
PHYSICAL REVIEW C 87, 055807 (2013)

Low lying modes of triplet-condensed neutron matter and their effective theory
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The condensation of neutrons into a 3P2 superfluid phase occurs at densities relevant for the interior of neutron
stars. The triplet pairing breaks rotational symmetry spontaneously and leads to the existence of gapless modes
(angulons) that are relevant for many transport coefficients and to the star’s cooling properties. We derive the
leading terms of the low-energy effective field theory, including the leading coupling to electroweak currents,
valid for a variety of possible 3P2 phases.
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I. INTRODUCTION

Although understanding the phases of QCD at various
densities and temperatures is at the forefront of nuclear physics
research, this goal remains an elusive one because of the
nonperturbative nature of QCD at all but the highest densities
and temperatures. Of particular interest for the study of the
cores of neutron stars is that of nuclear matter above nuclear
matter density, ρnm, at temperatures that are low relative
to the Fermi energy. For low densities interacting nucleons
may be used to describe the low-temperature properties of
a system, whereas at asymptotically high densities QCD
becomes deconfined and a number of possible ground states
have been proposed. At moderate densities (∼ρnm) it is
expected that neutrons condense to form a superfluid state.
The spontaneous breaking of any continuous symmetries by
the condensate leads to massless Goldstone bosons, which then
dominate the low-energy properties of the system.

At approximately 1.5 times ρnm, s-wave interactions,
which dominate at lower densities, become repulsive and 3P2

interactions dominate. This suggests that the order parameter
for the superfluid phase in this regime is of the form

〈nT σ2σi

←→∇ j n〉 = �ije
iα, (1)

where n are neutron field operators, the Pauli matrices act in
spin space, and α refers to the U(1) phase associated with spon-
taneously broken baryon number. Because the neutrons couple
to form a spin-2 object, �ij is a symmetric traceless tensor. The
condensate spontaneously breaks rotational invariance; thus,
there are new massless modes associated with this breaking
in addition to the usual superfluid phonon1 (for a review
concerning Goldstone bosons in systems lacking Lorentz
invariance, see Ref. [1]). These massless modes, referred to as
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1In some circumstances, like 3He, spin and orbital rotations are

separate approximate symmetries and their breaking would lead to
additional approximately gapless modes. In this article we do not
assume that spin and orbital rotations are separate symmetries, and
only the exactly gapless modes generated by the breaking of rotation
symmetry (corresponding to the diagonal group of combined spin and
orbital rotations) are considered. See Sec. IV D for more discussion
of this point.

angulons [2], were shown to provide a mechanism for neutrino
emission in neutron stars. Recently, interest in the 3P2 phase of
neutron matter and its transport properties was rekindled by the
observation of rapid cooling of the neutron star in Cassiopeia A
[3], the youngest known neutron star in the Milky Way,
interpreted by two groups as evidence for triplet pairing [4–8].
A systematic understanding of the properties of 3P2 condensed
matter is necessary for sharpening this conclusion.

There are also further theoretical motivations for the
calculations presented in this article. One is that the very
existence of angulons has recently come into question [9].
Also, because of the spontaneous breaking of rotational
symmetry, a large number of terms in the action are allowed
by the symmetries and it does not seem possible to fix their
coefficients by the usual matching procedure unless the ground
state has a condensate of a special form like phase B, below. In
fact, Ref. [2] assumes the ground state to be in phase B simply
to avoid the problems that the other phases raise.

While the form of the order parameter is dictated by
Eq. (1), different symmetric traceless tensors break different
symmetries and there are several possible 3P2 phases. We may
choose some orthonormal frame to write down three simple
symmetry-breaking patterns:

�0 = �̄

⎛
⎝−1/2 0 0

0 −1/2 0
0 0 1

⎞
⎠ phase A, (2a)

�0 = �̄

⎛
⎝ e2iπ/3 0 0

0 e−2iπ/3 0
0 0 1

⎞
⎠ phase B, (2b)

�0 = �̄

⎛
⎝ 1 0 0

0 −1 0
0 0 0

⎞
⎠ phase C. (2c)

In phase A, rotational invariance is maintained in one plane,
leading to two angulons associated with the breaking of
rotational invariance in the remaining two planes. Phase B
fully breaks rotational invariance, leading to three angulons,
and was considered in Ref. [2] because of the simplicity of the
effective theory for a unitary order parameter. Phase C leads
to only one angulon because of the lack of a condensate in
the third direction but also contains gapless neutron modes. It
is currently unclear which phase corresponds to the ground
state for the relevant regions of neutron stars, and more

055807-10556-2813/2013/87(5)/055807(10) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.87.055807


PAULO F. BEDAQUE AND AMY N. NICHOLSON PHYSICAL REVIEW C 87, 055807 (2013)

complicated phases than the three simple ones presented
here are certainly possible. Near the critical temperature,
Ginzburg-Landau arguments can be applied and the form
of the condensate is known to be a real symmetric matrix
[10]. Estimating the coefficients of the Ginzburg-Landau free
energy by the BCS approximation (weak coupling), one finds
that phase A is favored (phase C is a close second). Strong
coupling corrections to BCS reinforce this conclusion [11].
At lower temperatures the problem is more complicated, even
in the BCS approximation. However, it was pointed out in
Refs. [12,13] that, when mixing between 3P2 and 3F2 channels
can be neglected, the relative ordering between the different
3P2 phases is independent of temperature, density, and even
neutron-neutron interactions. The 3F2-3P2 mixing alters this
result somewhat by lifting some degeneracies [14]. In view
of this uncertainty on the precise form of the condensate
we try to be as general as possible and derive the effective
theory for a general nodeless phase (one where �0 has no zero
eigenvalues). This generality can be maintained only up to
some point. Final explicit expressions for the numerical values
of the coefficients are given for phase A although they can be
readily obtained for any other phase using the same methods.

