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We present the lattice version of the anomalous Dirac operator in (2+ 1 ) dimensions. This version is associated with a group 
of magnetic translations rather than translations. This group naturally provided homologically nontrivial fiber bundles, the first 
Chern class of which is directly related with the number of zero modes and spectral asymmetry of the Dirac operator. The results 
are in agreement with the lattice fermions doubling phenomenon. The relation of the parity anomaly in (2 + 1 ) and the Hall effect 
is elucidated. 

1. Introduction 

It  is known that  the lat t ice formula t ion  o f  fer- 
mionic  gauge theory is highly problemat ic .  In  part ic-  
ular, there is the p rob lem of  the lat t ice formula t ion  
o f  the odd  d imens iona l  Dirac  operator .  In  odd di- 
mensions  the Dirac  opera tor  has a spect rum asym- 
metry  and possesses the par i ty  anomaly  #'. In the eu- 
cl idean (2 + 1 ) space, 

i m l n d e t ( i ~ + 4 + m ) =  sgnm ( a d a _ 2 a 3 )  . (1)  
16rr 

Several a t tempts  undertaken to reproduce the Che rn -  
Simons te rm in the r ight-hand side o f  (1)  start ing 
from some latt ice theory,  failed. For  example,  
Semenoff  [2] has shown that  fermions of  the honey- 
comb latt ice become relat ivist ic  for the half-filling, 
and  that  there are two fermionic  species with oppo- 
site signs of  the mass, thus canceling the abnormal  
par i ty  current.  Namely,  put t ing fermions  on a lat t ice 
has the famous compl ica t ion  o f  doubl ing [ 3 ]. The 

doubl ing phenomenon,  in part icular ,  forbids the par-  
i ty anomaly  in the par i ty  conserving theory: each spe- 
cies is accompan ied  by an opposi te  chiral i ty partner,  
restoring the parity.  This  is a consequence of  the 
t ransla t ional  group. 

However ,  there is a s imple way to have the par i ty  
anomaly  from latt ice fermions.  The purpose o f  this 
paper  is to show that  this puzzle can be solved i f  one 
considers a project ive representat ion of  the group of  
t ransla t ions  or so-called "group of  magnet ic  transla- 
t ions"  [4] ( i t  is also called the "f ini te  Heisenberg 
group"  [ 5 ] ) ~2 

T,, .T,~ = T,2. T, ~ exp[ ig ) ( t ,  × 6 )  ] , (2)  

where tl, t2 are some latt ice vectors. The representa-  
t ion o f  this group forms a homological ly  nontr ivial  
f iber bundle  which is responsible for the par i ty  
anomaly.  Actual ly we shall show that  the Chern class 
of  the fiber bundle  is jus t  the number  of  zero modes  
and spectral a symmet ry  o f  the Dirac  operator .  There 
is a s imple physical  real izat ion o f  the quan tum me- 

1 On leave from Landau Institute, Kosyegina 2, 117 940 Mos- 
cow, USSR. 

~1 For a review see ref. [ 1 ]. 

#l The interest in fiber bundles induced by the group (2) has 
been recently renewed in mathematics in the context of non- 
commutative geometry [ 6 ]. 
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chanics associated with this group. This is the Hall 
effect on a lattice, or so-called Hofstadter problem 
[ 7 ]. Several attempts were made to find analogues of  
the parity anomaly and the Hall effect (see ref. [8] 
for a review). However, only recently the relation has 
been understood in refs. [9-12 ]. The ideas of  Hal- 
dane [ 9 ] and Wen, Wilczek and Zee [ 11 ] are close 
to ours presented here. 

s g n m = s i n ¢ ,  (6) 

and thus q-anomalies: 

tr~y = ½q. (7) 

The external flux can emerge spontaneously as a re- 
sult of  a spontaneous parity breaking ~3. 

2. The model 

Let us consider fermions, say, on a square lattice in 
the presence o f  an external abelian t ime-independent 
magnetic field A coupled with a slowly varying small 
gauge field a, which, generally speaking, can be non- 
abelian: 

~ =  ~ [CtaeXp(iAab+iaab) Cb 
(ab) 

+ U( C*aC~--C~,Cb ) ] , (3) 

where ( a b )  are nearest neighbors. For simplicity, we 
consider a homogeneous "magnetic"  field with a flux 
O= 2np/q per plaquette (p and q are incommensur-  
ate integers and q is even):  

1-[ exp( iAab)=exp( i¢)  . 
P 

In the presence o f  a magnetic field, fermions exhibit 
the Hall current: 

j i (x)  =- ( [ c t ( x ) ,  c(x+ei)  ] ) =axyeoaj(x) , 

with an integer Hall conductance axy. [Here ei are the 
lattice basis (i = 1, 2). ] It means that the continuous 
Euler-Heisenberg action involves the Chern-Simons  
term: 

0 tr (ada_2a3) ,  In det (idt - ~ )  = ~-5n 2 

O =  2~ZtTxy . (4)  

