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Sign problems, noise, and chiral symmetry breaking in a QCD-like theory
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The Nambu-Jona-Lasinio model reduced to 2 + 1 dimensions has two different path integral for-
mulations: at finite chemical potential one formulation has a severe sign problem similar to that found in
QCD, while the other does not. At large N, where N is the number of flavors, one can compute the
probability distributions of fermion correlators analytically in both formulations. In the former case one
finds a broad distribution with small mean; in the latter one finds a heavy tailed positive distribution
amenable to the cumulant expansion techniques developed in earlier work. We speculate on the

implications of this model for QCD.
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I. INTRODUCTION

QCD has been around for 40 years and yet its application
to the properties of bulk matter at nuclear density has
proven to be stubbornly intractable. An inherently non-
perturbative problem, the only reliable tool available for
solving QCD in this energy regime is Monte Carlo evalu-
ation of lattice QCD. Unfortunately, lattice methods suffer
from a severe sign problem in the grand canonical formu-
lation that renders Monte Carlo techniques useless. In a
canonical formulation, despite recent impressive progress
in studying light nuclei and hypernuclei [1], there remain
severe problems with signal-to-noise ratios; these prob-
lems are clearly related to the sign problem. We continue
here the research program outlined in Refs. [2-4] where we
study the probability distributions of correlators and argue
that the origins of the sign or noise problem lie in the
dynamics and spectrum of the theory, and that it is not
especially useful to think of it as a “fermion” sign prob-
lem. In the particular case of QCD, the severity of the sign
problem is closely related to the phenomenon of chiral
symmetry breaking and the consequential existence of a
light pion.

In this paper we elucidate the connection between the
QCD sign problem and chiral symmetry breaking by study-
ing a simpler theory—the Nambu-Jona-Lasinio (NJL)
model [5] in three dimensions. This formulation of the
NJL model with N flavors is of particular interest because
it is soluble in large N, because it exhibits chiral symmetry
breaking without the complication of confinement, and
because it has two complementary but equivalent path
integral formulations—one of which looks very QCD-
like and has a severe sign problem, while the other
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resembles more closely the chiral quark model [6] and
has no sign problem.

We begin by reviewing some features of the sign prob-
lem in QCD, and then turn to our analysis of the NJL
model. In particular we are able to analytically compute
probability distributions for correlator measurements and
show how the noise spectrum in these measurements is
related to the presence or absence of a sign problem in the
grand canonical formulation. Our results should be directly
applicable to suitable lattice formulations of this theory,
but all of our analysis is analytic and in continuum
Euclidean spacetime [7].

At the end we return to QCD and speculate on the
implications of our analysis for finding a path integral
formulation of QCD that would allow for numerical study
of bulk matter.

I1. THE SIGN AND NOISE PROBLEMS IN QCD AND
THE UNIQUE ROLE OF THE PION

Numerical simulations of lattice QCD involve an ap-
proximation of the Feynman path integral in Euclidean
spacetime. This requires a Monte Carlo evaluation of the
averages of operators of interest—such as hadron correla-
tion functions—over an ensemble of background gauge
field variables generated with probability distribution

P (U) = e SWIA[U], (D

where U is a link variable for the gluon degrees of freedom,
S is a suitable discretization of the Yang-Mills action, and
A is the fermion determinant; both S and A are functionals
of the link variable U. This program has been very suc-
cessful for determining properties of the QCD spectrum in
the vacuum, but it runs into an obstacle when trying to
simulate matter at finite density in a grand canonical
ensemble. The fermion determinant A is a discretized
version of det(J) — m + uy,), where D,, is the covariant
derivative, m is the quark mass, u is the chemical potential
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for the quark number, and the gamma matrices 7y, ..., V4
are all Hermitian. At nonzero w the fermion operator is in
general complex, since wy; is Hermitian while JJ is anti-
Hermitian, and the two do not commute. As a result the
expression in Eq. (1) is not a suitable probability measure
for the gauge field configurations; this problem has nothing
to do with discretization of the lattice action, since it is a
property of the continuum functional. Therefore, for the
rest of this paper we will only discuss the sign problem in
the continuum, as the discretization of spacetime is not
directly relevant (although a poor choice of discretization
can in principle introduce additional sign problems not
present in the continuum theory).

At nonzero chemical potential one can write
A(A,, ) =|A(A,, u)le”, and one finds that the phase
starts to fluctuate wildly with changes of the gauge field for
n = m,/2 at low temperature [8]. This behavior seems
precocious, since at 7 = (, nonzero w can have no effect
on the free energy until u = my/3 > m,/2, where my, is
the nucleon mass. The phenomenon was clearly explained
by Splittorff and Verbaarschot (SV) [9,10] who noted that
for two degenerate flavors, |A(A w w)| correctly describes
the fermion determinant with a chemical potential u for
isospin—namely +u for the up quark and —u for the
down quark. Such a system will exhibit Bose-Einstein
condensation of pions, with free energy becoming rapidly
negative for u > m_/2, as the pion is the lightest state
carrying isospin. From chiral perturbation theory they
derive the estimate (in a continuum Euclidean spacetime
volume V, for u = m,./2)

JTdATe ) det(d — m — py,)Pe]
JldA]le Sl det(# — m — py))I?]

2
e 2RF M oy 2 gy, 2)

V2mVEFY

where F, is the pion decay constant. This result shows that
the phase 6O[A] is responsible for cancellations in the
integral that lead to this ratio going to zero exponentially
with the volume for u > m /2. The sign problem can be
thought of as being necessary to keep pions out of the
ensemble for nonzero baryon number.

