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We study localization properties of the Dirac-like electronic states in monolayers of graphite. In the
framework of a general disorder model, we discuss the conditions under which such standard localization
effects as the logarithmic temperature-dependent conductivity correction appear to be strongly sup-
pressed, as compared to the case of a two-dimensional electron gas with parabolic dispersion, in
agreement with recent experimental observations.
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After several decades of predominantly application-
driven studies, graphene has finally been recognized as a
unique example of the system of two-dimensional fermi-
ons with linear dispersion and pseudorelativistic kinemati-
cal properties. The recent advances in microfabrication of
graphitic samples that are only a few carbon layers thick
[1] have made it possible to test the early theoretical
predictions of the anomalous properties of this system [2].

The most striking experimental observation up-to-date
was that of an unusual (half-integer) quantization of the
Hall conductivity [1], which is characteristic of the Dirac
nature of the quasiparticle excitations in graphene [3]. The
other properties manifesting this peculiar single-particle
kinematics have been revealed by magnetotransport mea-
surements [1], including the

����
B
p

dependence of the ener-
gies of (nonequidistant) Landau levels and the intrinsic �
shift of the phase of the Shubnikov–de Haas oscillations
[4].

A further insight into the properties of electron states in
realistic (disordered) graphene can be gained from those
single-particle phenomena that involve quantum interfer-
ence between electronic waves scattered off of multiple
impurities. Conceivably, these properties can be affected
by the Dirac kinematics, too, and therefore they might be
expected to differ from their counterparts in the conven-
tional two-dimensional electron gas (2DEG) with para-
bolic electron dispersion.

For one, contrary to the situation in the conventional
2DEG, the available experimental data do not manifest any
pronounced weak-localization effects even at the lowest
accessible temperatures where one would expect the gra-
phene samples to be well in the diffusive regime [5].
Motivated by these findings, in the present work we set
out to study electron localization (or a lack thereof) in
graphene.

The electronic band structure of graphene is character-
ized by the presence of a pair of inequivalent nodal points
at the wave vectors ~K1;2 � �2�=9a���

���
3
p
; 3�, where a is

the lattice spacing. At these two and the four other points in
the Brillouin zone obtainable from ~K1;2 with a shift by one
of the reciprocal lattice vectors ~Q1;2 � �2�=3a��

���
3
p
;�1�,

the valence and conduction bands touch upon each other as
a pair of opposing cones with the opening angle given by
the Fermi velocity vF.

In the leading approximation, quasiparticle excitations
in the vicinity of the nodal points (hereafter referred to as
valleys) can be described by the Dirac Hamiltonian [2]

 Ĥ � vF�1̂ � �̂xkx � �̂z � �̂yky�; (1)

where �̂i is the triplet of the Pauli matrices acting in the
space of spinors � � ��A;�B� composed of the values of
the electron wave function on the A and B sublattices of the
hexagonal lattice of graphene, whereas the triplet �̂i acts in
the valley subspace. In the absence of magnetic field, the
Hamiltonian (1) remains a unity matrix in the physical spin
subspace.

In the presence of disorder, the quasiparticles experience
both intra- and intervalley scattering. Upon averaging over
disorder, the most general form of the elastic four-fermion
vertex function is represented by the expression
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where we used the customary notations for the processes of
forward scattering between fermions from the same (g4)
and different (g2) valleys, as well as those of ‘‘backward’’
scattering (g1) with the momentum transfer close to ~K1 	
~K2. Besides, we have included the possibility of ‘‘um-

klapp’’ scattering (g3) where the total momentum of two
fermions changes by 2� ~K1 	 ~K2� � ~K2 	 ~K1 � ~Q. A jus-
tification for this (not immediately obvious, considering
that the total momentum changes by only a fraction of the
reciprocal lattice vector) extension of the disorder model
will be discussed later.

In the framework of the self-consistent Born approxi-
mation (SCBA), the effect of disorder on the quasiparticle
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spectrum is described by the self-energy obeying the equation

 �̂ R�!; ~k� �
Z d ~q

�2��2
TrŴĜR�!; ~k� ~q�; (3)

where the retarded Green function is given by the expression

 Ĝ R�!; ~k� �
�!����R�1̂ � 1̂� vF�1̂ � �̂xkx � �̂z � �̂yky�

�!����R�2 	 v2
Fk

2 (4)

which includes a chemical potential �> 0, thus allowing
one to account for variable electron density.

