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Abstract. Scatter radiation severely degrades the image quality. Measurement-based scatter correction meth-
ods sample the scatter signal at sparsely distributed points, from which the scatter profile is estimated and deter-
ministically removed from the projection image. The estimation of the scatter profile is generally done through
a spline interpolation and the resulting scatter profile is quite smooth. Consequently, the noise is intact and the
signal-to-noise ratio is reduced in the projection image after scatter correction, leading to image artifacts and
increased noise in the reconstruction images. We propose a simple and effective method, referred to as filtered
scatter-to-primary ratio (f -SPR) estimation, to estimate the scatter profile using the sparsely sampled scatter
signal. Using the primary sampling device and the stationary digital tomosynthesis systems previously devel-
oped in our lab, we evaluated and compared the f -SPR method in comparison with existing methods in terms of
contrast ratio, signal difference-to-noise ratio, and modulation transfer function. A significant improvement in
image quality is observed in both the projection and the reconstruction images using the proposed method.
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1 Introduction
Scatter radiation is a major issue for x-ray imaging systems
using cone-beam x-ray radiation and flat panel detectors. It
can severely degrade the image quality by reducing the contrast,
increasing image noise, and causing image artifacts, such as the
cupping artifact, ring artifact, and streaking artifact.1,2 Scatter
reduction hardware, such as antiscatter grids (ASG), is often
used to physically reject the scatter signal. The ASG consists of
a series of alternating strips that collimate the radiation and
reject scatter coming from directions other than the primary
beam. Although scatter radiation is rejected, the primary signal
is also reduced due to the collimation, resulting in a decrement
of image signal-to-noise ratio (SNR).3 For digital breast tomo-
synthesis, the effectiveness of the ASG is still in debate.4,5 In
addition to physically rejecting the scatter signal, mathematical
model-based scatter estimation has been intensively investi-
gated. This includes the convolution-based method, Monte
Carlo (MC) simulation method, and a hybrid method.6–10

Among them, the MC simulation method produces the most
accurate estimation; however, it requires the most computation
time. The convolution-based method estimates scatter by con-
voluting the projection image with a scatter kernel obtained
from MC simulations. The convolution-based method is com-
putationally efficient; however, the scatter estimation is not
as accurate. Recent studies showed the computation time of
MC simulation could be reduced significantly using advanced

graphics processing units (GPUs), making this scatter correction
method more practical in the clinical setting.11–13

Measurement-based scatter correction method estimates
the scatter profile from the sparsely sampled scatter/primary
signal.2,14–18 One method uses a beam-stop (beam-absorber)
array (BSA) installed close to the x-ray source.19–21 The BSA
blocks a fraction of the x-ray photons and creates multiple
shadow areas on the detector that consist only of scatter. The
scatter map is then estimated by interpolating the measured
scatter signal under the BSA shadow area. The scatter map esti-
mated using BSA is relatively accurate. However, BSA is prone
to residual artifacts due to the missing data.22 Other techniques,
such as the beam-pass array (BPA) and primary modulation
method, have also been investigated for sampling and recover-
ing scatter profile.15,23–25 Previously, our team demonstrated
a scatter correction method for stationary digital breast tomosyn-
thesis (s-DBT) using a primary sampling device (PSD).26,27

Different from BSA/BPA, which are installed close to the
x-ray source and have a large magnification factor, the PSD
is placed in close proximity to the patient. The magnification
for the PSD is close to 1, which allows much smaller size sam-
pling holes and a much higher sampling density than either BPA
or BSA, therefore increasing the accuracy of the scatter profile
sampling. We have demonstrated that only an additional 3%
radiation is needed to obtain a good sampling of the scatter pro-
file, and the method can be easily implemented on digital im-
aging systems.26,27
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One critical step in the measurement-based scatter correction
method is the recovery of the scatter profile from the sparse mea-
surements. The majority of the previous research uses interpo-
lation to generate a smooth scatter profile.16,17,20,23,28–31 When
this scatter profile is subtracted from the projection image,
the image noise remains the same. As a result, although the con-
trast ratio (CR) of the image is increased, the signal difference-
to-noise ratio (SDNR) does not change in the projection images.
In fact, as shown by Zhu et al.,32 subtracting a smooth scatter
profile will cause noise amplification in the line integral image
after logarithmic transformation, resulting in image quality deg-
radation and image artifacts, which may overshadow the benefit
of scatter removal.

