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Simulating analogue holography in flexible Dirac metals
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Abstract – We explore an apparent holography-like relationship between the bulk and boundary
properties of non-interacting massive Dirac fermions living on a flexible surface, such as a sheet of
graphene. We demonstrate that the boundary correlations can mimic those normally found in the
system of one-dimensional interacting fermions, a specific form of such phantom interaction being
determined by the bulk geometry. This geometrical interpretation of the boundary interaction
effects offers a new insight into the possible origin of the previously reported examples of the
so-called generalized holographic correspondence and suggests potential ways of testing analogue
holography in the experiment.
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The past few years have shown a tremendous activity
in the emerging area of broadly defined holographic corre-
spondence. Originally, the notion of holography was put
forward with regard to the conjectured (and, quite pos-
sibly, exact) relationship between certain highly symmet-
ric relativistic 4d gauge field and 5d string theories, in
which context it is commonly referred to as “AdS/CFT
duality” [1].

More recently, the holographic conjecture was further
extended by abandoning much of the original stringent
symmetry conditions in the hope of still capturing some
key aspects of the underlying correspondence. Specifi-
cally, it was speculated that it might also be applicable to
a broad variety of non-symmetric and/or non-relativistic
systems which, incidentally, would be of interest to
condensed-matter physics.

Among other things, such a drastic (“non-AdS/non-
CFT”) generalization was motivated by the growing re-
alization that the limited set of the classic “AdS black
brane” geometries utilized in the early work [2] appears
to be much too restrictive, thus allowing access to, essen-
tially, just one specific type of all the possible non-Fermi-
liquid (NFL) compressible states of fermions in d spatial
dimensions.

Namely, the historic Reissner-Nordstrom (RN) solutions
to the coupled Einstein-Maxwell equations which asymp-
totically approach the AdSd+2 and AdS2 ×Rd geometries
in the ultraviolet (UV) and infrared (IR) limits, respec-
tively, were shown to invariably result in the behavior
dubbed as “semi-local criticality” [2]. This particular
regime is characterized by the fermion propagator G(ω, k)

demonstrating a non-trivial frequency, yet mundane mo-
mentum, dependence, as manifested by the self-energy
Σ(ω, k) ∼ ωνk , where νk is a regular function with no
singularities at the putative Fermi surface(s).

Superficially, this “generalized marginal Fermi liquid”
bears a certain resemblance to that found in some of the
heavy-fermion compounds. However, it turns out to be
plagued with such starkly spurious features as multiple
Fermi surfaces or non-vanishing zero temperature entropy
and, therefore, could only describe some intermediate,
rather than the true asymptotic IR, regime.

Regardless of the physical relevance of the above sce-
nario, though, it would be interesting to find potential
gravity duals for other types of both the documented
and the suspected NFL states of correlated fermions.
Of particular interest are those “strange” Fermi (non-
relativistic) and Dirac (pseudo-relativistic) metals where
both the frequency and momentum dependence of
the fermion propagator would appear to be markedly
non-trivial.

The recent efforts in that direction produced a num-
ber of prospective geometries, including the Schroedinger,
Lifshitz, and, especially, hyperscaling violating ones. Such
metrics were found among the “electron star” solutions of
the minimal Einstein-Maxwell theory with back-reaction
of the fermionic matter included, as well as those of the
alternate dilaton, massive vector field, and Horava gravity
theories [3].

While the use of such geometries can greatly expand
the list of potentially attainable boundary NFL theo-
ries, it still does not clarify the status of the generalized
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holographic conjecture itself. Arguably, though, establish-
ing its true status would seem to be far more important
than continuing to apply it to the ever increasing num-
ber of model geometries with physically obscure boundary
duals. It is also quite likely that clarifying this central is-
sue may not be possible without understanding why some
holography-like relationship should be expected in the first
place (i.e., what physical principles would demand that).

In this paper, we make a step in that direction by
demonstrating that a certain form of the apparent bulk-
to-boundary correspondence can indeed be common for
the systems in question, regardless of the presence of any
extended (super) symmetries or a lack thereof. To that
end, we show that the physical edges of the system of
non-interacting 2d Dirac fermions propagating in curved
spaces can exhibit those non-trivial properties that would
be typically attributed to the effects of certain 1d interac-
tions. In contrast to the aforementioned “semi-local” sce-
nario [2], though, we show that in all these cases it is the
momentum, rather than the frequency, dependence of the
propagator G(ω, k) of the 1d boundary fermions that gets
affected.