A complementary obstacle is seen when studying the
baryon spectrum in a canonical formulation of lattice
QCD, at zero chemical potential. A typical approach to
compute the mass My of the ground state with baryon
number B is to use Monte Carlo methods to measure the
correlation function Cg(7) = (O(0, 7;A,)), where O =
G(0, ;A,)%, G being the quark propagator from time
t = 0 to t = 7, with color, flavor, and spin indices appro-
priately contracted to produce a state with the desired
quantum numbers. This correlation function must behave
as Cg(71) o exp(—Mp7) at large 7, and one can therefore
extract My as the limit of Mz = —InCg(7)/7 as 7 — .
This procedure seems straightforward and innocent of any
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sign problem since we have set u = 0 and the fermion
determinant is real and positive. However, one finds that a
Monte Carlo measurement of Cy(7) is very noisy at late
time. A particularly simple explanation was given by
Lepage [11]: he pointed out that the variance in the
measurement of Cp is given by the average o2 =
(G(0, 7;A,)*2G1(0, 7;A,,)*®), corresponding to the propa-
gation of 3B quarks and 3B antiquarks, with a ground state
consisting of 3B pions. Therefore one would expect o> «
exp(—3Bm,7) at late time, with the signal-to-noise ratio
for the Monte Carlo measurement of Cp being proportional
to exp(—37(Mp/3 — Bm_/2)), which vanishes exponen-
tially fast since the mass of B pions is less than 2/3 the
mass of the B-nucleon ground state. Thus eventually the
signal will always be overwhelmed by noise, and again it is
due to the pion being lighter per constituent quark than the
nucleon, just as we saw in the grand canonical example. If
one works at fixed baryon density p with B = Vp, where V
is the volume, one sees that the noise problem grows
exponentially with the volume, as one would expect from
the problem encountered in the grand canonical approach,
Eq. (2).

Savage has extended the analysis to look at higher
moments of the distribution function for Cy [12]. Even
moments all involve equal numbers of quarks and anti-
quarks, and therefore fall off exponentially with a rate
determined by the pion mass. However, odd moments
involve expectations of operators with a net baryon num-
ber, and fall off more quickly, relative to c—exponentially
with the nucleon mass. With odd moments vanishing faster
with 7 than even moments, one can conclude that the
probability distribution for Cy evolves exponentially fast
at late time to a symmetric distribution with vanishing
mean, a manifestation of the sign problem that in either
approach is due to the existence of the light pion.

There have been a number of microscopic analyses of
the QCD sign problem (for example, Ref. [9]), as well as
general proposals to modify the conventional approach to
simulating the Feynman path integrals (such as the meron
cluster approach, Ref. [13]). Here we will instead pursue
further the connection between the sign problem and chiral
symmetry breaking, the origin of the pion’s small mass.

III. THE LARGE-N NJL MODEL IN
THREE DIMENSIONS

We consider a modified version of the original NJL
model [5], with N flavors and reduced from four to three
Euclidean dimensions:

L=No#=mpa =S + (Daivs ). 3)

Our convention is that a, b, . .. are flavor indices summed

over 1,..., N, the 3D coordinate indices are 4§, j,...,
summed over 1, 2, 3, while Greek indices u, v, ... are
summed over 4D coordinates 1,...,4. Thus ¢ = y,9;,
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for example. The gamma matrices are the usual 4 X 4
matrices used in 4D, not the 2 X 2 matrices appropriate
for 3D, and so the Lagrangian represents 2N flavors of
3D Dirac fermions. However, we will generally use 4D
nomenclature—in particular, in the limit m — 0 this theory
has a U(1) chiral symmetry in 4D, which becomes a flavor
symmetry in 3D; despite the fact that there is no notion of
chiral symmetry in 3D, we will continue to refer to this
global U(1) symmetry as a chiral symmetry.

In 3D this model still exhibits the key feature of the
original NJL model, the phenomenon of spontaneous chiral
symmetry breaking that gives rise to a Goldstone boson we
will call the pion. We will analyze this theory in a 1/N
expansion using techniques similar to those used in the
Gross-Neveu model, which is formulated in 2D [14]. This
theory has been reviewed in Refs. [15,16] and has been
studied numerically in Ref. [17].

A. The o /7 formulation

The conventional treatment of the theory Eq. (3) is to
introduce auxiliary fields o and 7 to obtain a bilinear
fermion action,

£=N(2i(0'2+77'2)+ Jfa[ﬂ—m+o'+i7r'ys]wa). 4)
8

In this formulation, the o and 7 fields are singlets under
the SU(N) flavor symmetry, while ¢ = (o + im)/+2
transforms linearly under the chiral U(1) symmetry. With
the above normalization, N counting is simple: every
vertex and every fermion loop brings a factor of N, every
propagator a factor of 1/N. Loops that include scalar
propagators do not give a factor of N, since the mesons
do not carry the N flavors.

1. No sign problem

An interesting feature of this theory is that at finite
chemical potential the fermion determinant is real, and for
even N, it is positive. To see this, note that we can define a
real symmetric charge conjugation matrix C that satisfies
C*=1,Cy,C= v fori=1,2,3,and CysC = —y%. For
example, we cantake y; = 0| X 0, ys=03 X 1 withC =
0, X 0,.Then the fermion operator for a single flavor in the
grand canonical formulation satisfies D* = CDC, where
D= (f—m+ o+ imys + uy,). Itfollows that complex
eigenvalues of D come in conjugate pairs, while real eigen-
values can be unpaired. Thus detD for the N-flavor theory,
Eq. (4), equals a real number raised to the power N and is
positive for even N. This implies that there is no sign
problem obstacle to simulating this theory at finite density
using Monte Carlo methods [18].

2. Chiral symmetry breaking

Integrating out the fermions gives rise to the effective
action S, = NS(o, 7), where
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1
S[o, 7]= fd3x|:2—(a'(x)2 + 7(x)?) — Trin(# — m + o(x)
8

+ m(x)ys)]. 5)

The large-N expansion is equivalent to the semiclassical
expansion, and the vacuum is characterized by the classical
solution that minimizes the action S. We can readily com-
pute S(o, 0) with o = constant using dimensional regu-
larization and minimal subtraction (MS) [19]. Up to an
irrelevant additive constant we find

o2 o — m)?2 P2
S(0, 0) = VT[g + %]

(6)
where we have put the system in a box of spacetime
volume VT. Defining the chiral symmetry breaking mini-
mum to be at (o) = f, when m = 0, we obtain

95(0,0) —0=g=—2 7

)
do |n=o f

with f > 0. With this value for g (which is renormalization
scheme dependent), we find for nonzero quark mass m > 0

7f [l = mPP
27

$(0,0) = VT[— N

+ 5, ] (®)
with minimum at

m
<0>=§[1+41+4n+2n], n=7 ©)
which shows how the chiral symmetry breaking minimum
depends on the explicit quark mass. We also choose the
constant,

3
So =510+ 4072 + (1 + 69+ 69%)]  (10)
w

such that the action vanishes in the chiral symmetry break-
ing vacuum.

