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%e study the properties of one-dimensional quasilattices numerically and analytically. The
geometrical properties of general one-dimensional quasilattices are discussed. The Ising model on
these lattices is studied by a decimation transformation: The critical temperature and critical ex-

ponents do not differ from those for a regular periodic chain. The vibrational spectrum in the har-
monic approximation is analyzed numerically. The system exhibits characteristics of both a regular
periodic system and a disordered system. In the low-frequency region, the system behaves as a regu-
lar periodic system; wave functions appear extended. In the high-frequency region, the spectrum is
self-similar and there is no unique behavior for the wave functions. The spectrum shows many gaps
and Van Hove singularities. The gaps in the spectrum are also obtained analytically by examining
the convergence of a continued-fraction expansion plus decimation transformation. The energy
spectrum of a tight-binding electron Hamiltonian on the Fibonacci chain is also analyzed; it shows
similar characteristics to those of the lattice vibration spectrum.

I. INTRODUCTION

The discovery of icosahedral symmetry in a binary al-
loy of Al and Mn by Shechtman, Blech, Gratias, and
Cahn' has opened a new era in condensed matter physics.
Immediately after the discovery, Levine and Steinhardt
proposed a model which explains how icosahedral symme-
try can coexist with long-range order: a crystal-like struc-
ture which gives sharp x-ray diffraction peaks. Since then
several workers gave arguments based on Landau phase
transition theory which showed that an icosahedral sym-
metry structure could be favored over the bcc structure in
the quenching process. s' Also the elastic properties were
discussed based on Landau theory. However, at present
no experiment strongly supports any particular model.

In their paper Levine and Steinhardt proposed a three-
dimensional Penrose tilings as the basic structure for the
icosahedral crystal. There are two distinguishing features
in their model: First, for any given finite length there are
many local icosahedral symmetry centers with a range of
symmetry larger then the given length; second, instead of
a periodic order which cannot coexist with icosahedral
symmetry, it is necessary for the new structure to have
quasiperiodic order. In this paper we concentrate on this

second feature and study the properties of general one-
dimensional quasilattices.

II. GEOMETRY

A regular periodic one-dimensional lattice can be gen-
erated from one basic unit cell by translation (or induc-
tion). A general one-dimensional quasilattice can be gen-
erated from a finite set of basic cells by a generalized in-
duction procedure as follows. Let ai, a2, . . . , tte be g
basic units. Define this original pattern as stage 0 of the
sequence. Then stage n+ 1 of the sequence is obtained
inductively from stage n by the following (concurrent)
substitution rule:

where a represents a column vector: a=(a i,a2, . . . , as)',
where t is transpose; and M = (trt;1 ) is a g Xg matrix with
non-negative integer entries. The matrix M and its suc-
cessive applications fully determine the sequence. In this
paper our interpretation of the action of the (concurrent)
substitution rule [Eq. (1}]is that at each stage aj is re-
placed with mti a, followed by (or concatenated with)
mji a2, . . . , etc , for j=1,2,. . . . ,g. Following are
several examples:

1 1
M= - AB —N ABAB~ABABABAB ~ABABABABABABABA ~ (2a)

1 1 1

M = 1 1 1 — =- ABC~ABCABCABC ~ABCABCABCABCABCABCABCABCABC~. . .

.111. (&b)
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1 1
M— -==- AB—+ABA —+ABAAB ~ABAABABA —+ABAABABA ABAAB ~

1 2
M =

1 0
=-- =-- AB~ABBA ~ABBAAABB ~ABBAAABBABBABBAA —+ . (2d)

1 1
M =

2 0
=-- AB~ABAA ~ABAAABAB~ABAAABABABAAABAA —+ (2e)

1 2
M

1 1
AB +ABBAB~ABBABA BABBAB—+ ABBABABABBABABBABA BBABABABBAB (2f)

Notice that the first two cases of Eq. (2) are periodic
structures: M has the property that all the elements in
one column are the same. Hence, the determinant of M is
zero: This is a sufficient condition for periodic structures.
The other four cases are nonperiodic structures, but the
structures generated are nonetheless fully deterministic
and highly ordered. Furthermore, as the length of the
pattern goes to infinity, the ratio between the total num-
ber of elements of different components approaches con-
stant value.