Because it is not clear whether an effective theory may
be derived for a general phase using the standard matching
procedure, we choose instead the less elegant way of deriving
the effective theory directly from a microscopic model by per-
forming a derivative expansion to eliminate high momentum
modes. In this way, both the form of the effective Lagrangian
and the couplings may be determined simultaneously. The
result may seem to depend strongly on the choice of the
microscopic model but, in fact, most of the dependence is
embedded in the value of the neutron gap (�̄ above). By
writing the effective theory coefficients in terms of the value
of the neutron gap most of the dependence on the microscopic
model disappears.

II. MICROSCOPIC MODEL

To derive an effective theory describing the low-energy
modes of neutron matter in a 3P2 condensed phase directly from
QCD is not currently possible because of its nonperturbative
nature. However, as we are only interested in low-energy
properties near the Fermi surface it is sufficient to begin with
a model that encapsulates the relevant properties. We choose a
simple model which reproduces the leading order low-energy
observables, the Fermi speed and the gap, consisting of
two species (corresponding to spin states) of nonrelativistic
neutrons with an attractive, short range potential and a common
chemical potential,

L = ψ†[i∂0 − ε(−i∇)]ψ − g2

4
(ψ†σiσ2

←→∇ jψ
∗)

×χkl
ij (ψT σ2σk

←→∇ lψ) , (3)

where χkl
ij = 1

2 (δikδjl + δilδjk − 2
3δij δkl) is the projector onto

the 3P2 channel satisfying χkl
ij χ

ij
mn = χkl

mn.
There are two ways of interpreting the calculation we are

about to describe. One is to take ε(p) = p2/2M − μ (or its
relativistic counterpart) and adjust the coupling g2 so the

vacuum neutron-neutron 3P2 phase shift is reproduced. This
would make Eq. (3) a reasonable schematic model of neutron
matter leading to pairing in the 3P2 channel. The model
would correctly predict the form of the effective theory for
the angulons, as well as give an estimate of the value of the
low-energy coefficients appearing in it.

We argue, however, that our calculation can be placed in
a more rigorous framework, showing that it is likely capable
of more quantitative predictions. Fermi liquid theory [15], a
theory for the low lying excitations around the Fermi surface,
can be cast as the effective theory obtained by integrating
out neutron modes far from the Fermi surface [16–18].
The explicit degrees of freedom of the Fermi liquid theory
of neutron matter are quasiparticles with neutron quantum
numbers whose kinetic energy is ε(p) = vF (p − kF ), where
vF is the Fermi velocity and kF is the Fermi momentum.

The interactions between quasiparticles are described by
interaction terms (Landau’s fL, gL parameters), including
multibody forces whose contributions to observables are
suppressed compared to those of two-body forces. The
essential point is that even in systems that are strongly
interacting, like neutron matter, and where perturbation theory
has limited validity, it is possible to have a Fermi liquid
theory description that is weakly coupled. The effect of the
strong interactions is to renormalize the neutron mass and
Fermi velocity, as well as change the effective interaction
at the Fermi surface. If the renormalized interactions are
small, the Fermi liquid description of the system is weakly
coupled in the sense that the neutron quasiparticles around the
Fermi surface interact weakly, despite the fact that neutrons
in the bulk of the Fermi sphere are strongly interacting. In
such cases the nonperturbative effects are encapsulated in the
values of the Fermi velocities, effective masses, and Landau
parameters. These values may then be used perturbatively in
the computation of many observables.

There is evidence that the Fermi liquid effective theory of
neutron matter is indeed weakly coupled [19]. For instance,
the fact that model calculations give pairing gaps much
smaller than the Fermi energy suggests that all attractive
channels are weakly coupled. This is not surprising given
that we observe that even the bare, unrenormalized nuclear
phase shifts at momenta close to the Fermi surface are very
modest. In any case, it is an assumption of the present work
that the interaction between quasiparticles is weak. We only
keep the interaction in Eq. (3) because, as it is well known,
even small attractive interactions lead to pairing and should
receive special treatment (in renormalization group language
the pairing interaction is marginally relevant).

The value of the low-energy constants we derive are
combinations of the density of states at the Fermi surface
and geometrical factors coming from the geometry of the
manifold of degenerate ground states; the quasiparticle in-
teractions appear only through the values of vF and kF .
Other interactions not included in Eq. (3) (assuming they are
indeed perturbative) only perturbatively change the value of
the low-energy constants, as do higher loop effects. It would be
very important to include the effect of these other interactions
in a consistent manner, verify their perturbative nature, and
quantify its effects. Owing to the difficulty involved we leave
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this to another publication. Our calculation thus can be seen
as one link in a chain of effective field theories connecting
the phenomenology of neutron stars to “first principles”:
QCD → effective theory for neutron interactions → neutron
matter Fermi liquid theory → angulon effective theory→
phenomenology.