Next we expand the effective action S to second order in
spacetime dependent fluctuations of the o and 7 fields,

1 Pk
S(o, ) = S{o), 0) + §V2T2 oy
X [Dy (k)5 (k)5 (—k)
+ D (k)om(k)Sm(—k)] + - -, (1D

where D, and D, are readily computed in the MS scheme
from one-loop diagrams in the background (o). The con-
stituent quark mass M is given by

M= (o) — =§[1 + T ] (12)

Since there is no confinement in this theory, M is the
mass of the lightest fermionic excitation and m is the
current quark mass. With the fermion propagator, G(p) =
(—ip + M)~', we find
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1 d3q
Dolk) =+ | 55 TGla + k/2Glq ~ k/2)]
__f 4 (4M? + KH)cot™'(2M /k) + 2Mk
T 2k ’

3
D.(k) = é - [ (jTQP TilysGlg + k/2)ysGlq — k/2)]

_2M -2f + kcot ' (2M /k)
2 ’

(13)

To leading order in 1/N, these functions determine the o
and 7 dispersion relations, and their masses are defined by
the location of zeros in D, and D, respectively. One finds
m2. = (2f)? in the chiral limit. However, the pole sits at the
beginning of the two-fermion branch cut, for m >0 we
find m, > 2M, and so the o field is unstable. Only at
subleading order in 1/N would one see the branch cut
appear in D, for o — 7 decay, as that entails an addi-
tional quark loop. A chiral expansion for the pion mass
yields

31, 1654

1
2=4 (1—— + -
My = 4fm TTas™ “oa5 "

! ) as

and near the pion pole, k> = —m?2, one finds for the pion
propagator

11z,
ND_ (k) Nk +m2’

1 4
Zy=4mfl[1+=-n——=n*+--).
- 7Tf( 317157 )

(15)

The positivity of m2 and m2 for m >0 shows that we
found the correct (e.g., stable) vacuum.

B. The A/V formulation

An alternative formulation of the theory follows if one
first uses the Fierz identity

[5ij5k1 - (75)ij(7’5)k1]

S CAVCR N CORANCARA L

to rearrange the four-fermion interaction in Eq. (3) before
introducing auxiliary fields. The Lagrangian becomes

L= N = mdry + S0y 0)(Ta7,000)
- (l_pa’yM')/S lﬂb)(‘}b?’;ﬁ’s lpa)])’ )

where # = v,0; with i summed over i = 1, 2, 3, while the
Yu matrices are summed over w = 1, ..., 4. This formu-
lation invites the introduction of N X N matrix valued
vector and axial vector auxiliary fields V and A, giving
the equivalent theory
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1 . .
L= N(;Tr(VMVM TAA) T YII—m+iy + A’)’s]l//)-
(18)

N counting in this theory is different from the o/ for-
mulation, since the A and V meson fields are N X N
matrices. In fact, the N counting here is identical to that
of large-N QCD, and it is convenient to employ 't Hooft’s
double-line notation for the mesons. As in QCD, the order
of a graph without external legs is given by NX, where y is
the Euler characteristic of the surface defined by the graph,
and so to leading order one only need consider planar
graphs with a minimal number of closed fermion loops.
However, this class of graphs is much simpler than in
QCD, since the A and V mesons have no cubic or quartic
interactions, unlike gluons.

1. A QCD-like sign problem

In this A/V formulation, the fermion matrix at finite
chemical potential is given by D(u) = [ —m + iy +
Ays + wy,], which is similar in structure to the QCD
Dirac matrix with nonzero chemical potential w (with
the N flavors playing the role of color), and its determinant
is similarly complex. In fact, as in QCD we can make an
SV argument [9,10] about the phase of the fermion deter-
minant by considering two degenerate families (e.g., 2N
fermions) so that the chiral symmetry is enlarged from
U; (1) X Ug(1) to U;(2) X Ug(2). The fermion determi-
nant in the case of a quark number chemical potential is
(detD(u))*> while with an isospin chemical potential it is
| detD(w)|?, the difference between the two being the
phase e??. In the latter case there is a transition to a
pion-condensed state at u = m,/2 just as in QCD, and
so the SV argument leads to a similar formula as in Eq. (2).

It is remarkable that a theory with a sign problem so
similar to that of QCD is known to have a formulation that
has no sign problem, the o/ 7 formulation of the previous
section.

2. Chiral symmetry breaking

One cannot see chiral symmetry breaking in the A/V
formulation in a mean field formalism, as there is no
fundamental field with the right quantum numbers to
play the role of the ¢y condensate—again, as in QCD.
Instead one has to consider the Schwinger-Dyson equation
for the fermion propagator, which is exact in leading order
in 1/N since vertex and meson propagator corrections
occur at higher order. We take the full canonically normal-
ized fermion propagator to equal

G(p) =

—iAZ(p) + M(p)’ (19

which satisfies the integral equation
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FIG. 1. A graphical representation of the integral equation (24)
for the four-point correlator in the A/V formulation for an
incoming fermion/antifermion pair of one flavor and an outgoing
pair of another. Dirac indices are labeled.

—ipZ(p) + M(p)

=it =n=4 [l

S )
3k M(k)

= —ip—mtdg Qm)? RZ)? + MK?"

(20)

From this one finds (using the MS renormalization scheme
as before) that Z(k) =1 and M(k) = M is a constant
satisfying

J

N
Mk, p) =g7[—(7#)51(7ﬂ)kj (VY)Y u¥s)kj]
gN? [ d°q
+ =
2 ) Qen)?

= _gN[aijakl - (75)5,'(75)1<1] - gsz

d3q
@2m)?
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_ d*k M gM?
M=% | oo~ " 2 OV

which has the solution

M=7T(—1 i#l —43"").
2g T

Using the renormalization condition that the dynamical
fermion mass equals f in the chiral limit, m = 0, gives
g = —/f, as in Eq. (7) and the solution for M

M=ty E, a=",
which is the same as the value derived in the o/# for-
mulation for the dynamical fermion mass, Eq. (12).