In this paper, we present a new approach, referred to as the
filtered scatter-to-primary ratio (f-SPR) method, to estimate
scatter from sparsely sampled scatter signals. Unlike the direct
interpolation method, which produces a smooth scatter profile,
the f-SPR algorithm scales the high frequency component of
the projection image and adds it into the scatter estimation.
When the estimated scatter profile is subtracted, the contrast
is enhanced and the noise is suppressed, resulting in substan-
tially improved image quality. We quantitatively evaluated the
f-SPR method against two direct interpolation methods using
breast tomosynthesis data from physical phantoms, and demon-
strated its effectiveness using chest tomosynthesis data from
a human cadaver imaged by a stationary digital chest tomosyn-
thesis (s-DCT) system.

2 Materials and Methods

2.1 Scatter Estimation Using Direct Interpolation

In measurement-based scatter correction, the scatter profile is
generally recovered by direct interpolation of the sparse signal
samples. There are generally two approaches for scatter estima-
tion. The first approach is to use the measured scatter signal S̄i at
each sampling point i to interpolate the whole scatter profile SSI

EQ-TARGET;temp:intralink-;e001;63;352S̄i ¼ Average ðSÞwithin the i’th sampling area

SSI ¼ InterpolationðS̄iÞ:
(1)

Wewill refer to this method as direct scatter interpolation (SI) in
this paper. The scatter profile estimated from the SI method is
very smooth, and as a result the noise in the projection image is
intact after the scatter subtraction
EQ-TARGET;temp:intralink-;e002;63;258

VarðPSIÞ¼VarðT−SSIÞ
¼VarðTÞþVarðSSIÞþCovðT;SSIÞ≈VarðTÞ; (2)

where PSI stands for the estimated primary signal using SI
method and T is the total measured signal. Due to the smooth-
ness of the interpolated scatter profile SSI, VarðSSIÞ and
CovðT; SSIÞ can be approximated to zero. As a result, the
SNR in the SI corrected image is reduced

EQ-TARGET;temp:intralink-;e003;63;158SNRSI ¼
PSIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðPSIÞ
p ≈

PSIffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðTÞp <

Tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðTÞp : (3)

Since neither the signal difference nor the noise variance is
changed significantly in the SI corrected images, the SDNR
remains the same after scatter correction.

The second approach is to use the measured scatter signal to
calculate the scatter-to-primary ratio SPRi at each sampling
point, then interpolating and extrapolating the SPR to the
whole image to obtain the SPR profile SPRintp

EQ-TARGET;temp:intralink-;e004;326;708

SPRi ¼ Average ½S∕ðT − SÞ� at i’th sampling point

SPRintp ¼ InterpolationðSPRiÞ; (4)

from which the scatter profile is computed using

EQ-TARGET;temp:intralink-;e005;326;647SISPR ¼ T ·
SPRintp

SPRintp þ 1
: (5)

We will refer to this approach as the interpolated SPR (ISPR)
estimation. The ISPR method uses a smooth SPR profile to esti-
mate a locally fluctuating scatter signal.16,30,31,33 ISPR has the
advantage of ensuring positivity and enabling further modeling
of the scatter profile, for example, one could impose an upper or
lower bound threshold on the SPR profile in the ISPR method.
At places where scatter varies significantly between two sam-
pling points, ISPR might recover some structural variation of
the scatter signal, which SI would fail to estimate. In addition,
the ISPR method suppresses the noise in the projection image
after scatter removal
EQ-TARGET;temp:intralink-;e006;326;486

VarðPISPRÞ ¼ VarðT − SISPRÞ

¼ Var

�
T − T ·

�
1 −

1

SPRintp þ 1

��

¼ Var

�
T ·

�
1

SPRintp þ 1

��

≈
�

1

SPRintp þ 1

�
2

· VarðTÞ < VarðTÞ; (6)

where we approximate SPRintp as a constant since the spline
interpolation is always smooth between two sampling points.
Hence, the SNR will be similar to that in the raw image before
scatter correction
EQ-TARGET;temp:intralink-;e007;326;320

SNRISPR ¼ PISPRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðPISPRÞ

p

≈
T ·

�
1

SPRintpþ1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

1
SPRintpþ1

�
2
· VarðTÞ

r ¼ Tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðTÞp : (7)

Since the signal difference is also scaled by the same factor,
the CR is not enhanced in the scatter corrected image, and the
SDNR is not improved.