Because the angulons, as Goldstone bosons, correspond
to space-time-dependent rotations of the order parameter, we
start by rewriting the theory defined by Eq. (3) in terms of the
condensate. For that we introduce an auxiliary field, �ij , in
the neutron pair (BCS) channel

S[�,ψ] =
∫

d4x

[
ψ† [i∂0 − ε(−i∇)] ψ + 1

4g2
�

†
ij�ji

+ �
†
ij

4
(ψT σ2σi

←→∇ jψ) − �ji

4
(ψ†σiσ2

←→∇ jψ
∗)

]

=
∫

d4x

[
1

4g2
�

†
ij�ji + 1

2
( ψ† ψ )

×
(

i∂0 − ε(−i∇) −�jiσiσ2∇j

�
†
ij σ2σi∇j i∂0 + ε(−i∇)

)(
ψ
ψ∗

)]
,

where we dropped the projectors with the understanding that
the functional integration is restricted to only the �ij that are
traceless and symmetric. We may now perform the Gaussian
integration over the fermions resulting in the following action:

S[�] =
∫

d4x

[
1

4g2
�

†
ij�ji

− iTr ln

(
i∂0 − ε(−i∇) −�jiσiσ2∇j

�
†
ij σ2σi∇j i∂0 + ε(−i∇)

)]
. (4)

Up to now our calculation is exact. However, for a generic
space-time-dependent �ij this action is complicated and
highly nonlocal. As we are only interested in deriving a
low-energy effective theory, we can obtain a useful expression
if we perform a derivative expansion of S[�]. Keeping only
the leading order terms in such an expansion gives a local
action in which high momentum modes have been removed.
We may then parametrize the auxiliary field in terms of our
effective degrees of freedom, the angulons, to find the angulon
dispersion relations and interactions for a given phase.

III. EFFECTIVE THEORY

Following Refs. [20–23] we perform a derivative expansion
on the logarithm in Eq. (4) by first separating the auxiliary field
into its constant ground state plus spatial variations, �(x) →
�0 + �(x). As outlined in detail in Appendix A, this leads to
the following expansion for the action:

S[�] =
∫

d4x

[
1

4g2
�

†
ij�ji − iTr ln D−1

0 (p) − i

∫
d4p

(2π )4

×
∫ 1

0
dz tr

∞∑
n=0

(−z)n
[
D0(p)

∑
m=1

∂m
μ

m!
pj [δD−1(x)]j

× (
i∂pμ

)m

]n

D0(p)pk[δD−1(x)]k

]
, (5)

where

D−1
0 (p) =

(
p0 − ε(p) i�0

jiσiσ2pj

−i�
0†
ij σ2σipj p0 + ε(p)

)
,

(6)

[δD−1(x)]j =
(

0 i�ji(x)σiσ2

−i�†(x)ij σ2σi 0

)
,

and tr corresponds to a trace over Gorkov indices. The first
two terms are the one-loop effective potential evaluated at
� = �0. The remaining terms give the space-time variation
of the field �, which describes not only the Goldstone bosons
but also other, gapped degrees of freedom. Later, we identify
� = R(α)�0RT (α), where R is an SO(3) rotation matrix; the
Goldstone boson fields α are the ones parametrizing the space-
time-dependent rotation R(α).

The leading order term in the derivative expansion contains
two derivatives. This is given by the m = 2, n = 1 term in
Eq. (5) and leads to the following action:

S2[�] = − i

4

∫
d4x

∫
d4p

(2π )4

× tr
[
D0(p)∂μ∂νδD

−1(x)∂pμ
∂pν

D0(p)δD−1(x)
]
, (7)

where we dropped the constant terms associated with the
vacuum energy. These terms can be minimized for constant
� to determine which phase corresponds to the ground state.
However, as discussed in the introduction, there already exists
extensive literature on this issue, including the effects of the
nonzero coupling to interactions in the 3F2 channel [12–14].

From Eq. (7) we disentangle the dependence on the field �
by performing the matrix multiplication. Upon integrating by
parts, we find

S2[�] =
∫

d4x[Aμ,i,j,ν,k,l∂μ�
†
ij ∂ν�

†
kl

+Bμ,i,ν,j [∂μ� · ∂ν�
†]ij

+A†
μ,i,j,ν,k,l∂μ�ji∂ν�lk], (8)

where we have used the shorthand Dab ≡ [D0(p)]ab

(a, b are Gorkov indices), and the coefficients are given by

Aμ,i,j,ν,k,l ≡ − i

4

∫
d4p

(2π )4
tr

[
∂pμ

(D12pj )σ2σi∂pν
(D12pl)σ2σk

]
,

Bμ,i,ν,j ≡ − i

4

∫
d4p

(2π )4
tr

[−2∂pμ
(D11pi)∂pν

(D22pj )
]
.

(9)

The derivatives of the propagator are

∂pμ
D11(p) = 1(

p2
0 − E2

p

)2

[(−p2
0 − 2p0ε(p) − E2

p

)
δμ,0

+
(

vF

pk

p
((p0 + ε(p))2 − p · �0†�0 · p)

+ 2(p0 + ε(p))p · �0†�0
k

)
δμ,k

]
,
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∂pμ
D12(p) = 1(

p2
0 − E2

p

)2

[ (
2ip0�

0
jiσiσ2pj

)
δμ,0

− i�0
jiσiσ2

[
2ε(p)vF

pkpj

p
+ (

p2
0 − E2

p

)
δjk

+ 2(p · �0†�0)k

]
δμ,k

]
,

∂pμ
D22(p) = 1(

p2
0 − E2

p

)2

[ (−p2
0 + 2p0ε(p) − E2

p

)
δμ,0

+
(

vF

pk

p
{−[p0 − ε(p)]2 + p · �0†�0 · p}

+ 2[p0 − ε(p)]p · �0†�0
k

)
δμ,k

]
, (10)

with the definition Ep ≡
√

ε(p)2 + p · �0†�0 · p. We find
that the coefficients for the temporal derivative terms are given
by the integrals

