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One of the central issues in the field of high-temperature superconductivity is whether the normal
state can be described by Fermi-liquid theory. Recent photoemission experiments along with a growing
body of Fermi-liquid-based theoretical work have provided some support for this viewpoint. However,
one major concern in ascertaining the validity of a Fermi-liquid approach is whether the magnetic in-

teractions in the metallic cuprates are sufliciently strong so as to undermine the usual Fermi-liquid
description. In this paper we address this question by examining the nature of the magnetic interactions
in the metallic state. These interactions, which are dominantly between the Cu spins, arise via the inter-
mediating oxygenlike states. Since the oxygen character changes as the hole doping is increased, it is ex-

pected that the Cu-Cu interactions are doping sensitive and evolve away from their value in the insulat-

ing limit. We deduce these interactions within a physical picture in which the Cu d electrons are nearly
localized and the oxygen bandwidth assumes a finite value. While our qualitative results are general, we

use a 1/N expansion as a convenient theoretical tool. In the extended Hubbard Hamiltonian the ex-

change terms are evaluated at order (1/N ). Both superexchange (Jz) and Ruderman-Kittel-Kasuya-
Yosida interactions (J&) emerge on a similar footing. With increasing carrier concentration, Jz de-

creases rapidly, while J& abruptly increases from zero. We find that, because of the reduction in the
strength of the superexchange, there is an enhanced stability of the Fermi-liquid phase. The dynamical
susceptibility is also calculated within this scheme and the consequences for NMR and neutron experi-
ments are discussed elsewhere.

I. INTRODUCTION

The nature of the magnetic interactions in the metallic
state of the copper oxides and the associated dynamical
susceptibility y(q, co) are of central interest both to the su-

perconducting as well as the normal-state properties. A
quantitative understanding of the spin dynamics has been
achieved for the half-filled insulating limit. ' Here the Cu
spins are localized and interact through oxygen sites via a
superexchange interaction. Away from half-filling, the
situation is less clear and the character and importance of
spin fluctuation effects in the metallic phase have not
been unambiguously established, in part because of prob-
lems with sample quality and ill-controlled oxygen
stoichiometry. Nevertheless there are features of these
materials which we regard as noncontroversial. A grow-
ing body of evidence for the existence of a Fermi surface
implies that a Fermi-liquid description must be taken
seriously at this stage. This picture must, on the other
hand, be compatible with the observation that the copper
electrons seem to behave as local or quasilocal moments,
somewhat independent of carrier concentration. ' In ad-
dition, magnetic order rapidly disappears before the onset
of the metallic state. This suggests that it is the effective
interactions rather than the moments which are modified
with doping. On this basis we are motivated to study the
behavior of the exchange interactions with varying car-
rier concentration using a Fermi-liquid description in
which the Cu electrons are nearly but not completely lo-
calized. The related dynamical susceptibility which is
essential for understanding neutron and NMR experi-
ments is then deduced and the consequences for experi-
rnent discussed elsewhere.

The standard argument that the Fermi-liquid phase is

less stable than other more exotic magnetically driven
phases is based, in part, on the assumption that the mag-
netic interactions in the metallic state are the same as
their insulating counterparts. However, these magnetic
interactions are mediated by oxygen sites (and spins)
whose character is changing as the insulator evolves into
a metal. It is therefore essential to reexamine the Cu-Cu
exchange interactions in the context of variable hole con-
centration. Our conclusions here are that a rapid
suppression of the superexchange in conjunction with a
growth of the Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction reinforce the stability of a Fermi-liquid phase.
These results are demonstrated in the context of a mean-
field phase-diagram calculation. Further evidence for a
Fermi-liquid-based scheme, as well as a general discus-
sion of transport and magnetic anomalies" in the cu-
prates, is reviewed in Ref. 7.

The rest of the paper is organized as follows. In Sec. II
we discuss our model and formalism for deriving the ex-
change interactions. The doping concentration depen-
dence of the derived exchange interactions is analyzed in
Sec. III. Section IV is devoted to a discussion of the
RPA dynamical spin susceptibility. In Sec. V the corn-
petition between the Fermi-liquid phase and various mag-
netic phases is examined. Section VI presents our con-
clusions. The details of the calculations are presented in
three appendixes. This organization should make it
easier for the reader uninterested in the complex formal-
ism to follow the body of the paper.

II. THEORETICAL FRAMEWORK

We calculate the magnetic interactions using the quasi-
particle vertex function. This approach is more direct
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than previous energy-based schemes applied at half-
filling. Our starting point is the usual extended Hubbard
Hamiltonian in the auxiliary boson scheme ' ' which
has also been wi.dely applied to heavy fermions. ' We
stress here that at the qualitative level, our results for the
strength of the spin-spin interaction can be viewed as
general consequences of the three-band Hamiltonian with

I

very strong Coulomb correlations U. Here, for
definiteness we use a controlled 1/N (where N is the spin
degeneracy) expansion which is the basis for a mean-field
theory and its RPA extension. The Cu02 Hamiltonian
written in the auxiliary boson representation (with hole-
state fermion operators) is given by

