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Geometrical approach to bosonization of D ) 1 dimensional (non)-Fermi liquids
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We discuss an approach to higher-dimensional bosonization of interacting fermions based on a
picture of Huctuating Fermi surface. Compared with the linearized "constructive" approach this
method allows an account of the Fermi surface curvature which leads to non-Gaussian terms in the
bosonized Lagrangian. On the basis of this description we propose a procedure of calculating density
response functions beyond the random-phase approximation (RPA). We also formulate a bosonic
theory of the compressible metal-like state at the half-6lled lowest Landau level and check that in
the Gaussian approximation it reproduces RPA results of the gauge theory by Halperin, Lee, and
Read.

I. INTRODUCTION

Recently there has been a lot of interest in possible sce-
narios of a breakdown of Landau-Fermi-liquid behavior in
two- and three-dimensional strongly correlated systems.
In particular, it was conjectured that it might happen
in presence of long-ranged density-density or, even more
likely, current-current interactions. A system of non-
relativistic fermions coupled to an Abelian gauge field
was argued to present such an example.

However, a systematic investigation of these exciting
possibilities still remains to be carried out. One essential
reason is a lack of an adequate formalism capable of giv-
ing a proper description of singular interactions which
may result in non-Fermi-liquid states. Although stan-
dard calculations in low-order perturbation theory can,
in principle, reveal features suggesting a non-Fermi-liquid
regime one certainly needs a more advanced technique to
study a suspicious problem in greater detail.

Among possible improvements a renormalization group
method was recently proposed and tested in the case of
short-range interactions which do not destroy the Fermi
liquid in D ) 1 (except for an instability in the Cooper
channel). s Another promising development was provided
by the method of higher-dimensional bosonization. It
was proposed in Ref. 7 in a manner close to the more
recent Anderson picture of "tomographic projection"
where a D-dimensional space is considered as a set of
essentially uncoupled one-dimensional "rays. " In its orig-
inal form the method of Ref. 7 was basically intended to
reproduce fermion algebra and correlations along a given
radial direction in momentum space. As an output a
bosonic representation of &ee fermion correlation func-
tions was obtained. "

More recently a method was proposed by Haldane
and then elaborated in Refs. 10 and 11 to treat couplings
between different Fermi points in the bosonized theory.
This generalization involves the construction of effective
bosonic variables as sums over squat boxes ("patches")
instead of radial rays in momentum space. In the &ame-
work of this description the main results of the Landau-

Fermi-liquid theory were reproduced. ' However, when
applied to less familiar problems such as the problem
of two-dimensional nonrelativistic fermions coupled to
gauge 6elds the method leads to results of uncertain
status. That is, the authors of Ref. 13 who studied the
same problem by using a self-consistent diagrammatic
approach argued that the results obtained in Ref. 12 can
only be valid in the unphysical limit of a zero number of
fermionic species.

An obvious shortcoming of the "constructive" ap-
proach to higher-dimensional bosonization is that it does
not provide a complete account of the geometric curva-
ture of the Fermi surface or of the parabolic corrections
to the dispersion associated with it. Technically, this
means that within this scheme one cannot treat prop-
erly transferred momenta tangential to the Fermi surface
while these become more and more important as one gets
closer to it.

For instance, if it turns out that at small energy trans-
fer cu —+ 0 a given interaction vertex determines an
average tangential transferred momentum to be qq ))
k~( —)iI2, then the term qz which is due to a fi-

nite Fermi surface curvature cannot be neglected in typi-
cal denominators ~ —vyq+ 2 q which appear in the
integral expressions for Green functions obtained via
bosonization o' (see also Ref. 14). In particular, omit-
ting qq in the problem of fermions with gauge interactions
one can never get to the regime where the Migdal the-
orem stating the irrelevance of vertex corrections holds.
On the contrary, it was argued in Refs. 15 and 13 that in
the case of the problem of nonrelativistic fermions cou-
pling to the gauge field where qt k~( —) I )) k~( —) I
the Migdal theorem always holds in D ) 2 [in the two-
dimensional (2D) case it can only be valid in the limit of
a large number of fermionic species. is]

