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Elusive physical electron propagator in QED-like effective theories

D. V. Khveshchenko
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599

We study the previously conjectured form of the physical electron propagator and its allegedly
Luttinger type of behavior in the theory of the pseudogap phase of high-temperature copper-oxide su-
perconductors and other effective QED-like models. We demonstrate that, among a whole family of
seemingly gauge-invariant functions, the conjectured ”stringy ansatz” for the electron propagator is
the only one that is truly invariant. However, contrary to the results of the earlier works, it appears to
have a negative anomalous dimension, which makes it a rather poor candidate to the role of the phys-
ical electron propagator. Instead, we argue that the latter may, in fact, feature a ”super-Luttinger”
behavior characterized by a faster than any power-law decay Gphys(x) ∝ exp(−const ln2 |x|).

I. INTRODUCTION

In a generic (1 + 1)-dimensional (hereafter 2D) many-fermion system, an arbitrarily weak short-range repulsive
interaction is known to completely destroy the conventional Fermi liquid, thereby giving rise to the so-called Luttinger
behavior. As one of the hallmarks of the Luttinger regime, the electron propagator exhibits an algebraic decay with
distance which is controlled by a non-universal exponent and appears to be faster than in the non-interacting case.

In higher dimensions (3D and 4D) the Fermi liquid is believed to be more robust, although it is not expected
to remain absolutely stable. In the absence of a clear-cut evidence, however, the possibility of a non-Fermi liquid
behavior in D > 2 has recently become the subject of an intense debate.

While in the case of short-ranged repulsive interactions any departures from the Fermi liquid are likely to be limited
to the infinitely strong coupling regime, the long-ranged forces are considered to be capable of destroying the Fermi
liquid even at finite coupling. One of the most extensively studied such examples, the finite density system of non-
relativistic massive fermions which are minimally coupled to an abelian gauge field, was indeed shown to manifest a
distinctly non-Fermi liquid behavior, although the latter turned out to be rather different from the Luttinger one [1].

More recently, there has been a renewed interest in the 3D relativistic counterpart of this model governed by the
conventional QED3 action

S[ψ, ψ,A] =

∫

dz[

N
∑

f=1

ψf (iγ̂µ∂µ + γ̂µAµ −m)ψf +
1

4g2
(∂µAν − ∂νAµ)2] (1)

for the N -flavored Dirac fermions which are described by a reducible (four-component) representation corresponding
to the choice of the γ-matrices γ̂µ = σ̂µ ⊗ σ̂3 constructed from the triplet σµ of Pauli matrices. The use of the
parity-even representation guarantees that radiation corrections do not generate any parity-breaking Chern-Simons
terms.

Among the previously discussed examples of the 3D condensed matter systems that support the Dirac-like low-
energy excitations and allow for such an effective description are the so-called flux phase in doped Mott insulators
[2,3] and d-wave superconductors with strong phase fluctuations [4–7] proposed as an explanation of the pseudogap
and insulating (spin and/or charge density wave) phases of the high-Tc cuprates. Also, the non-Lorentz-invariant
version of QED3 was shown to provide a convenient description of the normal semimetalic state of highly oriented
pyrolytic graphite [8–10].

The number N of the fermion flavors depends on the problem in question, although it is not necessarily equal
to the number of different conical Dirac points in the bare electron spectrum. In the abovementioned condensed
matter-inspired QED-like models [2–10], N = 2 is a number of the electron spin components, while the number of
the conical points turns out to be either four [4–7] or two [8–10].

In some of the strongly correlated electron systems described by the effective QED-like theories, such as the problem
of graphite, the theory is formulated in terms of the electrons themselves which enables one to directly compute various
experimentally relevant observables [9,10].

However, in other systems the effective gauge fields serve as a convenient representation of such bosonic collective
modes as spin or pairing fluctuations, while the Dirac fermions correspond to some auxiliary fermionic excitations,
such as spinons [2–4], ”topological” fermions [5–7], and so forth.

In the latter case, a generic quantum mechanical amplitude written in terms of the Lagrangian fermions turns out
to be gauge-dependent, while all the physical observables, which experimental probes can only couple to, must be
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manifestly gauge-invariant. In light of that, it is absolutely imperative to establish the correct form of the physical
electron propagator in terms of the Lagrangian fermions. Until this task is accomplished, no theoretical prediction
obtained in the framework of the QED-like effective models can be put under a decisive test against experimental
data which will be the ultimate means of ascertaining the validity of these scenarios.