A0,i,j,0,k,l = �0
ca�

0
db(δaiδbk − δabδik + δakδib)aajbl,

aajbl ≡ 2i

∫
d4p

(2π )4

p2
0papjpbpl(
p2

0 − E2
p

)4

= − 1

16

∫
d3p

(2π )3

papjpbpl

E5
p

≈ − MkF

24π2�̄2
I (2)

ajbl,

B0,i,0,j = i

∫
d4p

(2π )4

pipj(
p2

0 − E2
p

)4

((
p2

0 + E2
p

)2 − 4p2
0ε(p)2

)

= 1

8

∫
d3p

(2π )3

pipj [2ε(p)2 + p · �0�0† · p]

[ε(p)2 + p · �0�0† · p]5

≈ MkF

6π2�̄2
I (1)

ij , (11)

where we have used the fact that, for small �̄/vF , the
integral is dominated by the singularity at p = kF to make
the approximations, p ≈ kF , ε(p) ≈ vf (p − kF ). In addition
to the derivative expansion this is the only other approximation
made up to now. Although the value of the neutron gap is a
famously difficult quantity to compute, there is no question that
the value of the neutron gap is below ≈2 MeV and is much
smaller than the Fermi energy [12,24–26]. We also defined the
remaining angular integrals as

I (α)
ij ···(�̂

0†�̂0) ≡
∫

dp̂

4π

p̂ip̂j · · ·
(p̂ · �̂0†�̂0 · p̂)α

, (12)

where �̂0 ≡ �0/�̄ and p̂i = pi/p. These integrals are func-
tions of �̂†�̂ and depend on which phase is considered (to be
more precise, they depend on the squares of the eigenvalues of
�̂), so we postpone their evaluation until the next section.

The spatial derivative terms in the Lagrangian are given
by

Aa,i,j,b,k,l = �0
mc�

0
nd (δciδdk − δcdδik + δckδid )aabjmnl,

aabjmnl ≡ i

2

∫
d4p

(2π )4

1(
p2

0 − E2
p

)4

[(
pj

{
2ε(p)vF

papm

p
+ (

p2
0 − E2

p

)
δma + 2pm[�0†�0 · p]a

}
− δaj

(
p2

0 − E2
p

)
pm

)

×
(

pl

{
2ε(p)vF

pbpn

p
+ (

p2
0 − E2

p

)
δbn + 2pn[�0†�0 · p]b

}
− δlb

(
p2

0 − E2
p

)
pn

)]

≈ MkF v2
F

24π2�̄2
I (2)

abjmnl

[
1 + O

(
�̄2/v2

F

)]
, (13)

Ba,i,b,j = i

∫
d4p

(2π )4

1(
p2

0 − E2
p

)4

[
vF

papi

p
{[p0 + ε(p)]2 − 4p · �†� · p} + 2pj [p0 + ε(p)][p · �†�]a + δai

[
p0 + ε(p)]

× (
p2

0 − E2
p

)][
vF

pbpj

p
{−[p0 − ε(p)]2 − 4p · �†� · p} + 2pj [p0 − ε(p)][p · �†�]b + δbj (p0 − ε(p))

(
p2

0 − E2
p

)]

≈ −Mkf v2
F

6π2�̄2
I (1)

abij

[
1 + O

(
�̄2/v2

F

)] + MkF

π2
ln

(


kf �̄

)
δaiδbj , (14)

where  is an ultraviolet cutoff of the order of the breakdown scale of the effective theory, namely,  ≈ kf �̄. This term is
suppressed by ∼�̄2/v2

f compared to the remaining ones and we subsequently drop it.
By performing the index contractions, we can find the effective action up to two derivative terms in an expansion around the

point x = 0. However, the action is space-time translation invariant and its form at x = 0 determines it at any other space-time
point. As explained in Refs. [22,23,27], the effective action is then given by dropping all undifferentiated δD(x) and substituting
� for �0. The final result is that the general form for the effective theory to second order in a derivative expansion [and up to
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terms of order O(�̄2/v2
F ) and higher] is

S2[�] = MkF

12π2�̄2

∫
d4x

[
I (1)

ij (�̂†�̂)[∂0� · ∂0�
†]ij − v2

FI (1)
ijkl(�̂

†�̂)[∂k� · ∂l�
†]ij + 1

2
I (2)

ijkl(�̂
†�̂)(−2[�̂ · ∂0�

†]ij [�̂ · ∂0�
†]kl

+ [∂0�
† · ∂0�

∗]ij [�̂ · �̂T ]kl) + v2
F

2
I (2)

ijklmn(�̂†�̂)(2[�̂ · ∂k�
†]ij [�̂ · ∂l�

†]mn − [∂k�
† · ∂l�

∗]ij [�̂ · �̂T ]mn) + H.c.

]
,

(15)

where �̂ ≡ �/�̄.

IV. RESULTS FOR PHASE A

We now specialize to the phase in which the eigenvalues
of �0 are {−1/2,−1/2, 1}; however, the method below can
be easily carried through for any other nodeless phase. In
the absence of external currents, we find that at tree level
the theory is governed by three quantities, vF , M , and the
“decay constant” f , which are chosen later in order to simplify
the expressions. From these three low-energy constants many
physical observables may be computed, such as the specific
heat (derived in Sec. IV A) or transport coefficients.

We first observe that, in the case where �0 has two identical
eigenvalues, the integrals I (α)

ij ···(�̂
†�̂) can be written as

I (α)
ij (�̂†�̂) = A(α)δij + B(α)(�̂†�̂)ij ,

I (α)
ijkl(�̂

†�̂) = C(α)δij δkl + D(α)δij (�̂†�̂)kl

+E(α)(�̂†�̂)ij (�†�)kl + perm.,
(16)

I (α)
ijklmn(�̂†�̂) = F (α)δij δklδmn + G(α)δij δkl(�̂

†�̂)mn

+H (α)δij (�̂†�̂)kl(�̂
†�̂)mn + perm.

