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Abstract

In magnetomotive ultrasound (MMUS) imaging, an oscillating external magnetic field displaces 

tissue loaded with super-paramagnetic iron oxide (SPIO) particles. The induced motion is on the 

nanometer scale, which makes its detection and its isolation from background motion challenging. 

Previously, a frequency and phase locking (FPL) algorithm was used to suppress background 

motion by subtracting magnetic field off (B-off) from on (B-on) data. Shortcomings to this 

approach include long tracking ensembles and the requirement for B-off data. In this article, a 

novel blind source separation based FPL (BSS-FPL) algorithm is presented for detecting motion 

using a shorter ensemble length than FPL and without B-off data. MMUS imaging of 2 phantoms 

containing an SPIO-laden cubical inclusion and 1 control phantom was performed using an open-

air MMUS system. When background subtraction was used, contrast, and contrast to noise ratio 

(CNR) were respectively 1.20 ± 0.20 and 1.56 ± 0.34 times higher in BSS-FPL as compared to 

FPL-derived images for ensemble lengths < 3.5s. However, contrast and CNR were similar for 

BSS-FPL and FPL for ensemble lengths ≥ 3.5s. When only B-on data was used, contrast and CNR 

were 1.94 ± 0.21 and 1.56 ± 0.28 times higher respectively in BSS-FPL as compared to FPL-

derived images for all ensemble lengths. Percent error in the estimated width and height was 39.30 

± 19.98 % and 110.37 ± 6.5 % for FPL and was 7.30 ± 7.6 % and 16.21 ± 10.29 % for BSS-FPL 

algorithm. This study is an important step toward translating MMUS imaging to in vivo 
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application, where long tracking ensembles would increase acquisition time and B-off data may be 

misaligned with B-on due to physiological motion.
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I. Introduction

IN RECENT years, nanoparticles have emerged as exciting contrast agents to study 

biological events at the cellular and molecular levels. Magnetic nanoparticles are currently 

being extensively used as imaging contrast agents in various imaging modalities such optical 

imaging and magnetic resonance imaging (MRI) due to their small size and the magnetic 

response to an external magnetic field [1]. However, MRI imaging is expensive and not real-

time, and optical imaging suffers from shallow penetration depth. Ultrasound imaging is a 

suitable candidate for molecular imaging due to its low-cost, realtime imaging capabilities, 

ease-of-use, and ability to penetrate deeper tissue. Although ultrasound imaging cannot 

visualize nanoparticles directly due to their small size and weak acoustic scattering, 

ultrasound is effective for characterizing motion. In 2006, Oh et al. [2] demonstrated 

magnetomotive ultrasound (MMUS) imaging, in which a high-strength, time varying 

magnetic field was used to induce motion within magnetically labeled tissue, and ultrasound 

imaging was used to detect the internal tissue motion. In this manner, MMUS is capable of 

detecting magnetic nanoparticles through their dynamic motion response to an externally 

applied magnetic field. MMUS imaging has been applied in tissue mimicking phantoms [3], 

[4] as well as in animals ex vivo [5]–[7] and in vivo [8], [9] since its introduction in 2006.

The amplitude of the tissue motion in MMUS imaging depends upon the particle 

distribution, particle magnetization, magnetic field strength and gradient, and the mechanical 

properties of the surrounding medium [10]. Displacements are on the order of nanometers, 

which prevents detection by conventional ultrasound motion estimation methods. 

Performance of such methods is impacted by electronic noise, signal decorrelation, finite 

tracking-lengths, bandwidth, and sampling rates. The degree to which these parameters 

impact motion estimation is given by the Cramer-Rao Lower Bound (CRLB), which places a 

limit on the minimum estimation error variance that can be achieved in a specific imaging 

situation by an unbiased estimator [11]. Notably, to the extent that the displacement 

estimation error (i.e., noise) spectrum overlaps with the true motion signal, conventional 

frequency domain filtering methods are not effective for separating motion from noise.

Efforts to develop more robust magnetomotive motion detection have been made previously 

[3], [6], [12]. Evertsson et al. developed a frequency- and phase-sensitive algorithm that 

rejects motion that is outside the frequency of and out of phase with the magnetic field 

oscillation [3]. Pope et al. proposed a new motion detection method similar to the algorithm 

by Evertsson et al. with additional suppression of low-frequency noise by filtering on 

differential phase. Further, Pope et al. collected data both with the modulated magnetic field 

turned on (B-on) and off (B-off), and generated MMUS images by background subtracting 
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the frequency and phase-locked B-off image from the B-on image [6]. While effective for 

stationary targets, background suppression may be less useful when the acquisitions are 

poorly registered due to movement of the imaged subjects. A method that separates motion 

signal from noise without subtracting the B-off data would be a major step in translating 

MMUS in vivo.

