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Electronic structure of a quasiperiodic system
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The general solution of a Schrodinger equation with a quasiperiodic potential in n dimensions is
obtained. A boost technique is presented, which will transform the problem to the solution of a
periodic pseudo-Schrodinger equation in n+ m dimensions, to which Floquet-Bloch theory is

applicable. We show that the eigenfunctions of the original problem and the boosted problem are
related to each other by a simple radon transform, and the eigenvalues are exactly equal. We
identify the hierarchical gap structure in the energy spectrum observed in numerical simulations
and we show that the location of gaps can be indexed by the reciprocal wave vector given by the
diA'raction pattern of the quasicrystal. The position and the magnitude of the gaps so predicted
are in qualitative agreement with numerical simulations.

Since the discovery in 1984 of an Al-Mn alloy with
icosahedral symmetry in its difIraction pattern, much
theoretical and experimental work has been carried out on
these and related systems. ' Substantial progress has been
made toward understanding the structure of these materi-
als in terms of a quasiperiodic lattice and its decoration.
However, the physical properties of these exotic materials
are less well known. The main dif5culty is the need for a
systematic analytic approach toward quasiperiodic sys-
tems analogous to the Bloch-theorem approach used in the
periodic case.

In this Rapid Communication, we provide such a
theorem for quasicrystals. It will enable one to draw qual-
itative conclusions about the wave function and energy
spectrum of a quasiperiodic system in n dimensions. We
have developed a boost technique by which we obtain a
periodic "pseudo-Schrodinger" equation in n+rn dimen-
sions which, upon projection down to n dimensions, pro-
duces the solutions for the quasiperiodic system.

There have been many numerical simulations of the en-
ergy spectrum of a quasicrystal in one, two, and three di-
mensions. The results indicate that there is a rich struc-
ture consisting of many gaps and singularities in the ener-
gy spectrum, and new types of wave function, exhibiting
extended, critical, and localized behavior. The results of
our present analysis are in agreement with those simula-
tions and provide a basis for understanding those results
and for further studies.

In this paper, we use the following notation: x, an n-
dimensional vector designating the coordinate of the elec-
tron; 4;j, the lattice point of the quasiperiodic lattice in n
dimensions; z, an (n+m)-dimensional vector, z =xy,
where y is an m-dimensional vector perpendicular to x;
IZED j, the lattice point of a periodic lattice in n+m dimen-
sions, Z =X& Y (4'j or JYj by themselves do not form a
periodic lattice); the reciprocal of (x,y, z,X, Y,Z) is
denoted as (q,p, k, Q, P,K).

Consider the Schrodinger equation for an electron in an
n-dimensional quasicrystal described by a quasiperiodic
potential V(x):

2

, +V(x) e(x)=ue(x);

here V(x) is a quasiperiodic function of x. Without loss
of generality one can write

V(x) =g v(x —A;), (2)

where v(q) is the Fourier transform of a simple ionic po-
tential and F(q) is the structure factor of the quasicrystal.

There are many models for the structure of a quasicrys-
tal. However, the fundamental skeleton of the lattice in
all of these structures is similar. For simplicity, we will
assume that the structure of a quasicrystal is simply that
quasilattice in n dimensions that can be obtained by a pro-
jection from an (n+m)-dimensional periodic lattice. The
structure factor of the quasilattice, namely the diff'raction
pattern, has been extensively studied, and we follow the
general approach of Bak. It is based on the fact that the
diff'raction pattern of a quasicrystal can be integer in-
dexed. Therefore, we define a quasilattice as a structure
in n dimensions whose diA'raction pattern can be integer
indexed by n+m linear vectors independent over the in-
teger domain. The symmetry of the diAraction pattern
will strongly limit the possible m, for example in the case
n =3 with icosahedral symmetry the minimum m is 3.
Mathematically, this means that F(q) can be written as

F(q) =gf(K, )~(q K, '), —

where the summation is over a periodic lattice jKj in
n+rn dimensions and K; is the component of K on the n-

with v(x) the electronic potential due to a single ion. The
summation is over all the quasilattice points fx;j at which
the ions are located. Hence both V(x) and the equation is
nonperiodic and the Bloch theorem is not applicable. The
idea of our approach is to boost Eq. (1) from n dimensions
to higher n+m dimensions, such that one obtains a
periodic pseudo-Schrodinger equation in n+ m dimen-
sions.

