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%e present a theory of high energy large shift Raman scattering in Mott insulators and show that it

provides an instrument for direct measurements of local chirality and anomalous terms in the electronic
current algebra. On this basis we argue that the electric-dipole-forbidden electronic transition at energy
just below the charge-transfer gap recently observed in inelastic light scattering in insulating cuprates
can be interpreted as a zero mode bound state in the chiral spin liquid.

PACS numbers: 78.30.Hv, 74.72.—h

Recent Raman studies of a number of insulating cu-

prates revealed resonant features just below the optical
absorption peak [I]. The most robust feature was ob-

served in crossed polarizations, i.e., in the A2 pseudosca-
lar scattering geometry. It was conjectured in [I] that
the A2 and other features correspond to electric-dipole-
parity-forbidden transitions, the orbital moment of an in-

termediate state of the oxygen atom being diA'erent from

orbital moments of the initial and final states of the

copper atom.
In the present Letter we discuss a mechanism of inelas-

tic light scattering due to anomalous orbital motion of
charge carriers in the Mott insulator. If one ignores pos-

sibilities of intra-atomic (Cu-Cu) as well as interatomic
(Cu-0) transitions discussed by the authors of Ref. [I],
then we conclude that the observed features suggest the

following: (i) Within the Mott-Hubbard gap there is an

excitonlike bound state and (ii) this bound state has an

odd symmetry under reflection of a two dimensional

square lattice.
Raman measurements have already yielded important

data about magnetic and phonon properties of insulating

cuprates [2-5]. We show that the new high energy, large
shift Raman techniques [I] give a direct tool to investi-

gate electronic current algebra and chirality of charged
excitations, which are important ingredients of various to-

pological mechanisms of superconductivity [6,7].
A process of inelastic Raman scattering is an absorp-

tion of an incident photon with a frequency co;, a wave

vector k;, and a polarization e; and a simultaneous emis-

sion of a scattered photon (tof, kf, ef). As a function of
transferred energy (fl = to; —cof ) and momentum (q
=kf —k, ) the Raman scattering cross section is given by
the Kramers-Heisenberg formula [8] which can be writ-

ten in the form of the ground state correlation function

R(q, &) = Im(O~M (q, n)M(q, n)~0)
2nh 'c 4

of the time dependent scattering tensor M(r, r ) =e,"ej
xM„,(r, r ).

la

In the case of insulator the latter is given by the f'ormu-

M„„(r,r) =i/ dr'e' "
r

x [j„(r+r',r+r'), j„(r,r)], (2)

where J ' f j (k, f)e; f is an electromagnetic current along

polarization of an incident (scattered) photon.

Since photon wavelengths are always much larger than

an interatomic separation, one may neglect a spatial

dispersion of the scattering tensor, putting q =0 in (I ).
In general, scattering rates appear to be strongly

dependent on photon polarizations. The scattering tensor

(2) can be decomposed into four one dimensional irreduc-

ible representations of the square lattice point group D4q

(see, e.g. , [4]). Below we shall draw our main attention to

the Ap scattering amplitude M~, =M,~,
—M, which is

odd under reAection on the square lattice and gives the

strongest signal in the experiments [l].
In experiments [I] performed on insulating cuprates

Y(Pr) BazCu306+„and Gd(Nd)2Cu04 at the incident

light frequency m; =3.4-3.8 eV the A2 resonance was

found at Raman shift 0 = 1.5 eV—which is about

0.15-0.20 eV below the optical absorption peak. Being of
order of the magnetic exchange J this energy scale could

be considered as an indication on a magnetic (many-

body) origin of the observed features. To elucidate the

mechanism of the A2 scattering we exaggerate the condi-

tions of the experiment, assuming that energies of in-

cident and scattered light are much larger than the

widths of relevant electronic bands. In this limit the time

separation between current operators in (2) is very small

and in the case of the A2 geometry the scattering tensor

is proportional to the equal-time current-current com-

mutator, Mg, =M„„.—Mr„= (I/to;) [j„(r),j „(r)], where

j (r ) =P,j(r, r ) is the spatial average of the current

operator. Higher order corrections to the scattering ten-

sor can be expressed in terms of time derivatives of the

current operator (d"/d&") j(& ).
I n what f ol low» we choose the simplest H u bbard
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Hamiltonian (with the on-site Coulomb repulsion U and the hopping amplitude t) as a description of the Mott insulator,
thus ignoring the intra-atomic structure of Cu02. Introducing one particle translation operators T„(r) g -1 tc (r
+p)c (r) such that j„(r) (et/2ihc) [T„(r)—T „(-r)] and keeping terms up to the second order in r0; we obtain

