estimated by finding the logarithmic derivative, which 

is called βi:

(23)

If several βi are calculated for incident directions ki, the components of the tensor D̿ and the 

vector v may be solved for as linear combinations of the βi. As D̿ is a symmetric, real-valued 

tensor it has six unique components. The drift velocity vector v has three real components. 

While there are nine unknowns, the imaginary component of βi determines the drift velocity 

components only, while the real part determines the diffusion tensor components only. 

Therefore six directions are sufficient to reconstruct both the drift and diffusion field. 

Furthermore, the drift component is linear in k while the diffusion component is quadratic in 

k. Therefore drift and diffusion can also be distinguished spectroscopically by probing at 

two or more wavelength bands with a significant difference between the bands.
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5. Choosing the directions of illumination to optimally sample the diffusion 

tensor

To measure the complete diffusion tensor, a point in the sample must be probed from at least 

six different directions, as shown in Fig. 2. Which directions are best to optimize the 

estimate of the tensor components if the principal axes of the diffusion tensor are unknown? 

For DT-MRI, common choices of directions include the vertices of polyhedra such as 

icosahedra, or if more directions are desired, an icosahedral geodesic sampling (Hasan, 

Parker & Alexander 2001). However, unlike DT-MRI which can apply a gradient along any 

direction, DT-OCT is limited to beams delivered within a finite numerical aperture. Given 

this constraint, a solution is presented that finds an optimized solution for six wave vector 

directions.

In the absence of drift, the diffusion tensor is related to the βi by 

. Therefore the  comprise a basis of outer products of 

the wave vectors over which the diffusion tensor is probed. The  need to span all 

subspaces of D̿ to reconstruct all six unique elements of D̿. The degree of orthogonality of a 

set of basis vectors may be evaluated using the Gramian matrix (Gentle 2007), which has 

matrix elements that are inner products of the basis vectors. In this case, because the basis 

consists of outer products , the Gramian matrix G has its elements given by the inner 

product of all of the outer product pairs such that . Given a 

set of wave vector directions ki, the determinant of the Gramian matrix is a measure of the 

orthogonality of the samples of βi, and maximizing the determinant of G under a particular 

set of constraints chooses a set of directions optimized for sampling the diffusion tensor.

With a single finite aperture, the object may be probed from a limited range of directions, 

with the largest angle subtended to the optical axis limited by the numerical aperture NA of 

the lens. The directions that may be probed are limited by 

with εr being the medium relative dielectric permittivity, and ẑ being the central axis of the 

optical illumination system. (Note that one may wish a larger NA to accommodate the beam 

diameter needed to support the desired focal spot width; here we define the NA as that 

available for beam steering only). The goal then is to find a set of six vectors 

such that the determinant of the Gramian G is maximized under the constraint that 

. Because an exchange of ki → −ki does not change G, 

the solutions for ki may be limited to a hemisphere with generality. This can be achieved, for 

example, by setting  so that all incident directions are in the +z direction.

This problem can be approximately solved using constrained optimization. The function to 

be optimized is:
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(24)

where λi is a Lagrange multiplier that constrains the solutions ki to have a positive z 

component as well as constrains the directions to the given NA, and  is a Lagrange 

multiplier to hold the magnitude of  so that the same wavelength of illumination is 

used for all beams. The variation with respect to the ki are:

(25)

using Jacobi’s formula. To optimize each Cartesian direction, x̂, ŷ, or ẑ may be substituted 

for n̂ to find the variation of L in that particular direction. Using this formula, gradient 

descent was performed to find a solution for the optimal ki. After repeated gradient descent 

optimization starting with random directions, for  the solution converged 

within 10−6 accuracy to:

(26)

where ϕ0 is an arbitrary angle as the system is rotationally symmetric around ẑ. This 

corresponds to the case shown in Fig. 2, which has one vector illuminating a point along the 

z axis, and five equally spaced directions at the edge of the aperture arranged as shown in a 

pentagon. Valid solutions for  are six vertices on a regular icosahedron 

arranged such that five of the vertices surround a central vertex, with one solution 

corresponding to the formula of Eq. 26 and substituting . This is also a 

solution for DT-MRI where generally there is no constraint on the magnetic field gradient 

directions as MRI scanners have independently-controlled gradient coils in all three 

dimensions (Hidalgo-Tobon 2010).

