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We discuss the effect of Fermi surface curvature on long-distance or time asymptotic behaviors of two-
dimensional fermions interacting via a gapless mode described by an effective gauge-field-like propa-
gator. By comparing the predictions based on the idea of multidimensional bosonization with those of the
strong-coupling Eliashberg approach, we demonstrate that an agreement between the two requires a
further extension of the former technique.
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In recent years, the behavior of fermions coupled via
singular (long-range and/or retarded) interactions has been
at the forefront of theoretical research in condensed matter
physics. Such singular interactions are often associated
with the ground state instabilities and concomitant non-
Fermi-liquid behaviors which might occur even if micro-
scopic Hamiltonians involve only short-range couplings.

In a close proximity to the corresponding quantum
phase transition, an effective singular coupling is mediated
by (nearly gapless) collective excitations of the emergent
order parameter of either charge or spin nature. Important
examples include such extensively studied problems as
antiferromagnetic [1,2] and charge [3] ordering transitions
in hole-doped cuprates, quantum-critical ferromagnetic [4]
and antiferromagnetic [5] instabilities in heavy fermion
materials, the compressible quantum Hall effect (QHE)
[6], and Pomeranchuk transitions in low-dimensional elec-
tron gases. The Pomeranchuk transition has been originally
discussed in relation to the transport anisotropies reported
in QHE systems at large half-integer filling factors [7].
In a more general setting, the idea of a spontaneous
Pomeranchuk-like distortion of the Fermi surface (FS)
associated with the transition to a rotationally anisotropic
‘‘nematic’’ state in a generic fermion system was put
forward in Refs. [8–10].

Despite their different physical nature, the systems
studied in Refs. [1,3–6,8] conform to the model of a finite
density gas of two-dimensional fermions coupled via a
collective bosonic mode, whose own dynamics is described
by the (transverse) gauge-field-like propagator

 ��i!; q� � �
�0

�j!j=q� q2 : (1)

A singular nature of the effective interaction (1) manifests
itself in singular corrections to the fermion propagator
G0�!; ~k� � 1=�i!� �k�, where a generic fermion disper-
sion �k � vF~k? � �~k2

k, ~k � k� kF, accounts for a non-
zero FS curvature of order �� vF=kF.

To first order, the fermion self-energy defined as
��!; ~k� � G�1�!; ~k� � �G0�!; ~k���1 takes the form [1]
 

�1�i!; ~k� �
Z d�d ~q

�2��3
��i�; ~q�G0�i!� i�; ~k� ~q�

� i!1=3
0 !2=3; (2)

where !0 � �
3
0=�v

3
F��. At energies !<!0, the one-loop

self-energy (2) exceeds the linear in energy term in the bare
propagator. Therefore, it can no longer be treated as a
perturbation, and the higher-order contributions must be
considered as well.

If one chooses to completely neglect the FS curvature
altogether, a naive perturbation series expansion for the
self-energy appears to produce increasingly more and more
divergent terms, the nth-order term behaving as �n /

!1�n=3 (Refs. [11,12]). However, a finite FS curvature
provides a regularization of such spurious divergences
[9,11–13]. Namely, by treating the bosonic mode governed
by the propagator (1) as a slow subsystem and invoking the
generalized Migdal theorem, one finds that the vertex
corrections are controlled by a (inverse) FS curvature and
appear to be small in powers of ��lna�=a�2 for large values
of the parameter a � �kF=vF.

Proceeding along these lines, the authors of
Refs. [9,11,12] developed a self-consistent, Eliashberg-
type approach, according to which the all-order ansatz
for the fermion self-energy demonstrates a distinctly non-
Fermi-liquid behavior ��!� / !2=3.

As a result, the equal-time fermion propagator
 

G�0; ~r� �
Z d!d2 ~k

�2��3
ei ~k ~r

i!� i!1=3
0 !2=3 � �k

�
�F
�

Z 1
0
d!

Z 1
�1

d�k
J0�kFr� r�k=vF�

i!� i!1=3
0 !2=3 � �k

�G0�0; ~r�
�
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r

�
1=2

(3)
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exhibits an algebraic decay which is faster than that of its
free fermion counterpart, G0�0; r� / eikFr=�kFr3�1=2. The
asymptotic behavior (3) sets in at distances r > r0 �

�v4
F=�

3
0. Albeit being seemingly independent of the FS

curvature, Eq. (3) was derived under the condition of
convergence of the perturbative expansion for the self-
energy ��!�, which can be guaranteed only provided
that a � �kF=vF 	 1 [12].

