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A novel lattice approach is presented for studying systems comprising a large number of interact-

ing nonrelativistic fermions. The construction is ideallysuited for numerical study of fermions

near unitarity–a strongly coupled regime corresponding tothe two-particle s-wave scattering

phase shiftδ0 = π/2. Such systems may be achieved experimentally with trappedatoms, and

provide a starting point for an effective field theory description of nuclear physics. We discuss

the construction of our lattice theory, which allows us to study systems of up to (but by no means

limited to) 38 fermions with high accuracy and modest computational resources, and offer an

overview of several applications of the technique. A more detailed discussion of applications and

simulation results will be described in companion proceedings by A. N. N. and J-W. L.
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1. Introduction

Simulating theories at finite fermion density has been a long-standing challenge in lattice field
theory. One of the main issues faced in Monte Carlo studies ofsuch theories is the fermion sign
problem: when a chemical potential is introduced, the action often becomes complex. A conse-
quence of this is that the exponential of the action cannot beinterpreted as a probability measure as
required by standard Monte Carlo algorithms. In the case of lattice QCD at finite baryon number
density, the sign problem has severely limited the explorable regions of the QCD phase diagram in
the temperature-chemical potential (T -µB) plane to the regime whereµB/T . 1.

Alternatively, at zero temperature, finite densities can beachieved in a canonical ensemble
setting by considering multi-fermion correlation functions in a finite box. In this case, however, a
closely related problem emerges: correlators involving fermions typically have a signal/noise which
decays exponentially with the time separation of the sourceand sink. This makes identification
of effective mass plateaus difficult–if not impossible–forlarge numbers of fermions. In QCD,
standard Lepage arguments [1] suggest that the signal/noise for multi-baryon correlation functions
decay with a time constantτ−1

B ∼ B(mp −3/2mπ), whereB is the baryon number,mp the proton
mass andmπ the pion mass.

In an effort to better understand the sign and signal/noise problems as well as their interrela-
tionship, we choose to study multi-fermion systems in a muchsimpler setting than QCD. One of
the simplest nontrivial and interesting theories describes a dilute two-component system of nonrel-
ativistic fermions in the unitary regime. This regime corresponds to a two particle s-wave scattering
phase shift nearδ0 = π/2, and when this limit is achieved, the boundσl=0 ≤ 4π/p2 on the s-wave
scattering cross-section becomes saturated. Although these systems are dilute, they are strongly
interacting and therefore require a nonperturbative treatment for reliable study. Unitary fermions
are interesting not only because they can be studied experimentally using trapped ultra-cold atoms,
but also because they serve as a starting point for a lattice effective field theory (EFT) descrip-
tion of nuclear physics. The latter is due to the fact that the1S0 and 3S1 scattering lengths for
nucleon-nucleon scattering are unnaturally large compared to the range of interaction.

In this work, we focus on a new canonical ensemble approach for simulating large numbers of
nonrelativistic fermions in the unitary regime and at zero temperature. Using this new approach,
we consider two systems in particular: unitary fermions in afinite box and unitary fermions in
a harmonic trap. From numerical simulations of these systems, one may extract experimentally
measurable non-perturbative quantities such as the Bertsch parameter (i.e., the ratio of the energy
to that of the free gas energy in the thermodynamic limit) andpairing gap. Furthermore, moving
away from unitarity one may test a set of universal relationsinvolving a quantity known as the
“integrated contact density”, first discovered by Tan [2, 3,4].

These proceedings focus primarily on the details of our lattice construction, as well as the
simulation and parameter tuning methods used in our studiesof unitary fermions. Many past
numerical simulations at zero temperature have been variational in nature, offering only an upper
bound on the Bertsch parameter and possessing unknown systematic errors on other quantities
[5, 6, 7]. Our approach is nonvariational and is therefore inprinciple free from such systematic
errors. However, as is common among all simulations of this type, obtaining reliable results for
the spectrum and matrix elements requires a good choice of interpolating operators which possess
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large overlap with the states of interest. Details of how we construct optimal sources and sinks as
well as consideration of systematic errors due to finite volume and lattice spacing effects are the
focus of our companion proceedings [8, 9]. In those proceedings we also present results of our
initial exploratory studies of up to 20 trapped and 38 untrapped fermions, and present preliminary
values for the Bertch parameter and pairing gap.

2. Lattice construction

The starting point for our construction is a highly improvedvariant of the nonrelativistic lattice
action first proposed in [10], given by:

S = ∑
n

[

ψ̄n(∂τ ψ)n −
1

2M
ψ̄n(∇2ψ)n +φnψ̄n(

√
Cψ)n−e0

]

. (2.1)

This action describes two species of interacting fermionsψ = (ψ↑,ψ↓) defined on aT ×L3 lattice
with open boundary conditions in the time direction and periodic boundary conditions in the space
directions. The derivative∂τ represents a forward difference operator in time and∇2 is a non-local
lattice gradient operator which we define so-as to give a “perfect” continuum-like single particle
dispersion relation for free fermions. A four-fermion contact interaction is achieved via a Gaussian
or Z2 auxiliary fieldφ associated with the time-like links of the lattice. The operatorC acts only in
space, and in principle may include derivative interactions to an arbitrary even order in momenta.

