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Competing order parameters for increased T, in "polytype" multilayer Cu-0 systems
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Using a simple phenomenological model with coupled order parameters for polytype multilayer
copper oxide systems, it is demonstrated that polytypism can increase T,. Explicit expressions
and results are given for T, (N) where N is the polytype number (N=2, 3, . . . , ~). Classes of
structures investigated are monolayer polytypes such as [-(CuOz)z-I; bilayer T10 polytypes such
as [-(T10T10(CuOz)z-l; and monolayer T10 polytypes; and 1:2:3 polytypes such as [-(Cu01)-
(CuO-CuOq)„-]. Two types of nearest-layer bilinear coupling were studied: weak link (Joseph-
son) and spin-spin. Polytypism is predicted to increase T, in all classes; except in one case. For
the same N, monolayer T10 polytypes have lower T, than the bilayer T10 analog. Using reason-
able values of parameters we predict a maximum T, of 140 K in the monolayer and bilayer T10
series.

I. INTRODUCTION

In this work we present results of a "Landau" version of
a Ginzburg-Landau theory which has been developed ' for
the copper oxide high-T, superconductors. %'e shall give
predictions for the dependence of superconducting transi-
tion temperature upon "polytypism, " i.e., multilayer re-
peated stacking of planes or layers in different structures.

The physical idea is that there are distinct "active" ele-
ments in the structure. To each active element (type of
plane, or chain) denoted a in the structure is associated a
Ginzburg-Landau order-parameter field p, (r). The fields

p, (r) can be different types of superconducting entities,
i.e., "planes" and "chains" in 1:2:3structures, or compet-
ing superconducting and normal planes in the T1Ba struc-
tures. Each of these p, (r) has some distinct "bare" tran-

I

sition temperature T, in that structure. The p, (r) fields
are Josephson (weak link) coupled, and hence compete to
be primary order parameters: This produces a shift from
the bare temperatures to the observed transition tempera-
ture T, as well as electrodynamic effects. (In this paper
the notation T means the predicted transition tempera-
ture. )

The full Ginzburg-Landau theory is a generalization to
competing order parameters of the work of Lawrence and
Doniach, Klemm, Beasely and Luther, Katz, Bulaevski„
and others. The free energy in the general Ginzburg-
Landau theory' is real, gauge invariant, and possesses the
relevant space-group symmetry elements of the structure;
it is written F=ft, )f(r)dr where f(r) is the free-energy
density per cell. We may take f(r) as

I(r) =g a. ~y. (r) ('+p. )y. (r) I'+ —tV. — A, q4(r)4
h2 . 2e

2

+g q.b y. (r) exp
a, b

2ei
A dl —pb(r)

hc "

here rl, b is the relevant coupling coefficient; (Vd, Ad) are
the d-dimensional gradient, and appropriate vector poten-
tial, a, (T) = (a,'/T, ) (T —T, ), and the weak-link
Josephson coupling and bare terms are in gauge-invariant
form. This Ginzburg-Landau theory is based on the
known crystal structure of several series of high-T, oxides,
and has as its objective to provide a framework for the
prediction of electrodynamic effects, such as 0,2, vortex
structure, etc.

In the simplified Landau version discussed here, the
competing order-parameter fields p, (r) are taken spatial-
ly homogeneous (thus neglecting terms Vp, in the free en-

ergy), and also no vector potential A is present. We are

concentrating on the temperature region just near T,*. If
T) T,*, all order parameters are zero ("normal" state),
while for T & T,* some P, &0 for minimum free energy.
Sufficiently close to T* terms such as P ~ p, ~

in the free
energy are small, and so we neglect them. The original
motivation of this work concerned the competition be-
tween Cu-0 chains and Cu02 planes (as two active enti-
ties) in the 90' or 1:2:3materials such as YBa2Cu307 —$.
Development of the two series of Bi, and Tl-based mixed
copper oxide high-T, superconducting systems has provid-
ed even more interesting classes of materials to which the
theory applies with suitable changes, leading to testable
predictions. In the homogeneous limit of (1), the free-
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energy density is a bilinear form in the spatially indepen-
dent order parameters:

f=Z ~.(T) I &. I'+Z g.b I y. y—b I'. (2)
a a,b

In this limiting form of the "Lawrence-Doniach" (LD)
Josephson interaction the quadratic terms for each active
entity are shifted,