Notably, the solution to Eq. (3) turns out to be diagonal
in the valley and sublattice subspaces, and its value
�̂R
�0; 0� � i�1̂ � 1̂ at ! � ~k � 0 determines the inverse

elastic lifetime

 � �
��F

2
�g4 � g1�; (5)

where �F � 	
R
d ~k=�4�3� Im TrĜ��; ~k� is the density of

states (DOS) at the Fermi energy (per spin).
The bulk of the data of Ref. [1] pertains to the metallic

regime of relatively high dopings (�> �), as indicated by
the measured mobilities 
104–6 cm2=V s at electron den-
sities ne 
 1011–13 cm	2, which correspond to �

10–100 K and �
 100–1000 K. In this regime, the DOS
value �F � kF=�2�vF� controlled by a finite radius of the
Fermi surface kF � �=vF � �4�ne�1=2 is only weakly
affected by disorder.

Under these conditions, the double-pole Green function
(4) given by a four-by-four matrix can be well approxi-
mated by a pair of two-by-two single-pole matrices repre-
senting quasiparticle excitations near the two Dirac points

 Ĝ 1;2�!; ~k� �
1̂� �̂x cos�k � �̂y sin�k

2�!	 �k � i��
; (6)

where �k � vFk	� and �k � tan	1ky=kx.
Also, in the high-density regime, the presence of a large

parameter �=� facilitates a systematic account of quantum
interference corrections to the SCBA results. The leading

quantum correction to the zeroth-order (Drude) conductiv-
ity is given by the standard single-Cooperon (fan-shaped)
diagram. From the technical standpoint, however, a calcu-
lation of the corresponding correction appears to be rather
involved due to the matrix structure of the Green function
(6) and the vertex (2).

The Drude conductivity itself is given by the standard
expression �0 � �e

2=h����=��, where the renormaliza-
tion factor � accounts for a ladder series of vertex correc-
tions associated with one of the two current operators
~J � vF�cos�k; sin�k� inserted into the fermion loop in
the diagrammatic representation of the Kubo formula.
Being given by a nonsingular (angular momentum m �
1) diffusion mode in the expansion over the angular har-
monics eim�k , � is a function of the parameters gi.

Expanding the full expression for the Cooperon in the
same basis as that used in Eq. (2), we obtain equations for
the corresponding amplitudes Ci, each of which is a matrix
in the direct product of two sublattice subspaces
 

Ĉ1 � g11̂� g2Ĥ12Ĉ1 � g1Ĥ21Ĉ2;

Ĉ2 � g21̂� g2Ĥ12Ĉ2 � g1Ĥ21Ĉ1;

Ĉ3 � g31̂� g4Ĥ11Ĉ3 � g3Ĥ22Ĉ4;

Ĉ4 � g41̂� g4Ĥ11Ĉ4 � g3Ĥ22Ĉ3:

(7)

Here Ĥij�!; ~q� �
R

d ~k
�2��2 Ĝ

R
i �	�!=2; k� q=2� �

ĜA
j �!=2	 	; q=2	 k� stands for the convolution of a

pair of Green functions. Computing it for !, vFq� �,
we obtain
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: (8)

It can be readily seen that Eq. (7) splits into two pairs which only couple Ĉ1;2 and Ĉ3;4, respectively. Their solutions read

 Ĉ 1;2�!; q� �
2�c1;2

��F

1̂ � 1̂	 �̂x � �̂x � �̂y � �̂y � �̂z � �̂z
�g4 	 g2�=�g2 � g1� � v2

Fq
2=16�2 	 i!=2�

;

Ĉ3;4�!; q� �
2�c3;4

��F

1̂ � 1̂	 �̂x � �̂x 	 �̂y � �̂y 	 �̂z � �̂z
�g1 	 g3�=�g3 � g4� � v

2
Fq

2=16�2 	 i!=2�
;

(9)

where

 c1�
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1�g1g4
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3
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:

(10)
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The quantum conductivity correction (including spin) in-
volves the Ĉ1 and Ĉ4 components of the Cooperon

 
��T� � 	
e2

h
��Fv

2
F

16�3

Z d ~q

�2��2
Tr�Ĉ1�0; q� � Ĉ4�0; q��

(11)

whose contributions turn out to be negative and positive,
respectively.

