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ABSTRACT 
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Marquette University 2023 

 
 

Breast-conserving surgery (BCS) is a widely used treatment for breast cancer, but 
ensuring the complete removal of cancer cells  from the surgical margins remains  a chal- 
lenge. Deep ultraviolet (DUV) fluorescence scanning microscopy offers a potential solution 
by providing real-time whole-surface imaging of resected tissues during BCS. However, in- 
terpreting DUV images for margin assessment requires an automated classification method. 
This dissertation addresses this need by proposing a deep learning-based classification ap- 
proach for DUV fluorescence images in intra-operative margin assessment of breast cancer. 

To overcome the limited availability of DUV image datasets and potential over- 
fitting, the study combines patch-level classification using transfer learning with regional 
importance maps generated through the Grad-CAM++ algorithm. The proposed method- 
ology involves dividing DUV whole-slide images into smaller patches, converting them to 
grayscale, and analyzing pixel values to identify valid patches. A pre-trained ResNet50 
network and an XGBoost classifier are utilized for patch-level classification, while Grad- 
CAM++ generates regional importance maps for the entire DUV image. 

The decision fusion method combines patch-level classification labels and regional 
importance maps to determine the whole-slide image (WSI)-level classification label by 
calculating the total number of malignant patches and comparing it to a threshold percent- 
age of total foreground patches. A binary classification is obtained for the entire WSI. 

The proposed methodology is implemented using PyTorch and a dataset consisting 
of 60 DUV images of breast tissue samples. The DUV images were obtained using a 
custom DUV-Fluorescence Scanning Microscopy system, which provided high-resolution 
images with fluorescence staining for accurate tissue classification. 

The results of this study contribute to the field of intra-operative margin assessment 
in breast cancer by demonstrating the effectiveness of deep learning-based classification of 
DUV images. The combination of transfer learning, regional importance maps, and deci- 
sion fusion provides a robust approach for accurately classifying breast tissue as malignant 
or normal/benign. This research opens new avenues for utilizing deep learning techniques 
in DUV fluorescence imaging and has the potential to improve surgical outcomes in breast- 
conserving surgery. 
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Breast cancer remains a significant health concern, affecting approximately 1 in 8

women in the United States during their lifetime [1]. It is the most common cancer among

women worldwide, accounting for approximately 30% of all cancer cases reported among

women [2]. The disease’s incidence and mortality rates vary across different demographic

groups, highlighting the complex interplay of genetic, environmental, and lifestyle factors

in its etiology. Despite the advancements in breast cancer detection and treatment, signifi-

cant challenges persist, particularly in surgical intervention.

Breast-conserving surgery (BCS), also known as lumpectomy, has emerged as a

critical tool in the fight against breast cancer. More than half of women diagnosed with

breast cancer undergo this procedure [3, 4]. This surgical approach aims to excise the tu-

mor while preserving as much healthy breast tissue as possible, offering patients a less

invasive alternative to mastectomy and improving post-operative quality of life. However,

the success of BCS is heavily contingent upon the complete removal of the tumor, includ-

ing any cancer cells that may reside at the edges of the excised tissue, known as the margin.

If these cells are not entirely detected and removed, patients may experience cancer recur-

rence and require additional surgery [5].

Incomplete excision of the tumor margin is a significant issue in BCS, leading to

a higher risk of local recurrence and the need for additional surgery. Current methods for

intraoperative margin assessment have limitations, including time consumption, resource

intensity, and variable accuracy. Therefore, there is a pressing need for improved tech-
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niques for intraoperative margin assessment to ensure the complete removal of the tumor

and reduce the need for reoperation. The intra-operative margin evaluation is a crucial

step in the surgical process. It is typically performed through radiographic examination,

confirmed by post-operative histological analysis of hematoxylin and eosin (H&E) images.

However, this process can be time-consuming and may not provide real-time feedback dur-

ing surgery, which is crucial for making immediate surgical decisions.

Developing and validating such techniques could significantly improve BCS out-

comes, reducing the local recurrence rate and the associated physical, emotional, and fi-

nancial burdens on patients. Furthermore, advancements in this area could contribute to

the broader goal of personalized breast cancer treatment, tailoring the surgical intervention

to the individual characteristics of the tumor and the patient.

An approach to real-time margin assessment involves the use of deep ultraviolet flu-

orescence scanning microscopy (DUV-FSM) for real-time whole-surface imaging (Whole

Surface Images) of resected tissues during BCS [5, 6]. DUV-FSM provides high-quality

images of specimens without destructive techniques or unnecessary optical sectioning. It

offers excellent color and texture contrast between cancer and normal/benign breast tissue,

which aids in detecting cancer cells at the edge of the surgical specimen. This real-time

imaging capability can significantly enhance the precision of intra-operative margin assess-

ment.

While previous research has utilized texture analysis (TA) methods for intra-operative

margin assessment with the DUV dataset, these methods have limitations, which include

potential bias and reduced diagnostic accuracy for less common tissue types [6]. Deep

learning models present a promising alternative for automated breast cancer classification
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of DUV images. These models can automatically learn complex patterns and hierarchical

features directly from the data, offering improved generalization and adaptability across

diverse tissue types. This adaptability could lead to more accurate and robust classification

results, overcoming the limitations of texture analysis methods.

The motivation behind this study is to leverage the power of deep learning tech-

niques to locate cancerous regions in DUV Whole Surface Images accurately. Doing so

aims to enhance the precision of intra-operative margin assessment, thereby reducing breast

cancer re-excision rates following BCS. This approach could ultimately improve patient

outcomes and the overall effectiveness of breast cancer treatment. By providing real-time

feedback during surgery, surgeons can make more informed decisions, ensuring the com-

plete removal of cancer cells and reducing the likelihood of cancer recurrence. This study

represents a significant step forward in applying deep learning techniques in medical imag-

ing, particularly in the context of breast cancer surgery.

1.2 Objectives

The primary objective of this study is to develop an automated method for breast

cancer classification in DUV Whole Surface Images. This objective addresses the critical

need for accurate intra-operative margin assessment during breast cancer surgery. Margin

assessment is crucial in breast-conserving surgery (BCS), as it helps determine whether

all cancerous cells have been removed. Incomplete removal of cancerous cells can lead to

recurrence of the disease and necessitate further surgery, known as re-excision. Therefore,

enhancing the accuracy of margin assessment is paramount in reducing breast cancer re-

excision rates following BCS.

The proposed method aims to provide surgeons with a more precise, real-time tool
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during operations. The ability to accurately classify and localize cancerous regions in DUV

Whole Surface Images in real-time could significantly improve surgical decision-making.

Surgeons could be more confident in their decisions regarding the extent of tissue resection,

potentially reducing the likelihood of leaving behind cancerous cells. This improved preci-

sion leads to better patient outcomes, decreasing the need for subsequent surgeries and the

associated physical and psychological stress for patients.

Furthermore, the study aims to contribute to the broader medical imaging and ma-

chine learning field by demonstrating the potential of deep learning techniques in improv-

ing disease detection and classification. The proposed method leverages advanced deep

learning techniques, including transfer learning and Grad-CAM++, to extract meaningful

features from DUV Whole Surface Images and make accurate classification decisions. By

demonstrating the effectiveness of these techniques in a challenging real-world application,

the study could inspire further research and development in this field.

In summary, this study aims to develop a more accurate and efficient method for

breast cancer classification in DUV Whole Surface Images and demonstrate the potential

of deep learning techniques in enhancing clinical decision-making and patient outcomes.

The ultimate goal is to provide a tool that can offer real-time, accurate feedback during

surgery, thereby improving the precision of intra-operative margin assessment, reducing the

need for re-excision, and potentially improving the overall effectiveness of breast cancer

treatment.

1.3 Contributions

This research makes several significant contributions to the field of breast cancer

classification using deep learning techniques:
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1. Novel Method: This study introduces a novel method for breast cancer clas-

sification in DUV Whole Surface Images. The proposed method combines patch-level

classification using transfer learning with regional importance maps generated through

Grad-CAM++. This unique approach allows for accurate localization and classification

of cancerous regions within DUV Whole Surface Images. The methodology is designed to

enhance the precision of intra-operative margin assessment during breast cancer surgery,

potentially reducing breast cancer re-excision rates following BCS.

