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Charge-spin separation in 2D Fermi systems: Singular interactions
as modified commutators, and solution of the 2D Hubbard model

in the bosonized approximation
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The general two-dimensional fermion system with repulsive interactions (typified by the Hubbard
model) is bosonized, taking into account the finite on-shell forward-scattering phase shift derived in ear-
lier papers. By taking this phase shift into account in the bosonic commutation relations, a consistent
picture emerges showing the charge-spin separation and anomalous exponents of the Luttinger liquid.

The proper description of the effect of finite forward-
scattering on-shell phase shifts on Fermi systems for
D ) 1 (Ref. 1) has been the subject of a number of pa-
pers. The existence of such scattering, leading to on-
she11 singularities in the T matrix, was confirmed by
Fukuyama and Narikiyo, Metzner and di Castro, and
others. The discovery which these papers confirmed fol-
lowed from the fact that when two particles are embed-
ded in their respective Fermi seas, effectively all soft
recoils are forbidden to them by the exclusion principle.
Under these conditions, the logarithm of the S matrix for
relative motion retains a finite eigenvalue go in two di-
mensions (2D),

So(Q) =expi[go(Q)],

in the limit that the relative momentum Q = k
&

—k
&
~0,

and that both states are below the Fermi level. (On gen-
eral grounds, it seems likely that this can happen in 3D as
well, but this has not been proven. ) It is important to be
clear that S is not the conventional T matrix defined for a
hole at k scattering against another at k', whose imagi-
nary part represents an incoherent decay process, vanish-
ing at the Fermi surface; S is the on-shell scattering ma-
trix of particles embedded in the Fermi sea, and its phase
determines the boundary condition for their asymptotic
wave functions at the origin of relative coordinates
r —r'=0. Addition of a particle modifies the wave func-
tions of all other particles, and our endeavor is to investi-
gate the consequences of this fact.

Our initial description was heuristic, merely pointing
out that the effect of such a phase shift mimics that of a
change in statistics by enforcing a partial exclusion prin-
ciple between electrons of opposite spins. We also de-
scribed the type of singular interaction which would give
energy shifts similar to those which take place, and em-
phasized that these would "trash" Fermi-liquid theory.
Some papers have focused on this singular interaction
(specifically Engelbrecht and Randeria and Stamp ).
The treatment in terms of an interaction is in several
respects unsatisfactory, as clarified by Baskaran. But
even Baskaran's discussion does not give us a clear in-
sight into clean formal ways to deal with the situation.

The problem is that the efFect is best thought of as a
constraint on the wave functions, not as an interaction.

This is most clearly seen in the Hubbard model, where
the effect of a strong enough repulsive potential U~ ~ is
to enforce a projective constraint, expressed as the
Gutzwiller projector acting on the kinetic energy in the
t-J model, for instance. Since the exchange term also is
expressible purely in terms of projected operators, the t-J
system is confined to the subspace defined by projected
operators.

It is worth emphasizing that renormalization-group
derivations of Fermi-liquid theory (FLT) as a theory of
the low-energy states, such as that of Shankar, implicitly
assume a free Fermion starting Hamiltonian. If the start-
ing problem itself is projected onto a subspace, this prop-
erty will remain after renormalization and FLT changes
into the theory we shall derive.

In general (in 2D) the constraint appears as a phase
shift, which is a boundary condition for the asymptotic
wave function in the relative coordinates of a pair of par-
ticles. Such a wave function is indeterminate unless it
has a boundary condition both at ~r

—r'~ —+~ and at
r —r'~0. Arguments in several of the original papers
show that the rest of the particles may be satisfactorily
dealt with by taking the exclusion princip1e into account;
the multiparticle encounters are not crucial.

