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Insects require dietary sources of B-vitamins, but relatively little is known about whether

they regulate B-vitamin intake in the same way they regulate other nutrients. Honey

bees meet their B-vitamin requirements mainly from the pollen they collect. Employing

the geometric framework for nutrition, we found that honey bees actively regulate their

vitamin intake following Bertrand’s rule. We fed bees with a diet of essential amino acids

(EAAs) and carbohydrate (C) to identify how the addition of B-vitamins affected the

regulation of these macronutrients. In our experiments, honey bees preferred vitamins

in concentrations comparable to those found in honey bee food (pollen, beebread, and

royal jelly). Honey bees actively regulated niacin around an optimal value. Supplementing

honey bee diets with B-vitamins influenced the amount of EAAs and carbohydrate

ingested differently depending on the type of the vitamin. The impact of these vitamins

was observed over the course of seven days where honey bees’ mortality increased

on diets of low and medium folic acid concentrations. This study provides insights into

honey bee food intake regulation and the feeding preferences and sets the basis for

future studies considering B-vitamins in honey bees diets.

Keywords: honey bee, Apis mellifera, B-vitamins, geometric framework, food intake regulation

INTRODUCTION

Animals including insects actively regulate their protein and carbohydrate intake where they
consume specific amounts of protein relative to carbohydrate attempting to defend a specific value
of nutrients known as the intake target (IT) (Simpson and Raubenheimer, 1993; Paoli et al., 2014).
They achieve this by changing their feeding behavior to acquire the correct proportion of nutrients
(Simpson et al., 2004; Paoli et al., 2014). How macronutrients are regulated has been studied
recently in several herbivorous insects (Behmer et al., 1999; Lee et al., 2002; Behmer, 2009), and
in social insects such as ants (Dussutour and Simpson, 2012), bumble bees (Stabler et al., 2015;
Vaudo et al., 2016a, 2017; Kraus et al., 2019), and honey bees (Pirk et al., 2010; Paoli et al., 2014).

Vitamins are essential micronutrients that play a critical role inmaintaining internal metabolism
through their role as enzyme precursors, and are considered essential for proper growth
(McDowell, 2008; LeBlanc et al., 2011). Water-soluble vitamins such as B-vitamins need to be
replenished daily from a dietary source. Animals obtain their B-vitamins need from dietary sources
from plants (McDowell, 2008). Early studies revealed that B-vitamins and protein sources are
essential for adequate growth of newly emerged bees (Haydak andDietz, 1965) where diets deficient
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in thiamine or riboflavin failed to support the development of
the hypopharyngeal glands (HPGs) after emergence (Herbert
Jr et al., 1977; Shimanuki, 1978). Similarly, previous research
showed that pantothenic acid is critical for the development of
the HPGs (Pain, 1956) with its concentration abundant royal jelly
(RJ) reaching a concentration of 20 times that of pollen (Haydak
and Dietz, 1972). Methyl-donors nutrients such as B-vitamins
and essential amino acid methionine prevent hypomethylation
in honey bees (Glavinic et al., 2017). Deficiency of niacin,
pyridoxine, folic acid, and cobalamin causes either DNA strands
to break, oxidative lesions, or all (Ames, 2001). For vitamins
concentrations in honey bee collected food (see Table 1).

Honeybees are eusocial insects that contribute with other
insects in pollinating one third of the worlds’ crops (Free,
1995; Allsopp et al., 2008). Young, queenless honey bees were
observed to prefer a protein-rich diet when essential amino
acids (EAAs) were the protein source (Paoli et al., 2014). Young
bees maximized their carbohydrate ingestion from 1:50 to 1:75
within 14 days of the experiment, whereas foragers ate even
more reaching an intake target (IT) of 1:250 essential amino
acids:carbohydrate (EAAs:C). Nevertheless, the high EAAs diets
increased honey bees’ mortality in both queenless bees and those
exposed to queen mandibular pheromones. Similar regulation of
macronutrients was observed in bumble bees, where they reached
an IT of protein:lipid (P:L) to a ratio between 25:1 and 5:1, and
survived better on a ten:1 P:L diet (Vaudo et al., 2017). Another
study that confirmed lipid regulation in bumble bees showed that
bumble bees preferred lipid taste in proboscis extension reflex
(PER) experiments, while they rejected consumption of high lipid
diets in feeding assay (Ruedenauer et al., 2020). In this study high
lipid consumption was associated with poor survival and reduced
reproductive ability (Ruedenauer et al., 2020).

Bertrand’s rule states that consumption of a specific
micronutrient at low concentration results in increased
benefit until reaching an optimum level. Consumption
beyond the optimum plateau would result in an adverse
impact (such as obesity) at high concentrations (Bertrand,
1912; Mertz, 1981; Raubenheimer et al., 2005; Simpson and
Raubenheimer, 2012). To meet the desired benefit while avoiding
the negative consequences associated with a high consumption
of nutrients, animals must find the right balance by following
certain regulatory mechanisms to maximize their benefits.
Macronutrients also follow Bertrand’s rule (Raubenheimer et al.,
2005). However, no one has shown that B-vitamins are actively
regulated according to Betrand’s rule.