II. EXACT VERSUS LIMITED GAUGE INVARIANCE OF FERMION AMPLITUDES

In the recent theory of the pseudogap phase of the high-Tc superconductors [4–6], the authors advocated the use of
the ”stringy ansatz” with the inserted Wilson-like exponent of the line integral

GΓ(x− y) =< 0|ψ(x) exp(−i
∫

Γ

Aµ(z)dzµ)ψ(y)|0 > (2)

as a viable candidate for the gauge-invariant physical electron propagator (in spite of its being gauge-independent,
the function GΓ explicitly depends on the choice of the contour Γ which connects the end points x and y).

Moreover, the authors of Refs. [4–6] argued that the amplitude (2) exhibits the so-called Luttinger-type behavior

GΓ(x) ∝ x̂

|x|d+η
(3)

characterized by a positive (albeit varying from one reference to another) value of the anomalous exponent η, provided
that the contour Γ is chosen as the straight-line segment between the end points.

Although the idea of using Eq.(2) for elucidating the behavior of the physical electron propagator has been previously
entertained, one must be cautioned by the fact that, apart from its relative simplicity, it never received any firm
justification. A potential problem with both the simple form of the line integral and the particular choice of the
contour Γ in Eq.(2) stem from the fact that in the theory of Refs. [4–6] the phase φ(x) of the (singular) gauge
transformation Ψ(x) = eiφ(x)ψ(x) which relates the physical electron operator Ψ(x) to the Lagrangian fermion field
ψ(x) is not uniquely defined.

In what follows, we address some of the misconceptions pertaining to the use of Eq.(2) in the earlier works and
ascertain the status of the previously obtained results. To this end, we start out by casting GΓ(x− y) in the form of
a functional integral taken over both the gauge and fermion Lagrangian variables

GΓ(x− y) =

∫

D[A]D[ψ]D[ψ]ψ(x)ψ(y) exp(i

∫

Γ

Aµ(z)dzµ) exp(iS[ψ, ψ,A]) (4)

Upon integrating the fermions out, the amplitude (4) turns into a functional average over different gauge field config-
urations

GΓ(x− y) =

∫

D[A]G(x, y|A) exp(i

∫

Γ

Aµ(z)dzµ) exp(iSeff [A]) (5)

applied to the inverse Dirac operator G(x, y|A) =< x|[i∂̂ + Â(z) − m]−1|y > computed for a given gauge field
configuration Aµ(z).

The weight of the average in Eq.(5) is controlled by the effective gauge field action

Seff [A] =
1

4g2

∫

dx(∂µAν − ∂νAµ)2 +
1

2

∫

dx

∫

dyAµ(x)Πµν(x − y)Aν(y) + . . . (6)

where the dots stand for the higher order (non-Gaussian) terms produced by fermion polarization (processes of
”light-light scattering” and alike) which we hereafter neglect, as in all of the previous works on the subject.

With the transverse fermion polarization Πµν(q) = Π(q)(δµν − qµqν/q
2) taken in to account, the gauge field propa-

gator computed in the covariant λ-gauge assumes the form

Dµν(q) =
g2

q2 + g2Π(q)
(δµν + (λ− 1)

qµqν
q2

) (7)

In order to obtain Eq.(7) one has to complement (6) with a (generally, non-local) gauge fixing term ∆Seff [A] =
∫

dx
∫

dy∂µAµ(x) < x|[1 − g2Π(i∂)/∂2]|y > ∂νAν(y)/2g2λ.
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In the case of the conventional (that is weakly coupled, g2 ≪ 1) QED4, the fermion polarization behaves as
Π(q) ∝ q2, and the above gauge fixing term becomes local in the coordinate space. As a result, the ultraviolet (UV)
divergencies occur at fermion momenta of order the upper momentum cutoff.

In contrast, QED3 develops its highly non-trivial behavior at intermediate fermion momenta m ≪ p ≪ Λ = Ng2

controlled by the (this time, dimensionful) coupling constant g [2]. However, adhering to the customary terminology,
we will refer to this regime as the UV one, for this is where all the logarithmic corrections originate from, whereas
above the cutoff Λ no terms ∝ ln(Λ/p) can possibly occur.

In this regime, the gauge propagator (7) is totally dominated by the fermion polarization which, due to the parity
conserving structure of the reducible four-fermion representation produces no Chern-Simons terms and, in the leading
1/N approximation, reads as

Π(q) =
N

8

√

q2 (8)

In this way, the number of fermion flavors N becomes the actual parameter controlling perturbation expansion,
regardless of the strength of the bare coupling g.