We mention, in passing, that the general eikonal
method applied to the 2D gauge problem in Ref. 16 is, in
fact, not plagued with this Haw and provides a natural
account of q terms. However, in Ref. 16 these terms
were deliberately omitted to obtain an explicit form of
the one-particle Green function. Thus the formula for the
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one-particle Green function G(e, p) obtained in Ref. 16
ceases to be valid in the very vicinity of the Fermi sur-
face. On the other hand, including the above-mentioned
terms q one ends up with an expression which agrees
with the results of Ref. 13 in both regimes when either e

or v~ (p —p~) is much greater than the other.
Postponing a thorough revision of the eikonal results

of Ref. 16 until another paper, we shall present here
a "geometrical" approach to D ) 1 bosonization which
allows a systematic account of tangential components of
transferred momenta qq. We shall also illustrate how the
method works in the case of 2D density-density as well
as current-density interactions.

ence ground state consists of elements

Q = g~vac)(vac~g (2.3)

The expectation value of the operator A taken over the
coherent state (2.1) can be expressed in terms of Q as

(g~A~g) = tr(QA), (2.4)

where the trace stands for the integral over phase space
tr= 1' dxdq and x is the Fourier transform of p.

Under quantization by means of the functional integral
the bosonic variable

~(p q) = (gin-(q)lg) = tr(Qn-(q)) (2.5)

II. NONLINEAR BOSONIZATION OF
INTERACTING FERMIONS IN EXTERNAL

FIELDS

l(g(p q)k) = glvac)

= exp~ c / dpdpp(p, f)dvCf)
~

vec) (2 1)

created by elements g of the infinite group t &om some
vacuum state

~

vac). The group G is generated by fermion
bilinear operators np(q) = Qt(p + q)@(p) obeying the
algebra (referred to in the 1D case as W )

Talking about bosonization one actually means a pro-
cedure of calculating (gauge invariant) response functions
using functional integrals in terms of some bosonic vari-
ables. Remarkably, dealing with this problem one can
avoid the subtle question about an explicit construction
of the fermion operator in terms of those bosons. Al-
though the corresponding formula was repeatedly con-
jectured in Refs. 7 and 9—ll, the necessity to supplement
the naive D-dimensional counterpart of the 1D relation

exp i/ by a complicated ordering operator makes
this representation hardly useful in practice. Moreover,
a calculation of the fermion Green function itself does
not provide much physical insight in cases where some
gauge symmetry is involved.

Nevertheless, a systematic approach to higher-
dimensional bosonization can be developed in the
&amework of the general method of "coadjoint orbit
quantization. " Adapting this general procedure to the
case of interacting fermions one may choose a basis of
coherent states

L = (g~io), —H~g)

= i dutr(Q(o) Q, I9qQ)MB) —tr(HQ),
0

(2.6)

where (A, B)MB stands for the so-called Moyal bracket

2
(A, BOMB = —sin —) (8~.8 e —B~.B )e

xA(i, q)B(x', q')(- -
q (2 7)

which amounts to the Poisson one in the semiclassical
limit h ~ 0.

The functional integral for the theory (2.6) written in
terms of v)(p, q) provides an exact bosonization of the
original fermion problem even in the case of a nonlin-
ear bare fermion spectrum and/or nonlocal interactions
in any dimension. ' However, because of the overcom-
pleteness of the basis of coherent states of A particles
the variables v)(p, q) have to be subjected to additional
constraints

Q'=Q (2.8)

parametrizing the orbit element (2.3) becomes a quan-
tum field which can be identi6ed with the partial Fourier
transform of the quantum Wigner distribution function
iv(p, r, t) (phase space density).

To write down the bosonic Lagrangian in terms of
v)(p, q) one has to find the analogue of the term pq.
It turns out that it can only be written in terms of a
cocycle by introducing a Gctitious variable u such that
Q(p, q, u = 0) = Q(p, q ). Then the Lagrangian acquires
the form

[np(q ), np (q ') ] = h (p —p
' —q ')np (q + q ')

—~(P' —p —q )np(q+ q'). (2.2)

We note that a similar choice of the basis of coherent
states was made in Ref. 11. As we shall see below, in the
Gaussian approximation the Lagrangian which appears
in the functional integral over coherent states (2.1) [see
(2.17)] is similar to the result obtained in Ref. 11 while
there are extra (non-Gaussian) terms which provide a
systematic account of the effects of the Fermi surface
curvature.

The orbit of the group G associated with some refer-

which make things too complicated. Nevertheless, this
description can be used for a systematic derivation of
corrections due to spectrum nonlinearity and/or nonlo-
cality of interactions. In the lowest order in gradients
the method is essentially equivalent to the "constructive"
bosonization approach where the right hand side of
the commutation relations (2.1) is replaced by a c number

[n~(q) n.- (q')1 = ~(p p')~(q+ q')(q&~)-n'-" (29)

where n = 8(k~ —p) is the bare Fermi distributionp
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function.
Depending on the details of the interaction, the ap-

proximate commutation relations (2.9) between np(q )
may become asymptotically correct in the sense of low-
energy, small-angle scattering matrix elements of both
sides of (2.9). However, the constructive method encoun-
ters the problem of an artificial low-energy cutoA A (( k~
which appears explicitly in the construction of oscillator-
like bosonic variables a„-(q) = g~„„- &&&Q (p+

(Rq )

q)@(p) defined as sums over patches of size A on the
Fermi surface. Presumably, the whole procedure can only
be trusted if this cutoA does not enter physical observ-
able s.

