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Mistakes in Quasilattices
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%e studied a class of mistakes or faults in quasilattices. The effect of a random distribution of mis-
takes on the diffraction of 10, and a special class of 30, quasilattices is calculated exactly. Mistakes
change the diffraction pattern qualitatively: Some Bragg peaks decrease in intensity as expected, but
some are enhanced. As a result some spots disappear and some new ones appear. The diffuse scattering
is also calculated. Results are given comparing calculated diffraction patterns in fivefold, threefold, and
twofold symmetry directions for a 30 quasicrystal with and without mistakes.

PACS numbers: 63.50.+x, 05.50.+q

Perfect quasilattices S.—everal workers have calculat-
ed the x-ray diffraction pattern of perfect quasicrystals, '

with use of the Penrose tiling as the basic model struc-
ture, and have obtained good qualitative agreement with

experiments. There are also various studies of perfect
Penrose lattices in different dimensions. 3 6 In this Letter
we discuss a special class of defect, namely mistakes in a
quasilattice (QL). We study the effect of mistakes on
the diffraction intensity in a one-dimensional quasi-
periodic lattice exactly; then we generalize to higher di-
mension. Significant qualitative changes occur in dif-
fraction intensities when mistakes are present. Real
quasicrystals are obtained by highly nonequilibrium pro-
cesses, imperfection is inevitable, and mistakes have now

apparently been observed.
Consider a perfect one-dimensional QL, namely the

Fibonacci lattice (FL),26 defined as a 1D tiling with two
basic unit lengths S 1 and L r (1+J5)/2. The po-
sition of the nth lattice point x (n) is

x (n ) -n +a+ [n/r+ P]/p;

O~a, P(1, and p&1 are three parameters. Here we

take p r for simplicity. 6

A difference between quasiperiodic, periodic, and ran-
dom lattice is the configuration number for n sites,
C(n), which is the number of distinct configurations for
an arbitrary n segment. C(n ) is constant for the period-
ic lattice, and exponential in n for a random lattice. For
the QL, C(n) is linear in n. For FL, C(n) n+1:
There are only three two-segment and four three-
segment configurations. The segments SS and LLL are
prohlbtted (Flg. 1).

Mistakes in a one dimensional qua-silaltice For the. —
FL, one of the simplest types of defect is transposition in

sequential order of L,S segments. If we impose a restric-
tion that the random occurrence of transpositions will

not completely violate the geometrical properties
described above, the energy cost is small. One expects
that such a type of defect is generic. Since it differs
from the usual defect discussed in crystals, and is similar
to mistakes in stacking sequence discussed by Wilson
and others, we call it a "mistake. "

This changes the Fourier transform from that of the per-
fect lattice F(q) to that of an imperfect lattice denoted
F'(q ): The term exp[iqx (n )] is replaced by

exp[iqx'(n)] exp[iqx (n )] exp[iqx (n——1)]b„

where 6 exp(iqL ) exp(iqS ).—

x(n —1 ) x(n) x{n+1 )
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x'(n —1) x'(n) x'(n+1)
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LSLLSLSI LSLLSLSLLSLSLLSLLSLSLLSLLSLS
L' O' L' L' S' (c)

FIG. l. (a) Cluster LLSLS in the perfect FL. (b) A mis-
take occurred at site x(n): The cluster became LSLLS. (c) A
segment of a perfect FL. All clusters of type LLSLS are
underlined. The distance between these clusters is either
S' 3L+2S r S or L' 5L+3S r L and follows a Fi-
bonacci sequence; hence form a FL with basic length S' AS.

The simplest restriction requires that the three-site
configuration remain unchanged, i.e., maiantain the fol-
lowing selection rules: no SS and no LLL. Careful ex-
amination of the FL shows that possible mistakes con-
sistent with these constraints have the form of a transpo-
sition in the five-site configurations, LLSLS LSLLS
(Fig. 1); one has to exclude SLSLL SLLSL.