In summary, scatter correction using scatter profile estimated
from direct interpolation of either scatter or SPR samplings
would not improve the SDNR of the image.

2.2 f -SPR Scatter Estimation

Scatter can be modeled as a convolution of incident x-ray
photon flux I and a scatter point spread function SPSF

EQ-TARGET;temp:intralink-;e008;326;106S½r� ¼
X
u

I½u� · SPSFðu; rÞ; (8)
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where I½u� is the total incident photon flux at the image space
position u, and the scatter point spread function SPSFðu; rÞ
describes the scatter kernel from the image space position u
to the detector position r. This model suggests that scatter is
generally a smooth function on the large scale but could still
carry local fluctuations. Direct interpolation of the sparsely mea-
sured scatter samplings generates only a smooth scatter profile.
The high frequency noise associated with scatter is not sub-
tracted from the image. Though there is no accurate way to
estimate this high frequency information, to the first-order it
is reasonable to assume that this part of the signal scale with
total local signal measured due to the correlation between
S and T. And we can make a heuristic approximation

EQ-TARGET;temp:intralink-;e009;63;609

X
u

I½u� · SPSFðu; rÞ ≈ P½r� ·
X
r 0

SPR½r 0� · Gðr − r 0Þ; (9)

where the Gðr − r 0Þ is a convolution kernel depending only on
the distance between two points r and r 0 in the detector coor-
dinate. The scatter profile, therefore, can be approximated to
EQ-TARGET;temp:intralink-;e010;63;534

S½r� ≈ P½r� ·
X
r 0

SPR½r 0� · Gðr − r 0Þ

¼ ðT − SÞ · SPRf ¼ T ·

�
1 −

1

SPRf þ 1

�
: (10)

For the actual calculation, we use the interpolated scatter
profile SSI from the SI method to estimate SPR½r 0� using
SPR0 ¼ SSI∕ðT − SSIÞ, and adopt a range bound Gaussian filter
kernel as Gðr − r 0Þ

EQ-TARGET;temp:intralink-;e011;63;417SPRf ¼
X
r 0

SSI½r 0�
T½r 0� − SSI½r 0�

· Gðr − r 0Þ: (11)

The f-SPR estimated scatter then becomes

EQ-TARGET;temp:intralink-;e012;63;358Sf−SPR ¼ T ·

�
SPRf

SPRf þ 1

�
: (12)

Since the filtered SPR profile is a locally smooth function, after
the f-SPR scatter correction, noise in the projection image
will be suppressed

EQ-TARGET;temp:intralink-;e013;63;280VarðPf−SPRÞ ¼ VarðT − Sf−SPRÞ

¼ Var

�
T − T ·

�
1 −

1

SPRfc þ 1

��

¼ Var

�
T ·

�
1

SPRfc þ 1

��
≈
�

1

SPRfc þ 1

�
2

· VarðTÞ;

(13)

and the SNR is maintained after scatter correction. Consequen-
tially, SDNR is enhanced after f-SPR scatter correction.

In Eq. (13), we approximate SPRfc as a constant. This
approximation holds when the filtered SPR profile is locally
smooth. However, if the filter size is close to zero, this approxi-
mation fails and the noise variance of the f-SPR corrected image
converges to that of the SI corrected image. As will be later dem-
onstrated, the filter size controls the amount of the total signal
that is scaled and copied to the scatter estimation. When the filter
size is zero, f-SPR is essentially the SI method; when the filter

size increases to the range of the sampling distance, f-SPR con-
verges to ISPR. Unlike the ISPR where the true signal is scaled,
the signal difference would not be scaled much at the small filter
size in f-SPR. In f-SPR, as shown in Eq. (12), the smooth SI
scatter profile is adapted to compute SPR before filtering, and
this sets the baseline of the scatter estimation and prevents the
true signal from being copied into the scatter estimation. In
essence, the f-SPR method combines the advantage of the SI
method, which enhances the contrast and the ISPR method,
which reduces the noise to result in an enhanced SDNR. A
flow chart of the f-SPR method is shown in Fig. 1.

Fig. 1 Flow chart of the f -SPR scatter estimation method.

