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Piezoelectric electron-phonon interaction in impure semiconductors:
Two-dimensional electrons versus composite fermions
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We study the effects of piezoelectric coupling between two-dimensional electrons and bulk phonons in cases
of both zero and strong perpendicular magnetic fields, the latter corresponding to even-denominator filling
fractions. In contrast to the case of coupling via the deformation potential, the leading contributions due to
impurity-renormalized electron-phonon vertices are not exactly canceled by processes of inelastic electron-
impurity scattering. Electron energy relaxation time, diffusion correction to the conductivity, and the phonon
emission rate by hot electrons are computed for realistic GagGH\l ,As heterostructures.
[S0163-1827)07147-9

It is well known® that in impure metals the Coulomb in- can be safely ignored. Indeed, the covalent sizes of Al, Ga,
teraction is drastically enhanced as a result of a singulafs, and Si atoms are very clogk 18, 1.26, 1.20, and 1.19 A,
renormalization of interaction vertices in the diffusive re- respectively. Therefore an additional perturbation induced
gime of small momentum and energy transfeyg’&€1 and by the impurity size appears to be much smaller than the
w7<1, wherer is the electron momentum relaxation time €ffect of its Coulomb potential. Hence inelastic piezoelectric
due to elastic electron-impurity scattering, afidve7is the ~ €lectron-impurity scattering is negligible compared to the
electron mean free pattEarlier analysis of the effects of the elastic(Coulomb one. o
deformation potential in impure metilsas based on the  1hiS important conclusion had been used implicitly in a
assumption that the electron-phonon interaction undergoer cent theory of kinetic phenomena associated with piezo-

the same renormalization. It turned out. however. that th& ectric electron-phonon interactions in the two-dimensional

situation is essentially more complicated. It was shown inelectron gas in a quantizing perpendicular magnetic field cor-

Ref. 3 that screening of Coulomb ionic and impurity poten_respondmg to filling factors equal to some of the even de-

. . y — + 4 .
tials together with inelastic electron-impurity scattering |eadsnom|nator fractions(EDF's) »=n*1/2q." The effective

: X ) ' 9 coupling of electrons to acoustic phonons at EDF's was de-
to a precise cancellation of the impurity renormalization Ofrived in Ref. 4 by emploving the composite fermion theor
the electron-phonon vertex. The underlying physics of thi ’ y employing P y

cancellation is a local electroneutrality of the system. sby Halperin, Lee, and Read.

; . . . In Ref. 4 we found the temperature dependencies of a
In this paper we reexamine the problem of piezoelectric . e
; ; . . . phumber of experimentally measured quantities, such as the
electron-phonon interactions in crystalline semiconductors - . o
honon contribution to electronic mobility, phonon-drag

without an inversion center, such as GaAs. In piezoelectri "
crystals an elastic strain is accompanied by a macrosco Igermopower, and phonon emission rate by hot electrons,
ystals & P by an Plhich all appeared to be in qualitative agreement with the
electric field, and the electron-phonon interaction results  _. .
. . .~ “available experimental data. In the present paper we also
from coupling between electrons and the lattice polarization

; . calculate the electron energy relaxation time, the correction
caused by the strain. However, the electroneutrality of thtst-0 the diffusion conductivity, and the hot-electron energy-

electron-ion system does not affect 'piezoelectric coupling, Sfoss rate for both cases of zero magnetic field and for EDF’s
one could expect its effects to be different from those of th or the latter quantity, which was measured direftan '

lcijsqﬁct)‘rmanon potential, particularly in the Iong-wavelengthalgreement is found.

In a metal, inelastic electron-impurity scattering is deter-
mined by the same impurity potenti®.m, which stems
from a local charge disturbance. In the case of a piezoelectric In what follows we consider the range of temperatures
crystal, however, there is another potential source of inelastibelow a few K, where the only important coupling is the
scattering processes. That is, if the size of impurity atoms ipiezoelectric one, and treat phonons as bulk acoustic modes
different from that of host ones, then the lattice strain causedoupled to a local electronic density by virtue of the bare
by this difference gives rise to a local lattice polarization.vertei
The latter results in an additional inelastic electron-impurity

ELECTRON ENERGY RELAXATION TIME

2.4
scattering which may become important in the long- 0/ ) — 12 :quq
Wavelength limit. M)\ (Q) Eh14(A)\/2Pu}\Q) ) AI 2Q6 )