In contrast, such a problem simply does not occur in
the formally exact method which we described above.
Notice that it can be thought of as a hydrodynamical
field theory which generalizes the phenomenological Lan-
dau theory including collisions between quasiparticles.
However, to make this approach really work one needs
a convenient parametrization of the phase space density
in terms of some bosonic variables which resolve the con-
straints (2.8) imposed on the Wigner functions io(p, q).

It seems natural enough to formulate a purely bosonic
description of interacting fermions in terms of the vector
variable kF (r, t, s) which traces the shape of the (D —1)-
dimensional Fermi surface parametrized by coordinates
s = sg, ...) s~ g and varying from one space-time point to
another. It is also consistent with the conjecture made in
the course of the previous work ' that all relevant low-
energy processes can be described as fluctuations of the
Fermi surface viewed as an extended dynamical object.

Notice that such a kind of description had already
appeared in the theory of edge states of quantum Hall
droplets where one treats edge states as capillary waves
on the droplet boundary which plays the role of the Fermi
surface in the case of a strong magnetic field. It turns
out that this description naturally occurs in the frame-
work of the theory (2.6) if one considers Fermi surfaces
with a sharp boundary and approximates iU(p, r, t) by a
support function

io(p, r, t) = 8(ikF (r, t, s) i

—p) (2.io)

which becomes appropriate in the long-wavelength limit.
One may also understand kF (r, t, s) as a sum

kF (r, t, a) = kF, (s) + V'p(r, t, s) where the first term cor-
responds to some reference shape of the Fermi surface
(not necessarily circular) while the second one describes
fluctuations around it.

Physically, the field P(r, t, s) has the meaning of the
phase of the wave function of the wave packet created
at some space-time point x = (r, t) with a momentum in
the direction s. Then the variable P is defined modulo 2z
which opens the possibility of nontrivial winding numbers
along noncontractable contours on the Fermi surface (if
any) .

To proceed further one has to express the local density
operator p(r, t) in terms of kF (r, t, s). Only for the sake
of notational simplicity we shall concentrate on the 2D
spinless case.

The wanted relation can be readily found on purely

geometrical grounds since the total density is nothing
but the area in momentum space enclosed by the curve
kF = kF(s) parametrized by a 2vr-periodic variable s:

1 - dsp= — B,kF x kF
2 27r

2' (2.ii)

Subtracting the constant term O, k~, x k~, from the in-
tegrand in (2.12) we can write the remainder as

p, = [(B,kF, ((n, V)$ ~ 'V'8, $ x-V'pj (2.12)

so that p(r) = po + $ —,"'p, (r) where po

'), Q, kF, x kF, is the average density.
The quantity p, associated with a point s on the Fermi

surface plays a role similar to the oscillatorlike partial
density operator gq na„-(q) introduced in Refs. 9—ll. It
also follows from (2.10) that beau(kF„q) = bp, (q)

In the presence of some gauge vector potential A
our kF has to be modified as kF ~ kF, + V'P —A.
This prescription is naturally consistent with the above-
mentioned physical meaning of the field P(r, t, s) as the
phase of the wave packet wave function. On switching
to a scalar potential Ao all time derivatives also become
covariant: Btg ~ Dog = Btg —Ao. Concerning deriva-
tives with respect to the parameter s labeling points of
the Fermi surface, one can also include a new component
of the gauge field A, corresponding to a reparametrized
invariance of the Fermi surface. However, in the follow-
ing we shall leave this interesting possibility apart and
simply fix the gauge by putting A, = 0.

One can also see that the partial density p, is a gauge
noninvariant quantity while the total density p does
not depend on the gauge Geld A„since O, A = 0 and

$0,k —,
' = 0.