6. Experimental Considerations for DT-OCT

In practice, to perform DT-OCT, one must be able to manipulate both the position of the 

focus and the incident angle of the focused beam. At each position of the focus, an M-scan is 
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acquired at each of a minimum of six different directions of the incident beam (as in Fig. 2), 

in order to estimate the diffusion tensor at that position. To probe the components of the drift 

and diffusion tensor that are perpendicular to the central axis, some of the incident beams 

must be highly inclined in order to obtain a larger projection of the particle motion along the 

beam direction. This usually requires a high numerical aperture objective.

One method of independently manipulating both the incident position and angle of the 

incident beam is to use two sets of galvanometer mirrors in a 4-F system as shown in Fig. 3 

(Goodman 1996). The set of galvos that is conjugate to the front focal plane of the objective 

lens controls the position of the focus, and the other set of galvos that is conjugate to the 

image plane controls the direction of the incident angle. It is usually more convenient to 

have larger diameter, smaller angular range galvanometer mirrors in a high f/# 4-F system, 

and then to subsequently use a telescope to increase the numerical aperture, demagnify the 

image, and magnify the incident angle on the sample. To ensure that the beam is incident 

from different directions into the focus region, the beam should not fill the entrance pupil of 

the objective. Rather, there should be distinct beam positions in the entrance pupil 

corresponding to each of the incident direction vectors ki. An objective with a higher 

numerical aperture is required than would be needed to achieve a desired transverse 

resolution as the entire entrance aperture of the objective is not used to focus the beam. We 

note that the setup of Fig. 3 is intended to be a simple example of a scanning system capable 

of acquiring data for DT-OCT, but because several incident angles would be sampled 

serially, it increases the acquisition time of a DT-OCT image as compared to a conventional 

OCT image.

Because realistic OCT instruments have ellipsoidally-shaped, finite coherence volumes with 

the lateral extent determined by transverse resolution Δx and axial resolution Δz, if the 

observation interval Tobs is sufficiently long, particles may enter and exit the coherence 

volume during the observation interval. When significant numbers of particles transit the 

coherence volume during the observation time, the autocorrelation decreases more quickly 

with time than caused by diffusion alone. While models exist for quantifying one-

dimensional diffusion in this situation (Popov, Weatherbee & Vitkin 2014), here we will 

assume that number variations are negligible by placing an upper bound on Tobs based upon 

the transit time:

(27)

where the relation must be met in all directions r with components of drift velocity υr, 

diffusion rate Dr, and resolution Δr in that direction.

It is also important to consider the choice of sampling rate and observation time relative to 

the range of diffusion rates present in the system to be studied. First, the sampling rate (A-

line rate) for the M-scans needs to be sufficiently fast relative to the decorrelation rate of the 

speckle signal. Specifically, this means that the sampling rate, fs, should be faster than the 

reciprocal of the 1/e decay time of the autocorrelation, or approximately:
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(28)

which must be satisfied for all incident beam directions r and for the largest diffusion rates 

and drift velocities present in the system. This requirement is already routinely met for DLS-

OCT measurements, although it may become challenging for systems with small 

nanoparticles where diffusivity is high, or in systems with high drift velocities such as in 

blood. Second, the observation time must be sufficiently long to capture many speckle 

decorrelation events to obtain sufficient averaging. In practice this suggests that 

approximately:

(29)

which must be satisfied for the smallest diffusion rates and drift velocities present in the 

system. In practice, we found in our previous DLS-OCT study (in the absence of drift) that 

Tobs needed to 10.75× larger than the decay time for an accurate determination of the 

diffusion rate (Blackmon et al. 2017a).

Finally, we note that for an accurate measurement of drift velocity, it must be sufficiently 

large such relative to diffusion such that the particle’s displacement over the observation 

time has significant components of directed and diffuse travel. Specifically, this means that:

(30)

This effectively sets a lower limit on the sensitivity of the system to drift.

7. A simple example

As a simple example, consider an anisotropic, axisymmetric diffusive medium as shown in 

Fig. 4. Within the plane, the diffusion rate is D‖, and perpendicular to the plane, the diffusion 

rate is D⊥. While the orientation of the plane is shown perpendicular to the vertical (z) axis 

in the laboratory frame, in practice, one would not generally know the orientation of the 

principal axes of the diffusion tensor. The diffusion tensor in this example is:

(31)

Consider probing the sample with beams at angles θi with respect to the vertical axis and a 

wave vector of length k0. The wave vector ki = k0 (ẑ cos θi + x̂ sin θi) (because of axial 

symmetry). Then βi may be calculated as:

Marks et al. Page 13

Phys Med Biol. Author manuscript; available in PMC 2019 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(32)