At low temperatures, Eq. (11) can be cast in the form

 
��T� �
2e2

�h
ln

max���=�; jg4 	 g2j=�g1 � g2��
c1

max���=�; jg1 	 g3j=�g4 � g3��
c4

(12)

where we introduced an inelastic phase relaxation rate
���T� (of either Coulombic or phonon origin, whichever
is dominant) providing a finite cutoff in the momentum
integration.

The analysis of Eq. (12) reveals that, in the absence of a
fine-tuning between the amplitudes of backward scattering
and umklapp processes (g1 � g3), the Ĉ4 Cooperon ac-
quires a gap 
�jg1 	 g3j=�g4 � g3�. On the other hand,
the Ĉ1 mode remains gapless, provided that all the forward
scattering processes are controlled by the same amplitude
(i.e., g2 � g4), which implies the onset of rather conven-
tional weak localization at T ! 0.

Conversely, making the C1 mode gapful and inverting
the sign of the conductivity correction would only be
possible under the condition jg1 	 g3j � jg2 	 g4j, which
is unlikely to be satisfied for any realistic impurity poten-
tial that yields equal amplitudes of the processes of intra-
and intervalley forward scattering.

Somewhat more generic would be an apparent antiloc-
alizing behavior that can set in at intermediate tempera-
tures, namely, at �g1=g2 < ���T�< �, provided that
g1 � g2 � g4 and g3 � 0 (c1 � 1=2, c4 � 1). At still
lower temperatures the overall sign of Eq. (12) would
revert to negative, thereby giving rise to a nonmonotonic
temperature dependence of the lnT term in the
conductivity.

The above conclusions pertain to the general disorder
model (2). However, in the situation where disorder is
realized as a random distribution of impurities with a
concentration ni and a (short-range) potential u�q�, there
are only two independent parameters,

 g2 � g4 �
niu2�0�

1� ���Fu�0��2
;

g1 � g3 �
niu2� ~K1 	 ~K2�

1� ���Fu� ~K1 	 ~K2��
2
;

(13)

which represent the T̂ matrix computed for an arbitrary
strength of disorder, the customary Born and unitarity
(where the scattering phase approaches �=2) limits corre-
sponding to u! 0 and 1, respectively. In the case of a
genuine long-range (unscreened) impurity potential, a
strong momentum dependence of u�q� would make the
explicit expressions for gi more involved, though.

Provided that the relations (13) between the parameters
gi hold, one obtains c1 � c4 � 1=2, and the logarithmic
term in Eq. (12) identically vanishes due to an exact
cancellation between the contributions of the localizing
(Ĉ1) and antilocalizing (Ĉ4) Cooperon modes, thereby
resulting in the absence of the leading lnT correction to
the conductivity.

It has to be stressed, however, that the sought-after
suppression of (anti)localization would only be possible
due to an opening of the umklapp channel. In turn, the
latter requires an emergence of a crystal superstructure
with the wave vector 2� ~K1 	 ~K2� � �2=3�� ~Q1 � ~Q2� or
equivalent.

While an isolated sheet of weakly interacting graphene
would apparently lack such a superstructure, it is conceiv-
able that the latter could emerge, if a commensurate sub-
strate were used during the process of microfabrication [6].
Alternatively, a commensurate corrugation could occur
due to the Coulomb correlations that can induce a spatially
periodic pattern of the electron density itself [7]. The
possibility of a spontaneous formation of such charge
density wave states has long been discussed in the general
context of degenerate semimetals and, specifically, in gra-
phene [8].

Next, we contrast our calculations against the arguments
presented in Ref. [9] where the possibility of an antiloca-
lizationlike behavior in graphene was originally pointed
out. The authors of this work asserted that the equations for
the Cooperon mode involve a disorder-induced vertex

 Wk;	k;p;	p � nih ~pjuj ~kih	 ~pjuj 	 ~ki

� niu2�0�ei��k	�p��1� cos��k 	�p�� (14)

that makes the full Cooperon amplitude negative for ~k �
	 ~p where ei��k	�p� � 	1, which fact was claimed to be
instrumental for the onset of antilocalizing behavior at
g1 � g3 � 0, although no further technical details were
provided.