The formula (2.12) allows a straightforward gener-
alization to the case of arbitrary dimension D: p
Q f ill ''PD &1 ill 8D —1 PD —l AD

The equation of motion for kF (r, t, s) in the presence of
external electric E = —BqA —V'Ao and magnetic B = V'x
A fields can be derived as the Euler-Lagrange equation
for the Lagrangian (2.6)

BiBi = (H, tU)MB (2.1S)

within the approximation (2.10). In the lowest order in
5 (2.13) reads as the standard kinetic equation (in what
follows we shall drop the subscript in the notation of kF):

Bik = (z7V') k + E + xi7B (2.i4)

bH
8

bp,
be, = v, bk, . (2.15)

To stress the parallel with the single particle equation
of motion we introduced in (2.14) a generalized "Fermi
velocity" v, defined in terms of the second derivative of
the Hamiltonian H with respect to bk:



4836 D. V. KHVESHCHENKO 52

To complete the scheme we also present a gauge invariant
current [see (2.18)]bH, d8'j = = x dr' f„(r r')—8, k, (r"') (2.16)

bA 2' "
satisfying the continuity equation (Oqp + V'J = 0) pro-
vided the equation of motion (2.14) is fulfilled. It should
be noticed that the definition (2.16) involves a spatial
gradient rather than a time derivative which can be
traced back to the fact that the bosonic field P(r, s) is
chiral (those bosons propagate only in the direction s).
Actually, the relation (2.16) is a familiar one in the con-
ventional Landau-Fermi-liquid theory.

Being estimated with functions iv(p, q ) given by (2.10)
the Lagrangian (2.6) acquires the forin

27r2 2

netic energy of fermions with parabolic dispersion. It
is worth recalling here that the exact bosonized theory
of 1D &ee nonrelativistic fermions is given by the cubic
bosonic Hamiltonian II =

2 (p~ + pl, ) + sq (pR + pL, ).
The present formalism is well suited to accommodate
those cubic terms too. However, in the present paper
we shall con6ne ourselves to the case of quadratic Hamil-
tonians of the form (2.18).

Also the Hamiltonian (2.18) has to be improved if one
intends to include scattering processes corresponding to
the Cooper channel. Nevertheless, one could believe
that the form (2.18) is sufficient to study the interest-
ing case of a "strange metal" governed by interactions
singular at small scattering angles.

Another feature of the Lagrangian (2.19) specific for
two dimensions is the appearance of the famous Chern-
Simons structure 2" AdA where AdA = A x E —AOB
with the coefficient given by the circulation (first Chem
class)

+&'0,$(k x E —DogB)] —H (2.17) (2.19)

One can also check that the kinetic equation (2.14) fol-
lows from (2.17) as the Euler-Lagrange equation of mo-
tion. Following Ref. 9 we choose a simple form of the
Hamiltonian which is quadratic in p„

1 d8 I d8H = — dr — dr ' f„(r r') p, (r )p, (r '—),

(2.18)

where the diagonal part of the quadratic form f„~(r-
r ') = v~b(s —s')h(r r')+I'„(r r') in—cludes the ba—re
kinetic energy of fermions near the Fermi surface.

An important feature of the Lagrangian (2.17) and
(2.18) is that it remains essentially non-Gaussian in terms
of the fundamental field P even in absence of interactions(I'„=0). Thus our theory is "geometrical" in the same
sense as, say, the nonlinear 0 model is.

It can be seen that the Gaussian part of (2.17) and
(2.18) is essentially similar to the Lagrangian obtained in
Ref. 11. Although non-Gaussian terms in (2.17) contain
extra gradients they are not necessarily negligible even in
the long-wavelength limit if the relation q~

& k~q holds
between tangential and normal components of a typical
transferred momentum q. It follows &om the preceding
discussion that these terms are due to the Gnite geomet-
ric curvature of the Fermi surface. Being combined with
quadratic terms they are supposed to reproduce the ef-
fects of the collision integral which is introduced in the
phenomenological Landau theory to account for quasi-
particle scat tering.

Strictly speaking, the most complete account of the
Fermi surface curvature also requires one to add to the
Hamiltonian (2.18) terms v~ps to represent the ki-

It seems natural to assume that in the case of a zero
external magnetic field the winding nuinber (2.19) must
vanish so the Lagrangian (2.17) does not contain parity-
odd terms.

On the contrary, one could interpret the case of the
"twisted" Fermi surface characterized by the lowest non-
trivial value of circulation $ B,P—= 1 giving cr „=1/4vr

2
(in absolute units of '& ) as a proper efFective description
of the metal-like state at the half-filled lowest Landau
level. We shall comment on this point further in Sec. IV.

