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Abstract

Magnetomotive ultrasound (MMUS) contrasts superparamagnetic iron-oxide nanoparticles 

(SPIOs) that undergo submicrometer-scale displacements in response to a magnetic gradient force 

applied to an imaging sample. Typically, MMUS signals are defined in a way that is proportional 

to the medium displacement, rendering an indirect measure of the density distribution of SPIOs 

embedded within. Displacement-based MMUS, however, suffers from ‘halo effects’ that extend 

into regions without SPIOs due to their inherent mechanical coupling with the medium. To reduce 

such effects and to provide a more accurate representation of the SPIO density distribution, we 

propose a model-based inversion of MMUS displacement fields by reconstructing the body force 

distribution. Displacement fields are modelled using the static Navier-Cauchy equation for linear, 

homogeneous, and isotropic media, and the body force fields are, in turn, reconstructed by 

minimizing a regularized least-squares error functional between the modelled and the measured 

displacement fields. This reconstruction, when performed on displacement fields of two tissue-

mimicking phantoms with cuboidal SPIO-laden inclusions, improved the range of errors in 

measured heights and widths of the inclusions from 54%–282% pre-inversion to-15%–20%. 

Likewise, the post-inversion contrast to noise ratios (CNRs) of the images were significantly larger 

than displacement-derived CNRs alone (p = 0.0078, Wilcoxon signed rank test). Qualitatively, it 

was found that inversion ameliorates halo effects and increases overall detectability of the 

inclusion. These findings highlight the utility of model-based inversion as a tool for both signal 

processing and accurate characterization of the number density distribution of SPIOs in 

magnetomotive imaging.
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Introduction

Magnetomotive imaging is a contrast-enhanced imaging technique that uses magnetic 

nanoparticles (MNPs) as contrast agents and an externally applied, temporally modulated, 

magnetic field that creates a time-varying magnetic gradient force on the MNPs. The 

premise of image formation in magnetomotive imaging is that MNPs pulled by gradient 

forces induce displacements in the surrounding media to which they are mechanically 

coupled. These displacements are consistent with the time variation of the input magnetic 

field, providing rejection of motion artifacts and high specificity to the presence of the 

MNPs. The need to rapidly and sensitively measure displacement fields to perform 

magnetomotive imaging is met by interferometric imaging modalities such as optical 

coherence tomography (OCT) and ultrasound (US) imaging. Magnetomotive optical 

coherence tomography (MMOCT) was first demonstrated by Oldenburg et al (2005a), 

followed by the implementation of magnetomotive ultrasound (MMUS) by Oh et al in 2006. 

One advantage of magnetomotive imaging is that the contrast agents may be comprised of 

biocompatible iron-oxides, such as superparamagnetic iron-oxide (SPIO) nanoparticles 

originally developed for magnetic resonance imaging (MRI). This is favorable in biomedical 

applications, such as MMOCT for detection of vulnerable atherosclerotic plaques (Kim et al 
2016), multimodal MMOCT and MRI of tumors in vivo (John et al 2010), MMUS for 

detection of thrombosis (Pope et al 2013, Levy et al 2018), and MMUS to detect breast 

cancer metastasis (Evertsson et al 2014, 2017). Importantly, SPIOs may be used in 

magnetomotive imaging even though they do not directly provide contrast in OCT (light 

scattering) or ultrasound (acoustic scattering), because the deformation of light- or 

acoustically-scattering tissue is detected. However, this has the consequence of 

magnetomotive images exhibiting signals beyond the boundaries of where SPIOs have 

accumulated due to mechanical coupling, i.e. a ‘halo effect’, which may confound 

segmentation of targeted anatomical structures (Evertsson et al 2017). As a first step to 

address this problem, here we propose a method to more accurately represent the distribution 

of SPIO contrast agents in homogeneous elastic media that may eventually lead to improved 

biomedical applicability of MMUS and MMOCT. While the focus of the following article is 

on an MMUS platform, we expect our findings to be similarly relevant to MMOCT due to 

the analogous nature of OCT and ultrasonic imaging (Huang et al 1991).

Despite the wide variety MMUS hardware implementations and signal processing 

algorithms, all MMUS systems reported to date operate on displacement fields. No physical 

model has yet been experimentally demonstrated in imaging the SPIO distribution within a 

magnetomotive imaging sample that corrects for confounding halo effects surrounding 

regions of high SPIO density. Clinically, such a model could provide more accurate sizing of 

targeted anatomical structures such as thrombi or tumor and, in turn, inform prognosis and 

choice of therapy. For instance, thrombus volume (Parr et al 2011, Zhao et al 2014) is a 

relevant parameter in the progression of thromboembolic diseases, as is the size of tumors 

(Carter et al 1989) in survival from breast cancer.

Accurate reconstruction of the SPIO density distribution requires modeling the physical 

mechanism of magnetomotive imaging contrast, which is a function of both the local 
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concentration of SPIOs and the local stiffness of the medium (Oldenburg et al 2005b, Levy 

et al 2018). Thus, using alternate methods to measure medium stiffness (elastography), one 

may be able to estimate the true density distribution of SPIOs. As a starting point, here we 

investigate whether SPIO density distribution may be accurately estimated in a 

homogeneous, linear, and isotropic elastic medium using MMUS. One challenge is that 

MMUS conventionally scans displacements only in the axial (perpendicular to the 

transducer plane) direction and over individual 2D frames with linear array transducers. 

However, SPIOs existing immediately outside of the 2D frame affect the displacement in-

plane. While 3D MMUS would be needed to reconstruct an arbitrary SPIO density 

distribution, our initial approach is to develop a 2D method using prior assumptions about 

the out-of-plane SPIO distribution, and to explore the sensitivity of the resulting 

reconstructions with errors in the priors. In certain imaging scenarios, the method proposed 

in the following sections may lead to improved SPIO density distribution estimates in 2D 

MMUS, which is logistically simpler than 3D.