Without making any additional approximations, the function G(x, y|A) can be expressed in the form of a quantum
mechanical path integral [11] (see also [12] where this representation was used in a non-perturbative calculation of the
Dirac fermion propagator in a static spatially random gauge field which is pertinent to such problems as the effect of
vortex disorder on the quasiparticle properties of d-wave superconductors or that of dislocations in layered graphite)

G(x, y|A) =

∫ ∞

0

dτ

∫ x(τ)=x

x(0)=y

DxDpeiŜ0[x,p] exp(i

∫ τ

0

dτ ′Aµ(z)
dzµ

dτ ′
) (9)

where xµ(τ) is a fermion trajectory parametrized by the proper time τ . The spinor structure of the fermion propagator
is fully accounted for by integrating over the additional variable pµ(τ) with the free (matrix-valued) fermion action

Ŝ0[x(τ), p(τ)] =

∫ τ

0

dτ ′pµ[
dxµ

dτ ′
− γ̂µ −m], (10)

thus providing a systematic improvement of the celebrated Bloch-Nordsieck model. In the latter, all the spin-related
effects are ignored which makes this model exactly soluble but restricts its applicability to the infrared (IR) regime
|p2 −m2| ≪ m2 near the fermion mass shell. In the IR regime, the relevant fermion trajectories contributing to (9)
deviate only slightly from the straight-path contour Γ (which coincides with the fermion world line in the case of a
light cone-like separation between the end points, (x− y)2 = 0).

One must recognize that the IR regime can only exist if the fermions are massive, while in the case of m = 0 the
entire region below the upper cutoff Λ falls into the opposite, UV, regime. In the UV regime, the fermion trajectories
which dominate the amplitude (9) may strongly depart from the straight-path contour Γ, for there is no mass term
to suppress such deviations.

Combining Eqs.(5) and (9) we represent the amplitude (2) in the form manifesting its gauge invariance

GΓ(x − y) =

∫ ∞

0

dτ

∫ x(τ)=x

x(0)=y

DxDpeiŜ0[x,p] < exp(i

∮

∂µAνdΣ
µν) > (11)

where the brackets stand for the (normalized) functional average over the gauge field with the weight exp(iSeff [A])
which is to be taken for each trajectory xµ(τ) before the sum over all the different trajectories is executed.

In order to obtain the area integral in the exponent we applied Stokes’ theorem to the line integral taken along a

closed contour which is composed of a trajectory xµ(τ) and the straight-line segment Γ, parametrized as x
(0)
µ (τ ′) =

τ ′(x− y)µ/τ and traced backwards.
The averaging procedure generates a sum of all the multi-loop diagrams with no couplings between the fermion

polarization insertions into the gauge field propagators and the open fermion line which describes the fermion propa-
gating from y to x.

Elucidating the structure of the gauge invariant amplitude (2) helps one to appreciate the difference between (11)
and all the other (ξ 6= 0) members of the family of functions labeled by a continuous parameter ξ (not to be confused
with the covariant gauge parameter λ!)

Gξ(x− y) =
< 0|ψ(x) exp(i(ξ − 1)

∫

Γ
Aµ(z)dzµ)ψ(y)|0 >

< 0| exp(iξ
∫

Γ
Aµ(z)dzµ)|0 > =

3



∫ ∞

0

dτ

∫ x(τ)=x

x(0)=y

DxDpeiS0[x,p]< exp(iξ
∫

Γ
Aµdz

µ + i
∮

∂µAνdΣ
µν) >

< exp(iξ
∫

ΓAµdzµ) >
(12)

Amongst others, Eq.(12) also includes the function

G1(x− y) =
< 0|ψ(x)ψ(y)|0 >

< 0| exp(i
∫

Γ
Aµ(z)dzµ)|0 > (13)

which was invoked by the authors of Ref. [5] who asserted that G1(x) given by Eq.(13) is identical to the amplitude
(3) and, therefore, can be used to compute GΓ(x) = G0(x).

The UV anomalous dimension of Eq.(13) can be deduced rather straightforwardly by computing the ratio between
the wave function renormalization factor determining the anomalous dimension of the ordinary (gauge variant) fermion
propagator [14]

< 0|ψ(x)ψ(y)|0 >∝ G(x− y)(Λ|x− y|)(4/3π2N)(2−3λ) (14)

(hereafter G(x) stands for the free fermion propagator which also yields the bare value of Gξ(x) for any ξ) and the
Gaussian average of the Wilson line

< exp(i

∫

Γ

Aµdz
µ) >= exp[−1

2

∫

Γ

dzµ
1

∫

Γ

dzν
2Dµν(z1 − z2)] ∝ (Λ|x− y|)(4/π2N)(2−λ), (15)

thus indeed resulting in the anticipated Luttinger-type behavior of Eq.(13) which is characterized by the overall
positive anomalous dimension

η3d
1 =

16

3π2N
(16)

Notably, this result is free of the gauge parameter λ, thus creating the impression that Eq.(13) represents a truly
gauge invariant function.