2. Enhanced Accuracy: The proposed method demonstrates high classification

accuracy in determining each Whole Surface Image’s malignant or normal/benign labels.

The method achieved an impressive classification accuracy of 95.0%, indicating its po-

tential for accurate intra-operative margin assessment during breast cancer surgery. This

enhanced accuracy is crucial for reducing breast cancer re-excision rates following BCS,

ultimately improving patient outcomes and the overall effectiveness of breast cancer treat-

ment.

3. Robustness with Limited Data: Despite the limited dataset size, the proposed

method exhibits robustness. It uses transfer learning and a gradient-boosting algorithm to

minimize overfitting and maximize the utility of the available data. The method’s robust-

ness, even with a limited dataset, offers advantages over other deep learning techniques,

showcasing the potential of ensemble learning-based approaches in medical imaging.

4. Potential Clinical Applications: The proposed method has potential clinical

applications in real-time assessment of margin status during breast cancer surgery. It can

provide real-time guidance to surgeons during operations, ensuring they make better de-

cisions about resection margins. Furthermore, it can help develop personalized treatment
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plans, tailoring the surgical approach to the patient’s needs. The proposed method could

be integrated into surgical navigation systems to improve surgical interventions’ precision

and minimize damage to healthy tissues.

1.4 Overview of the Proposed Method

The proposed method in this study presents a robust and innovative solution for

breast cancer classification in DUV Whole Surface Images. The novel method combines

patch-level classification using transfer learning with regional importance maps generated

through Grad-CAM++. This combination allows the method to focus on highly signifi-

cant regions within the images, enhancing the robustness of the classification process and

improving the accuracy of cancer detection.

In the initial stage of the process, DUV Whole Surface Images are divided into

patches. This division is a strategic move to handle the images’ high-resolution nature

and focus on localized features indicative of cancerous tissues. These patches are then

used to extract convolutional features using a pre-trained ResNet50 model. ResNet50, a

deep convolutional neural network known for its residual learning framework, is particu-

larly effective at handling complex image classification tasks. By leveraging a pre-trained

ResNet50 model, the method can effectively utilize the power of transfer learning, taking

advantage of the model’s ability to extract high-level features from the DUV Whole Surface

Image patches.

These extracted features are subsequently used to train an XGBoost classifier for

patch-level classification. XGBoost, a gradient-boosting framework, is known for its effi-

ciency and performance. It builds an ensemble of weak prediction models, typically deci-

sion trees, in a stage-wise fashion. It generalizes the model by allowing the optimization of
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an arbitrary differentiable loss function, making it a powerful tool for classification tasks.

Concurrently, regional importance maps for the DUV Whole Surface Images are

calculated using Grad-CAM++ on a pre-trained DenseNet169 model. DenseNet169, an-

other deep convolutional neural network, is known for its densely connected layers, sig-

nificantly reducing the number of parameters while maintaining performance. The Grad-

CAM++ algorithm, applied to the DenseNet169 model, generates heatmaps that highlight

the regions in the image that are most important for classification. These maps help to lo-

calize crucial areas in the Whole Surface Image for margin assessment, providing a visual

explanation of the model’s decision-making process. The final stage involves a decision

fusion method, merging the patch-level classification results with the regional importance

map. This fusion enhances the classification accuracy at the Whole Surface Image level,

assigning a malignant or normal/benign label to each Whole Surface Image with increased

confidence. This fusion process ensures the final classification decision considers the lo-

calized patch-level classifications and the overall regional importance within the image.

The potential of the proposed method extends beyond breast cancer surgery. It

could be applied to a real-time assessment of margin status during other types of cancer

surgeries. Providing accurate and immediate feedback on the presence of cancerous cells

at the surgical margins could significantly improve surgical outcomes and reduce the need

for subsequent surgeries. By integrating this method into the surgical workflow, surgeons

could make more informed decisions during operations, potentially reducing the likelihood

of leaving behind cancerous tissues and improving patient outcomes.
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1.5 Overview of the Thesis Structure

This thesis is organized into five chapters, each providing a detailed exploration of

the research process, from the initial literature review to the conclusions.

Chapter 2: Literature Review and Prior Methods: This chapter comprehen-

sively reviews the existing literature and prior methods relevant to the study. It is divided

into two sections:

• 2.1 Literature Review: This section reviews previous studies and methodologies on

breast cancer classification using machine learning techniques.

• 2.2 Background: This section provides essential information on breast cancer, deep

learning techniques, and the importance of accurate margin assessment during breast

cancer surgery.

Chapter 3: Methods: This chapter outlines the methodology used in the study,

including:

• 3.1 Data Collection: This section describes the data collection process and the pre-

processing steps for the DUV Whole Surface Images for analysis.

• 3.2 Method: This section details the proposed method for breast cancer classifica-

tion, including transfer learning for patch-level classification and Grad-CAM++ for

generating regional importance maps.

Chapter 4: Experiment and Results: This chapter presents the experimental setup

and results of the study, including:
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• 4.1 Experimental Setup: This section outlines the experimental design, including the

hardware and software used and the evaluation metrics.

• 4.2 Visual Inspection: This section analyzes the DUV Whole Surface Images and the

corresponding regional importance maps.

• 4.3 Classification Performance: This section presents the quantitative results of the

study, including the accuracy, sensitivity, and specificity of the proposed method.

• 4.4 Misclassified Samples: This section discusses the samples misclassified by the

proposed method and provides possible explanations.

Chapter 5: Discussion: This chapter discusses the results of the study, its limita-

tions, and potential future research directions:

• 5.1 Methodology and Results: This section provides a detailed discussion of the

proposed method and its performance.

• 5.2 Limitations: This section acknowledges the study’s limitations and suggests areas

for improvement.

Chapter 6: Conclusion: This chapter concludes the thesis by summarizing the

findings and contributions, discussing their implications for clinical practice, suggesting

future work, and providing final remarks:

• 6.1 Summary of Findings and Contributions: This section summarizes the main find-

ings of the study and its contributions to the field of breast cancer classification.
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• 6.2 Implications for Clinical Practice: This section discusses how the study’s findings

could impact clinical practice, particularly in the context of breast cancer surgery.

• 6.3 Future Work: This section suggests potential future research directions based on

the study’s findings.

• 6.4 Final Remarks: This section provides concluding remarks, reflecting on the

study’s significance and potential impact.
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CHAPTER 2
LITERATURE REVIEW AND BACKGROUND

2.1 Literature Review

The application of deep learning methods in the medical field has seen significant

advancements in recent years, particularly in disease detection. Image classification algo-

rithms have proven to be instrumental in detecting and localizing disease regions of interest

(ROI), with breast cancer classification and margin assessment emerging as significant re-

search areas [7, 8].

Several studies have proposed various methods for breast cancer classification. For

instance, a study by Zhang et al. combined a convolutional graph network with a convo-

lutional neural network (CNN) to classify breast cancer [9]. This approach leverages the

strengths of both graph networks and CNNs, with the graph network capturing the global

structure of the data and the CNN capturing local features. This combination resulted in

higher classification accuracy, demonstrating the potential of hybrid models in medical im-

age analysis.

Another study by Singh et al. utilized a patch-level CNN for classification [10].

This approach involves dividing the image into smaller, non-overlapping patches and ex-

tracting spatial information from each patch using integrated CNN and filter algorithms.

This method allows for more detailed image analysis and can capture local variations that

might be missed when analyzing the image as a whole.

Paul Gamble et al. segmented tumor and non-tumor areas with a patch-level CNN

for tumor localization, enabling deeper tissue analysis [11]. This approach allows for iden-

tifying specific regions within the image that are likely to be cancerous, providing valuable
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information for diagnosis and treatment planning.

Jaber et al. adopted a similar patch-level CNN approach to classify breast cancer

subtypes [12]. By focusing on specific regions within the image, this approach can identify

subtle differences between different breast cancer subtypes, providing more detailed and

accurate classification results.

Li et al. used a patch screening method with a CNN and clustering methods for

different tumor types [13]. This approach combines the strengths of CNNs and clustering

algorithms, allowing for identifying different tumor types within the same image.

Farahmand et al. and Couture et al. used transfer learning approaches to determine

breast cancer grades and predict specific tumor grades, respectively [14, 15]. Transfer

learning involves using a pre-trained model on a new problem, allowing for faster training

and potentially better performance, especially when the available data is limited.