Related prior work was reported by Hossain et al (2012), who simulated static displacement 

fields by finite-element modeling and proposed an inverse method by direct substitution of 

the displacement field into the governing equation of linear elasticity, the Navier-Cauchy 

equation. Importantly, the forward model employed in that study was an approximation of 

the 3D Navier-Cauchy equation by the 2D Poisson’s equation to circumvent the lack of 

knowledge of the lateral (normal to axial, and in the imaging plane) and elevational (out of 

frame) displacement fields. This approximation produced subtle halo artifacts around 

regions of force loading, while the direct nature of the method is unlikely to be feasible in 

noisy, speckled displacement fields. In contrast, we propose a model-based reconstruction of 

SPIO number density distribution using the 3D Navier-Cauchy equation by effectively 

reducing the problem to 2D by assumption of a finite extent of the body force distribution in 

elevation. Using this reconstruction framework, this paper is also the first to perform direct 

comparisons of both a forward model, which generates displacement fields due to arbitrary 

force distributions, and an inverse model, which reproduces arbitrary body force 

distributions from given displacement fields, against experimental MMUS images. These 

comparisons are accomplished using gel phantoms with SPIO-laden inclusions of known 

shape. We hypothesize that inverting displacement fields to reconstruct the body force fields 
reduces mechanical halo effects and reproduces the dimensions of the inclusion more 
faithfully. Corroboration of this hypothesis will provide a first experimental validation that 

MMUS images can be accurately represented by continuum mechanical models, and that 

improvement of the estimate of the SPIO density distribution by an inverse method is 

possible in the presence of speckle and clutter.

Methods

In the following discussion, functions with dependencies only in the coordinates of the 

imaging plane are indicated by a parallel (∥) superscript and those with dependency in the 

out-of-plane elevational coordinate are indicated by a perpendicular (⊥) superscript. All 

symbols and their definitions are listed in the appendix in order of their appearance in the 

text.
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MMUS imaging measures the axial z  component of the displacement field u (r) (figure 1, 

right), which designates displacement vectors to all field points r within an imaging sample 

that is deformed due to the application of magnetic gradient forces f (ri) acting on individual 

SPIOs located at source points ri. The forces result due to the magnetization of each SPIO in 

the presence of an external magnetic field B (r). Here we assume that the magnetic field 

strengths are sufficiently below the saturation magnetization of the SPIOs such that their 

magnetization is linear with the applied field, as characterized by their zero-field volume 

magnetic susceptibility χm. We also assume that the time rate of change of the magnetic 

field is sufficiently small such that the magnetization follows the instantaneous value of the 

magnetic field; in our experiments the magnetic field waveform has a frequency of ~2 Hz. In 

a non-magnetic (tissue-like) medium surrounding the SPIOs of permeability μ0, the force on 

an SPIO of volume vn may be written as the well-known magnetic gradient force (Häfeli et 
al 1997):

f ri =
vnχm∇ B ri

2

2μ0
. (1)

In order to consider the summed contribution of all SPIOs, for simplicity we assume that 

SPIOs are mono-disperse in size and magnetic properties, and that they are sufficiently 

dilute within the medium such that there is no coupling of magnetization between adjacent 

particles. In this case, the net force within an imaging pixel of volume vp can be written as 

an additive extension of (1):

f(r) = ζ(r)vp
vnχm∇ B r 2

2μ0
, (2)

where ζ(r) represents the number density of SPIOs within the pixel centered at position r. 

When discretizing the problem to pixels, the force is distributed over elements of volume 

and the quantity body force, defined as b (r) = f (r) /(ρvp), becomes relevant, where ρ is the 

mass density of the medium (Malvern 1969). It is then evident from (2) that the body force 

distribution within an MMUS sample is directly proportional to the SPIO number density. In 

fact, if ∇|B|2 is uniform throughout the sample, the body force distribution can be taken as a 

measure of the SPIO number density. This particular importance imparted to the body force 

distribution provides motivation for the formulation of an inverse model to reconstruct the 

body force field from the measured displacement field.

The problem of reconstructing the body force field from the 2D axial displacements 

provided by MMUS has parallels to inverse elastography where the elastic modulus 

distribution of an imaging sample is derived from the inversion of the measured internal 

displacement under a known body force field (Doyley 2012). A common approach is to first 

devise a forward model based on continuum mechanics that models the displacement field of 

a given sample with a defined modulus distribution, boundary value, and perturbation. 

Subsequently, an inverse model is formulated by iteratively minimizing a least squares error 

functional between the measured and modelled displacement, parameterized with respect to 
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the elastic modulus of interest (Doyley et al 1996, Kallel and Bertrand 1996). Here we take 

an analogous approach to reconstruct the body force distribution from the inversion of the 

measured displacement field, using a least squares error functional that is now parameterized 

in terms of the body force distribution, given the displacement field, elastic moduli 

distributions, and boundary values. Subsequently, a linear preconditioned conjugate gradient 

solver is employed to iteratively minimize the least squares error functional.

Governing equation of motion

The displacement field of the MMUS imaging sample, assumed to be a linear isotropic 

elastic material, can be modelled by the static Navier-Cauchy equation (Malvern 1969):

λ + μ ∇ ∇ ⋅ u + μ∇2u = − ρb, (3)

where λ and μ are the first and second Lamé parameters, respectively. Although the MMUS 

apparatus used for this work is a dynamic system with sinusoidally modulated force field, a 

quasistatic approximation is justified because the driving frequency used in our setup is low 

(~2 Hz), ensuring that sample deformation occurs on timescales an order of magnitude 

longer than the elastic wave propagation time. It is estimated that the shear waves travel 

across the 10 cm wide tissue phantoms of this study within 0.05 s, compared to the 0.5 s 

period of the driving force. As such, the static displacements and body forces in the model 

can be equated to the displacement amplitudes and body force amplitudes of the sinusoidal 

waveforms in the actual experiments. Additionally, we expect that effects of nonlinear 

elasticity and viscoelasticity are negligible, because a maximum displacement of 100 nm is 

observed in this work, corresponding to a strain and strain rate of 10−6 and 3 × 10−5 s−1, 

respectively.