As one immediate objection to the assertion of Ref. [5], one might recall that the very nature of the relationship
between the electrons and the auxiliary Lagrangian fermions implemented via the singular gauge transformation
< 0|Ψ(x)Ψ(y)|0 >=< 0|ψ(x) exp[i(φ(x) − φ(y)]ψ(y)|0 > implies that the physical electron propagator can only be
given by a single average over the gauge field, rather than a ratio of such.

However, except for the case of the original amplitude G0(x), Eq.(12) is represented by a ratio of the two averages
and, therefore, it can not be truly gauge invariant. Indeed, the gauge fields, over which one averages in both the
numerator and denominator of Eq.(12), may transform totally independently of one another (A1,2

µ → A1,2
µ + ∂µf

1,2),
thus resulting in the overall phase factor exp[iξ(f1(x)−f2(x)−f1(y)+f2(y))] which only vanishes for f1(x) = f2(x),
as long as ξ 6= 0.

Nevertheless, as shown below, Gξ(x) turns out to be independent of the gauge parameter λ within the class of
the covariant gauges for any ξ. Presumably, it was this limited gauge independence that led the authors of Ref. [5]
to their conclusion that the (seemingly gauge-invariant) amplitude G1(x) must be identical to the (truly invariant)
amplitude G0(x), for they apparently coincide with each other in the axial gauge (x − y)µAµ(z) = 0, in which the
line integral

∫

Γ
Aµ(z)dzµ vanishes.

However, should this happen to be valid, the same argument would also apply to an arbitrary Gξ(x) which is
seemingly gauge invariant to absolutely the same extent as Eq.(13) is (that is, provided that one uses the identical
gauge transformation in both numerator and denominator), and all these functions coincide with each other when
computed in the axial gauge.

Nonetheless, one can readily see that Gξ(x) does bear a non-trivial ξ-dependence by simply evaluating the integrand
in Eq.(12) for certain chosen trajectories. As an example, we consider the case of a square-shaped closed contour
consisting of four straight segments, each of length |x− y|. Having all the adjoint sides of the square at right angles
to each other guarantees one from a possible occurrence of the additional (”cusp”) UV singularities [11].

Applying the method of dimensional regularization near d = 3 we obtain

< exp(i
∮

∂µAνdΣµν + iξ
∫

ΓAµdz
µ) >

< exp(iξ
∫

ΓAµdzµ >
∝

exp[−4(Λ|x− y|)3−d

π(d+1)/2N
Γ(
d− 1

2
)(2 − ξ)[I1(1 − (λ− 1)(d− 2)) − 2I2(λ− 1)(d− 1)]]
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∝ (Λ|x− y|)8(2−ξ)/π2N (17)

where the terms in the exponent proportional to

I1 =

∫ 1

0

∫ 1

0

dαdβ

|α− β|d−1
=

2

(3 − d)(2 − d)
(18)

and

I2 =

∫ 1

0

∫ 1

0

αβdαdβ

(α2 + β2)(1+d)/2
=

2

(3 − d)(1 − d)
[2(1−d)/2 − 1] (19)

correspond to the line integrals taken along the same and two adjoint sides of the square, respectively (pairs of the
opposite sides produce no terms ∝ ln(Λ|x−y|) which is what we are after). Despite the fact that the gauge parameter
λ cancels out, as expected, the values of the exponent given by Eq.(17) are markedly different for, say, ξ = 0 and
ξ = 1.

In fact, Eq.(17) can either vanish or grow with increasing |x − y|, depending merely on whether ξ is greater or
smaller than 2. This observation suggests that for different values of ξ the functions Gξ(x) are indeed different (it
would be rather fortuitous if the sum over all the fermion trajectories were ξ-independent, despite the difference
between contributions from each individual trajectory).

It is worth mentioning that in the case of massive fermions the different functions (12) do become approximately
identical in the vicinity of the mass shell (|p2 −m2| ≪ m2) where the leading functional dependence on the gauge
field originates from the eikonal phase factor G(x, y|A) ∝ exp(i

∫

Γ
Aµdz

µ). Therefore, the entire IR divergence of the
ordinary (gauge variant) propagator can be obtained by simply averaging this exponential factor, while any Gξ(x)
appears to be totally IR divergence-free.