Mp [J (r),Jy(r)] I+
2

+
3 J (r) QT~(f) Jy(r) Jy('r) QTy(f) J (r)CO;, r,p , f,pl

Mp, M„„+Myy —
2 [j„(r)+jy(r)], Ma, M„y+My„—

2
[J'„(r)jy(r)[,2U 2U

o)c

(3)

while the amplitude of the Bi scattering (Mtt, -M„„
—

Myy) is even smaller.
Note that the last term in the formula for M~, contrib-

utes to the quasielastic A2 scattering (n 0) which was

considered by Shastry and Shraiman [4] under assump-
tion IU —co;I «min(U, co;).

Charge excitations in the Mott insulator cause distor-
tions of the magnetic state. As a result, a phase of the
excitation wave function may depend not only on its loca-
tion but also on a path, which the hole passed to arrive at
the site. Therefore a hole inserted into the Mott insulator

may acquire a phase while moving along the closed path.
This property is the quantum holonomy which is deter-
mined by a spin chirality of the insulating ground state
[9,10]. We define it as a measure of noncommutativity of
one particle translation operators T„when acting on the
insulating ground state

T, T«lo) e' T«T~IO) e ' T„+«IO). (4)

Using the relation +~T„(r) =trQc [1+2a'S(r) ],
where C is a lattice contour and cx are auxiliary Pauli
matrices, one can express the chiral operator associ-
ated with an elementary plaquette, (Olexp(ik) Io)
-(Ol T„T«T „T «Io), as —an e—xpectation value of the lo-
cal chirality operator. It turns out that high energy Ra-
man scattering provides an instrument to measure matrix
elements of the chirality operator.

Some information about spin chiralities can be already
obtained from the integrated Raman intensity R '"'

fo R(n)dn. In a general case of noncollinear polar-
izations R'"' is given in the leading order in m;

'
by the

static correlation function of equal-time current-current
commutators: R'"' = Rg','-(OI

I [j„,jy] I I0). Thus R'"'
is capable of measuring fluctuations of local chiralities:
Rj~ —gp(ol(sin i ep) Io).

The amplitude of an elastic scattering R"=R(n 0)
is a more informative object. In the leading order in co;
it measures an averaged difference between holonomies
associated with two oppositely oriented elementary closed
contours which is equal to the average chirality of the
ground state. Using (3) we obtain

4

state

Rg', (n )— g(ol(s, xs, ) s, lo) 's(n), (s)

Because of the semiclassical character of light scatter-
ing at large m; the hole r and the doublon r' must be lo-
cated on the same diagonal of a plaquette, otherwise in

the leading order in tlco; the matrix element vanishes.
Then the matrix element of the current commutator
entering R~,(n) acquires the form (r 6 P):

&ol[j.,j,]ls&=2 g &O..,.,I[T-., T-,».+,. I~&

where 1, 2, 3 denote any three nearest neighboring sites
on the plaquette P and the sum goes over all plaquettes.

Note that in other geometries elastic scattering occurs
only in the next order in ro;

' and involves only self-

retracing paths (i.e., does not depend on chirality).
An observation of a separate peak in the A2 elastic

scattering would mean a spontaneous parity breaking in

the ground state [9,10]. Since elastic scattering measures
a spatial average of chirality (if any) there are numerous
obstacles for its observation [11]. Although an additional
experimental study is desirable, it seems most likely that
the ground state of insulating cuprates is parity even.

More interesting information can be obtained from in-

elastic scattering at energy shift close to the charge-
transfer gap [1]. Let us suppose that inside the Hubbard
band there exists a bound state ls) of a hole and a doubly
occupied site (doublon). Introducing notations for the
hole-doublon bound state wave function 9' (r, r') and a
configuration of surrounding spins I[crI), we can express
our state as ls) =g«%' (r, r')c (r)c'(r')

I [oj).
The energy of this state is by Fb-J lower than the op-

tical absorption threshold mT = U corresponding to the
location of the upper Hubbard band. The leading contri-
bution to the Raman intensity at large laser energy comes
form the A2 amplitude which is proportional to the ma-
trix element of the current-current commutator taken be-
tween the ground state and above bound state:

R~,(»- i&01 [j.,jy] I.&l'&« —~T+~b) .