Fig. 2 (a) s-DBT systemwith PSD installed. (b) The PSD designed for
the s-DBT system is placed on the compression paddle. (c) Breast
biopsy phantom. (d) BR3D breast imaging phantom.
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The first step in f-SPR is segmenting out the sampling region
in the scan with PSD installed. This is done using Otsu’s thresh-
old method with a morphological closing operation.34 To avoid
the penumbral effect, the identified sampling area is morpho-
logically eroded by 4 pixels. Next, the center of each sampling
area is located and the average scatter signal of each sampling
area is computed using S̄ ¼ T̄ − P̄, where P̄ is the average pri-
mary signal measured from the PSD scan and T̄ is the average
total signal measured from the normal scan in the same sampling
region. A biharmonic spline interpolation and extrapolation is
then applied on the sparse scatter samplings and the SI estimated
scatter profile SSI is obtained.35 Based on this smooth scatter
profile SSI, the SPR at each pixel is calculated using SPR ¼
SSI∕ðT − SSIÞ.

At regions with structural change, such as places with metal
implants, the scatter signal might be overestimated since the
finite sampling points might be too sparse to capture the change.
To avoid overestimation, the computed SPR profile is corrected

using a preset maximum SPR value obtained from previous
studies.36,37 This structural variation of the scatter signal could
also be recovered using the information from the adjacent scatter
profile through mathematical modeling.22 In this study, we set
a maximum SPR value of 2 for breast imaging and a maximum
SPR value of 10 for thoracic imaging. After correction, the
SPR profile is convoluted with a Gaussian filter kernel and
the filtered SPR profile is obtained [Eq. (12)]. In this study, we
used a Gaussian filter with standard deviation σ of 4 pixels
and filter size equal to 17 pixels (see Sec. 4 on the choice of
filter size). Finally, the scatter-corrected projection image is
obtained: Pf−SPR ¼ T − Sf−SPR ¼ T ·

	
1

SPRfcþ1



.

2.3 Imaging System

2.3.1 Stationary digital breast tomosynthesis

An s-DBT system was used for breast imaging studies.38,39 The
s-DBT system uses field emission-based carbon nanotube x-ray

Fig. 3 Scatter profile of the central projection view estimated by (a) SI, (b) ISPR, and (c) f -SPR method.
The scatter signal outside the phantom is set to be zero to avoid artifact during reconstruction. All scatter
profiles are shown at the same display window. (d) Line profile of the projection image before scatter
correction. The position is indicated by the blue dashed line on the biopsy phantom. (e) Profiles of scatter
estimated by different methods along the same line. The SI estimated scatter is very smooth and does
not contain any noise. The ISPR estimated scatter though over/underestimates the scatter in the region
with object features. The f -SPR estimation captures both the large-scale smooth variation and the local
fluctuation of the scatter profile.
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source array, which eliminates the mechanical source motion in
the traditional tomosynthesis scan. The s-DBT system has a lin-
ear x-ray source array with 31 focal spots and an angular cover-
age of 28 deg, a typical anode voltage of 31 kVp, a detector pixel
size of 70 μm, and an image resolution of 3328 × 4096.39 In this
study, we used only 15 projection images with 28 deg angular
coverage in 2 × 2 binning mode, with an equivalent pixel size of
140 μm. Figure 2(a) shows the s-DBT system, which is under-
going clinical trials at the University of North Carolina Hospital
(NCT01773850, NCT02008032).

2.3.2 Stationary digital chest tomosynthesis

The s-DCT system employees similar x-ray source array tech-
nology. It uses a linear source array with 75 focal spots and an
angular coverage of 15 deg at 100 cm source-to-detector dis-
tance, and the anode voltage is 80 kVp. A flat panel detector
is used in the s-DCT system, which has 1536 × 1536 pixels
and a pixel size of 194 μm.38 The s-DCT system is also currently
under a clinical trial at the Biomedical Research Imaging Center
at the University of North Carolina (NCT02075320).

2.4 Primary Sampling Device

The PSD is a thin metal plate with an array of small open
apertures.26,27 As x-ray photons can penetrate only through
the open apertures, the projection of the apertures on the detector
contains mostly the primary signals, and the primary photons in
each projection view can therefore be sampled using PSD.

During the scatter correction, normal projection images are
first acquired without PSD. After the normal scan, a second scan
is performed with the PSD installed close to the imaged object.
By comparing the total signal intensity from the normal scan and
the primary signal intensity from the second scan, samplings of
scatter/SPR are obtained, which are used to estimate the full
scatter map.

