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Pairing instabilities in the two-dimensional Hubbard model
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We show that for low and moderate fillings the ground state of the two-dimensional Hubbard model
with positive- U and nearest-neighbor hopping is unstable with respect to d-wave pairing with d„y sym-

metry of the gap wave function: 6-sink„sinky The inclusion of the next-neighbor hopping may either
suppress the pairing or change the symmetry of the superconducting state.

The discovery of high-T, superconductivity stimulated
a search for pairing instabilities in two-dimensional (2D)
correlated electronic systems. It is now generally be-
lieved that the low-I behavior of cuprate superconduc-
tors may be described in terms of the simple one-band
Hubbard model on a 2D square lattice which, presum-
ably, also involves a next-nearest hopping term in order
to fit the shape of a Fermi surface. '

The nearest-neighbor Hubbard model has been exten-
sively studied in the past few years. Both analytical
and numerical " calculations found that at half-filling
the system has long-range antiferromagnetic order.
Away from half-filling, antiferromagnetic order first
transforms into an incommensurate one (linearly polar-
ized3 or spiral depending on the strength of the coupling)
and then disappears above some critical doping concen-
tration. For weak coupling, the destruction of the mag-
netic order occurs very near half-filling and the conven-
tional paramagnon theory predicts the d-wave pairing
with A~cosk —cosk . Though the justification of the
paramagnon theory is questionable because both Cooper
and zero-sound channels contain Van Hove singularities,
more sophisticated renormalization-group (RG) calcula-
tions ' also point to the possibility for a transition into a
superconducting d & state. The same type of instabili-x —y
ty was also found in recent calculations' which used the
phenomenological form of y(tI) known to fit the NMR
data. ' It was also argued that the renormalization of the
quasiparticle self-energy may change the form of the Fer-
mi surface in such a way that the nodes of the supercon-
ducting gap mill be located in the regions of the Brillouin
zone where there is no free Fermi surface. Were it the
case, the pairing gap function would be nodeless over the
~hole Fermi surface, though, formally, the d-wave sym-
metry (i.e., the change in sign of 6 under a rotation to
sr!2) would be preserved.

While the presence of a well-defined peak at (m, m) in
the polarization operator near half-filling uniquely favors
d 2 & pairing, at least for small values of the coupling,
little is known about the possible pairing instability for
larger doping concentrations when y(q) is flat. Different

numerical studies '" and low-U mean-field calculations'
did not find any evidence for superconducting instabili-
ties in this region. Challenging these results, Baranov
and Kagan' recently developed a perturbative expansion
in the filling factor, similar to that in the 3D systems, ' '
and found that the positive-U Hubbard model is unstable,
at arbitrary small filling, against d-wave pairing, but with
A~sink sink .

In this paper, we show that (i) the d„ instability is like-

ly to be dominant for all moderate fillings, and (ii) that
the inclusion of the next-nearest hopping t ' leads to a
very rich phase diagram where besides the d„ instability
one can also find the regions of the d 2 2 and p-wavex —y
pairing.

A standard way to search for a possible superconduct-
ing instability in the positive-U Fermi-liquid in the low
density limit is to renormalize the bare vertex for the
Cooper channel and check the signs of higher-momentum
harmonics which are generated by the screening of the
scattering amplitude due to the fermionic back-
ground. ' ' ' In the 3D case, the polarization operator
in the particle-hole channel (Fig. l) is nonanalytic for the
momentum transfer near 2kF, which in the real space
means that the screening produces a long-range oscillat-
ing "tail" in the effective interaction between the parti-
cles on the Fermi surface (Kohn-Luttinger effect' ).
Combined with the obvious difference in signs between
even and odd angular momentum I harmonics, this effect
leads to an attraction in all large-I channels. ' It was
later shown' ' that the Kohn-Luttinger effect stretches
right up to I = 1 and actually ensures the p-wave pairing
in the 3D Fermi liquid at low density.

In two dimensions, the situation is completely different
because the effective (renormalized) interaction between
the two particles on the Fermi surfaces does not contain
nonanalytical terms which one might expect to be re-
sponsible for attraction. ' However, this does not rule
out the possibility for a superconductivity. The point is
that, in the case of initial on-site repulsion, the regular q
dependence in the effective bare vertex I'(q), where q is a
transferred momentum, also appears only after the renor-
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—cosk )sink„sink for Az, and A sink, +B sink for E]
and a representative from a complete set of functions
which have the whole D4 symmetry. At low density, i.e.,
small apF, the polar coordinates (~k~, P) are more con-
venient and the complete sequences of eigenfunctions can
be rewritten as

A, : cos(4ng),

Az. sin[4(n +1)P],
B,: cos[(4n +2)P],
B2. sin[(4n +2)P],
E: A sin[(2n +1)P]+Bcos[(2n +1)P] .
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FIG. 1. Irreducible diagrams which contribute to the bare in-
teraction in the Cooper channel in the second order in the per-
turbation theory. %e use the same diagrammatic technique as
in Ref. 19. The dotted line represents the interaction potential.
The contributions from the first three diagrams completely can-
cel each other. The interaction potential on the remaining one
links p to —k, which obviously ensures the additional change in
the sign of all harmonics with odd angular momentum.

malization. These q-dependent terms are absent in a
Fermi-gas description when the energy spectrum is ap-
proximated by a parabola (e'& -p /2m —eF ), but they do
appear when the higher-order terms in the expansion of
tare taken 'into account. Since the q dispersion in I (q)

entirely determines the possibility for the pairing instabil-

ity with nonzero orbital momentum (the conventional s-

wave instability is suppressed due to the first-order on-
site repulsion), exact calculations are required to establish
whether a particular model of interest is unstable against
BCS pairing.