In the A/V formulation the o and 7r mesons appear as a
fermion and antifermion pair bound together by strong A,
and V,, vector meson exchange, much the same way as
mesons arise in large-N QCD. To see them we compute the
connected four-point function M for a fermion/antifer-
mion pair of flavors €, k, each with 3-momentum k/2, to
scatter into a fermion/antifermion pair of flavors i, j with
3-momenta k/2 = p. To leading order in 1/N, M obeys
the integral equation, shown graphically in Fig. 1,

(22)

(23)

G(q+k/2) sy Mpea(k, 0)G(q = k/2) cal = (¥ )i (¥ ) aj + (V0 ¥5)ia (Y ¥5)aj]

G(q+k/2) sy Mpei(k, 0)G(q = k/2)cal 88 40 — (v5)ij(¥5) aa):

(24)

where G(p) is the free fermion propagator with dynamical mass M, and we used a Fierz identity to replace the vector and
axial vector gamma matrices by scalar and pseudoscalar. The solution to this equation is

06k
D, (k)

M ijwak) = —N( D_(k)

where we dropped the label p (as our solution is indepen-
dent of p), D, . are given in Eq. (13),and G, , = N/D,, .
are the full meson propagators. Thus we see that (up to a
sign) the interaction between valence fermion and antifer-
mion via f-channel exchange of A, and V, mesons is
exactly equivalent to an annihilation diagram in the o /7
formulation, with a single meson in the s channel; simi-
larly, the interaction between two valence fermions or
two valence antifermions in the A/V theory is equivalent
to a single meson exchange in the u channel in the o/7
theory (Fig. 2). This equivalence will allow us to use the
simpler o/ theory to calculate the cumulants for the A/V
theory.

. (i75)i_7(i75)k1)

—N*(8,;84G (k) + (iy5);;(iv5)uG (k). (25)
|

- hv
= o, T o,TT
=0
FIG. 2. In the A/V formulation at leading order in 1/N,

interaction between a valence fermion/antifermion pair (M) or
a valence fermion pair (M’) is equivalent to s- or u-channel
exchange, respectively, of single o and 7 mesons in the o/
formulation, where the fermions have mass M arising from
nonzero {o).
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IV. THE PROBABILITY DISTRIBUTION OF THE
FERMION PROPAGATOR

If X[¢] is a functional of a stochastic field ¢
corresponding to an observable—such as a correlation
function—we define the normalized probability density
function (pdf) for X to be the path integral

P) = N j [dgle@Is(X[] - x).  (26)

where we assume S[¢] is real. If one were to sample
an ensemble of ¢ configurations according to the distri-
bution e~5%] the values of X[¢] would be distributed
according to 7P, making its relevance to Monte Carlo
simulations evident. For an accurate estimate of (X)
from a reasonable number of samples, one would like
P(x) to be sharply peaked around its mean. However, one
might find a very broad distribution centered about a
mean close to zero, making an accurate estimate of the
mean, without a huge number of samples, very difficult,
such as is the case with baryon propagators in QCD.
Alternatively, one might find a heavy-tailed distribution
for which very rare events make a significant contribu-
tion to the mean, resulting in very noisy and often
misleading estimates of (X) from a finite sample. This
latter situation is indicative of what is called “‘an overlap
problem,” which occurs when e S[¢] is peaked far
from the field configurations that provide support for
nonzero X(¢). With some knowledge about the nature
of the tail of the distribution, it may be possible to use
statistical methods to greatly improve the determination
of (X) [3].

The pdf given in Eq. (26) is a difficult quantity to
analyze using field theoretic methods because of the sin-
gular nature of the delta function; instead, we consider the
characteristic function (cf.) ®(s), which is just the Fourier
transform of the pdf:

PHYSICAL REVIEW D 87, 014504 (2013)
Dy(s) = e VO = N f [dep e Steltisxid], 27)

This is a useful formulation because W(s) = — In®y(s) is
on the one hand given by the connected Feynman diagrams
[20] of the modified action S[¢] — isX[¢], while, up to an
irrelevant additive constant, it is also the generating func-
tion for the cumulants of X:

W(s) = — i )" (28)

!
=1

Here, k,, is the nth cumulant, with k; = (X) = u being
the mean of P(x), k,=((X?)—(X)?)= o> being the vari-
ance, etc.

This procedure has to be modified slightly when dealing
with a complex observable, where we replace Eq. (27) by

(Dx(s, E) — e*W(S,ﬁ) — N[[d¢]e*S[d)]Jri(sX[(ﬁ]wLE)?[dl])’ (29)

where s is now complex and the bar indicates complex
conjugation. Now, InW (s, 5) has a double expansion in both
s and §,

_ — (is) ’"(ls)”
W(s, 5) = Z= T K (30)
with «,,,, = k,, ,. For example,
ki0=(X), ki =(XP) =IO K0 =(X*)—(X)% ...

€1y

In what follows we show how to compute the cumulants
of the correlation function of a single fermion with zero
2-momentum for a time extent 7. This is the sort of
measurement one would perform in a Monte Carlo simu-
lation in order to determine the mass of the fermion. In
particular we take for X[ ¢]

1
Yr = ln[ p=01= T/2|TrF< . )Ip =0,t= —T/2>], o/ 7 formulation, (32a)
1% d—m+o+imys
1 1

Xr = V(p =0,t= T/2|Trr(ﬂ . A)’s)lp =0,t=—17/2), A/V formulation, (32b)

. . . . . 1 1
where I is some Dirac matrix of ou.r choosing. Our ch0.1ce lim — = In(Xp) = lim — ~ In{e?r) = my, (33)

to look at the log of the propagator in the o/ formulation T T o0 T

makes the later analysis simpler. Note that in the defini-
tions of our observable X and Y we use canonically
normalized fermion propagators, without the factor of
1/N. Measuring the expectation value of this correlator is
a procedure for determining the mass m, of the lightest
fermion state through the formula

provided that I" does not project out this state. Of course,
we already know analytically that m, = M, with M given
in Eq. (12), but by calculating the cumulants for this
observable we will establish how difficult it would be to
determine the fermion mass by numerical Monte Carlo
methods using the two formulations of the NJL model,
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and why. In particular we will show that in the QCD-like
A/V formulation, the pdf for Xr, at late time, looks as one
would expect from the Lepage-Savage picture: a broad
distribution that is nearly symmetric about zero with an
exponentially small mean. In contrast, the pdf for the
physically equivalent o/ 7 formulation looks heavy-tailed
and close to log-normal at late time. Thus, a Monte Carlo
study of this theory, without a sign problem, still faces an
overlap problem and significant numerical challenges, but
is perhaps amenable to a cumulant expansion as introduced
for a similar system in Refs. [2-4]. This theory has also
been successfully investigated recently using the “fermion
bag approach” [21-23].