In the physically relevant situation (a� 1), the vertex
corrections become of order one, and the perturbative
expansion ceases to be controllable. Nevertheless, it has
been conjectured in Ref. [11] that at the lowest energies the
results of the Eliashberg theory remain qualitatively appli-
cable and that the power-law behavior of G�0; r� can be
altered only in the unphysical limit of vanishing FS curva-
ture, a! 0 (see also Ref. [14]).

However, these findings have been recently challenged
by the results obtained by the method of multidimensional
bosonization in the context of the problem of 2D quantum
nematic states. Devised as an alternative to the diagram-
matic perturbation theory, the early version of multidimen-
sional bosonization was based on a heuristic idea of
dividing the FS onto small ‘‘patches’’ and introducing
quasi-1D charge (spin) density operators [15]. While being
sufficient for reproducing the correct behavior of the two-
particle amplitudes at low energies and momenta, such a
simplification has not been fully justified in the case of a
single-particle amplitude or even the 2kF behavior of a
two-particle one [16].

Such an uncertainty notwithstanding, the bosonization
technique of Ref. [16] was applied to the equal-time fer-
mion propagator which was found to decay faster than any
power law, G�0; r� / exp���r=r0�

1=3� [17]. The authors of
Ref. [17] argued that this exponential behavior cannot be
obtained within the Eliashberg theory, thus raising con-
cerns that the latter might be intrinsically incomplete. On
these grounds, the applicability of the Eliashberg theory
was also questioned in other contexts, including the
high-Tc superconductors [18].

In view of the continuing controversy, in this Letter we
set out to revisit the status of the bosonization results
pertinent to the gauge-fermion problem. Following the
work of Ref. [11], we focus on the role of the FS curvature
which was neglected in Ref. [17].

In the well-studied 1D case, any deviation from the
linear fermion dispersion gives rise to cubic terms in the
corresponding bosonized theory. While such terms do spoil
the Gaussian form of the bosonic action, they appear to be
subdominant, as far as the asymptotic long-range behavior
of the one- and two-fermion amplitudes is concerned.
When treated self-consistently, though, these cubic terms
produce quadratic corrections to the spectrum of the 1D
charge and spin density modes [19].

In D> 1 dimensions, the situation appears to be more
involved, as the (potentially irrelevant) quadratic correc-
tions to the fermion spectrum�q2

n � � ~n ~q�
2, which depend

solely on the component of the transferred fermion mo-
mentum ~q parallel to a unit vector ~n normal to the FS, are
always complemented by those quadratic in terms of the
tangential to the FS component, q2

t � � ~n
 ~q�2. The latter
terms have no 1D analogs and represent a genuine effect of
the FS curvature, as opposed to a merely nonlinear disper-
sion. Therefore, they cannot be a priori discarded on the
same basis as those associated with the normal component
of the transferred momentum.

According to the bosonization recipe, a general formula
for the 2D fermion propagator reads [16]

 G�t; ~r� �
I

FS

d ~n
2�

d!
2�

d ~q

�2��2
ei� ~q ~r�!t�G0

~n�!; ~q�Z~n�t; ~r�;

(4)

where the quasi-1D ‘‘patch’’ Green function

 G0
~n�!; ~q� �

1

i!� vF ~n ~q
�
Z
dtd~r

e�i� ~q ~r�!t�

ivFt� ~r ~n
(5)

describes 1D fermion motion in the direction of the normal
vector ~n defining a FS patch of linear size �� pF.

The impact of the interaction on the fermion propagator
is encoded in the ‘‘eikonal’’ (Debye-Waller-type) factor
Z~n�t; ~r� � exp��� ~n�t; ~r��, where

 

� ~n�t; ~r� �
Z d!d ~q

�2��3
��!; ~q�G0

~n�!; ~q�G
0
~n��!;� ~q�


 �1� cos�!t� ~r ~q��; (6)

which expression is common to any approximate scheme,
where the system of interacting fermions is substituted by
an effective single-particle environment composed of bo-
sonic collective modes.