Regression filters [13] offer an alternative to frequency domain approaches for signal 

separation. Adaptive regression filtering can be accomplished using blind source separation 

(BSS). BSS via principal component analysis (PCA) has been used in ultrasound imaging 

for clutter rejection, physiological motion filtering, and acoustic radiation force impulse 

(ARFI)-induced displacement filtering [14]–[18]. Mauldin et al. [17] developed a PCA 

based motion estimator to detect ARFi-induced motion with reduced error in motion 

estimation due to noise and speckle decorrelation.

The objective of this work is to develop a BSS-based motion detection algorithm for MMUS 

imaging of super-paramagnetic iron oxide (SPIO) particles. Our BSS based algorithm uses 

complex ultrasound data, which enables separation of signal components based on the 

direction of motion encoded as phase changes in the complex principal components. This 

novel BSS-based algorithm for detecting motion in the context of MMUS imaging is 

combined with the general FPL method to create the “BSS based FPL (BSS-FPL) 

algorithm.” Our hypothesis is that BSS-FPL performs better than a traditional FPL algorithm 
when the ensemble length of ultrasound data is short, and when B-off data is not available 
for background rejection. Our hypothesis is herein tested in three tissue mimicking 

phantoms, and the performances of the BSS-FPL and FPL methods are compared [19].

II. Materials and Methods

A. Phantom Mold

A custom rectangular, acrylic phantom mold was constructed with dimensions of 8 × 10 × 5 

cm (axial × lateral × elevational). The mold was enclosed on five sides, and the sixth side 

was left open to pour gelatin into the mold. The side perpendicular to the pouring side was 

removable to allow for ultrasound imaging. This method of imaging from a perpendicular 

side allowed us to avoid imaging through the boundary between layers of gelatin, as this 

interface could contain air bubbles. A 1 cm3 removable cube (acted as a negative mask) was 

used to create a cubical void within phantom that could later be filled with SPIO-laden 

gelatin. The SPIO-laden gelatin served as the inclusion. To locate inclusion boundaries in B-

mode, the mold contained four fiducial markers of 0.64 mm diameter Alloy-510 Phosphor 

Bronze wire with low magnetic susceptibility. Three of the fiducial markers were oriented 

parallel to the elevational direction, while the fourth was oriented parallel to the lateral 

direction. Since the locations of and separations between the markers were known, they 

could be used to determine the location of the inclusion within the phantom even when the 

inclusion was isoechoic with the background material.
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B. Tissue-Mimicking Phantoms

Three tissue-mimicking phantoms were created at a physiologically-relevant acoustic 

attenuation and speed of sound using a modified version of the recipe described in [20], 

[21]. All three phantoms had background Young’s moduli of 10 kPa. In order to achieve the 

desired stiffness, the concentration (C) of gelatin was calculated using the relationship 

between C and Young’s modulus (Y), Y = 0.0034 C2.09 [21]. Gelatin from porcine skin, gel 

strength 300, Type A (Sigma-Aldrich G2500) was used. Phantoms #1 and #2 had a 1 cm3 

cubical inclusion containing SPIO nanoparticles with Young’s moduli of 5 kPa and 20 kPa, 

respectively. Recipe for creating inclusions containing SPIO nanoparticles was adapted from 

[6]. Synthetic graphite nanopowder (Sigma-Aldrich 282863) and 1-propanol (Sigma-Aldrich 

W292818) were used in both the inclusion and the background for an estimated acoustic 

attenuation of 0.3 dB/cm/MHz and a speed of sound of 1540 m/s, respectively. In order to 

achieve an iron concentration of 3.6 mg Fe/mL, an aqueous solution of 5 mg/mL Iron (II, 

III) Oxide Nanopowder (Sigma-Aldrich, 637106), an equal concentration of lauric acid 

(Sigma-Aldrich, W261408), and 25 μL/mL ammonium hydroxide 28-30 wt% in water 

(Fischer 205840010), were used. Inclusions were isoechoic with background in both 

phantoms. Phantom #3 was identical to Phantom #2, but in order to serve as a 

magnetomotive sham, it contained no iron oxide. The sham inclusion’s graphite 

concentration was increased to 12.5 wt% so that it would appear bright in B-mode images in 

order to serve as validation for the inclusion boundary estimation process using fiducial 

markers. Table 1 summarizes material concentrations by weight for all three custom gelatin 

phantoms.