Pollen is the vitamin source for honey bees. Its total vitamin
content ranges from 0.02 to 0.7% with only 0.1% fat soluble
vitamins such as vitamin A, vitamin D, and vitamin E, and
0.6% water soluble vitamins such as B-vitamins and vitamin C
(Komosinska-Vassev et al., 2015). Therefore, pollen is known
as the “vitamin bomb” (Farag and El-Rayes, 2016). Pollen is
processed into beebread within the colony and fed to adult
bees (Brodschneider and Crailsheim, 2010; Nicolson, 2011;
Wright et al., 2018). Nurse bees are the main pollen-consumers
in the hive, while other bees, such as the queen and the
larvae, acquire nutrients from the milky glandular secretions
produced by the hypopharyngeal glands (HPGs) in the nurse

bees’ head (Maurizio, 1954; Haydak, 1970; Crailsheim et al.,
1992; Wright et al., 2018). Poor pollen consumption and hence
low food stores could be more severe and cause cessation of
brood-rearing activity and brood cannibalism (Schmickl et al.,
2002; Carroll et al., 2017). In contrast, pollen diluted with
cellulose had a low vitamin content which could have intensified
the complexity of N. ceranae infection and increased honey
bees’ mortality.

Previous research on mammals shows that micronutrients
such as B-vitamins play a key role in macronutrients food intake
regulation, for review see Gonzalez-Soto and Mutch (2021). B-
vitamins play a key role in food intake regulation by acting
as feeding stimulants (Dabrowski, 1974) and through their role
in metabolism and nutrient assimilation. However, to date, the
mechanisms of vitamin regulation in honey bees are yet to be
uncovered. Using the Geometric Framework (GF) for nutrition,
in this study we hypothesized that diet supplementation
with some B-vitamins influences macronutrient (EAAs and
carbohydrate) regulation in young honey bees. We predicted
honey bees can regulate their vitamin intake around a specific
value when honey bees were allowed to select from three separate
chemically defined diets using a feeding choice assay in vitro.
The feeding diets were liquid solutions including a carbohydrate-
only source (sucrose), a protein source—10 Essential Amino
Acids (EAAs) dissolved in sucrose, and the vitamin-fortified diet
dissolved with EAAs in sucrose solution. We also expected that
high doses of B-vitamins decrease honey bees survival over the
course of 7-day long experiments.

MATERIALS AND METHODS

Experimental Bees
To collect similarly aged bees, ready to emerge brood frames of
Apis mellifera carnica kept at Newcastle University were collected
from two different colonies (to have a more representative
sample) for unrelated queens and kept in a box under standard
controlled conditions inside the incubator at 34◦C and 67%
relative humidity as described by Paoli et al. (2014). Young
honey bee workers were collected from their frames within
72 h of emergence. Queenless worker bees were then collected
and assigned randomly into rearing boxes where 25 bees were
allocated per box. The rearing boxes were made of Perspex
with the dimensions 11 × 6 × 20 cm. Feeding solutions were
provided at fixed positions (see Figure 1) and assigned to three
different feeding tubes with a fourth tube filled with water. Each
feeding tube was a 2ml microcentrifuge tube with three 2mm
holes drilled along the top of each tube away from the cap.
The rearing boxes were then placed inside the incubator at 34
C◦ and 67% relative humidity. The experiment was conducted
for 7 days, with the number of dead bees being counted and
removed daily and this experiment was repeated twice per
treatment. All experiments took place during between June and
September 2016.

Feeding Diets
To feed the bees, we used a chemically defined diets, B-vitamins,
including folic acid (F8758), niacin (N0761), D-Pantothenic acid
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TABLE 1 | Range of vitamins in honey bee food.

Vitamin Pollen

µg/g

Reference Royal Jelly µg/g Reference Honey

µg/100

Reference

Thiamine 6–34 (Campos et al., 2008) 1.44–6.70

2.06

(Vecchi et al., 1988;

Krell, 1996)

(Alvarez-Suarez, 2017)

35–220 (Graham, 1992)

Riboflavin 6–20 (Campos et al., 2008) 5–25

2.77

(Vecchi et al., 1988;

Krell, 1996)

(Alvarez-Suarez, 2017)

210–630

0.38

(Graham, 1992; Health

and Services, 2019)

Niacin 40–116

130–210

(Campos et al., 2008)

(Graham, 1992)

48–88

42.42

(Vecchi et al., 1988;

Krell, 1996)

(Alvarez-Suarez, 2017)

1,080–9,780

1.21

(Graham, 1992; Health

and Services, 2019)