This factorization of the exponent of the line integral in the IR regime which had long been known in the case of
QED4 [13] was extended into the 3D case in Ref. [9], where it was shown that for any ξ the function (12) possesses
the same simple pole in the momentum representation Gξ(p) ∝ (p̂−m)/(p2−m2), which corresponds to the universal
(ξ-independent) behavior in the coordinate space Gξ(x) ∝ e−m|x|.

In order to avoid confusion we reiterate that the universal IR behavior by no means prevents the different functions
(12) from having different UV anomalous dimensions, as manifested by Eq.(17). Incidentally, in the massless case it
turns out to be the UV exponent ηξ which controls the power-law decay (3) extending to arbitrarily long distances.

III. PERTURBATIVE CALCULATION OF FERMION AMPLITUDES

Having demonstrated the possibility of a non-trivial ξ-dependence non-perturbatively, we now present a direct
perturbative calculation of Gξ(x). Expanding (12) to second order in Aµ(z) we find three different kinds of correction
terms

Gξ(x− y) = G(x− y) −
∫

dz1dz2 < G(x − z1)Â(z1)G(z1 − z2)Â(z2)G(z2 − y) > + (20)

+(ξ − 1

2
)G(x − y) <

∫

Γ

Aµ(z1)dz
µ
1

∫

Γ

Aν(z2)dz
µ
2 > +(1 − ξ)

∫

dz1 < G(x− z1)Â(z1)G(z1 − y)

∫

Γ

Aµ(z2)dz
µ
2 >

The first term in the r.h.s. of (20) corresponds to the first order self-energy correction to the ordinary propagator
which is given by the leading term of 1/N expansion of Eq.(14)

δ1Gξ(x− y) = −
∫

dz1dz2G(x− z1)γ
µDµν(z1 − z2)γ

νG(z2 − y) = G(x− y)
4

3π2N
(2 − 3λ) ln(Λ|x− y|) (21)

The second term in (20) originates from 1/N expansion of the Wilson line (15) inserted into the numerator and
denominator of Eq.(12) with the prefactors (ξ − 1) and ξ, respectively

δ2Gξ(x− y) = (ξ − 1

2
)G(x − y)

∫

Γ

dzµ
1

∫

Γ

dzν
2Dµν(z1 − z2) = G(x− y)

4

π2N
(1 − 2ξ)(2 − λ) ln(Λ|x− y|) (22)
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The third term in (20) stems from expanding both G(x, y|A) and the Wilson line in the numerator of Eq.(12) to first
order in Aµ(z)

δ3Gξ(x− y) = (1 − ξ)

∫

dz1G(x− z1)γ
µG(z1 − y)

∫

Γ

dzν
2Dµν(z1 − z2) ≈

≈ (1 − ξ)

∫

dz1[G(x− y)γµG(z1 − y) +G(x− z1)γ
µG(x − y)]

∫

Γ

dzν
2Dµν(z1 − z2) =

=
2

π3N
(1 − ξ)G(x − y)γµ

∫

Γ

dzν
2

∫

dz1
(ẑ1 − ŷ)

|z1 − y|3
1

|z1 − z2|2
[λδµν + 2(1 − λ)

(zµ
1 − zµ

2 )(zν
1 − zν

2 )

|z1 − z2|2
] =

= G(x − y)
8

π2N
(1 − ξ)λ ln(Λ|x− y|) (23)

This result was obtained with logarithmic accuracy, and in the course of the calculation we used the coordinate space
representation of the 3D propagators

G(x) =
1

4π

x̂

x3
, Dµν(x) =

4

π2N |x|2 [λδµν + 2(1 − λ)
xµxν

|x|2 ] (24)

and the following d-dimensional integrals

∫

dx
xα

|x|d|x− y|d−1
=

2πd/2

Γ(d/2)

yα

|y|d−1
(25)

and

∫

dx
xα(xβ − yβ)(xγ − yγ)

|x|d|x− y|d+1
=

2πd/2

3(d− 1)Γ(d/2)
[
2yαδβγ − yβδαγ − yγδαβ

|y|d−1
+ (d− 1)

yαyβyγ

|y|d+1
] (26)

The logarithmic dependence in Eqs.(21-23) results from taking the d→ 3 limit of the line integral
∫

Γ dz
µ(z− y)µ/|z−

y|d−1 = (Λ|x− y|)3−d/(3 − d) → ln(Λ|x− y|).
Combining Eqs.(21-23) together we read off the overall UV anomalous dimension

η3d
ξ =

16

3π2N
(3ξ − 2) (27)

In particular, for ξ = 1 we reproduce Eq.(16), while for ξ = 0 one obtains

η3d
0 = − 32

3π2N
(28)

Thus, despite the fact that the gauge parameter λ cancels out, as expected, the functions Gξ(x) are indeed different
for different values of the parameter ξ.

