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Excitonic instability in two-dimensional degenerate semimetals
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We study the possibility of excitonic pairing in layered degenerate semimetals such as graphite,
where the electron density of states almost vanishes at the Fermi level and, therefore, the Coulomb
interactions remain essentially unscreened. By focusing on the Dirac-like low-energy electron ex-
citations and numerically solving a non-linear gap equation for the order parameter, we obtain a
critical value of the Coulomb coupling and establish the Kosterlitz-Thouless-like nature of a putative
semimetal-to-excitonic insulator transition.

In layered graphite, a poor screening of the Coulomb
interaction sets the stage for a novel form of excitonic
instability resulting in the opening of a gap in the quasi-
two-dimensional electronic spectrum and manifesting it-
self through the onset of an insulating charge density
wave [1].

It was also argued in Ref. [1] that the pseudo-
relativistic kinematics of the Dirac-like electronic exci-
tations in a single sheet of graphite allows one to draw a
formal parallel with the phenomenon of chiral symmetry
breaking (CSB) that has long been studied in the con-
text of the three-dimensional Quantum Electrodynamics
(QED2+1) and other relativistic fermion theories.

In the case of QED2+1, a zero temperature CSB tran-
sition was predicted to occur for a sufficiently small
(N < Nc) number of fermion species, regardless of the
interaction strength [2], while the short-ranged Higgs-
Yukawa (HY) four-fermion interactions can drive this
transition for any N , provided that the HY coupling is
strong enough [3].

The CSB scenario has recently become a common
theme of severalQED2+1-like descriptions of the pseudo-
gap phase in underdoped cuprates [4–6]. In this regard,
some authors [5] cited the original estimates of the crit-

ical number of fermions N
(0)
c ≈ 3.24 [2] to support the

conjecture that the inherent spin density wave instability
of the d-wave symmetrical pseudogap state can be read-
ily described by the conventional QED2+1 theory with
N = 2 species of the Dirac-like nodal quasiparticles.

However, the mounting analytical [7] and numerical [8]
evidence indicating that in the conventional QED2+1 the
actual critical number of flavors Nc may be less than two
seems to suggest otherwise and calls for a need to further
modify the minimal QED2+1 theory of the pseudogap
phase (possibly, beyond recognition).

The implications of the results of Refs. [7,8] made other
groups [6] emphasize a potential importance of additional
four-fermion couplings and/or anisotropic quasiparticle
dispersion (in high-Tc cuprates, the quasiparticle velocity
is strongly dependent on the direction, v1/v2 ∼ 10− 20),
whose systematic account has yet to be done. It has been
recently argued, however, that Nc may not be affected by
the dispersion anisotropy at all [9], thus implying that the
four-fermion couplings (which are absent in the conven-

tional QED2+1) may indeed play a crucial role in the
theory of the pseudogap-to-antiferromagnet transition in
underdoped cuprates.
In the problem of the conjectured excitonic instability

in graphite, the non-relativistic nature of the Coulomb in-
teraction further invalidates any naive attempts to make
use of the results pertaining solely to the relativistically
invariant systems. Nevertheless, the earlier work on the
subject has already provided for some analytical evidence
that the excitonic transition may indeed occur for a suf-
ficiently strong Coulomb coupling [1,10].
It was also predicted [11] that a magnetic field nor-

mal to the layers might further facilitate the formation
of excitonic insulator, which would then be reminiscent
of the phenomenon of magnetic catalysis introduced in
the abstract field-theoretical setting [12]. This scenario
was discussed [10,11] in connection with the recent re-
ports of a magnetic field-induced insulating behavior in
highly oriented pyrolytic graphite (HOPG) [13].
In the present paper, we numerically solve the gap

equation for the excitonic order parameter derived in
Refs. [1,10], thus putting to the test some of the predic-
tions made in the earlier analytical work on the subject.
We start out by reviewing the derivation of the gap

equation. In the vicinity of the two (in the absence of a
lattice strain, exactly degenerate and labeled as i = 1, 2)
conicalK-points of the 2D Brillouin zone of graphite, the
low-energy excitations of the valence and the conduc-
tion bands with a linear dispersion Ek = ±vFk where
vF ≈ 2 × 106m/s can be described as two-component
(Weyl) spinors ψiσ , of which there are N different species
with the spin index σ = 1, ..., N [14].
Provided that the Zeeman coupling to an external