Label the position of the nth lattice site in the imper-
fect FL as x'(n ). Suppose a mistake occurred at site n,
namely

x'(n —1)-x (n —1);

x'(n) -x'(n —1)+S;
x (n ) -x (n —1)+L;
x'(n+1) -x'(n)+L -x(n+1);
x (n + 1)+x (n —1)+L +S.
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For every LLSLS cluster in the perfect FL, impose a probability p that it will flip into LSLLS. Label the position of
these clusters by y (m ) x (m —1), where x (m —1) is the position of the atom which is between the first two long spac-
ings of the cluster (Fig. 1). Note that the set y(m) is only a subset of all x(n). The Fourier transform of the lattice
with a given configuration of mistakes is

F'(q, {o}) g exp[iqx'(n)] -gexp[iqx(n)] —g exp[iqy(m)]A(cr ),
pg

~ —cm n y(rn)

~here

L/S with probability p,
6(o'sI) exp(lqScfsI) exp(lqS)~ O'Is

I h b b I (1 ) (4)

Assume that mistakes occur independently with probability p at all possible sites y (m ). To obtain the observed diffrac-
tion intensity I(q ) &FF» & one has to average over all possible configurations of {o}.In general,

&F(q,{a})F'(q,{a})&-&F(q, b}&&F'(q,{a})&+D(q);

D(q) is the diffuse scattering. To calculate the first term, define

F'(q) —=&F'(q, {a})&-F(q)—&f({a})&.

Here f({cr}) is the second term in Eq. (3) and is a function of configuration {a}:

(5)

&f({cr})& g exp[iqy(m)]&a(cr )& pa g exp[iqy(m)], (7)
y(m) y(m)

with d, h(r). Careful analysis of all possible sites reveals that the set y(m) itself forms a new FL with basic lattice
length S' 3L+2S r S, and a possible shift of origin (Fig. 1). Therefore

F'(q ) -F(q ) p~(z—4q )exp(iqri),

where ri is a constant depending on (a,P) and the exact procedure one used to define the scaling. But the phase is not
relevant to our results on the effect of mistakes on 1(q ).

The diffraction function of the perfect FL has been calculated by several workers. s The known result is that F(q )
consists of a sum of weighted 8 functions dense in q space:

F(q) /exp(il/l, )[sinz „/z „]b(qa —q,a),
m, n

where q~„2(n/%5)(nz+m); z~ 2(n/J5)(n —mz); y „q a+(2P —1)z „;and a J5/r is the average lattice
spacing (for simplicity we have taken S 1). Substituting Eqs. (9) and (10) into Eq. (8), after some algebra one has

exp(iy )sin(z /2) —p sin(q /2r)exp(i j )sin(z „/2r )F' q 8qa —
q a,

IS,S Zygo/

where

z4a+(21J-1). ".+q /2z+-n/2.

The second term in Eq. (5) has been calculated exact-
ly in Ref. 8:

D(q) -[4p(1 —p)z 4/N]sin'(q/2r),

~here N is the linear dimension of the crystal in units of
the average atomic spacing a. Experimentally, a typical
diffraction peak line width Aq is about 10 in units of
1/a, and so the contribution of D(q) to the peak intensi-
ty is order of (p hq )/(Nr ). Presently available samples
have N -10 in a single grain; so for p 0.2 (Fig. 2) the
contribution is order of 10 6. Therefore for all diffrac-
tion peaks ~hose intensity is larger than 10 of the
maximum peak intensity, the diffuse background can be
neglected. On the other hand, those peaks whose intensi-

ty ratio to the maximum is of order 10 or smaller will
merge into smooth background as a result of diffuse
scattering. This will be hard to distinguish from other
incoherent scattering. In this Letter we are primarily in-
terested in those peaks whose intensity is around a cutoff
which is taken to be much larger than the contribution
from the diffuse term, and so D(q) will be neglected in
the following calculations.

From the above equations one sees that mistakes
change the relative intensities of different Bragg peaks,
depending on the values of p and q . As expected, some
peaks decrease in intensity. An unexpected result is that
some peaks are enhanced. This effect is more pro-
nounced in the three-dimensional case, as we show
belo~.