To construct the pseudo-Schrodinger equation let us
consider the potential part first. The Fourier transform of
V(x) is

V(q) =)~V(x)e'~"dx =v(q) pe' ' = v(q)F(q),
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dimensional subspace spanned by q. The diA'raction am-
plitude generally is a function K which is determined by
K II

Define a pseudopotential U(z) in n+m dimensions
such that its Fourier transform is

U(k) =v(q) gf(K )B(q —K;")8(p —K; )
Ks

=gU(K;)B(k —K;),
K]

(s)

2

+U(z) +(z) =E+(z) .
X

In terms of z = fz;J generally

82/6x ' =c;,(82/rlz;6z, ),
with the c;~ fixed definite coe%cients. Then one has

where tK=K'SK f and U(K) =v(K')f(K'). There-
fore,

U(z) =& U(k)e" dk =gU(K;)e' ' =U(z+Z)
K,

is a periodic function of z with fundamental period (Zj
which is defined as the reciprocal lattice of jK/(Z. K
=2nn, n an integer). From the definition of U(z ) one can
verify that

r
V(x) = U(z)8(y)dy . (7)

This is the simplest example of a radon transform.
Next we consider how to boost the kinetic operator. An

obvious choice is to leave the kinetic operator unchanged
but reexpressed in the z coordinates. This turns out to be
the critical step whose advantage will be seen shortly.
Thus we obtain a boosted pseudo-Schrodinger equation in
n+ m dimensions:

since V(x) =U(x, y ) I ~ -p. Comparing with Eq. (1), one
immediately gets

p =p(k) =E(k),

pi, (x) =+i, (z) Iy=O=e' &i, (x,y) I~=p .

(i2)

Therefore, the nature of the electronic states in quasicrys-
tals can be understood in terms of a higher-dimensional
pseudo-Schrodinger equation. This offers one great ad-
vantage, since now one can apply all the techniques which
have been developed and extensively studied in the case of
crystals to study the analytic properties of Eq. (9) and
therefore Eq. (1).

The general approach just described can be used to ana-
lyze the analytical properties of the electronic spectrum in
quasicrystal. As an example, we will show that in the
weak-potential limit the spectrum has a hierarchical
structure of gaps. The number of gaps is infinite for the
infinite system and the hierarchical structure can be in-
dexed by reciprocal-lattice vectors which are determined
from the diAraction pattern of the quasilattice.

To solve Eq. (9) one goes to Fourier space as shown in
standard solid-state textbooks. Since N(z) and U(z) are
periodic functions, one can make the expansions

e(z)=pc(K)e ' ", U(z)=gU(K)e ' "
k

(i3)

Substituting Eq. (13) and Eq. (8) into Eq. (9), one gets
the basic equation

[e(k —K) —E (k ) ]c (K) +g U (K ')c (K K') =0, (14)—
K'

—c; +U(z) 0'(z) =E+(z)"az, az
(9)

J

or, symbolically, L(z)+(z) =E+(z). The operator L(z)
is clearly translationally invariant under lattice translation
iZ1. Therefore, the solutions of Eq. (9), according to Flo-
quet theory will have Bloch form which can be indexed by
wave vector k,

e (z) =e' '@ (z), E =E(k), (io)

with &(z+Z) =@(z). It is clear from Eq. (9) that
E(k) =E(k ) is a function of k only since +i~~&(z)
satisfies the same equation as 4'&~ ~+~,&

(z ), where
k =(k ', k ) =(q,p) and p' is an arbitrary m-dimensional
vector. This is important, as we will see that the eigenval-
ues of Eq. (1) are exactly same as those of Eq. (9) and
from physical intuition certainly should not depend on p.

