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Reducing baryon noise in lattice QCD through partial quenching
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The study of nuclear physics using lattice QCD is hindered by an exponentially large signal-to-noise problem
that is conventionally alleviated by raising the quark masses to unphysically high values. We propose a novel
form of partial quenching for calculations involving nucleons in which the sea quark masses are taken to be
smaller than the valence quark masses. It is shown that lowering the sea quark masses toward their physical
values actually improves signal-to-noise. An optimized approach to the physical point in the (m;, m,) plane is
proposed, with a full analysis of the cost benefit. Improvements in computing time of ~10*“~1_ where A is the
number of nucleons in the system, are shown to be possible.
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I. INTRODUCTION

Lattice QCD provides a promising tool for the calculation
of properties of nuclear systems from first principles. In
particular, one goal is to use lattice QCD to gain access to
quantities for which we have little or no experimental data,
such as the three-neutron interaction, necessary as input for
many nuclear models, or hyperon-baryon interactions, which
may have relevance to the equation of state for neutron stars. As
improvements in computing power and algorithms continue to
allow more precision in lattice calculations, we are entering an
exciting era in which the calculation of properties of multiple
baryon systems is becoming possible, as evidenced by the
recent appearance of the first study of three baryons [1].
However, calculations involving baryons with light valence
quarks still suffer from an exponential degradation in time
of signal-to-noise, resulting in large errors. To overcome this
problem will require enormous computational resources as
the number of baryons is increased. Creative methods for
reducing the signal-to-noise ratio (SNR) are necessary if we
wish to further explore nuclear physics on the lattice (see,
e.g., Ref. [2]). In this article, we investigate the quark mass
dependence of the SNR and present a new approach which
will greatly reduce the computational time associated with
these calculations.

A shared characteristic of most lattice calculations to date
is the use of unphysically large quark masses. Typically, this is
done because as one lowers the quark masses, critical slowing
down of the algorithms employed to invert the Dirac matrix
occurs. For calculations involving nucleons, the SNR is also
improved at larger quark masses. Based on the elegant argu-
ment by Lepage [3], outlined in Sec. II, one can show that the
SNR for a correlator of an operator consisting of interpolating
fields for A nucleons is approximately /A e~ AMN—3mo)T
where My is the mass of the nucleon, 7 is the Euclidean
time separation of source and sink, and A is the number
of measurements made. For larger quark masses, explicit
chiral symmetry breaking is more severe, and the difference
My — 3m, is smaller, thus improving the SNR.
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Raising the quark masses results in systematic errors, and
extrapolation must be performed to obtain physical answers.
In an attempt to simultaneously avoid critical slowing down
and reduce systematic errors, partial quenching, in which the
valence quark masses are taken to be smaller than the sea quark
masses, has been employed in the mesonic sector. However, it
has not been clear whether this method would be beneficial in
the baryonic sector due to a reduced SNR.

A more careful study of the quark mass dependence reveals
that an unconventional form of partial quenching, in which the
valence quark masses are taken to be larger than the sea quark
masses, actually improves the SNR. In addition, recent results
indicate that it is propagator production and contractions that
consume the largest amount of computing time for baryon
calculations [4], contrary to the mesonic sector. In this article
we investigate the quark mass dependence of an array of
factors affecting the precision of lattice calculations involving
nucleons and propose that the ideal program for approaching
the physical limit in baryonic calculations is to calculate at
physical sea quark mass and extrapolate in the valence quark
mass only.

II. SIGNAL TO NOISE ESTIMATES

Conventionally, hadron properties are computed on the
lattice by considering correlators of the form G(r) =
(0|B(t)B'(0)|0), where B has some overlap with the state
of interest. After analytically integrating out the fermions,
one is left with a new operator, O(t; A), consisting of quark
propagators from # = 0 to + = 7, which is a function of the
gauge fields. For large time separation, the correlator of this
object will project out the lightest state produced by the
operator, G o< e~ £oT, From this, one can extract the energy
of the state (Ey).