The PSD used with the s-DBT system is made of a 2-mm-
thick stainless steel plate, containing apertures of 2 mm diameter
with 10.6 mm spacing. This translates to an aperture area of only
3% of the total area, resulting in a minimal additional dose.26

Figures 2(a) and 2(b) show a PSD placed on the compression
paddle of the s-DBT system. The PSD used in the s-DCT system
is made of a 6-mm-thick lead plate, containing apertures spaced
31 mm apart with a diameter of 6 mm, also occupying about 3%
of the total plate area.27

2.5 Phantom Studies

A breast biopsy phantom and BR3D breast imaging phantom
(Computerized Imaging Reference Systems, Virginia) are
used in this study to demonstrate and evaluate the f-SPR
method. Both phantoms were imaged by the s-DBT system.
Pictures of the biopsy phantom and the BR3D phantom are
shown in Figs. 2(c) and 2(d), respectively. In this study, we
used three BR3D slabs, one feature slab with mass and micro-
calcification simulants sandwiched between two breast tissue
mimicking slabs. The thickness of each slab is 1 cm. A 50-μm-
diameter tungsten wire phantom placed on top of three BR3D

Fig. 4 (a) Central projection view of the breast biopsy phantom. The display window is set for visuali-
zation of the internal structure. The index marks seven regions that are used in CR and SDNR analysis.
(b) Enlarged view of region 1 and region 2 (from left-to-right: without scatter correction, SI corrected, ISPR
corrected, and f -SPR corrected images). (c) The CR and SDNR for the seven ROIs. Both SI and f -SPR
corrected images show a significant improvement in CR, but only f -SPR shows significant enhancement
in SNDR. On average, a 58% increase in CR and 51% increase in SDNR are observed with f -SPR
scatter correction method.
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adipose slabs is used to measure the system’s modulation trans-
fer function (MTF).

An adult female thoracic cadaver, obtained through collabo-
ration with the UNC School of Medicine, was imaged by the
s-DCT system. The thickness of the thorax is 25 cm.

2.6 Image Reconstruction

Scatter-corrected projection images are reconstructed using the
adapted fan volume reconstruction (AFVR) method.40 AFVR
utilizes the linear source geometry in the stationary tomosynthe-
sis, in which it transforms the three-dimensional cone-beam
reconstruction into a series of two-dimensional (2-D) fan volume
reconstructions. In AFVR, each 2-D fan volume reconstruction
is independent and its system matrix is precalculated and stored
in memory. This makes AFVR extremely fast, even without
the GPU implementation. In this study, a simultaneous iterative
reconstruction technique with 20 iterations was used.41 The
reconstructed slice thickness is 0.5 mm for the biopsy and BR3D
phantom, and 3 mm for the human cadaver.

2.7 Evaluation Metrics

The effectiveness of the f-SPR method is evaluated using the
CR and SDNR. CR is calculated using CR ¼ ðIf − IbÞ∕Ib,
where If is the average pixel value of the foreground (features),

and Ib is the average pixel value of the background area around
the features.

Practically, the local CR is usually stretched and maximized
by adjusting the image display window. A more meaningful
metric for measuring the image quality is the ability to differ-
entiate structures/tissues, given the presence of the background
noise. This is measured using the SDNR, defined as: SDNR ¼
ðIf − IbÞ∕σb, where σb is the noise level of the background.

The spatial resolution is characterized by the MTF. A 50-μm
slanted tungsten wire phantom was used to measure the system
MTF. SI, ISPR, and f-SPR methods were applied to the projec-
tion images, and the scatter corrected projection images were
then reconstructed using AFVR. Finally, using the slice contain-
ing the focused wire, the MTF was obtained using the method
described by Fujita et al.42

3 Results

3.1 Scatter Correction on Projection Image

Figures 3(a)–3(c) show the scatter profiles estimated using dif-
ferent methods for the breast biopsy phantom in the central pro-
jection view. The SI estimated scatter is very smooth since it is
obtained directly from interpolation; the ISPR estimated scatter,
on the other hand, is quite noisy and it even shows features from
the projection image. The f-SPR estimated scatter looks quite
similar to the SI estimated scatter except that it is locally grainy,