Forward model

While it appears trivial to solve for the body force distribution through direct substitution of 

measured displacement into equation (3), we lack lateral and elevational displacement fields 

to do so with conventional MMUS. Here we employ model-based inversion through the 

method of Green’s function to circumvent the need for these displacement components. The 

method of Green’s function allows one to separately model each component of displacement 

field u (r) given the individual component of body forces b (r) in 3D. Mathematically, this is 

accomplished by convolving (integrating over source points) the relevant components of the 

3 × 3 Green’s tensor G(r) of equation (3) with arbitrary body force distributions and 

formulating a forward model (de Wit 1960). The Green’s tensor can also be tailored to cases 

with purely axial forces and when displacements outside the imaging plane are not available.

u r = G r * b r u k = G k b k ,  where  (4)

G(r) = ρ λ + 3μ
8πμ λ + 2μ r I − λ + μ

λ + 3μ r2rrT G(k) = ρ
μk2 I − λ + μ

λ + 2μ k2kkT . (5)
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We chose to use work in the spatial frequency domain (k) for two reasons. First, because the 

forward model is a convolution, it is computationally convenient to implement it as a 

multiplication in the Fourier domain. Second, the boundary conditions can be applied more 

conveniently in the Fourier domain using the method of images, which will be apparent at 

the end of this subsection. To apply this displacement model to 2D MMUS imaging, we 

make two additional simplifying approximations. First, the body forces are taken to be 

purely axial (z component only) as experimental measurements of the magnetic field for our 

setup in the imaging region reveal that the average axial gradient force field is ~20 times 

larger than the lateral gradient force field—1.4 × 10−3 T2 m−1 versus 7 × 10−5 T2 m−1. 

Secondly, to model the contribution of SPIOs outside of the imaging plane, it is assumed 

that the body force distribution is uniform in elevation, extending from −h/2 to +h/2 and 

centered about the plane of imaging at y = 0. In other words, if the SPIOs are confined 

within a well-defined inclusion, h is the extent of the inclusion in the out-of-plane direction. 

These assumptions allow the body force and its Fourier transform to be factored into two 

terms: one explicitly dependent on the elevational coordinate r⊥ = yy  and another on the 

coordinates in the lateral x /axial z  plane of imaging r = xx + zz  alone, as follows:

(6)

For the elevation-dependent factor to have the assumed rectangular dependence, its Fourier 

transform must have a Sinc dependence as follows:

bz
⊥(y) = θ y + h

2 − θ y − h
2 bz

⊥ ky =
2sin

kyh

2
ky

, (7)

where θ is the Heaviside function. Since MMUS only scans axial displacement, the relevant 

component of the frequency response from (4), with simplification from (6) becomes

uz(k) = G33(k)bz
⊥(ky)bz (k ) . (8)

The first two factors from (8) can be integrated over ky ∈ [−∞, ∞] and combined into one 

kernel G33 k . This reduces the problem to 2D (x and z) while encoding the dependence on 

h over which the SPIOs are assumed to extend in elevation. In the following, we will show 

how the inversion method is relatively insensitive to values of h above a certain value. The 

kernel thus becomes:
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G33 k = 2ρ
μ ∫

−∞

∞ sin
kyh

2

ky( k∥ 2 + ky
2)

dky −
λ + μ kz

2

λ + 2μ ∫
−∞

∞ sin
kyh

2

ky( k∥ 2 + ky
2)

2 dky

G33 k = 2πρ
E

2 1 + ν

k∥ 2 1 − e
− h

2k
− 1 + ν

1 − ν
kz

2

k∥ 4 1 −
2 + h

2k∥

2 e
− h

2k
.

(9)

Here, the Young’s modulus (E) and Poisson’s ratio (v) have been substituted for λ and μ 
using the identities: λ = E v/(1 + v)(1 − 2v) and μ = E/(2 (1 + v)).

In discretized form, given the spatial distribution of body forces bz r , the axial 

displacement field uz r  in the imaging plane can be conveniently simulated as a forward 

operation:

uz = WF†G33Fbz , (10)

where W is a spatial weighting operator, and F, F† are the Fourier and inverse Fourier 

operators, respectively. The spatial weighting operator W is introduced to assign more 

importance in the eventual reconstruction to the subspaces of the data that are known more 

accurately. For simplicity, we choose W to be a binary matrix constructed from intensity-

thresholded images where the intensity threshold is set to 40% of the average B-mode US 

intensity, a level determined in previous work to eliminate pixels with exceedingly high 

phase noise that mask the underlying displacement signal (Levy et al 2018). This effectively 

removes from the iterative fitting of the inverse model (subsection C) pixels for which uz  are 

not known. Here, the forward model of (10) is used with experimentally-derived W to model 

experimental displacement fields, which has the secondary effect of recreating the speckle 

pattern of the particular dataset from which the filter is derived. It is noted that the 

displacements of SPIOs, which are on the order of 100 nm for this system (Levy et al 2018), 

are small relative to the US resolution and thus considered to have an insignificant impact on 

the overall distribution of the body forces.

Importantly, equation (10) allows various realizations of boundary conditions. In our study, 

however, the hard boundaries of the tissue phantoms are generally far from the imaging 

region. In phantom-1, for example, the bottom boundary of the mold is located 6 cm below 

the lower edge of the inclusion while the side boundaries are located 4.5 cm from the nearest 

edge of the inclusion. In contrast, the transducer-sample interface is located only 1 cm above 

the top edge of the inclusion. As such, we chose to impose the Dirichlet boundary condition 

only at the transducer-sample interface: uz xx = 0. This is computationally accomplished by 

placing an oppositely-directed force distribution across the interface and zero-padding bz

before applying the forward operation of equation (10). This operation is symbolically 
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equivalent to imposing the following constraint on the Fourier transform of the body forces, 

which also ensures that the body forces are real-valued:

bz kxx + kzz = − bz kxx − kzz = − bz −kxx + kzz * = bz −kxx − kzz * . (11)

Inverse model

An inverse model is employed to reconstruct the body force distribution in the imaging plane 

given the MMUS-derived axial displacement field, the material parameters (E, v, and ρ), the 

assumed thickness h of the SPIO distribution, and the spatial weighing matrix W. The 

optimal body force distribution bopt can be deduced by minimizing the Thikonov-

regularized, weighted least squares error functional constructed from the forward model of 

(10):

bopt = arg min Wuz − WF†G33Fbz
2 + γ bz

2 , (12)

where γ is a regularization parameter chosen via the L-curve method (Hansen 1999). The 

Euler equation of the least squares error functional, otherwise known as the pseudoinverse, 

is given by F†G33
†FW†WF†G33F + γI bz = F†G33

†FW†W uz . Since 

F†G33
†FW†WF†G33F + γI  is positive definite symmetric, we employ the well-known 

conjugate gradient solver (Barrett et al 1994) to solve for the body force. A preconditioner of 

the form M = F† G33
†G33 + γI  is used to speed up the iterations.