Here, we outline the arguments presented by Lepage to
estimate the SNR for correlators calculated on lattices with
antiperiodic temporal boundary conditions and an infinite time
extent. Because the correlators are approximated by sampling
N independent gauge configurations,

N
1
Gy(r) = N E O(t; Ay), (D
i=1
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the SNR (R) can be computed for large N using the central
limit theorem,

R~ VN,
o = (|0(t; A)IP) — {O(t; A)) . 2)

At large times the correlator in the first term of o2 will project
out the lightest state produced by OOT, so phenomenological
knowledge about the strong interactions can be applied to make
predictions about the SNR. In particular, if 3 is an operator for
producing A nucleons, then OO will consist of 3A quark and
3A antiquark propagators from t = 0 to t = t. The lightest
state projected out by this operator will be 3A pions at rest, so
we would estimate that our SNR is given by

R~ N Ne AMy =301 3)

Here, 7, ~ m, is the mass of the pion in the partially
quenched theory where valence quark annihilation is disal-
lowed.

Because for physical masses, My — %mn ~ 730 MeV, a
very large number of measurements is required for large
(r = 1 fm) to see a statistically significant signal. At shorter
time separations, the correlator will be contaminated by excited
states. In practice, one must use a finite time extent, and Eq. (3)
has recently been shown to give a good approximate upper
bound on the SNR for 7 < 2 fm on a lattice with a 4.5-fm
time extent [4]. Above this, backward propagating states must
be taken into account, and the SNR is expected to be much
worse. We will concentrate on the range for which the Lepage
expression holds [Eq. (3)], because it is here that measurements
are most likely to be made.

IIL. SNR IN THE (m,, m,) PLANE

The main source of the signal-to-noise problem is sponta-
neous chiral symmetry breaking, which causes the pions to be
light. Thus, it is expected in general that the SNR will improve
with heavier quark masses. More specifically, it is the ability of
OO to produce light pions that affects the SNR. So one might
ask whether it is necessary to raise all of the quark masses to
improve the SNR, or only the valence quarks associated with
the interpolating field. The key to quantifying the effect on the
SNR of changing sea and quark masses independently lies in
partially quenched chiral perturbation theory (PQxPT).

The mass of the nucleon in SU(2) PQxPT has been
calculated to order O(mé) in Ref. [5]. We have

1 2
My = My +am?, + pm? — |:gA (—7mzv + 16m3,

167 f2| 12
8

2
+ gmuvmss‘) + 12

(=19m3, + 10m3 + 9m,,m?)
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and M contains the O(mé) terms, presented in Ref. [5]. For
the pion we have [6]

2 2 1_6 _ 2 i _ 2
M; =m;, 1+ f2 (2L¢g L4)m” + f2 (2Lg Ls)mvv

_|_; 2 —m? + (2m?, —m2)lo my,
327t2f2 myy Mg My mg g Ai .
(6)

Here, mf]q, = By(my +mqr), where By ~ 2.4 GeV, and for
physical pions, m, ~ m, ~ 4 MeV. The parameters in the
expression for the pion mass are given in Ref. [7]. Fits of the
parameters for the nucleon mass up to (’)(mg/ 2) were performed
to the results presented in Ref. [8] for values of the pion
mass below 400 MeV. The unknown parameters contained
in the (’)(mz) terms for the nucleon mass expression were
sampled from Gaussian distributions and used as a measure
of the systematic uncertainty. Note that, because of the m>_
and m,,m?_ terms, changing the sea quark masses affects the
nucleon mass at O(m,), while the pion mass is unchanged
until O(m?]).

Inserting these expressions into Eq. (3), and normalizing
with respect to the SNR for physical quark masses, gives the
result shown in Fig. 1 for systems with up to four nucleons.