Consider the simple case with two basic elements, A
and 8 (i.e., g=2). Let Nz"', Nq"' be the number of oc-
currences of elements A and 8 at stage n, respectively:
They satisfy the following recursion relations:

Ng ' ——m)iXg +m2)Ng",(n+1) (n) (n)

=m)2' +m22Ng" .(a+i) (n) (n)

As n tends to infinity, the limit r = lim„„(X„'"'/N]])
exists and is given by

m ]]—m/2+ [(m 22
—m ]]) +4m ]pm 2] j2 1/2

2P77 )2

(m]z&0) . (4)

For the examples given above, r has the following values
with respect to Eq. (2a), Eq. (2c), Eq. (2d), Eq. (2e), and
Eq. (2f), respectively:

r =1, r=, r =l, r =2,r = . (5)
vZ

2
' ' '

2

We see that the number r need not be irrational for the
generation of a quasiperiodic lattice.

The simplest example of a quasiperiodic lattice is the
case of Eq. (2c), which is known as the Fibonacci se-
quence. The number r=(]/5+1)/2 is the golden mean.
If we implement A and 8 as two distances with respective
lengths L and S such that L/S =r, the sexiuence can be
obtained by a projection method from a two-dimensional
square lattice. However, not all quasilattices can be ob-
tained by a projection method.

To distinguish the quasilattice from periodic lattices

and random lattices we introduce the configuration num-
ber C(n). It is defined as follows: Randomly pick a seg-
ment of length n cells, then the total number of possible
configurations is C(n). As is well known C(n) is con-
stant for a periodic lattice, and exponentially dependent
on n for a random lattice. For the quasiperiodic lattice
the upper bound for C(n) we found is linear in n Take.
the Fibonacci lattice as example. The argument is the fol-
lowing: For any n one can find m such that
E~ ~&n &F~, where F~ are the Fibonacci numbers
(+0 1 ~] 1 and Fppg+] Fyg ++ppg —] «r m & 1) By
the defiation procedure the whole lattice can be regarded
as consisting of S' and L' only. These have F ] and
E~ cells, respectively. Since the first E~ ] cells in L' are
in the same order as S', for any segment of length F the
number of possible configurations is less than F +]
which is certainly also an upper bound for C(n). By the
way m was chosen one knows that F~+] is proportional
to n, hence, the upper bound of C(n) cannot excede
linearity in n Whether . there is a better estimation than
linear is not clear to us, and remains an open question.
We expect similar results will hold for higher-dimensional
quasilattices.

III. ISING MODEL

Consider a one-dimensional Ising chain with separation
d,&

of successive spins, given by either L or S which is
determined by Eq. (2c) with nearest-neighbor coupling ei-
ther —IL or —Jz [Fig. 1(a)]. The Hamiltonian and parti-
tion function are

S ]i L

2 I

FIG. 1. (a) Quasiperiodic Ising chain with two different in-
teraction constants —Jt and —Jz. (b) Quasiperiodic harmonic
chain. All atoms have the same mass and are connected by two
different spring constants kL and k&.
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JL if dJ L-—
J,"a,g, J,"= '

J .
d S (NN=nearest neighbor),

Z = g exp[ —PH(Io; j )]=
I;=+~I I cr;, cr. =+1I

JIJexp + g K(~0'(VJ, K(J =pJ( J=
ij =NN

We divide all spin variables into two sets, Io j and Icr; j
[indicated by 1 and 2 in Fig. 1(a)]. Summing over all pos-
sible configurations of set 2, the partition function can be
expressed in terms of new coupling constants K,J and spin
variables of set 1. Apart from a constant factor, the new
partition function has the same form as the original one.
The renormalization transformation can be easily worked
out

tJ ——tg ——t, =0, EL ——Eg ——0, T, = ce,
tl ——tg ——t, =1, I(1 ——SCg ——00, T, =0 .

Near the critical point T, =0,

(10)

s 1 0 b, ts
(12)

The two eigenvalues of the transformation matrix are
A, ,„=~,A,z

———1/v. The critical correlation length ex-
ponent v is related to the largest eigenvalue

in~max lngv= = =1, (13)
lnb ln~

where b is the geometrical scaling factor. We see that all
these features are the same as in the case of the ordinary
one-dimensional Ising lattice. The procedure carried out
above does not depend on the particular lattice chosen.
Rather it is the self-similarity property of quasiperiodic
lattices that made it possible to carry out the renormaliza-
tion transformation and that determines the form of re-
cursion relations. Therefore, the result (T, =O, v= 1)
should be valid for all one-dimensional quasiperiodic lat-
tices. We have carried out the calculation for the general
g=2 ease, and the same results follow.

IV. VIBRATIONAL SPECTRUM

I.'=L +S, S'=I. .

tanh( Kz ) = tanh(K~ )tanh(Ks ), Ks ——Kz .