This local boundary condition on the asymptotic wave
function at r —r'~0 is a kinematic, rather than a dy-
namic, effect: there is a change in the wave functions of
the particles, not directly in their energy. We are used to
this with hard-core potentials: the effect is best expressed
as one purely on the kinetic energy, not on the potential.
This kinematic effect dominates here because the scatter-
ing region where the potential acts is small, of order X
compared to the asymptotic region in which the kinetic
energy is modified. The way to make this point is that
such a boundary condition can actually change the
dimensionality of the Hilbert space of allowed wave func-
tions. In simple terms, such a boundary condition forces
the wave function's nodes to shift in such a way that a
particle moves into or out of the distant boundary, so
that the same volume contains X+g/m particle states
rather than N. This is what is meant by a change in the
dimensionality of Hilbert space. This change of Hilbert
space occurs in 1D even as a consequence of an ordinary
interaction potential (hence the tlexibility of statistics in
1D), but in all other dimensions it is distinct from the
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kind of interaction effects which can be treated perturba-
tively.

The conclusion we came to is therefore that the effect
of a finite phase shift is best modeled as a modification of
the algebra of the particles, expressed in their commuta-
tion relations. Projected fermions

do not have the same commutation relations as ordinary
fermions, obviously, but we have not found the fermion
representation convenient to work with. It is much
simpler to use the bosonized representation in terms of
the Fermi-surface fluctuations. ' The bosonized version
of Fermi-liquid theory can be equivalently thought of as
the appropriate gauge theory in the presence of a Fermi
surface, since the bosonic variable is essentially the phase
of the Fermi-surface wave function.

Haldane, particularly, has emphasized that the most
useful description of the dynamics of a Fermi system is
via the operators AkF describing the position of the Fer-
mi surface in k space, taken to be dynamica1 variables,
functions of a coarse-grained space, and time. That is, he
argues that Luttinger's theorem holds exactly during
suKciently long-wavelength and low-frequency Auctua-
tions. (Parenthetically, even the conventional derivations
of Luttinger's theorem' depend not on the convergence
of perturbation theory but merely on the assumption that
excitations precisely at the Fermi surface (FS) do not de-
cay; hence the Green's function is real. ) We define opera-
tors

scription of the original idea of bosonization we follow
Khveshchenko. " If a Fermi surface exists, this implies
zero-frequency modes at each point on it, hence separate,
independent conservation of particle and spin currents at
the Fermi surface at each 0, even allowing for Fermi-
surface fluctuations which may be integrably singular at
low frequencies.

However, this does not imply that, in the presence of
interactions, 8 and p (or hkF ) remain the appropriate
canonically conjugate variables. These are variables
which measure, respectively, the particle number at a
particular patch on the Fermi surface and a given spin
and the phase of the wave function at the Fermi surface.
If there is a finite phase shift for forward scattering of
opposite-spin electrons, as we have shown, ' the order of
doing these operations matters. If we add a particle of
up-spin, the phase of the down-spin wave function de-
pends on whether the particle of up-spin was added be-
fore or after the phase was measured. The failure of com-
mutation for opposite spins is the phase shift rile, just a.s
adding a particle of up-spin below the Fermi surface en-
forces a change in up-spin phase by the amount m. We
may express this by writing the free-particle commutator
in matrix form:

1 0
[p, g ]b„,=. iso.l 5(r r')5(Q —Q')—,

while

where 6'z is the local normal to the fiduciary Fermi sur-
face. 0 and AkF, which is equivalent to the particle den-
sity at Q,p(Q), are conjugate variables, and for free fer-
mions have canonica1 commutation relations:

[O,P]=im5(r r')5(Q —Q') . —

As Haldane has pointed out, this representation can be
motivated by the idea of expressing the fermion field in
terms of two real operators p and 0:

y(x) 8i8(x) (4)

bk~ (Q, r, t),
giving the Fermi-surface fluctuations of spin o. at a point
on the FS parameterized by 0, and at coarse-grained r„t.
These are the bosonic variables: they commute for
different 0 and r, and, for noninteracting electrons, for
different o.. We can introduce a phase variable 0 of the
wave function at the Fermi surface, which is a function of
0, r, and t, and then AkF is

X5(r r')5(Q ——Q') . (6)