Sample preparation and data acquisition

Experiential testing of the reconstruction algorithm presented in the previous section was 

performed on two gelatin phantoms that mimic the mechano-acoustic properties of soft 

tissue with SPIO-laden inclusions. Each phantom was designed with physiologically 

relevant material parameters as prescribed by Madsen et al (1978) and Hall et al (1997), in 

the range of many types of soft tissue: v ~ 0.5, E = 1 kPa−1 MPa, ρ = 1000 kg m−3, speed of 

sound = 1540 m s−1, and frequency dependent attenuation coefficient = 0.3 dB/cm/MHz. 

Phantom-1 was prepared in an 8 cm × 10 cm × 5 cm (axial-lateral-elevational) rectangular 

acrylic mold similar to the one described in Levy et al (2018), but with different dimensions 

and without embedded tubing; briefly, the mold has four 0.64 mm diameter low magnetic 

susceptibility alloy-510 phosphor bronze wires to serve as fiducial markers for outlining the 

boundaries of the SPIO-laden inclusion. The markers are visible only in the B-mode image, 

as seen in figure 1. Phantom-2 was prepared in a cylindrical mold 8 cm tall and 7.5 cm in 

diameter with a slit on the sidewall to facilitate imaging, allowing a variation in inclusion 

geometry not possible in our custom-built acrylic mold.

Gelatin tissue-mimicking phantoms were prepared in accordance with section II-C of Levy 

et al (2018). The same 5 kPa Young’s modulus background material described in this 

previous work was used for both phantoms 1 and 2, while the inclusions varied slightly. 

Phantom-1 contained the same 1 cm cubic inclusion geometry, but with an iron (II, III) 

oxide nanopowder concentration of 4.4 mg Fe ml−1, while phantom-2 was created with a 5 
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mm × 5 mm × 40 mm (axial-lateral-elevational) inclusion containing 5 mg Fe ml−1. All 

other parameters were unchanged.

Data on the two tissue-mimicking phantoms was acquired using the open-air MMUS system 

(figure 1) previously described in detail by Levy et al (2018) and Pope et al (2013). The 

system consisted of the Ultrasonix Sonix-Touch scanner with an L14–5/38 linear array 

transducer (Analogic Corporation, Peabody, MA) that was used to acquire ultrasound RF 

data at a frame rate of 61.667 frames per second (fps), a center frequency of 10 MHz 

(fundamental frequency imaging), 70% bandwidth, a 17.5 mm focal depth, and transmit and 

receive f-numbers of 1.2 and 1.8, respectively. The transducer was centered beneath a pair of 

solenoid electromagnets in an antiparallel configuration with grain-oriented electrical steel 

cores. Since the magnetic gradient force scales quadratically with the driving voltage 

(Oldenburg et al 2008), the waveform generator was modulated with a square root sinusoidal 

signal to generate a 2 Hz sinusoidal force in the imaging region (Levy et al 2018).

During data acquisition, seven datasets were collected for phantom-1 and two for 

phantom-2. Each set consisted of two 7.5 s image stacks of beamformed RF data, one 

collected with the magnetic field modulated and another with the magnetic field off for 

background subtraction. Each frame consists of 46 A-lines and is sampled into 255 pixels 

across 3.8 cm, laterally, and into 1568 pixels spanning 2.95 cm, axially. The RF data was 

processed offline with our previously published frequency and phase locking (FPL) 

algorithm (Pope et al 2013) to render the axial displacement field. Briefly, RF data was 

Hilbert transformed, its argument (phase) extracted, and the temporal differential phase 

computed. Then, the Fourier component of the differential phase at the magnet driving 

frequency (2 Hz) was computed; the phase of this Fourier component was used as part of a 

cosine filter to select motion only in-phase with the oscillating magnetic field, which 

weighted the magnitude of the Fourier component with a value between 0 and 1. This 

frequency-and-phase-filtered signal was converted to a vibrational displacement amplitude 

based upon calibration through the discrete Fourier transform. Finally, an intensity threshold 

filter, described in detail in the Forward Model subsection, was applied to the frequency-

and-phase-filtered displacement and a median filter with box size nominally 3 times the 

resolution was used for speckle suppression. All post-processing was performed in 

MATLAB (Mathworks Inc, Natick, MA).

Simulation-based testing of inverse method robustness

Reconstruction of the body forces from the proposed method of inversion of MMUS 

displacement fields requires knowledge of the kernel G33 given by equation (9). Since G33 is 

a function of sample parameters ρ, E, v, and h, it is advantageous to know the effect of their 

uncertainties in the robustness of the inversion. Furthermore, reconstructions may be 

susceptible to the noise level of the displacement fields themselves. To investigate these 

effects, a displacement field was simulated by the forward model given by equation (10) 

with well-defined sample parameters ρ, E, v, h, a rectangular body force distribution b0, a 

uniform spatial weighting matrix (W = I), and an additive Gaussian noise of varying signal 

to noise ratio (SNR). The body force distribution b0 was created as a 1568 × 255, 2.9 cm × 

3.8 cm binary image (same size as experimental images) with ones inside a 1 cm × 1 cm 
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rectangular window and zeroes outside. To investigate the effect of a particular sample 

parameter, the displacement field was then inverted assuming the same values for the sample 

parameters used in simulating the displacement field, but with a difference for the particular 

parameter under investigation. For each parameter in question, a range of values around the 

true value of the parameter was investigated in a series of inversions for each of which a 2D 

correlation coefficient with the known body force distribution b0 was calculated and plotted 

against the guess parameter value. Similarly, to study the effect of SNR alone on inversion, a 

series of Gaussian noises in the range 0–20 dB were added to the displacement field and 

inverted with the exact kernel used for simulation. The 2D correlation coefficient with the 

known body force distribution was then plotted against the corresponding displacement field 

SNRs.