The renormalized system should have the same geometry
as before; this requires L '/S'=L /S, or L /S =r
=(@5+1)/2, which gives L'=rL; and S'=vS. The two
fixed points are obvious. Denote t =tanh(K), then the
fixed points are

lattice is intermediate between periodic and disordered, so
it would not be surprising if it showed characteristics of
both systems.

Let u„e ' ' be the displacement of the nth atom from
its equilibrium position snd k„„+&the spring constant
connecting the nth to the (n+ 1)th atom and m„ the
mass of the nth atom. The equation of motion is

2

+k„ i g(ug i
—ug), n =0, 1, . . . , X .

(14)

un

where

0 =T nun+1 ~~n+)

n, n+1ka„=+ —m n
kn-i, . n, n+1k

n k„
For a finite chain of N + 2 sites

u1 T 1T2 T N —1TXuX+1 ~uX+1

To obtain the eigenfrequency we must impose a boundary
condition. We will use the fixed ends boundary condition
Q0 =Q~+ ) =0. Thus,10

0

We are unable to solve a set of X of these equations
analytically for quasiperiodic lattices. The difficulties
come from the fact that the near-neighbor configurations
of the nth atom cannot determine the near-neighbor con-
figurations of the (n+ l)st atom (but they are related)
even though the number of types of near-neighbor config-
urations is a finite small set. However, by using the
transfer matrix method we have been able to obtain the
spectrum numerically for E up to 8 X 10 . Extensive cal-
culations were carried out for the Fibonacci sequence and
some calculations were also done for the other examples
given in Sec. II.

Introducing a displacement vector (u„ i,u„),one can
write

a„ b„

&2& ~22 0
Consider a one-dixnensional chain of atoms connected

by hartnonic springs. If the system is periodic, Bloch's
theorem may be applied and, therefore, the solution of the
equation of motion is wavelike, the phonon spectrum
forms one or more bands, and the density of states is
singular near the band edges. On the other hand, if the
lattice is totally disordered, the wave function exhibits lo-
calization behavior, and the spectrum is a discrete set.
However, as we pointed out in Sec. II the quasiperiodic

To have a nontrivial solution for uz, co must satisfy the
eigenvalue equation

a i i(co)=0 .

From the eigenvalue equation the spectrum and density of
states are obtained. For large X these spectra should ap-
proach the true spectra of the infinite system.

Consider the case that all atoms are identical, i.e.,
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m„=m for all n and there are only two different spring
constants kL, or ks [Fig. 1(b)], depending on whether the
distance between two atoms is long or short as per the Fi-
bonacci sequence. There are only three possible types of
nearest-neighbor configurations for the Fibonacci chain,
namely LS, SL, and LL. The corresponding matrices TJ

4(b)], suggesting that a long-wavelength wave propagates
along the system with sound velocity proportional to the
constant C. A simple estimate for C is just given by tak-
ing the geometrical average of the parameters involved,
namely the lattice spacing and spring constant, then treat-
ing the system as periodic mth these averaged parameters.
This gives C =r/(2m ''1+rA, ). The fit is shown in Fig. 2,

SL: T'=
1+ 1—kI. Pl Q)

S L

LS: T"=

Nl CO

kL
(19b)

LL: T'"=

2PlN

kL
(19c)

The matrix A is the product of N of these matrices
with the particular order determined by the sequence.
Numerical calculations were carried out for several dif-
ferent N (100& N & 8000) with different values of
A, =k, /ks.

The following conclusions are suggested from the re-
sults of numerical simulations:

(1) In the low-frequency region [x =m (co /ks) «0.1],
the spectrum and wave function behave almost identically
as for the ordinary periodic lattice. The integrated density
of states can be fitted by

0.0 1.55

SCaled frequenCy x = m tu2/ kg

3.10

D(~2) C(~2)1/2 (20)

where C is a constant (Fig. 2). The wave function looks
essentially like a single harmonic periodic wave [Fig.

3.00 3.05 3,]0

1l.36
Scaled frequency r

N

Ctt

N

CI

+

C
"U
'a
Cg

Ol}

(c)

G. GG
G. OG

Scaled frequency x (10 ~) 3.0890 3.0905 3.0920

FIG. 2. Integrated density of states in the low-frequency re-
gion with A, =(V 5 —1)/2 =0.618 (see also Fig. 3). The solid line
is fitted by Eq. (20) with C given by the average estimation as in
text. Thc system s1zc 1s 4000 atoms. The horizontal axis 1S

scaled frequency x =m~ /kq, and the integrated density of
states is normalized to 1.