One can argue, however, that in Si-doped 4o 6
GaAs/ALGa, _,As heterostructures, the inelastic electron- A _89.9°+¢ o
impurity scattering associated with the piezoelectric coupling ” 4Q°
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whereQ=(q,q,) is the three-dimension&BD) phonon mo-  This formula is valid at temperatures bel@y=u// which
mentum,p is the bulk mass density of GaAs, is a longi-  correspond t@/ ~ 1, and characterizes the onset of the hy-
tudinal (1) or a transversétr) sound velocity, andh,, is the  drodynamical regiméthroughout this paper we neglect the

only nonzero component of the piezoelectric tensor. difference betweeru; and u,, while making rough esti-
As a result of the Coulomb interaction in the two- mates.

dimensional electron ga2DEG) the vertex(1) undergoes a In typically used high-mobility samples u(~10°
dynamical screening which appears to be important at praen?/V s) with sheet electron concentration~10'* cm2
tically all scale$ the applicability of Eq.(5) is limited to the regime of ex-

MO(0) tremely low temperaturesT<T;~5 mK).

M, (,Q)= r (Q ) In this temperature range, E(p) yields
’ &(w,q)

2 R . (ehy)? T2
wheree(w,q)=1+H(q)(27e/eoq)Pgo(w.q) is the 2DEG U7 (T)=C4 3 DR (6)
dielectric function which depends on tfretarded 2D scalar 2pu; K

polarization Pgo(w,q) and the form factor of the quantum where the numerical factorCs= %fédx(9x2(1—x2)2
well H(q)=f[dzdZ §(2)§%(z')e 9>~ | given in terms of 1 (y, /u,)q8x4(1—x2) + (1—x2)3])~1.35 receives its main
the wave function of the lowest occupied quantum well subcontripution from two transverse phonon modes which are

bandg(z)jze‘.z/‘”. . . _ ~ slower than the longitudinal oneu(/u,~1.73).
. In the diffusive regimeq/ <1, the dielectric function is Since the width of the quantum we\Id/~(KkE)‘1’3 is
given by the standard formula typically smaller than or of the order ofKd, the smallg
Dxq response does not probe the structurg(@), and one can
€(w,q)=1+ T +DQ? (3)  set the form factor$i(g) andF(q,) equal to unity.

We note, in passing, that in contrast to the conclusion
where D=vZ7/2 is the diffusion coefficient andx  drawn in Ref. 2, where the case of the unscreened deforma-
=2me?vg e, is the 2D Debye wave vector proportional to tion _potential was cons_idered, the temperature dependence of
the two-spin electron density of states at the Fermi leyel T given by Eq.(5) continues all the way down =0, and
=m/ . undergoes no additional crossoverTat T,=u?/D defined

As follows from the above discussion, in the diffusive in Ref. 2 from the conditiodg~,(q). On the contrary,
regime one should also renormalize the ver®xby an im-  in our calculation ofr, given by Eq.(5), this condition does
purity ladder The kinetic equation which describes electronnot appear at all, since the factore(+ Dg?) ™" resulting
energy relaxation and accounts for such a renormalizatioffom the impurity vertex correction is exactly canceled by an
was derived in Refs. 2 and 3. Generalizing it onto the case dflentical factor contained iM,[Q,(Q),Q] [see Eqs.(2)

different electronic T) and lattice @) temperatures, we ob- and(3)]. _ . .
tain For comparison, in the clean reginfg<T<Tp=2ukg

(© L ~10 K (the latter condition facilitates that both in-plage
an(e
__ 3 2 2 and out-of-plane], components of the phonon moment@n
at (277)4; f d Qf do|F(q,)|*My(@,Q)| are controlled by temperature rather than by the width of the
quantum weliw), we obtain the well-known restilt

1
R
XImD (w,Q)Relw+—Dq2RTy@(e,w), (4) 1/T€(T)~(eh14)2 T3

4 2" (7)

where Ry g(e,0)=Coth@/20)[S(e+w) —S(e)]— S(e pu’ UrK

+w)S(e) +1,5(€) =2n(€) ~ 1, andF(q,) = [dz €%¢%(2).  Equation(4) can be also used to determine the rate of energy
For thermal acoustic phonons with a dispersionyansfer from the 2DEG to the lattice in the case of so-called

,(Q)=u,Q, one can use the customary expression for thenot” electrons, with the effective temperatuie> 0:

phonon  propagator  IBR(w,Q)=—7(§w—Q,\(Q)]