~.(T) Ie. I'- Z[~.(T)+n.b] Ie. I',
b

leading to a first-order "mass" renormalization, or lower-
ing of the bare T, . This is a proximity effect which is a
result of taking the interaction as in Eq. (2). However,
omitting the diagonal terms q,b(~ 1)), ( +

~ pb ~
) we can

take the free-energy density in another gauge-invariant
form. This reduces to terms analogous to the bilinear
spin-spin interaction (SS) in magnetic systems

f=Z tr. (T) I A. I'+2 ( —)rj.bo. ob +c.c. (3)
a a, b

A priori there seems no compelling reason to choose ei-
ther the LD "proximity effect" form (2) or the spin-spin
form (3) for the Landau f.

Strictly, the bilinear free energy (2) or (3) cannot be
minimized (for minimization the omitted nonlinear terms

P, ) t)), ~" must be included). We can extremize f by solv-

ing the linear equations 8f/8&, =0. The secular equation
resulting is of the form ~[ (a, (T)+prl, t, )8', b

—rl, b ~[ =0
in case (2) [in this case, for finite number of elements
(planes) the terms for boundary planes and interior planes
differ: p=2 for interior and p=l for boundary] and

~~ a, (T) —rl, b ~[ =0 in case (3). The transition tempera-
ture T* is the largest root. The corresponding form of f
(rotated to principal axes) is

f=X~.(»I&.I',
and Ai(T ) =0 at the greatest root, while gi is the eigen-
vector, i.e., that linear combination of the bare order pa-
rameters 1)), which first has nonzero amplitude at T =T.

We now apply this simple idea to several classes of
high-T, copper oxide systems: the T1Ba class T12Ba2-
Ca„Cu„+)06+2„,a related monolayer T10 class, and the
1:2:3 class typified by YBa2Cu307 —s. With some
modification the model can apply to the 2:1:4 class
typified by La2 —„Ba„Cu04,. and the BiSr class typified
by Bi2Sr2Ca, Cu„+)Os+2„. In the last named case, other
structural features omitted here, such as incommensurate
modulation, may be important.

In all the classes we shaH take one of the p, to be the
superconducting order parameter of Cu02 plane, the oth-
er pb will depend on the systems. Here, the objective is to
predict the dependence of transition temperature T* upon
order of stacking N or polytypism. To implement this
idea, we introduce polytype multilayer models as shown
on Figs. 1(a)-1(c). In Fig. 1(a) polytypes of a single ac-
tive layer are shown; we take this as the Cu02 layer. In
Fig. 1(b) the members of the bilayer T18a class are shown
(shaded layers are T10, open layers are Cu02). In Fig.
1(c) we show member of the 1:2:3 class with Cu02 as
open layers and the CuO chain-containing layer inter-
leaved. Modifications needed for the monolayer T10 sys-
tems are evident.

(a)

(b)

r rrrrrrrrrrr

FIG. 1. Model for polytypes of different classes. Polytypes
N 1,2, 3 are illustrated. (a) Monolayer polytypes: The basic
layer is taken as a CuOz superconducting layer. (b) Polytypes
of the bilayer T10 type in the T18a class. T10 layers are cross-
hatched, Cu02 layers as above. For monolayer T10 type, delete
one T10 layer and close up. (c) Polytypes of 1:2:3class. The
layers ~ith filament are the layers of CuO chains; the open
squares are Cu02 layers.

II. POLYTYPKS OF Cu02 MONOLAYKRS

The Cu02 plane is a common entity in all classes if we
neglect orthorhombicity, and also the "rippling" by which
0 and Cu ions are slightly noncoplanar, and take a tetrag-
onal model for the Cu02 array. First make a very
simplified ansatz: only the Cu02 planes are active in
determining T*. Consider polytypes of the basic layer:
-(Cu02)g- [see Fig. 1(a)]. Further, take only coupling
between nearest-neighbor Cu02 layers q, t, =r128„,+ i and
use the SS form Eq. (3). The transition temperature
T (%) for an %-layer polytype is the maximum eigenval-
ue of the N-dimensional Jacobi matrix

a(T) —~, o o
—

-. I2 a(T) —
r12 0

0 —
t12 a(T) —

r12
=0 (4)

In (4), a(T) =(az/T~)(T —T~). Both T*(N) and the
eigenvectors can be analytically, obtained for N =2, . . . , 5.
For N~ ~ we make a "Bloch" ansatz for order parame-
ter p„at the nth layer p„=e' p„) and it is easy to see
that T*(~)occurs for 8=0. For this monolayer polytype
sequence the results are of form