For example, if the sample is probed at two angles θ1 and θ2, the solution is found by 

solving the following linear system:

(33)

8. DT-OCT Simulations of an Anisotropic Collagen Matrix

Here we employed Monte Carlo simulations of anisotropic diffusion to explore the 

sensitivity of the proposed DT-OCT method for quantifying pore anisotropy in ECM. To 

provide relevant context for the simulation, we employed input parameters consistent with 

our previous study of fibroblast-mediated remodeling of artificial ECM (collagen:Matrigel) 

using DLS-OCT with gold nanorod probes (Blackmon et al. 2016). In that study we showed 

a proportionality between the apparent ECM pore size by SEM and the nanorod diffusion 

rate by DLS-OCT when averaged over the culture. Yet, evidence of increasing heterogeneity 

in both SEM and DLS-OCT, and evidence of patchy ECM fiber alignment in SEM (as in 

Fig. 1), suggested that the lack of ability to resolve D‖ and D⊥ prevented accurate 

interpretation of the ECM remodeling. As such, DT-OCT may be useful for understanding 

this model system.

To simulate the data collection we matched the image acquisition parameters of our existing 

DLS-OCT system (Blackmon et al. 2016), including an illumination wavelength of 800 nm, 

a sample refractive index of 1.34 (as of water), a sampling rate (A-line rate) of 25 kHz, 4000 

samples per M-scan, 12 particles per coherence volume, and 3 M-scans per illumination 

direction (analogous to our previous method of averaging the autocorrelations of 3 adjacent 

rows of a single M-scan). Since we are not concerned with the rotational motion of the 

nanorods that were employed previously, here we treat spherical diffusive probes with 

translational diffusion rates set to equal those of the nanorods (i.e., of identical 

hydrodynamic diameter). Unlike the simple example above, we wanted to simulate an 

unknown tilt angle of the sample; the tilt angle (i.e. the tilt of the principle z axis of the 

sample’s diffusion tensor) was set to 25° from the laboratory z′ axis. The NA was set to 0.8, 

and measurements were simulated using 6 incident optical beams at angles given by the 

optimal solution presented in Section 5. The diffusion tensor and velocity vector were 

extracted by fitting the simulated OCT measurements according to Eq. 23. To fit the 

logarithmic derivative βi, the following sum was calculated with Δτ being the separation 

Marks et al. Page 14

Phys Med Biol. Author manuscript; available in PMC 2019 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between samples of the autocorrelation, NA being the number of samples, and log is the 

complex logarithm taken over the principal branch between −iπ to iπ:

(34)

A weighting is applied so that values of the autocorrelation for which there is little signal 

available, namely toward larger τ, contribute less to the estimate of the complex decay 

constant. Each experimental condition was simulated 50 times to estimate the mean and 

standard deviation of the simulated measurement.

To simulate nanoparticle diffusion, particles were uniformly randomly seeded within a 3D 

cube of one wavelength and displaced in time with a Gaussian random step size given by 

their diffusion rate along each of the 3 principle axes of the diffusion tensor. While this 

simulation is of nanoparticles, DT-OCT does not require a contrast agent and can be used 

with endogenous light scatterers as well. To simulate ECM anisotropy, we assumed a 

uniaxial diffusion tensor Dx = Dy = D⊥ and Dz = D‖ and defined the diffusion tensor 

anisotropy DΔ and an effective isotropic diffusion rate DISO using the conventions 

previously developed in NMR (Eriksson, Lasič, Nilsson, Westin & Topgaard 2015):

(35)

DISO was chosen to match that of nanorods obtained by our previous DLS-OCT study from 

artificial ECM cultures seeded with increasing numbers of fibroblasts (Blackmon et al. 

2016). Specifically, DISO was set to the spatially-averaged nanorod diffusion rate in 1:1 

collagen:Matrigel cultures measured at 48 hours after being seeded with 0, 100,000, 

300,000, and 500,000 fibroblasts/cm3, which were 3.68 µm2/s, 3.04 µm2/s, 1.53 µm2/s, and 

1.01 µm2/s, respectively. Subsequently, D‖ and D⊥ were computed for varying anisotropies 

DΔ swept from 0 (isotropic) to 1 (fully anisotropic). While we do not anticipate significant 

particle flow in this model system, to demonstrate the robustness of the measurements in the 

presence of drift, we also simulated a background flow field of υx = 15 µm/s, υy = −7.5 

µm/s, υz = 11.25 µm/s.