We may express Eq. 2.1 succinctly asS = ψ̄Kψ , where the time components of the fermion
matrix K are given in block-matrix form by:

K =













D X(0) 0 0 . . . 0
0 D X(1) 0 . . . 0
0 0 D X(2) . . . 0
0 0 0 D . . . 0
...

...
...

...
. . . X(T −1)

0 0 0 0 . . . D













, (2.2)

with

D = 1− ∇2

2M
, X(τ) = 1−φ(τ)

√
C . (2.3)

Note that theL3×L3 matricesD, X andC act only in space and thatφ(τ) is a diagonal matrix with
independent random elements. In momentum space the specificexpressions we use forD andC
are:

〈p|D|p′〉=
{

ep2/(2M)δp,p′ |p|< Λ
∞ |p| ≥ Λ

, 〈p|C|p′〉=C(p)δp,p′ (2.4)

whereΛ = π is a hard momentum cutoff imposed on the fermions andC(p) is some analytic
function of p2 which may be determined order by order in momenta from scattering data (see
Sec. 5 for details).
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Fermion propagators from time slice zero to time slicesτ may be expressed as a sequence of
applications ofD andX operators:

K−1(τ ;0) = D−1X(τ −1)D−1 . . .D−1X(0)D−1 , (2.5)

which provides a simple recursive approach for computation. Inversion of the non-localD operator
and application ofX(τ) may be performed efficiently with fast Fourier transforms (FFTs); it is this
feature that allows us to use a perfect dispersion relation and momentum dependent interactions.
In the free-field limit, one may explicitly verify that our definition for D provided in Eq. 2.4 yields
a perfect dispersion relation for fermions. In momentum space the fermion propagator reduces to:

〈p|K−1(τ ;0)|p′〉= e−E(p)τδp,p′ , E(p) =
p2

2M
, (2.6)

for momenta less than the cut-offΛ.

3. Simulation method and cost

SinceK is an upper tri-diagonal block matrix, the fermion determinant obtained by “integrat-
ing out” the fermions is given by detK = detDT . We see that the determinant is independent of the
auxiliary field, and therefore the full numerical simulation of Eq. 2.1 is equivalent to a quenched
simulation. By construction, our simulations are therefore free of the sign problem. Furthermore,
the decomposition of fermion propagators as a product of random matrices in Eq. 2.5 provides an
unusual interpretation for our approach: in essence we perform Euclidean time-evolution of sin-
gle particle wave functions over random background noise (either Z2 or Gaussian). Multi-particle
sources and sinks may be constructed from a direct product ofsingle particle wavefunctions, and
in the case of sinks, more elaborate constructions may be considered as well which incorporate
pairing correlations [8, 9].

Numerical simulation of Eq. 2.1 consists of four steps: 1) lattice generation, 2) propagator gen-
eration, 3) projection of time-evolved states onto sinks and 4) computation of Slater determinants
(i.e., anti-symmetrization of initial and final states). The relative computational cost of each of
these steps on anL = 32 lattice is shown in Fig. 1 as a function of the number of identical fermions.
To give meaning to the vertical axis, note that theO(N0) curve indicates the numerical cost of
generatingO(L3) random numbers (i.e., lattice generation). The steps 1)-3)scale likeT × L3 or
T × L3 logL3, whereas step 4) is independent of the spatial volume. Although step 4) scales like
O(N4),1 the computational cost of this step is negligible even for asmany asN ∼ 50−100 identical
fermions on the typical volumes we consider, which range from L ∼ 12−64.

4. Transfer matrices

We may translate our lattice action Eq. 2.1 into Hamiltonianlanguage with a suitable reinter-
pretation of the expression for multi-fermion correlationfunctions. Such correlation functions are

1The cost of computing determinants scales likeN3, however, we compute determinants of allN sub-matrices as
well, giving rise to an additional power ofN.
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Figure 1: Cost of numerical simulations as a func-
tion of the number of fermions N.
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Figure 2: A plot of the three-dimensionalζ function
S(η) given by Eq. 5.2

obtained from an ensemble average of direct products of propagators. Since the propagator defined
in Eq. 2.5 is itself a product of uncorrelated random matrices (the auxiliary field is action-less), the
multi-fermion correlation function will factorize into a matrix product of ensemble averages. If we
define:

T = D
1/2(1−V )D1/2 , (4.1)

where

D = D−1/2⊗ . . .⊗D−1/2
︸ ︷︷ ︸

N

, (1−V ) = 〈X(τ)⊗ . . .⊗X(τ)〉
︸ ︷︷ ︸

N

(4.2)

areV N dimensional matrices, then the N-fermion correlator may bewritten as:

〈K−1(τ ;0)⊗ . . .⊗K−1(τ ,0)〉
︸ ︷︷ ︸

N

= D
−1/2

T
τ
D

−1/2 , (4.3)

and we may identifyT as the transfer matrix andH = − logT as the Hamiltonian of the N-
fermion system.