Pantothenic acid 5–20 (Graham, 1992) 159–265 52.8

+20-folds than pollen

120 ± 30–565 ± 40

(Vecchi et al., 1988;

Krell, 1996)

(Alvarez-Suarez, 2017)

(Graham, 1992)

(Ciulu et al., 2013)

200–1,050

0.68

(Graham, 1992; Health

and Services, 2019)

Pyridoxine 2–8.8 (Hagedorn and Burger,

1968; Graham, 1992;

Manning, 2001;

Campos et al., 2008)

1–48

11.90 3 folds greater

than the content of

larval food queen =

20,59 µg, worker =

7,34 µg, drone = 7,23

µg per g fresh weight

(Vecchi et al., 1988;

Krell, 1996)

(Alvarez-Suarez, 2017)

(Graham, 1992)

76–3,200

0.24

(Graham, 1992; Health

and Services, 2019)

Folic Acid 3–22 (Hagedorn and Burger,

1968; Campos et al.,

2008)

0.13–0.53

0.40

(Vecchi et al., 1988;

Graham, 1992)

(Alvarez-Suarez, 2017)

2 (Health and Services,

2019)

Cobalamin - - 0.15 (Alvarez-Suarez, 2017) - -

Biotin 0.5–0.7 (Campos et al., 2008) 1.1–19.8 (Vecchi et al., 1988) 35–220 (Graham, 1992)

Vitamin E 40–320 (Oliveira, 2006) and

Reviewed by Campos

et al. (2008)

1.44–6.70 5.00 (Vecchi et al., 1988;

Krell, 1996)

(Alvarez-Suarez, 2017)

210–630 (Graham, 1992)

Ascorbic Acid 70–560 (Hagedorn and Burger,

1968; Campos et al.,

2008)

(Graham, 1992)

4 20,000–

34,000

5

(Graham, 1992; Health

and Services, 2019)

hemicalcium salt (P5155), added to a base diet composed of
sucrose as a source for carbohydrate (Sigma-Aldrich, UK) and the
10 free essential amino acids EAAs (Sigma-Aldrich). These free
essential amino acids were arginine, histidine, isoleucine, leucine,
lysine, methionine, phenylalanine, threonine, tryptophan, and
valine. The base diet contained 1:25 essential amino acids:
sucrose (EAAs:C,) as illustrated by Paoli et al. (2014). Four
different levels of each vitamin were dissolved in 1:25 of EAAs:
C solution as the base diet. For vitamins concentrations see
Figure 1. For vitamin-supplemented treatments, a concentrated
stock solution (50X was prepared for folic acid or niacin, while
100x was prepared for pantothenic acid) was prepared, then
diets were prepared by serial dilution from this stock liquid
diet. Diets were kept frozen under−20C◦ for no more than
7 days. All feeding diets were slow thawed in a refrigerator
overnight before feeding. Vitamin concentrations were selected
based on the range of concentrations in bee food in general to
test nurse bees tolerance to high levels (see Table 1 for range
of vitamin concentrations in honey bee food and references).
For reagents and their concentrations used to prepare each diet
(see Supplementary Table 1).

Design of the Experiment
Young honey bees were allowed to freely eat from different
feeding tubes (Paoli et al., 2014; Stabler et al., 2015, 2020; Vaudo
et al., 2016b) containing sucrose (tube 1, Diet 1), EAAs plus
sucrose (tube 2, Diet 2), EAAs plus sucrose with a specific
concentration of a B-vitamin (tube 3, Diet 3), or distilled
water (tube 4). The carbohydrate-only solution was also 1M
sucrose, while the EAA:C diet was 1:25 EAA:C (M/M), where
the carbohydrate solution was 1M sucrose. Ten rearing boxes
were “replicates” used per treatment. Evaporation adjustment
was made by setting up two boxes for each treatment without
bees. This evaporation control was included per treatment every
time the experiment was run in the incubator (n = 12 per
treatment total). See Figure 1 for the experimental setup.

The amount of food eaten was quantified daily by recording
the weight of each feeding tube before and after 24 h intervals.
Each feeding tube was replenished by replacing it with a sterilized
full tube daily. The evaporation loss for each treatment was
measured and the average amount of solution evaporated was
calculated across the 7-day experimenting period. The average
evaporation value for each solution was then subtracted from the
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FIGURE 1 | Experimental setup for treatment and control units used in the experiments. Different cohorts were used to test a single B-vitamin in a mixture of 1:25

EAAs:C. Vitamins tested included folic acid, niacin, and pantothenic acid. For each B-vitamin three different level (low is 1x, medium is 10x and high is 50x in case of

folic acid and niacin or 100x in case of pantothenic acid) were used to prepare liquid feeding diets. Diets were added to drilled feeding tubes. Feeding diets were

weighed after 24 h and replaced with fresh diets. Number of dead bees were counted and removed from the rearing boxes daily. The experiments continued for 7

days and repated for a second round. Similar rearing units without bees were used to control the evaporation inside the incubator at at 34◦C and 67% RH.

daily food consumption for each treatment to quantify the net
amount of food consumed per day. Daily food consumption per
bee was calculated from the sum of net diet consumption for each
feeding tubes divided by the number of bees remaining alive on
that day. The amount of each macro- and micronutrient eaten
was calculated from the adjusted daily volume using the known
concentration of each reagent in the solution. These experiments
were repeated for a second round using new newly emerged bees
that was included as a covariate in all the analysis unless was not
significant in the model.