Fig. 5 In-focus reconstruction slice of the BR3D feature slab: (a) without scatter correction, (b) with ISPR,
(c) with SI, and (d) with f -SPR scatter correction. All images are displayed at the same window width. The
window level is set to be the average of the image intensity. Reconstruction with f -SPR correction has a
significantly better SDNR compared to reconstruction with other scatter correction methods, and a CR
comparable to that in the reconstruction with SI correction.
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since the high frequency spectra of the total signal is scaled and
added into the scatter estimation. The characteristics of three
estimated scatter profiles are better illustrated from the line pro-
files shown in Fig. 3(e). In ISPR, the SPR map used to estimate
scatter is smooth due to direct interpolation. Although the ISPR
method has better noise properties, the signal difference is
decreased in comparison to the projection image without scatter
correction. The SI method estimates a very smooth scatter pro-
file and the noise in the original projection image is unaffected
by the scatter correction. Therefore, the scatter-corrected image
is quite noisy using the SI method. The f-SPR estimated scatter
is smooth on a large scale but fluctuates locally. The scatter-
corrected image using f-SPR maintains the signal difference,
as in the SI corrected image, but suppresses the noise during
the scatter correction. It results in an improved SDNR in

the projection image, which consequently leads to a better
reconstruction image.

To quantitatively evaluate the projection image quality after
scatter correction, we selected seven regions of interest (ROI)
across the phantom and computed both CR and SDNR for each
ROI. Figure 4 shows the locations of each ROI [Fig. 4(a)],
enlarged views of the central projection images after applying
different scatter correction methods, [Fig. 4(b)] and CR and
SDNR of the seven regions. [Fig. 4(c)] As seen in the figure,
both the SI and f-SPR corrected images show a significant
improvement in the CR; however, only the f-SPR corrected pro-
jection image shows an improved SDNR. In the ISPR corrected
image, the CR and SDNR are comparable or only slightly better
than the projection image without scatter correction. Overall, we
observed an average of 58% increment in CR and an average

Fig. 6 Top left: in-focus reconstruction slice of two spheroid masses in the BR3D phantom (a) without
scatter correction, (b) with ISPR, (c) with SI, and (d) with f -SPR scatter correction. Top right: in-focus
reconstruction slice of microcalcifications in the BR3D phantom (a) without scatter correction, (b) with
ISPR, (c) with SI, and (d) with f -SPR scatter correction. All images are displayed at the same window
width. Bottom: CR and SDNR of three spheroid masses. Both CR and SDNR are improved after scatter
correction, and the f -SPR method is clearly superior to the SI and ISPR methods. On average,
a 66% increment in CR and 94% increment in SDNR are observed on the f -SPR scatter corrected
reconstruction.
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of 51% increment in SDNR in the projection image corrected
using f-SPR method.

3.2 Reconstruction Image Quality Analysis

The in-focus reconstruction slices of the BR3D phantom before
and after scatter correction are shown in Fig. 5. Compared to the
reconstruction image without scatter correction, all scatter-cor-
rected reconstruction images show higher contrast and better
conspicuity. Both SI and f-SPR corrected reconstruction slices
show a noticeably improved contrast; however, the noise is sig-
nificantly lower in the f-SPR corrected image. ISPR corrected
reconstruction slice shows a low noise level; however, the
improvement of the image contrast is not as good as that in
the reconstruction corrected using SI or f-SPR.

Enlarged views of spheroid masses and microcalcifications
are shown in Fig. 6. Both SI and f-SPR corrected reconstruc-
tions show significant improvement in contrast; however, the
pronounced noise in the SI corrected image makes it difficult
to identify small features such as microcalcifications from the
image. On the other hand, f-SPR corrected reconstruction has
a noise level similar to that in the uncorrected and the ISPR cor-
rected reconstructions, but with a much higher CR, making
it easy to identify both masses and microcalcifications on
the image.

Quantitative analysis of CR and SDNR on three spheroid
masses is shown in Fig. 6. Three largest masses in the BR3D
phantom were chosen for this analysis with diameters of 6.3,
4.7, and 3.9 mm. For masses, the results show the CR is
improved by 69.5%, 27.4%, and 66.5% for SI, ISPR, and
f-SPR corrected reconstruction, respectively. The SDNR is

improved by 49.8%, 45.1%, and 93.8% for SI, ISPR, and
f-SPR corrected reconstruction, respectively. The results sug-
gest that the f-SPR corrected reconstruction has a comparable
increment in the CR, and almost doubles the increment in SDNR
compared to SI corrected reconstruction. The ISPR corrected
reconstruction has improvement in both CR and SDNR; how-
ever, the increment is not as good as that in either SI corrected or
f-SPR corrected reconstruction.