However, the above argument appears to be invalid,
since the actual vertex that ought to be used in the con-
struction of the Cooperon is the particle-hole (exchange)
amplitude Wk;p;p;k � nih ~pjuj ~kih ~kjuj ~pi, which is given by
Eq. (14) without the phase factor in question and which
remains non-negative for all ~k and ~p.

The true origin of a possible antilocalizing behavior at
intermediate temperatures can be traced back to the nega-
tive signature of the expansion of the Cooperon mode Ĉ4 in
the product basis �̂a � �̂b, as opposed to that of Ĉ1 [see
Eq. (9)]. Interpreting the sublattice index as a fictitious spin
one-half ( ~S1;2 � ~�1;2=2), one can associate the Ĉ4 compo-
nent with the singlet mode Ĉ4 / �1̂ � 1̂	 1

2 �
~S1 � ~S2�

2],
which is known to be a common source of antilocalization
in 2DEG with a spin-orbit coupling of the Rashba and/or
Dresselhaus kind.

Before concluding, a few more comments are in order.
Considering the possibility of the electron density tuning in
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the experimental setups of Ref. [1], it would also be of
interest to extend the analysis of localization effects to the
low-density regime where a finite DOS is dominated by
disorder. A similar situation has been previously studied in
the context of a normal quasiparticle transport in dirty
d-wave superconductors, where � � 0 and the spectrum
possesses an exact particle-hole symmetry [10]. By anal-
ogy with that work, for �< � one readily finds that the
self-consistent DOS and bare conductivity of graphene are
given by the expressions �F � ��=2�� ln�vF=a�� and
�0 � 4e2=�h, respectively.

Unlike in the metallic (high-doping) regime, however,
the relative smallness of the quantum conductivity correc-
tions can only be controlled by such a parameter as the
(inverse) number of valleys, whose actual value is Nv � 2.
Moreover, even for an artificially large Nv the calculation
of 
��T�=�0 
 �1=Nv� ln��=���T�� involves additional
diagrams containing one conventional [made out of one
retarded (R) and one advanced (A) Green functions, or
‘‘RA’’] as well as one anomalous (‘‘RR’’ or ‘‘AA’’)
Cooperon mode, the latter having a small gap
� [11,12].

Although in the case of dirty d-wave superconductors
these new contributions have been argued to reverse the
sign of the overall correction to the spin and thermal
conductivities [13], we do not find such a behavior in
graphene even in the particle-hole symmetrical limit � �
0, thanks to the formal differences between the Dirac-like
descriptions of the two systems. Thus, the aforementioned
caveat notwithstanding, our results suggest that the con-
ductivity correction in graphene might retain its sign
throughout the entire range of electron densities.

Also, while being the most general model of a random
scalar potential due to short-range (screened) impurities,
the vertex (2) obviously misses out on those types of
disorder that can be best represented by either a random
mass of the Dirac fermions or random vector potential. The
former might be relevant in the situations where a spatially
inhomogeneous charge or spin density wave-type ordering
emerges [7,8], whereas the latter describes topological
lattice defects (dislocations, disclinations, and cracks)
that can be thought of as sources of a random magnetic
flux (RMF). The corresponding random vector potential
appears to long-range correlated, h ~A~q ~A	 ~qi � 4�2nd=q

2,
where nd is the density of defects.

In an abstract setting, the RMF problem for Dirac fer-
mions has been studied in Ref. [14]. Applying the results of
that work, we predict that the RMF-induced elastic scat-
tering gives rise to an additional quasiparticle width �d 

min�v2

Fnd=�; vFn
1=2
d � [obtaining this result requires one to

develop the SCBA for a gauge-invariant counterpart of
Eq. (4), since the non-gauge-invariant self-energy (3) di-
verges with the system size L as �d /

��������
lnL
p

].
It also follows from the conclusions drawn in Ref. [14]

that, in the absence of umklapp, the RMF localization
scenario is likely to belong to the so-called ‘‘C’’ universal-
ity class [11] which controls the limit T ! 0. However, at

intermediate temperatures the localization behavior is ex-
pected to be governed by a crossover from C to yet another
(‘‘A’’) class [11], due to the predominantly small-angle
nature of the RMF scattering.

In summary, we carried out a comprehensive analysis of
quantum interference effects in disordered graphene and
identified the conditions under which the quantum con-
ductivity correction becomes positive, negative, and zero,
respectively. The results of this work provide a further
insight into the quantum properties of this novel pseudor-
elativistic two-dimensional electron system.
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