Given the arguments above, we will focus on the 2D
Hubbard model on a square lattice

H= —g t, ct c +Urn, tn;i. (1)
l, J, CT l

The hopping term is chosen to be nonzero for the nearest
(t) and next-nearest (t ') neighbors.

The study of a superconductivity away from the
Fermi-gas description requires knowledge of the possible
symmetries of a gap function. For the 2D square lattice,
the D4 space group is known to contain four one-
dimensional (singlet) irreducible representations, A, and
~ 2 for & wave, B

&
nd Bz for d wave, and one two-

dimensional representation, E, which corresponds to a
triplet pairing. ' An arbitrary eigenfunction in each rep-
resentation then can be written as a product of the corre-
sponding basic eigenfunction [cosk +cosk for A i,
cosk~ —cosk~ for B&, sink~ sink~ for Bz, (cosk„

I E =2(ap~ ) B,
Is =2(ap~) (C, +3C, ),

=2(ap ) (C, —3C ) .

(3)

Obviously, the sign of I . . . determines the possibility for
the pairing instability in the corresponding channel.
Note that in writing Eq. (3) we took into account the ad-
ditional change in sign of the p-wave component imposed
by the spin summation.

The coefficients in Eq. (2) were obtained analytically by
calculating the renorrnalization of the vertex function in
the particle-hole channel (Fig. 1) and expanding the elec-
tronic spectrum

e„=—2[t(cosk„a+cosk a )+2t 'cosk„a cosk a ]—p
(4)

up to the third order near its minima at k =0. This ap-
proach is valid for 5=t '/t ) —

—,'. After the lengthy cal-
culations, we obtained that, to the leading order in (apF ),

~( )2
t +4t

E a~F
~ +2

In the leading order in the density, the momentum
transfer for the particles at the Fermi surface is the same
as in the isotropic case: q =2pF [1—cos(P —P') ] where P
and (()' measure the directions of the momenta for incom-
ing and outgoing particles. It then immediately follows
that, to get the first (n =0) eigenfunctions in the p-wave,
d-wave (B, or B2), and unconventional s-wave (A2) chan-
nels, one should expand the renormalized interaction
I (q), up to O(q ), O(q ), and O(q ), respectively. In
what follows we will restrict with a search for p- and d-
wave instabilities.

The general form of the low-q expansion of
I (q)=I (q, 8) is

I (q) = A+B(qa ) +(qa) (C, +Czcos48)

+0[(qa) ], (2)

where a is the lattice spacing and g=(p+p')/2. For
small coupling, 3 —U, while both B and C& z have the
order of U /t rejecting the fact that the q dispersion in
I (q) appears only after the renormalization of the initial
on-site repulsion. Substituting the expression for q in
Eq. (2), we find
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FIG. 2. The low-density part of the phase diagram of the 2D
Hubbard model on the square lattice. n is the density of elec-
trons and b is related to the ratio of the nearest and next-nearest
hoppings by b =25/(1+25), where 5=t'/t. The hatched re-
gions marked as Bl, B», and E correspond to the superconduct-
ing states with d», d„, and p-wave symmetry of the gapx —y
wave function, respectively. For negative b, the slope of the
right boundary of the B& phase (dashed line) is not known exact-
ly.

Here A. =(1/48~)[u /(t +2t ')] and (apz)
=[4(t+t')+p]!(t+2t ')]. For t'=0, these equations
coincide with the results of Baranov and Kagan. '

It follows from Eqs. (5)—(7) that if only nearest-
neighbor hopping is present (t '=0), the interaction is
repulsive in the p-wave and dz channels, but it is attrac-

tive in the dz channel. This uniquely leads to the dxy su-

perconductivity in the nearest-neighbor Hubbard model
at low density. However, the inclusion of the second-
nei.ghbor hopping term may change the type of the insta-

bility (Fig. 2). For t )0, the region of the d„ instability
stretches up to 5=t'/t=0. 28. For 0.28(5(1.22, both
p- and d-wave instabilities are suppressed (there is possi-
bly A2 instability in this region). For larger 5, the in-

teraction in the 8& channel becomes attractive while that
in the 82 channel remains repulsive, and this leads to the
d»» superconductivity.