magnetic field is much weaker than the orbital (diamag-
netic) term, the number of fermion species in graphite
is N = 2, and the dimensionless Coulomb coupling
g = 2πe2/ǫvF with the dielectric constant ǫ ≈ 2.8 ap-
pears to be the only relevant parameter.
However, in a strong in-plane field, the Zeeman split-

ting between the spin-up and spin-down bands, while
having no effect on the electron orbital motion, reduces
the number of fermions down to N = 1, which prompts
one to treat N as yet another (to a certain extent) ad-
justable parameter.
The pair of spinors ψiσ can be further combined into a
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single bi-spinor Ψσ = (ψ1σ, ψ2σ), thereby allowing one to
use the Dirac-like representation for a kinetic energy of
the two-dimensional electrons in a single layer of graphite

HK = ivF

N
∑

σ=1

∫

r

Ψσ(γ̂1∇x + γ̂2∇y)Ψσ (1)

where Ψσ = Ψ†
σ γ̂0 and the 4×4 (reducible) representation

of the γ-matrices γ̂0,1,2 = (τ3, iτ2,−iτ1)⊗τ3 satisfying the
anticommutation relations {γ̂µ, γ̂ν} = 2diag(1,−1,−1) is
constructed in terms of the Pauli triplet τ1,2,3.
Accordingly, the Coulomb interaction term in the

Hamiltonian takes the form

HC =
1

4π

N
∑

σ,σ′=1

∫

r,r′
Ψσ(r)γ̂0Ψσ(r)

g

|r − r′|Ψσ′(r′)γ̂0Ψσ′(r′)

(2)

Both Eqs.(1) and (2) remain invariant under arbi-
trary U(2N) rotations of the 2N -component vector
(ΨLσ,ΨRσ) composed of the chiral (L,R) parts of the
Dirac fermion Ψσ defined as Ψ(L,R)σ = 1

2 (1 ± γ̂5)Ψσ

where the matrix γ̂5 = 1 ⊗ τ2 anticommutes with any
γ̂µ.
In the relativistic theories of Refs. [2,3], the standard

CSB pattern U(2N) → U(N) ⊗ U(N) is signaled by
the development of a singlet order parameter ∆s(r) =<
∑N

σ Ψσ(r)Ψσ(r) >, which is the type of excitonic pairing
that we focus upon below.
The standard Dyson-Schwinger equation for the Dirac

propagator reads (hereafter pµ = (ǫ,p))

Ĝ−1(ω,p) = Ĝ−1
0 (ω,p)−

T
∑

Ω

∫

d2k

(2π)2
V (Ω− ω,k− p)γ̂0Ĝ(Ω,k)γ̂0 (3)

where Ĝ0(ω,p) = γ̂µpµ/p
2 is the bare propagator of the

gapless Dirac fermions and the renormalized Coulomb
interaction

V (Ω,q) =
g

q+Ngχ(Ω,q)
(4)

is modified, as compared to its bare form, by to the
fermion polarization χ(Ω,q).
Being primarily concerned with the possibility of a

spontaneous gapping of the conical spectrum, we search
for a solution to Eq.(3) in the form Ĝ(p) = (γ̂µpµ +
∆(p))−1, while neglecting both the vertex and the
fermion wave function renormalization. On the basis of
the experience gained from the relativistic theories [2,15],
one might expect that, albeit being capable of affecting
such practically important details as the value of the crit-
ical coupling gc(N), the latter do not alter the very exis-
tence of a solution (or a lack thereof).

Proceeding along the lines of the previous numerical
analyses of the finite temperature version of QED2+1

[15], below we focus on the momentum dependence of the
static (ω = 0) component of the order parameter. To this
end, we neglect all but the Ω = 0 harmonics of the effec-
tive interaction (4) which, as shown in Refs. [15], suffices
for determining the critical conditions for the emergent
CSB order. In the case of interest, this static approxima-
tion appears to be even better justified, since the Lorentz
invariance is broken already at zero temperature.