Comparing the preceding discussion based on the La-
grangian formalism with the Hamiltonian approach ap-
plied in Refs. 9 and 10 one should make another remark
here. According to the physical interpretation of the
functional integral variable P(r, t, s) one may consider it
in the Hamiltonian approach as an operator with funda-
mental equal-time commutation relations (compare with
Ref. 21)

[P(r", s), (nV')P(r"', s')] = 2vrib(s —s')b(r r"') (2.2—0)

where n„(s) = ' e„, „,O„k, x .. .. x
(g I )~ 1 PWy '''l/~ 1 81 I/1

0 ~ 1 k ~ 1 is a unit vector normal to the reference Fermi
surface k~ ——k~, (s).

Notice that the commutation relations (2.20) are not
canonical since the momentum variable conjugated to
P(r, s) can be expressed as its gradient. It is consistent
with the idea of the chiral nature of the boson field P(r, s)
which obeys a first-order equation of motion.

It is worth mentioning that our (D ) 1)-dimensional
local density operator p, given by (2.12) is intrinsically
nonlinear in terms of P(r, s). Consequently, the algebra
of density operators p,
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(x x '0)(8,$ —$8.) + [(8,0y)2+ ('0$)'8.' —2(8.'044$)8.]I

.b(;;)'(", )8(;;) (2.21)

difFers &om the U(1) Kac-Moody algebra of oscillatorlike
operators a„-(q ) constructed in Ref. 10 by terms contain-
ing higher-order gradients.

III. DENSITY' RESPONSE FUNCTION

d8
Bgg, (x)+ f,. (x —x')

x[n, + -'V'8, P, (x') x]V'P, (x') = 0. (3 5)

Ko(~ q) = (p(~ q)p( ~ —q))—
88 88 0(n, q)(n, q)G„, (ur, q),
27' 27r

(3 1)

where the correlator G„I(u, q) = (P, (w, q)P, I (—w, —q))
is given by the inverse of the quadratic form

G„,(~, q ) = ([(n,q )cu —v I; (n, q ) ]&„
—(n, q )I',. (q) (n, q )) (3.2)

The formalism of the preceding section enables a cal-
culation of (gauge invariant) correlation functions such
as the density response function without calculating first
the (gauge noninvariant) one-particle Green functions.
Keeping in the Lagrangian (2.17) only terms quadratic
in P one encounters the problem of diagonalization of a
quadratic form. Then one obtains the density response
function

To compute the response function G„corresponding
to Eq. (3.5) we apply a nonperturbative eikonal-type
method similar to the one used in the context of the
Navier-Stokes equation. Similarly to the case of the
one-particle fermion Green function studied in Ref. 16
the use of the eikonal method becomes possible due to
the presence of a large term in (3.5) which contains a
bare Fermi velocity v~. Analogously to the case of ad-
vection of a passive scalar in the theory of turbulence
the method provides a consistent summation of infrared
relevant terms in perturbation theory for the Lagrangian
(2.17).

Using (3.5) one arrives at the equation for the Fourier
transform G(q, x) = f (dq)e'~*~iG(x, x') of the (trans-
lationally noninvariant) response function in an external
field P(x),

(n.V) a,G...(q, x)

In the absence of interactions and in the case of a circular
Fermi surface (3.2) becomes diagonal in s space and (3.1)
amounts to the long-wavelength approximation for the
free fermion bubble

1/

dp „q—J7 e'"
(2vr)

x[8'(p)n, + 2pB, P, (p)x]G, , (q, x) = h'„. (3.6)

Ko(~, q) = IIo(~, q) = ds (n, q )
27l Ld —Vy' naq

(3.3)

7['p(Cd, q)
RPA(~~ q ) II ( ~)V( )

~ (3.4)

where Ilp(w, q ) is given by (3.3). It is well known that in
the case of long-ranged interactions the RPA compress-
ibility K(0, q m 0) V i(q) vanishes at q -+ 0.

Notice that in the Gaussian approximation equiva-
lent to the RPA the spectrum of the collective mode

qV ) (q) lying outside the particle-hole continuum
remains undamped at zero temperature. However, this
property of collective excitations can only hold in the
case of a 1D Luttinger liquid where the dynamics of low-

energy bosonic density modes is governed by an exactly
quadratic Lagrangian. 3

To proceed. beyond the RPA one has to consider the
nonlinear equation of motion (2.14) written in terms of
&(x)

In the case of a rotationally invariant interaction
I „I(q) = V(q) (3.2) reproduces the results of the
random-phase approximation (RPA). To see that one can
simply expand the inverse operator into a series in powers
of V(q) which yields

According to Ref. 24 the response function can be written
in Fradkin's integral form

OO d8G„(q,x) = i dv (sie'" o 'i is")
0 27r

x (s"
i exp[i@(q, x))s'), (3 7)

where Go„„ is given by (3.2). Then keeping the term of
lowest order in q one obtains

(si 0 (q, x) is')
/I

=i dv' (dk)e'"* f„(q—k)(k x q)
0 2~

x)9, P, (k)(s"ie'" ' ~"lis'), (3 8)

where (dk) = n",". All terms of higher orders in q (or,
a typical scattering angle 6 q/k~) can be found by
recursion.