Statistical Analysis
Data analysis and visualization was completed using R for
Macintosh, version 3.6.3, 2020, using the packages ggplot2,
pysch, mass, and survival (Team, 2020). After testing for
normality, average daily volume consumed (ml/bee) per liquid
feeding diet was analyzed as a response univariate using two-
way ANCOVA where vitamin concentration and diet were
included as independent variables and round was included as
a covariate. Following ANCOVA, Tukey’s HSD post-hoc was
used to determine which treatment group and which feeding
diet were significantly different from the control and each other
group. Since total carbohydrate and EAAs intake were normally
distributed, they were analyzed using two-way MANCOVA
where we had two independent variables; vitamin type and
concentration, while the amount ingested of carbohydrate

and EAAs in mg/bee was tested as a response variable. The
total amount eaten of each vitamin did not follow a normal
distribution, therefore it was analyzed and included as a response
variable in generalized linear model with vitamin concentration
set as factors, while round was included as a covariate to control
for the effect of round. Repeated measures MANCOVA was
employed for the average amount eaten of carbohydrate and
EAAs as time and vitamin concentration were used as factors.
Tukey’s HSD post-hoc was used to determine which treatment
group was significantly different from the control and each other
group. Finally, the survival curve was fitted using Cox regression
and hazard ratio was quantified per concentration. The control
group was used as reference group to which all other groups
were compared. In all statistical tests we used a significance level
P<0.05 to denote statistically significant results.

RESULTS

Total Food Consumption
Generally, honey bees response to each vitamin concentration
was vitamin-specific (Figure 2 and Table 2). For example, honey
bees fed with folic acid did not alter their food consumption at
any concentration (Figure 2A). Bees fed with niacin consumed
the greatest volume of vitamin solution from the middle
concentration 1.160 g/l (Figure 2B) whereas bees fed with
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FIGURE 2 | Average daily volume consumed (µl/bee) for 7d from the vitamin-laced feeding diet (Diet 3). Diets are 1M sucrose solution as diet 1, 1:25 EAAs:C as diet

2, and diet 3 was 1:25 EAAs:C + testing B-vitamin in varying concentrations. The control group received only 1M sucrose in tube 1 and 1M sucrose + EAAs in tube 2

and tube 3. So, they were vitamin deficient. Whereas, in the treatments a different concentration of B-vitamin was added to tube 3 in the treatment groups only (not

the control) to the P:C diet (1M sucrose+EAAs+B-vitamin. A 4th tube of water was added to all groups. (A) Folic acid, (B) Niacin, and (C) Pantothenic acid. Bars with

different letters indicate significant differences from their respective control using Tukey’s post-hoc comparison at P < 0.05. Differences among honeybees receiving

folic acid depended on its level in the diet with consumption of low folic acid (Tukey’s post-hoc, P < 0.001, 95% CI = −8,−2.8), medium folic acid group (Tukey’s

post-hoc, P = 0.006, 95% CI=-5.9,−0.7) and High folic acid treatment (Tukey’s post-hoc, P < 0.001, 95% CI = −6.7, −1.5) significantly different from that of control

treatment. Similarly, bees supplemented with niacin in all treatment groups altered their intake from that of the control, for example low niacin treatment (Tukey’s

post-hoc, P < 0.001, 95% CI = 2.6, 6.7), medium niacin treatment (Tukey’s post-hoc, P = 0.001, 95% CI = −5.1,−1), high niacin bees (Tukey’s post-hoc, P < 0.001,

95% CI = 5.7, 10) Bees receiving pantothenic acid significantly altered the amounts they ate from each diet according to vitamin’s concentration with consumption

low pantothenic acid group (Tukey’s post-hoc, P = 0.013, 95% CI = 0.34, 4), medium pantothenic acid treatment (Tukey’s post-hoc, P < 0.001, 95% CI = 6.2, 10)

and high pantothenic acid treatment (Tukey’s post-hoc, P<0.001, 95% CI= 7.2, 10.9) different from consumption of the control treatment. N = 250/treatment.

TABLE 2 | Two-way- ANCOVA for Average daily volume consumed (µl/bee) for

the vitamin-laced diet.