— o+ Q,\(Q)D. an(e)
PuttingT=0 and using the equilibrium form of the elec- P(T.0)=— | evp——de
tron distribution functionS(e) = —tanh({/2T), we arrive at
the following expression for the energy relaxation time: IN[Q,(Q)]
=2 f FQOQ———— @
8 dn(e) A
Ur(T)=~ . _— — .
on(e) at | __, The detailed derivation of the kinetic equation for the pho-
) non distribution functiorN(w) can be found in Ref. 3.
:—(Zw)3; f d3Q|F(g,)|AM,[Q,(Q),Q] In the strongly disordered regime, we obtain the result
C; (ehyy)? & »
__Calemd” v e [ e de Ry o(eo).
w? 3 Dxk? :
X Re——————{cot{ 2, (Q)/2T] 2pu; 0 -
iQ,(Q)+Dq 9

—tanj Q,(Q)/2T]}. (5)  The frequency integral
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% o In the range of temperatur@s<T<T,, Eq. (12) yields
f ) dwf € de Ry g(€,0)
0 o 60 e.ph 2C; (ehyy? 1 1
* 3 =T 7 2.2 nl—j, (13)
=2[5[N(0/20)—N(w/2T)]w’dw o m  2pup Dok T
=(2715)(04—T%) where  C;=31[3dx(9x3(1—x?)+u, /u8x*+(1—x?)?])

~1.22.
yields an unusual behavior of the electron-energy-loss rate At temperatures T<T, the conductivity correction
P(T,0)~T*—0* discussed in Ref. 6, whereas In the clean sq, (T) ceases to diverge logarithmically, and shows only
limit P(T,®) follows the standard dependence °—0°). 3 quadratic deviation from its value @t=T,. For the real-
As a reciprocal effect of the electron-phonon coupling,jstic parameter values one has/T,=u/ve~20—30 and,

the impurity-renormalized matrix eleme(®) leads to attenu-  hence, the interval where E€L3) holds is quite narrow.
ation of long-wavelength phonons:

COMPOSITE FERMIONS
IM©,(Q), Q17 1

Urpp\(U\Q)= v Im A comprehensive description of the physics of EDF’s had
: 2mec/ A p p phy
meTeod ela. Q)] been achieved in the framework of the theory of composite
:|M)\[Q)\(Q),Q]|2ImP§0[q,QX(Q)]. fermions(CF’s), regarded as a new kind of fermionic quasi-

particle forming a nearly Fermi-liquid state.

(10 The residual interactions of the CFs, as well as their in-
It can be readily seen that under the conditions of the diffuteractions with charged impuritie§emote ionized donors
sive regime 1#,,,(Q) remains constant, whereas in the which are usually set back some?1@m from the 2DEG,

clean limit it varies as a linear function . turn out to be essentially more singular than the conventional
In all regimes the estimates made with the use of Es)s. Coulomb potential. In the framework of the Chern-Simons
and (10) satisfy the relation theory of Ref. 5, these interactions are formally described as

gauge forces representing local-density fluctuations.
Ce(T)  Cpu(T) The microscopic analysis of the coupling between com-
7(T) - Ton(T) posite fermions and bulk phonons was done in Ref. 4, where
it was shown that in the presence of transverse gauge inter-
where C ,{(T) is a 2DEG ¢-T) or a 3D phonon £ T°)  actions the electron-phonon scattering is strongly enhanced
specific heat, which is implied by the energy balance equacompared to the zero-field case (@urely scalar Coulomb

tion (8). interactions. Experimentally, the features attributed to the en-
Our Eq. (9) is in agreement with the results of Ref. 6, hanced electron-phonon interaction were observed in both

where the phonon emission rate was computed in the framghonon-limited electron mobiliy and phonon drag
work of a hydrodynamical model which postulates a con-thermopowel® at EDF'’s.

(11)

stancy of the conductivity,,(q) in the strongly disordered |t was shown in Ref. 4 that instead of B@) the screened
regime. Compared to this phenomenological approach, oysiezoelectric electron-phonon matrix element redureaf-
microscopic analysis allows one to calculateand 7y, di-  ter we focus on the EDF state at %, which is the one best

rectly, as well as to generalize the results onto the case aftudied experimentally
compressible states of electrons in quantizing magnetic

fields. Mf\f(ﬂ),Q)zMif'S‘f‘ M;}\f,u
M VX
CONDUCTIVITY CORRECTION _ M\(Q) 1+ 4i H(Q) 2q PR (w.p) |,
The correction to the conductivity from the piezoelectric eci(®,q) q
electron-phonon interaction can be obtained by modifying (14)
the expression derived in Ref. 2:
where
80 eph 2 3 2 R 2 2pR pR
o0 = Bapx M| &% ecr= 1+ H(a) (2me?/ e0q) PgotH(q) %(4m/q) ?PGPT
Xf d wDR(0,Q)|M,(w,Q)|?|F(q,)|? The transverse component of the vector polarization is given
by the formula PR(q,w)=xq%+iwo(q), Where x
D2 ° =1/487%ve & and o(q) equals (/2/4m)kel 4 if qlg<2,
X PEDTEE f(?>, (12 and\2kg/(27q) otherwise.