Ye et al. incorporated a transfer learning method to address data imbalance, im-

proving classification results using a VGG-19 model pre-trained on ImageNet weights [16].

This approach allows for using a large, diverse dataset to pre-train the model, which can

then be fine-tuned for the specific task of breast cancer classification.

However, these studies primarily trained and tested their networks on publicly avail-

able H&E image datasets. While these datasets are valuable for developing and testing

new methods, they may generalize poorly to other data types, such as DUV images. DUV

images present unique challenges due to their relative novelty and the limited number of

subjects available for study.

To overcome this challenge, this study proposes a novel approach that combines

patch-level classification using transfer learning with regional importance maps generated
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through Grad-CAM++. By dividing the DUV Whole Surface Images into small, non-

overlapping patches, the network can learn better generalizations, boosting the training

data at the patch level and helping localize cancer regions in DUV Whole Surface Images

for margin evaluation. The performance accuracy of this approach is tested by classifying

60 images at the Whole Surface Image level. This approach aims to leverage the strengths

of deep learning and transfer learning to improve the accuracy and interpretability of breast

cancer classification in DUV images.

2.2 Background

Convolutional Neural Networks (CNNs) are a specialized kind of neural network

for processing data with a grid-like topology, such as an image that can be thought of as

a 2D grid of pixels. CNNs have succeeded incredibly in fields such as image and video

recognition, recommender systems, and natural language processing [17].

The critical aspect of CNNs is their ability to exploit spatial correlations within

the input data. They achieve this by applying filters and pooling layers, which systemati-

cally reduce the dimensionality of the input data while preserving its hierarchical structure.

This makes CNNs particularly effective for object detection and recognition within images,

where the object of interest can be anywhere in the image.

A typical CNN consists of an input layer, multiple hidden layers, and an output

layer. The hidden layers often include a series of convolutional layers, pooling layers, fully

connected layers, and normalization layers.

Convolutional Layer

This is the core building block of a CNN. The layer’s parameters consist of a set

of learnable filters (or kernels), which have a small receptive field, but extend through the
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Figure 2.1: An example of how a convolution layer works with a 3x3 kernel that outputs a
new feature map

Figure 2.2: An example of how max pooling works with an input feature map that has four
sub-regions

full depth of the input volume. During the forward pass, each filter is convolved across the

width and height of the input volume, computing the dot product between the filter entries

and the input and producing a 2-dimensional activation map of that filter. As a result, the

network learns filters that activate when it detects some specific type of feature at some

spatial position in the input.

Pooling Layer

The layers of pooling (or subsampling) reduce the input volume’s spatial dimen-

sions (width and height). They are used to decrease the computational complexity, control

overfitting, and make the network invariant to small translations. A commonly used pool-

ing strategy is max pooling, which extracts subregions of the input (e.g., 2x2 pixels) and

keeps only the maximum value.
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Figure 2.3: Simple visualization of a Fully Connected Layer in a convolutional neural
network

Fully Connected Layer

Fully connected layers connect every neuron in one layer to every neuron in another

layer. It is the same as the traditional Multi-Layer Perceptron (MLP). The fully connected

layer is usually the final layer that uses the previous layers’ high-level features to perform

classification.

Normalization Layer

Normalization layers, such as Batch Normalization, are used to normalize the ac-

tivations of a given input volume before passing it to the next layer. It helps improve the

speed, performance, and stability of the network.

ResNet and DenseNet

Two specific types of CNNs, ResNet, and DenseNet, are utilized in this study.

ResNet, or Residual Network, introduces the concept of skip connections, or shortcuts,

to enable the training of much deeper networks [18]. The core idea of ResNet is to intro-

duce these shortcuts that skip one or more layers. This allows the model to learn an identity

function that ensures the higher layer will perform at least as well as the lower layer and
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Figure 2.4: A simplified workflow of how batch normalization is applied to inputs

Figure 2.5: Top level block diagrams of a) ResNet50, and b) DenseNet169 models used in
this study

not worse. This helps to combat the problem of vanishing gradients, a common issue in

deep neural networks where the gradients of the loss function approach zero, making the

network hard to train.

DenseNet, or Densely Connected Convolutional Networks, extends the concept of

ResNet [19]. In DenseNet, each layer is connected directly to every other layer in a feed-

forward fashion. This dense connectivity pattern encourages feature reuse throughout the

network and significantly reduces the number of parameters, making the network more

efficient. In this study, DenseNet169, a variant of DenseNet, is used to generate regional
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importance maps for the DUV Whole Surface Images.

2.2.1 Microscopy with UV Surface Excitation for Breast Cancer Classification

Microscopy with UV surface excitation (MUSE) is a cutting-edge, non-destructive

imaging technology that has demonstrated potential in medical imaging. MUSE employs

multiple fluorescence dyes to stain fresh, unfixed tissue, generating fluorescence images

with microscopic resolution, sharpness, and contrast [20]. However, earlier research indi-

cated that further development was necessary for MUSE to apply in breast surgical proce-

dures.

MUSE has been advanced to include a fully automated three-dimensional (3D) sam-

ple translation, facilitating the imaging of fresh tissue at a rate of 5 minutes per square

centimeter. This advancement also incorporated an algorithm capable of creating a fluo-

rescent analog of conventional H&E images [21]. This progress demonstrated that MUSE

could provide microscopic visualization of breast margin surfaces at speeds suitable for

intraoperative use.

A study explored the potential of MUSE as an intraoperative tool for margin as-

sessment during BCS [22]. The aim was to identify the features of MUSE images that

could distinguish fresh, unprocessed malignant from normal/benign breast tissues, assess

the technology’s accuracy, and determine the speed at which a breast tissue sample could

be surveyed. To achieve adequate accuracy and time efficiency required in a clinical setting

for margin assessment, a combination of deep ultraviolet (DUV) excitation and low mag-

nification with a slightly reduced spatial resolution was utilized to achieve a faster imaging

speed.

The findings demonstrated that a low-cost deep-ultraviolet fluorescence scanning
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microscope (DUV-FSM) could rapidly image fresh breast tissues with excellent contrast

at a resolution sufficient to resolve cells of different tissue types. Visual interpretation of

MUSE images could achieve excellent sensitivity and specificity in distinguishing invasive

cancer from normal breast tissue. Furthermore, the nuclear–cytoplasm ratio (N/C) could

be used for quantitative assessment to differentiate cancer from normal breast tissue.

The images generated by MUSE can be utilized for breast cancer classification.

These images’ high contrast and resolution allow for accurately identifying and localizing

cancerous cells within the tissue. This capability, combined with the speed at which MUSE

can image a tissue sample, makes it a promising tool for real-time intraoperative margin

assessment during BCS. This could reduce the need for additional surgeries and improve

patient outcomes. Thus, automated breast cancer classification can aid in the real-time

detection of breast cancer tissues during BCS.

2.2.2 Transfer Learning

Transfer learning is a machine learning method using a pre-trained model on a new

problem [23]. It is a popular approach in deep learning where pre-trained models are used

as the starting point for computer vision and natural language processing tasks. Transfer

learning has the benefit of decreasing the training time for a neural network model and can

result in lower generalization errors.

This study uses transfer learning to extract convolutional features from DUV Whole

Surface Images’ patches using a pre-trained ResNet50 model with ImageNet weights. Ima-

geNet is an extensive database of annotated images designed for use in visual object recog-

nition research. Using a pre-trained model on ImageNet, the study can leverage the model’s

ability to recognize low-level features (like edges and textures) and high-level features (like
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shapes or objects) from the images. These extracted features are then used to train an XG-

Boost classifier for patch-level classification.

2.2.3 XGBoost

XGBoost, short for eXtreme Gradient Boosting, efficiently implements the gradient

boosting framework. Gradient boosting is a machine learning technique for regression and

classification problems, which produces a prediction model in the form of an ensemble of

weak prediction models, typically decision trees[24]. XGBoost improves upon the base

Gradient Boosting Machines (GBM) framework by adding a regularization term to the loss

function to control the model’s complexity, making the model less likely to overfit.