The important result is that the solutions of Eq. (9) are
directly related to that of Eq. (1). This can be seen by ap-
plying the operator J8(y)dy to both sides of Eq. (9). One
gets

a2
+V(x) e(x y) I -o=E+(x,y) I -o,

BX

where e(k) =A(k") 2/2M is the free-electron energy and
the summation is over all lattice points in n+m dimen-
sions. In going to perturbation methods, one faces the
problem of small denominators, namely, the near degen-
eracy problem. This is because e is a function of k only,
and there are many diferent K which have their parallel
components very close to each other, hence the near de-
generacy of e. However, as we will show, this actually
does not cause serious difFiculty since the structure factor
in the numerator goes to zero faster than the denominator.

Assume v(q) is a small smooth quantity (weak cou-
pling, nearly-free-electron approximation). To second-
order perturbation the energy eigenvalue is

(K IUIK')&K'IU
I
K&

~K ~K'
(is)

Here we use the notation E~ =Ex(k), ex =e(k —K).
I K) is a free-electron wave function with wave vector K.
If the denominator in the summation is not small, the
correction to the energy is second order; therefore, one
only needs to restrict the summation to those K' which
have eigenvalues close to that of state K. Denoting the set
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by K~, one has

IU(K —K, ) I

'
Eic =&rc+

x, (~~)

I.(0) I'If(K, —K) I'
2K" (K —K")J

where we have approximated v(K~. —K") as constant
since the argument is a small quantity and only the lead-
ing term is kept in the denominator. For fixed K, the set
of KJ which has approximately the same parallel com-
ponent as that of K in general can be written as

E~ =K+ (5K. , AK ~) =K+ (r„~ ~

—r„r,r„+(r+r„), (17)

gy gap having a similar hierarchical structure to that of
the diffraction pattern.

The electronic spectrum of quasiperiodic systems in the
tight-binding approximation and in the Kronig-Penney
potential, and the phonon spectrum have been extensively
studied numerically by us and other groups. The com-
mon basic conclusions are the following. (1) The spec-
trum is Cantor-like. There is a hierarchical structure of
gaps which is dense in the limit of an infinite system. (2)
The gap widths are different at different positions; if one
only keeps those gaps which are larger than a certain
amount then the spectrum can be divided into bands. (3)
The wave functions are mostly critical and extended.
There has been some indication of localized states. These

where r„are integers, and r„~~/r„ is the successive ap-
proximation of the irrational number ~. For the case
r =(45+ I)/2 is the golden mean and r„are Fibonacci
numbers. From number theory one knows that the best
approximation one can make is r„~~ r„r~ 1/r„.—On the
other hand, the diffraction amplitude is inversely propor-
tional to K which is the order of r„. Therefore, the term
in the summation is the order of I v(0) I

/r"
=

I v(0) I
jr", which after summation over n is of the or-

der I v(0) I, and hence it is a second-order correction. So
the correction caused by the near degeneracy of diAerent
K, namely, the "small denominator problem, " is of
second order and can be therefore neglected.

However, the degeneracy at the Bragg planes still ex-
ists. As in the case of a periodic crystal, this degeneracy
will open up a gap at the Bragg plane with gap width pro-
portional to the Fourier component of potential at the
Bragg point. Thus near the vicinity of K, the eigenvalue
can be written as

Err(k) =s(k") ~
I v(K ')

I If«) I

One sees that there is an energy-level splitting at every
Bragg plane, and the amount of splitting is directly pro-
portional to the structure factor or the diffraction ampli-
tude at the Bragg point. From Eq. (18) the splitting is
meaningful only when the structure factor is not too
small. In other words, the effect is most important when k
is on Bragg planes associated with dominant diffraction
spots. Qualitatively when

If(K) I
~

I v(0) I
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the gap width is of second order, namely, it is the same or-
der as the correction to the spectrum due to near degen-
eracy of K, therefore insignificant. This condition
defines an effective reciprocal lattice which is not dense in
the reciprocal space. For all practical calculations one
need only restrict oneself to this set of K vectors.