R,'~, (n)— g(olsini&plo& b(n) .
f, CJI, cd

xe, ,(r, r+x+y),
The matrix element appearing in this formula yields

the total solid angle formed by all spins in the ground
where x and y are the lattice vectors and (o, , l denotes
the ground state with spins at sites r and r' being fixed.

Sol
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The sum over r is effectively restricted to sites close to the
location of the center of mass of the hole-doublon pair.

Since a spin distortion caused by the localized bound
state extends to a very few plaquettes, one may neglect a
difference between the ground and the excited spin con-
figurations when calculating an overlap factor (O, , lcr&.

Then, we conclude that in the first approximation inelas-
tic scattering gives a Iocai value of the chirality in the
ground state. Similar to the case of the elastic scatter-
ing (5) the expectation value of the holonomy operator
(Ol [T—», T —~] T, yJ IO& —(Ol [S(r) x S(r+ x)] S(r+ x

+y)IO& is proportional to the solid angle subtended by
three spins belonging to the plaquette which contains a

charge excitation.
Other symmetries contribute in the next order in 1/co;

and are independent of chirality.
Thus using the minimal one band Hubbard model we

interpret the observation of the Az peak in insulating cu

prates as an et.idence of long range correlations between

triads of adjacent spins It is im. portant to notice that
this kind of order does not necessarily mean parity break-
ing. The simplest possibility to get a nonzero holonomy,
while saving the ground state invariance under the largest
subgroup of the magnetic class including parity, is the
so-called tr-flux state. In this state (Ol@IO& =n on every

plaquette and translation operators anticommute,

«IT, T,T-,—,IO& = «I T—, T.T-,+, l-o& =i~,

(T»Ty+ Ty T»)IO& 0

In this state the solid angle of three adjacent spins alter-
nates from one plaquette to another, so its spatial average
vanishes: (Ol(S& &&Sz) S3IO& (Ol(S&'x S2')' S3 IO& =d,
where I1,2,3] and [I',2', 3'j label any three nearest neigh-

boring sites on adjacent plaquettes with the same orienta-
tion. Note that the staggered chiral order (6) is not

necessarily inconsistent with the antiferromagentic order-

ing which is a property of two-spin correlations (S;Si&
( I ) lt —il [12]
The observation of the A2 Raman resonance implies

that the ground state and the excited state Is& have

different parities. At first glance it seems impossible in

the framework of the one band Hubbard model on a

square lattice. Indeed, in this case all eigenstates are
doubly degenerate due to the reflection symmetry R,
Namely, if there exists an eigenstate I+& supporting
currents j, le&, (%'lj~, then there is also an eigenstate

& =Rlo& with currents j„l%' &
=j~lw&, ('P

Ij,
=(Ol j„.Then the current commutator vanishes:

[j.,j,] = (j I+&(+Ij, —j, I+&&+li. ) =0
+)

Apparently, the sum does not cancel out if one assumes

a spontaneous parity breaking already in the ground state
(RIO&&IO&). For example, this is the case of the uniform

chiral spin liquid state characterized by a nonzero expec-
tation value of the spatial average of chirality [9,10].

Ho~ever, this state seems unlikely in insulating cuprates,
particularly, because it is incompatible with the symme-

try of the square lattice and also with an antiferromag-
netic order.

One the other hand, the current-current commutator
may not vanish if there is an excited state I+0) which is

annihilated by the reflection operator Rl+0& =0, while

the ground state respects parity. Then a nonzero contri-
bution to the current commutator [j„j,, ] =j„l+0&(+olj,.
—ji, I+0&(+Ol j„comes from the excited state having no

partner under reflection, which is known as a =ero n~ode

Thus, the zero mode contribution is the only one

present in the case of the resonant 3 2 scattering:

R, ,(n) -go'I +0(r, r) I
'b(n —I.'') .

A zero mode (if it exists) is always a bound state (in I'act

the lowest one). In our case it is a bound state of' a hole

and doublon with energy by order of J lower than the

charge transfer gap. Moreover, it exists if there is a local
chiral order.