Let us explain these equations in detail. Equation (5)
means in the one-dimensional model that if we insert an
extra particle into the Fermi sea at a point r, because of
the exclusion principle the wave function at the Fermi
surface [which is the basic interpretation of Eq. (4}]must
have an extra node inserted into it near r; hence the phase
difference between left- and right-going (or ingoing and
outgoing) waves must shift by m as a consequence. Hence
after we insert one particle in p, 0 will change by ~, but
not vice versa: one is the generator of displacements of
the other. Equation (6}must be interpreted in exactly the
same way. The insertion of an up-spin particle at r, near
Q, means that the phase of the down-spin wave at Q is
shifted by g, while the up-spin wave is shifted by m. . This
means that 0~,p~ and 0~,p& are no longer canonically
conjugate; the correct canonically conjugate variables are
proportional to

rather than by the earlier "Tomonaga" definition of p(q)
as a density of fermions gkck++gck. This latter represen-
tation is not possible when the fermions are projected
operators. But we can still speak of a Fermi surface and
a Fermi-surface phase for each spin which satisfies
Luttinger's theorem, and hence determines the density of
particles at each point on the Fermi surface. In this tran-

and

s ~~ ~ Ps

0 = 0~+0~ p~+p~
c ~2 ~ pc
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The equations of motion of the charge and spin bosons
follow from the commutation relations and the Hamil-
tonian, which as we explained is simply the original
kinetic energy, the interaction terms being completely
subsumed in the commutation relations. The Hamiltoni-
an is, as for free particles, the one given by Haldane:

&=—,
' f d Q f d r u~( Q)[h k~( Q), r, t )]

=
—,
' f dQ g uz[p (q, Q)+q 8 (q, Q)) .

Then

(H, 8, , (q, Q) ]= u, ,q 8, , (q, Q),

with

u, =u~(Q) 1—il(Q)

u, =u~(Q) 1+ il(Q)

—i j"(/'2(8 +o.8, )Free: g (r)=poe

which gives the Green's function

1
Goree

=
Qr u, t+i /A— (u, =u, ) .

(12)

(13)

But we cannot assume that the connection between in-
teracting electrons and the modified bosons obeys (12).
The coupling of the two Fermi surfaces which leads to
the modified CR means that (12) creates an object which
can be thought of as a pseudoelectron, with the suitable
back6ow caused by the fractional opposite-spin hole
which accompanies it, so it describes an exact eigenexci-
tation of electronlike character moving in the exact
ground state. These excitations are analogous to boson-
ized versions of the exact eigenexcitations of charge (I; )

and spin (J ) of the Lieb-Wu solution of the 1D Hubbard
model. (The discussion here was foreshadowed in Ren's
thesis. '

) These ladders of excitations can be described in
terms of appropriate bo sons since they have linear
energy-momentum relations near zero energy, and these
are the bosons which we have derived. But the actual
electron operator creates a physical electron, not the
pseudoelectrons described by these bosons, and hence
must have the backflow compensated out. This leads to
the fractional exponents in the Cireen's function and oth-
er correlation functions characteristic of the Luttinger

and bosons are left as harmonic-oscillator variables with
frequencies

qu, (Q)

qu, (Q)

For free particles the Fermion operator is made up
from bosons iva the formula

liquid. As in the 1D case (as shown in Ren's thesis) the
coefficients may be deduced from conservation laws and
from the Luttinger theorem of incompressibility of the
Fermi sea in momentum space.

Note that the pseudoelectron has the quantum num-
bers of a true electron, and in fact it is one of the packet
of exact eigenstates created when a true electron is insert-
ed at the appropriate momentum, though with vanishing
amplitude as I.~~. %'hen a real electron is added, a
cloud of particle-hole excitations in addition to the two
semions is excited, analogous to the cloud of particle-hole
excitations which causes the x-ray edge anomaly. This is
the backflow. The modified commutation relations of the
charge and spin bosons still leave them as a bosonic
description of particles which are semions in the sense
that two of them make an electron. The transformation
which diagonalizes the CR is not modified from the free-
particle case, i.e., it is independent of g.

This is essentially because we maintain Luttinger's
theorem of incompressibihty as a constraint, so that no
net down-spin particles are removed by the scattering
process: they are merely redistributed in momentum
space, which is the backflow we must now calculate il/ir.
particles are displaced from the neighborhood of the
scatterer particle at k f, and we must find how they dis-
place the Fermi surface bosons, i.e., how the phases are
shifted at the fermi surface. But first we must take into
account some consequences of the non-Abelian spin sym-
metry which we have been ignoring so far.