~=peed d . +geppi pi + & re(pi, pi, +H c )+pe e e +&e/f f
+ g Vzq[e;d; pi +f; d; p& sgn(0)+H. c.]+giA, ; gd;"d; +e;"e, +f, f, —

NQO (2.1)

Here we define e;, d;, and f; as creation operators for
the Cu+, Cu +, and Cu + valence states, respectively.
The first and last of these correspond to bosons whereas
the Cu + state is a fermion with specified spin index cr.
This Hamiltonian is derived from the extended Hubbard
Hamiltonian by representing a copper electron operator
in terms of its valence state operators as

D,t=d,.~e, +. sgnad; ft. The energy to create a Cu+

(no hole) state is e, =0, and that to create a Cu + state
(two holes) is e& =2e&+ U. In Eq. (2.1) a Lagrange multi-

plier i A,; is introduced to account for all possible valence
states at each Cu site so that

ddt d; +etc;+ftf =1=NQO . (2.2)

In the context of a controlled 1/N expansion, we choose
Qo= 1/N to be finite, and V& is understood to be order
1/~N.

The Hamiltonian thus includes copper-oxygen hybridi-
zation Vz&, a finite oxygen dispersion derived from t~~
[and called e(k)) and oxygen and "bare" copper levels
called a~and c.&, respectively. The parameters appropri-
ate to the copper oxides, ' which we will use throughout
this paper are such that all three valence states are prob-
ably admixed. However, it is often assumed that the d-d
Coulomb repulsion U can be replaced by infinity so that
one of the two valence states is absent: Cu + in the
"hole" picture and Cu+ in the "electron" picture. In this
paper we will refer to the large-U hole picture, although
our qualitative as well as some quantitative conclusions
are more general. Throughout the body of our work us-
ing this boson formalism we have attempted to discuss
both pictures, so that all results can be seen as general.

Equation (2.1) is a useful starting point for applying a
steepest-descent approximation within a path-integral
formulation. This mean-field approximation is exact in
the limit that the spin degeneracy of the Cu and oxygen
spin states (N) is infinite. While in reality N=2 is not
large, this approximation has been rather successful in
the context of heavy fermions and is believed to be a use-
ful theoretical tool for the copper oxides. Since at infinite
U only the e boson is present, we may replace this boson
and the constraint field by static uniform c-numbers.
Only the amplitude of the boson field is relevant, as a
result of a gauge transformation. ' We define

(iAk ) =A05k 0 and ( ~e~k ) =eo5k o, since spatial fiuctua-

I

tions are of higher order in N. In this leading-order limit,
Eq. (2.1) reduces to a mean-field Hamiltonian, which can
be diagonalized to yield the renormalized band structure
E„(k)

3

H = g QE„(k)4„k4„i,~+AD(eo —NQO) . (2.3)
n =1 k, o.

The quasiparticles 4„k are composites of the original

p, d operators. We define 4', =p„%'2=p and
%'3=d &» so that

Z

3= g u„„(k)%„i, (2.4)

where u„„(k)are the coherence factors. To obtain the
complete mean-field solution, one determines the parame-
ters eo and A,o variationally by minimizing the free ener-

gy
In the hole picture, for suSciently small hybridization

(V~& of order 1 eV) the system undergoes a Brinkman-
Rice localization transition (m ' —+ 00 ) (Refs. 7 and 10) at
half-filling in which the renormalized hybridization van-
ishes (eo V z ~0). This signals the breakdown of the Fer-
mi liquid as the insulator is approached. We view this as
an important restriction on any Fermi-liquid-based ap-
proach. In the "electron" picture this occurs without
constraints on the Hamiltonian parametrization. A re-
sidual effect of this localization driven insulating behav-
ior, is that in the metallic state the Cu d electrons are al-
most localized corresponding to a moderately large mass
enhancement. This behavior is closely analogous to the
band narrowing or kinetic-energy renormalization found
in the large-U limit of the Hubbard model.

A schematic plot of this renormalized band structure is
shown in the inset of Fig. 1a. Here we consider a
simplified model in which the oxygen band has parabolic
dispersion and the hybridization is a wave-vector-
independent constant V. We have also repeated this
(and all other calculations throughout this paper) for the
more appropriate, although more complex, tight-binding
band structure of the oxides. As can be seen by compar-
ison with Ref. 7, the resulting band structure is not
significantly different from that derived in a tight-binding
scheme. The lower band has dominantly Cu character
with a bandwidth which vanishes as 5. An important en-
ergy scale in the renormalized band structure is the gap 6
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G„(k,co) = [co E—„—X(k, co) ] (2.S)

where X(k, co) is the self-energy of the quasiparticles. The
dotted lines are the renormalized slave boson propagators
associated with fluctuations in both the Cu+ and Cu +

bosons

D( k, co)=[D 0'+II(k, co)] (2.6)
I

between the upper and the lower band, which is small
compared to the unhybridized oxygen bandwidth' D.