It might be tempting to view this form of correspon-
dence as yet another aspect of the general Einstein’s equiv-
alence principle, according to which the effects of a curved
metric can be described as a certain interaction. Besides,
this observation suggests that, barring all the practical
challenges, it might be possible to observe some signa-
tures of such a relationship in custom-deformed flakes of
2d Dirac metals (e.g., graphene) grown on commensurate
substrates (e.g., h−BN) which endow the bulk fermions
with a finite mass via hybridization [4].

The generally covariant action describing the kinematics
of massive (d + 1)-dimensional Dirac-like electronic exci-
tations at zero temperature and density propagating in a
curved geometrical background reads (hereafter the Fermi
velocity is chosen to be unity)

S =
∫

drdtddx
√

|detĝ|ψ̄γaeμa

×
(
i∂μ +

i

8
ωbcμ [γb, γc] +Aμ −m

)
ψ. (1)

In the case of a flexible membrane (d = 1), such as a
strained sheet of graphene, the vielbein eμa determining
the induced metric gμν = eμae

b
νηab, vector potential Aμ,

and spin connection ωabμ can be expressed in terms of the
local lattice displacement and its derivatives [5].

In what follows, we consider a class of static rotationally
invariant diagonal metrics represented by the interval

ds2 = −f(r)dt2 + g(r)dr2 + q(r)d�x2, (2)

where r ≤ R is the (“holographic”) radial coordinate, and
perform the Wick rotation of the time variable (measured
in the laboratory frame), t → iτ , thereby switching to the
Euclidean signature.

According to the standard holographic prescrip-
tion [1], the (retarded) boundary propagator G(ω, k),
where k = |�k|, of a spin-s probe particle subject to the
bulk metric (2) could be obtained by finding a zero-energy
solution of the radial wave equation with some effective
potential V (r, ω, k) (see eq. (7) below),

∂2ψ(r, ω, k)
∂r2

= V (r, ω, k)ψ(r, ω, k), (3)

that satisfies the in-falling boundary condition [2] at the IR
cutoff r = a. Then, expanding the thus-obtained solution
in the opposite (UV) regime, i.e., near the boundary at
r = R � a, over the functions ψ±(r, ω, k) which are chosen
as normalizable and non-normalizable, respectively, one
can read off the boundary propagator as the reflection
coefficient for the incident radial wave

G(ω, k) =
ψ+(r, ω, k)
ψ−(r, ω, k)

|r→R. (4)

Despite its rather specialized construction (which is nei-
ther unique, nor non-debatable [1,2]), the propagator (4)
shares its singular dependence on ω and k (if any) with
that of the conventional Green function of the boundary
problem for the Sturm-Liouville equation (3),

G(r, r′, ω, k) =
θ(r − r′)ψ+(r)ψ−(r′) + (r ↔ r′)

ψ−
dψ+
dr − ψ+

dψ−
dr

, (5)

when the arguments r and r′ simultaneously approach
the boundary, r, r′ → R. Notably, apart from the stan-
dard matrix-valued prefactor, eq. (5) yields the ordinary
propagator of massive 2d Dirac fermions in a curved
bulk geometry. Being directly measurable by tunneling,
photoemission, and other techniques, this function could
then provide a tangible probe for an underlying bulk-to-
boundary correspondence (if any) in the experimental sim-
ulations of analogue holography.

Although eq. (3) cannot be solved for generic gravita-
tional backgrounds, in the regime m(τ, x) � 1 one can
resort to the semiclassical approach [6] and choose

ψ±(r, ω, k) ∼ 1
V 1/4(r, ω, k)

e∓ ∫ R
r

dr′√V (r′,ω,k), (6)

where rt is the turning point defined as V (rt) = 0. It is
worth mentioning that the condition of applicability of the
semiclassical approach, mR � 1, would be readily satis-
fied in a typical micron-size sample of graphene deposited
on a h−BN substrate.