XGBoost is known for its execution speed and model performance. Its features

are designed to make it efficient and flexible, such as parallelizable tree building, handling

sparse data and missing values, and the ability to customize the optimization objective

and evaluation metrics. This study uses XGBoost to classify the extracted features into

malignant or benign classes.

2.2.4 Grad-CAM++

Gradient-weighted Class Activation Mapping++ (Grad-CAM++) generates visual

explanations for decisions from various CNN-based models [25]. It is an extension of the

Grad-CAM method, which uses the gradient information flowing into the last convolutional

layer of the CNN to understand each neuron for a decision of interest. Grad-CAM++

improves upon this by providing more fine-grained saliency maps and works with a broader

range of CNN model architectures.

Grad-CAM++ uses the gradients of any target concept (e.g., logits for ’dog’ or even

a caption), flowing into the final convolutional layer to produce a coarse localization map



20

Figure 2.6: Top-level diagram of how the process for Grad-CAM++ works with an input
image and a trained convolutional neural network.

highlighting the critical regions in the image for predicting the concept. These localization

maps, also known as heatmaps, provide visual explanations of the model’s decision by

highlighting the critical regions in the image for the prediction. This helps in understanding

what features the model focuses on to make its decisions.

In this study, Grad-CAM++ generates regional importance maps for the DUV Whole

Surface Images, highlighting the most critical areas for the classification decision. This

visually explains the model’s decision, making it easier to understand and interpret its pre-

dictions.

By combining these techniques, this study aims to enhance the robustness of breast

cancer classification in DUV Whole Surface Images and potentially improve real-time as-

sessment of margin status during breast cancer surgery. The proposed method leverages

the power of deep learning, transfer learning, and visual explanations to achieve high clas-

sification accuracy and provide interpretable results.
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CHAPTER 3
METHODS

3.1 Data Collection

This study comprises 60 DUV images, including 24 normal/benign and 36 malig-

nant samples. These images were collected from the Medical College of Wisconsin (MCW)

tissue bank using a custom DUV Fluorescence Scanning Microscopy (DUV-FSM) system

[5]. The data preprocessing steps for the imaging system that captured images of the DUV

samples involve several stages to ensure accurate and enhanced visualization of the tissue

surfaces.

To begin with, an inverted fluorescence microscope was transformed into a DUV-

FSM system by integrating a 285nm LED and a fused silica ball lens. The LED was

positioned on the right side of the microscope to provide oblique back illumination for the

samples. A 325nm short-pass filter was placed in front of the LED to block emission spec-

trum tails in the visible range, preventing any potential overlap with fluorescence signals

from the samples. The fused silica ball lens served as a condenser, converging the LED

radiation to achieve a smaller illumination field with improved power density. These com-

ponents were housed within a lens tube mounted on an adjustable arm for easy positioning.

The power density of the LED light at the tissue surface was measured at 9.4mW/cm.

For imaging a lumpectomy specimen, the specimen was placed on one of its six

margins in a quartz dish to minimize autofluorescence from the glass. The quartz dish had

a diameter of 70mm and a thickness of 1.0mm. It was mounted on a motorized XY stage

designed explicitly for fast mosaic imaging. This stage allowed for precise scanning of the

specimen in a large area. The microscope’s excitation/emission filter block was switched
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to the open position, enabling the capture of fluorescent signals from multiple fluorophores

using a color camera without switching emission filters during the imaging process.

A cooled USB 3.0 camera with a large image sensor, large pixel size, low dark

noise, and high image transfer speed was employed for image acquisition. The camera

had dimensions of 2748× 2200pixels, with a pixel size of 4.54µm and an active area of

14.6×12.8mm. To balance good lateral resolution (2 to 3µm) and a large effective imaging

area of 3.48× 2.78mm, a 4×apochromatic long working distance objective lens with a

numerical aperture of 0.13 was selected. The field-of-view (FOV) of the objective lens was

slightly larger than the imaging area of the camera to avoid distortions at the edge of the

FOV. The microscope was enclosed in a dark enclosure to prevent exposure to DUV light

and eliminate the background from room light.

Before imaging the specimens, they underwent staining using propidium iodide

(PI) for nuclear staining and eosin Y (EY) for staining of cytoplasm and connective tis-

sues. Both PI and EY were capable of effective excitation at 285nm. Staining was car-

ried out by dissolving PI and EY in pH 7.2 phosphate-buffered saline (PBS) to 100µg/ml

and 1.0mg/ml, respectively. Each specimen was sequentially stained in PI solution for 1

minute, followed by EY solution for 20 seconds, then rinsed in PBS for 10 seconds. After

staining, the specimen was placed on the quartz plate of the specimen holder. Air bubbles

between the tissue and plate were gently removed by flattening the tissue using a broad

pallet knife. Excess liquid on the edges was carefully removed using a Kimwipe. Only

images from one side of the samples were included in the data analysis, as both sides were

thin and similar.

The specimen holder, containing the tissue specimen, was immobilized on the mo-
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torized XY stage, with the focal plane set at the bottom surface of the specimen. Mosaic

images were captured with overlapping regions of 0.75mm in the X direction and 0.60mm

in the Y direction, striking a balance between speed and stitching accuracy. The number of

scanning steps depended on the size of the specimen, the effective imaging area, and the

chosen dimensions for overlapping. The camera temperature was set to −18C to minimize

electronic noise. Customized software developed in Microsoft Visual C#.NET controlled

image acquisition and motor movements. The acquired images of each specimen, captured

with a constant exposure time ranging from 50 to 100ms, depending on the tissue type,

were saved in TIFF format with dimensions of 2748×2200 pixels.

After imaging, the raw images were transformed into the hue-saturation-lightness

(HSV) color space. The Fiji open-source image processing package was utilized for pro-

cessing the tissue images. The saturation and lightness channels of the images underwent

background and shading correction using a Fiji plugin called BaSiC. This correction com-

pensated for any uneven and tilted illumination caused by the DUV LED. The color space

transformation was necessary to maintain the original color information during the illumi-

nation correction. Subsequently, the images were transformed back into the red-green-blue

(RGB) color space.

To stitch the mosaic images together seamlessly, a Fiji plugin was used to ensure the

comprehensive combination of the captured images, resulting in a holistic view of the tissue

surface. Finally, histogram equalization was applied to the red and green color channels of

the stitched image to enhance visual contrast and improve the overall quality of the image.

In summary, the data collection steps for the DUV imaging system involved sample

preparation, image acquisition with mosaic scanning, color space transformation, back-
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Extracted Patches DUV Whole Surface Images
Number of Patches Number of Samples

Normal/Benign 25,024 Normal/Benign 24
Malignant 9,444 Malignant 36

Total 34,468 Total 60

Table 3.1: Dataset Information: Extracted Patches provide the number of patches that were
extracted for normal/benign and malignant. DUV Whole Surface Images provides several
samples for normal/benign and malignant.

Figure 3.1: Overview of the proposed method: The Whole Surface Images are divided into
patches to boost the dataset and localize cancer detection. With a pre-trained ResNet50
model, the convolutional features are extracted for each patch and used to train an XGBoost
classifier for patch-level classification. Grad-CAM++ on a pre-trained DenseNet169 model
calculates the regional importance map for the DUV Whole Surface Images. The patch-
level classification results are merged with the regional importance map in a decision fusion
for the Whole Surface Images-level prediction.

ground, shading correction, image stitching, and contrast enhancement. These steps en-

sured accurate visualization and improved the quality of the captured DUV images for

further analysis.

3.2 Method

Fig. 3.1 describes the proposed breast cancer classification method for DUV image

margin assessment. First, DUV Whole Surface Images are divided into patches to enhance

the dataset and localize cancerous regions. A pre-trained ResNet50 model [18] extracts

convolutional features for each patch, which are then used to train an XGBoost classifier
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[26] for patch-level classification. The regional importance map for a DUV Whole Surface

Image is calculated using Grad-CAM++ [25] on a pre-trained DenseNet169 model [19].

Finally, the patch-level classification results merge with the regional importance map in a

decision fusion for the Whole Surface Image-level prediction.