It is important to note that the range of diffusion and velocity values explored in the 

simulations meet the four criteria described in Section 6. While we did not explicitly model 

the finite nature of the coherence volume, according to Eq.(27) the total observation time 

Tobs = 0.16 s is shorter than the shortest particle transit time of 0.35 s given a coherence 

length of 6 µm. Second, the sampling rate of 25 kHz is faster than the maximum speckle 

Marks et al. Page 15

Phys Med Biol. Author manuscript; available in PMC 2019 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



decorrelation rate of 5.1 kHz calculated using Eq.(28). Third, according to Eq.(29), at the 

lowest isotropic diffusion rate (1.01 µm2/s) simulated, the observation time should be ≫ 
0.0085 s, which is satisfied. However, the simulation does scan over values of Dx and Dy 

that approach zero, where the impact on the measurement accuracy is discussed below. 

Fourth, the minimum measurable drift velocity is 0.14 µm/s according to Eq.(30), which is 

well below the simulated flow field components.

We note that in a practical scenario, the M-mode image acquisition time (comprised of 4000 

A-lines) would be approximately 0.2 s, including the recording time (0.16 s) and time to 

move the scanning beam and begin another image (0.04 s). This corresponds to a total DT-

OCT measurement time (six M-mode images) of 1.2 s, while noting that parallel OCT 

(Barrick, Doblas, Gardner, Sears, Ostrowski & Oldenburg 2016) might be beneficial to 

parallelize DT-OCT acquisition over multiple volumes.

Figure 5 presents the error in simulated measurements of diffusion tensor anisotropy and the 

magnitude of the drift velocity for each experimental condition. For anisotropy DΔ > 0.3, the 

measured DΔ is within 5% error. For DΔ < 0.3, the difference between actual versus 

measured DΔ exceeds 10%, which is expected as D‖ and D⊥ approach the same value 

(become degenerate), and the error in D‖ begins to more significantly influence the 

calculated anisotropy. This behavior is predicted from eigenvalue perturbation theory, as 

even a small perturbation in the diffusion tensor due to measurement error tends to repel 

nearly degenerate eigenvalues, known as the avoided crossing effect (Griffiths 1995, 

Anderson 2001). In contrast, the drift velocity errors are generally below 6% and 

independent of DΔ. Interestingly, drift velocity measurements are on average more accurate 

when DT is lower (i.e., for the more highly concentrated cell cultures). This effect is 

attributed to the fact that drift will comprise a greater proportion of particle transport relative 

to diffusion when DT is lower, thus lowering the drift velocity sensitivity according to Eq.

(30).

The simulated measurements of diffusion rates in each of the x, y, and z directions (in the 

sample frame) for the 500,000 fibroblasts/cm3 culture are presented in Fig. 6. This 

demonstrates that DT-OCT is capable of resolving the individual diffusion tensor 

eigenvalues across a range of anisotropies when the sample is arbitrarily tilted relative to the 

measurement beam (noting that the fitting code was blind to the tilt angle). However, it is 

interesting to note that the standard deviation of Dx measurements was significantly larger 

than that of Dy or Dz (0.14 µm2/s versus 0.11 µm2/s and 0.10 µm2/s, respectively). 

Additional simulations were performed to determine that this effect arises from the larger 

angle between the x axis and the optic axis (90°), in comparison to that for the y and z axes 

(65° and 25°, respectively). Importantly, the size scale of these standard deviations suggest 

an overall diffusion rate sensitivity on the order of 0.1 µm2/s, which corresponds to a speckle 

decorrelation time of 0.03 s. This is at the threshold of violating the criterion of Eq.(29) 

where the Tobs used of 0.16 s is not sufficiently long to provide averaging over many 

decorrelation events.

These results using realistic laboratory acquisition parameters demonstrate that DT-OCT is 

viable for spatially-resolved measurements that would be necessary to fully understand 
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tissue properties. Specifically, we show how DT-OCT could measure accurate diffusion 

tensor components and anisotropy over ranges of diffusion rates obtained for nanoparticles 

diffusing in artificial ECM in previous experiments, with a simulated measurement time of 

1.2 s and spatial resolution of 6 µm. These simulation results demonstrate DT-OCT as a 

promising tool for measuring the directions and rates of diffusion and velocity of particles 

throughout ECM.

Conclusion

This manuscript lays the framework for DT-OCT, which is presented as a minimally invasive 

method of measuring the diffusion tensor and velocity vector of particles. Here, we have 

demonstrated its potential for measuring ECM pore anisotropy via Monte Carlo simulations. 