T*(W) =T,'[I+r~(q, /a,')],
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TABLE I. Transition temperature. for monolayer polytypes
-(Cu02)g-. The table lists the maximum eigenvalue of the
determinant A~(T), which is the predicted transition tempera-
ture T (N). The coefficients rz were f'ound analytically. The
experimental data used for illustration are for the bilayer T10
class of materials, as given in Refs. 6 and 8. In this monolayer
model, we take T (1)=80 K=T~ for one layer Cu02, T*(2)
= 110 K for two layers. Then the coupling constant
r12/a~ =0.38. The theory column is our predicted values.

Number %

T*(N) = [1+r~(rtpap)] Tp~

T*-(%) for T1Ba class
Experiment Theory

1

2
3
4
5

0
1

Jz
(1+VS)/2

80 K
110 K
125 K 123 K

129 K
133 K

141 K

where T~ is the bare-Cu02-layer transition temperature
for N =1; the maximum is T*( )~. In Table I the values
are given for r~.

Note that T*(N) is an increasing function of N, and an
important result is that for five layers (N=5) one has
reached 95% of the maximum (N ~) possible transi-
tion temperature, for reasonable values of parameters. A
second important result is that the eigenvector for T*(N)
is always a symmetric combination of the bare layer order
parameters. There is no coupling between symmetric and
antisymmetric combinations. In the more general
Ginzburg-Landau theory, Josephson phase factors provide
such coupling.

Finally, note that if this model is applied to the T1Ba
and BiSr classes we would take T~ (the bare Cu02 plane
temperature) to be 80 K, which is the value for a single
Cu02 layer, i.e., in 2:0:2:1 there is one Cu02 layer per
cell. Then, using the measured temperature of 110 K for
two-layer material (2:1:2:2)we obtain ri2/a' =0.34. It
follows that T*( )ewehich we predict as the maximum
possible temperature for infinite monolayer sequence is
T (ee) =138 K for [2, (N —l),2,N] with N~ ~ (see
Table I).

III. POLYTYPKS IN Tl-Ba AND
Bi-Sr Cu02 CLASS

At the time of writing several members of the Tl-Ba
and Bi-Sr classes have been prepared, their T, and crystal
structures determined. ' These are so-called types
2:0:2:1, 2:1:2:2, 2:2:2:3, and 1:2:2:3 with T, =80, 110,
125, and 110 K, respectively. In this notation,
2(N —1)2N identifies a polytype with

[-T10-T10-8aO-Cu02- (Ca-Cu02) ~ -BaO-] .

In the structural model we now adopt, the layers, e.g. ,
T10, BaO, Cu02, Ca are stacked above one another, we

ignore the lateral shifts. In this polytype there are
(N+ 1) layers of Cu02, with a layer of Ca between each,
and %=0,1,2, . . . per cell.

In recent work of relevance to our model, a material
with monolayer T10, composition 1:2:2:3and T, =110 K
was prepared. These authors determined the structure
and report it involves identical layering as the 2:2:2:3ma-
terial, modulo replacing the bilayer T10-T10 by the T10
monolayer, and closing up in the z direction. In the
framework of polytype models, this permits the conclusion
that T10-T10 interaction is important in this class and
suggests a natural generalization of the previous model.
We make the following assumptions: (1) Each Cu02
plane has identical a~(T). (2) The T10 planes are nonsu-
perconducting and aT =const. (3) Nonzero coupling be-
tween Cu02-Cu02, Cu02- T10, and T10-T10. (The
effects of the interleaved BaO and Ca layers are assumed
incorporated in the appropriate coupling constants. ) (4)
We consider a periodic (ee) repeat of the basic polytype
cell (defined below). (5) We use the spin-spin form of in-
teraction Eq. (3).

The scheme used for 2:2:2:3,with the layer-layer cou-
plings defined, is

- [T10-jp-T10-(rip) -Cu02-(t!2) -Cu02- (qi) -Cu02- ('gp) -] .