At first sight, the non-trivial dependence of Eq.(27) on the parameter ξ (which is linear to first order in 1/N) may
seem to be in conflict with the fact that all the functions Gξ(x) coincide with each other when computed in the axial
gauge.

In fact, there would only be a contradiction, if Eq.(12) were truly gauge invariant. Instead, albeit invariant within
the class of covariant gauges, the function Gξ(x) may take a different value in the axial gauge, for the latter does not
belong to this class, for any ξ 6= 0.

On the other hand, the unique property of the function G0(x − y) which is given by a single average instead of
a ratio of the two does guarantee its true gauge invariance and the possibility to obtain Eq.(28) in arbitrary gauge,
including both the covariant and the axial ones. In fact, it was shown in Ref. [15] that these two calculations do agree
with each other, and yet another independent calculation employing the so-called ”radial” (Fock-Schwinger) gauge
(x− y)µAµ(x) = 0 [16] provides further support for this conclusion.

However, the finding that the UV exponent η3d
0 assumes the negative value suffices to disqualify the ”stringy ansatz”

(2) from being a sound candidate for the physical electron propagator, since, in all of the QED-like models discussed
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so far, repulsive electron-electron interactions are expected to result in a suppression, rather than enhancement, of
any amplitude describing propagation of physical electrons.

The above analysis can be easily extended to the case of the conventional weak coupling QED4 which demonstrate
that the situation in 3D is not at all exceptional. Instead of Eqs.(21-23) we now get

δ1Gξ(x− y) = −G(x− y)
g2

8π2
λ ln(Λ|x− y|) (29)

δ2Gξ(x− y) = G(x− y)
g2

8π2
(1 − 2ξ)(3 − λ) ln(Λ|x− y|) (30)

δ3Gξ(x − y) = G(x − y)
g2

4π2
(1 − ξ)λ ln(Λ|x− y|) (31)

and, instead of Eqs.(24-26) , we use the formulas

G(x) =
1

2π2

x̂

x4
, Dµν(x) =

g2

4π2|x|2 [
1 + λ

2
δµν + (1 − λ)

xµxν

|x|2 ] (32)

∫

dx
xα

|x|d|x− y|d−2
=

πd/2

Γ(d/2)

yα

|y|d−2
(33)

∫

dx
xα(xβ − yβ)(xγ − yγ)

|x|d|x− y|d =
πd/2

2(d− 2)Γ(d/2)
[
yαδβγ − yβδαγ − yγδαβ

|y|d−2
+ (d− 2)

yαyβyγ

|y|d ] (34)

Combining Eqs.(29-31) together we obtain the UV anomalous dimension of Gξ(x) in the 4D case

η4d
ξ =

3g2

8π2
(2ξ − 1) (35)

Interestingly enough, for ξ = 0 and ξ = 1 the values of Eq.(35) differ only in their sign, and the anomalous dimension
η4d
0 = −3g2/8π2 is again negative.

IV. ALTERNATE FORMS OF PHYSICAL ELECTRON PROPAGATOR

The apparent problem with the unphysical decay of the conjectured form of the physical electron propagator (2)
which appears to be slower than in the case of non-interacting electrons compels one to explore alternate proposals.
To this end, one may be able to benefit from the previous studies of the conventional QED4 where the problem of
constructing gauge invariant asymptotical quantum states with quantum numbers of an electron (”dressed charges”)
was long recognized, and attempts to explicitly solve it have long been under way.

A (non-local) composite operator creating such a state can be sought in the form

Ψ(x) = exp[i

∫

dyfµ(x− y)Aµ(y)]ψ(x) (36)

where the vector function fµ(x) is subject to the condition ∂µf
µ(x) = δ(x) imposed by the requirement of gauge

invariance.
In the original proposal which was put forward by Dirac in his pioneering work of the fifties, the physical electron

was identified with the operator

ΨD(x) = exp(i
∇iAi

∇2
)ψ(x) (37)

Indeed, the expectation value < 0|ΨD(x)Aµ(y)Ψ†
D(x)|0 >= δµ0/4π|~x− ~y| describes the Coulombic electrostatic field,

thus suggesting that Eq.(37) provides a plausible representation of a static charge.
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Moreover, it was found that the Fourier transform of the gauge-invariant amplitude < 0|ΨD(x)ΨD(y)|0 > is IR
finite at the single point pµ = (m,~0) on the mass shell [17].