In the 1/N scheme, spin-spin interactions enter' at the
( I/iV) level, as shown in the inset of Fig. 1(a). Here the
solid lines correspond to the quasiparticle propagators

and —II(k, co) is the boson self-energy. At small frequen-
cies (co(h), there are strong renormalization effects.
However, in the limit that b, «D, the dominant contri-
bution to the exchange interactions arises from high-
frequency fluctuations. The expressions for the relevant
boson propagators are given in Appendix A, where the
details of the exchange interaction calculation are also
presented. At high frequencies, the quasiparticles are
dominantly of p character. At low frequencies, on the
other hand, the quasiparticles on the external legs can be
replaced by copper states at the Fermi energy. As a re-
sult, the final expressions for the exchange interactions
can be decomposed in the following two contributions:

and

dk~ dk2, ~k k ).RJ (R")=4V e ' ' "f f+R ij
1 1

&uk
1

2

Uek2dsuk&
(2.7a}

dk& dk2 & (k k ).RJ (R")=4V eS EJ 0 0' fk,fk,+— +
~k1d~k d &uk

1

fk,fk,+-
U C„kC„k

1 2

(2.7b)

where ekd=(ek —Ed), E„k=(U+sd—Ek), II is the volume

of the Brillouin zone, fk is the Fermi function and

fk =(1
These terms arise from poles in both the fermion and

the boson propagators. Because of the combination of
Fermi functions involved in these expressions, Jz can be
identified with the RKKY interaction and J& with the
"superexchange" term. It should be stressed that it is
their sum JH, which is physically relevant. Nevertheless
we make this separation on the basis of a perturbative
calculation of the exchange interactions, which is given in

Appendix B. Physically the RKKY term' may be
thought of as deriving from an intermediate oxygen state,
which contains a hole and therefore a spin, whereas the
(infinite-U) superexchange term arises when the inter-
mediate oxygen state is empty of holes. Clearly, as excess
holes populate the bare oxygen band the relative impor-
tance of these two terms changes.

III. CONCENTRATION DEPENDENCE
OF EXCHANGE INTERACTIONS

To find the concentration dependence of these interac-
tions we have numerically evaluated the two contribu-
tions in Eqs. (2.7). In the isotropic model discussed
above, the integrals in Eqs. (2.7) reduce to a one-
dimensional limit. In the tight-binding scheme, more
complex numerical calculations yield similar conclusions.
In both cases we find that the range of the superexchange
term increases as the oxygen band becomes broader,
while that of the RKKY interaction is relatively less sen-
sitive. Overall, the spatial dependence of the various in-
teractions is oscillatory in sign. In Fig. 1(a), the nearest-
neighbor interactions are plotted in units of
4V /(e~ —

Ed ) as a function of doping concentration 5.
Here for definiteness we assume U = Gc and

(e~ —Ed)=0.7D. The figure illustrates how the RKKY
interaction quickly sets in as the dopant concentration in-
creases, while the superexchange term decays rapidly
with increasing hole number. The sum of both contribu-
tions is indicated by JH in the figure.

It can be seen that for a range of values of 5 the next-
nearest-neighbor exchange interaction is ferromagnetic in
sign. The notion that there is a ferromagnetic frustration
to the antiferromagnetic superexchange has been recog-
nized in the literature both experimentally and theoreti-
cally' ' within the context of a more localized descrip-
tion. Our numerical analysis pertains to the limit of arbi-
trarily small 5/D. Estimates based on slightly larger and
more physically appropriate values of this parameter
(b, /D =0.02) yield the same qualitative behavior with a
reduced RKKY term. Thus, we believe that the RKKY
interaction is overestimated in Fig. 1, so that in the me-
tallic regime, the dominant interaction may still be the
antiferromagnetic superexchange coupling, with a
significantly reduced magnitude.

In the half-filled-band limit (5=0), for zero oxygen
bandwidth, our formalism yields the results of Ref. 17.
(This analysis depends on the inclusion of various form
factors associated with the Cu02 tight-binding descrip-
tion. ) Our theory, furthermore, provides a natural exten-
sion of the results of Ref. 17 to the more physically ap-
propriate case of a large oxygen bandwidth. Results
equivalent to the expressions in Eqs. (2.7) have been de-
duced by Gor'kov and Sokol' for a modified Fermi-
liquid model with U = ~ and in which the copper spins
are fully localized. This represents a qualitatively
di8'erent model from the hybridized Fermi liquid we dis-
cuss here; the similarity in the results of the final analysis
can be attributed to our assumption that D »h. The
above discussion underlines the fact that the present re-
sults are insensitive (at the general physical level} to the
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details of the auxiliary boson scheme. We may, thus,
view our calculations as providing a reasonable interpola-
tion scheme between the dilute and concentrated (i.e.,
Fermi-liquid) regimes, although they clearly do not in-
clude the complex physics associated with polaron-
ic' ' ' or other more localized descriptions of the oxy-
gen hole motion when the hole concentration is small but
nonzero. '

0.4

IV. CALCULATION OF THE DYNAMICAL
SUSCEPTIBILITY

An RPA resummation of the dynamical sus-
ceptibility is not always possible, except for the case of
constant J. However, because of the special structure
of the vertex function in the present theory
([JH(q, co)I2]dk+ dk, .dk. dk .), the RPA series can
be summed to yield the dynamical susceptibility
g„„(q,co). The details are presented in Appendix C.
Similar results are obtained in Ref. 20 for the heavy-
fermion problem. We find that

X d '(q ~)[ JH(q)]—Xd, '(q ~)
1+JH(q)gdd +(q, co)

T
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FIG. 1. (a) Doping concentration dependence of microscopi-
cally determined nearest-neighbor exchange interactions [in
units of 4V /(e~ —ed )']: Js, Ja, and JH correspond to superex-
change, RKKY and their total, respectively. In the insets are
plotted the renormalized copper oxide band structure and
(1/N) exchange diagram. A parabolic oxygen band structure
is assumed, for simplicity. (b) Exchange interaction JH as a
function of q at x =0.04 (in the tight-binding copper oxide mod-
el).