A. Noise distribution in the A/V formulation
and the Lepage-Savage analysis

1. The Ky and k;, cumulants

We begin by computing the cumulants for measure-
ments of the fermion propagator Xr in the A/V formula-
tion; since this observable is complex, we use the
formalism in Eqgs. (29)—(31). From the above discussion,
the «,,, = Kk,,, cumulant for X is given by the sum of
connected graphs with m copies of Xt and n copies of its
complex conjugate, Xp. We will refer to these as valence
fermion and valence antifermion propagators, respectively;
at leading order in 1/N there are no sea quark loop con-
tributions. With our definition of X, there are no factors of
1/N from valence fermion propagators, nor factors of N
from meson coupling to valence fermions, nor is annihila-
tion of a valence fermion with a valence antifermion
allowed. The computation of «,,, involves graphs with
net fermion number (m — n), and according to the Lepage-
Savage analysis, we expect

o e ~lm=—mMtnmzlr (4 = p, (34)

Km,n

We will see that this expectation is born out in the A/V
formulation, which is the one with a QCD-like sign prob-
lem at nonzero chemical potential.

‘We should not compute graphs contributing to the valence
fermion self-energy, but rather use the nonperturbative so-
lution to the Schwinger-Dyson equation, replacing the mass
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term (—m) in the fermion propagator by M from
Eq. (23). It is convenient to have this propagator in a mixed
{t, p} representation:

1 -
14 = (27)282(p' — I _
<p,t|ﬂ+Mlp, n = Q2n)*8*(p' —p)Gp, ¢ — 1), (35)
with
5 dw e*iwt
Gp,t)= | —
®. 1) 27 —iwy, —ip-y+ M
_ oyl w,e(t)y; Tip-y+ M’ 36)
2a)p
where w, = v/|p[* + M?. Note that
- 1+ et

is proportional to a projection operator. Since the dynamical
mass M includes all nonperturbative contributions to the
fermion self-energy, it follows that the first cumulant for X
is just

K10 = Tr[FG(Or T)] = Ze—MT = <XF>: (38)

where z = Tr[F(HT”)] is the wave-function overlap of our
chosen observable with the physical fermion state. Thus a
Monte Carlo simulation that correctly estimates the value of
(Xr) will correctly determine the fermion mass to equal M
by means of the formula Eq. (33), provided that I is chosen
so that z is nonvanishing.

As we are interested in how difficult a Monte Carlo
determination of (Xr) might be, we turn next to the vari-
ance 1 ;. At leading order in 1/N, the sum of diagrams for
K11 is given by attaching G propagators at zero spatial
momentum to the legs in the first diagram in Fig. 1, with
ends k, [ at time t = —7/2 and ends i, j at time 7/2, and
contracting the Dirac indices of each valence fermion line
with I". Using our result for the four-point function M in
Eq. (25) (but dividing by N2, since our X is the propagator
for a canonically normalized fermion), we find that the D,
part of M is killed by the Dirac trace and only the D, part
contributes, yielding

1 00 00 ~ _ B 5 d —iw(ty—1)
kiy=— [T ay [ A6 TITG(0, 7/2 — 1)y5G(0, 1, — /TGO, —7/2 — 1,)y5G(0, £, + 7/2) j doe 7>+
VN —00 —0o0 27T D,T(a))
o o 1+ eC—1t 1+ ety + Dyy\ -
=[ dtl[ dtze—M(IT_2l2|+|T+211|)Tr1—‘( 6(22 2)71),}/51",),5( 6(12 Z)YI)GW(tz _ tl), (39)
where
- d*x 1 dw e i® Z
G.n= [ xn=— [S2 ~ LT pmmlid 40
(1) [ y O =08 | 2 D @) S 2m VN € (40)
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with D, Z.. given in Egs. (13) and (15), respectively, and
we approximated D, !(w) by the pion pole contribution,
Eq. (15), ignoring the branch cut at k> < —4M?. If we
choose I' = 1, we find

7 (o) (o)
Ky, ~— 7 dr dr e_2M(|%_t2|+|tl+%|)
M om, VN f_m 1f_oo .

X (1 + e(% - t2>e(t1 + g))e—m,,m—m (41)

2

~ e MaT

SN @

where we have (i) assumed we are near the chiral limit with
m, < f, M and (ii) assumed we are interested in late time
behavior, 7 > 1/M. Note that near the chiral limit we are
finding «0/ /K11 > expl(—M + m,/2)7] < 1 at a late
time, indicating a severe signal-to-noise problem, in agree-
ment with the Lepage analysis.

It is interesting to note that if instead we take I' =
(1 = vy)/2, then ky vanishes at this order in 1/N. This
choice of I kills the pion contribution to the variance, and
so we would expect a noise-free measurement in this case.
We do not expect this to persist at subleading order in 1/N,
nor do we expect that in real QCD one can decouple baryon
observables from pions so easily, but it seems worth
exploring whether correlating initial and final Dirac indices
of baryon operators [as with this trace with (1 = y,)/2 on
valence quark lines] might be able to improve the signal-
to-noise problem in real QCD computations.

2. Power counting for higher k,, , cumulants

Higher cumulants can be computed for the A/V formu-
lation using the equivalent o/ 7 diagrams as discovered in
Sec. III B 2 and shown in Fig. 2. This is not to say that the
same diagrams give the cumulants for the A/V and the
o /r theories. In Fig. 3 we show the diagrams for several of
the lower cumulants, where solid lines are the fermion
propagators 1/(—ip + M), and dashed lines are the meson
propagators G, and G, (both mesons contributing in

zvj i’\ J i‘\\ A kK’ zvj k’ t=1/2
i i j i o J ki k /2
K1,0 K11 K20 R3.0 K21

FIG. 3. Contributions to several low cumulants for the A/V
theory to leading order in 1/N, using the o/7 method to
compute them as developed in Sec. III B 2. Solid lines represent
fermion propagators, and dashed lines are mesons. The end
points are to be contracted with I';s, T';y, I'yw. The lightest
intermediate state that can appear in a graph for «,,, with
m = n consists of (m — n) fermions and n pions, and the sum
of their masses determines the 7 dependence of the cumulant.
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general) with couplings 1 or iys, respectively, at the
vertices. Again, we take all incoming and outgoing
2-momenta to be zero, and there is one I';; contracted
with each pair of like indices in the graph. As we have
chosen a canonically normalized fermion propagator with
one particular flavor as our observable, there are no factors
of N at the meson vertices, nor are there any loops giving
rise to factors of N. However, each meson propagator costs
a factor of 1/N, and so «,,, « (1/N)™*"~!, since we need
a minimum of (m + n — 1) mesons to make a connected
graph. Furthermore, one can see by cutting the graphs at a
fixed time that the minimum mass state that can possibly
propagate in a graph for «,,, with m = n consists of
(m — n) fermions with mass M and n pions. Therefore
generically we expect these cumulants to scale as