The parameters of the model are bare Tz, normalized
coupling constants rip/a', rTp/a', t)2/a' if we take
aT a~ =a'. An infinite periodic array is assumed in the z
direction. Since we only take nearest-neighbor couplings
the resulting determinant is tridiagonal (not of Jacobi
type). We solved analytically for the maximum root
T*(N) for the following members of the bilayer T10-T10
class: N=l (or TTC), N=2 (or TTCC), N=3 (or
TTCCC), N=4 for TT(C)4], and N=~ [or TT(C) ],
using an obvious notation. We also obtained analytical
solutions for the members of the monolayer T10 class
[T(C)N], where N =3 (or TCCC) is the new 110-K ina-
terial. Results are presented in Table II. Note that using
the observed transition temperatures for materials 2:0:2:1,
2:1:2:2,and 1:2:2:3,we can obtain the parameters needed.
Then we calculate T (3) =123 K for 2:2:2:3 (instead of
measured 125 K), as well as T (ee) = 140 K.

Several points are worth noting about the results. (1)
For this model, the bare T~ of Cu02 will be determined
from the measured T,'" for TTC, T, =80 K. But now the
relation between bare T~ and T*(1)=T;"~ (see Table II
where various reduced ratios of coupling coefficients are
defined) gives T~ & T*(1). We obtain T~~ =T~ (1)/
(1+2/2) where T (1) is the observed transition tempera-
ture, which is 80 K for (TTC). Then T~ & 80 K, and in
our parameter set T~ =40 K. (This is the value of T, for
La2 — Ba„Cu04 with a single sheet of Cu02!) (2) The
symmetric combination of order parameters p, is the
eigenvector for maximum root T (N). (3) The max-
imum T (~) for the [TT(C) ] polytype is predicted at
= 140 K. As a check, results for this (T1Ba) or (BrSr)
class go over to the monolayer polytype case when

0 and aT=1. Essentially the same maximum
T*(ee)=—140 K is predicted for the series [T(C) ] of po-
lytypes.

Predictions for other members of the series are also
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TABLE II. Transition temperature for polytypes of the TlBa class. The table gives predicted transi-
tion temperature T (N) for polytypes of bilayer T10 and monolayer T10 members of the TIBa class.
Theory column is our predicted values. Experimental values taken from Refs. 6 and 8.

Number
N

-[TT(C).]- class
T*(N) [1+f (N)] T

f (N) ' Experiment Theory

-[T(C)N]- class
T*(N) = [1+f'(N)]T,'

fr(N) ' Experiment Theory b

2/2
a
a
a

85 K
110 K
125 K

88 K
112 K
121 K
124 K

4/i
c
c
c

NA
85

110 K
122 K

56 K
96 K
112 K
120 K

2/i 136 K 2/i 136 K

'Functions f r(N) are defined as frr(2) =(pi+$2); f (3) —0.5($2+[/)+8/~]' 2); frr(4) —0.5(('i
+ f2+ [(g] g2) + 4/~ ] ' ); here gi = (i12/a,'); g2

= [i'd)/a, '(ar —r70)]. Basic coupling r12, i10, i1O, and a,'
and ay are defined in the text.
The SS coupling was used in the calculation here. Parameter values are chosen to fit to the known ex-

perimental data T~~ =40 K, gi =1.2, $2=0.6, ('q =0.1. Predicted values of T* are shown in the theory
columns.
'Functions f (N) are defined as f (2) =(g~+2gq); f (3) =pi+ [pi+2/i]'~; f (4) =(gi/2+pi)
+ [(gi/2 —gi) +P] '; here gi = (gg/a, 'ar).

given in Table II. In so far as the (BiSr) series is isostruc-
tural, the same predicted sequence of T*(N) arises.
However, incommensurate modulation in (BiSr) may play
an important role, not included in the model.

Further observations: The asymptotic (maximum)
T (ee) for these series are essentially the same as for the
monolayer polytypes (= 140 K). The rate of approach to
T (~) differs, with [TT(C)~] reaching T*(ee) more
rapidly in N than [T(C)~l. These results use the spin-
spin form of coupling as in Eq. (3) (see Table I).

IV. POLYTYPES IN THE 1:2:3CLASS

The prototype material of this class is YBa2Cu, O,
The crystal structure has been carefully determined and
the ordered vacancy model is well established. For our
model, we also take account of the fact that there is con-
clusive experimental evidence' that replacing Y by rare-
earth ions carrying localized magnetic moments does not
afI'ect T*. Thus, we assume that each slice of crystal con-
sisting of the planes between Y ions can be treated in iso-
lation from neighboring slices, the assumed composition
being stacked planes in the z direction:

. . . - [-Y-CuQ2-BaO-CuO-BaO-Cu02-] -. . .