In the case of two fermions (one up and one down), the transfermatrix evaluated in momentum
space is given by:2

〈p′q′|T |pq〉= δp,p′δq,q′ +
√

C(p′)
√

C(q′)δp+q,p′+q′

e−(p2+p′2+q2+q′2)/(4M)
, C(p) =

4π
M ∑

n
C2nO2n(p) , (4.4)

where we have expandedC(p) in the operator basis:

O2n(p) = Mn
(

1− e−p2/M
)n

≈ p2n , for |p|<< 1 . (4.5)

This transfer matrix can be diagonalized exactly, with the zero center of momentum energy eigen-
values (e−E) given by solutions to the integral equation:

∑
n

C2nI2n(p) = 1 , I2n(p) =
1
V ∑

q∈BZ

O2n(q)
e(−p2+q2)/M −1

, (4.6)

2We have recently implemented a new Hermitian, Galilean invariant and analytic version of this interaction which
corresponds to replacing:

√

C(p′)
√

C(q′) → C(p− p′); results using this improved interaction will be presentedin
detail in a future publication.
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wherep =
√

ME andq are momenta within the first Brillouin zone (BZ).

5. Lattice parameter tuning and the continuum limit

In the continuum, Luscher’s formula allows us to relate the two particle scattering phase shifts
at infinite volume to the discrete energies of the same systemat finite volume [11, 12]. Having
solved the two body problem exactly on the lattice at finite volume, we may now relate the lattice
couplings of our theory to continuum scattering data. Starting from the effective range expansion

pcotδ0 =−1
a
+

1
2

r0p2+ . . . (5.1)

one can relate the scattering length (a), effective range (r0) and higher order shape parameters to
the s-wave scattering phase shift. Given an expression forpcotδ0 one may then determine the
continuum energy eigenvalues in a finite box from the solutions to [13]:

pcotδ0 =
1

πL
S(η) , S(η) = lim

Λ→∞

[

∑
|n|<Λ

1
n2−η

−4πΛ

]

, (5.2)

with η = (pL/2π)2. Finally one may tune the lattice couplingsC2n (for n = 1, . . . ,k) defined
in Eq. 4.5 by matching the lattice eigenvalues predicted by Eq. 4.6 to the lowestk continuum
energies predicted by Luscher’s formula. In this way, we mayabsorb all temporal and spatial
lattice discretization errors into our definition of the couplings.

The continuum limit for our lattice theory corresponds to the limit of infinite scattering length
as measured in units of the lattice spacing. In order to maintain a finite physical scattering length,
one must take this limit while keeping other physical quantities measured in units of the scattering
length held fixed. In the case of unitary fermions, however, we need not concern ourselves with
such complications and simply takepcotδ0 = 0. We therefore tune the couplingsC2n so that the
lattice eigenvalues match the lowestk roots ofS(η) shown in Fig. 2.

In Fig. 3 we plot the percent deviation between the roots ofS(η) and the lattice eigenvalues
predicted by Eq. 4.6 for up to seven tunedC-values for unitary fermions. For eigenvalues less than
the k-th, the deviation is exactly zero by construction. For eigenvalues beyond thek-th, we find
that the percent deviation remains quite small even for eigenvalues as high as 27, corresponding to
three filled shells. Given a tuned set ofC-values, we may also take the eigenvalues predicted by
Eq. 4.6 and insert them back into Luscher’s formula, giving alattice prediction forpcotδ0. Fig. 4
shows a plot of the predictedpcotδ0 for up to seven tunedC-values. We findpcotδ0 ≪ 1 for a
wide range of momenta, extending well beyond that of thek-th eigenvalue we tuned to.

6. Conclusion

We have developed a new approach for simulating a large number of nonrelativistic fermions
in the unitary regime. In these proceedings we have described some of the details of our lattice
construction, an efficient numerical implementation of thetheory and a method for tuning the
lattice couplings to scattering data. Application of theseideas to unitary fermions in a finite box
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[8] and in a harmonic trap3 [9] are discussed in greater detail in our companion proceedings. There
the issue of finding optimal sinks/sources as well as finite volume and cutoff effects are explored,
and preliminary results for the Bertsch parameter and pairing gap reported.
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