The diffusive regime, which is only accessible at ultralow
where temperatures in the zero-field case, now sets in at much
higher temperaturesTg .¢~1 K), since the bare Drude con-
(7 ductivity at EDF’s is typically two orders of magnitude
f(“’/T):iledf S(e+w)(dlde)S(e) lower than the zero field one.
One more remark is in order here. Recent experinténts
=(dldw)[ w coth w/2T)]. demonstrated that in the typical parameter range ithe
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0op 00012

1
012 af,,

; (18

state retains its metallic conductivity down T6~20 mK, In the diffusive regime both the zero field and the ;

and only becomes insulating when the amount of disordegnergy relaxation rates share the saridehavior. The ratio

effectively increases by a factor of 2, which can be achieve®f the prefactors can be estimated as

by applying a negative voltage to the side gate and thereby .

depleting the 2DEG. In view of that, we believe that in the Te cf VE

interaction-dominated regime the CF metal obeys a conven- 1 e Cf> min

tional diffusive behavior, whereas effects such as a disorder- e.cf '

induced multifractality of single-particle wave functions be- whereo is the zero-field conductivity

comes important only at excessively low temperatures. In pure samples exhibiting the¥=3 anomaly,” the nu-
Proceeding along the lines of the previous zero-fieldmerical value of the right-hand side of E@.8) is substan-

analysis, we arrive at the formula for the CF energy relaxtially greater than unity, but reduced compared to that of the

ation time: transport relaxation ratésvhich does not contain the extra

faCI‘OI’ VE /VF,Cf: 2m/mcf% 014

_ 3 The CF conductivity correction differs from E(L2), due
Uree T)= (277)4; j d QJ de to the fact that the CF-phonon vertéld) contains both sca-
lar and vector parts, the latter making the dominant contri-
bution:
XImDR(w,Q)IF(qz)IZRE[ 7ol M|
601y 00 _ f 3 j
e o e 2 7)42 Im | d°Q | dw DR(w,Q)
. [coth( w/2T) —tanh w/2T)].
(Dg°+iw) |M;:\f,u|2 v'2:’0fq2|M<):\f,S|2 o
(19 O@tio)  (Otiwe (T 1

In the disordered regimeé< T, the resulting expression for

Tecf Can be cast in the form of Ed6), where the Debye
screening momenturk =2 e’ ve fl €9, @and the diffusion
coefficientD /o= 015/ Vg K determined in terms of the physi-
cal conductivityoy,~(e /2h)2/acf, contain the mean -field
composite fermion density of states = Mgl 275

The peculiar relation between the CF “quasiparticle conduc-
tivity” o and the physical current response functfons
makes both the dc conductivity;;, and the resistivityp
~ o1,/ (€%12h)? increase ag§ —0.

At T, <T<Tyandoy>0oy, we obtain

However, Eq.(6) only holds prowded the conductivity S0y, Cp(emp?(2€0\? [Tic
oy, is large compared tery = e u/27~10"2%€?/h. In the o, pu | & In| ——/, (20

opposite caseay,,<oy , the result reads

(ehyy)?
Ure o T)=Cs——5DyT?, (16) S0y Cg(ehg)?(ayp| (T

whereas atr,,< o), the result reads

=— (21
oy W pu|3 \Ucf
where the value of the numerical factor

1
C5:%f dX
0
value of the conductivity correction is small compared to the
><[8x4(1—x2)2+(1—x2)4]) logarithmic term resulting from the residu@auge interac-
tions of CF's!? The latter Altshuler-Aronov-type term,
~2.48 which was predicted to exist in a much wider range of tem-
. _ _ peratures (1 mKT<1 K),'? provides a reasonable ac-
is again dominated by the transverse phonon modes. count of the available data on the temperature dependence of
In the clean regimd; <T<Tp = 2Tp, One obtains  the resistivity at EDF’s obtained in Refs. 11 and 13.
At compressible EDF states the powyg(T,®), carried
(ehy,)? ToKe out by piezoelectric phonons from hot electrons, appears to
2 maf{u?/Dy,:D z]' (17 be strongly enhanced compared to that at zero fi€lg).(
V2, s2Kef Repeating our calculation, which led to EE), for v= 12 we
As opposed to the case of zero field described by Egjs. obtain
and (7), the exponent in the power-law temperature depen-
dence ofr, 4 reduces by 1 a¥ increases. P
Equations(16) and (17) are also consistent with the en- _0
ergy balance relatiol1), since the phonon relaxation rate
1/7y,(Q) due to scattering against CF’s changes from a conEquation (22) interpolates between the limiting cases of
stant in the diffusive regime to theQ/behavior in the bal- o4, being much greater or much smaller thap . Com-
listic one. pared to Eq(18), ratio (22) is free from an uncertainty re-