e—(m—n)MTe—nm,,T

K ~ (m=n).  43)
This scaling could be violated if I" can be chosen so that the
pion does not couple, as discussed in the calculation of
k11 Then m, is replaced by 2M, the mass of a fermion/
antifermion pair. Note that at late time, the 1/N expansion
breaks down in the sense that k,, becomes smaller than
Ko, for example, so long as one is near enough to the
chiral limit that m, << M. This is despite the fact that «, , is
parametrically smaller by 1/N?. However, this breakdown
of the 1/N expansion will not lead to qualitatively different
results because contributions to «,, ,, which are subleading
in N counting, will not lead to lighter intermediate states
than the leading calculation, unless there is some fortuitous
exclusion of the pion at leading order due to the choice of I"
that does not persist at higher order.

The above scaling implies that the distribution for the
real part of the fermion propagator near the chiral limit
becomes highly symmetric about zero at late time because
odd moments [for which (m — n) # 0] are seen to fall off
much more quickly than even moments. This is completely
consistent with the Lepage-Savage picture for baryon
propagator distributions in QCD. As in QCD, it will be
very difficult to use Monte Carlo methods for the A/V
formulation to determine the ground state energy with a
fixed large fermion number. This is not surprising because,
like QCD, this theory also has a severe sign problem in the
grand canonical formulation for studying states with non-
zero fermion density.

B. Noise distribution in the o /7 formulation
and long-tailed distributions

1. A graphical expansion for cumulants of Yy (o, )

We now turn to the task of computing the cumulants for
the log of the fermion correlator, Y in Eq. (32a) in the
o /7 formulation. In this case the cumulants are given by
the connected graphs derived from the action

Sy = NS[o, 7] — isYr[o, 7], (44)
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P

FIG. 4. Black vertices arise in the expansion of the fermion
loop, NS(o, 7) of Eq. (5) in external meson fields. The tadpole
was eliminated by vacuum minimization, and the two-point
function gives the exact meson propagators, so these vertices
start with the three-point function.

where S[o, 7] is given in Eq. (5). The N counting in this
formulation is quite different from the A/V case since the
o and 7 mesons are singlets under the U(N) symmetry
rather than N X N matrices. It is convenient to associate
the expansion of NS[o, 77] in meson fields with vertices
labeled by black dots; see Fig. 4. There are no black
tadpoles, since we have solved for the chiral symmetry
breaking vacuum; furthermore there are no explicit black
two-point vertices as these are accounted for by using the
full meson propagators. The expansion of isYp[o, 7] in
powers of the meson fields is represented as white dots, the
kth term in the expansion drawn as a white vertex connect-
ing k meson lines; white vertices occur with any number of
meson lines, starting with zero, and each is associated with
a power of is.

The nth cumulant «,, is then given by n! times the sum of
connected graphs with n insertions of white vertices, since
each white vertex brings a factor of (is) and we have the
expansion Eq. (28). Expanding these graphs in powers of
1/N is simple: each black vertex entails a power of N,
while each meson propagator gives a factor of 1/N. Loops
do not give factors of N since the o~/ 7 mesons do not carry
U(N) flavor quantum numbers. White dots also do not give
factors of N. Thus a contribution to k, arising from a graph
with n white vertices, b black vertices, p meson propaga-
tors, and € loops is of order N*~7. Since every such graph
satisfies p — (b + n) = £ — 1, we can rewrite the order of
the graph as N~~170 Tt follows that the leading contri-
bution to «, must come from the sum of tree diagrams
(¢ = 0) with n white vertices. The branches of these con-
nected tree diagrams must end on white tadpoles and are
quite limited in number; the first few leading diagrams are
shown in Fig. 5.

The sum of tree diagrams can be regarded as the solution
to a classical theory, which in the present case is nothing
other than the statement that the 1/N expansion is

PHYSICAL REVIEW D 87, 014504 (2013)

kK1: O K3 :

o000 +

K2 O—O H4IO—O—O—O+§—€+ ‘

FIG. 5. Leading contributions in the 1/N expansion of «, for
n=1,..., 4 in the o/ formulation. Black vertices are given in
Fig. 4; white vertices are determined by the expansion of
isY[o, 7]. Lines represent the exact meson propagators G,
derived from Eq. (13).

equivalent to solving for the generator of cumulants,
In®y(s), as a saddle-point approximation dominated by
the classical solution that minimizes the action Sy (see
the Appendix for more details). Before tackling this
calculation it is worthwhile to note several simplifying
features of these tree diagrams:

(i) By choosing a I that is neither s nor v, ys, only the
o meson can couple to the white tadpole. Since
parity implies that vertices conserve pion number
mod 2, and all tree diagrams end on white tadpole
vertices (Fig. 5), it follows that the only mesons
propagating in these tree graphs are o mesons.

(i1) Since we are defining our observable Yt in Eq. (32a)
to be the log of the propagator of a quark with initial
and final 2-momentum p = 0, the meson at the
white tadpole vertex must have p = 0 flowing
through it as well. Then, because all vertices con-
serve momentum and the leading graphs in Fig. 5
are all tree diagrams whose branches end on white
tadpoles, it follows that all of the internal meson
lines in the graph must be at p = 0, with only non-
zero energy flowing through the lines.

(iii)) As we show below, the large 7 behavior of the
cumulants arises from graphs with zero energy
flowing through the white tadpole; thus, because
of conservation of 3-momentum at all vertices, the
asymptotic 7 behavior of the cumulants is given by
the graphs with 3-momentum p vanishing every-
where within the graph.

We now demonstrate the last point (iii): that the white
tadpole enforces zero energy flow through the diagram at
late time. To do this we compute the tadpole, assuming
energy k; and two momentum k flowing out of the meson
line:

— 3 2 dT'TITG0, 7' + 7/2)80(0, 7)G(0, 7/2 — 1) 1 (/2 Bk o
_ VvV © - _ / 292 ikyT
tadpole TRmP OG0, 7/2) v f T f @y 27V O e 00 ®)
_ L&k 0 2sinkT/2) I N A S
= 5 [Gaemew =T b0 - 4 [ S emrawse, 45)

where G(0, 7) is given in Eq. (37), provided that
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7= Tr[F(l 271)] £ 0. (46)

The 8(k;) factor justifies computing the tree graphs in
Fig. 5 with zero 3-momentum flowing through it, as long
as we are only interested in the 7 — oo behavior of the
distribution of propagators. However, note that at finite 7
the factor sin(k,7/2)/k, acts as a filter that still allows
k, < 1/7 or, equivalently, which still allows the o field to
be time dependent on time scales = 7. This will be relevant
to the next section.