3.2.1 Patch Extraction

The first step in our method involves dividing a Deep Ultraviolet (DUV) Whole

Slide Image into multiple DUV patches. Each DUV Whole Surface Image, denoted as xi,

is divided based on a 2D grid system designed around each sample’s field of view (FOV)

Ωi with non-overlapping patches Ω
j
i . This process is mathematically represented as:

Ωi = ∪N
j=1Ω

j
i ,andΩ

k
i ∩Ω

l
i = /0 f or∀k, l, (3.1)

where N represents the total number of patches in xi, and k and l represent any

patch indices. Since each DUV Whole Surface Image has different dimensions, the im-

ages are resized to the closest dimensions divisible into non-overlapping patches Ω
j
i with a

constraint size of 400× 400 pixels. The minimal alterations to the dimensions should not

affect the quality of the morphological characteristics, such as cell density and infiltration,

because the DUV Whole Surface Images are enormous. The patch images are extracted

from each non-overlapping patch Ω
j
i of a DUV Whole Surface Image. To determine the

validity of a patch, it is converted to grayscale, and its pixels are analyzed. If most of the

pixels in the patch Ω
j
i are at least 80% foreground, then it is counted as a valid patch p j

i . A

pixel is a foreground if its grayscale value is greater than 5. It is important to remove the

dark background to help with the localization and detection of breast cancer. This process
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is shown in Algorithm 1 ExtractPatches, and Algorithm 2 GetPercentage.

Algorithm 1 ExtractPatches is used to extract foreground patches for each DUV Whole
Surface Image.

xi← DUV Whole Surface Image sample i
Ωi← 2D grid system on each sample’s FOV
Ω

j
i ← Non-overlapping patch with 400×400 pixels

p j
i ← valid patch image

M← number of DUV Whole Surface Image samples
for i < M do

Load in sample xi
for Ω

j
i in Ωi do

if GetPercentage(Ω j
i ) ≥ 0.2 then

Save Ω
j
i as valid patch p j

i for Ωi
end if

end for
end for

Algorithm 2 GetPercentage is used to determine the foreground percentage of a patch.
BackgroundThreshold← 5
ImageSize← 400×400 pixels
PixelCounter← 0
for x < 400 do

for y < 400 do
if Image[x][y] ≥ BackgroundThreshold then

PixelCounter← PixelCounter+1
end if

end for
end for
return PixelCounter/ImageSize

3.2.2 Patch Classification with Transfer Learning

Convolutional neural networks (CNNs) have become a cornerstone in image clas-

sification, particularly in medical imaging, where they have shown great promise in diag-

nosing diseases. CNNs, such as ResNet, are designed to automatically and adaptively learn

spatial hierarchies of features from the input images. However, deep architectures like

ResNet can suffer from the ’vanishing gradient’ problem. This issue arises when the back-
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propagation of errors during the training process results in the gradients of the loss function

becoming infinitesimally small. As the network depth increases, these small gradients can

cause information loss, preventing the network from learning effectively.

To overcome this challenge, this study employs a transfer learning approach for

patch classification. Transfer learning is a machine learning technique using a pre-trained

model on a new problem. It is a popular approach in deep learning because it allows us to

build accurate models in a time-saving way. This study uses transfer learning to determine

whether each patch is malignant or normal/benign for all N DUV patches p j
i , j = 1, . . . ,N.

The combination of transfer learning with the ResNet50 model and the XGBoost

classifier allows for determining the tumor regions of interest (ROI) in the DUV Whole

Surface Images. This determination is based on y j
i with the relative patch locations. The

proposed method can provide more accurate and localized predictions by focusing on these

regions, enhancing the overall classification performance.

Deep Residual Learning with ResNet50

Residual learning is a crucial concept in ResNet architecture. It is based on learning

the residual, or difference, between the input and output of a stack of layers rather than

learning the original mapping directly. This is represented as H (x)− x, where H (x) is

the desired underlying mapping to be learned by the layers, and x is the input to the first of

these layers.

The motivation behind residual learning is to address the degradation problem,

where the network’s performance degrades with the increase in depth. This problem arises

due to the difficulty in approximating identity mappings by multiple non-linear layers. By

reformulating the problem to learn the residual function, the network can more easily ap-
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Figure 3.2: A block diagram of a residual block that features the shortcut connection with
identity mapping

proximate the identity mapping by driving the weights of the multiple non-linear layers

toward zero.

In practice, while identity mappings may not always be optimal, the residual learn-

ing reformulation helps to precondition the problem, making it easier for the solver to find

perturbations concerning an identity mapping.

In the ResNet architecture, identity mapping is achieved through shortcut connec-

tions, which skip one or more layers. These connections are added to the residual function’s

output, forming the block’s final output. This is represented as y = F (x,{Wi})+x, where

y is the output vector of the layers, F (x,{Wi}) is the residual mapping to be learned, and

x is the input vector.

The shortcut connections introduce neither extra parameters nor computation com-

plexity, making them an attractive feature of the ResNet architecture. They also allow

for a fair comparison between plain and residual networks that have the same number of
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parameters, depth, width, and computational cost.

In cases where the dimensions of x and F are not equal, a linear projection Ws can

be performed by the shortcut connections to match the dimensions. However, experiments

have shown that identity mapping is sufficient for addressing the degradation problem and

is economical, so Ws is only used when necessary to match dimensions.

The form of the residual function F is flexible and can represent multiple convo-

lutional layers. The element-wise addition is performed on two feature maps, channel by

channel, allowing the network to learn complex hierarchical features directly from the data.

This approach extracts the features from the final layer of a pre-trained ResNet50

network on the ImageNet dataset. ImageNet is an extensive database of annotated images

designed for use in visual object recognition software research. The ResNet50 model,

pre-trained on this dataset, has already learned to recognize various features from various

images. We can leverage these learned features for classifying DUV patches using this

pre-trained model.

Understanding XGBoost

The extracted features from the DUV patches are then fed into an XGBoost clas-

sifier. XGBoost, short for eXtreme Gradient Boosting, efficiently implements the gradient

boosting framework. It is known for its speed and performance, outperforming other algo-

rithms in machine learning competitions and applied work. It leverages creating a model

as an ensemble of weak prediction models, typically decision trees. The model is trained

in an additive manner, where new models are added to correct the errors made by existing

models. The XGboost classifier predicts the binary output y j
i ∈ −1,+1 as malignant or

normal/benign for each patch p j
i .
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Figure 3.3: Example of how classification and regression trees (CART) work for gradient
trees like XGBoost.

The tree ensemble model is a critical component of the XGBoost algorithm. It is

an additive model that combines the predictions of multiple base learners (in this case,

decision trees) to generate the final output. The model is defined as follows:

ŷi = φ (xi) =
K

∑
k=1

fk (xi) , fk ∈F

In this equation, φ (xi) represents the prediction for the i-th instance, and fk (xi)

represents the k-th base learner (a decision tree) in the ensemble. The base learners are

functions from the function space F , the space of all possible decision trees. Each base

learner fk corresponds to an independent tree structure and leaf weights.

The ensemble model makes its prediction ŷi, for instance, xi by summing up the

predictions of all the base learners. This is an additive model, meaning that each base

learner contributes to the final prediction independently of the others. The goal of the
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learning process is to find the set of base learners that minimize the regularized objective

function.

The learning objective in XGBoost is a regularized objective function that combines

a differentiable convex loss function and a regularization term. The loss function measures

the difference between the prediction and the target, while the regularization term penal-

izes the complexity of the model, helping to avoid overfitting. The regularization term is

crucial as it encourages the model to use simple and predictive functions, making it more

interpretable and less prone to overfitting.

Here, l (ŷi,yi) is the loss function that measures the difference between the predic-

tion ŷi and the target yi, and Ω( fk) is the regularization term that penalizes the complexity

of the base learner fk. The goal of the learning process is to find the set of base learners

that minimize this regularized objective function.

The regularized learning objective is defined as:

L (φ) = ∑
i

l (ŷi,yi)+∑
k

Ω( fk) where Ω( f ) = γT +
1
2

λ∥w∥2

Here, l is the loss function, Ω is the regularization term, γ is the complexity control

parameter, T is the number of leaves in the tree, λ is the L2 regularization term on weights,

and w is the vector of scores on leaves.

In XGBoost, the model is trained using a second-order gradient boosting algorithm.