C. MMUS Data Acquisition

Imaging was performed using our open-air MMUS system described in [6]. Ultrasound 

images were acquired using an UltraSonix SonixTouch Research scanner (Analogic 

Corporation, Peabody, MA) with an L14-5/38 linear array transducer operating at a transmit 

frequency of 10 MHz. The transmit-receive focus was set to 10 mm with transmit and 

receive F/ 0.7 and 1.0, respectively. Two water-cooled solenoid electromagnets with grain-

oriented electric steel cores were positioned laterally on either side of the transducer to 

create a magnetic field in the imaging area. The magnets were operated anti-parallel and 

were positioned 10.5 cm apart and tilted 10° from the vertical in order to produce a 0.02 

T2/m magnetic gradient in the center of the imaging region. The average magnetic field in 

the inclusion region (with both magnets producing a modulated magnetic field) measured 

0.03 T. The peak magnetic field 5 mm below the core of each individual magnet was 0.13 T. 

The magnets were driven with a square-root-sinusoidally-varying voltage by two KEPCO 

ATE 75-15M, 1000W power supplies (KEPCO, New York, USA), and an Agilent 33522A 

arbitrary waveform generator to create a 2 Hz sinusoidally varying magnetic gradient force 

in the imaging region. The ultrasound scanner triggered the waveform generator such that 

the first frame of the ultrasound RF data always corresponded with a known phase of the 

magnetic force. B-mode frames were acquired at 61.7 fps to generate 8 s ensemble length 

datasets at each tracking location. Two sets of data were collected by turning the magnetic 

field modulation off and on. For each phantom, data were acquired at five different 

elevational planes with respect to the elevational fiducial marker. Acquired RF data were 
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transferred to a computational workstation for custom processing using MATLAB 

(Mathworks Inc., Natick, MA).

D. Blind Source Separation Based Frequency and Phase Locked (BSS-FPL) Algorithm

BSS is a method for recovering unobserved signals or “sources” from several realizations of 

their mixture in an adaptive manner [22]. Principal component analysis (PCA) adaptively 

recovers source signals by assuming that the signals are orthogonal and Gaussian distributed. 

PCA can be performed by the Karhunen–Loeve (KL) transform, which transforms the input 

data matrix into its orthogonal basis functions with a corresponding energetic signature. This 

standard approach to PCA was paired with the FPL method in the BSS-FPL algorithm for 

the detection of SPIO particle motion. Fig. 1 outlines the steps involved in the BSS-FPL 

algorithm. A detailed description of the FPL algorithm can be found in [6].

For the BSS-FPL algorithm, the Hilbert transform was applied to the raw radio frequency 

data that was sampled in depth and ensemble time to form complex data. An autocorrelation 

matrix, R, of complex data, YH, was computed though R = YH
∗ YH, where YH

∗  is the conjugate 

transpose of YH. The dimensions of YH were L × N, where L is the number of samples 

through depth, and N is the number of ensemble time samples. Complex PCA [23] was 

performed to diagonalize R, which yielded complex eigenvectors,

V−1 RV = Λ = Diag λi (1)

where V is the set of eigenvectors vi arranged in a column (i.e., dimension = N × 1), with V 
= [v1, v2, v3,…,vN], and λi are the associated eigenvalues of the autocorrelation matrix, R. 

The most energetic complex eigenvector, v1, was identified, and its phase (argument) was 

computed. Note that, PCA was applied to translating axial kernels, i.e for each pixel, L axial 

samples surrounding that pixel were selected, and PCA was applied to the data with 

dimension L × N. For this investigation, L was λ (0.15 mm) or 4* λ (0.60 mm), and N was 

61, 93, 124, 155, 217, 279, 341, or 465 time samples. λ is the wavelength of the ultrasound 

assuming a speed of sound of 1540 m/s. Note that, computation of PCA was independent on 

each lateral line.

For BSS-FLP, each v1 was used as input to the FPL algorithm [6] (instead of the RF data). 

Low-frequency noise was suppressed using the differential phase, which was computed by 

subtracting the phases of v1 at successive ensemble time samples. Note that this calculation 

of the differential phase served as a high-pass filtering operation. Then, the Goertzel 

algorithm (GA) [24], a computationally efficient method for computing a single Fourier 

component from a discrete Fourier transform, was used to extract the 2 Hz Fourier 

component of the differential phase. Then, the magnitude and phase of the Fourier 

component at 2 Hz were calculated. Using the magnitude of the 2 Hz component, a 2D 

magnitude image MI was formed. The phase of the 2 Hz component was used in a cosine 

filter [6] to identify motion that was in phase with the magnetic force. Application of cosine 

filtering generated a 2D image CI with values ranging from 0 to 1. A binary 2D image TI 

was formed by thresholding the B-mode image (i.e., magnitude of the Hilbert transformed 
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complex data). Pixels with B-Mode magnitudes lower than 40% of the average B-mode 

image magnitude were rejected to ensure sufficient reflected intensity for motion detection. 

Finally, MMUS images were formed by taking the product of MI, CI, and TI.