+ J (α)(�̂†�̂)ij (�̂†�̂)kl(�̂
†�̂)mn + perm.,

where “ + perm.” indicates that all permutations of the indices
should be included (the last term, for instance, has its 6 indices

combined in all 720 possible ways). Numerical values for the
coefficients A(α), B(α), . . . are given in Appendix B.

In phase A, rotation invariance is only partially broken,
with invariance under rotation in the (x, y) plane preserved.
Thus, we have only two angulons, α1,2, in addition to the usual
phonon. We may parametrize the field as

� = e−i(α1(x)J1+α2(x)J2)/f �0ei(α1(x)J1+α2(x)J2)/f , (17)

where J1,2 correspond to the generators of infinitesimal
rotations about the x and y axes, respectively. Here we only
consider the effective theory for the angulons, corresponding
to spontaneously broken SO(3) rotation symmetry. The theory
for the phonon associated with breaking of the U(1) baryon
number decouples from that of the angulons and may be treated
separately. The effective theory for the phonon is much simpler
and its parameters can be determined by matching as done, in
the context of neutron triplet pairing, in Ref. [2]. In fact, a
much more general result can be obtained by general field
theoretical arguments [28]. We ignore the superfluid phonon
from now on.

A. Kinetic terms and specific heat

A derivative expansion of our Lagrangian in terms of the
angulon fields to second order gives

S2[�] = 1

f 2

MkF

6π2

∫
d4x

[
9

16
(8A(1) + 5B(1) + 80C(2) + 62D(2) + 53E(2))[(∂0α1)2 + (∂0α2)2]

+v2
F

[
− 9

64
[8(32C(1) + 14D(1) + 5E(1) + 288F (2) + 162G(2) + 90H (2)) + 333J (2)][(∂yα2)2 + (∂xα1)2]

− 9

32
[8(16C(1) + 4D(1) + E(1) + 96F (2) + 30G(2) + 9H (2)) + 21J (2)][∂xα1∂yα2 + ∂yα1∂xα2]

−9

8
(64C(1) + 58D(1) + 52E(1) + 912F (2) + 852G(2) + 801H (2) + 759J (2))[(∂zα1)2 + (∂zα2)2]

− 9

64
[8(64C(1) + 22D(1) + 7E(1) + 480F (2) + 222G(2) + 108H (2)) + 375J (2)][(∂yα1)2 + (∂xα2)2]

]]

=
∫

d4x

[(
3 + π√

3

)
[(∂0α1)2 + (∂0α2)2] + v2

F

[(
π

9
√

3
− 3

2

)
[(∂zα1)2 + (∂zα2)2]

− 4π

3
√

3
[(∂yα1)2 + (∂xα2)2] +

(
2π

9
√

3
− 3

2

)
[(∂yα2)2 + (∂xα1)2]

+
(

3

2
− 14π

9
√

3

)
[∂xα1∂yα2 + ∂yα1∂xα2]

)]
, (18)
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where in the second line we made the choice

f 2 = MkF

6π2
. (19)

Note that this action is symmetric under the interchange {x, 1} ↔ {y, 2}, in accordance with our expectation of a preserved
rotation symmetry in the (x, y) plane.

The condensate mixes the two angulons through the spatial derivative terms. The angulon dispersion relations may be found
by diagonalizing the following matrix:

G(p) =
(

ap2
0 + v2

F

(
bp2

z + cp2
y + dp2

x

)
ev2pxpy

ev2pxpy ap2
0 + v2

F

(
bp2

z + cp2
x + dp2

y

))
, (20)

with

a = 3 + π√
3
, b = −3

2
+ π

9
√

3
, c = − 4π

3
√

3
,

(21)

d = −3

2
+ 2π

9
√

3
, e = 3

2
− 14π

9
√

3
.

The values of p0 that make the determinant of G(p) vanish
correspond to the poles of the angulon propagator and define
their dispersion relations. As expected, the energies are
proportional to the Fermi velocity vF times spatial momenta,
but there is no expectation that the velocity of the angulons
will be independent of the direction. In fact, in the particular
case where the propagation is along the axes x, y, and z, the
corresponding velocities (for the two modes 1 and 2) are

v(1)
x,y = vF

3

√
117

18 + 2
√

3π
− 2 ≈ 0.477vF ,

v(2)
x,y = 2vF

√
π

9
√

3 + 3π
≈ 0.709vF , (22)

v(1,2)
z = vF

3

√
99

18 + 2
√

3π
− 1 ≈ 0.519vF .

The dispersion relations for modes moving in a general
direction are

p
(1)
0 =

√
27

√
3|p|2 − 2π

[
2
(
p2

x + p2
y

) + p2
z

]
3
√

2(3
√

3 + π )
vF ,

(23)

p
(2)
0 =

√
24π

(
p2

x + p2
y

) + 27
√

3p2
z − 2πp2

z

3
√

2(3
√

3 + π )
vF .

The angulon modes have linear dispersion relations at small
momenta, which may be used to compute the angulon
contribution to the low temperature specific heat. In fact, it
is given by

cv =
∑
a=1,2

d

dT

∫
d3p

(2π )3

εa(p)

eεa (p)/T − 1

≈ 16.16
T 3

v3
F

= 1.44 × 10−13

(
T/K

vF /c

)3 erg

K cm3
, (24)

where ε1,2 is the energy of the two uncoupled angulons. The
dependence cv ∼ T 3/v3

F follows from dimensional analysis;
the numerical coefficient comes from a numerical integration.
For temperatures well below the condensation temperature for
neutrons in neutron stars the specific heat due to electrons
dominates [29], and the angulon contribution is a few orders
of magnitude smaller.