This involves iteratively adding new functions to the model that most improve the regular-

ized objective function. The improvement is approximated using a second-order Taylor

expansion, which provides a good approximation for a wide range of loss functions.
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The objective function at each step is given by:

L (t) =
n

∑
i=1

[
gi ft (xi)+

1
2

hi f 2
t (xi)

]
+Ω( ft)

Here, gi and hi are the first and second-order gradients of the loss function, and ft

is the function to be added at the t-th iteration.

XGBoost also incorporates two additional techniques to prevent overfitting: shrink-

age and column subsampling. Shrinkage scales the contribution of each tree by a factor af-

ter each boosting step, reducing the influence of each tree and leaving space for future trees

to improve the model. Column subsampling is a technique used to prevent overfitting and

speed up computations, where a subset of features is randomly sampled for each tree. This

technique is similar to the one used in Random Forests and effectively prevents overfitting.

3.2.3 Calculation of Regional Importance with Grad-CAM++

Grad-CAM++ is a method that provides visual explanations for the decisions made

by a model, making it a valuable tool in the realm of explainable artificial intelligence.

When applied to deep neural networks, Grad-CAM++ can visualize gradients with pixel-

wise weighted feature maps, explaining the decisions made at the output layer while con-

sidering the spatial information and high-level semantics from the preceding convolutional

layers. Given the complexity of the details in the patches and the DUV images, applying

Grad-CAM++ to a network that can retain as much information as possible is crucial.

DenseNet’s unique connectivity pattern and feature concatenation make it suitable

for applying Grad-CAM++. One of the unique aspects of DenseNet is that it eliminates

redundant feature maps after the concatenation of the feature maps, which results in fewer
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parameters. By concatenating these feature maps from different feature maps, it increases

the variation in the inputs of the subsequent layers. The bottleneck and compression lay-

ers of the DenseNet architecture are effective against overfitting due to fewer parameters

needed. The bottleneck layers help reduce the number of inputs from previous k-output

feature maps, which improves computational efficiency. For the compression layers, they

improve model compactness by reducing the feature maps that a dense block generates.

The feature maps will overlap at the last output layer, highlighting the most relevant fea-

tures which benefit Grad-CAM++. These characteristics make DenseNet a practical choice

for generating visual explanations with Grad-CAM++ in complex image analysis tasks,

such as those involving DUV images.

DenseNets: An Overview

Dense Convolutional Networks, or DenseNets, are a type of convolutional neural

network (CNN) that are unique in their connectivity pattern. Unlike traditional CNNs,

where each layer is only connected to the next layer, DenseNets connect each layer to

every other layer in a feed-forward fashion. This dense connectivity pattern has several key

advantages, including improved gradient flow, encouraging feature reuse, and substantially

reducing the number of parameters.

In a DenseNet, the ℓth layer receives the feature-maps of all preceding layers,

x0,x1, . . . ,xℓ−1, as input:

xℓ = Hℓ ([x0,x1, . . . ,xℓ−1])

This dense connectivity pattern dramatically improves the flow of information and
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Figure 3.4: A diagram of how a Dense Block has its layer connected in the forward pass
with all previous layers combined

gradients throughout the network, which makes the optimization of very deep networks

tractable. Each layer has direct access to the gradients from the loss function and the

original input signal, leading to implicit deep supervision, as seen in Fig. 3.4.

Each layer in a DenseNet consists of a composite function of three consecutive

operations: batch normalization (BN), followed by a rectified linear unit (ReLU), and a

3×3 convolution (Conv). This sequence of operations is applied to the concatenated output

of all preceding layers.

DenseNets are divided into multiple densely connected dense blocks. Layers be-

tween these blocks, referred to as transition layers, change the size of feature maps and are

used to perform down-sampling. These transition layers consist of a batch normalization

layer, a 1×1 convolutional layer, and a 2×2 average pooling layer.

The growth rate of a DenseNet, denoted as k, refers to the number of feature maps

that each layer contributes to the global state of the network. A relatively small growth rate

is sufficient to obtain state-of-the-art results, as each layer has access to all the preceding

feature maps in its block and, therefore, to the network’s ”collective knowledge.”

To improve computational efficiency, a 1× 1 convolution can be introduced as a

bottleneck layer before each 3×3 convolution to reduce the number of input feature maps.
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The number of feature maps can be reduced at transition layers to improve model compact-

ness further. This is achieved by introducing a compression factor 0 < θ ≤ 1. When θ = 1,

the number of feature maps across transition layers remains unchanged. DenseNets with

θ < 1 are referred to as DenseNet-C, and DenseNets with both bottleneck and transition

layers with θ < 1 are referred to as DenseNet-BC.

In DenseNet implementations, the network is divided into three dense blocks, each

having an equal number of layers. Before entering the first dense block, a convolution

with 16 output channels is performed on the input images. For convolutional layers with

kernel size 3× 3, each side of the inputs is zero-padded by one pixel to keep the feature-

map size fixed. Transition layers between two contiguous dense blocks consist of a 1× 1

convolution followed by 2×2 average pooling. At the end of the last dense block, a global

average pooling is performed, followed by the attachment of a softmax classifier. The

feature-map sizes in the three dense blocks are 32× 32,16× 16, and 8× 8, respectively.

These feature maps allow an explainable artificial intelligence tool such as Grad-CAM++

to help visualize model predictions.

Grad-CAM++ Extraction of Feature Maps

Grad-CAM++ extracts weight maps from feature maps using a series of equations.

The final classification score is defined as Y c for class c as a linear combination of global

average pooled convolutional feature maps Ak in the last layer over the FOV Ωi:

Y c = ∑
k

wc
k. ∑

l∈Ωi

Ak
l (3.2)

The gradient of the classification score Y c for class c before the softmax layer con-
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cerning the final convolutional layer feature map activation Ak is defined as ∂Y c

∂Ak . The

weights wc
k for a particular feature map Ak are defined by its global average pooled gra-

dients:

wc
k =

1
Z ∑

l∈Ωi

∂Y c

∂Ak
l
, (3.3)

where Z represents the activation map’s number of pixels.

With Grad-CAM implementations, visualizations are limited if there are multiple

instances of a class in the input image xi, as different spatial footprints of classes can cause

different feature maps. The feature maps with small footprints will not be seen in the final

saliency map.

To address this issue, a weighted average of pixel-wise gradients can be taken in-

stead, where Eq. 3 is restructured as:

wc
k = ∑

l∈Ωi

α
kc
l .ReLU(

∂Y c

∂Ak
l
), (3.4)

where ReLU is the rectified linear unit activation function and αkc
l correspond to

the pixel-wise gradients for class c and convolutional feature map Ak.

The gradient weights αkc
l can be derived for a particular class c and activation map

Ak. Combining Eq. 2 and Eq. 3:

Y c = ∑
k
{∑

l∈Ωi

α
kc
l .ReLU(

∂Y c

∂Ak
l
)}[ ∑

l∈Ωi

Ak
l ] (3.5)

Without a threshold need, the ReLU can be removed from the derivation since there
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is no loss of generality. Hence:

∂ 2Y c

∂ (Ak
l )

2
= 2.αkc

l .
∂ 2Y c

∂ (Ak
l )

2
+ ∑

l∈Ωi

Ak
l {α

kc
l .

∂ 3Y c

∂ (Ak
l )

3
} (3.6)

To isolate αkc
l , Eq. 6 is rearranged:

α
kc
l =

∂ 2Y c

(∂Ak
l )

2

2 ∂ 2Y c

(∂Ak
l )

2 +∑l∈Ωi Ak
l

∂ 3Y c

(∂Ak
l )

3

(3.7)

The Grad-CAM++ weights are calculated by substituting Eq. 7 in Eq. 4:

wc
k = ∑

l∈Ωi

[

∂ 2Y c

(∂Ak
l )

2

2 ∂ 2Y c

(∂Ak
l )

2 +∑l∈Ωi Ak
l

∂ 3Y c

(∂Ak
l )

3

].relu(
∂Y c

∂Ak
l
) (3.8)

The regional importance map Ri for a DUV Whole Surface Image xi is computed

using a linear combination of forward activation maps.

Ri = ReLU(∑
k

wc
k.A

k
l ), (3.9)

This highlights the most significant features in the final classification with a positive

correlation with pixel intensity and classification score by applying the ReLU function to

a linear combination of activation maps. In this study, the Grad-CAM++ implementation

is applied to a pre-trained DenseNet169 model with ImageNet weights and extracts the

feature map as the regional importance map at the Norm5 layer. The architecture of the

DenseNet169 model can be visualized in Fig. 2.