It was also argued in Ref. [17] that, once created, the coherent state Ψ†
D(x)|0 > remains stable, unlike that produced

by the operator ΨT (x) = exp(i
∫ t

−∞A0(t
′)dt′)ψ(x) whose propagator < 0|ΨT (x)ΨT (y)|0 > is given by Eq.(2) where

(x− y)µ ∝ δµ0.
Furthermore, the amplitude < 0|ΨD(x)ΨD(y)|0 > was found to undergo multiplicative UV renormalization, fea-

turing a positive UV exponent

η4d
D = g2/8π2 (38)

The authors of Ref. [17] were also able to generalize the construction (37) onto the case of a moving charge

Ψv(x) = exp(i
δµν − (u+ v)µ(u − v)ν

∂2
µ − (uµ∂µ)2 + (vν∂ν)2

∂µAν)ψ(x) (39)

where uµ = (1,~0) is the time-like unit vector and vµ = (0, ~v) is the velocity of the charge. The formula (39) was
obtained by requiring that, in accord with the anticipated physical interpretation of Eq.(39), the electromagnetic
field < 0|Ψv(x)Aµ(y)Ψ†

v(x)|0 > associated with the coherent state created by this composite operator reproduces the
classical Lienard-Wiechert potentials.

It was also found that the corresponding propagator

Gv(x− y) =< 0|ψ(x) exp[i
δµν − (uµ + vµ)(uν − vν)

∂2
α − (uα∂α)2 + (vα∂α)2

∂µAν ]ψ(y)|0 > (40)

is both IR-finite at pµ = m(1, ~v)/
√

1 − v2 and multiplicatively UV-renormalizable, its anomalous dimension being
explicitly v-dependent [17]

η4d
v = − g2

8π2
(3 + 2

1

v
ln(

1 − v

1 + v
)) (41)

The combination of all the befomentioned properties makes Eq.(39) the best (up-to-date) available candidate for the
physical electron operator in the conventional (massive) QED4.

It is worth mentioning that Eq.(41) coincides with the UV dimension of the 4D ”stringy” amplitude (2) only in the
unphysical limit v → ∞, while its v = 0 value yields Eq.(38).

By construction, Eq.(41) can not be applied directly to the massless , let alone the 3D massless, case which corre-
sponds to the limit v → 1 where the UV dimension (41) increases towards infinitely high positive values.

Albeit not being immediately applicable to the case of m = 0, the calculation of Gv(x) carried out in Ref. [17]
suggests that the logarithmic growth of (41) gets effectively cut off at max(|1 − v|, 1/Λ|x|). Therefore, it is not
inconceivable that the massless counterpart of Eq.(40) may exhibit a faster than a power-law decay

Gphys(x) ∝ exp(−const ln2(Λ|x|)), (42)

where the constant is proportional to either 1/N (3D) or g2 (4D), thus placing the effective QED-like theories into
the class of ”super-Luttinger” models, alongside the one-dimensional metals with unscreened Coulombic interactions
where Gphys(x) ∝ exp(−const ln3/2(Λ|x|)) [18].

In light of this possibility, the previous claims of discovering the Luttinger-like behavior in the framework of the
QED3-theory of the pseudogap phase [4–6] may need to be prepared to handle a potentially much stronger suppression
of the physical amplitudes in order to reconcile such a behavior with the available photoemission, tunneling, and other
experimental data.

V. DISCUSSION

Evidently, one could escape the whole problem with the singular massless limit, if the Dirac fermions acquired a
finite mass via the mechanism of chiral symmetry breaking [19]. In the context of the QED3 theory of the pseudogap
phase, such an intrinsic instability is expected to result in the onset of a spin (SDW) and/or charge (CDW) density
wave [7,20], provided that such a transition does occur for the physical number of fermion flavors (N = 2).
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Thus far, there have been only preliminary conclusions drawn on the role of the strong spatial anisotropy of the
quasiparticle dispersion (ǫ =

√

v2
1q

2
1 + v2

2q
2
2 with v1/v2 > 10) in the high-Tc cuprates.

Although, in accord with general physical expectations, this anisotropy was found to decrease upon IR renormal-
ization, [20,21], there has been no consensus reached, regarding universality (or a lack thereof) of the critical number
of flavors Ncr, much less regarding the possibility that the spatial anisotropy can drive this critical number to the
values in excess of 2.