The consistency condition requires one to average (3.7)
over fluctuations of P(x). Then for the response function

G.. (v) = (4 .[~)d . (—~)) = f&eG[~lo[*)l ' ~ ' '
we get the equation
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G (q) = i dv(s~e' o ( }~s') exp~ i (dk) (qn, ) (qn, )(k x q )'f...(q —k)f. ..(k —q)
0 81 S2

xO„c}.,G„., (k)(sg~[(e*" ' ("}—1)G(')(k) —iv'Go(k)j~s2) j. (3.9)

This equation can be treated
expression (3.2). In particular,
Gaussian theory. The simplest
by the formula (3.2).

It is also worth comparing
representation:

using various approximations which are supposed to give corrections to the RPA
one could expect to find in this way a damping of collective excitations absent in the
approximation would be to substitute G„„(k) in the exponent in (3.9) by Go given

Eq. (3.9) with the eikonal formula for K(w, q) obtained in the original fermion

K(~, tr) = jd finV~

((„-;—(„, ;+0)
X

(P+~ —( + +k + 0

(dk)V(k) (1- "
iv(t'p (—g+0}~ 2)

p+k
(3.10)

where ((p) is an (in general, nonlinear) fermion disper-
sion. An obvious advantage of this formula as compared
to (3.9) is that nonlinear terms in the fermion dispersion
are already accounted for in (3.10). However, to see the
effect of the Ward identities which guarantee a cancella-
tion of self-energy versus vertex corrections in (3.10) one
has to treat carefully a combination of three terms form-
ing a complete square in the exponential factor. On the
other hand, it automatically follows &om the appearance
of extra powers of q in the corresponding exponential fac-
tor in (3.9), as it should in a consistent hydrodynamics
of interacting fermions.

IV. TOWARDS (NON-) FERMI-LIQUID THEORY'
OP THE HALP-PILLED LANDAU LEVEL

There exists much experimental evidence in favor of
the compressible metal-like state at v = 1/2. Exper-
iments on geometric resonance in the antidot array as
well as magnetic focusing show convincingly that quasi-
particle excitations at half filling experience no magnetic
field.

A theoretical explanation of the phenomenon proposed
in Ref. 27 was based. on Jain's idea of attaching a pair of
fictitious Aux quanta to each electron to compensate an
external magnetic field. Moreover, it was suggested to
treat &actional quantum Hall effect (FQHE) states be-
longing to the sequence of fractions v = 2~+& converging
towards v = 1/2 as integer quantum Hall effect (IQHE)
states of quasiparticles occupying N Landau levels in the
net field B ~ 21'+&+e

In the &amework of this picture the oscillating mag-
netoresistivity AR (B,T) at v P 1/2, for example, can
be treated as Shubnikov —de Haas (SdH) oscillations in
the system of quasiparticles with some effective mass
m' placed in the field H H. In the physically relevant
case of unscreened Coulomb interaction the theory pre-
dicts, in particular, a weak (logarithmic) divergence of
m, ' ln ~bv~ as bv = ~v —I/2~ approaches zero.

An extensive study of the effects of the transverse sta-
tistical gauge interaction carried out in Ref. 13 led to
the conclusion that in many respects the system looks
like a Fermi liquid except for the "marginal" change
e ~ Z(e) e ln e in its one-particle Green function. An-
other different feature is an extremely weak divergency
of the 2k~ scattering amplitude which presumably does
not lead to a divergency of any physical polarizability.

These results imply that, in spite of a strong
lowest-order renormalization of the (gauge noninvariant)
fermion propagator, transverse gauge Huctuations have
only a little effect on physical observables. In addition to
the results of the self-consistent diagrammatic approach
of Ref. 13 this conclusion was confirmed by a straight-
forward two-loop calculation of irreducible density and
current polarizabilities which showed no sign of a diver-
gent effective mass either.