Performance evaluation metrics

To quantify the accuracy and efficacy of the model-based inversions compared to raw 

displacement field measurements (traditional MMUS), three standard metrics were 

considered. The first of the metrics, contrast-to-noise ratio, is calculated as: 

CNR = uin − uout / uout
2 − uout

2 , where uin refers to signal inside the inclusion, uout 

refers to the signal in the background, and the angular brackets represent the mean value of 

the argument. The background was chosen to be a rectangular annulus surrounding the 

inclusion with an area three times that of the inclusion, and a rectangular exterior bounded 

with a diagonal two times that of the inclusion. This choice was made instead of the entire 

background to capture motion artifacts which are more prevalent closer to the inclusion, in 

all directions.

The inclusion height and width derived from the MMUS images, in comparison to the a 
priori inclusion dimensions, were also calculated as performance metrics. The process of 

calculating inclusion height involved taking columns within the lateral extent of the 

inclusion and individually calculating their normalized cross-correlation coefficients with an 

ensemble of rectangular functions of varying window sizes, incremented one pixel a time. 

For each column, the best-fit rectangular distribution was taken to be that from the ensemble 

which had the maximum correlation coefficient. Ultimately, inclusion height was defined as 

the median of the window sizes of all best-fit rectangular distributions. The advantages of 

using this method are that possible shifts of the inclusion position from the presumed 

boundary are accounted for by using cross-correlation, and normalization of the cross-

correlation coefficient disambiguates the scaling of the ensemble of rectangular 

distributions. A similar process was used to calculate inclusion width by taking rows within 

the axial extent of the inclusion.

Results

Robustness of inversion algorithm to input parameters

The robustness of the inversion algorithm to uncertainties in sample parameters ρ, E, v, h 
and the displacement field SNR is depicted in figure 2. As expected, for each of the cases of 

ρ, E, h, and v, the inverted images exhibit maximum correlation with the body force 

distribution at the value of the parameter used in the forward model. Importantly, even when 
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the parameters used in the inversion are highly deviated from the true values, the inversions 

exhibit higher correlation with the body force distribution than do the displacement fields 

themselves (dashed horizontal or curved, in figure 2(c)), except in the case of severe under-

estimation of E (figure 2(b)). Nevertheless, at values of E larger than the true value, the 

correlations decrease at a slow rate, suggesting high stability when overestimating E in the 

reconstructions. The robustness spectrum of h (figure 2(d)) follows a similar pattern to that 

of E with a steep decrease in the correlation coefficient at values smaller than the true h and 

a gradual roll-off at values larger than the true h. For mass density ρ, the inversion method 

presented here is quite robust in the 500–1500 kg m−3 range. As tissue and tissue-mimicking 

phantoms generally have densities similar to that of water, this range is likely to be sufficient 

for all practical biological purposes. Lastly, the robustness spectrum of both v (figure 2(c)) 

and SNR (figure 2(e)) show a monotonic increase with respect to the parameter in question, 

with correlation values of the reconstructions always greater than that of the displacement 

field itself. The Poisson’s ratio of gel phantoms, as well as soft tissues, are close to the 

maximum value of 0.5 due to their nearly incompressible nature. However, the SNR of 

MMUS displacement fields can vary widely depending on the SPIO concentration and the 

hardware-specific ability of the imaging system to reject external noise. For the open-air 

MMUS setup used in our study, SNRs ranging from 0.8–7.6 dB have been reported (Pope et 
al 2013).

Inversion applied to experimentally-acquired MMUS displacement fields

Seven displacement fields of phantom-1 and two of phantom-2 were inverted using the 

model-based inversion of equation (12). Additionally, for each experimentally-obtained 

MMUS displacement field, a corresponding field was simulated according to the forward 

model of equation (10) using the sample parameters (ρ, E, v, h), SNR determined from the 

MMUS signal inside the inclusion, a uniform body force distribution as discerned from the 

inclusion location via the fiducial markers, and the intensity threshold filter W from the B-

mode image. The simulated displacement fields were then inverted using the same model-

based inversion. Figures 3(a)–(d) is a side-by-side presentation of the resulting images from 

the fourth of the seven chronologically-acquired datasets from phantom 1. Likewise, figures 

3(e)–(h) is a side-by-side presentation of the same exercise on a representative phantom-2 

dataset. Signals halfway within the inclusion bounds were also sampled both axially and 

laterally from the MMUS and simulated displacement fields. These samples are plotted as 

signal versus depth/width curves and overlaid with their corresponding samples from the 

inversions and presented in figures 3(i)–(l) for the phantom-1 dataset and in figures 3(m)–(p) 

for the phantom-2 dataset for which the fields are displayed.

Qualitatively, the halos surrounding inclusion boundaries are seen to be reduced in the 

inversions of simulated and experimental displacement fields in both the representative 

phantom-1 and phantom-2 datasets. This effect is further substantiated by the bar chart in 

figure 4, which presents the mean CNR, inclusion height, and inclusion width of the 

experimental and simulated displacement fields and their inversions of all acquired datasets 

of phantom-1 (N = 7) and phantom-2 (N = 2). For both phantoms, mean CNR of the field 

inversions are larger than that of the fields themselves, whereas mean inclusion height and 

width of the field inversions are closer to the true value than are the corresponding metrics 

Thapa et al. Page 11

Phys Med Biol. Author manuscript; available in PMC 2020 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from the displacement fields. These observations, specifically of phantom-1, are found to be 

significant (p = 0.0078) under one-tailed Wilcoxon signed-rank tests at a 5% significance 

level in all three metrics. It is also notable that differences in sample mean of all metrics 

between MMUS and simulated displacement fields are not statistically significant for 

phantom-1, highlighting the accuracy of the forward model. Two-tailed Wilcoxon rank-sum 

tests fail to reject the null hypotheses at 5% significant level with p = 1.00 for CNR, p = 0.10 

for height, and p = 0.38 for width. Due to its limited sample size, such statistical analyses is 

not preformed for phantom-2.