(4.1)

where y„,(q, co) is the Lindhard susceptibility associated
with the renormalized band structure and the subscript r
corresponds to oxygen (p) or Cu (d) states. Equation
(4.1) contains the essential physics of our Fermi-liquid
description of the magnetic properties. Its general form
coincides with that assumed in Ref. 21.

There are two important ingredients to the dynamical
susceptibility of Eq. (4.1). These are (1) the band struc-
ture renormalizations contained in y and (2) the quasi-
particle exchange interactions, JH. These two com-
ponents are characteristic of any Landau Fermi-liquid
picture. Indeed the static uniform susceptibility of Lan-
dau theory consists of m'im and Fo contributions,
which play a similar role at q =0 to our two finite q con-
tributions. In general, these two cannot be clearly
separated, using only magnetic measurements. In our
strongly correlated system, the quasiparticle bandwidth is
considerably more narrow than in a noninteracting sys-
tem. This introduces a new energy scale which appears
in g . This reduction in bandwidth is associated in an
essential way with the "quasilocalization" of the d elec-
trons which forms the basis for our physical picture. It is
clear that nesting effects, which lead to q-dependent con-
tributions, as well as structure associated with Van Hove
singularities will be accentuated in this narrow band lim-
it. These may show up as "antiferromagnetic" structure,
although in reality they are not associated with the ex-
change interactions. It is natural, then, to view the
magnetism as a strongly combined effect of band struc-
ture and interactions. The two extreme limits of this pic-
ture yield the "nearly magnetic" approaches of Ref. 21
and the "nearly localized" approach of the present paper.
In reality, a more realistic situation may lie somewhere in
between. By tuning the size of the interaction term J&,
as well as other parameters, our microscopic approach
can incorporate either physical picture. Which alterna-
tive is more appropriate is best determined phenomeno-
logically by detailed comparison with a wide class of
magnetic as well as transport data. This issue is discussed
in more detail elsewhere.

We end this section with a discussion of the q depen-
dence of the exchange interaction JH(q). This function is
an important input parameter for calculations of y(q, co),
which have been presented in Ref. 6. In order to lay the
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groundwork for calculations of the spin dynamics in the
cuprates, we consider the more realistic tight-binding
description of the oxygen bands which is found to give re-
sults similar to those of the parabolic model. In Fig. 1(b)
is plotted the net exchange interaction as a function of
wave vector q for a doping concentration x =0.04, where
the interaction is dominated by the antiferromagnetic su-
perexchange. Here the insulating limit (100 meV) is
fitted. It may be seen that this q dependence is roughly
represented by a simple tight-binding cosq„a form. It
should be stressed that this form is only appropriate for
the tight-binding description of the Cu02 planes. While,
Fig. 1(b) addresses a rather low x value (in order to exhib-

it results for a clearly antiferromagnetic exchange), we
have verified that this q dependence is also appropriate
for higher values of x. This q-dependent exchange is
found to play an important role in the dynamical suscep-
tibility, particularly in the YBa2Cu307 system. In the an-
tiferromagnetic regime, it also has the effect of suppress-
ing the magnitude of the Pauli term relative to the nonin-
teracting quasiparticle limit.

V. IMPLICATIONS FOR THE PHASE DIAGRAM

To analyze the phase diagram we compare the energy
of the Fermi-liquid state with that of various magnetic
states. We derive the "Kondo-Heisenberg" Hamiltonian

H~ff QEdd; ~d, ~+Xsppt api ~+ p tpp(pi, , ~pi, , &+H c )+. g. iA. , gd, d, . 1'—
i, cr I, cr I &, 12,o I 0

,'Jffdt—pi,pi d; + g ,'Js(R—, )d; d d d;
i, I &, I&, cr, cr' i,j,cr, cr''

(5.1)

using a path-integral scheme applied directly to the extended Hubbard Hamiltonian by integrating out the Cu+ and
Cu + bosons and truncating after terms of order V . Written in this way the Schrieffer-Wolff or Kondo exchange in-
teraction Jx which is formally of order V will lead to the RKKY interaction of Eq. (2.7) when it is treated in second-
order perturbation theory. The value of Js deduced in this perturbative (in V) approach is found to be equivalent to the
expression in Eq. (2.7), derived within the 1/X formalism. This scheme such as the diagrammatic approach yields
specific values for the appropriate exchange constants which have been previously taken to be unconstrained. The de-
tails of this analysis are sufficiently complex so that they are deferred to Appendix B.