A key theorem of the bosonization technique follows
from the symmetry properties of the states at the Fermi
surface. As we stated above, the existence of a Fermi sur-
face implies separate conservation of each component of
spin at each point on the Fermi surface. But spin conser-
vation must remain independent of the choice of axes,
and we must be able to choose the axes at each point in-
dependently. A related requirement is that Kramer's de-
generacy of the spin at each point of the fermi surface in-
dependently must be maintained. This is not possible if
spin at di6'erent Fermi points is coupled relevantly as
co~0. As is seen in the 1D Hubbard model, this implies
that the spin bosons cannot acquire an anomalous dimen-
sion, and must retain the same semionic character that
they have for free fermions. In our situation, this
expresses itself by the observation that our scattering cal-
culation is slightly incomplete. We have not required for-
mal spin rotation invariance [SU(2) symmetry] of the S
matrix for scattering, which requires that the phase shift
have the form

il=il, +i), (a"cr')

and allows for a spin-Aip scattering, which we have so far
ignored, of half the magnitude g of the potential term.
This requires the scattering to take place entirely in the
singlet channel, rather than the up-down channel, as we
have implied in our discussion so far. Our previous pic-
ture left us with one spin k& plus a hole of magnitude
iilir in k&. This left 1+g/m. 1 spins, but now we have
spin-Qip scattering of g/2 giving g/2~ missing down-
spins and 1 —il/2m. up-spins or one net spin. Correspond-
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ingly, this gives matching currents of up-spin in the scat-
tered channels which leaves us with displacements only
of charge, not spin, bosons in the backAow. The comov-
ing hole of magnitude rlln is now in the charge channel.

In the actual 1D Hubbard model, this theorem is
satisfied only to logarithmic accuracy, leading to (Intro)

and (lnq) ' corrections to power laws; the relevant cou-
pling constant goes to zero only logarithmically. We ex-
pect the same pathology in 2D. But dominant power
laws will be correctly determined by bosonization. (All of
this was foreshadowed in Haldane's "Luttinger liquid"
treatment of the 1D Hubbard model. '

) When the spin-
Aip component is taken into account, we now can deter-
mine how the phases at the Fermi surface are shifted,
specifically when we insert an electron at Q, q in order to
calculate the one-particle Green's function. The rule is
very simple: we calculate the phase shifts we would have
expected using naive up-spin down-spin scattering, and
replace these by phase shifts in the pure charge channel.
Let us first discuss the 1D case, which was worked out by
Ren. "

In 1D, the amount of charge ply which is displaced
from the state k =kF —

q appears, half at the left-hand
Fermi point and half at the right, i.e., g/2~ at each.
These components multiply the Green's function by the
factor

i 0"(g/2m) 1/+2) i 0 (g/2~)(1/'1)/ 2)
e e

which gives, in space-time representation, a factor
i /4( g/2m)

(x v, t )—
which has the maximum exponent ( —,

' } X —„' = —,', , as point-
ed out by Ren. This gives the famous Fermi-surface
smearing exponent 2X —,', =

—,
' in the strong-coupling case,

and with the strictly local interaction appropriate to the
Hubbard model.

These two displacements are the total backflow. The
net momentum of the backflow is zero, and the net
charge g/m, as it must be.

The situation in 2D is not quite so simple. Again, we
recognize that g/m worth of charge boson —i.e., i)/m. en-
closed by an internal Fermi surface —has been displaced
from the region of momentum k. We may calculate the

displacement of a circular Fermi surface which would re-
sult from elastic incompressible deformation of the lattice
of k values. (We use a circular FS for illustrative pur-
poses. ) This would give us

kF(A) (kF —k)

(k~ —k ) 2m.

See Fig. 1. If k is chosen at 0=0, and k =kF —e,

5k (0)— +
ek

e +k2g2 2~ 2~ 2(1—cosg)

(16)

~ 5(8)+ (17)
2m (2~}2

In this case, half of the displacement is in the forward
direction, and half is a uniform displacement of the Fer-
mi level —essentially an s wave, equivalent to isotropic
potential scattering. This, however, is not quite the
whole story. In one dimension the backAow compensated
the charge and momentum exactly, since the left- and
right-moving pieces were identical. Here, however, we
have an uncompensated momentum of the forward-
moving wave, g/2m XkF. The correct displacement
satisfying the Luttinger-Ward theorems is not merely a
dilation of the momentum lattice, but a rigid displace-
ment of rl/2nk~ a—s well.