Two separate MMUS images were generated using magnetic field on (B-on) and off (B-off) 

data. A separate MMUS image was created by subtracting image generated using the B-off 

from the image generated using the B-on data. Median filter with a kernel size of 1 mm was 

used to smooth all MMUS images. Finally, for parametric MMUS image display, pixel 

intensity was converted to the dB scale with normalization relative to the maximum value. 

To show difference in FPL and BSS-FPL derived images, normalized images were 

subtracted and then converted to dB scale. The dynamic range was set to [−6 0] dB.

E. Performance Evaluation Metrics

Once parametric MMUS images were rendered, the performance of BSS-FPL and FPL 

algorithms was compared in terms of contrast, contrast to noise ratio (CNR), and estimated 

height and width of the detected inclusion.

For contrast and CNR calculations, the region of interest (ROI) inside the inclusion was 

defined as the concentric rectangle with 90% of the true height and width of the inclusion 

(red contour in Fig. 2(a)). The background ROI was defined as two rectangles positioned 

adjacent to the inclusion, each with a height equal to the height of inclusion’s ROI and width 

equal to the half of width of inclusion’s ROI (blue contour in Fig. 2(a)). The inclusion 

boundaries were determined using the location of fiducial markers (marked by arrows in Fig. 

2(a)). Contrast was computed as the ratio of difference and sum of the median pixel intensity 

of the inclusion (μINC) and background μBKD) ROIs:

Contrast =
∣ μINC − μBKD ∣

μINC + μBKD
(2)

Medians were selected over means to make the measurements robust to outliers. The CNR 

was computed as the difference in the median pixel intensity of the ROIs, divided by the 

image noise, taken as the standard deviation of the background (σBKD).

CNR =
∣ μINC − μBKD ∣

σBKD
(3)

To estimate the width of the detected inclusion, the MMUS image was converted to a binary 

image by setting pixel intensities greater than −6 dB to 1. Then, average pixel intensity of 

the binary image over the axial dimension was calculated for each lateral location. The full-

width-at-half-maximum (FWHM) of the axially-averaged intensity as a function of lateral 

position was used to estimate the width of inclusion. Similarly, the height of the inclusion 

was estimated by calculating the FWHM of the laterally-averaged pixel intensity as a 

function of axial position.
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CNR, contrast, estimated height and width were stratified into two groups: “B-on” and 

“background subtracted” data for each ensemble, each phantom, and each algorithm. A 2-

sample Wilcoxon rank sum test was carried out to compare B-on and background subtracted 

data. A separate 2-sample Wilcoxon rank sum test was carried out to compare FPL and BSS-

FPL algorithms. Statistical significance level of p ≤ 0.05 was used. All statistical analyses 

were carried out using MATLAB.

III. Results

Fig. 2(b) shows a parametric MMUS image rendered using BSS-FPL with an ensemble 

length of 5.5 s and an axial kernel length of λ. The average magnitude of displacement in 

the inclusion, measured as described by Pope et al. [6], was 21.3 ± 10.6 nm (data not shown 

for brevity). The parametric MMUS image was converted to a binary image. Fig. 2(c) shows 

laterally-averaged pixel intensity of the binary image as a function of axial distance. The 

FWHM of the curve was used to estimate inclusion height. Estimated height was 9.4 mm as 

compared to the true height of 10 mm.

Fig. 3 qualitatively compares MMUS images of the phantoms with (Phantom #2) and 

without (Phantom #3) an SPIO laden inclusion (bottom and top rows respectively). Three 

observations are notable. First, neither FPL nor BSS-FPL algorithms detected an inclusion 

when the inclusion was free of SPIO nanoparticles (panels b-c). Second, inclusion 

boundaries derived using the locations of fiducial markers matched the inclusion boundaries 

apparent in the B-Mode image of the hyperechoic inclusion (panel a). This is meaningful 

because it suggests that the fiducial markers are effective indications of the inclusion 

boundaries when the inclusion is isoechoic with the background. Third, both FPL and BSS-

FPL algorithms comparably detected the presence of the SPIO-laden inclusion (panels e-f).

Fig. 4 qualitatively compares the performance of FPL and BSS-FPL algorithms for detecting 

the soft, SPIO-laden inclusion in phantom #1 using B-on and background subtracted data. 

Ensemble lengths of 1.0 s and 7.5 s were used to derive the MMUS images. Four 

observations are notable. First, when B-on data was used, BSS-FPL derived MMUS images 

were better matched to the true inclusion shape than the FPL algorithm irrespective of 

ensemble lengths (panels b-c versus a and panels f-g versus e). Second, when background 

subtracted data was used, the performance of both algorithms was comparable for both 

ensemble lengths (panels j-k versus i and n-o versus m). Third, the outcome of the BSS-FPL 

algorithm was not significantly impacted by the axial kernel length or by whether or not the 

B-off data were subtracted. Fourth, the apparent location of the inclusion was better matched 

with the inclusion’s true location for the longer ensemble length (i.e., panel f versus b, n 

versus j, etc.).