Moreover, to the leading order inmR � 1, the semiclas-
sical effective potential in (3) appears to be independent
of the probe’s spin,

V (r, ω, k) = g(r)
(
m2 +

k2

q(r)
+

ω2

f(r)

)
+ . . . , (7)

where the dots stand for the subdominant s-dependent
terms [6].
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Thus, the leading asymptotic large-scale decay in the
space-time domain

G(τ, x) ∼ exp(−S0(τ, x)) (8)

of both boundary propagators (4) and (5) for a field of
any spin is governed by the purely classical action

S(τ, x) = m

∫
dr

√
g(r) + f(r)(dτ/dr)2 + q(r)(d�x/dr)2

(9)
computed along the extremal path between the points
(0, 0, R) and (τ, x,R).

After being evaluated upon such a geodesic trajectory,
eq. (9) yields

S0(τ, x) = 2m2
∫ R

rt

dr
√
g(r)

M(r)
, (10)

where M(r) =
√
m2 − k2/q(r) − ω2/f(r) and the factor

of two accounts for the particle’s radial excursion from R
down to rt and back.

In eq. (10) the values of the conserved canonical mo-
menta ω and k which must be determined from the equa-
tions of motion are

x = k

∫ R

rt

dr
√
g(r)

q(r)M(r)
, τ = ω

∫ R

rt

dr
√
g(r)

f(r)M(r)
. (11)

As the simplest 2d geometry, we first consider a flat circle
of radius R with the line element

dl2flat = dr2 + r2dφ2, (12)

its natural embedding into the 3d Euclidean space-time
being given by the interval ds2 = dτ2 + dl2.

Switching from the in-plane angular variable φ to
a (compactified) boundary coordinate x = Rφ we
obtain the momenta k = m cos(x/2R) and ω =

mτ/
√
τ2 + 4R2 sin2(x/2R). For the minimal path (chord)

connecting two points on the circular boundary of radius
R, eq. (10) then yields

Sflat(τ, x) = m

√
τ2 + 4R2 sin2(x/2R) (13)

which is characteristic of a non-interacting massive field.
The corresponding dynamical critical exponent is z = 1,
as suggested by the relative scaling between the spatial
and temporal coordinates, τ ∼ xz .

Next, we consider a surface of revolution (SOR) de-
scribed by the line element

dl2sor = dr2
[
1 +

(
∂h(r)
∂r

)2
]

+ r2dφ2, (14)

where h(r) is the vertical displacement out of the x-y
plane.

For a 2d sheet shaped as a funnel, h(r) ∼ (R/r)η for r ≥
a, the “warp factor” g(r) ∼ 1/r2η+2 diverges at small r.
One then obtains

Ssor(τ, x) = m
√
τ2 + (Rxη)2/(η+1) (15)

which reveals an unconventional behavior of the edge prop-
agator (8) as a function of the distance along the edge.
In contrast, its temporal dependence remains trivial, thus
implying the “holographic” value of the dynamical critical
exponent zhol = η/(η + 1).

It is instructive to compare the asymptotic (15) with
the propagator of 1d fermions interacting via a pairwise
potential U(x) ∼ 1/xσ with σ < 1. The latter can be
evaluated with the use of the standard bozonization tech-
nique [7]. To leading approximation, the chiral (left/right
moving) components of that propagator read

G±
bos(τ, x) ∼ exp

[
−

∫
dk
2π

2 + Uk
εk

(1 − e±ikx−iεkt)
]
, (16)

where εk = k
√

1 + Uk is the 1d plasmon dispersion, sug-
gesting the dynamical exponent zbos = (1 + σ)/2.

Matching the large-x asymptotics, one finds that
eq. (15) mimics the spatial decay of the propagator (16),
provided that η = (1 − σ)/(1 + σ). However, comparing
the long-τ asymptotics we find them to be incompatible,
as the former suggests zhol = (1 − σ)/2, in contrast with
the above zbos for all σ 	= 0.

In fact, the long-time behavior in the boundary the-
ory would not be readily recoverable with the use of
any bulk metric with a constant f(r) (we expound on
this point below). By contrast, in the “semi-local” AdS2
regime [2,6] the counterpart of eq. (15), Ss-l(τ, x) =√

(1 − ν0)2(ln τ/a)2 +m2x2, manifests a predominantly
temporal character of the NFL correlations in that
case.