38

3.2.4 Whole Surface Image Decision Fusion

A decision fusion approach achieves the classification of Whole Surface Images.

This process takes into account both the classification labels at the patch level, denoted as

y j
i ∈ +1,−1 for all patches j = 1, . . . ,Mi, and the regional importance map, Ri. Initially,

the regional importance, r j
i , for each patch p j

i is computed by averaging the values of Ri

over the field of view (FOV) Ω
j
i of the patch.

r j
i =

1

|Ω j
i |

∑
l∈Ω

j
i

Ri
l, (3.10)

Here, |Ω j
i | represents the total pixel count for each patch, which is 400× 400 pixels. A

weight, w j
i , is then assigned to each patch p j

i , based on the thresholded regional importance

value r j
i .

w j
i =


0 if r j

i < 0.25

r j
i otherwise

(3.11)

This weighting strategy disregards patches of low importance, whether malignant or

normal/benign, in the final decision for a DUV Whole Surface Image. Subsequently, each

patch’s value u j
i is computed by multiplying the patch-level classification label y j

i ∈+1,−1

and its corresponding weight w j
i .

u j
i = w j

i · y
j
i , (3.12)
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The total count of malignant patches, Hi, is then calculated,

Hi = ∑
j=1


1 if u j

i > 0

0 otherwise

, (3.13)

Finally, the Whole Surface Image-level classification label yi ∈ −1,+1 is deter-

mined by comparing Hi to a specific percentage q of the total foreground patches Mi.

yi =


+1 if Hi > q ·Mi,0≤ q≤ 1

−1 otherwise

(3.14)

This equation represents the positive (malignant) and negative (benign) values by +1 and

−1, respectively. This final step ensures that the Whole Surface Image level classification

considers the overall distribution of malignant and benign patches within the Whole Surface

Image, providing a more accurate and robust classification result.
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CHAPTER 4
EXPERIMENT AND RESULTS

4.1 Experimental Setup

The experimental setup for this study involved automated DUV Whole Surface Im-

age classification in discerning between malignant and normal/benign tissue samples. The

proposed method was evaluated using a 5-fold cross-validation process. In this process,

the DUV Whole Surface Image data was divided while maintaining a balance in class la-

bels. Care was taken to ensure that specific patient samples were either in the training or

testing data splits, but not both. The pre-trained ResNet50 model with ImageNet weights,

used in the Transfer Learning part of the study, needed to be fine-tuned. Similarly, the

pre-trained DenseNet169 model with ImageNet weights, used for the Regional Importance

Calculation, underwent no hyperparameter tuning. The XGBoost classifier’s hyperparame-

ters were left at their default settings, with no adjustments made. The proposed method was

benchmarked against a standard ResNet50 model and a Patch Classification with a Major-

ity Voting approach. The ResNet50 model was trained for 100 epochs on the limited DUV

Whole Surface Image data, using a batch size of 4, a learning rate of 0.006, and a dropout

rate of 40%. Hyperparameter tuning was performed for the ResNet50 model. The Patch

Classification with a Majority Voting approach was derived from the architecture of the

proposed method’s patch classification and transfer learning portion. This approach was

enhanced with a patch majority voting scheme for binary classification between malignant

and normal/benign for the Whole Surface Images. The hardware used for this research

included an AMD Threadripper 2960x and an NVIDIA 2080ti graphics card. This setup

provided the computational power necessary for the resource-intensive tasks of training
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and testing the machine learning models. The primary machine learning library used in

this study was PyTorch version 2.00.00. PyTorch is a widely-used open-source machine

learning library that offers a range of tools and functionalities for developing and train-

ing machine learning models. Its flexibility and efficiency made it an ideal choice for this

research.

4.2 Visual Inspection

The visual inspection process is a crucial part of the proposed method, providing a

qualitative evaluation of the breast cancer location and detection results on various DUV

images. This process involves examining the Grad-CAM++ influenced results, highlighted

as red (malignant) and green (benign) patches on the DUV images, indicating areas of high

importance for the classification task.

Fig. 4.1 presents these results, with the last column showing the DUV images over-

laid with the Grad-CAM++ influenced results. H&E images annotated by pathologists are

also displayed alongside their corresponding DUV images. This side-by-side comparison

directly evaluates the proposed method’s performance in identifying and localizing malig-

nant and benign areas in the DUV images.

Upon visual inspection, it is evident that the DUV images exhibit a higher color con-

trast between malignant (pink/yellow) and normal/benign (light/dark green) tissues com-

pared to the H&E images. This enhanced contrast is a crucial feature of DUV imaging

that aids in accurately locating malignant and benign areas in the DUV Whole Surface

Images. The Grad-CAM++ regional importance maps further enhance this localization by

highlighting the areas of the highest importance for the classification task.

The overlaid regions on the DUV Whole Surface Images, represented by red squares
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for malignant tissue and green for normal/benign adipose tissue, visually represent the pro-

posed method’s classification results. These overlaid regions demonstrate the effectiveness

of the decision fusion method combined with the regional importance maps in localizing

the regions of interest (ROI) for the Whole Surface Image level decision. The high degree

of prediction accuracy observed in these images underscores the efficacy of the proposed

method.

Furthermore, the visual inspection process reveals that the proposed deep learning

approach, combined with the patching strategy, can capture key pathological traits such

as high cell density and infiltration. This capability is particularly noteworthy given the

limited training data used in this study. Overall, the visual inspection process provides a

qualitative validation of the proposed method’s ability to accurately identify and localize

malignant and benign areas in DUV Whole Surface Images, highlighting its potential for

real-world clinical applications.

4.3 Classification Performance

The performance of the proposed method for binary classification of normal/benign

and malignant DUV Whole Surface Images was evaluated quantitatively using several met-

rics, including accuracy, sensitivity, specificity, and AUC score. The results of this evalu-

ation, conducted using 5-fold cross-validation across 60 DUV Whole Surface Images, are

presented in Fig. 4.1.

The accuracy, sensitivity, and specificity were calculated using the following equa-

tions where T P denotes true positives, T N denotes true negatives, FP denotes false posi-

tives, and FN denotes false negatives:
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(1) (2) (3)
Accuracy 81.7% 93.3% 95.0%
Sensitivity 91.7% 94.4% 100%
Specificity 66.7% 91.2% 87.5%

Table 4.1: 5-fold Cross-Validation Classification Performance on 60 DUV Whole Surface
Images: The proposed method (3) (Patch Classification with Regional Importance) signif-
icantly increases the classification accuracy, sensitivity, and specificity compared with the
standard ResNet50 approach (1), and Patch Classification with Majority Voting (2).

Accuracy =
T P+T N

T P+T N +FP+FN
, (4.1)

Sensitivity =
T P

T P+FN
, (4.2)

Speci f icity =
T N

T N +FP
, (4.3)

The proposed method (Patch Classification with Regional Importance) significantly

outperforms the standard ResNet50 approach and Patch Classification with Majority Vot-

ing, as shown in the table. Compared to the standard ResNet50, the proposed method im-

proves classification performance with a 13.3% increase in accuracy. The proposed method

also outperforms the ResNet50 in sensitivity, specificity, and AUC scores by 8.3%, 20.8%,

and 17.0%, respectively.

The ROC Curve of the proposed method, illustrated in Fig. 4.3, shows that the

AUC is 17% higher than with the ResNet50 model. Compared with Patch Classification

with Majority Voting, the proposed method outperforms by 1.7% and 5.6% for accuracy

and sensitivity, respectively. Although the proposed method has a specificity that is 3.7%

lower than another approach, it is still a good option for breast cancer classification.

The proposed method achieved a perfect sensitivity rate of 100% compared to the
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other approach. Sensitivity is crucial in detecting malignant cases, a primary concern in

breast cancer classification. The higher sensitivity rate of the proposed method makes

it a valuable option despite having slightly lower specificity. These metrics demonstrate

the advantage of the proposed method for intra-operative margin assessment, as it should

reduce the likelihood of breast cancer margins being undetected during BCS.