Similarly, Fig. 5 qualitatively compares MMUS images derived using FPL versus BSS-FPL 

algorithms in phantom #2 with the stiff SPIO-laden inclusion. Results were generally 

consistent with the observations made in phantom #1 (Fig. 4). However, one difference is 

notable. When the background subtracted data was used, the BSS-FPL algorithm provided a 

better match to the true inclusion shape than the FPL algorithm for 1.0 s ensemble length. 
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The FPL algorithm is unable to remove background motion in the right side of the inclusion 

(panel i).

A comparison of FPL and BSS-FPL in terms of contrast and CNR is provided in Fig. 6. Four 

observations are notable. First, when B-on data was used, contrast and CNR were 

significantly higher in the BSS-FPL versus FPL derived MMUS images irrespective of axial 

kernel lengths, phantoms, or ensemble lengths (except for 1.0 s ensemble lengths in panels a 

and c, and of 2.5 s in panel d). Second, when background subtracted was used, contrast and 

CNR were significantly higher (*) in the BSS-FPL than FPL derived images for ensemble 

length of 2.0, 2.5, and 5.5 s in phantom # 1 and of 1.0 and 1.5 s in phantom # 2. Third, 

contrast and CNR were significantly higher (Δ) when background subtracted versus B-on 

data was used for FPL algorithm irrespective of phantoms or ensemble lengths (except 2.0 

and 2.5 s ensemble length in panel a, c and 1.0 and 1.5s ensemble length in panel d). Fourth, 

contrast and CNR of BSS-FPL algorithm were not significantly different when background 

subtracted versus B-on data was used irrespective of axial kernel length, phantom or 

ensemble length (except 4.5 s ensemble length in panel b and d).

Fig. 7 quantitatively compares the performance of FPL and BSS-FPL algorithms in terms of 

estimated height and width of inclusions. Six observations are notable. First, estimated 

height and width were significantly higher (*) for FPL versus the BSS-FPL algorithm when 

B-on data used irrespective of axial kernel lengths, phantom stiffness, or ensemble lengths. 

Second, when background subtracted data was used, the estimated height and width of the 

inclusion was not significantly different between the FPL and BSS-FPL algorithms for the 

majority of ensemble lengths. Third, estimated height and width were larger for kernel 

length = 4*λ versus λ for the BSS-FPL algorithm. Fourth, the estimated height and width 

found using the FPL algorithm was significantly higher (Δ) irrespective of phantom stiffness 

or ensemble length when B-on versus background subtracted data was used. Fifth, the 

estimated height and width found using the BSS-FPL algorithm with kernel length = 4*λ 
was not significantly different when using background subtracted versus B-on data (except 

for 4.5 and 5.5s ensemble lengths in panel a). Sixth, the estimated width of the inclusions 

was higher than the height of inclusions for both algorithms, although true height and width 

were equal.

IV. Discussion

This manuscript describes the development and experimental demonstration of a novel BSS 

based motion detector for MMUS imaging using our open-air MMUS imaging system [6]. 

The open air system is advantageous over other closed MMUS systems [3], [5] because 

translation to in vivo animal imaging is feasible. In the open-air system, the ultrasound 

transducer and magnets are placed on the same side of the imaging objects, whereas imaging 

objects are placed in between the transducer and the magnet in other MMUS imaging 

systems.

While the open-air design supports live animal imaging, the magnetic field strength and 

induced displacement are lower in open-air versus closed MMUS systems, making induced 

motion detection more challenging [6]. For example, using a closed MMUS imaging system, 
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Evertsson et al. reported induced average displacement of 150-250 nm when the magnetic 

field strength and concentration of magnetic particles were 0.18 T and 0.45 mg Fe/mL, 

respectively [3]. Mehrmohammadi et al. reported induced displacement of 50 μm using their 

pulsed magneto-motive system with a magnetic field strength and concentration of magnetic 

particles of 0.6 T and 3.5 μ mol Fe/mL, respectively [5]. The magnetic field gradient of our 

MMUS system was 0.02 T2/m, which induced approximately 20–30 nm displacements in 

the inclusion.

As described above, low amplitude induced motion is difficult to discern from motion 

estimation noise. Moreover, motion arising from mechanical vibration of the electromagnet 

cores could translate through the table to the imaging object and cause false positives. 

Despite these challenges, Fig. 3 shows that both FPL and BSS-FPL algorithms detected 

MMUS motion, which enabled delineation of an SPIO-laden inclusion in a tissue mimicking 

phantom. Notably, a sham inclusion containing no SPIO was not detected. This result 

suggests that the detected motion was due to the magnetically-induced motion of the SPIO 

particles rather than noise, and that the electromagnet vibration is effectively decoupled from 

the sample in our MMUS system.