The ability to non-invasively quantify the pore anisotropy offers several applications for 

biomedicine. One is the potential to non-invasively measure the porous nanostructure of 

mammary ECM as relevant to tumor growth. Another is to monitor directional-dependent 

motility of intracellular scatterers, which is a predictor of cell migration and is influenced by 

forces on the cell, chemotaxis, and durotaxis (Zhong, He, Dong, Ji & Hu 2014). 

Additionally, DT-OCT could aid in tissue engineering to monitor both microvascular 

networks and ECM restructuring simultaneously (Piterina, Callanan, Davis, Meaney, Walsh 

& McGloughlin 2009). DT-OCT may also aid in assessing delivery of nanocarrier-based 

drugs (Ferruz & De Fabritiis 2016).

DT-OCT also offers the ability to study biopolymeric liquids. For example, our laboratory 

has previously investigated the porosity of mucus as it relates to pulmonary diseases 

(Chhetri et al. 2014, Blackmon, Kreda, Sears, Chapman, Hill, Tracy, Ostrowski & 

Oldenburg 2017b). DT-OCT offers a new ability to quantity anisotropy of biopolymers 

under stress, which in the case of mucus, affects its performance as a lubricant and barrier 

(Lai, Wang, Wirtz & Hanes 2009).

Here, we treated GNRs as nanospheres since we were only concerned with translational 

diffusion. In the future, this DT-OCT model will be extended to diffusion of anisotropic 

particles, including rotational and translational motions. Anisotropic particles are 

advantageous for studying tissue properties, since many have shape-dependent optical 

properties that can be used to tune probes for tissue contrasting and with other OCT 

methods, including spectroscopic and photothermal OCT (Oldenburg, Blackmon & Sierchio 

2016). Additionally, the information obtained from knowing both translational and rotational 

particle motion has potential for elucidating particle transport within more highly confined 

structures, as opposed to the weakly-constrained regime discussed here. These nano-

rheological measurements are complementary to larger-scale micro-rheological 

measurements that measure bulk tissue properties, and coupled with directional motion 

information could elucidate the dynamics of collagen cross-linking, and its role in tissue 

stiffness and porosity.

In summary, DT-OCT is a novel approach to measuring diffusion tensors and velocity 

vectors of nanoparticles, with the potential for impacts in several areas of biomedicine.
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Figure 1. 
DT-OCT concept diagram. Left: Electron microscopy of artificial ECM after remodeling by 

stromal fibroblasts in vitro shows heterogeneity of fiber alignment (boxed regions and 

scalebar 6µm). Middle: Diffusion of nanoparticles in an anisotropic medium is larger in the 

direction parallel to the long axis of the pores. Right: OCT beams that probe a volume at 

different angles are used to measure the component of diffusion along each wave vector k, 

noting that the wavefront of each beam is at near the focus.
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Figure 2. 
Diagram of a sample being probed from the optimal six different directions for a given NA, 

with the wave vectors of these directions corresponding to k1 to k6.
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Figure 3. 
A 4-F system with two galvanometer mirrors, one conjugate to the entrance pupil of the 

objective (position galvo), and the other conjugate to the focus (incident angle galvo), 

permitting one to independently manipulate the position and incident direction of a focused 

beam. The red beam travels along the central axis of the system with neither galvo tilted. 

The green beam is tilted by the position galvo, so that the ray ends up at an off-axis image 

point. The blue beam is tilted by the incident angle galvo, so it is incident at the image point 

at an off-axis angle.
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Figure 4. 
Diagram of a simple example of DT-OCT by probing a point in a medium with two different 

incident angles θ1 and θ2. The diffusion constant in the plane is D‖ and perpendicular to the 

plane is D┴.
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Figure 5. 
A: SEM images of artificial ECM 48 hours after seeding with RMF cells of varying 

densities, with average translational diffusion rates (DT) of nanorods in each culture from 

(Blackmon et al. 2016). B and C: Error in diffusion tensor anisotropy (DΔ) and drift velocity 

magnitude, respectively, of simulated measurements using DISO equal to DT from each of 

the culture conditions. (Scalebar = 3 µm).
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Figure 6. 
Simulated measured diffusion rates by DT-OCT versus the underlying actual diffusion rate 

used in the simulation along the principle axes x, y, and z. Anisotropy was swept from 0 to 1 

for a fixed average diffusion rate DISO matched to that from nanorods diffusing in artificial 

ECM seeded with reduction mammoplasty fibroblasts. The dotted line indicates measured = 

actual.
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