The free energies of the Fermi-liquid (FL) and various localized magnetic phases are calculated using Eq. (5.1) within

a mean-field approximation in which, for simplicity only the nearest-neighbor exchange interactions are included. We
rewrite Eq. (5.1) using a Hubbard-Stratonovich bosonization scheme

1
of gs~d, ~d, ~+ gspp, p, + g t ppi p, +gi A;(d, d; . 1)——J—ff g [X; (d; p, +p, .d, )

—
—,X, ~ ]2 i, I C i, cryo '

+—Jff g (U, d,td, +V, pitpi —U; V; )+—Js g (d;t W, d; . ,'W, .W——).K (5.2)

Here Jir is given by 2V /(Ep —sd) and Js is parametrized
from Fig. 1 as Js(5)=[4V /(Ep —sd ) ] exp( —5/5o). The
various Hubbard-Stratonovich fields are defined as

isa Epic ia ~ icr Xplapla ~

ICi ICi

V, ~=d;crd, ~ ) 8';~~.=d;~d;~ .
(5.3)

Different choices of the mean-Geld ansatz for
[X,U, V, W] lead to different mean-field phases.

The mean-field phase diagram resulting from this
analysis is shown in Fig. 2. The shaded region indicates
the physical parameter space, i.e., that which yields ener-

gy scales appropriate for the copper oxides. While the
present analysis addresses a simple spherical band, we ex-
pect these results to be more general, since the phase dia-
gram depends primarily on details of the energies, rather
than on those of the band-structure parametrization. For
comparison, in the inset we plot the corresponding phase
diagram when the oxygen band is dispersionless and the
superexchange interaction is a constant given by
Js =4V&~(sp —sd ) . In this case, for the physical param-
eter space, magnetic order persists over a wider range of
5. This comparison thus illustrates how the doping con-

I

centr ation dependence of the exchange interactions
enhances the stability of the Fermi-liquid phase.

Because of the oscillatory nature of the exchange in-
teractions, which is not properly accounted for in our
truncation scheme, the ferromagnetic (F) and antiferro-
magnetic (AF) phases, which are indicated in the lower
half of the phase diagram, presumably have spiral order
with a corresponding pitch, which evolves continuously
from F-like to AF-like as the doping concentration is in-
creased. Comparing Figs. 2 and 1, it may be seen that
the mean-field phase boundaries between the AF and F
phases mirror the sign changes found in the vertex func-
tion JH. A full analysis, which treats various spin-liquid
phases in the presence of a finite oxygen bandwidth, re-
quires a new (Schwinger boson-slave fermion) formalism.
However, it may be inferred from previous calculations in
the t-J model that a spin-liquid-like phase will occur
somewhat near the boundary of the AF and FL states.
The stability of this phase will be adversely affected by
the growing tendency towards nearest-neighbor fer-
romagnetic fluctuations seen in Fig. 1. It should be
stressed that, while, Eq. (5.1) contains the precise RKKY
interaction [of Eq. (2.7a)], at the mean-field level only the
uniform part of the spatially dependent RKKY interac-
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FIG. 2. The mean-field phase diagram for physically large
conduction band width. In the inset is plotted the analogous
phase diagram for zero bandwidth. F, AF, FL stand for fer-
romagnetic, antiferromagnetic, and Fermi-liquid phases, respec-
tively. The shaded region corresponds to the physical parameter
region (see text). The F and AF phases exhibit spiral order, as
also discussed in the text.

tion is included. This underlines the pitfalls associated
with deriving exchange interactions directly from mean-
field energy considerations.

VI. CONCLUSIONS

In summary, this paper has presented a number of re-
sults: (1) We have addressed the nature of the exchange
interactions in the metallic copper oxides and demon-
strated that the character and magnitude of these interac-
tions is sensitive to the hole concentration. In addition
we have shown that it has considerable q structure and
that to a good approximation, this q dependence can be
approximated by a simple nearest-neighbor tight-binding
form. This form is particularly important in explaining
the spin dynamical properties of the Y-Ba-Cu-0 family.
(2) We have presented a microscopically based calcula-
tion of the dynamical susceptibility of the Fermi-liquid
phase. This susceptibility plays an important role in in-
terpreting NMR and neutron data and has in the past ei-
ther been treated phenomenologically or assumed to be of
the small Coulomb U, RPA form, with adjustable carrier
concentration. ' In our calculations the hole concentra-
tion is taken to be the physical value. Furthermore, we
have performed these calculations for various three-band
extended Hubbard models in which the oxygen band is
treated as having a free-electron-like, as well as tight-
binding dispersion. (3) Finally our self-consistently deter-
mined exchange interactions have been used to demon-
strate the enhanced stability of the Fermi-liquid phase.

This last point also bears on a large body of theoretical
work based on the t-J model in which J is assumed to
have the value appropriate to the insulator.