Previously developed FPL approaches to MMUS motion detection subtracted B-off data 

from the B-on data. As described above, this strategy is not effective when the imaging 

object moves between B-on and B-off data acquisitions. Moreover, twice the data 

acquisition and processing time is needed. Ideally, an MMUS motion detector should not 

require subtraction of the B-off data. As Fig. 4 and Fig. 5 illustrate, the BSS-FPL algorithm 

performed comparably with regard to inclusion detection in the B-on and background 

subtracted cases. On the contrary, the FPL algorithm overestimated the inclusion boundaries 

in Fig. 4 and Fig. 5 when only the B-on data was used because the FPL algorithm was not 

able to isolate inclusion motion from background noise. Using the background subtracted 

data with a 7.5 s ensemble length, the FPL algorithm isolated inclusion motion from 

background noise and the performance of both FPL and BSS-FPL algorithms was similar. 

Interestingly, using the background subtracted data with a 1.0 s ensemble length, the 

performance of both FPL and BSS-FPL were similar in the soft phantom (Fig. 4 panels i-k), 

but the FPL algorithm overestimated the inclusion boundaries than BSS-FPL algorithm in 

the stiff phantom (Fig. 5 panels i versus j-k). This could be due to the difference in inclusion 

stiffnesses. In Fig. 4, the phantom contains a soft inclusion relative to the background, 

whereas in Fig. 5, the inclusion is stiff. Inclusion motion was higher in the soft inclusion, 

which enabled the FPL algorithm to isolate the inclusion from background using a 1.0 s 

ensemble length (Fig. 5 panel i). However, the BSS-FPL algorithm isolated inclusions in 

both phantoms (panels’ j-k in Fig. 4 and Fig. 5).

Comparing Fig. 4 and Fig. 5 enables one to consider another potential impact of stiffness on 

inclusion delineation. The width of the soft inclusion (Fig. 4) was overestimated by both the 

BSS-FPL and the FPL algorithms. This result could be due to higher inclusion motion in the 

soft phantom inducing motion in the surrounding background. More experiments are needed 

to fully understand the impact of inclusion motion and stiffness on the surrounding 

background. It is important to consider that the first order speckle statistics (μ/σ) of the 

inclusion and background were 1.67 and 1.82 in phantom #1 (containing the soft inclusion) 
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and 1.83 and 1.91 in phantom #2 (containing the stiff inclusion), respectively. The potential 

impact of such subtle differences in first order speckle statistics on motion detection in 

MMUS imaging is a topic of future investigation.

By qualitative visual inspection of Fig. 4 and Fig. 5, using a λ versus a 4*λ axial kernel 

length in the BSS decomposition has little impact on the overall inclusion delineation. 

However, Fig. 6 suggests that contrast is higher for the shorter kernel length, while CNR is 

higher for the longer kernel length. This result is consistent with the expectation that a larger 

kernel will blur detail while reducing noise. The kernel size determines the axial range of 

data considered collectively for source separation. When motion is uniform over a large 

axial range, a large kernel size is beneficial because it offers more realizations of the 2 Hz 

motion. However, when the motion is not uniform (such as at the inclusion boundaries), a 

large kernel size may be detrimental because the limited number of sources must span more 

forms of motion and noise, which could result in incomplete MMUS signal isolation. The 

generally comparable performances of the λ and 4*λ kernel lengths employed in this study 

suggests that both kernels provided sufficient realizations of the 2 Hz motion for successful 

MMUS signal isolation without corrupting the decomposition at the boundaries.

Fig. 6 demonstrates that contrast and CNR were statistically higher in the BSS-FPL than 

FPL case irrespective of axial kernel lengths, phantom stiffness, or ensemble lengths when 

B-on data was used. More specifically, contrast and CNR were 1.94 ± 0.21 (median 

± 0.5*IQR) and 1.56 ± 0.28 times higher in BSS-FPL versus FPL derived images over all 

ensemble lengths. In general, the 7.5 s ensemble length substantially improved contrast and 

CNR relative to the 1 s case, especially in FPL derived images. This performance 

improvement is attributable to more realization of the 2 Hz signal available for detection by 

the Goertzel algorithm.