Discussion

Here we develop and validate a physical model of elastic sample deformation in response to 

an internal body force field. Given the assumptions used in the development of equation (2), 

we posit that the proportionality between the body force field and the SPIO density 

distribution can be exploited to reduce the halo effect in MMUS imaging. This is confirmed 

by comparing the a priori SPIO density distribution in our phantoms with the body force 

distribution obtained from inverting the experimental displacement data, resulting in a 

qualitative reduction of halo effects in post-inversion images of figure 3. Added confirmation 

is provided by comparing the forward model-predicted displacements from the a priori SPIO 

distribution, against the actual displacements, as simulated displacement fields lacked 

statistically significant difference in the performance metrics: CNR, inclusion height, and 

width. Importantly, this allows the inverse method to be used as a signal processing tool to 

improve the estimates of the true, underlying SPIO distribution, which is observed as an 

increase in CNR, a better match of the inclusion dimensions with the true dimensions, and a 

qualitative improvement in the image fidelity (i.e. reduction of the halo).

Specifically, the increase in CNR in both the experimental and simulated data of phantom-1 

and 2 upon inversion is indicative of the strength of the algorithm to reject motion artifacts 

and enhance the detectability of the inclusion. It should be pointed out that the small 

differences in CNR increase between the experimental and simulated data is attributed to 

boundary value fidelity of the inversions. Because inversions of experimental displacement 

fields only approximate the boundary condition as a zero-displacement constraint on the 

sample-transducer boundary, the CNR increase is low compared to inversions of simulated 

displacement fields which exactly replicate the boundary condition used in the simulations. 

This limiting assumption is necessary for a generalized application of our inversion scheme 

to diverse MMUS samples where the only universal boundary condition is the zero-

displacement constraint at the sample-transducer interface. We believe that these 

assumptions are fairly agnostic for in vivo applications and will introduce minimal error in 

the reconstructions unless there are hard boundaries near the volume being probed.

Likewise, the improved accuracy of the measured dimensions of the inclusions in post-

inversion suggest that this method can aid in delineating the shape and boundary of an SPIO 

labelled structure. Average percent error in inclusion height and width of phantom-1 MMUS 

displacement fields went down from 195% ± 18% and 151% ± 13% to 9.68% ± 1.3% and 

4.95% ± 4.8%, respectively, post-inversion. Likewise, average percent error in inclusion 

height and width of phantom-2 MMUS displacement fields went down from 282% ± 1% and 
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53.7% ± 1.5% to 20.0% ± 8.0% and −14.8% ± 1.6%, respectively, post-inversion. The 

percent errors here in inclusion height are consistently larger than the percent errors in 

inclusion width. This points to the directional bias of the extent of motion artifacts, namely, 

that motion artifacts are more pronounced axially than they are laterally.

A natural extension of this work is to accommodate inversions of 3D displacement fields of 

inhomogeneous and anisotropic samples. While the model-based inversion presented here is 

effectively 2D, it tracks elevational contributions to displacement fields by assuming a well-

defined thickness of SPIO density distribution centered about the transducer. These 

assumptions are not necessary if high resolution 3D data can be obtained via either scanning 

of our existing US probe in elevation, or using a US 2D matrix array transducer (Szabo and 

Lewin 2013). To extend the method for application in elastically inhomogeneous and/or 

anisotropic samples, established US-based elastography techniques, such as quasistatic 

(Ophir et al 1991), harmonic (Parker et al 1990), or transient (Sarvazyan et al 1998) 

elastography, could be used to first estimate the relevant elastic moduli of samples before 

performing MMUS scans. Then, the proposed inversion method could be applied by solving 

for a new Green’s tensor of the modified equations of motion that account for 

inhomogeneity and anisotropy (Tonon et al 2001).

Further, the inversion scheme presented in this work may be executed with other 

implementations of motion detection algorithms and hardware in the future. Inversion can be 

applied to displacement fields generated through Doppler (Oh et al 2006), cross-correlation 

(Mehrmohammadi et al 2007), and blind source separation-based FPL (Hossain et al 2018) 

methods, among others. Inversion can also be applied to systems where varying waveforms 

for temporal modulation of the magnetic gradient force are used, including pulsed 

(Mehrmohammadi et al 2009) or coded (Fink et al 2017), to the extent that the rendered 

image signals are linear with respect to the displacement field. Finally, inversion can be 

applied equally effectively to displacement fields collected from MMOCT.

Conclusion

Artifacts in MMUS are inherent because the system is premised on motion detection, which 

captures an integrated and continuous displacement field surrounding individual SPIOs, 

manifested due to their mechanical coupling with the sample. In this work we first model 

these artifacts by the quasistatic solution of the Navier-Cauchy equation, and then under the 

assumption that the force field is uniform in the elevational plane, reduce it to a 2D problem. 

We then propose a reconstruction of the body forces, which are proportional to the 

underlying SPIO density distribution under certain assumptions, given the displacement field 

and some material parameters. The reconstruction algorithm is a preconditioned, 

regularized, weighted conjugate gradient iterative solver. Reconstruction is shown to be 

robust to a range of uncertainties in the parameters ρ, E, h, and v necessary to generate the 

forward kernel, as well as a wide range of input displacement field SNRs. Reconstruction is 

tested on MMUS images of two gelatin inclusion tissue phantoms and is shown to increase 

the CNR of both the experimental displacement field and their simulated counterparts. 

Reconstruction also renders the dimensions of the SPIO-laden inclusion closer to the true 

values than does the conventional displacement field alone. These results indicate that our 
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proposed model-based inversion of MMUS displacement fields can be used as a signal 

processing tool, in addition to its utility in characterizing the SPIO distribution within linear, 

isotropic, and elastically homogeneous MMUS samples.
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Appendix.: List of mathematical symbols in order of their appearance in the 

text

z Unit vector along axial direction

u 3D displacement field vector within the imaging sample

r 3D position vector within the imaging sample

f 3D magnetic gradient force

ri 3D position vector of the ith SPIO

B 3D magnetic field vector

χm Magnetic susceptibility of the MNPs

μ0 Permeability of free space

vn Volume of an SPIO

vp Volume of an MMUS pixel

ζ SPIO number density distribution

b 3D body force vector

ρ Mass density

λ Lamé’s first parameter

μ Lamé’s second parameter, also the shear modulus

G Green’s tensor of the Navier-Cauchy equation

u Fourier transform of the 3D displacement field vector within the imaging sample