On the other hand, as opposed to earlier reported re-
sults, the most recent measurements of magnetoresistiv-
ity at relatively high temperatures on both electronlike
and holelike systems revealed a strong dependence of
m, ' on v extracted from the Fermi-liquid formula for the
first harmonics of SdH oscillations,

(B T)
™/ « rn*/B, rr~. —

isn(hTm* B/«)
namely, the results obtained in Ref. 31 were best fitted
by the function

m*(bv) exp ~bv~

while the authors of Ref. 30 found a rather strong power-
law behavior of m*(8v).

When contrasting these experimental observations
with the theoretical conclusions ' it seems that a
strong dependence of the effective mass m*(bv) does not
find an immediate explanation in the framework of the
"marginal" Fermi-liquid behavior. Although one should
be cautious about applying Fermi-liquid formulas to the
analysis of data obtained in Refs. 30 and 31 (see, how-
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ever, Ref. 32) it nevertheless gives enough motivation to
search for an alternative description which uses no spu-
rious gauge field at all (or, equivalently, the statistical
gauge field is integrated out exactly) for an independent
check of predictions of the gauge theory. It is quite likely
that a possible candidate could be a sort of "nonlinear
Landau-Fermi-liquid theory" which one can use to un-
derstand the drastic efFective mass dependence on v (for
a related discussion see Ref. 33).

To make an at tempt in this direction we propose
the Lagrangian describing the v = 1/2 state in the
form (2.19) where A~ is now a sum of the statistical
gauge Beld a„and the external electromagnetic poten-
tial A,„i —— 2"' (y, —x). As we mentioned above this
requires the field P to have a nonzero winding number

5 (2 )a B~p —1.
Notice that, in comparison with the conventional

Landau-Ginzburg-type description of the odd-denom
inator FICHE states given in. terms of the phase field
P(r", t), the conjectured theory of the even-denominator
states involves an extra variable 8 along the boundary
of an extended region in momentum space identified
with the bare Fermi surface of transformed ("neutral" )

fermions.
Varying the Lagrangian (2.17) with respect to ao

one obtains an intrinsic operator relation between local
fermion density and statistical flux,

ds(B, QV' x a —B,k x k) = 0 .
27r 2 (4.1)

Due to the local constraint (4.1) the external field A,„i
is canceled out by the averaged Aux and the bare La-
grangian of gauge field fm. uctuations is given by the Chern-
Simons term and by the pairwise iiiteraction V(r —r ')
rewritten in terms of a:

Is ——— drdr'(V' x a)-V(r —r')(V' x a)„-g

1+ Cp.uP Gp, t9y GP
8m

(4.2)

Intending to deal with gauge invariant quantities one can
choose the gauge V'a = 0 and then integrate a~ out to
end up with the effective Lagrangian written solely in
terms of densities,

ds 1 ds ds'(, , - -. 1
».A0. —— —

I ».(r)V(r —r')». ( 'r)+ &ix~ (r) r - r'
» "(r')

l4~' ' '
2 2~ 27r q

' Q2

where p, and j, are given by (2.12) and (2.16), respec-
tively, and the induced p-j coupling is due to the statis-
tical Chem-Simons interaction contained in (2.17).

It is worth mentioning here the possibility of an inde-
pendent microscopic check of the validity of the effective
theory (4.3); namely, at v = 1/2 one can choose to work
with a basis of coherent states of JV fermions on the low-
est Landau level labeled by a set of A two-dimensional
momenta (k;): 4

overlap between different states which causes the induced
p-j coupling in the effective Lagrangian

((k) l(i~~ —III (k)) (4 5)

An explicit calculation of (4.5) which will provide a de-
cisive check of the status of (4.3) remains to be done.

From (4.3) one reads oK the bare interaction kernel in
the form

)(k)) (4 4) I'„(q) = V(q) + q x (n, —n, ) . (4.6)

where B,. is the center of Larmor's orbit operator of the
ith electron. This choice of the basis is not accidental.
The conventional (in our case symmetrical) Jastrow fac-
tor in (4.4) takes care of short-range correlations and
provides a good variational energy. Due to the antisym-

metry of the entire wave function all k, have to be dis-
tinct; therefore the other factor is the Slater determinant
of exp(iR;ki) which reflects an alleged metal-like behav-
ior governed by long-range correlations. Then using a
kind of collective field approximation one can describe
different patterns of occupied kj states in terms of the
Fermi momentum tracing the boundary of the filled re-

gion in k space.
However, the basis of coherent states (4.4) is not, of

course, orthonormal. One might expect that it is the

Similarly to the case of pure density-density interactions,
a diagonalization procedure applied to the quadratic form
with I'„given by (4.6) leads to the RPA density and cur-
rent response functions. In particular, (3.2) now yields

q'IIo(a, q)
kpII (cu, 0q)[k&II~(cu, q) + V(q)q2] + q2 '