With the FS curvature neglected, Eq. (6) features a 1D
effective interaction �1D�!; qn� �

R
�dqt=2����!; ~q� /

!�1=3 between the quasi-1D fermions belonging to a given
patch. The applicability of the whole scheme hinges on the
expectation that, for a sufficiently singular interaction
function, such as that of Eq. (1), the scale � which sets
the upper limit in the integration over the transverse mo-
mentum qt will effectively drop out of Eq. (6).

However, a simple analysis shows that a typical value of
the tangential component of the transferred momentum
qt �!

1=3 is by far greater than the normal one, qn �!.
Therefore, the validity of the assumption about the irrele-
vance of the FS curvature is anything but granted.

In order to assess the applicability of Eq. (6) in the case
of a finite FS curvature, we compare it with the direct
perturbative expansion for G�0; r�. To that end, we for-
mally expand Z~n�0; r� in powers of � ~n�0; r� and make use
of the identity
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 G0�!; ~k�G0�!��; ~k� ~q��
G0�!; ~k��G0�!��; ~k� ~q�

i���k�q��k
;

(7)

where G0�!; ~k� is the bare fermion Green function.
We explicitly verified that the first-order correction

given by Eqs. (4) and (6) can be cast in the equivalent form

 G�0; ~r� � G0�0; ~r� �
Z d!d ~k

�2��3
ei ~k ~rG2

0�!; ~k��1�!; ~k�; (8)

where the lowest-order self-energy is given by Eq. (2).
Thus, to first order, the bosonization and perturbation
theory results agree with each other, and the FS curvature
does not manifest itself.

However, an explicit comparison between the second-
order term in the expansion of Eq. (6) and that of the
perturbation theory for the self-energy demonstrates that
the corresponding expressions can be reconciled only pro-
vided that one uses the fermion Green function

 G0
~n�!; ~q� �

1

i!� vF ~n ~q��� ~n
 ~q�2
(9)

instead of that with the linearized fermion dispersion. We
also found that functional forms of the higher-order con-
tributions to the self-energy ��!� obtained by means of
perturbation theory and eikonal approximation agree with
each other, provided that G0 is given by (9), although the
corresponding prefactors do not necessarily match. This
discrepancy should have been expected, though. Indeed,
while being able to capture the main effect of small-angle
scattering due to singular interactions, the eikonal approxi-
mation is not expected to be exact in 2D.

Taken at its face value, the above observation shows a
relevance of the FS curvature. It also suggests a way to
improve on the results obtained by virtue of the original
bosonization technique. To explore the consequences of
using Eq. (9) for G0

~n�!; ~q�, we study a spatial dependence
of Eq. (6) modified in accordance with the above
prescription.

Substituting (9) into (6) and introducing rn � ~n ~r , we
readily obtain

 � ~n�t; ~r��
�0

2�3vF�

Z 1
0

dqn
�qn
�1�cosqnrn�S

�
vFqn
�2�3

�
; (10)

where the integrand reads

 S�z��
Z 1

0
dx
Z 1

0
dy

1�������
zx3

p
�y

Re
�

1

�1� iy�2�x2

�
: (11)

Evaluating the integrals in Eq. (11), we find that at z	 1
(e.g., in the limit of a vanishing FS curvature) S�z� �
�4�2=27�z�1=3, thus yielding

 � ~n�0; ~r� �
�
rn
r0

�
1=3
; (12)

where r0 � �3
���
3
p
v4=3
F �1=3=���2=3��0��

3. This asymptotic
behavior agrees with the result obtained in Ref. [17].

In the opposite limit z� 1, the function (11) attains a
constant value S�z� � ��2=8� (Ref. [20]), thereby giving
rise to the logarithmic behavior

 � ~n�0; rn� �
�0

16���vF
log

�
rn�

3�2

vF

�
: (13)

Consequently, at the longest distances the equal-time fer-
mion propagator shows a power-law decay G�0; ~r� /
1=r�3=2��� governed by the anomalous exponent � �
�0=�16���vF�. This behavior is in qualitative agreement
with that predicted by the Eliashberg theory.