G Fourier transform of the Green’s tensor of the Navier-Cauchy equation

b Fourier transforms of the 3D body force vector

k Spatial frequency vector

I Identity matrix

rT Transpose of the position vector

kT Transpose of the frequency vector

r Magnitude of position vector

k Magnitude of the frequency vector

h The extent of SPIO-laden inclusion in the out-of-plane direction

y Out-of-plane component of the position vector

r⊥ Position vector in the out of plane direction

r∥ Position vector in the plane of imaging

x Unit vector along lateral direction

y Unit vector along elevational direction
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bz Axial component of the body force

bz
In-plane factor of the axial body force

bz
⊥ Out-of-plane factor of the axial body force

θ Heaviside step function

bz
⊥ Fourier transform of the out-of-plane factor of the axial body force

ky Out-of-plane component of the spatial frequency vector

uz Fourier transform of the axial displacement field

G33 Fourier transform of the 33 component of the Green’s tensor

k∥ Spatial frequency vector in the plane of imaging

G33
Fourier transform of the 33 component of the Green’s tensor modified for use in 2D

k∥ Magnitude of the spatial frequency vector in the plane of imaging

E Young’s modulus of imaging sample

v Poisson’s ratio of imaging sample

uz
The in-plane axial displacement field

F Fourier transform operator

F† Inverse or complex conjugate transpose of the Fourier transform operator

W Spatial weighting operator

bz
Fourier transform of the in-plane factor of the axial body force

bopt Body force distribution obtained from optimization

γ Regularization parameter

G33
† Complex conjugate transpose of the forward model kernel

W† Complex conjugate transpose of the spatial weighing matrix

M Preconditioner for conjugate gradient solver

b0 Rectangular body force distribution for simulating displacement field in robustness test

References

Barrett R, Berry M, Chan TF, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C and van 
der Vorst H 1994 Templates for the solution of linear systems (Philadelphia: SIAM) pp 14–7

Carter CL, Allen C and Henson DE 1989 Relation of tumor size, lymph node status, and survival in 
24740 breast cancer cases Cancer 63 181–7 [PubMed: 2910416] 

de Wit R 1960 The continuum theory of stationary dislocations Solid State Phys. 10 249–92

Doyley MM. 2012; Model-based elastography: a survey of approaches to the inverse elasticity 
problem. Phys. Med. Biol. 57:R35. [PubMed: 22222839] 

Doyley M, Bamber J, Shiina T and Leach M 1996 Reconstruction of elastic modulus distribution from 
envelope detected B-mode data 1996 IEEE Ultrasonics Symp. Proc 2 1611–4

Evertsson M. et al. 2017; Combined magnetomotive ultrasound, PET/CT, and MR imaging of 68Ga-
labelled superparamagnetic iron oxide nanoparticles in rat sentinel lymph nodes in vivo. Sci. Rep. 
7:4824. [PubMed: 28684867] 

Evertsson M, Kjellman P, Cinthio M, Fredriksson S, Zandt R I t, Persson HWand Jansson T 2014 
Multimodal detection of iron oxide nanoparticles in rat lymph nodes using magnetomotive 

Thapa et al. Page 15

Phys Med Biol. Author manuscript; available in PMC 2020 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ultrasound imaging and magnetic resonance imaging IEEE Trans. Ultrason. Ferroelectr. Freq. 
Control 61 1276–83 [PubMed: 25073135] 

Fink M, Ermert H, Lyer S and Alexiou C 2017 Influence of naturally occurring tissue movements on 
magnetomotive ultrasound detection of iron oxide nanoparticles for magnetic drug targeting 2017 
IEEE Int. Ultrasonics Symp. (IUS) pp 1–6

Häfeli U, Schüt W and Teller J 1997 Scientific and Clinical Applications of Magnetic Carriers (New 
York: Plenum) pp 220–1

Hall T, Bilgen M, Insana M and Krouskop T 1997 Phantom materials for elastography IEEE Trans. 
Ultrason. Ferroelectr. Freq. Control 44 1355–65

Hansen PC 1999 The L-curve and Its Use in the Numerical Treatment of Inverse Problems (Lyngby: 
IMM, Department of Mathematical Modelling, Technical University of Denmark)

Hossain A, Cho M and Lee S 2012 Magnetic nanoparticle density mapping from the magnetically 
induced displacement data: a simulation study Biomed. Eng. Online 11 11 [PubMed: 22394477] 

Hossain MM, Levy BE, Thapa D, Oldenburg AL and Gallippi CM 2018 Blind source separation-based 
motion detector for imaging superparamagnetic iron oxide (SPIO) particles in magnetomotive 
ultrasound imaging IEEE Trans. Med. Imaging 37 2356–66 [PubMed: 29994656] 

Huang D et al. 1991 Optical coherence tomography Science 254 1178–81 [PubMed: 1957169] 

John R, Rezaeipoor R, Adie SG, Chaney EJ, Oldenburg AL, Marjanovic M, Haldar JP, Sutton BP and 
Boppart SA 2010 In vivo magnetomotive optical molecular imaging using targeted magnetic 
nanoprobes Proc. Natl Acad. Sci 107 8085–90 [PubMed: 20404194] 

Kallel F and Bertrand M 1996 Tissue elasticity reconstruction using linear perturbation method IEEE 
Trans. Med. Imaging 15 299–313 [PubMed: 18215911] 

Kim J, Ahmad A, Li J, Marjanovic M, Chaney EJ, Suslick KS and Boppart SA 2016 Intravascular 
magnetomotive optical coherence tomography of targeted early-stage atherosclerotic changes in ex 
vivo hyperlipidemic rabbit aortas J. Biophotonics 9 109–16 [PubMed: 25688525] 

Levy BE, Hossain MM, Sierchio JM, Thapa D, Gallippi CM and Oldenburg AL 2018 Effect of model 
thrombus volume and elastic modulus on magnetomotive ultrasound signal under pulsatile flow 
IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65 1380–8 [PubMed: 29993541] 

Madsen EL, Zagzebski JA, Banjavie RA and Jutila RE 1978 Tissue mimicking materials for ultrasound 
phantoms Med. Phys 5 391–4 [PubMed: 713972] 

Malvern LE 1969 Introduction to the Mechanics of a Continuous Medium (Englewood Cliffs, NJ: 
Prentice-Hall) pp 497–504

Mehrmohammadi M et al. 2007 Imaging of iron oxide nanoparticles using magneto-motive ultrasound 
2007 IEEE Ultrasonics Symp. Proc pp 652–5