3.3 Chest Imaging

We further implemented PSD with the f-SPR correction on an
s-DCT system for chest imaging. A human cadaver was imaged
using s-DCT with an additional PSD scan. The f-SPR scatter
correction was then applied on the projection images, which
were later reconstructed using AFVR. Both projection views
and reconstruction images with and without f-SPR scatter
correction are shown in Fig. 7. The f-SPR scatter correction
improves image contrast in both projection and reconstruction
images. Body anatomy and fine features become more con-
spicuous after scatter correction.

4 Discussion

4.1 Filter Size in f-SPR Scatter Correction

One of the most important steps in f-SPR is the filtering. Using
Pearson’s correlation,43 we investigated the similarity between
the f-SPR estimated scatter and direct interpolation estimated
scatter when varying filter size. The standard deviation of the
Gaussian filter σ is set to be 0.25 · ðfilter size − 1Þ, and the
central region is used for computing Pearson’s correlation.
The result is shown in Fig. 8. When no filtering is applied
on the SPR map, the f-SPR is equivalent to SI and the
Pearson’s correlation is one. As the filter size increases, the
Pearson’s correlation between SI and f-SPR estimated scatter
decreases. On the other hand, the correlation between f-SPR
and ISPR estimated scatter increases as the filter size increases.
When the size of filter reaches the distance between two sam-
pling points, the correlation between f-SPR estimated scatter
and ISPR estimated scatter is close to one.

Fig. 7 Human cadaver imaged by s-DCT. Projection image of the
central view (a) without scatter correction, (b) with f -SPR scatter cor-
rection. Reconstruction image (c) without scatter correction and
(d) with scatter correction. Images before and after f -SPR scatter cor-
rection are displayed at the same window width, but different window
level, which is set to be the mean gray value of the image. The f -SPR
scatter correction improves the conspicuity in both projection and
reconstruction images.

Fig. 8 Correlation of scatter profile between the f -SPR estimation and
the SI/ISPR estimation. The white line on the scatter map indicates
the area that is used to compute the correlation.
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The image quality, in terms of CR and SDNR, is also studied
with varying filter sizes. The three largest spherical masses in the
feature slab were chosen for this analysis, with results shown in
Fig. 9. The results suggest that when the filter size is small, the
image quality of the f-SPR corrected reconstruction is similar to
that of the SI corrected reconstruction; when the filter size is large,
the image quality of f-SPR corrected reconstruction is more
similar to the ISPR corrected reconstruction. The SDNR curve
increases and then decreases, with a peak value around 4 pixels.
The increase in SDNRwhen the filter size is small is probably due
to the plateau region in the CR curve, where CR is maintained as
the noise decreases with filter size. As the filter size further
increases, the CR starts to drop but the noise level is not further
reduced. Hence, the SDNR drops and finally matches the SDNR
in the ISPR corrected reconstruction image.

4.2 Image Resolution with f-SPR Scatter Correction

One concern about the f-SPR algorithm is the possible loss of
the spatial resolution due to the filtering. Visual inspection of the
small features, such as microcalcification, shows no image blur
on the f-SPR corrected reconstruction image. To quantitatively
investigate the possible image resolution change, we measured
the system MTF before and after scatter correction, and the
result is shown in Fig. 10. The image resolution at 10%
MTF before scatter correction is 4.5 line∕mm, and it drops

slightly to 4.4 line∕mm after f-SPR scatter correction using
a Gaussian filter with a filter size of 17 × 17 pixel. Both the
SI corrected and ISPR corrected reconstruction show similar
frequency at 10% MTF. However, the reconstruction from
Gaussian filtered SI corrected projection data using the same
filter as f-SPR shows severe degradation in the image resolu-
tion, with the 10% MTF at 0.8 line∕mm. The MTF curves
are consistent with our visual observation.

4.3 Advantages, Limitations, and Future Work

One advantage of using SPR for scatter correction is that the
noise in the projection image is suppressed after the scatter
removal. An underlying assumption of this approach is that
the noise in the scatter signal and the noise in the total signal
are correlated. This is a valid assumption considering that
a large portion of the total signal is scatter, especially in the
regions with high SPR values. This assumption could be inac-
curate in the regions with very low scatter; however, the high
frequency correction that will be applied at those regions is
also small.