Vitamin Model Report

F d.f. P-value

Folic acid Concentration 10.31 3 <0.001

Round (covariate) 131.8 1 <0.001

Niacin Concentration 71.47 3 <0.001

Round (covariate) 38.3 1 <0.001

Pantothenic acid Concentration 77.31 3 0.240

Round (covariate) 5.46 1 0.02

*Values in bold highlight a probability value (P-value) < 0.05, indicating a mean difference

significant at the level of 5%.

pantothenic acid consumed less vitamin solution as the vitamin
concentration increased (Figure 2C and Table 2).

Regulation of Macronutrients Intake
Macronutrient intake was investigated by calculating the total
amount ingested per individual nutrient per bee over a 7-day
experimental period. The type of B-vitamin added to the diets
significantly affected the total amount of carbohydrate consumed
(Figure 3A and Table 3, MANCOVA, vitamin, carbohydrate,
F2,241 = 5.48, P = 0.005). Whereas, EAAs consumption was
both vitamin and concentration specific (Figure 3B and Table 3,
MANCOVA, vitamin ∗ concentration, F6,241 = 3.275, P= 0.004).
Honey bees ingested more carbohydrate and less EAAs when
vitamins—except folic acid— were present in one of the diets
than the control bees (Figure 4 and Table 3).

Specifically, honey bees receiving a low level of folic acid
(0.022 g/l) ate more EAAs than the bees in the medium and

high vitamin concentration groups (Figures 3B, 4A,B and Table).
This resulted in the bees regulating their intake of EAAs:C to the
ratios 1:100, 1:112, and 1:108 in the low, medium, and high folic
acid groups, respectively. In contrast, the control bees achieved
a ratio of 1:132 EAAs:C. The bees in this medium niacin group
ingested proportionally more EAAs than bees in the low or
high niacin groups (1:78 EAAs:C). When niacin was provided
at high concentration honey bees ate less EAAs resulting in
increasing the ratio of EAAs:C to 1:106 (Figures 4C,D and
Table 4). Similarly, honey bees in the medium (7.14 g/l) and high
(71.4 g/l) level of pantothenic acid ate more carbohydrate than
the control bees (1:93, 1:1000, 1:111 and 1:110 for the control,
low, medium, and high pantothenic acid groups, respectively,
Figures 4E,F and Table 4).

To test bees’ ability to regulate their vitamin intake around
a specific value, we compared the amount ingested per vitamin
for each concentration. For honey bees in the folic acid
experiment, they ate more of the vitamin when fed with the
high concentration treatment than other treatments (Tables 4,
5, GzLM, concentration, χ2

3 = 9.2, P < 0.001). Honey bees did
not significantly alter the amount of niacin they consumed at any
concentration (Tables 4, 5, GzLM, concentration χ2

3 = −0.1.15,
P < 0.001). Honey bees in the high pantothenic acid treatment
ate 19 times and 6 times more pantothenic acid that bees in the
low and the medium groups, respectively (Tables 4, 5, GzLM,
concentration χ2

3 = 3.31, P = 0.002).

Changes in Macronutrients Over Time
The average daily intake per nutrient in mg/bee was also
calculated over seven days to find out the feeding trend of
honey bees. Overall, honey bees actively changed their intake
over the course of the experiment for all of the three vitamins
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FIGURE 3 | Total macronutrient consumption per vitamin by concentration. (A) Carbohydrate, (B) EAAs. Groups are represented by treatments; Control (no vitamin

group), Low (low level of vitamin), Medium (medium concentration of vitamin), High (high level of vitamin). N = 250 bees/treatment, (MANCOVA at P < 0.05). Data

presented as means ± SEM. Bars with different letters indicate significant differences from their respective control using Tukey’s post-hoc comparison at P < 0.05.

EAAs consumption for the low folic acid treatment was significantly higher than that of the control (Tukey’s post-hoc, P = 0.001, 95% CI = −0.542,−0.104).

TABLE 3 | MANCOVA for the total food intake (mg/bee).

Model Carbohydrate EAAs

F d.f. P-value F d.f. P-value

Vitamin 5.48 2 0.005 20.84 2 <0.001

Concentration 1.04 3 0.375 1.041 3 0.057

Vitamin*concentration 1.53 6 0.171 3.275 6 0.004

Round (covariate) 3.73 1 0.055 0.043 1 0.836

Error - 241 - - 241 -

*Values in bold highlight P-value < 0.05, indicating a mean difference significant at the level of 5%.

(Supplementary Materials, Figure 1 and Table 2). More
importantly, they shift their feeding behavior to maximize their
carbohydrate intake while decreasing their EAAs consumption
at the end of the experiment.