Another instructive example is provided by the line
element

dl2log = dr2 +R2 exp(−2(r/R)λ)dφ2. (17)

For λ = 1 eq. (17) represents a 2d surface of constant
negative (Gaussian) curvature known as “Beltrami trum-
pet” which, using the parametrization ρ = R ln(R/r),
can be transformed into the “Lobachevsky plane”, dl2 =
dρ2/ρ2 + ρ2dφ2. Notably, its conformally flat embedding
into the physical 3d space-time was also invoked in the
recent discussions of the possibility of observing the ana-
logue Unruh-Hawking effect in graphene [8].

By computing (10) one obtains

Slog(τ, x) = m
√
τ2 +R2(lnx/a)2/λ. (18)

For λ = 1 and at large x the propagator (8) then decays
algebraically, G(0, x) ∼ 1/xmR which is reminiscent of the
behavior found in the 1d Luttinger liquids [7].
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In contrast, for λ 	= 1 eq. (18) yields a variety of
stretched/compressed exponential asymptotics which de-
cay faster (for λ < 1) or slower (for λ > 1) than any
power law. For instance, by choosing λ = 2/3 one can
simulate a faster-than-algebraic spatial decay, G(0, x) ∼
exp(−const ln3/2 x), in the 1d Coulomb gas (σ = 1) which
is indicative of the incipient formation of a 1d charge den-
sity wave [7].

For other values of λ eq. (18) reproduces the behav-
ior in the boundary theory governed by the interaction
U(x) ∼ (lnx)(2/λ)−3/x. Although the physical origin of
such a bare potential would not be immediately clear,
multiplicative logarithmic factors do routinely emerge in
those effective 1d couplings that are associated with vari-
ous marginally (ir)relevant two-particle operators [7].

Turning now to the metrics with f(r) 	= const, one well-
known example is provided by the so-called BTZ solu-
tion [9]. In the UV limit, the non-rotating BTZ metric
approaches the AdS3 one,

ds2AdS = (dτ2 + dx2)r2 +
dr2

r2
(19)

and, correspondingly, eq. (10) produces the expressly
Lorentz-invariant result

SAdS(τ, x) = 2mR ln

(√
τ2 + x2

a
+

√
τ2 + x2

a2 + 1

)
(20)

which is in full agreement with the exact zero-temperature
boundary propagator (in the general case of a rotat-
ing BTZ solution the two chiral sectors have different
temperatures [9])

GAdS(τ, x) ∼ 1
(x− iτ)2Δ+(x+ iτ)2Δ−

. (21)

Notably, the exact left/right dimensions Δ± = mR/2 +
1/2 ± 1/4 of the boundary fermion operator satisfy the
condition Δ+ + Δ− > 1. Therefore, the correspond-
ing boundary theory cannot be obtained from any short-
ranged repulsive interaction U(x) ∼ δ(x), in which case
the corresponding Luttinger parameter would be re-
stricted to the interval 1/2 ≤ K ≤ 1 [7], thereby imposing
the upper/lower bounds on the total conformal dimension,
1/2 ≤ Δ+ + Δ− = 1

4 (K + 1/K) ≤ 5/8, contrary to the
above.

Nevertheless, a power-law interaction potential U(x) ∼
1/xσ with σ < 1 makes the Luttinger parameter K mo-
mentum dependent and can drive it all the way down to
zero for k → 0, thereby raising the above upper bound.
However, as already shown, this interaction results in
a different, non-algebraic, x-dependence. Therefore, the
boundary conformal field theory dual to the BTZ solution
does not appear to have a microscopic realization in terms
of any of the aforementioned pairwise potentials.

In general, while a metric with f(r) 	= const may not
be readily attainable in the lab, it might still be possible

to practically construct its conformal equivalent known as
the Zermelo optical metric. More specifically, under the
parametrization r = a coth ρ/R the conformally flat BTZ
solution reads

ds2BTZ =
1

sinh2 ρ/R

((a
R

)2
dτ2 + dρ2 + a2 cosh2

(ρ
R

)
dφ2

)
(22)

and the corresponding optical interval is given by the
expression in the brackets, its spatial part being readily
identifiable as a hyperbolic pseudosphere whose practi-
cal realization has also been envisioned in the context of
graphene [8]. However, it is worth mentioning that, con-
trary to the massless case, the propagator of massive Dirac
fermions would not remain invariant under the conformal
transformation relating the two metrics.