To what extent have the exchange interactions in the
metallic phase been characterized experimentally? There
is a significant body of evidence for little change in the
character of the Cu states with doping. ' This reinforces
our "quasilocalized" Fermi-liquid picture and suggests
that the rapid loss of magnetic order with additional
holes may derive from the changes in the exchange in-
teraction. Johnston has analyzed susceptibility data
and deduced a suppression in the exchange interaction
with doping, although a number of uncontrolled assump-
tions have been made in this analysis. Neutron data have
indicated that magnetic-induced structure and correla-
tions are progressively more difficult to observe with in-
creased hole doping. 2 Raman experiments have also
been interpreted as suggesting that the exchange interac-
tion is suppressed with increasing oxygen content. The
nature of the magnetic interactions will presumably be-
come clearer shortly, but as yet there are no definitive
answers.

What are the implications of the present work for
Fermi-liquid theories? We have made two essential
points relating to Fermi-liquid-based approaches. (1) The
stability of the Fermi-liquid phase is enhanced by the
suppression of the superexchange interactions found
here. (2} Any interpretation of the experimentally mea-
sured dynamical susceptibility must recognize that band-
structure renormalizations and the quasiparticle ex-
change interactions both enter into the analysis. These
two contributions are diScult to separate and as a result,
there may be "tradeofFs" between low-energy scales intro-
duced by band-narrowing efFects and by spin fluctuations.
Our analysis, thus far, has led us to conclude that the cu-
prates would be in a Fermi-liquid ground state, if super-
conductivity did not intervene. However, at the relative-
ly "high" temperatures of the normal state there is a loss
of full coherence so that transport and magnetic proper-
ties may exhibit anomalies. These are similar in many
ways to those seen in the heavy-fermion metals at analo-
gously high temperatures 28
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APPENDIX A: EVALUATION OF THE EXCHANGE
INTERACTIONS WII HIN A 1/N FORMALISM

In this appendix, we derive the vertex function associ-
ated with the spin-spin exchange interactions between the
quasiparticles of our Fermi liquid using a 1/N expansion.
These interactions arise at the (1/N) order. While the
formalism is equivalent to that given in Ref. 12 for the
heavy fermions, here we find a "superexchange" as well
as an RKKY term. For definiteness, we work in the radi-
al gauge.

Consider first the limit U = 00. In the radial gauge the
auxiliary boson field ( ) e~, A, },where

~ e( is the radial part of
e field, can be decomposed into real and fluctuating parts:
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lelk eo5k, o+v'N 5rk, il k=lo5k, o+Mk (Al) The resulting expressions for the exchange interactions
can be separated into two parts.

where e0 and X0 are the variational parameters discussed
in Sec. II. Here 5rk and 5kk are the fluctuating contribu-
tions which are integrated out. The exchange interac-
tions arise from processes involving virtual quasiparticle
states.

The auxiliary boson propagators are defined by

D„„D„g
D(k, r)=

( T,5rk(r)5rk(0) ) ( T,5rk(r)5kk(0) )

( T,5Ak(r)5rk(0)) ( T,Mk(r)Mk(0))

and

J"( ) =4 V' f (ek ed) (ek' ed)
i(k' —k)-R,"

Xe

Jee(R )=4V4f Dk Dk f k f k'

i(k' —k) R"
Xe

(A5a)

(Asb)

At high frequencies, the boson propagators on the lattice
are essentially the same as for the impurity case, since all
effects of p-d hybridization are irrelevant. Following
Refs. 11 and 14, we find that at high frequencies,

N( —
ed ) &Neo

2( 0) (A2)
eo

N

D '(k, co) =
&Neo

This leads to

D„„=1 1 +
N —C0

d

1 ~Neo
2N ee0

N E,d
0

N Fd
0

(A3a)

(A3b)

1

2N e0

1 +
N Ed N Ed

0 (A3c)

The resulting propagators have poles at +c.d, which
reflect the charge transfer channel in the Hamiltonian.
In the radial gauge, these poles occur only when the
small I/co diagonal element and an off-diagonal &Neo
term are retained. These effects arise from preserving
gauge invariance.

It may be seen from Eq. (A3) that the residues at these
poles for D„„,D„&, and D&z have the ratio
I:(&N

co/co�):(&N

co/eo), respectively. Thus, in the ra-
dial gauge, several different diagrams contribute at the
same level to the vertex function. Each term can be asso-
ciated with a different component of the matrix boson
propagator, D„„D,&, or D&z inserted into the diagram
given in Fig. 1. In each case the external legs can be ap-
proximated by the propagator for the d electrons at the
Fermi level with intermediate fermion propagators deter-
mined by the corresponding interaction vertex. Each dia-
gram has contributions from boson and fermion poles.

To express our results in final form, we use the follow-
ing relations for N =2,

From the combination of the various Fermi functions
we can identify J& with the superexchange interaction
and Jz with the RKKY interaction.