With folic acid supplementation, food consumption changed
over time depending on time and vitamin concentration
(Supplementary Figures 1A,B and Table 2, Repeated
Measures Analysis, within-subject effect, day ∗ concentration,
carbohydrate, F3,36 = 12.4, P < 0.001, EAAs, F3,36 = 6.54, P =

0.001). However, the consumption of EAAs was higher in the first
few days for the lowest concentration of folic acid than any other
treatment. Consumption then started to increase again, reaching
a peak for all folic acid treatments (low, medium, and high)
compared to the control bees. Interestingly, the consumption of
EAAs started to decrease near the end of the experiment (on day
6 and 7) for all treatments, however it was still higher for bees in
the low folic acid group than other treatments.

Bees fed with niacin increased their consumption of
carbohydrate over time (Supplementary Figure 1C). For EAAs,
bees receiving the high concentration of niacin ate less than the
control bees and other treatments, while bees in the medium
niacin treatment group consumed more than those in the control
group (Supplementary Figures 1C,D and Table 2, Repeated

Measures Analysis, within-subject effect, day, carbohydrate,
F1,36 =203.1, P < 0.001, EAAs, F1,36 = 66, P < 0.001).

For pantothenic acid, bees did not alter their
carbohydrate ingestion over the course of the experiment
(Supplementary Figure 1E and Table 2, Repeated Measures
Analysis, within-subject effect, day ∗ concentration,
carbohydrate, F3,36 = 0.436, P = 0.728).The consumption
of EAAs slightly increased over time which then started to
significantly increase by the end of the experiment; on day 6
for all treatments but it decreased on day 7 for the medium
pantothenic acid bees (Supplementary Figure 1F and Table 2,
Repeated Measures Analysis, within-subject effect, day ∗

concentration, EAAs, F3,36 = 18, P < 0.001).

Impact on Honey Bees’ Survival
The number of dead bees was counted daily to measure the
impact of individual concentrations per vitamin on young
honey bees’ survival. Honey bee mortality increased on the
low and medium folic acid treatment groups and low niacin
concentration treatment. Similarly, the control treatment and
the high pantothenic acid concentration increased honey bees
mortality near the end of the study compared to low and

Frontiers in Sustainable Food Systems | www.frontiersin.org 6 May 2022 | Volume 6 | Article 804002

A Total carbohydrate (mg/bee) B Total EAAs (mg/bee) 

f h 
C 

" ., 
150 .. 

.e .s "' e f f h 
C: b 

E h ~ 40 ~ 04 d d d h 
E b 0 

:, a C E;3 Control =a E;3 Controt 
:g 30 a a E 

b b 
LOW :::, LOW 

0 a C C V, 

" • Medium 1 
C: • Me<hum 

Q) 0 .. 
$ T 

• High 
0 ,, • High 120 

.++ 9 + r2 
-e • ~ 10 16 

0 
-.; I-
0 
>- 00 

FOIIC acid Niacin Pantothenie acid FOIIC acla tliatln Pantolhemc acid Vitamin Vitamin 

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Elsayeh et al. B-Vitamins Influence Honeybee Macronutrients Consumption

FIGURE 4 | Macronutrient regulation in the presence of B-vitamins is concentration specific. (A,C,E) Mean ± SEM cumulative consumption of nutrients for young

bees over 7 days. (A) Folic acid, (C) Niacin in vitamin, and (E) Pantothenic acid. (B,D,F) Nutritional trajectories for the cumulative daily consumption per bee of newly

emerged workers. (B) Folic acid, (D) Niacin, and (F) Pantothenic acid. N = 250 bees/treatment (two-way MANCOVA, P < 0.05). Data presented as Means ± SEM.

TABLE 4 | Total nutrient consumption and macronutrients intake ratios over 7

days.

Vitamin Group Actual amount consumed (mg/ml) Macronutrient

regulation

Vitamin EAAs Carbohydrate EAAs:C

Folic acid Control 0 0.74 97.22 1:132

Low 0.0022 1.06 106.61 1:100

Medium 0.018 0.93 104.07 1:112

High 0.096 0.89 96.15 1:108

Niacin Control 0 1.11 86.18 1:77

Low 0.007 0.95 91.11 1:96

Medium 0.128 1.12 87.83 1:78

High 0.2 0.80 84.47 1:106

Pantothenic Control 0 0.91 84.48 1:93

acid Low 0.043 0.92 91.72 1:100

Medium 0.134 0.74 82.13 1:111

High 0.821 0.76 83.50 1:110

Values represent mean total amounts per bee.

mediumpantothenic acid treatments (Figure 5 andTable 6, Cox-
regression).

DISCUSSION

This study was designed to investigate how the quantity of
carbohydrates and EAAs were regulated when B-vitamins were

TABLE 5 | Generalized linear model (GzLM) for amount of b-vitamins eaten per

day (mg/bee).