X

For negative t' (which is believed to be the case for
some high-T, compounds ), the B2 instability disappears
at 5= —0.05, while the B& channel becomes attractive
for 5 & —0.22. However, the effective interaction in the
p-wave channel also changes the sign at 5= —0.25 and
immediately overshadows the 8& instability since the p-
wave amplitude contains fewer powers of apF. In the vi-

cinity of 5= —
—,', the expansion in powers of q breaks

down since the Fermi surface, even for a small density of
the carriers, stretches up to the boundary of the Brillouin
zone. A simple estimate shows that the maximum value
of T, for the p-wave instability which one can reach be-
fore entering into the dangerous region ~1 —25~ ~(apz)
is given by 1n[(apz) /T, ]-ln apz. It is curious that it
differs only by a preexponential factor from the expres-
sion one might obtain if the Kohn-Luttinger effect was
actually present in the 2D Fermi gas. '

For 5& —
—,', the minimum of the energy spectrum

shifts from (0,0) to (0,~) and (m, 0). Correspondingly, the
Fermi surface of electrons forms pockets around these
points. This opens an additional channel of the interac-
tion with the momentum transfer near (n, n .) T.he calcu-
lations in this case require a larger amount of work and
we only checked that the p-wave instability is suppressed
for all 5( —

—,'.
The next question one should address is whether the

superconducting instabilities found above are specific
only for low filling or they survive in passing from low to
moderate densities. To answer this question, we calculat-
ed the leading corrections to the partial amplitudes in the
B& and Bz channels. These corrections result from (i) a
noncircular form of the Fermi surface, (ii) apz depen-
dence of C& z in Eq. (2), and (iii) the next terms in the
low-q expansion of the effective vertex [namely,
(aq) (D&+D2cos48)]. Naively, one might expect the
finite-density corrections to diminish the (absolute) values
of both d-wave vertices, since near half-filling the shape
of 1(q) with the maxima at (m, m) is compatible with

d»» but not d „superconductivity. However, direct
x —y

calculations show that the situation is less simple.
Specifically, for the nearest-neighbor Hubbard model, we
combined analytical and numerical calculations and ob-
tained

I ~ =I'q [1+0.53(app) ],
I ~ =I'~ [1+0.63(ap~) ],

where I stands for the leading term given by Eqs. (6)
and (7). It follows from Eq. (8) that away from low densi-

ty the partial amplitudes in the 8, and Bz channels first
move apart, in contradiction with the naive expectations.
This strongly indicates that for small U the 82 instability
is very likely to survive for all moderate filling factors be-
fore the polarization operator in the particle-hole channel
acquires a well-defined maxima at (m, n) The lat.te.r
seems to happen rather close to the half-filling because
the polarization operator at (m, n ) is only logarithmically
divergent at p=0. Obviously, the critical temperature
for the 82 instability passes through a maximum at some
intermediate doping concentration. Note also that the p-
wave amplitude only increases with the density'
I z = I E [1+0.19(ap~) ] and hence no p-wave instability
is expected for all fillings.

For t'%0, we addressed the question of stability of
various superconducting phases by calculating numerical-

ly the positions of the critical lines for 8& and 82 instabil-
ities as functions of the density. The results are presented
on Fig. 2. We found that for t'&0 the two critical lines
come closer to each other probably indicating that above
some critical density the region of the normal phase will

disappear leaving only the crossing (i.e., first-order transi-
tion) line between the two different d-wave states. How-
ever, the investigation of this possibility is beyond the
scope of our low density approach. For t' &0, the calcu-
lations indicate that the width of the superconducting
(B2) region increases with apz complementing the results
obtained for only nearest-neighbor hopping. However,
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we are not able to draw definite conclusions about the
slope of the B, instability line. It also follows from our
calculations that the boundary of the p-wave instability
terminating at 6= —0.2S does not contain any significant
apF dispersion.

Summarizing our findings, we have shown that the 2D
Hubbard model with weak on-site repulsion and nearest-
neighbor hopping is unstable against d„pairing for all
densities of carriers except very close to half-filling,
where from the general arguments one should expect
d 2 & superconductivity. In the more general case ofX Jl

nearest- and next-nearest-neighbor hopping, the super-
conducting state at low density may have either B, or B2
or even p-wave symmetry depending on the particular ra-
tio of the hoppings. Note that the crossing between B,
and B2 instabilities near half-filling was tentatively found
in the random-phase approximation (RPA) calculations
for the nearest-neighbor Hubbard model.

Of course, the superconducting instabilities found in
this paper are nonuniversal in a sense that they are sensi-
tive to the particular form of the energy spectra and also

to the q dependence of the bare interaction U(q). How-
ever, it is worth noticing that the conclusion about d in-
stability for small t' remains unchanged if the screened
Coulomb repulsion acts not only at a given site but also
between nearest neighbors. For a more complicated form
of U(q), the theory presented here will be valid if the
second-order q-dependent contributions which involve
U (0) exceed the corresponding first-order terms in the
expansion of U(q) in powers of q. It is also interesting to
note that only d-wave pairing seems to be consistent with
the recent NMR measurements of 1/T, in cuprate oxide
superconductors below T, .
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