Scaled frequency x

FIG. 3. (a) Integrated density of states for the Fibonacci
chain of 2000 atoms with A, =(+5—1)/2. The coordinates are
the same as in Fig. 2. (b) is the same as (a), enlarged around
x =3.10. (c) is the same as (1), further enlarged around
x=3.0905. Self-similarity is clear.
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t

Q

C
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0.0

Coordinate of atoms (102)

11.0
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and the agreement is good.
(2) Careful examination of o 1o our results shows that the

spectrum is self-similar. The self-similari
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V. STRUCTURE OF THE SPECTRUM

Q

(

CJ

Q

O
4/)

0.0

Coordinate of atoms ( 102)

11.0

(c)

s we pointed out in thethe preceding section, in the limit
~op there are an infinite number of a s

'

t th i t tedd ensity of states is self-

e us introduce dimensionless

1 1 io ofh e spectrum or dif er

chain breaks into isolat d t dc ' '
o a e atoms and islands of two atoins

y ~, ence, the onl oy p ssible eigenvalues are
n t e other hand, for A. =1.0~, ——.tecai be-

omic c ain connected p g
n t is case no gap should appear. Define z; by

oordinate of' atoms ( &0-')

FIG. 4G. 4. %ave function for A, =k /k =i /k~ = ( V 5 —1)/2 and 8000
e vertical axis is the square of th

, an t e horizontal axis is th[=o = =vr=( 5 —I)/2]. (a) x =mr@ /k =
&10 It is a ~avelik t dede ex en state. |,'b) x=0... .;.d;,„...f 1 'o oc ization. (c) x=3.04 n th pp

end.
viously the state is localized at the right

Ql. Ql +1=a;+b; =a;(1+z;),
l

—1 —1

l l l +1 Pl

1+z;+1 1+z.i+1

where p:—6 a a1+1. One can then write

Zl (22)

where (a b are functions of x and k.
written as

an . en z; canbe
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II

4P
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(a)

b)
p4. =

a~a2
(26)P2=

a3a2 a2a] a }a3

Eq. (24) and the relation (b) is the best domain of values
of z &. Let us apply this theorem to our problem: z, (x,A, }
will not satisfy boundary conditions if

~ pj ~
& —, for all j.

So Eq. (24} is a sufficient condition for x not to be part of
the allowed spectrum, i.e. x is in a gap.

As pointed out in the preceding section, we can have
three different types of transfer matrix, hence, we have
three different sets of (a;,b;). Because of the special
geometrical properties of the sequence, they can only give
four different pj (Fig. 6}:

bz b)

0.0 2.0

Scaled frequency x = m au-'/ k.~.

If we consider the original sequence, then a and b take
following values, depending on the sequence:

SL: a) ——1+A.—x, b( ———A, ,

1 x 1IS: a2 ——1+———,b2 =

(27a)

(27b)

(b)

xLL: a3 ——2 ——,b3 ———1. (27c)

0.0 2.0

Scaled frequency x = m ~2/ k5

4.0

For a given A, and x, if all the pj satisfy Eq. (24) then the
point belongs to the gap region. Note the condition is suf-
ficient but not necess Iry; therefore, even if Eq. (24} is not
satisfied, the point may still belong to a gap. By this pro-
cedure we only found a small portion of the gap regions
obtained in the numerical study, i.e., the triangle formed
by three points: (0, 2.0), (0,4.0), and (1.0,4.0) in Fig. 5.

As the sequence is self-similar, we have developed the

FIG. 5. Phase diagram of the vibrational spectrum for the
Fibonacci chain. The horizontal axis is x =me@ /k~ and the
vertical axis is the relative strength of the spring constant
A, =kL, /kq. (a) The numerical results. White areas belong to the
gap. (b) Gap regions (black area) predicted by Worpitzky's
theorem with tenfold decimation. One can see that this diagram
is almost the exact complement of (a).

Og

b3P'
I 0302

b3
Pg'O O

I

bl
(b)

Z]
Pr

pz

P3

(23) I
) 03
L

»
I

b,

3 O O
I

b3

bt
Pq'

(c)

1+.
'1+

Zn+1 I I I I
I OI bi I
L

The boundary condition uo=uz+& ——0 corresponds to
z~+) = 00 and z) = —1.