The simple uncompressible dilation of the Fermi sur-
face which we postulated in (16) is too simple: the in-
teractions must satisfy momentum as well as particle con-
servation, and so the backflow must carry no net momen-
tum, as in 1D. The relative s-wave channel must carry
momentum —(g/2')k~, which compensates the extra
momentum of the 6-function peak at kF. This is
equivalent to a uniform translation of the Fermi surface,
which is a simple unitary transformation (multiplication
of all states by a common factor) and does not lead to any
anomalous dimensions. On the other hand, the s-wave
dilation does do so, and the anomalous dimension of the
Green's function is, as in 1D, (g/2') X —,

' =a, 0~ a ~
—,'.

Another way of describing this part of the backflow is as
a Fermi-surface shift proportional to (1—2cosO) rather
than simply to 1. This is not a scattering in the p-wave
channel; rather it is more like a "Mossbauer" zero-
phonon, coherent recoil of the Fermi sea as a whole.

The form of the Green's function is quite different from
1D: it will look something like

G(r, t) ~ JdQe
1

[r n(Q) —v, t]'/

FIG. 1. Dilation of the Fermi surface due to the comoving
hole.

1

[r 6(II ) t )
i/2+ 1/4(q/2, n)

C

1
(g/2m) X 1/4

r —
U, t
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8'(Q) is the Fermi surface normal unit vector at 0, and
cos8=n(Q). r. The stationary phase will ensure that
G(r, t) comes almost entirely from the "patch" n(A) ~~r.

Experimentally, several hints suggest that u )—,
' in fact,

in some of the cuprates. We must not be surprised by the
parallel-spin interaction also being finite and repulsive,
which will enhance the charge-channel backflow without
affecting spin properties except to lower U, further, and
make the electrons even less Fermi liquid. For the Hub-
bard model there is a fixed relation between g, and g, in
(14), but in the physical case g can be larger.

Most of the physical phenomena which depend on G
and other correlation functions can be calculated using
the simple homogeneity property

G= I1 r
(19)

t ~+a

This determines the infrared spectrum in parallel and
perpendicular polarizations, ' ' and the Fermi-surface
smearing; a similar property will give the exponent for
1/T, . Only angle-resolved photoemission spectroscopy
(ARPES) requires the full G. This will depend critically
on details of the single-particle dispersion and Fermi sur-
face, and so will require a separate investigation.

With (18) we have a principle the asymptotic solution
of the 2D electron gas with a local, repulsive interaction.
This is expected to be valid in the regions of the phase di-
agram of the Hubbard model reasonably far from half-
filling (where umklapp terms are important and can pin
down the charge bosons) and U~ ae at high density,
where ferromagnetic coupling of Landau mean-field type

will possibly be important, and lead to Nagaoka fer-
romagnetism. Finally, we exclude strong magnetic fields,
strong being enough to allow interference after a full cy-
clotron orbit; i.e., we require co,~ && 1 where co, is the cy-
clotron frequency. Under this condition transverse gauge
transformations are simple reparametrizations of the Fer-
mi surface and meaningless; i.e,. the Fermi surface and
anyons are mutually incompatible. co,~)) 1 destroys the
symmetries implicit in the Fermi surface, and causes gaps
in the spectrum which are incompatible with bosoniza-
tion. With co,~& 1 bosonization is the only gauge theory
of the interacting Fermi system; there is no meaningful
other.

Khveshchenko has argued that in ~ 2 dimensions the
equations of motions of the bosons are a very crude ap-
proximation valid only for very small q and co. This is
clearly so in our approach, since the 6 function in Eq.
(17) is actually of width q. We have argued that Chern-
Simons types of terms are not important if co, ~&1, but
insofar as charge and spin velocities differ, there can be
effects such as those we have postulated in the past
caused by mixing of bosons over a finite area of the Fermi
surface, when electrons of finite q =k —kz are excited.
Thus the above is a first approximation to a much more
complex theory which we do not yet have under control.
Nonetheless it seems the only way to proceed.
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