For a quantitative comparison, it might be instructive to
evaluate the exponent � for the parameters of Eq. (1)
computed (rather than postulated) under the assumption
that the dynamics of the collective mode is governed by the
fermion polarization itself, ��!; q� � �0=�q

2 ���!; q��
[12]. In this situation, which tends to be rather common in
strongly correlated systems, one has � � m�0=�2�vF�,
with m � kF=vF. By making an additional assumption of
a circular FS, i.e., � � 1=�2m�, one obtains � � 1=4,
which is only a factor of 2 short of the Eliashberg result (3).

In light of the above, we conclude that the ‘‘minimal’’
way of accounting for a finite FS curvature through Eq. (9)
allows one to arrive at a qualitative agreement with the
results of Refs. [9,11,12], although any further progress
towards a quantitative agreement is likely to require an
even more drastic rectification of the original bosonization
scheme.

In this regard, our conclusions differ from those drawn in
Ref. [21], where the first attempt to account for the effects
of the FS curvature was made. The authors of Ref. [21]
claimed that the FS curvature merely provides a cutoff for
the infrared divergences, so that Z�0; rn� remains finite at
rn ! 1, and the equal-time fermion propagator retains the
free fermion behavior with � � 0. We believe that the
logarithmic divergence (13) was overlooked in Ref. [21].

For completeness, we also consider the complementary
limit of Eq. (6) at large t and r � 0. The corresponding
asymptotic behavior of the � factor is then given by the
formula

 � ~n�t;0��
�0

2�2vF

Z �

0

d!
�!
�1�cos!t�



Z 1

0

du

1�u3 Im
�

1��������������������������������������������������
u2�!2=3�!1=3� i�u2�2

q �
:

(14)

At t < 1=�3, the curvature is unimportant, and a direct
evaluation of Eq. (14) gives the following result:

 � ~n�t; 0� � �
�2�34�

4�

������
�0

EF

s
�

1

6EFt
; (15)
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where EF � ��v3
F=�0, which equals mv2

F=2 if the value
of � is calculated self-consistently (see above).

Notably, the expression (15) is real, independent of
the patch size �, and approaches its long-time asymptotic
value as 1=t. This is very different from the zero-curvature
behavior of � ~n�0; r� / r1=3. The difference stems from the
fact that finite r and t provide two different regularizations
of the double Green’s function pole in Eq. (6). Also,
contrary to the case of the equal-time behavior, the FS
curvature affects only the subdominant term in (15) by
replacing it with ��1=t� ln�t�3�2� for t > 1=��2�3�.

The difference between � ~n�t; 0� and � ~n�0; r� has been
previously observed in Refs. [11,17]. The authors of
Ref. [11] neglected any terms with EF in the denominator,
thus arriving at the result � ~n�t; 0� � 0. In contrast, the
authors of Ref. [17] performed the same computation as
we did but found that the time-dependent term in � ~n�t; 0�
decays as t�2=3 lnt, which we believe to be the result of a
technical error.

A general failure of the heuristic D> 1-bosonization
technique to properly account for the (apparently, impor-
tant) effects of the FS curvature can be traced back to the
substitution of the underlying W1 algebra of the phase
space transformations [22] with the approximate
U�1�=SU�2� Kac-Moody commutation relations for the
quasi-1D charge or spin density operators [16]. The im-
portance of taking into account the true algebraic structure
of the bosonized theory was elucidated in the ‘‘geometrical
bosonization’’ approach, which strived to reformulate the
dynamics of interacting fermions as a purely geometric
theory of the fluctuating FS [23].

Notably, a full account of the exact W1 algebraic rela-
tions has already proven to be instrumental for calculating
exact correlation functions of the 1D Calogero-Sutherland
model (which also includes the case of noninteracting 1D
fermions with parabolic dispersion) [24]. This algebraic
structure is also present in a more recent reincarnation of
the idea of geometric bosonization that has been indepen-
dently developed in the theory of mesoscopic transport
under the name of ‘‘ballistic � model’’ [25].

In summary, we revisited the problem of two-
dimensional fermions coupled to a gauge-field-like col-
lective mode. Comparing the formula for the fermion
propagator obtained by means of the multidimensional
bosonization of Ref. [16] with that found in the framework
of the Eliashberg approach [11,12], we observed that, in
order for the two to agree, the bosonization prescription
must be modified in order to incorporate the FS curvature.
Contrary to the earlier claims, we find that including the FS
curvature into Eq. (6) alters the predictions of the original
bosonization approach, thereby resulting in a qualitative
agreement with the Eliashberg theory.
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