We shall show that for half-filling (the number  of  fer- 
mions is half  the number  of  lattice sites), this simple 
model for even q provides q-species of  Dirac fermions 

q = e v e n  

~ =  • qTF(iO+~i+m)~uf, (5) 
f = l  

with the same sign of  the mass 

3. General properties of degeneracy points 

The hamiltonian Y~ on a bipartite lattice for even 
q is symmetric: for each state with energy E ~ - ) <  0 
there is a state with energy E~ + ) = - E ~- ) > 0. This is 
a consequence of  the hidden supersymmetry o f  the 
problem [ 10]. Let A~b =exp(iAab) be an amplitude 
of  hopping from a sublattice A ga  to a sublattice B 9 b. 
Then 

(0 ° 01) ' 
Q= Z~ba 

are generators of  the supersymmetry satisfying the 
algebra 

{Q, (~} = ovf2-/~ 2 , 

and F is an operator which reverses the sign o f  the 
mass #, 

.,~ = m E +  Q . 

Let ez and (Xa, ;~b) be the spectrum and eigenstates o f  
the positive operator (Yt ~2-/~z), respectively, then 
E/~)) = + ~//~2 + ~ ( k )  and 

( 
~u+= Xa, I E l + l / t l  X /  21El ' 

liEi + 

w-= N/IEI--luI'-- 
Let T be a translation Tza=Zb and let us suppose 

that the hamiltonian commutes  with a subgroup T q 
of  the group of  translations (q is even).  Then the 

,3 This happened in the modern theory of  antiferromagnetism 
[ 11-13 ] and probably in the lattice QCD with quarks. Ac- 
tually it has been mentioned recently that lattice fermions 
coupled with a gauge field possess a magnetic flux in the ground 
state and thus dynamically break the parity in (2 + 1 ) dimen- 
sions and chirality in (3 + 1 ) dimensions [ 14 ]. 
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spectrum is split into ½ q positive and ½ q negative sub- 
bands: (E,(k),  Z~(k) ), where a is the number of  the 
band o~, n =  1 ..... lq, a wave vector k belongs to the 
Brillouin zone B, and each level is q-fold degenerate. 
The theory becomes relativistic in the vicinity of the 
so-called degeneracy {kT}, where positive and nega- 
tive bands are crossing: 

~+ ( p ) =  ~ Ip l ,  (8) 

where p~ = R o ( k -  k7 )j are some proper coordinates. 
The wave functions Z+ (P) of  the crossing bands are 
holomorphic functions in the vicinity of  {k 7 }. There- 
fore, each degeneracy point is characterized by a top- 
ological invariant, referred to as "chirality", yy= + 1 
[10]: 

7r= ~ i  ~ ¢t* (p) d~o (p) sgn a 

_ 1 ~ t r F ~ _ t d  ~ 
4rd 

- 2ni ~ Z* (p) dx,,(p) sgna 

- 2hi t r g ( f - 2 d j d 2 = + l  . (9) 

Here a =  + refers to the lower or higher of  the two 
central bands and the line integral is taken over a 
closed loop centered in the degeneracy point. I f  a~ i is 
a slowly varying gauge field, i.e. has momentum k <  
1/q, then, in the vicinity of the degeneracy point the 
theory becomes q-flavor (QCD)3: 

~ = ~ r [  (i0i + a D f +  mA ~9. (10) 

Here y are Dirac matrices and ~y(x)= 
Eo=±S,~,(p)zg,(p)co,(p+k~), where c.(p) are 
original lattice fermions, S .~ , (p)= (1 + 1~/2E[ ~/2) 
× [ 1 + i y . p / (  I E[ + I # [ ) ] and ~4 

ms= Itz17 s . (11) 

The total anomaly contribution is therefore 

1~4 The massive (2 + 1 ) Dirac operator can be considered as a 
projection of the (3+  1 ) Weyl operator onto the (2+  1 ) space: 
~/(x, y, z )=q / (x ,  y ) e x p ( i z / 0 .  Then the sign of  mass  in the 
(2 + 1 ) dimension is proportional to the chirality Y of  the Weyl 
operator: m = 7/t. 

0 
E w - - r r ( - )  t r (+ )  

2n f i j - - v x y  - - ~ x y  , 

where 

(12) 

~+_)_ 1 f d(~.+(k) dz+(k) )=_a~)  (13) axy - 2hi 
B 

is the first Chern class of  the fiber bundle based on 
the Brillouin zone B. 