To this end, it may be helpful to complement the renormalization group approach adopted in Refs. [20,21] by a direct
analysis of the strong coupling regime where the gauge field propagator (7) is dominated by the fermion polarization
Π(q). In the case of anisotropic fermion dispersion, the latter becomes a function of the spatial components of
the momentum ~q multiplied by the corresponding velocities viqi, thus allowing one to scale such factors out in the
Schwinger-Dyson equation for the fermion mass [19] and suggesting that Ncr may even remain the same as in the
isotropic case.

In any event, the effect of the spatial anisotropy of the fermion dispersion may be rather different from that of the
Lorentz non-invariant (e.g., pure Coulombic) couplings which can cause Ncr to decrease [9,10], as compared to the
value obtained in the Lorentz-invarint case.

One should, however, be alerted by the fact that even in the perfectly Lorentz-invariant case the status of the
analyses based on the Schwinger-Dyson equation (which, in this particular case, suggests Ncr > 3) remains somewhat
unclear. In this regard, it was pointed out in Ref. [24] that the Schwinger-Dyson equation may systematically
overestimate the actual critical number of flavors which might, in fact, be as low as 3/2.

It is, therefore, quite remarkable that, as an alternate route, the intrinsic SDW instability of the pseudogap phase
of the cuprates can instead manifest itself through a divergent staggered spin susceptibility [22,23]

χQ(q) ∝ (
√

q2)1−64/(3π2N) (43)

where the momentum ~q corresponds to the deviation from the SDW ordering vector ~Q = (π, π).
In order for this behavior to occur, the presence of massless neutral fermions is rather necessary than problematic.

Curiously enough, the susceptibility (43) displays the negative anomalous dimension which is exactly twice the value
(28).

Although this observation does not necessarily imply that the staggered spin susceptibility given by the aver-
age χQ(x − y) =< G(x, y|A)G(y, x|A) > is directly related to the product of the two averages |G0(x − y)|2 ∝<
G(x, y|A) exp(−i

∫

ΓAνdz
ν) >< G(y, x|A) exp(i

∫

ΓAµdz
µ) >, it may help one to elucidate the real physical meaning

of the negative anomalous dimensions exhibited by the gauge invariant amplitude (2).
It is possible that, albeit being unfit for the role of the physical electron propagator, the amplitude (2) may still

bear some important information about the vertex functions which also determine the behavior of the gauge-invariant
susceptibilities.

As far as the experimental status of the QED3 theory of the cuprates is concerned, it is presently unclear whether
it can accomodate the phenomenon of time reversal symmetry breaking, as suggested by the recent experiment [25],
without generating the Chern-Simons term in the fermion polarization.

In contrast, broken time reversal symmetry seems to be an intrinsic feature of some alternate approaches to the
pseudogap phase which, instead of the phase fluctuations of the local parent dx2−y2-wave order parameter [4–7],
focus on other bosonic collective modes, such as emergent d-symmetrical CDW [26] or incipient secondary pairing
(dx2−y2 → dx2−y2 + idxy) [27,28].

To this end, it is worth mentioning that the recent experimental reports of a genuine quantum-critical behavior
in the Ca-doped cuprates [29] are in quantitative agreement with the predictions [28] based on the theory of Ref.
[27]. Notably, in this alternate (Higgs-Yukawa-type) theory of the cuprates the anomalous dimension of the electron
propagator was found to be positive [28,30].

We conclude by stressing that, regardless of the status of the QED3 theory of the cuprates itself, the problem of
constructing the gauge invariant fermion propagator in the effective massless QED-like theories, thus far, has received
a lesser attention than it, arguably, deserves.

This problem needs to be settled before one can start drawing solid, rather than wishful, conclusions about the true
behavior in these as well as other gauge field models, including non-abelian and discrete symmetry (say, Zn) ones.

In the present paper, we undertook an attempt to clarify this issue which may have already resulted in a widespread
confusion, in particular, as far as the QED3 theory of the pseudogap phase of the cuprates is concerned. We
demonstrated that the previously proposed ansatz ehxibits a clearly unphysical behavior and, therefore, needs to be
modified. In the course of this analysis we established an interesting property of ”partial gauge invariance” of the
family of functions (12) with ξ 6= 0 which, we believe, might have been partly responsible for the erroneous conclusions

9



drawn in [5]. We also conjectured an alternate form of the physical electron propagator which decays with distance
faster than any power-law, thus challenging the interpretation of the experimental data based on the idea of the
Luttinger-like behavior in the cuprates proposed in Refs. [4–6].
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