Mehrmohammadi M, Oh J, Aglyamov S, Karpiouk A and Emelianov S 2009 Pulsed magneto-acoustic 
imaging 2009 Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society pp 
4771–4

Oh J, Feldman MD, Kim J, Condit C, Emelianov S and Milner TE 2006 Detection of magnetic 
nanoparticles in tissue using magneto-motive ultrasound Nanotechnology 17 4183–90 [PubMed: 
21727557] 

Oldenburg AL, Crecea V, Rinne SA and Boppart SA 2008 Phase-resolved magnetomotive OCT for 
imaging nanomolar concentrations of magnetic nanoparticles in tissues Opt. Express 16 11525–39 
[PubMed: 18648474] 

Oldenburg AL, Gunther JR and Boppart SA 2005a Imaging magnetically labeled cells with 
magnetomotive optical coherence tomography Opt. Lett 30 747 [PubMed: 15832926] 

Oldenburg AL, Toublan FJ-J, Suslick KS, Wei A and Boppart SA 2005b Magnetomotive contrast for 
in vivo optical coherence tomography Opt. Express 13 6597 [PubMed: 19498675] 

Ophir J, Céspedes I, Ponnekanti H, Yazdi Y and Li X 1991 Elastography: a quantitative method for 
imaging the elasticity of biological tissues Ultrason. Imaging 13 111–34

Parker K, Huang S, Musulin R and Lerner R 1990 Tissue response to mechanical vibrations for 
‘sonoelasticity imaging’ Ultrasound Med. Biol 16 241–6 [PubMed: 2194336] 

Thapa et al. Page 16

Phys Med Biol. Author manuscript; available in PMC 2020 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Parr A, Mccann M, Bradshaw B, Shahzad A, Buttner P and Golledge J 2011 Thrombus volume is 
associated with cardiovascular events and aneurysm growth in patients who have abdominal aortic 
aneurysms J. Vascular Surg 53 28–35

Pope AG, Wu G, Mcwhorter FY, Merricks EP, Nichols TC, Czernuszewicz TJ, Gallippi CM and 
Oldenburg AL 2013 Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive 
ultrasound Phys. Med. Biol 58 7277–90 [PubMed: 24077004] 

Sarvazyan AP, Rudenko OV, Swanson SD, Fowlkes J and Emelianov SY 1998 Shear wave elasticity 
imaging: a new ultrasonic technology of medical diagnostics Ultrasound Med. Biol 24 1419–35 
[PubMed: 10385964] 

Szabo TL and Lewin PA 2013 Ultrasound transducer selection in clinical imaging practice J. 
Ultrasound Med 32 573–82 [PubMed: 23525382] 

Tonon F, Pan E and Amadei B 2001 Green’s functions and boundary element method formulation for 
3D anisotropic media Comput. Struct 79 469–82

Zhao L, Prior SJ, Kampmann M, Sorkin JD, Caldwell K, Braganza M, Mcevoy S and Lal BK 2014 
Measurement of thrombus resolution using three-dimensional ultrasound assessment of deep vein 
thrombosis volume J. Vascular Surg 2 140–7

Thapa et al. Page 17

Phys Med Biol. Author manuscript; available in PMC 2020 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Schematic of the open-air MMUS system and how it generates displacement fields. Left-a 

tissue phantom with SPIO-laden inclusion is imaged by the open-air MMUS system. 

Middle-structural US image (B-mode) of the phantom with visible fiducial markers that aid 

in outlining the inclusion boundary from the known design of the phantom mold. Right-

magnetic gradient field exerts body forces predominantly in the axial direction causing 

internal displacements (concept color map) in the sample that extend beyond the boundaries 

of the inclusion. Gridlines, which were squares in pre-loading, are added to show the overall 

displacement of the nodes under stress.
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Figure 2. 
Robustness of the inverse method to sample parameters (ρ, E, ν, h) and image SNR 

measured in terms of the correlation with the known body force distribution. Inversion is 

applied to a displacement field simulated using ρ = 1000 kgm−3, E = 10 kPa, ν = 0.49, h = 5 

mm, and SNR = 5 dB, by assuming variations only in ρ in (a), E in (b), ν in (c), and h in (d) 

while keeping other parameters true to simulation. In (e) inversions are applied on 

displacement fields of varying SNRs with all parameters true to simulation. Dashed vertical 

lines represent the parameter value used in simulation while dashed horizontal or curved, in 

(e), lines represent the normalized 2D correlation coefficient between the body force 

distribution and the displacement field before performing the inversion, to be taken as a 

baseline.
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Figure 3. 
Displacement fields (a), (c), (e) and (g) and corresponding body force distributions (b), (d), 

(f) and (h) rendered from inversion of experimental data (a) and (e) and their simulations (c) 

and (g) using the forward model. The solid boxes outline inclusion boundary ascertained by 

comparison with the CAD model used to design the phantom mold, while the dashed 

exterior boxes in (a) and (e) outline the extent of the image background considered for CNR 

calculations. Also shown are image columns sampled axially (i), (k), (m) and (o) and rows 

sampled laterally (j), (l), (n) and (p) about the center of the inclusion to aid in visualizing the 

extent of the inclusion. The dashed vertical lines represent the known bounds of the 

inclusion. Panels (a)–(d) and (i)–(l) correspond to images and plots from phantom-1 while 

panels (e)–(h) and (m)–(p) correspond to those from phantom-2. For consistency, all 

colormaps are scaled from 0 to 1 with 1 representing the maximum pixel value and all 

negative pixels being mapped to 0.

Thapa et al. Page 20

Phys Med Biol. Author manuscript; available in PMC 2020 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Summary of the results of inversion on MMUS-rendered displacement fields and 

simulations together with their respective inversions for phantom-1 (top row) and phantom-2 

(bottom row). Results are categorized by image metrics: inclusion height (left), inclusion 

width (center), and CNR (right). Dashed horizontal lines represent the true dimensions of the 

inclusions. Data labels display mean value of the ensembles, N = 7 for phantom-1 and N = 2 

for phantom-2. Error bars are plotted as standard deviation of the samples. Where error bars 

are not visually discernible, they are too small to be presented in the same scale as the 

sample means. *symbolizes p < 0.01 for pre-inversion versus post-inversion metrics.
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