The restriction we have imposed on the imperfect QL
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FIG. 2. The diffraction pattern calculated from Eqs. (8) and (10) with p 0.2 (the "concentration" of mistakes is pr ~ 3%) in

Eq. (11). The radius of a spot corresponds to the intensity. Top row: perfect lattice; bottom row: imperfect case. When mistakes
occur, spots such as those sho~n by arrows in the top row are diminished below cutoff, and spots such as those shown by arrows in the
figures in the bottom row are enhanced above the cutoff. Shown is diffraction on planes normal to (a) fivefold, (b) twofold, and (c)
threefold axes.

could be weakened, e.g., by our allowing more general
types of permutation, namely by permitting the variable
o~ in Eq. (4) to have a continuous distribution. This
will not change the overall calculation; however, now the

will have a more complicated dependence on q.
Another way of generalizing is to require that the n-site
configuration be kept the same. Then instead of z in

Eq. (11) a different power of r may appear. For exam-
ple if one permits every LS in the Fibonacci sequence to
transpose to SL, one will get l scaling.

Mistakes in a three-dimensional qttasilat tice—Qualitatively one expects that the same effects will
occur in a three-dimensional quasiperiodic structure,

namely in the generalized Penrose tiling. Levine and
Steinhardt? have shown that for the Ammann QL, the
Fourier transform is a simple product of the Fourier
transforms of three 1D FL. Since the skeleton of a
three-dimensional Penrose tiling is equivalent to an Am-
mann QL, the qualitative result is also true for a general
QL. Mathematically an Ammann lattice is a quasi-
periodic hexagrid which is the simple direct product of
six one-dimensional quasiperiodic grids, each with grid
direction along one of six fivefold symmetry axes
(e;,1=0,1, . . . , 5) of an icosahedron. Because the hex-
agrid is nonsingular (no more than three grids intersect
at one point? 4), the diffraction amplitude F?(k) of the
vertices of the hexagrid can be written as

F?(q) g F(q ll"k)F(q u.k.)F(q'uk")
f &j&k

(12)

where F(x) is given by Eq. (9) and utjk ej xek/[et (ejxek)]. S.ince the support of F(q) is the set q =q~„, the argu-
ment of each factor in Eq. (12) must be of the form q „ in order that F3(q) not vanish. This requires q to be of the
form

q=(2n/a)[(n;+m;r ')e;+(nj+mjr ')e~+(nl+mkr ')ek]
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We now extend the class of mistakes to the three-

dimensional tiled lattice. Mistakes in tiling now corre-

spond to a transposition of grid order. This kind of tiling
is generated from the hexagrid by taking each grid se-

quence to follow the 1D imperfect FL. Therefore the dif-

fraction amplitude F3(q) of a QL with mistakes will be

expressed in terms of F'(q ) of Eq. (10) as

g F'(q ui, g, )F'(q «p;)F(q us;, ). (14)
i &j&k

This diffraction intensity is quahtatively different from
that of Eq. (12). As in the 1D case, some quasi-Bragg
peaks decrease in intensity as expected, but some peaks
are enhanced. In Fig. 2 we have plotted the results com-
puted from Eq. (12) (p 0) and Eq. (14), taking p 0.2
in Eq. (11). Only those Bragg peaks whose intensity is
larger than some arbitrarily chosen cutoff are shown.
Results are that some Bragg peaks in the diffraction pat-
tern of the perfect QL are extinguished, and that some
Bragg peaks previously absent now appear above thresh-
old. A few examples of each are shown with arrows in
Fig. 2. This picture differs qualitatively from the dif-
fraction pattern of a usual crystal with faults, where the
effect of randomness always reduces the intensity of
Bragg peaks. s These results are independent of the value
chosen for the cutoff.

Figure 2 illustrates the symmetrical case, in which the
shift parameter ri [in Eq. (7)] is the same in all the grid
directions. However, this is not necessary; mistakes can
be implemented so that fivefold, twofold, and threefold
rotational symmetry is lost, by our choosing different pa-
rameters for different grid directions. Results will be
published elsewhere.
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Jiiore added. —After our work was completed we
learned of important, and independent, work by Robert-
son, Misenheimer, Moss, and Bendersky which includes
a suggestion that faults occur in quasicrystals of Al-Mn-
Si alloys. Their proposed faults are identical to the mis-
takes proposed and analyzed here.
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