The above analysis can be extended in a number of
ways. For one, the observed correspondence between
the large-scale asymptotics of the two-point correlation
functions in the bulk and boundary theories can be ex-
tended to the other physical observables of geometrical ori-
gin, one such example being entanglement entropy which
would be naturally associated with the area of a minimal
surface [1].

Also, a non-trivial background metric can be comple-
mented by various patterns of the vector potential Aμ
which for rotationally invariant configurations amounts to
substituting the frequency and momentum in eq. (7) with
ω−At(r) and k−Aφ(r). In the case of a graphene sheet,
this (pseudo) electromagnetic potential would represent
both elastic strain and the extrinsic curvature associated
with pentagonal/heptagonal and other localized structural
defects [5].

Taken at their face value, our results demonstrate that
certain interaction-like features can indeed emerge at the
boundary of even a non-interacting bulk theory, provided
that the latter is defined in a curved space. Moreover,
the phantom force between the one-dimensional bound-
ary fermions needed to reproduce the behavior of the bulk
propagator represents a strong interaction, in agreement
with the general lore of the holographic correspondence,
even in the case of a short-ranged potential that com-
pletely destroys the 1d Fermi liquid. This observation
suggests that some form of a holographic relation might,
in fact, be quite robust and hold regardless of whether
or not the system in question is highly symmetrical, as
per the original AdS/CFT conjecture, or even Lorentz
invariant.

It remains to be seen whether or not the reported
generic form of the bulk-to-boundary relationship could
indeed account for any of the circumstantial evidence that
was argued to support the condensed-matter applications
of the generalized holographic conjecture [1–3,6]. How-
ever, these findings could help one to better assess the po-
tential significance of such evidence, given that essentially
all of the earlier results (with the exception of those pre-
cious few that pertain to the classic RN solutions at zero
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fermion density and/or mass) were obtained by solving
eq. (3) numerically and often amount to a mere visual
resemblance between the plots of such numerical solu-
tions and those of some selectively chosen experimen-
tal data on the underdoped cuprates or heavy-fermion
materials.

On the experimental side, such planar Dirac metals as
graphene could, in principle, provide a playground for
simulating the proposed “non-AdS3/non-CFT2” analogue
holography. The availability of flexible graphene devices
and advances in the stress engineering techniques may
allow for an experimental study of the properties of sim-
ulated 1d strongly coupled systems and their dependence
on the bulk geometry.

To that end, a proper choice of the substrate is in-
strumental for not only opening a bulk gap, but also for
suppressing various edge magnetization effects which can
further complicate matters. Conceivably, the boundary
correlations could be probed with such relevant experi-
mental techniques as time-of-flight, edge tunneling, and
local capacitance measurements.

Lastly, some form of the bulk-boundary duality could
also be anticipated in the properties of planar (2d) mass-
less Dirac fermions residing on the surfaces of gapped 3d
topological insulators which are subject to internal stress.
However, apart from the obvious complexity of engineering
curved 3d spaces, the 2d boundary systems are also known
to be much less likely to exhibit any effects of the inter-
actions, whether of a real or phantom (holographic) na-
ture, thus making their experimental detection even more
intricate.

To summarize, we report on a robust holography-like
correspondence between the properties of free massive
fermions in a curved bulk (2d) space and strongly interact-
ing boundary (1d) fermions. Our results urge one to ex-
ercise caution when inspecting any observations believed
to be supportive of the generalized holographic conjec-
ture. Alternatively, one can choose to view them as actu-
ally exposing some generic type of the bulk-to-boundary
correspondence —albeit by far simpler than any kind of
relationship that can stem from a string-theoretical em-
bedding, thereby questioning the need of invoking the
latter in the first place. We also argue that the al-
ready available “massive Dirac metals” could offer a vi-
able experimental playground for studying various aspects
of the holographic phenomena, thereby making it pos-
sible to simulate and study this interesting behavior in
the lab.
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