2. The generator of cumulants from mean field theory

As mentioned previously, the sum of tree graphs is
nothing other than the effective action Sy = NS — isYr
evaluated at its minimum, a classical solution for the
meson fields (see the Appendix for further discussion).
We have shown that for an appropriate choice of I', this
solution will in general have a vanishing pion field and a
spatially constant, but time dependent, o(¢) field. Finally,
we have also shown that the large-7 behavior is given by an
even simpler solution, with a ¢ field that is constant in the
two spatial dimensions and over time =< 7.

It is straightforward to compute Sy (o) for a constant o
field. Note that o is defined relative to its vacuum value
(o) = (M + m), where M is the actual ““constituent” mass
of the fermion, while m is the “current” mass appearing in
the Lagrangian. For the NS(o) part of Sy we need only
take the expression Eq. (8) evaluated at g = o — (o), up
to an overall additive constant:

NS(os)

3fok+60sM*+2M> —2((og+ M)2)3/2)

=—NVT
( 6

(47)

where V is the spatial volume and 7 is the time extent of
the box. The second part of Sy is given by

d ) 1
isYp = is ln[ j 49 o ]
2m —iwy + M+ oy

= —is((M + og)t — Ing). (48)

The equation for the minimum of Sy is therefore given by

17ST
[,/(M F oot — (M2 + fog) + NVT]USO —0 (9

with solution

o= %((f —2M) +4/(f — 2M)* — 4aist/(NVT)),  (50)

where we choose the solution that vanishes as s — 0, to
recover the correct chiral symmetry breaking vacuum.
Plugging this solution back into the effective action, we
obtain the generator of cumulants of Y, to leading order in
the 1/N expansion and at late time:
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In®y(s) = —Sy(oso)
6is{ — 1+ (1 —4is{)>?

=isu+QM—f)r 122 , (5D
with
mT _ _
= NVTQM = 1) w=Inz — Mr. (52)

Expanding In®y(s) in powers of s yields the cumulants «,,
for Yr:

_ (2~ 2))!

W(2M — ATl (53)

K| = M, Kp=2
The volume factor in the denominator of { is easy to
understand, arising from the normalization of our one
particle states; the factor of T is puzzling though, arising
from our assumptions of a mean field solution that is
constant over the entire spacetime volume. This does not
make sense, since there is no need for o to adjust from its
chiral symmetry breaking minimum long before or long
after the correlator has acted. As pointed out in the dis-
cussion below Eq. (46), we should not expect og to be
constant over time scales = 7, and in fact we should expect
the mean field to relax to its vacuum value for t < —7/2
and ¢t = 7/2. Therefore the factor of T in {—the temporal
size of the box—should be replaced by ~7, the time scale
of the correlator, and we have

(=

T

NV2M — f)? (54

which is independent of 7. Perhaps one can compute a
more accurate, time-dependent mean field solution, but we
do not pursue that here. In an analogous calculation of the
Polyakov loop distribution at finite temperature, a strictly
time independent mean field solution is probably exact in
the large N limit, due to the homogeneity in time of the
operator being measured.

We conclude this section by remarking that in the par-

ticular limit
N — o0,

T — 00, 7{ = fixed, (55)

all cumulants «, vanish for n =3 and Yr assumes a
normal distribution,

V2T [obew?
= P
p3

P(x) 3

] {(x — w)
(1 s

X [(c— w? — 332] + @(;2)), (56)

where 32 = (2M — f)7{, which is to say, a Monte Carlo
simulation of the fermion propagator will be sampling a
log-normal distribution. With 32 growing linearly with
time and a skewness that grows exponentially with 3.,
this distribution will eventually become very heavy-tailed.
Standard simulation methods would fail for such a
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distribution, but one could use a cumulant expansion of the
Monte Carlo data to obtain an accurate measure of the
fermion mass, as described in Ref. [3]. However, it should
be noted that this limit requires 7 = NV, which is unlikely
to be reached in practical lattice simulations of this model.
For the more realistic limit 2> << 1 one may use standard
statistical techniques and the signal-to-noise ratio in this

case will be =~ 1/4/Ny;, 32 ~ 7712, where N, is the
number of gauge field configurations sampled. This
power-law dependence on time is far less severe than the

exponential falloff of the signal-to-noise ratio in the A/V
case [see Eq. (43)].

V. DISCUSSION

Our motivation for returning to the well-worn Nambu-
Jona-Lasinio model was to elucidate connections between
chiral symmetry breaking and the sign problem in lattice
QCD at finite chemical potential, without having to deal
with the complications of asymptotic freedom and con-
finement. What is particularly attractive about the large-N,
three-dimensional version of the theory is that (i) it is
analytically tractable to compute features of the probability
distribution of a fermion correlator, and (ii) the theory
has two equivalent formulations, one without a sign prob-
lem, and one with a QCD-like, exponentially severe sign
problem.

We find that in the QCD-like A/V formulation, the
fermion determinant is complex and that a Splittorff-
Verbaarschot argument [9,10] can be made to show that
the phase of the fermion determinant has to fluctuate wildly
for u > m,/2, with an expectation value exponentially
small in the spatial volume. When looking at fermion
correlators, the distribution evolves to have an exponen-
tially small mean relative to its width, implying a severe
signal-to-noise ratio when sampling the correlator using
Monte Carlo methods. Furthermore, the severity of the
problem is controlled by the difference between the fer-
mion constituent mass M (playing the role of the baryon
mass in QCD) and the much lighter pion mass m . This
follows the Lepage-Savage scaling argument that has even
cumulants of the distribution diminishing as a power of
exp(—m,7), while the odd cumulants—including the
mean—fall off proportional to exp(—M ). It is interesting
that in three dimensions one can choose an observable for
measuring the fermion mass [by a particular choice of the
matrix I' in Eq. (32b)], which eliminates the coupling of
the fermion/antifermion pair to the pion, and thereby elim-
inates the problem of noise in the measurement of the
fermion mass. Such a trick might be a useful way to reduce
the noise in simulations of QCD in four dimensions, even if
it cannot eliminate it.