We see that the best value for the SNR occurs at high
valence quark mass and low (physical) sea quark mass, with
improvements over heavy sea quarks of about 3 times for a
single nucleon and 100 times for four nucleons. The reason
for these improvements can be seen by inspecting the mass
difference governing the SNR in Eq. (3). Keeping the sea
quark mass at its physical value and raising m,, to 400 MeV
only raises the nucleon mass by about 130 MeV, while the
pion mass is raised by 240 MeV, so that My — %mn has been
reduced from 730 MeV in the physical case to 500 MeV.

Another expression to consider is the time at which
exponential degradation of signal-to-noise sets in. It was
shown in Ref. [1] that the standard projection of the nucleon
state onto zero momentum introduces a volume suppression to
the noise. For small time slices, this suppression can dominate,
in which case the SNR no longer depends exponentially on the
number of nucleons. The largest time for which this occurs
was calculated to be

; 2 1 m?T L; 7
ise n )
1O O My — 3m, A2

where the spatial volume should be set by the Compton
wavelength of the lightest pion in the system, L, mL For
A = 1 we find, using the expressions above for the nucleon and
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FIG. 1. (Color online) Contour plot in the (m,,, m,,) plane
of the following ratio of SNRs at t = 1.5 fm for A =1 to 4:
SNR(mg,, m,,)/SNR(m,, = m,, = 140 MeV). Each contour repre-
sents a factor of two with respect to the dashed curve, and darker
contours correspond to larger ratios.

pion masses at m,, = 400 MeV, an approximate 50% increase
in tyoise When my; is lowered from 400 to 140 MeV.

IV. COST OF CALCULATION

Based on Fig. 1, to optimize the SNR at a given valence
quark mass, one should lower the sea quark masses to their
physical values. This suggests that an ideal approach to the
physical point would be to use physical sea quark masses for
all measurements and extrapolate only in the valence quark
mass. This approach has the added benefits of requiring a
single set of gauge field configurations to be produced for all
measurements, as well as reduced systematic uncertainties.

To determine whether this approach will be beneficial
in practice, one must include the cost of gauge field and
propagator production. There are many factors involving the
quark masses that affect computation time, including the
cost of inverting the Dirac matrix, volume requirements,
and number of independent sources permitted per gauge
configuration.

The noise, including volume effects, can be approximated
by [1]

o | (A1/j1)? |
Ng-/\/src i—0 (mn LX)S(Aij) A
J:

x e_[szN+3(A_.f)"1:r]T} , (8)

where L, is the temporal extent, Z; is the overlap onto
the ith state, and Ny = No(AMy)*L3L, is the number of
independent measurements which can be made on a single
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FIG. 2. (Color online) Log plot of the following ratio of costs at
fixed SNR for calculations at different values of quark masses with
domain wall fermions: Cost(m, = m,, = 400 MeV)/Cost(m,, =
140 MeV, m,,, = 400 MeV) as a function of the number of nucleons
(circles). Also plotted is the ratio of costs for eight measurements
using two different approaches to the physical point: Cost(250
MeV < my, = my, < 400 MeV)/Cost(m,, = 140 MeV, 250 MeV
< my, < 400 MeV) (squares).

configuration. Based on the results in Ref. [4], we have chosen
the normalization N\ such that at m,, = m,, = 390 MeV we
have 200 sources per configuration. To determine the cost of
achieving a fixed SNR at a given quark mass, we found the
number of gauge configurations necessary, N, , then multiplied
by the cost of producing a single gauge configuration plus
the measurements made on that configuration. To explore the
effects of different cost functions, we chose both domain-wall
and staggered-fermion actions and domain-wall fermion prop-
agators. The cost functions used are given in the Appendix.