Scatter correction using SI improves the local CR but it fails
to reduce noise, while correction using ISPR reduces the noise
level but it fails to improve the local contrast. The f-SPR
method takes the advantages of both scatter estimations and bal-
ances between the two with different levels of filtering. When no

Fig. 9 CR of (a) mass 1, (b) mass 2, and (c) mass 3. SDNR of (d) mass 1, (e) mass 2, and (f) mass 3. The
solid blue line depicts the f -SPR scatter-corrected reconstruction, while the red dashed line depicts the
ISPR scatter-corrected reconstruction. The CR and SDNR in the SI scatter-corrected reconstruction are
the same as those of the f -SPRwith no filtering. The x axis is the standard deviation of the Gaussian filter.
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filtering is applied, the f-SPR is the same as the SI scatter cor-
rection. When the scale of filtering is close to the PSD sampling
distance, the scatter estimated by f-SPR and ISPR becomes
quite similar to each other.

In this paper, we analyzed the image quality of different scat-
ter correction methods, and showed that the noise is reduced and
the SDNR is increased on the projection images using the pro-
posed f-SPR method. Due to the nonlinear characteristics of the
logarithmic transformation, the noise property would be differ-
ent on the line integral images.32 The improvement of image
quality, however, is still valid after the logarithmic transforma-
tion, since better projection images will lead to better line inte-
gral images, which eventually leads to better reconstruction
images.

The effect of off-focal radiation has been investigated in a
separate study using the s-DBT system. The results showed
that the radiation intensity I0 changes around 5% near the
edge of the detector, and only around 2% at the central region
of the detector where the breast is imaged. The relatively small
change in the radiation intensity is probably due to the fact that
the PSD is placed close to the patient and the diameter of the
pinhole (2 mm) is much larger than the focal spot size. For this
reason, we did not perform any correction for the scatter meas-
urement in this study. With that being said, the off-focal spot
radiation correction is necessary and helpful for a more general
purpose.44,45

Due to limited sampling points, the spatial interpolation
might not be able to restore the structural variation of the scatter
signal around object boundaries, leaving an irregular fluctuation
in those regions. Local anatomy or metal implants will also cre-
ate structural variation of scatter signal, which might not be
sampled. To address this problem, correction is performed on

the SPR map based on prior knowledge. In this study, we
use a maximum SPR constraint for the correction. When com-
putational time is not a concern, one can also utilize the scatter
samples at the neighboring angular projections to restore the
variations of scatter as proposed by Yan et al.22 The data redun-
dancy in the projection views might also be used to interpolate
the scatter, reducing the number of projections acquired in the
additional scan and therefore reducing the scanning time and
patient dose.

The f-SPR scatter correction algorithm is implemented with
MATLAB® and it is run on a customized workstation equipped
with an Intel Core i7-5930K CPU. Currently, it takes 30 s to
correct one projection image. When utilizing six cores and
the MATLAB® parallel computing toolbox, the whole scatter
correction can be completed in 1.5 min for s-DBT images or
2.5 min for the s-DCT images. The computational time could
be further reduced by utilizing GPU hardware.

5 Conclusion
A new method, named f-SPR, for estimating scatter profile
from a sparsely sampled primary signal is proposed. The
f-SPR method combines the advantages of both the direct SI
method, which enhances the contrast but fails to reduce noise,
and ISPR method, which reduces the noise level but fails to
improve the local contrast. With different levels of filtering,
it balances between the SI and the ISPR scatter estimations.
The f-SPR method is demonstrated using breast phantoms and
PSD on an s-DBT system, and image quality in terms of CR,
SDNR, and MTF was evaluated and compared with two direct
interpolation methods. Significant improvement in image
quality was observed using the f-SPR method compared to
the direct interpolation methods with very small changes in

Fig. 10 Left: enlarged view of microcalcifications in the in-focus reconstruction slice of the BR3D phan-
tom: (a) without scatter correction, (b) with f -SPR scatter correction, and (c) with direct Gaussian filtering
on the SI corrected projection data (f -SI). Right: system MTF curve using different processing methods.
It is clear that the f -SPR method has negligible impact on the spatial resolution, while direct filtration of
the SI corrected image with the same filter size dramatically reduces the spatial resolution.
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image resolution. Reconstruction of a human cadaver with
f-SPR scatter correction showed a significantly improved CR
and conspicuity while maintaining a similar noise level com-
pared to that without scatter correction. The f-SPR method pro-
posed in the paper may be used in any imaging systems where
the scatter/primary signal can be sampled accurately. The appli-
cation of the f-SPR scatter correction technique could lead to an
improved image quality and reduction in radiation dose in
x-ray imaging.
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