In contrast, the o/m formulation with even N has
no sign problem at nonzero u, and the correlator
distribution—the cumulants of which can be analytically
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computed—is, in a certain limit, log-normal. For
extremely long times the distribution is heavy-tailed,
which can pose challenges to Monte Carlo sampling,
but this sort of problem seems to be less severe than the
exponential falloff of the signal-to-noise ratio in the A/V
formulation as seen with the cumulant expansion analysis
of Refs. [3,24,25]. For more moderate times, standard
statistical methods should apply, and the signal-to-noise
ratio in this case is found to have only power-law sup-
pression with time. It should be noted that such distribu-
tions have been seen in QCD for intermediate times,
before any asymptotic pion noise sets in. It has been
hypothesized that these distributions are related to elastic
scattering between particles [26]; the volume factors in
our expressions for the cumulants, Eqgs. (53) and (54),
give support to this picture.

Our analysis should make it clear that the sign problem
encountered in QCD at nonzero chemical potential is not a
fermion problem, but instead a consequence of interac-
tions. In particular, if the particles being studied can exist
in a tightly bound state of valence fermions, there is going
to be a sign problem—a generic feature of a theory with
dynamical chiral symmetry breaking, in which a light
composite pion emerges as a Goldstone boson. This is
what happens in the A/V formulation of the NJL model
studied here: the fact that the A and V fields will bind a
fermion/antifermion pair into a light or massless pion
implies that studies of the fermion correlator will be noisy,
and that at the nonzero chemical potential for the fermion
there will be a sign problem. In the o/ formulation
without a sign problem, the pion exists as a fundamental
field and not as a bound state.

The lessons learned from this model raise the question:
is it possible to introduce a mean field for the pion into
our formulation of lattice QCD (without changing the
theory) so that the pion does not appear as a bound state
of a valence quark/antiquark pair, 00? For example, one
might add and subtract a four-fermion interaction to the
QCD Lagrangian; the attractive one could be introduced
by o and 7 auxiliary fields, while the repulsive interac-
tion could be derived by means of auxiliary A and V
fields. Then a valence QQ pair would feel the usual gluon
attraction, but A/V repulsion, and so would not bind to
form a light pion. Instead, pions would appear as funda-
mental fields that could be created through QQ annihila-
tion, but would not appear as bound states of valence
quarks. It is expected that the conventional sign problem
could be ameliorated in such a theory—but this example
probably introduces other sign problems, a cure perhaps
as devastating as the disease.

Nevertheless, we believe that inventing a way to intro-
duce the pions into QCD as fundamental fields could be an
important step toward solving the QCD sign problem and
beginning to study the properties of ordinary and dense
matter from first principles.
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APPENDIX: CONNECTION BETWEEN MEAN
FIELD CALCULATION AND TREE LEVEL
CUMULANT DIAGRAMS

In Sec. IVB 2, we asserted that the sum of tree graphs
contributing to the cumulants of Yt is equal to the effective
action Sy, evaluated at its minimum. Here, we will show
this equivalence in more detail.

We have two different representations for the generating
function, W(s). The first is in terms of a functional integral:

7 = e—W(s) — f[d¢]€_NS(¢)+i‘VY(¢). (A1)
The second representation is as the generating function for
cumulants:

W(s) = const — i (l;#

n=1

K,. (A2)

Changing variables, s = Nr, we have

e V) = / [dple NAU®), (A3)
with A(r, ¢) = S(¢) + ir¥(), and
W(r) = const — Ng %(N"_IK,!). (A4)

We now compute W in a large-N expansion, which is
equivalent to a mean field expansion:

© AWM

Ar, )= A0+ 8", (AS5)
n=2 n!
where we have defined
6}1
A M = A , AN =0, (A6)
80" | p=¢,

with ¢, being the classical solution that minimizes A and
8¢ = (¢ — ¢y). This allows us to write

00 ;q(n)§¢,,

n=2 n!

e W) = g~ NAY '[[db‘d)]e*N

f:}%(zn)g;lj-[da ¢]e—%ﬂ(2)8¢2 +15¢i|
J=0

const _ o amsn  __J2
=7X6_Nﬂ(0)[e NZH T sIm e Nﬁm]J:O.

VdetN A

_ (0) _
— o NA I:e N

(A7)
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To determine the leading contributions to «,, we must

locate the terms that are both leading in N and r-dependent.

(1) The constant factor in Eq. (A7) is independent of r
and does not contribute to «,,.

(i) The factor in brackets in Eq. (A7) is the sum of

connected diagrams whose propagators scale as

1/N and vertices as N. Thus, these diagrams scale as

NV—P — NI_L, (A8)

using the topological invariant L +V — P =1,
where V, P, and L are the numbers of vertices,
propagators, and loops, respectively. These diagrams
do not contain tadpoles, as there are no terms linear
in ¢. Therefore, this quantity only contributes to
W(r) at one loop and higher and is thus O(N°) and
subleading.

(iii) The determinant factor in Eq. (A7) contributes to
W(r) a term 1 TriInNA® = const +1 Trin A?.
The constant is N dependent, but r independent,
whereas the second term is r dependent, but N
independent. Therefore, the determinant factor
comes in at @(N°) and is also subleading.

(iv) We are left with the e ™V A term: this gives NAY,
the classical action at its minimum, as the leading
contribution to W, at O(N).

We will now relate A©, the action at the classical

minimum, to the diagrams in Fig. 5. From above, we see
that we can expand W(r) in powers of N:

W(r) =const+ N[Wy(r) + N"'W,(r) + N 2W,(r) + -],
(A9)

where W, (r) = NA© . We can also write W(r) in terms of
cumulants,

W(r) = const — N Z Q(N”_lxn). (A10)
n=1 n:
From this, we see that «,, may be expanded as
1 k)
Kn = ST go N (A11)
with
_ e U
W,(r) = — Zl K (A12)

We have previously identified the sum of tree graphs with n
white vertices as the leading contribution to the nth cumu-
lant, k, o. Thus, we see explicitly that

— (ir)"

Wo=—>

n=1

ko, (A13)

which proves our assertion that the sum of tree graphs in
Fig. 5 is equal to the effective action Sy = NS(¢) —
isY(¢), evaluated at its minimum.
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