B. Angulon interactions

The leading order effective action shown in Eq. (15)
also describes interactions between angulons. Because the
gapless modes, like the angulons, dominate transport processes
at small temperatures, their interaction is relevant for the
calculations of these quantities. The somewhat tedious process
of expanding the action to quartic order in the angulon fields
leads to

S4[�] = 1

f 2

∫
d4x

[(
3 + π√

3

) (
α2

2(∂0α1)2 + α1
2(∂0α2)2

) +
(

12 + 4π√
3

) (
α1

2(∂0α1)2 + α2
2(∂0α2)2

)
+ (18 + 2

√
3π )α1α2∂0α1∂0α2 + v2

F

[(
π

9
√

3
− 3

2

) (
α2

2(∂xα1)2 + α1
2(∂yα2)2

)
+

(
8π

9
√

3
− 6

) (
α1

2(∂xα1)2 + α2
2(∂yα2)2) − 4π

3
√

3

(
α1

2(∂xα2)2 + α2
2(∂yα1)2)

+
(

3 − 28π

9
√

3

) (
α1

2∂xα1∂yα2 + α2
2∂xα1∂yα2 + α1

2∂xα2∂yα1 + α2
2∂xα2∂yα1

)
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+
(

3 − 10π

3
√

3

)
(α1α2∂xα1∂yα1 + α1α2∂xα2∂yα2) −

(
16π

9
√

3
+ 6

)
(α1α2∂xα1∂xα2 + α1α2∂yα1∂yα2)

−
(

35π

9
√

3
+ 3

2

) (
α2

2(∂xα2)2 + α1
2(∂yα1)2) +

(
2π

9
√

3
− 3

2

) (
α2

2(∂zα1)2 + α1
2(∂zα2)2)

−
(

π√
3

+ 9

2

) (
α1

2(∂zα1)2 + α2
2(∂zα2)2

) −
(

22π

9
√

3
+ 6

)
α1α2∂zα1∂zα2

]]
. (25)

C. Weak interactions

Angulons couple to electroweak currents. Because they
are not electrically charged, at leading order in the Fermi
constant GF the only possible coupling is with the neutral
current mediated by the Z boson. In this section we derive this
coupling.

We begin by adding the following interaction terms to the
microscopic Lagrangian:

LW = CV Z0
0ψ

†ψ + CAZ0
i ψ

†σiψ, (26)

where Z0
0 , Z0

i are the temporal and spatial compo-
nents,respectively, of the Z0 boson, and the couplings are given
by

C2
V,A = C̃2

V,A

GF M2
Z

2
√

2
, (27)

where C̃V = −1 by vector current conservation, and C̃A ∼
1.1 ± 0.15 [30] is given by the sum of the nucleon isovector

axial coupling, gA, and the matrix element of the strange axial-
current in the proton, �s. Here we choose the vacuum form of
the interactions as little is known about their renormalization
when modes far from the Fermi surface are removed.

The action for the angulons including the weak vertex is

S[�] = −i

∫
d4xTr ln

[
D−1

0 + δD−1 + CAZ0
m�m

]
≈ −i

∫
d4xTr

(
ln

[
D−1

0 + δD−1] + (
D−1

0 + δD−1)−1

×CAZ0
m�m

)
(28)

where

�m ≡
(

σm 0
0 σ2σmσ2

)
, (29)

and we have taken only the leading order in a weak coupling
expansion. We may now perform a derivative expansion of the
propagator using the method outlined in Appendix A,

(
D−1

0 + δD−1
)−1 =

∫
d4p

(2π )4
tr

(∑
n

[
D0(p)

∑
m=1

∂m
μ

m!
pj [δD−1(x)]j

(
i∂pμ

)m

]n

D0(p)

)
. (30)

The leading order term in the derivative expansion of the weak interaction contribution to the Lagrangian is given by
m = n = 1. The only nonzero terms are

LW [�] = CAZ0
m

∫
d4p

(2π )4
tr

[
D0(p)∂0pj [δD−1(x)]j ∂p0D0(p)�m

]
= iCAZ0

m

∫
d4p

(2π )4
pj tr

[
D12∂0δ�

†
ij σ2σi∂p0D11σm − D11∂0δ�jiσiσ2∂p0D21σm

+D22∂0δ�
†
ij σ2σi∂p0D12σ2σmσ2 − D21∂0δ�jiσiσ2∂p0D22σ2σmσ2

]
= CAZ0

m∂0δ�
†
ij�kl

∫
d4p

(2π )4
pjpktr

[
−1

p2
0 − E2

p

σlσ2σ2σi

−p2
0 − 2p0εp − E2

p(
p2

0 − E2
p

)2 σm + p0 − εp

p2
0 − E2

p

σ2σi

2p0σlσ2(
p2

0 − E2
p

)2 σ2σmσ2

]

+ H.c.

= −2iεlimCAZ0
m∂0δ�

†
ij�kl

∫
d4p

(2π )4
pjpk

−p2
0 + 4p0εp + E2

p(
p2

0 − E2
p

)3 + H.c. = 1

2
εlimCAZ0

m∂0δ�
†
ij�kl

∫
d3p

(2π )3

pjpk

E3
p

+ H.c.