When background subtracted data was used, contrast and CNR were 1.20 ± 0.20 and 1.56 

± 0.34 times higher in BSS-FPL versus FPL derived images for ensemble lengths less than 

3.5 s. However, contrast and CNR were similar for BSS-FPL and FPL for ensemble lengths 

greater than or equal to 3.5 s. Interestingly, using background subtracted data, contrast, and 

CNR in phantom #1 were not statistically different between FPL versus BSS-FPL for 

ensemble lengths of 1.0 and 1.5 s but were statistically different for ensemble lengths of 2.0 

and 2.5 s (panels a and c). Contrast and CNR plateaued after 1.5 s and 1.0 s ensemble 

lengths in phantoms # 1 and # 2, respectively. Further, contrast and CNR achieved using B-

on data and the BSS-FPL algorithm were similar to the contrast and CNR achieved using 

background subtracted data and the FPL algorithm. This result is meaningful because it 

suggests that shorter data acquisitions are required when the BSS-FPL algorithm is used, 

which expedites data acquisition and reduces computational overhead. One limitation of the 

current statistical analysis is that only five measurements were used in the statistical analysis 

at each ensemble.

In terms of delineating inclusion size, Fig. 7 shows that when B-on data was used, the 

percent error in the inclusion’s height and width was 39.30 ± 19.98 % and 110.37 ± 6.5 %, 

respectively for FPL and was 7.30±7.6 % and 16.21 ± 10.29 %, respectively for BSS-FPL 

algorithm. The BSS-FPL method more closely estimates the soft inclusion’s height and 
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width, relative to the FPL algorithm. When background subtracted data was used, percent 

error in inclusio’s height and width was reduced to 0.88 ± 11.20 % and 9.40 ± 1.16 % for 

FPL and 0.20 ± 8.70 % and 4.40 ± 7.90 %, for BSS-FPL algorithm. The inclusio’s size was 

overestimated by both algorithms. This may due to inclusion motion introducing vibration in 

the surrounding mediums. In future, finite element method simulation will be performed to 

understand the impact of inclusion motion in the surrounding backgrounds. The 

concentration of SPIO particles was comparable to the study of imaging SPIO-labeled 

platelets using MMUS [6]. The present study did not explore the BSS-FPL algorith’s 

potential for detecting MMUS motion induced in materials with lower concentrations of 

SPIO particles. Future work will investigate the lowest concentration of SPIO particles that 

are needed to detect presence of inclusion using BSS-FPL algorithm.

A limitation of the proposed BSS-FPL method is the assumption that SPIO motion is 

spanned by the most energetic basis function. In the examined cases of stationary phantoms, 

this assumption is reasonable because the magnetically induced SPIO motion is the only 

motion present. However, during in vivo imaging with the potential for physiological and/or 

hand-held user motion, this assumption may break down. For example, if an echo-bright 

tissue region moves independently of the magnetic field, then SPIO motion will likely be 

spanned by a lower energy basis function. In such a case, it will be necessary to evaluate 

each basis function to identify which spans SPIO motion. Fortunately, the phase and 

frequency of SPIO motion are known, and this a priori information may be exploited to 

adaptively identify the basis function spanning the MMUS signal. In the future, BSS-FPL 

methods will be improved by adaptively identifying basis functions that represent SPIO 

motion.

Another limitation of the presented BSS-FPL motion detection method is the additional 

processing time required for BSS decomposition. It took 2 minutes and 30 seconds to 

perform complex PCA decomposition of 1568 × 255 samples (axial × lateral) with an 

ensemble length of 2.5 s and kernel length of 4*λ using a core i7 processor and 8 GB of 

RAM. However, parallel processing and other expediting methods could be implemented to 

perform the complex PCA decomposition faster. Note that it took 2 minutes and 40 seconds 

to perform the FPL algorithm of 1568 × 255 samples (axial × lateral) with an ensemble 

length of 2.5 s using the same computer.

V. Conclusion

In this work, a BSS based motion tracking algorithm to detect nanometer scale, periodic 

motion in an open-air MMUS imaging setting is presented. Parametric MMUS images of 

gelatin tissue mimicking phantoms containing inclusions laden with SPIO were rendered 

using FPL and BSS-FPL algorithms. Inclusion contrast, CNR, height, and width in BSS-

FPL derived MMUS images were superior as compared to FPL when only B-on data was 

used, suggesting that the BSS-FPL algorithm obviates the need to collect data with the B-

field off. Similarly, the BSS-FPL algorithm outperformed the FPL method for short 

ensemble lengths, suggesting that faster data acquisition is enabled by BSS-FPL. This 

research achieves a major step towards translating MMUS imaging for in vivo animal 

imaging.
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Fig. 1. 
Steps for detecting motion in MMUS imaging using the BSS-FPL algorithm. PCA = 

principal component analysis; v1 = the most energetic Eigen vectors; n = 2, 3, …, ensemble 

length, GA = Goertzel algorithm.
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Fig. 2. 
(a) B-mode ultrasound image of phantom #1 with the inclusion boundary marked with a 

white dashed line. The red and blue contours represent regions of interest (ROIs) in the 

inclusion and the background, respectively. Three bright points (marked by arrows) in the B-

mode indicate locations of fiducial markers. (b) BSS-FPL derived parametric MMUS image 

of phantom #1 using axial kernel length = λ and ensemble length = 5.5 s. The color bar 

indicates the normalized MMUS image intensity in dB, with normalization relative to the 

maximum value. (c) Laterally-averaged pixel intensity as a function of axial distance. The 