(4 7)

where IIO(w, q ) is given by (3.3) and the long-wavelength
approximation for the current polarization operator is

27r q2 [cu —e~(n, q )] 2

Note that the crossed current-density polarization oper-
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ator II~(w, q) $ 2', ~' )( &" II
vanishes in this ap-

proximation.
Substituting the well known asymptotics of free

fermion polarizations IIo,~(~, q) at u && v~q

IIp(~, q) =

II~(u), q) =

1 1+i
27cv~ g vp q )
v~ (q' +i2' i k~ vp'q)

(4.9)

where I ~(ut, q) = ((7 x a)(V x a)) = (47r) KRpA(cu, q).
We plan to undertake an analysis of corrections to the

RPA using the eikonal-type formula (3.9) in a separate
paper. Although we do not expect that at small w, q the
corrections to (4.7) alter the behavior found in the RPA,
one might think that RPA becomes insuKcient when cal-
culating the 2k~ response (particularly if the RPA result
contains a possible divergency ).

One remark is in order here. In the case of a zero q
but finite w the function K(w, 0) has a pole located at
the renormalized cyclotron frequency u,* = B/m* while
according to the Kohn theorem it would have to occur at
the bare one. It was proposed in Ref. 12 to improve this
point by adding an extra Ferini-liquid interaction f„
Ei(n, n, i) to the Chem-Simons gauge theory which al-
lows one to restore the bare mass —= —.+Eq while us-

mp m
ing the RPA. However, it still does not seem to reflect the
fact that by switching the interaction off one completely
eliminates quasiparticle dispersion (v~ —.—+ 0).

Moreover, this recipe may appear to lead to a double
counting of the effects of the original interaction V(q)
if one goes beyond the RPA. To this end, it is conceiv-
able that studying the problem (4.3) at small energies
one should put the bare mass m.o in (4.6) equal to infin-
ity for consistency and assume that the kernel I"„does
have higher angular harmonics in contrast to the naive
I'„,(q) = V(q) which is a pure s wave.

V. CONCLUSIONS

In the present paper we discussed a scheme of D & 1
bosonization of interacting fermions in external fields

into (4.7) one readily reproduces the RPA compressibility
KRp~(0, q + 0) 1/V(q) and the location of the pole
of (4.7) for small q at w iV(q)q in agreement with
Ref. 27. Notice that similar results can be obtained from
a direct solution of the eigenvalue problem in the case of
the induced current-current interaction

(n, q ) [ur —v~(n, q )]P,
I'~ (q) ds'

(n, x q) (n, x q)P, , (4.10)
27r

which is based on a geometrical picture of a fluctuat-
ing Fermi surface. The natural description can be done
in terms of the vector field kp (r, s) tracing the space-
time-dependent shape of the Fermi surface. We argue
that it arises in a long-wavelength approximation for the
formally exact bosonization scheme in terms of coher-
ent states on quantum phase space. ' Conceptually,
this sort of description can be viewed as a generaliza-
tion of the phenomenological Landau theory which leads
to a quantum hydrodynamics incorporating small-angle
scattering between quasiparticles around a nonflat Fermi
surface.

In contrast to the constructive approach of Refs. 9—11
leading to a Gaussian bosonic theory the present method
gives an intrinsically nonlinear one. It is this property
which makes it possible to account for the effects of the
Fermi surface curvature.

It should be mentioned here that in special cases a
bare Fermi surface having flat faces may preserve them
under renormalization. For instance, it was argued in
Ref. 35 that a square Fermi surface is stable with respect
to parallel face interactions. However, interactions be-
tween adjacent faces are likely to cause rounding of the
square Fermi surface.

The bosonic formalism also allows one to avoid the sub-
tle problem of an explicit representation of the fermion
operator in terms of bosons when calculating gauge in-
variant response functions.

A simple diagonalization of the quadratic form while
neglecting nonlinear terms gives the usual RPA results.
To go beyond the RPA we formulate an eikonal-type pro-
cedure leading to integral equations for the density re-
sponse function which can be solved iteratively. In par-
ticular, one might expect to obtain damping of collective
modes out of these equations.

In addition, we apply our approach to the compressible
state of the half-filled lowest Landau level and formulate a
nonlinear effective theory in terms of chiral bosons repre-
senting density fluctuations. In the Gaussian approxima-
tion the theory reproduces the results of the RPA in the
gauge theory of the v = 1/2 state. We intend to study
effects of nonlinear terms on RPA results elsewhere.
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