The number of the degeneracy points is always even 
[ 3 ], such that a point k~ has a partner k:~ = k~ + Q, 
where Q is a vector dual to the lattice vector. There- 
fore, 0/2n is an integer in agreement with the quan- 
tization of the Chern-Simons constant [ 8 ]. I f  the lat- 
tice theory conserves the parity P (k~-~k~, k2-*k2), 
then chiralities of k~ and k:~ are opposite: 7y= - ~7fand 
the homotopy of the fiber bundle is trivial: O= O. We 
shall show that in the presence of an external flux all 
fermion species have the same chirality 

7f=sgn •. (14) 

4. Magnet ic  translations and Hal l  conductance 

Wave functions of a particle in an external mag- 
netic field form a representation of the group of mag- 
netic translations (2). On the square lattice it is con- 
venient to use the standard Landau gauge: let a =  
(nln2); b=a+ei, where e l = ( 1 , 0 ) ,  e2=(0 ,  1) are 
lattice vectors. One can put Aab=Ai(nl,n2)= 
(0, 2n(p/q)nl ). According to this gauge one can di- 
vide the lattice into "magnetic cells" Mn.n: = { (n~ = 
nq+m, n2); m =  1, ..., q}. Then ¢/(nl n2)=exp (ik-n) 
X ~om(k), where m is a number of a site in the mag- 
netic cell, and k takes values inside the Brillouin zone: 
B = { - n / q < ~ k l  <~n/q; -7~<<.k2 <~7g}. 

Magneto Bloch wave functions ~0m(k ) satisfy the 
twisted conditions on the boundary of B: 

~om(k~k2)~om(kl+ 2-~, k 2 ) q  

= ~0m (k~, k2 +2n )  exp( -imkl - iqk2)  , (15) 

and the secular equations (Harper 's  equations): 
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exp (ik,) ~0m+ I (k) + e x p ( - i k z )  ~Orrt_l (k) 

+ 2cos(2~ P rn+k2 ) ~om(k)=E( k)~om(k) , 

~m( k ) =~Om+q( k ) . (16) 

These equations have been studied extensively 
[ 7,15,16 ]. Below we enlist useful properties of the 
wave function ~a,, (k) in the Landau gauge. 

(i) If Cm(k) is an eigenvalue with energy E, then 
Om =Omm'~Orn ' = ( -  1 )miq/E~Om+q/2 (mod q) is a state 
with ( - E ) .  

(ii) det JC~=4(cos 2 ½qk~ +cos 2 ½qk2) [ 17]. There- 
fore the spectrum has isolated zeros at kT= 
(0, 2n/q, f);  f=  -½q ..... ½q. These are the degener- 
acy points [ 10 ]. Their positions are gauge invariant. 

(iii) The eigenstates of different degeneracy points 
are related by unitary transformation. In the Landau 
gauge 

~, .(k+k~)=~m+f(k)  . (17) 

(iv) t0L-) (k) in the band adjacent to the zero is a 
holomorphic function in the complex plane of kx + 
iky, except the points of degeneracy. 

(v) Parity transformation P is compensated by the 
sign reversal of flux: ~--, - ~. The integer t in eq. ( 15 ) 
being the Chern class ofa  subband a, is the Hall con- 
ductance of the band: 

t , =  ~ f*m,,(k) d~am,~(k). (18) 
B 

If the Fermi level is located in the c~th gap, the total 
Hall conductance is equal to 

axy(a )=  ~ t,~,. 
O t ' = l  

Thouless et al. [ 15 ] have shown that trxy(Ot) is deter- 
mined by the Diophantine equations: 

paxy( a ) - a = s . q  , (19) 

where the integer [axy[ <~ ½qfor the square lattice. This 
determines the Hall conductance uniquely, except the 
case of the half-filling a = ½ q, where the spectrum has 
the points of degeneracy. At these points Crxy has a 
discontinuity with a universal jump trxy (½ + O) = 

_+ ½q. For example, in the case p =  1: Crxy(a)=c~-O 
× ( a - ½ q ) .  This jump corresponds to eq. (13 ) and 
is recognized as a zero modes contribution. 

5. Chirality of degeneracy points 

Therefore at half-filling a~,y = ½ q sgn ~ and, accord- 
ing to eq. (12) all points of degeneracy have the same 
chiraiity (14). This result can be easily obtained from 
the simple properties (iii) and (iv): 

1 
7f= ~ ~m ~ ~O*m(-)(P+k~)d~°(m-)(P+kf)=sgn qL 

k~ 

6. Concluding remarks 

The result presented here shows that one can get 
the lattice version of relativistic anomalous opera- 
tors, making the space discrete according to the group 
of magnetic translations. The "no-go" theorem [ 3 ] 
can be extended to this case and corresponds to the 
quantization of the Chern-Simons coefficient q [ 1,8 ]. 
The same results are reached for arbitrary lattice, ar- 
bitrary flux distribution with slight modifications. For 
example, the honeycomb lattice provides 2q species 
of relativistic fermions, whereas the triangle lattice 
provides ½q species (in this case ½q is supposed to be 
even). 

The result can be generalized for arbitrary odd and 
even dimensions: the Berry's phase [i.e. Imlnde t  
( id t -  YF) ] of fermions in the presence of external flux 
reproduces the hierarchy of anomalies. 
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