(again neglecting orthorhombicity and the puckering of
the Cu02 planes). We identify two types of active entities
as the Cu02 planes (denoted p as before) and the plane
containing parallel filaments of CuO chains (denoted c).
Now, the basic assumption is that we have competing
chain and plane superconducting order parameters, which
produce T*=95 K for the three-layer prototype 1:2:3.
For the model, we take couplings between plane and chain
(nearest neighbors) and plane and plane (second neigh-

bors), and define the coupling constants via

[-Cu02-(rl ~ ) -CuO-(rl ~ ) -Cu02-] .

This is the basic three-layer sandwich [see Fig. 1(c)]. We
now assume (1) interaction terms between layers either
LD proximity type [Eq. (2)] or SS type [Eq. (3)]; (2)
each Cu02 plane has identical a~(T) as before, with
a~(T) =(a~/T )(T-T ); (3) the CuO chain layer has
a, (T) =(a,'/T, )(T-T, ). We examined cases T, & T~
and T~ & T, . The coe%cients rli (and q2) are assumed to
include the effect of exchange coupling via the BaO layer
[more specifically, via the O(4) ion].

The general structure of polytype N of the 1:2:3class is

[-Cu02-(CuO-Cu02)„-] with N = (2n+ 1),
where n =1 is the three-layer 1:2:3 case, n =2 gives a
five-layer polytype, etc. [see Fig. 1(c)]. We use the ansatz
that coupling g~ is present between nearest Cu02-CuO
layers and r12 between second neighbor Cu02-CuOz lay-
ers. Then, the secular determinant is no longer triadiago-
nal, its structure is illustrated for n =2 for SS coupling:

xy z 00
yx'y 0 0

A(5)= z y x y z =0.
0 0yx'y
0 0 z y x

This form applies in case the interaction is taken as the
spin-spin type (3), and then a~(T) =x, y = —qi,
z = —

r12, a, (T) =x'. The maximum eigenvalue T*(N)
can be found analytically for N=3, 5 (N=2n+I). A
general iterative algorithm relating determinants A(N) of
increasing order has been obtained, " but for N ~ 7 nu-
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merical solution is required for the maximum eigenvalue,
T (N) even after factorizing d (N) =P [(N 1)l2]Q
&& [(N+ I )/2] where P(N) and Q(M) are polynomials of
N(M)th degree in T.

In case the LD coupling is used as in Eq. (2) the (1,1)
and (N, N) elements in h(N) are replaced by x and the
identification is now x =[a~(T)+qi+i12], x=[ai, (T)
+2(il ~+ r12) ), x'= la~(T) +2ili], y and z are as above.

Detailed results for T*(N) as function of the parame-
ters depend on whether LD or SS coupling is used, but
certain general features are similar. For orientation we
begin with the case of the three-layer prototype, and as-
sume T, & T~, and consider A(3) for the LD coupling:
This form is the limit of the Ginzburg-Landau theory for
two superconducting types of order parameter, e.g. , chain
and plane as suggested by NQR experiments. ' The tran-
sition temperature [maximum root T*(3)] is determined
from the equation

A(3) =[x'(x +z) —2y')(x —z) =0,
and an examination shows that the first factor is relevant:

x'(T) [x'(T)+z] —2y ' =0.
This equation gives T (3) and corresponds to an eigen-
vector that is a linear combination of p, for the chain, plus
a symmetric superposition of the p~+ =pz [+ ( —) refers
to Cu02 plane above (below) the CuO chains]. From the
definition of x we note that this equation is independent
of z (i.e., independent of the Cu02-Cu02 second-
neighbors couplings F12). Hence,

[a, [T (3)]+2rli) jaz[T*(3)]+ 2i]li—8il~ =0,

and T*(3) is directly obtained.
For the polytype with five layers, h(5) factorizes into a

quadratic and a cubic (in T) and T* is determined from
the maximum root of

ox~ —2xoy2 xy 2+4yoz —2x'z 2 =0.
For normalized coupling parameters g] and g2 & 1, it

can be shown directly that

Since, in this class we expect g~ & g2, if we neglect g2
(z =0) our equation becomes

xx 3y =0

which evidently gives a larger root T*(5) than T*(3).
Again the eigenvector corresponding is a symmetric com-
bination of the chain, plus a symmetric combination of
plane bare order parameters. For the next polytypes in
this class with seven layers, A(7) factorizes and T*(7) is
the maximum root of a fourth-degree equation, which is
(taking z =0)

(xx') ' —4(xx')y '+ 2y ' =0

or

xx' —(2+&2)y ' =0.