We now discuss Pnite but large U so that (f ) =0 is
preserved and 5f =f fluctuations will not give rise to in-
frared divergences. We use auxiliary boson fields
(5r, 5A, , 5f,5f ). The effect of finite U is to produce a
similar propagator for the 5f field with a pole at
(U+ed ). This reflects the Mott-Hubbard channel. Cal-
culating the diagrams with 5f propagators we find that
the resulting contribution to the exchange interactions
can be separated into

Jgf(R )=4V f Dk Dk f ek f k'

( U+ ed
—

ek ) ( U+ ed —ek. )

i(k' —k) R,"Xe (A6a)

and

Jgf(R ) 4V4f Dk Dk f ek f ek'

( U+ed —ek ) (ek —ek )

i(k' —k)-R,
Xe (A6b)

Finally incorporating the cross terms, by using Eq.
(A4b), yields

and

Dk Dk'
J;I(R,, ) =4V' f (U+ed —Ek)(&k

J'I(R; )=4V f
f'(&k)f+(&k )

(Ek ed )«k &d )— —

f (sk)f (ek )
+

(U+ed —ek)(U+ed —ek )

(A7a)

g d; d ~ d d; ~ =2(S;.S + ,'n, n )—..

o, a'

gd, td. td, d; ~ sgn(acr')=2(S, . S, ——,'n;n )

(A4a)
X

1

U
(A7b)

(A4b)
Collecting all terms in Eqs. (A5) —(A7), we find Eqs.

(2.7) in the text.
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APPENDIX B: PERTURBATIVE CALCULATION OF
THE EXCHANGE IN'SERAC. llONS

This appendix is devoted to an alternative derivation of
exchange interactions using a perturbative formalism.
Here it is assumed that Vd [and more specifically

V~ /(a~ —ed ) and V~d /( U +sd —
a~ )] are small parame-

ters. For simplicity, we assume the ground state consists
of two components: conduction (p) electrons moving in
the local moment (d) electron background. In this case
co =0, and hence both the e and f fields represent fluctua-
tion contributions which can be fully integrated out.

After this integration, the partition function is given by

Z = fDd Dd Dp Dp exp —f Dr L,z (Bla)

This leads to

Xexp — Dv L13

0
(Blb)

where P= 1 /T. Here the temperature T is taken to be 0.
L,z is defined by

exp — D~L,ff
= De De D D

0

I

L, (r)=gd; (8,+sg)d; +gpk (8,+ek)pk +gg g (d; pk Vke '""')G,(r r')(—pk' 'd 'V k''e'
l, O k, o i k, ok', o'

+gg g [d, pk ~Vk sgn(o )e'" ']G'f(r r')[—pk, ,d; .Vk sgn(o')e '"' '] .
i k, ok', o'

(B2)

In the above equation G, with a =(e or f) is the corre-
sponding propagator which, at T~0 is given by

G, (r—r')=(8,+s, +iA), ',
with

(M, )...k. ,=(a,+ek )„s..skk. , (B6a)

=8(r—r') exp[ —(e,,+i A, )(r—r')], (B3)
XG,(r—r')d; (r'), (B6b)

S,&=So+ Tr 1n(M~+M, +Mf ) (B5)

where e&=2s&+U. Here the energy levels are defined
relative to the chemical potential, and 8(x) is the step
function.

We further integrate out the virtual oxygen processes
to calculate the exchange interactions between d spins.

Z= fDd Dd exp( —S,z) . (B4)

From Eqs. (B1}and (B2), one can see that S,z may be ex-
pressed by fermion matrices:

i(k' —k) R,.—
(Mf)k~, k ~g= fDr'Vk Vik.e 'd; (r)

XGf(r r )d, ~~(r ) . (B6c)

When deriving Eq. (B5) from Eqs. (Bl)—(B4), we have in-
terchanged r and r' in M„and thus in Eq. (B6b)

G (r r }=8(r r) exp[a (1 r }]

The matrices inside the logarithm may be separated into
bare oxygen and fluctuating parts,

Tr ln{M +M, +Mf }=Tr 1nM +(one-body terms )

—
—,
' Tr(M 'M, M 'M, +2M 'M, M 'M, +M 'MfM~ 'Mf )+(higher-order terms) (B7)

The second-order terms in the expansion give the two body interactions between the copper electrons. Here the p elec-
tron propagator is given by

= exp[ —sk {r—r')][8(r—r'}(1—nk ) —8(r' —r)nk )],
which can be separated into a "particle" part

A =exp[ —sk (r—r') ]8(r—r')(1 nk )—
and a "hole" part

B = —exp[ —sk (r—r')]8(r' —r)nk

Taking care of the subtle time ordering in manipulating the trace, we find that

(B8)

(B8'a)

(B8'b)

—
—,
' Tr(M& 'M, Mz 'M, )=P P 5(coi coi+co3 c04)4J—"(coi,co2, co3, A@4) gd; (co&)dj (a&3)dj. (co4)d; (coz),

l~J co) ~ cog~ co3~ et)4 O, o

(B9a)
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—Tr(M~ 'M, M~ 'M, ) =g g 5(a), —~2+~3—to~) —,
' J'f(~, , ~2, t03, m4)

' j"I "2 "3 ~4

X g d; (co&)d (m3}d- .(co4)d, (co&) sgn(cro'),
O, O'

(B9b)

and

—
—,
' Tr{M~ 'MfM~ 'Mf )=g g 5(co, co~—+co3 co~—) ,'Jff—(ro„co„co3,co4) g d; (co, )d, .(A@3)d (co~)d; (a)2), (B9c)