Figure 2 shows the ratios of the total costs to perform
calculations for A = 1 to 4 nucleons for a fixed 10% statistical
error at m,, = 400 MeV for two different values of sea quark
mass: mg, = 400 MeV versus mg; = 140 MeV (circles). We
also compared two separate approaches for extrapolation to
the physical point to determine whether our proposal will be
beneficial as one lowers the valence quark masses. First, we
calculated the cost of producing gauge field configurations and
propagators for equal sea and valence quark masses at eight
different values between 400 and 250 MeV, again at a fixed
10% statistical error. Then, we compared this with the cost of
producing a single set of gauge configurations at physical sea
quark mass, as well as propagators on these configurations at
the same eight values of valence quark masses between 400
and 250 MeV (squares).

For this plot we chose a = 0.093 fm for the lattice spacing
and domain wall fermion cost functions for both sea and
valence quarks. For A > 1, we found negligible sensitivity to
changing either the lattice spacing or the cost function. Some
sensitivity to the cost function was found for A = 1. All error
bars reflect the uncertainties in the HB x PT expressions for the
masses, except for A = 1, where the uncertainty due to the
choice of cost function is also added in quadrature.

065206-3



AMY N. NICHOLSON

V. DISCUSSION

For all but the single baryon case, it is clearly beneficial
to calculate nucleon properties at physical sea quark masses.
From the linear dependence of the log plots in Fig. 2 we
see that improvements of ~10%4~1D for a single calculation
and ~104~! for a full approach to the physical point can
be expected. It is still unclear whether our method would be
beneficial for single nucleon calculations unless the gauge field
configurations were already available.

Note that we are considering here only a fixed statistical
error. Lowering the sea quark masses will also help reduce the
systematic errors associated with unphysical quark masses.
This will be particularly beneficial for calculations in which
theoretical tools for extrapolation to the physical point are less
well developed. In addition, extrapolating to the physical point
in only one quark mass will greatly reduce the proliferation
of fit parameters usually associated with partial quenching.
However, there may still be extra nonanalytic terms intro-
duced, which in principle will require more measurements to
accurately determine their coefficients.

A further consideration not addressed in this work is the
possibility that lowering the sea quark mass will decrease
the gap between the ground state and the first excited state.
This could force one to make measurements at larger time
separations to extract the ground-state signal. This issue is
highly dependent on the system one wants to consider and
can be improved by optimizing the interpolating field used, as
well as the fitting technique. However, as observed in Ref. [1],
eliminating excited state effects from calculations involving
multiple baryons can be difficult even for large sea quark
masses. Because present-day techniques may not be sufficient
to extract many nuclear observables of interest, further study
in these areas, particularly as calculations continue to move
closer to the physical point, will be necessary.

VI. CONCLUSIONS

We have shown that to optimize the SNR for nucleons in
terms of valence and sea quark masses, one should choose
heavy valence quark masses and physical sea quark masses.
This choice not only improves the SNR as compared to
the standard choice of heavy valence and sea quarks, but
should also produce results that are closer to the physical case
of interest, thus reducing systematic errors. These improve-
ments become more significant as the number of baryons is
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increased, possibly making previously intractable calculations
realistic in the near future.
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APPENDIX: COST FUNCTIONS

Example cost functions for domain-wall fermion propa-
gators, domain-wall fermion gauge field configurations, and
staggered-fermion gauge field configurations were taken from
Refs. [9], [10], and [11], respectively. The parameters used in
this work are given in Table L.

Domain-wall propagators:

B
Cost <A + )LiL,LS. (A1)

Myy

Domain wall gauge configurations:
L\ /L MeV\ (fm)’ (MeV?
Cost x | — — | Ls —
fm fm Mg a mg
a\3 (mg 2
x|ci+c, (—) ( > . (A2)
fm Mg
Staggered gauge configurations:

20MeV\“" / L, \* /0.1 fm\“
Cost . (A3)
m‘v 3 fm a

Here, m; is the sea quark mass, and mg is the mass of a kaon
containing a light sea quark.

TABLE I. List of parameters
for the given cost functions.

A 7.98 x 1077
B 1.01 x 1076
C, 0.01021
C, 0.3226
Cm 1

Cr, 4

Cq 4
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