≈ εlimCAZ0
m∂0δ�

†
ij�kl

MkF

2π2|�̄|2 I
(1)
jk + H.c. → 3f 2εlimCAZ0

m∂0�
†
ij�klI (1)

jk + H.c., (31)
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where in the last step we used the translation invariance of the
effective Lagrangian, as explained previously when deriving
the strong interactions. Expanding this in terms of the angulon
fields α gives the leading contribution to the action from the
angulon-neutral current vertex,

SW [�] = CA

∫
d4x

[
27

8
(4A(1) + 3B(1))f

(
Z0

2∂0α2 − Z0
1∂0α1

)
+ 27

8
(4A(1) + 3B(1))Z0

3(α2∂0α1 − α1∂0α2) + · · ·
]

= CA

∫
d4x

[
9f

(
Z0

2∂0α2 − Z0
1∂0α1

)
+ 9Z0

3(α2∂0α1 − α1∂0α2) + · · · ]. (32)

D. Higher orders and regime of validity

The effective action shown in Eq. (15) is, to the extent that
terms with more derivatives may be neglected, equivalent to
our starting point [Eq. (3)]. We argue now that it is legitimate to
use Eq. (15) at tree level to capture the low-energy dynamics
of the system. The crucial observation is that the effective
action shown in Eq. (15) shares certain properties with
other low-energy effective actions, such as those describing
low-energy pions in zero-density and zero-temperature QCD
or magnons in an antiferromagnet, and power counting of
diagrams in such theories is well understood. The contribution
of bosonic fluctuations (angulons) is described by loops. A
generic loop diagram has an even number of powers of f in
the denominator coming from the vertices in Eq. (15). By
dimensional arguments, these powers of f must be offset
by powers of the external momentum Q so that loops are
suppressed by powers of (Q/f )2 compared to tree level and
are therefore suppressed at low energies.2

This is not to say that the range of validity of the
angulon effective theory is Q < f . We neglected in our
derivation contributions suppressed by �̄/vF that may be
larger than corrections of order (Q/f )2. For astrophysical
applications, where solid estimates are more necessary than
precise calculations, those corrections are of limited interest.

The generic form of the effective theory we obtained
could have been foreseen. It is indeed the most general
action involving a symmetric tensor field � obeying rotation
symmetry up to two derivatives. Higher powers of �, not
appearing in Eq. (15), are not independent because � has only
two independent eigenvalues. The only terms not appearing in
Eq. (15) are the ones with repeated powers of �2, as opposed
to �†�. They are excluded because our starting point Eq. (3)
has, in addition to rotational symmetry

� → R�RT , (33)

where R is a rotation matrix, the enhanced symmetry

� → RS�RT
L, (34)

2The detailed accounting of powers of Q/f is similar to the one in
chiral perturbation theory and is discussed at length in Ref. [31].

where RS,RL are independent spin and orbital rotations.
Nuclear forces do not have this enhanced symmetry (among
neutrons due mostly to the existence of spin-orbit forces). As
with any of the other interactions left out of Eq. (3) (assuming
they do not affect the phase of the theory) and as discussed
above, they are expected to contribute to the low-energy
constants of the angulon theory we have calculated by a
perturbatively small amount, even though they may contribute
significantly to the renormalization of kF and vF . Notice that
for this to be true the renormalized spin-orbit forces at the
Fermi surface do not have to be smaller than the interaction
in Eq. (3); it is enough that their contribution to the energy
be smaller than the neutron kinetic energy, as the low-energy
coefficients we computed are independent of the coupling g.
This observation also indicates that terms like

L ∼ Tr(�), (35)

forbidden only by the enhanced symmetry, should be small.
These terms give a mass to the approximate Goldstone modes
related to the enhanced symmetry [Eq. (34)]. We ignored these
massive modes here entirely as they are irrelevant at small
enough energies and observe that the smallness of their mass
is behind some of the near degeneracies of 3P2 states found
in model calculations. Further work is needed to evaluate the
approximate Goldstone masses. If it turns out that their masses
are smaller than ∼�̄/vF they will set the scale of breakdown
of the angulon effective theory.

V. SUMMARY

We derived a low-energy effective theory describing the
Goldstone bosons associated with broken rotational symmetry
in a 3P2 condensed neutron superfluid (angulons). Because
transport properties are dominated by the low lying excitation
modes, this theory provides a link connecting the theory of
nuclear forces to many quantities of interest in neutron star
phenomenology. Since there is still controversy as to which of
the many 3P2 phases are realized in nature, we tried to keep
our calculation as general as possible. Ultimately, however,
the numerical value of the coefficients of the effective action
do depend on the particular 3P2 phase and we give explicit
values for the “phase A” as defined in Eq. (2). This effective
theory is valid for angulon energies below the energy scale
∼2kf �̄ (or the mass of the approximate Goldstone bosons
related to independent spin and orbital rotations, whichever
is smaller) where other degrees of freedom, like unpaired
neutrons, appear.

A simple application of the effective theory, the calculation
of the angulon contribution to the specific heat, was discussed.
We also considered the coupling of angulons to neutral
currents, because quantities like neutrino opacity and emission
rates depend on this coupling, and gave an explicit form for
the angulon-angulon-Z vertex.