Full-width-at-half-max (double arrow) of the curve was used to estimate the inclusion 

height. True height of the inclusion is 10 mm.
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Fig. 3. 
For phantoms #3 (with sham stiff inclusion, top row) and #2 (with SPIO-laden stiff 

inclusion, bottom row), B-mode ultrasound (a, d) and parametric MMUS images derived 

using FPL (b, e) and BSS-FPL with kernel length = λ (c, f). White dashed lines delineate the 

inclusion boundaries derived using the locations of fiducial markers (marked by arrows). RF 

data with ensemble length = 7.5 s were used. The color bar indicates MMUS image intensity 

on a dB scale with normalization relative to the maximum value.
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Fig. 4. 
FPL and BSS-FPL-derived MMUS images of phantom #1 using magnetic field ‘on’ (B-on) 

and magnetic field ‘on’ – ‘ off’ (background subtracted) data. First three columns from left 

to right show MMUS images derived using FPL, BSS-FPL with kernel length = λ, and 4*λ, 

respectively and fourth column shows difference between FPL and BSS-FPL with kernel 

length 4*λ derived images. First and second rows show MMUS images generated using B-

on data. Third and fourth rows show MMUS images generated using background subtracted 

data. Ensemble length (EL) of 1.0 s or 7.5 s was used to derive MMUS images. White 

dashed lines indicate the inclusion boundaries. Measured contrast is listed above each 

corresponding image.
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Fig. 5. 
FPL and BSS-FPL derived MMUS images of phantom #2 using magnetic field ‘on’ (B-on) 

and magnetic field ‘on’ – ‘off’ (background subtracted) data. First three columns from left to 

right show MMUS images derived using FPL, BSS-FPL with kernel length = λ, and 4*λ, 

respectively and fourth column shows difference between FPL and BSS-FPL with kernel 

length 4*λ derived images. First and second rows show MMUS images derived using B-on 

data, whereas third and fourth rows show MMUS images derived using background 

subtracted data. Ensemble length (EL) of 1.0 s or 7.5 s was used to generate MMUS images. 

White dashed lines indicate the inclusion boundaries. Measured contrast is listed above each 

corresponding image.

Hossain et al. Page 18

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Contrast (top row) and CNR (bottom row) of inclusions in phantoms #1 (a, c) and #2 (b, d) 

as a function of ensemble lengths. Data are plotted as median + 0.5 × interquartile range 

over 5 acquisitions in different elevational planes in each phantom. Green, red, and blue 

represent FPL, BSS-FPL with kernel length = λ, and 4*λ, respectively. Filled and open bars 

represent magnetic field ‘on’ (B-on) and magnetic field ‘on’ – ‘off’ (background subtracted) 

data, respectively. Asterisks (*) represents significantly different (p ≤ 0.05) values between 

FPL versus BSS-FPL with kernel length = λ and 4λ. Triangles (Δ) represent significantly 

different (p ≤ 0.05) values between magnetic field B-on versus background subtracted data.
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Fig. 7. 
Estimated height (top row) and width (bottom row) of inclusions in phantoms #1 (a, c) and 

#2 (b, d) as a function of ensemble lengths. Data are plotted as median + 0.5 × interquartile 

range over 5 acquisitions in different elevational planes in each phantom. Green, red, and 

blue represent FPL, BSS-FPL with kernel length = λ, and BSS-FPL with kernel length = 

4*λ, respectively. Filled and open bars represent magnetic field ‘on’ (B-on) and magnetic 

field ‘on’ – ‘off’ (background subtracted) data. Black dash-dot line represents the true height 

and width of the inclusion. Asterisks (*) represent statistically different (p ≤ 0.05) values 

between FPL versus BSS-FPL with kernel length = λ and 4*λ. Triangles (Δ) represent 

statistically different (p ≤ 0.05) values between B-on versus background subtracted data.
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TABLE I

Material Concentrations by Weight (wt%) for Custom Gelatin Tissue-Mimicking Phantoms

Material Component

Phantom Gelatin (%) Graphite (%) n-propanol (%) SPIO mg Fe/ml

INC BKD INC BKD INC BKD INC

1 3.2 4.5 4.4 4.4 3.0 3.0 3.6

2 6.3 4.5 4.4 4.4 3.0 3.0 3.6

3 6.3 4.5 12.5 4.4 3.0 3.0 0.0
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