1,J CO( r CtP2, CtP3, ttP4 o', e

where g; . represents the summation over i and j in-

dependently. When we convert to g;, , which sums a
pair of (i,j) only once, a factor of 2 is produced. Rela-
tions similar to Eqs. (A4), but "off shell, " can also be de-
rived. We interpret the resulting expressions as operator
relations so that J'" in the above equations with a, b = (e
or f) represent spin-spin interactions. The expressions
for J' (m&, co~, A@3,co&) for general co„co2,co3, co4 are too
complex to write down. However, in the "on-shell" limit,
i.e., co, =co,=~,=~4=iX,+c„,we find that the part of
J' which arises from Tr( AM, 2Mb) and Tr(BM, BMb)
terms reduces to Js given in Eqs. (A5a), (A6a), and
(A7a), while the part which comes from Tr(AM, BMt, )-
like terms yields Jt't given in Eqs. (A5b), (A6b), and
(A7b}. (Here V should be replaced by V, V k V;k V k..)

In summary, this perturbative calculation gives results
which are essentially equivalent to those derived in the
(I/N) expansion (in the small b, /D limit) discussed in
Appendix A.

H.~= & E.k.@ .k.@.k
n, k, o

+-,' & QJH«)d t+x~d I tt~ "k~"ka -.
K, k, k'o, cr'

(C2)

the generalized spin susceptibility is resummable.
To set the stage for applications to magnetic experi-

ments, we consider here a realistic tight-binding band
structure appropriate to the copper oxide plane. The ex-
change interactions of Appendixes A and 8 are of the
form (S S+—,'nn) for the U = ao contribution, and
(S.S—

—,'nn) for the U-dependent contributions. In the
present case where Coulomb correlations are strong, so
that charge fluctuations are suppressed, we neglect the
small differences between the structure of the vertices.
We consider the general vertex function of Eq. (Cl).
Within this physical picture, the spin-spin interactions
dominantly arise between the d components of the quasi-
particles.

We start from the following e8'ective Hamiltonian:

APPENDIX C: RPA EVALUATION OF THE
DYNAMICAL SPIN SUSCEPTIBILITY

In general only q-independent interactions have been
shown to be resummable within an RPA scheme. In
the following we demonstrate that for the special com-
bination of spin-spin and charge-charge interaction ver-
tices I, which we find here y„„+(q,t) =i8(t)( [cr„(q,t), o „+.(0,0)]), (C3)

Here the quasiparticle operators, 4„k,are related to the
wave functions, %'„k,via coherence factors, u„„,defined
in Eq. (2.4). We use the equation of motion method and
follow the notation of Ref. 30.

We first introduce dynamical susceptibilities associated
with the diferent components by

I -gJ(R;J)(S; S + ,'n;n ), — (Cl) where u and o+ are the spin lowering and raising
operators. We also define

y„+„„.(p, q, t)=i8(r}([4„t (p+q, t)qp„ t(p, t), g%,, tt(k+k')%, ,)(k)]) .
k, k'

It then follows that

y„,+(q, t) =g g u„„(p+q) u(p)y„+„„(p,q, t) .
P n&n2

The equations of motion for y +„„,(p, q, t) are
l 2

iB,Pt' +„„{p,q, t)= —5(t)([4&„t (p+q, t)N„ (p,tt), o(0,0)])

+i 8(t)( [[@„)t(p+q, t)4„t(p, t), H,s],o „+.„(0,0) ]])

(C4)

(C5)

(C6)

It can be seen from analyzing [4„&(p +q, t)4„&(p,t), Hdt] that, for the contractions which are unrelated to self-
I "2

energy corrections, momentum conservation requires momentum K in JH(K) to be always equal to +q, the external



45 MAGNETIC INTERACTIONS IN THE METALLIC PHASE OF. . . 4939

momentum. This variable can be removed from the internal summation. Consequently the expression for the RPA sus-

ceptibility can be written in "closed form. ' It should be stressed that this resummation depends on the detailed form of
the vertex function given in Eq. (C2). This point can also be understood diagrammatically. For the spin susceptibility,
the vertex I generates only a "bubble' series, and the momentum associated with the interaction line is always equal to
+q.

Neglecting the self-energy corrections, and inserting the resulting expression for [@„t (p +q, t)@„t(p, t},H,cc] into

Eq. (C6},we find that

y„+„„.(p, q, cu) =g„„+(p,q, co)u„„(p+q)u„;(p)

where

+JH(q)y„,„+,(p, q, co)u„,d(p+q)u„d(p) Q ud (k+q)ud (k)y + „.(k, q, co),
km)m2

(C7)

f.,
&(p»} f., t(—p +q}' +( cu)=

co —[E (p) E„(p+—q) ]+irt
(C8)

The above analysis leads to

Xd, +(q, c0)
ud (k+q)ud (k)y + „(k,q, oc)=

km&mz
1+JH(q)ydd +(q, co}

Combining Eqs. (C5), (C7), and (C9) we finally arrive at the RPA form

7 d '(q ~}[ JH(q}lX—d ' +(q ~)

(C9)

(C10)
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