A series of improvements and extensions to the effective
theory discussed here are desirable. For applications to neutron
stars, we should consider the presence of both protons and
neutrons. The protons are superconducting and lead only to
another gapped mode but they are important in mediating
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the interaction between angulons (with whom they interact
through strong forces) and the gapless electron (with whom
they interact electromagnetically). In our microscopic action
for neutrons we included only the dominant forces leading to
3P2 pairing. Although expected to be repulsive and weaker,
neutron interactions in other channels can have an influence
on the angulon effective theory. It would be very desirable
to quantify this effect. We did not give much attention to the
gapped modes corresponding to a change in the eigenvalues
of �. Although their importance is exponentially suppressed
at small temperatures they can be numerically important at
temperatures of relevance to some stages of neutron star
evolution. Our method of deriving the effective theory by
performing a derivative expansion on a microscopic theory
allows us to address this question and we plan to come back to
it in a future publication. Finally, the energy difference between
different 3P2 phases is small. In particular, the condensation
energy of phase C in Eq. (2) is only a few percent above that
for phase A. This restricts the validity of the effective theory
somewhat and it would be important to quantify the importance
of the other nearby minima to the low-energy physics of the
system.
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APPENDIX A: THE DERIVATIVE EXPANSION

To set up the derivative expansion of

Tr ln D−1(i∂, x) = Tr ln
[
D−1

0 (i∂)︸ ︷︷ ︸
D−1(i∂,0)

+δD−1(i∂, x)
]

(A1)

we first use the relation

Tr ln(A + B) = Tr ln A + Tr ln(1 + A−1B)

= Tr ln A + Tr ln(1 + BA−1)

= Tr ln A +
∞∑

n=0

Tr
1

n + 1
(A−1B)n+1

= Tr ln A + Tr
∫ 1

0
dz (1 + zA−1B)−1A−1B

= Tr ln A + Tr
∫ 1

0
dz (A + zB)−1B (A2)

to find

Tr ln D−1
0 +

∫ 1

0
dz Tr

1

D−1
0 + zδD−1

δD−1. (A3)

The second term contains the dependence on the space-time
variation of �. This term is complicated to compute because
it contains ∂ and x, which do not commute. One trick to deal
with this is to substitute in the integrand ∂ → ip, x → x + i∂p

and integrate over p [23]. To do this, we first need to find the
inverse of the operator D−1

0 + zδD−1 in terms of p, ∂p, so we
look at[
D−1

0 + zδD−1
]−1 ≡ G(x, y) =

∫
d4p

(2π )4
eipyG(p, i∂p)e−ipx .

(A4)

Using(
D−1

0 + zδD−1
)
G(x, y)

= δ4(x − y)

=
∫

d4p

(2π )4
eipy

(
D−1

0 + zδD−1
)
G(p, i∂p)e−ipx, (A5)

we find

G(p, i∂p) = [
D−1

0 (p) + zpj [δD−1(i∂p)]j
]−1

, (A6)

where

D−1
0 (p) =

(
p0 − ε(p) ipj�

0
jiσiσ2

−ipj�
0†
ij σ2σi p0 + ε(p)

)
,

(A7)

[δD−1(i∂p)]j =
(

0 i�ji(i∂p)σiσ2

−i�
†
ij (i∂p)σ2σi 0

)
.

We may now expand the second term in Eq. (A3) as

∫
d4p

(2π )4

∫ 1

0
dz tr

[
D−1

0 (p) + zpj [δD−1(i∂p + x)]j
]−1

pk[δD−1(x)]k

=
∫

d4p

(2π )4

∫ 1

0
dz tr

[
D−1

0 (p) + zpj [δD−1(x)]j + zpj

∑
m=1

(
i∂pμ

)m

m!
∂m
μ [δD−1(x)]j

]−1

pk[δD−1(x)]k

=
∫

d4p

(2π )4

∫ 1

0
dz tr

[
1 + zpj

(
D−1

0 (p) + zpk[δD−1(x)]k
)−1 ∑

m=1

(
i∂pμ

)m

m!
∂m
μ [δD−1(x)]j

]−1

× [
D−1

0 (p) + zpj [δD−1(x)]j
]−1

pk[δD−1(x)]k

=
∫

d4p

(2π )4

∫ 1

0
dz tr

∞∑
n=0

(−z)n
[
D0(p)

∑
m=1

∂m
μ

m!
pj [δD−1(x)]j

(
i∂pμ

)m

]n

D0(p)pk[δD−1(x)]k. (A8)
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APPENDIX B: COEFFICIENTS FOR THE INTEGRALS I (α)
i j ···

Here we show how to compute the numerical coefficients
A(α), B(α), . . . appearing in Eq. (16). Consider, for instance,
I (1)

ij . We first multiply the upper equation in Eq. (16) by

(�̂†�̂)ij and δij to obtain∫
dp̂

4π

1

p̂ · (�̂†�̂) · p̂︸ ︷︷ ︸
4π

3
√

3

= 3A(1) + tr(�̂†�̂)︸ ︷︷ ︸
3/2

B(1),

∫
dp̂

4π︸ ︷︷ ︸
1

= tr(�̂†�̂)︸ ︷︷ ︸
3/2

A(1) + tr(�̂†�̂)2︸ ︷︷ ︸
9/8

B(1). (B1)

Solving this system of equations, we find

A(1) = 4

3

(
π√

3
− 1

)
, B(1) = 8

3
− 16π

9
√

3
. (B2)

The same method can be easily implemented in computer
algebra packages and we find

C(1) = − 4

27
+ 145π

1458
√

3
, D(1) = 14

27
− 220π

729
√

3
,

E(1) = −10

27
+ 152π

729
√

3
C(2) = 11

36
− 25π

243
√

3
,

D(2) = −10

9
+ 128π

243
√

3
, E(2) = 8

9
− 112π

243
√

3
(B3)

F (2) = 43

1080
− 263π

131 22
√

3
, G(2) = − 59

270
+ 256π

2187
√

3
,

H (2) = 16

45
− 424π

2187
√

3
, J (2) = − 8

45
+ 640π

6561
√

3
.
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