The static component of the finite-temperature
fermion polarization can, in turn, be approximated by
the expression

χ(0,q) =
1

8

(

|q|+ T

C
exp

(

−C |q|
T

))

. (5)

which, for C = π/16 ln2, provides an up to a few percent
accurate interpolation between the two opposite limits:
vFq ≫ T where Eq.(5) agrees with the zero-temperature
result, χ(0,q) ∼ |q|, and vFq ≪ T where it accounts for
thermal screening, χ(0,0) ∼ T [15].

Taking the sum over the Matsubara frequencies in
Eq.(3), we then arrive at the gap equation derived in
Refs. [1,10] (hereafter we use the units v = h̄ = 1)

∆(p) =

∫

d2k

8π2
V (0,k− p)∆(k)

tanh

√
k2+∆(k)2

2T
√

k2 +∆(k)2
(6)

This form of the gap equation is more familiar in con-
densed matter-related applications where the gap is rou-
tinely considered to be a function of momentum but not
energy, consistent with our use of the static approxima-
tion.
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FIG. 1. Momentum dependence of the solution to the gap
equation (6) for N = 1 and different temperatures.
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FIG. 2. Solution to the gap equation for N = 2.

In fact, even a partial account of the momentum
and/or energy dependence of the gap function goes well
beyond the customary BCS-like (constant) solution for
the gap. In the case of short-ranged repulsive interac-
tions, a BCS-like solution of the analog of Eq.(6) was
recently discussed in conjunction with the conjectured
excitonic instability in hexaborides [16]. By contrast,
in a degenerate semimetal such as graphite the strong
momentum dependence of the unscreened Coulomb in-
teraction rules out a constant solution (∆BCS(p) = ∆)
altogether.

In Fig.1, we present the results of our numerical so-
lution to Eq.(6) for N = 1 and several different tem-
peratures. As a function of momentum, the gap ∆(p)
levels off at p ∼ ∆(0), in accord with the approxi-
mate analytical solution of Refs. [1,10] where Eq.(6) was
substituted with a differential equation complemented
by the boundary conditions d∆(p)/dp|p=0 = 0 and
∆(p) +pd∆(p)/dp|p=Λ = 0, Λ being the upper momen-
tum cutoff given by the maximum span of the Brillouin
zone.

The functional dependence of the solution for N = 2
is similar to the N = 1 case, apart from the overall sup-
pression by roughly two orders of magnitude (see Fig.2).

In the strong coupling zero-temperature (g → ∞ and
T → 0) limit, the N -dependence of the zero-momentum
gap shown in Fig.3 can be well fitted with the formula

∆(0) = 1.2vFΛ exp
(

−1.7π/
√

N∞
c /N − 1

)

(7)

which manifests the Kosterlitz-Thouless nature of the ex-
citonic transition that occurs at T = 0 andN∞

c ≡ Nc(g =
∞) ≈ 2.6, in agreement with the predictions made in
Refs. [1,10].
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FIG. 3. Zero-momentum gap for different values of N at
T = 10−5 and g → ∞. The solid line is the fit given by
Eq.(7).

In Fig.4, we present the N -dependence of the criti-
cal coupling gc(N). For N = 2, our numerical result
gc(N = 2) ≈ 7 differs by a factor of two from that ob-
tained analytically in Ref. [10], although the agreement
improves for smaller N .
Notably, the relevant values of gc are rather large,

which indicates that any weak-coupling approach would
be utterly inadequate for the problem in question.
Even with the possible caveat that the gap equa-

tion tends to systematically underestimate the critical
strength of the repulsive interactions [7,8], the above val-
ues compare favorably with the estimates g ∼ 5 − 10
obtained for the HOPG samples of Ref. [13].
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FIG. 4. The critical coupling gc for different values of N
and T = 0. The solid line shows the analytical result of
Ref.10.

For any N , the zero-momentum gap attains its maxi-
mum value ∆(0) ≈ 10−4vFΛ at g → ∞. Using the pa-
rameters of the HOPG band structure, we estimate the
maximal possible gap at N = 2 as ∆(0) ∼ 30K, which
turns out to be small compared to the typical Fermi en-
ergy EF ∼ 250K in HOPG [13]. The latter characterizes
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the actual (as opposed to the idealized point-like) Fermi
surface of graphite which represents a combined effect of
inter-layer hopping, finite doping, and/or disorder.