In order to see that zero mode is always a bound state
we consider the case of a charge excitation moving in a

spin background which evolves adiabatically.
Following Refs. [14,15] we describe a charged excita-

tion in the Mott insulator by a coherent state of a hole

y(r) and a hard core boson = (r) subjected to the local

constraint: I= i I
+

I zl
= I

—y y. Then i (r) = y(r&
(r) represents an electron operator and S(r) == (r)

x e z (r) serves for a local spin. The hopping
Hamiltonian is H=tgt, b&y (a)h, by (b)+c.c., where

a and 1 are sites of sublattices 3 and 8 and

=Z.z.(a)z.(b).
If the hopping amplitude j is bigger than the exchange

constant J, then antiferromagnetic spin dynamics cannot

be treated adiabatically, because every hole jump changes

spin configuration abruptly by flipping sublattice spins.

However, after two consecutive jumps, a hole appears on

the same sublattice, so the spin configuration remains ap-

proximately unchanged. To implement the adiabatic ap-

proach we introduce a staggered chemical potential for
holes on dilYerent sublattices p(g, c,c, —gbcbcb). If the

hopping energy t is less than p, then a hole and a doublon

appear on different sublattices only virtually. Therefore
in the leading order in the adiabatic parameter t/p one

can consider only processes of two consequent hopping»

described by the effective Schrodinger equation for the

hole-doublon wave function:

~a, ,b'~b', g +0(a) a2) = (~ P ")+0(a &. a2)
b', i =1,2

As long as t' —t-/p )1 one can treat magnetic fluctua-

tions adiabatically. After all, we suggest to consider this

Hamilton ian as phenomenological.
The effective Schrodinger operator is a square of the

elementary translation operator so one can apply stao-
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dard arguments about its zero modes (see, e.g., [16]).
The only nondegenerate state with the energy E=p is2

the one annihilated by either h, b or hb~, , If the ground
state possesses a local chirality then {0~(StxSz).S3~0)
&0 and operators hb and hba do not commute. There-
fore only one of them can have a zero mode for a given

spin configuration. Thus we obtain two candidates for a
zero mode which satisfy equations (i) 6, b@o(b) =0
[@o(a)=0] and (ii) t5tt, ko(a) =0 [@p(b) =0]. Charge
excitations occupying the zero mode stay on only one of
the two sublattices.

Many properties of zero modes are universal and de-

pend only on the crystal symmetry of the lattice. They
constitute the subject of the "index" theorem [16]. In
particular, the index theorem states that a spin configu-
ration which supports a zero mode (i) must have a non-
trivial topology (i.e., chirality of the excited state difl'ers

from that of the ground state by one flux quantum) and

(ii) the local fermion density of the occupied zero mode

p(r) +o(r, r) 2~@a(r) ( equals topological charge den-

sity q(r) =(I/2n) [(d/dx)n(r) & (d/dy)n(r)] n(r), writ-
ten in terms of the antiferromagnetic vector n(r). Thus
the spin configuration accompanying the hole-doublon
bound state can be viewed as a magnetic hedgehog which
carries one flux quantum on the top of the flux distribu-
tion in the ground state.

Combining previous results, we obtain another formu-
lation of the index theorem: The equal time current-
current commutator acquires the anomalous term given

by the topological density of the spin excitation,

[j (r),fs(r')]-iitq(r)b(r —r') .

As a result, a local density of topological charge explicitly
appears in the scattering rate (7).

Going beyond the adiabatic approximation we estimate
the width of the A2 Raman peak as the inverse spin relax-
ation time which remains of the order of J even at low

temperatures. This does not contradict the experiments
which show that the width of the peak only slightly nar-
rows as temperature decreases.

Note that according to (3), there should be no scatter-
ing in the B& geometry if translations anticommute [see
(6)]. Indeed no Bz contribution to the resonant scatter-
ing at 0 = U has been detected in Ref. [I].

In contrast to the A i feature the anomalous A 2 peak
depends on the symmetry of the magnetic structure and
not on details of the Hamiltonian. It was also observed
and stressed in Ref. [1].

Ho~ever, an additional experimental study is necessary
to conclude whether these features are due to local intera-
tomic transitions or anomalous orbital motion of charge
excitations in the Mott insulator.

The presence of zero modes in the insulating state to-
gether with anomalous current algebra imply important
properties of the doped state. Because of the particle-
hole symmetry of the half-filled band the spin con-
figuration ~sl in the presence of two holes contains a spin

soliton in the same way as in the case of a hole-doublon
pair. Therefore at small doping, which does not destroy
the magnetic ground state, two holes couple with each
other inside the topological spin bag. A residual interac-
tion between zero modes lifts their degeneracy and opens
a narrow midgap band. Although this band is always
filled, it remains compressible [6]. This phenomenon may
provide a basis for a topological mechanism of supercon-
ductivity.
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