Vitamin Model Report

Wald χ
2 d.f. P-value

Folic acid Concentration 9.2 3 <0.001*

Round (covariate) 3.72 1 <0.001

Concentration*Round −5.212 3 <0.001

Niacin Concentration 1.64 3 0.106

Round (covariate) −1.15 1 0.255

Concentration*Round 1.61 3 0.112

Pantothenic acid Concentration 3.31 3 0.002

Round (covariate) 0.60 1 0.55

Concentration*Round −0.77 3 0.446

*Values in bold highlight P-value < 0.05, indicating a mean difference significant at the

level of 5%.

present in food. Additionally, we tested whether the B-vitamins
themselves were regulated. We demonstrate that honey bees
actively regulate their intake of all EAAs in the presence of B-
vitamins. Honey bees response was vitamin and concentration
specific. For example, at low or intermediate values of the folic
acid, the bees increased their intake of EAAs. Whereas, honey
bees ingested relatively more carbohydrate when fed with niacin
or pantothenic acid. At high concentrations of the B-vitamins
(except for honey bees supplemented folic acid), they appeared
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FIGURE 5 | Cumulative survival of honeybees incubated in the rearing boxes at optimum conditions over the course of 7-days experimental interval was reduced on

low, medium folic acid, low niacin, and high pantothenic acid treatments. (A) Folic acid, (B) Niacin, and (C) Pantothenic acid. N = 250 bees/treatment (Cox

Regression, P < 0.05). Data presented as Means ± SEM. Asterisks indicate significance at P < 0.05.

TABLE 6 | Cox regression model of survival for honeybees over 7 days.

Vitamin Treatment B S.E.M X2 d.f. P-value Exp(B) 95.0% CI for Exp(B)

Lower Upper

Folic acid Treatment - - 16.9 3 <0.001 - - -

Low folic acid 0.430 0.166 6.69 1 0.010 1.537 1.110 2.129

Medium folic acid 0.526 0.162 10.5 1 0.001 1.692 1.231 2.324

High folic acid 0.023 0.180 0.02 1 0.897 1.024 0.719 1.458

Niacin Treatment - - 19.8 3 <0.001 - - -

Low niacin 0.603 0.196 9.45 1 0.002 1.828 1.245 2.686

Medium niacin 0.245 0.213 1.33 1 0.249 1.278 0.842 1.941

High niacin −0.251 0.237 1.12 1 0.290 0.778 0.489 1.239

Pantothenic acid Treatment - - 33.9 3 <0.001 - - -

Low pantothenic acid −0.538 0.175 9.44 1 0.002 0.584 0.415 0.823

Medium pantothenic acid −0.544 0.175 9.69 1 0.002 0.580 0.412 0.817

High pantothenic acid 0.244 0.143 2.89 1 0.089 1.276 0.963 1.690

*Values in bold highlight a probability value (P-value) < 0.05, indicating a mean difference significant at the level of 5%. **The high B value (hazard ratio) represents great risk of mortality.

to eat less food overall. The amount of B-vitamins consumed by
the bees increased as a function of concentration in the diet. To
measure the impact of the B-vitamins and their concentrations
on honey bee survival, we also counted daily survival rates. High
pantothenic acid concentrations reduced the rate of survival,
whereas fewer bees survived on diets with less niacin or folic acid
over the 7 day period of the experiment.

When honey bees were in the control group were vitamin
deficient, they seem to have a low appetite and thus they
ate less food than the honey bees in bees fortified with low
B-vitamins except for honey bees fortified with folic acid.
These results are consistent with those published for humans
receiving folic acid (Hatamizadeh et al., 2007; Namdari et al.,
2014; Bruso, 2019) or niacin (Bruso, 2019) as lack of B-
vitamins causes loss of appetite (Hegyi et al., 2004) while B-
vitamin supplementation corrects this by inducing feeding and
enhancing normalmetabolism via supportingmetabolic enzymes
production, for review see (Tardy et al., 2020). Typically, honey
bees preferred vitamins at the same concentration present in
their natural diet such as pollen (22–1,100µg/g for folic acid
and 1,160µg/g for niacin) and royal jelly (120 ± 30–565 ±

40µg/g for pantothenic acid) (Graham, 1992; Ciulu et al., 2013).
Feeding honey bees on diets fortified with folic acid- resulted
in increasing EAAs consumption relative to carbohydrate in
treatment groups in comparison with the control bees. Honey
bees given low or high niacin, low, medium or high pantothenic
acid levels ate more carbohydrate relative to EAAs in comparison
with the control bees. In the current study honey bees
preferred to consume high levels of folic acid, however, this
was variable across the two rounds of the experiment due to
seasonal effect.