The logarithmic growth of correctiof21) stops atT =T,
) s (U 5 =u?/Dy,~0.1 K and at lower temperature$o;,, shows
9x“(1—x%)°+ —) only a~T? deviation from its value af =T, .
t In either case described by EGR0) or (21), the absolute

1/Te,cf(T)~

pu

%0 _C5 000172

(22)

o12'Csq a'f,,
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lated to a definition of the(strictly speaking, gauge- coupling. Second, we showed that in high-mobility samples
noninvariant CF density of states. It can also be used as anhe diffusive regime can be probed at experimentally acces-
estimate in the practically relevant case of;,~oy sible temperatures only in the case of strong fields corre-
~10"2e?/h, where it predicts an enhancement of the rate ofsponding to compressible EDF states.
phonon emission by two orders of magnitude, which is con-  |n the course of our comparative study of the zero-field
sistent with the experimental data from Ref. 6. case versus that of EDF’s, we compute the phonon contribu-
It is worth mentioning that after being expressed in termsijon to the electron energy relaxation time, the energy-loss
of the physical conductivity, the energy-loss rate at EDF'Sate py hot electrons, and the conductivity correction which
contains absolutely no reference to CF’s used in its derivazegyits from quantum interference between electron-impurity
tion. This formulation enables one to make a direct link to, 4 electron-phonon scattering. We observe that in the dis-

theh hydrodyntadrglcTal(am?d?rl] cz[f ?tehf 6, :;md to con:_pare theordered regime the above quantities follow the same tem-
enhancement dP(T,®) to that of the surface acoustic wave perature dependences in both cases. Numerically, however,

i -1
attenuation av=s3. the results obtained for EDF’s are all enhanced compared to

.T.O conclude, in the present paper we elaborated on th ose at zero field by the numerical factor related to the ratio
unified treatment of the piezoelectric electron-phonon inter-

action in the disordered 2DEG in cases of both zero an(gf physical conductivities. Further experiments of the kind

o ) . " tarried out in Ref. 6 would allow one to test this and other
strong magnetic fields, which was developed in Ref. 4. First o
: . ) predictions of the theory.
we pointed out an important difference between the
impurity-assisted renormalizations of the electron-phonon One of the authoréM.R.) acknowledges support from the

vertices due to the deformation potential and piezoelectri©ffice of Naval Research.

1B. L. Altshuler and A. G. Aronov, irElectron-Electron Interac- Lett. 77, 1143(1996.

tion in Disordered Systemedited by A. L. Efros and M. Polak  7P. J. Price, J. Appl. Phy&3, 6863(1982.

(North-Holland, Amsterdam, 1985 8M. Yu. Reizer, Phys. Rev. B0, 5411(1989.
2B. L. Altshuler, Zh. Ksp. Teor. Fiz75, 1330(1978 [ Sov. Phys. SW. Kanget al, Phys. Rev. Lett75, 4106(1995.
, JETPA48, 670(1978]. . _ 108, Tiekeet al, Phys. Rev. Lett76, 3630(1996.

M. Yu. Reizer and A. V. Sergeev, ZhkBp. Teor. Fiz90, 1056 1| W. Wonget al, Phys. Rev. B4, 17 323(1996; C. T. Liang
, (1988 [ Sov. Phys. JET®S, 616 (1986, et al, Solid State CommurL02, 327 (1997).

D.V. Khveshchenko and M. Yu. Reizer, Phys. Rev. Lé§.3531 12p . v. Khveshchenko, Phys. Rev. Left7, 362(1996; Phys. Rev.
(1997, B 55, 13 817(1997).

B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev4B 7312 13| p. Rokhinsonet al, Phys. Rev. B52, R11588(1999; 56,

(1993.

R1672(1997).
8E. Chow, H. P. Wei, S. M. Girvin, and M. Shayegan, Phys. Rev. (1997