On the other hand, %'orpitzky's theorem' *' states that
for p& a function of any variable over a domain D, if

I
L b I

~ pj ~
(—,

' for all j, (24) b3
(g)

then (a) the continued fraction z~ [Eq. (23)] converges uni-
formly over the domain D,

(25)

(c) the constant —,
'

is the best constant that can be used in

FIG. 6. Definition of {a,b) and the four possible combina-
tions of pJ. (a) LSS, (b} LSL, (c) SLL, and (d) SLSL. Those
sites labeled by a cross are to be decimated. After decimation
the segments (1), (c), and (d) are shown in (e), (f), and (g}, respec-
tively, which define the new' coefficients (a', b').
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VI. ELECTRONIC SPECTRUM

Consider a tight-binding Hamiltonian

H = g ~

i —1 )t;, t (i
~
+

~

i )t;; (+i + 1 (30)

where
~

i ) represents a Wannier state associated with site
i, and t,J is the nearest-neighbor hopping matrix. We can
expand the electron wave function in terms of this orthog-
onal set

parison, the CPU time needed to get Fig. 5(b) is 2 orders
of magnitude less than that for Fig. 5(a), while the infor-
mation is almost the same. The above result also favors
the argument that the big gap region came from repeating
a small unit cell. For example the segment AB apple an
infinite number of times in the Fibonacci sequence; in
fact, any segment of arbitrary length appears an infinite
number of times in the infinite system. We have carried
out successive approximations to the golden mean, that is
the Fibonacci number. By treating the system as periodic
with period I'„,one can see the splitting of the spectrum.
Big gaps will be generated at the early stages of approxi-
mation and remain as gaps later on. The gap width
changes but convergence is rapid S.imilar calculations
were done and the same results were observed before. '

In the above calculations the physical system imple-
mented is that A =I., B =S, and we associated the two
different spring constants kL and ks with these distances,
respectively. This is not the only possible implements-
tion: for example, one can take A =S, 8=I. instead.
The geometrical and the scaling properties of the sequence
will not change, and the analyses cairied out above are
equally applicable. For example, in Fig. 8 we show a
similar result, corresponding to Fig. 5. Note in this case
there are combinations like SS but not I.I. in the se-
quence: hence, taking A. =kL/ks ——0 breaks the sequence
into segments of either two or three atoms connected by
the same spring ks. Therefore, the eigen values are
x =mco /ks ——0,1,2,3. Mathematically this implementa-
tion is equivalent to the previous one if instead of A,

changing from 0 to 1, A, changes from ao to 1. It is in-
teresting to see how the spectra develop as A. changes.
Starting with a two-point spectrum when A, =O, it
develops into a continuous spectrum when A, reaches 1,
and the spectrum becomes a four-point spectrum when
A~QQ ~

three different sets of ( a, b)

a, =x, bi= —A, ,

x ~ 1

A,
' (33)

VII. CONCLUSIONS

The analysis and calculations in the above sections can
be carried over to general one-dimensional quasilattices in
a straightforward way. The main conclusions should be
the same. In summary, the quasiperiodic system refiects
properties of both periodic and disordered systems. We
have shown that quasiperiodicity is not necessarily related
to irrationality of some physical parameter. The Ising
model on a quasilattice belongs to the same universality
class as the regular one-dimensional Ising model. The
spectra (both phonon and electron) were shown to be
"Cantor-like" by decimation calculations, and they pos-
sess characteristics of both periodic and disordered sys-
tems. On the one hand, it is a Cantor-like spectrum; on
the other hand, it is bandlike and exhibits Van Hove
singularities near the band edges if one neglects the small
gaps. Similar spectral gaps and Van Hove singularities
are also found in the Penrose tiling. "'7 If the Penrose til-
ing model is a true basic structure for the new materials
found, one needs a generalization of the present analysis
to three dimensions in order to compare with experiments.
However, we expect the qualitative features of the spectra
will carry over to two- and three-dimensional cases.
Work on these problems is continuing for higher dimen-
sions.

Note added. After this work was completed we re-
ceived a copy of the work by Luck and Patribis, ' which
has some overlap with our work. Their results fully agree
with ours. We thank T. C. Choy for calling our attention
to this work.

a3 ——— b3 ———1 )

where x =E/tf, A=tL, , /ts, aild tt, ts are similar to kt, ks
in Sec. V. The analysis of the last section can be repeated
but with the initial (a;,b;) of Eq. (33). The result is
shown in Fig. 9. The characteristics of the spectrum are
the same as the vibrational spectrum. This agrees with a
computer simulation. ' The conclusions drawn about the
spectra and eigenfunctions in the last section are equally
applicable.

4=gu; ~t) .

Schrodinger's equation can be written as

(31)
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