4.4 Misclassified Samples

Three normal/benign DUV Whole Surface Images that were incorrectly classified

as malignant are presented in Fig. 4.4. These misclassifications provide valuable insights

into the challenges and potential areas of improvement for the proposed method. The top

sample in Figure 6 is a mixture of fat and fibrotic breast tissue. The fibrotic tissue’s dense,

irregular, and bumpy nature likely contributed to its misclassification as malignant. This

suggests that the model may need further training to better distinguish between fibrotic and

malignant tissue. The middle sample contains a pool of bleeding, which likely led to its

misclassification. This indicates that the model may be sensitive to the presence of blood,

possibly interpreting it as a sign of malignancy. Future iterations of the model could ben-

efit from additional training data that includes examples of bleeding in benign samples.

The bottom sample was classified as normal/benign breast tissue with high fibro glandular

density, indicating dense breast tissue. However, it was misclassified as malignant by the

model. This suggests that the model may struggle to correctly classify samples with high

tissue density, potentially mistaking it for malignancy. It is important to note that other con-

founding factors may contribute to these misclassifications. Therefore, additional analysis

and validation are recommended to confirm these classifications and refine the model.
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Figure 4.1: DUV Whole Surface Images alongside corresponding H&E images and re-
gional importance maps for malignant and normal/benign samples: The areas of regional
importance, depicted in the 3rd column, are characterized by high entropy and rich seman-
tic content. These areas are emphasized to aid in the classification process. It is important
to note that these images are fed into a pre-trained DenseNet169 model with ImageNet
weights, and the heatmaps, which determine the relevance of tissue areas on a scale from
0 to 1, are extracted using Grad-CAM++. In the DUV Whole Surface Images (shown in
the last column), red and green bounding boxes represent malignant and normal/benign
patches, which are thresholded based on regional importance. For visualization, the large
DUV Whole Surface Images are scaled down.
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Figure 4.2: Confusion Matrix of the proposed method (Patch Classification with Regional
Importance).

Figure 4.3: ROC graph of the proposed method (Patch Classification with Regional Impor-
tance), ResNet50 approach, and Patch Classification with Majority Voting.
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Figure 4.4: Three misclassified DUV Whole Surface Images normal/benign samples from
the proposed approach. H&E image and regional importance map are shown for each
sample, respectively. Large DUV Whole Surface Images are scaled down for visualization.
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CHAPTER 5
DISCUSSION

5.1 Methodology and Results

The proposed method for breast cancer classification in DUV image margin as-

sessment demonstrated impressive performance, achieving an accuracy of 95% in deter-

mining DUV Whole Surface Images. Notably, it displayed a perfect sensitivity score

of 100% in detecting malignant cases. This high sensitivity is crucial in breast cancer

surgery, where missing malignant cases can have severe consequences. Another signifi-

cant strength is the method’s ability to accurately localize malignant and normal/benign

tissue areas. This localization is achieved through the use of regional importance maps

generated by the Grad-CAM++ algorithm. These maps highlight the most critical regions

in the image responsible for the classification decision, focusing on areas with the high-

est level of detail and semantic information within the DUV Whole Surface Image. This

approach allows the model to concentrate on the most relevant image regions that could

contain malignant or benign tissue, enhancing the accuracy of the classification. The pro-

posed method offers several advantages compared to standard deep-learning classification

methods on DUV breast surgical samples. It combines patch-level classification using a

transfer learning approach with regional importance maps, providing a more robust and ac-

curate representation of the input data. This ensemble learning-based approach effectively

utilizes the limited dataset available while minimizing overfitting, a critical aspect when

dealing with a small dataset like the one used in this study. The proposed method also

simplifies the task for surgeons by focusing on binary classification, assigning a malignant

or normal/benign label to each Whole Surface Image. This streamlined decision-making
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process is tailored for margin assessment during breast cancer surgery, making it easier

for surgeons to determine whether the margins are clear or require further resection. In

contrast, standard deep-learning methods, such as the ResNet50-based approach, classify

images into multiple tissue types. While this provides valuable information regarding the

tissue types present, it may not directly apply to margin assessment in the same way as

the proposed method, as it requires additional interpretation to decide the margin status.

Overall, the proposed method demonstrates the effectiveness of deep learning in accurately

identifying cancerous regions in DUV Whole Surface Images. Utilizing transfer learning,

a robust gradient-boosting algorithm, and regional importance maps paves the way for fur-

ther research and development in this area, potentially contributing to improved surgical

outcomes and reduced breast cancer re-excision rates after BCS.

5.2 Limitations and Challenges

Despite the promising results, this study has its limitations. One of the main chal-

lenges was the relatively small size of the dataset used, which consisted of only 60 images

available. This small sample size may limit the generalizability of the findings, as the

model’s performance on more extensive or diverse datasets still needs to be investigated.

Training a robust and accurate model on such a small dataset can be challenging, requiring

careful selection of training parameters and model architecture to prevent overfitting.

Another limitation lies in the complexity of the tissue samples. Many samples con-

tained mixed tissue types, meaning that the label assigned to each patch may only represent

a portion of the area within the patch. This complexity could complicate the classification

process. Furthermore, determining the optimal patch size remains an open question. Better

classification results could be achieved by identifying and using an optimal patch size that
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maximizes the model’s discriminatory power.

The dataset used in this study mostly contained samples that were either predom-

inantly benign/normal or malignant. Six samples exhibiting a complex mixture of be-

nign/normal and malignant tissues were disregarded for the sake of model training. While

this approach allowed the model to be trained on clean and pure samples, it may limit

the generalizability of the proposed method to samples with a greater complexity of be-

nign/normal and malignant tissues.

Consequently, further investigation of the model’s performance on more complex

and diverse samples is essential. This will help validate the proposed method’s efficacy and

robustness in real-world scenarios, ensuring it can accurately classify a wide range of tissue

samples. Despite these limitations, the study contributes to breast cancer classification,

demonstrating the potential of deep learning techniques in improving surgical outcomes.
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CHAPTER 6
CONCLUSIONS

6.1 Summary of Findings and Contributions

This study presented an innovative method for accurately assessing margins during

breast cancer surgery, leveraging the power of deep learning techniques. The proposed

methodology combined patch-level classification using transfer learning with regional im-

portance maps generated through Grad-CAM++. This approach focused on the most signif-

icant regions within DUV Whole Surface Images, assigning a malignant or normal/benign

label to each Whole Surface Image with increased confidence. The method was evalu-

ated on a dataset of 60 authentic DUV Whole Surface Images, achieving an impressive

classification accuracy of 95.0%. This result underscores the potential of the proposed

method for real-time assessment of margin status during breast cancer surgery and poten-

tially other types of cancer surgeries. The study’s contributions lie in its novel approach

to breast cancer classification in DUV Whole Surface Images, enhancing the robustness of

intra-operative margin assessment.

6.2 Implications for Clinical Practice

The proposed method has significant potential to impact clinical decision-making.

Providing real-time guidance to surgeons during operations can ensure more informed de-

cisions about resection margins, leading to more accurate surgical interventions and po-

tentially reducing the need for re-excision. Furthermore, the method can aid in devel-

oping personalized treatment plans and tailoring surgical strategies to individual patients’

needs. The potential for integrating the proposed method into surgical navigation systems

is particularly promising. This integration could allow for real-time visualization of can-
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cerous regions and their boundaries, improving surgical precision and minimizing damage

to healthy tissues.

6.3 Future Work

Despite the promising results, there is room for further refinement and validation

of the proposed method. Future work could expand the dataset to enhance the model’s

generalizability, optimize patch size to improve classification performance, and investigate

alternative evaluation metrics to compare the proposed method more comprehensively with

other techniques. Additionally, assessing the clinical impact of the proposed method will

be crucial to understand its potential to guide surgical decision-making and reduce the need

for re-excision.

6.4 Final Remarks

This study demonstrates the effectiveness of deep learning techniques in breast can-

cer margin assessment using DUV Whole Surface Images. The proposed method, with its

potential clinical applications and possibilities for further refinement, offers a promising di-

rection for future research and development in medical imaging. By integrating this method

into surgical navigation systems, we can improve the precision of surgical interventions and

minimize damage to healthy tissues. The proposed method’s versatility and applicability

to different diagnosis techniques could contribute to better patient outcomes, underscoring

the value of deep learning in medical imaging and healthcare.
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