At this point, it remains unknown to what extent the
above factors can modify Eq.(6) derived for a clean two-
dimensional sheet of undoped graphite. On the other
hand, in a layered system the propensity towards exci-
tonic pairing is further strengthened by the inter-layer
Coulomb repulsion, which, considering the fact that g >
1, might be even more important than the finite EF [1].

To this end, it is worth mentioning that the sin-
glet excitonic order parameter is directly related to the
electron density imbalance between the A and B sub-
lattices of the bi-partite hexagonal lattice: ∆s(p =
0, r) =

∑

σ=1,2 < Ψσ(r)Ψσ(r) >=
∑

iσ=1,2(δr,A <

ψ†
iσ(A)ψiσ(A) > −δr,B < ψ†

iσ(B)ψiσ(B) >).

In a multi-layer system stacked in the staggered (A−B)
configuration, the inter-layer Coulomb repulsion favors
spontaneous depletion (respectively, pile-up) of the elec-
tron density on a sublattice formed by the carbon atoms
above and below the centers (respectively, corners) of the
hexagons in adjacent layers. The resulting commensu-
rate charge density wave alternates between the layers,
thereby keeping the electrons in the adjacent layers as
far apart as possible and nudging the system closer to
the excitonic instability.

In order to decide on the ultimate outcome of the com-
petition between the frustrating effect of the extended
Fermi surface and the strong (yet, non-singular, unlike
Eq.(2)) inter-layer Coulomb repulsion, the present anal-
ysis has to be further refined by incorporating the above
factors through, e.g., a non-linear fermion dispersion and
effective four-fermion terms [17].

Although, thus far, we were only interested in the pos-
sibility of singlet pairing, for N = 2 and in the lead-
ing Coulomb approximation (small transferred momenta)
the formation of a triplet order parameter appears to
be just as likely. In fact, similar to the case of the
short-ranged repulsion discussed in Refs. [18], the exci-
tonic ground state possesses a degeneracy with respect to
arbitrary SU(4) rotations of the four-dimensional com-
plex vector composed of the singlet ∆s and the triplet
~∆t =

∑

σ,σ′=1,2 < Ψσ~σσσ′Ψσ′ > order parameters.

This approximate degeneracy gets lifted upon includ-
ing the (so far, neglected) short-ranged Coulomb ex-
change interactions which cause transitions between the
conduction and valence bands [18]. Alongside the Zee-
man coupling, the latter favor the triplet order parame-
ter, thus enforcing the Hund’s rule.

It is also conceivable that, with increasing doping, the
triplet excitonic insulator can give way to an itinerant fer-
romagnetic metal. The interest in this scenario which had
been previously discussed only in the case of the three-
dimensional non-degenerate semimetals was bolstered by
the discovery of a weak (∼ 0.07µB per carrier), yet ro-

bust (Tc ∼ 600−1000K), ferromagnetism in hexaborides
[16].

However, more recent experimental studies of hexa-
borides [19] have indicated the presence of a large spec-
tral gap which seems to rule out the excitonic mechanism,
thus putting graphite in a rather unique position of the
best currently known candidate for excitonic ferromag-
net. This possibility appears to be particularly intriguing
in the light of the reports of a comparably weak (∼ 0.1µB

per carrier) magnetization observed in HOPG samples at
room temperatures [20].

The conditions for the emergence of excitonic ferro-
magnetism and the putative global phase diagram of
graphite will be discussed at a greater length in our fu-
ture work [17].

To summarize, in the present paper we obtained a nu-
merical solution to the gap equation describing the con-
jectured excitonic transition in two-dimensional semimet-
als such as graphite. From our solution, we inferred the
minimal necessary strength of the Coulomb coupling gc
and the largest possible number of fermion species N∞

c

for which this Kosterlitz-Thouless-type transition may
occur at zero temperature. Although this analysis was
carried out for a single undoped layer, we believe that our
predictions for the existence of a critical Coulomb cou-
pling, momentum dependence of the gap function, and
the nature of the excitonic transition should remain ro-
bust upon including further complicating factors such as
inter-layer coupling, doping, and disorder.
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