Honey bees in these experiments ate more carbohydrate in
all treatments than honey bees in Paoli’s study which regulated
bees’ intake to 1:50 EAAs:C (Paoli et al., 2014). Additionally,
honey bees in this study decreased their EAAs intake at the
end of the experiment this is because as the bees mature,
they behave like older bees, requiring more carbohydrate and
less EEAs similar to what was observed in Paoli’s study.
Honey bees in these experiments did not produce royal jelly
or wax as they were queenless, broodless, and kept at the
standard controlled conditions inside the incubator. Therefore,
their food intake reflects the intake target for their own
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growth and proper somatic maintenance and functions. Young
queenless honey bees become foragers early in their life cycle
(after day 8) (Pankiw et al., 1998) and lose their ability to
metabolize protein (Moritz and Crailsheim, 1987; Paoli et al.,
2014). Therefore, the high intake of EAAs in this study is
expected to significantly increase in natural hive conditions,
or upon the presence of queen mandibular pheromone as
documented by Paoli et al. (2014) or with the presence of
young brood.

The honey bees in these experiments were broodless, therefore
the findings may not extrapolate to honey bees rearing brood,
as their demand for protein and possibly vitamins is likely
to increase when they are producing glandular secretions
(Paoli et al., 2014). Additionally, we expect that carbohydrate
consumption would increase when the honey bees get older
as they reach the natural foraging age (Joos et al., 1997; Paoli
et al., 2014) to fuel their foraging flights. We observed this
on the last day of the experiment—day 7— as bees tend to
consume relatively more carbohydrate which could indicate a
shift in the behavioral task of bees into foraging. As nurse
honey bees are deprived from their social context (queenless
and broodless), they become foragers at a younger age (Paoli
et al., 2014) at 4 days old when older foragers are absent
(Withers et al., 1993).

Folic acid plays a role in DNA methylation, growth, and
development in Drosophila melanogaster (Burnet and Sang,
1963; Blatch et al., 2015), which is similar to its role in
mammals as a single-carbon unit carrier (Blatch et al., 2015).
In Drosophila melanogaster, it was noticed that they eat more
niacin when essential amino acid tryptophan was present in the
diet (Mosher, 1950). Niacin with amino acids act as feeding
stimulant as seen in the two spotted spider mite, Tetranychus
urticae Koch (Dabrowski, 1974). On the other hand, low intake
of high pantothenic acid could be due to the deterrent taste
of pantothenate or due to the presence of calcium ions in
calcium pantothenate used as a source of pantothenic acid which
was found to have a deterrent taste for honey bees (Teixeira
De Sousa, xbib2019). Since honey bees in the low pantothenic
acid treatment ate more from the vitamin-laced solution, while
those in the high pantothenic acid treatment ate less, this
means that post-ingestive regulation may cause this selective
feeding response.

The survival data implies that potential toxicity of B-vitamins
is acquired over time (such as pantothenic acid). Based on
Bertrand’s rule, nutrients present in excess can result in a fitness
impact such as poor survival in extreme cases. Therefore, this
can be explained by either the presence of high level of calcium
ions as part of the calcium pantothenate or the high pantothenate
part that may have killed the bees and caused the poor survival
observed in the high pantothenic acid level group. On the other
hand, the survival of honey bees receiving low and medium
levels of folic acid and low level of niacin had reduced survival.
This might be due to the presence of some Varroa infestation
compared to other treatments that received high folic acid,
medium and high niacin levels that seemed to improve honey
bees health against varroa mites. These findings agree with those
seen (Teixeira De Sousa, 2019) which reported survival rates

of <40% of young bees on a pure calcium diet in a sucrose
solution. However, the survival rate in this study is higher than
that observed by Teixeira De Sousa (2019) that can be explained
by the presence of either pantothenic acid, EAAs, or both in the
diet, which could have reduced the negative impact of the high
calcium ions. To address the impact of pantothenic acid on honey
bees, more experiments using different calcium salt would be
useful to confirm if high a level of pantothenate is lethal.

A pure pollen diet (that was not diluted with cellulose)
significantly enhanced honey bees’ survival despite their infection
with Nosema ceranae (but also increased Nosema infection
intensity) compared to pollen diluted with cellulose (Jack et al.,
2016). This could be due to the rich vitamin content of bee-
collected pollen that could have improved protein metabolism.
Such a positive impact of pollen’s vitamin content could
be either due to supporting proteolytic enzyme activity or
through maintaining the midgut proteomes that continue/carry
out protein regulation, antioxidant defense and which overall
improve energy release, thus helping bees to cope with N.
ceranae infection.

B-vitamins seem to be an important factor in shaping honey
bees’ feeding behavior through affecting macronutrients intake
regulation. This study also provides insights into the possible
consequences of feeding honey bees randomly on high levels
of B-vitamins that could be a determinant for bees. It is the
first designed study that considers how honey bees regulate their
protein and carbohydrate in the presence of B-vitamins using
the geometric framework for nutrition. This will help researchers
to understand other contributing factors to colony loss taking
into consideration that B-vitamins have been understudied and
ignored for long time. Future research should focus on the
mechanisms of vitamin regulation, as well as the environmental
conditions that may change need for specific vitamins, such as
brood rearing or seasonal transitions.
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