As the magnitude of the potential increases the simple
perturbation theory just presented will no longer be quan-
titatively valid. However, one can expect the same quali-
tative effects will occur. The number of significant energy
gaps will increase commensurately. In the strong-
coupling tight-binding limit one expects that an infinite
number of gaps will show up with the width of each ener-
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FIG. 1. Vibrational integrated density of states for a one-
dimensional quasiperiodic system. (a) Qualitative result pre-
dicted by our theory using the simple model described in the
text. Details on the construction of the cure are given in the
text. (b) Result of a numerical simulation on a lattice ~ith 2000
sites (see Lu, Odagaki, and Birman in Ref. 2).
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results now can be easily understood in terms of our
present result. Especially the structure of the spectrum
follows directly from our analysis. One finds that the
hierarchical gap structure is intimately related to the
diffraction pattern of the quasicrystal. All gaps can be in-
dexed by wave vectors. And the gap width should be
directly proportional to the diffraction amplitude at that
wave vector.

In order to illustrate these results, we calculated the vi-
brational integrated density of states schematically for a
one-dimensional quasilattice based on our qualitative pre-
dictions. In Fig. 1, we compare the qualitative predictions
of the spectrum with previous numerical simulations. We
started with the integrated density of states for the vibra-
tional spectrum (the same equation holds for a tight-
binding model) in a periodic system. Using the dispersion
relation E =co =4sin (q/2) (in dimensionless form) one
obtains the integrated density of states D(E) =(2/tr)
xsin '(JE/2). Since the structure factor of a one-

dimensional quasilattice (Fibonacci lattice) is analytically
known (see Lu and Birman in Ref. 3), assuming a con-
stant v(q) we calculated U(K) in Eq. (19) for different K.
A gap is opened at the energy corresponding to a E value
using the dispersion relation above. Near every gap edge
the square-root singularity was fitted. The resulting den-
sity of states including the first 50 significant gaps are
shown in Fig. 1(a). Comparing with Fig. 1(b), which is
the result of numerical simulation of 2000 lattice sites,
one sees that all the structural features of the spectrum
are correctly reproduced. Considering the very crude
schematic model we have used, the fitting is remarkable.

The approach we just outlined above is related to other
work in the literature. In the course of a study of incom-
mensurate systems, a similar approach has been pursued
by Romerio, Janssen, and others. However, it was less
systematic and was not pursued in depth. This was based
on the judgement that thought the results (such as energy
spectrum) are rich in structure, they may not be experi-
mently observable, since the incommensurate term in the

conventional incommensurate systems is weak and treated
as perturbation. However, in the case of quasicrystals the
incommensurability is intrinsic and built into the struc-
ture, so the incommensurate potential is not a weak per-
turbation at all. In fact, the leading incommensurate
terms are of the same order (l, r ', r, . . . ) and there
are an infinite number of terms. The effects of this intrin-
sic incommensurability on the electronic and other physi-
cal properties may not be small. We believe systematic
analysis could lead to some experimentally observable
effect such as the negative differential conductivity in a
strong electric field and the oscillating of electric current
due to the Stark ladder and the interband or Zener tunnel-
ing. The theory can be tested as better and larger quasi-
crystals are made available for experiments.

In conclusion, we have developed an analytical tech-
nique to study physical properties of a quasiperiodic sys-
tem. After suitably boosting the Schrodinger equation to
a higher dimension, we obtained a pseudo-Schrodinger
equation which is periodic. Using the general Bloch-
Floquet theory, the qualitative properties of eigenvalues
and eigenfunctions can be analyzed. Then projecting
down the solutions to physical space we find the solution
for a quasiperiodic system. The hierarchical gap structure
in a quasiperiodic system found in numerical simulations
is a natural result of our analysis. We predict that the gap
positions can be determined by reciprocal wave vectors
tors and the gap width should be proportional to the
scattering amplitude at that wave vector. The results are
in full agreement with previous numerical simulations.
This technique enables one to use the existing methods
developed in the studies of crystal systems to study physi-
cal properties of quasiperiodic systems.
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