We then find

With some effort the case z =0 can be studied explicitly
for a few larger values of N, and

T*(N) & T*(N —1) .

For N~ ~, T*(~)with z =0 is determined by

xx' —4y =0 .

Thus in this case (T, & Tz ) with LD coupling we obtain

T*(~)& . & T*(N) & T*(N 1) . .—& T*(3) .

Keeping the LD coupling, and now letting Tp & T, , we
obtain a descending sequence of maximum eigenvalues

for this case.
For SS coupling we find T*(N) is an increasing func-

tion of N for both Tp & T and Tp & T, .
Further details and illustrative calculations for the 1:2:3

class are given in the Appendix.

V. SUMMARY AND CONCLUSIONS

In this work we introduced a simple model for the
copper oxide high-T, superconductors based on
Ginzburg-Landau theory in the homogeneous or Landau
approximation. The model utilized the assumption that in
each of the classes of materials considered there are active
entities to which an ordered parameter (field) p, should
be assigned. A common active entity in the systems con-
sidered is the Cu02 plane. %'e assign a superconducting
field p~ to each Cu02 plane present. In the layerlike TIBa
(or BiSr) systems we assume there is a second normal or-
der parameter &T for each T10 plane. The set of order pa-
rameters is coupled via nearest-neighbor plane-plane in-
teraction. For the 1:2:3class we take the second type of
parameter to represent assumed superconducting order on
the CuO chains and assign to the layer of coupled 1D
CuO chains an order parameter p, (it stands for a layer of
coupled parallel chains, i.e., p, =g p so p, is a Bloch
sum of individual chain parameters p ). The planes and
chains are coupled bilinearly: plane-plane and plane-
chain couplings are included.

In the simplest version of the model we consider poly-
type or multilayer stacks of identical Cu02 planes with
nearest-neighbor coupling. For more elaborate models to
apply to T1Ba, and j:2:3types of systems, several types of
planes are introduced [see Figs. 1(a)-1(c)1. In all these
cases, the intermediate layers (e.g., BaO, Ca, etc.) are as-
sumed to play a role by affecting the interlayer coupling
constants g,b. The transition temperature T* is obtained
by extremizing the free energy, and is the maximum ei-
genvalue of a certain determinant for that structure.

Our major results and predictions in the framework of
this coupled order parameter model are the following.

(1) Polytypes increase T* for N increasing (when
SS coupling applies) in (a) monolayers -[CuOz]&, (b)
the T1Ba classes - [T10-T10-[Cu02]g]- and -[T10-
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layer coupling is used [see text Eq. (2)] and Tt 3T, . Note
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T (N) T, is given in units of Tt, .

dependent of N. Clearly T*(N) for SS coupling is an in-
creasing function of N.

Now turn to the Lawrence-Doniach coupling (2). Keep
nearest-neighbor coupling y = —

g&. In the secular deter-
minant d, (N) the two end diagonal entries are now
h(N)tt at, (T)+tit =IJ(N)tvN, while the remaining di-
agonal entries are x -a~ (T)+2rit, x' =a, (T)+ 2rii.
Now let T, =3T~. Figure 3 shows T*(N) for diff'erent

polytypes as function of reduced coupling strength. To be
noted is that T (N) is an increasing function of N.

For LD coupling but Tp & T, , results are shown in Fig.
4. In this case T*(N) is a decreasing function of N at any
ril/a to the limit T (~).

These graphical computations indicate that except for
LD coupling in the 1:2:3structure, with Tp & T, polytyp-
ism should always increase T*(N) with N. The max-
imum value T*(~) can be obtained from the figures for
given tI|/a' as a fraction of the bare temperature T~ or T, .

For example, using LD coupling with T, =200 K (bare
temperature for a layer of 1D chains) and Tp =60 K
(bare temperature for a CuOz plane), then from Fig. 3
with rlt = —,', we would find T*(~)= 134 K as the max-
imum in 1:2:3class. These assignments of T, , Tp follow
the original report of Warren et al. ' but have since been
retracted [see Pennington etal. ' and Wa]stedt etal. ],
and assignments are now reversed with Tp & T, .
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