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Abstract

This paper introduces general methodologies for constructing closed-form solutions to sev-
eral important partial differential equations (PDEs) with polynomial right-hand sides in two and
three spatial dimensions. The covered equations include the isotropic and anisotropic Poisson,
Helmholtz, Stokes, and elastostatic equations, as well as the time-harmonic linear elastodynamic
and Maxwell equations. Polynomial solutions have recently regained significance in the develop-
ment of numerical techniques for evaluating volume integral operators and have potential appli-
cations in certain kinds of Trefftz finite element methods. Our approach to all of these PDEs
relates the particular solution to polynomial solutions of the Poisson and Helmholtz polynomial
particular solutions, solutions that can in turn be obtained, respectively, from expansions using
homogeneous polynomials and the Neumann series expansion of the operator (k2+∆)−1. No ma-
trix inversion is required to compute the solution. The method naturally incorporates divergence
constraints on the solution, such as in the case of Maxwell and Stokes flow equations. This work is
accompanied by a freely available Julia library, PolynomialSolutions.jl, which implements the
proposed methodology in a non-symbolic format and efficiently constructs and provides access to
rapid evaluation of the desired solution.

1 Introduction

This paper shows that a combination of some simple ideas allows to obtain polynomial solutions of
inhomogeneous partial differential equations (PDEs) in Rd (d = 2, 3) with arbitrary given polynomial
right-hand sides for many of the classical models arising in mathematical physics, in both the 2D and
the 3D case. Such polynomial solutions hold in arbitrary regions, and are not constrained by conditions
on the boundary or at infinity. The methods presented herein apply not only to the familiar scalar par-
tial differential operators (PDOs) but also to vector and anisotropic models. We detail the construction
of polynomial solutions and publish an accompanying Julia library, PolynomialSolutions.jl1.

While apparently simple and obviously not satisfactory for a complete theory or as a general
method, polynomial solutions of the kind considered in this work have a demonstrated usefulness as
components of other numerical solution techniques, such as the method of fundamental solutions and
methods that use boundary integral equations for inhomogeneous PDEs. In the former, a particular
solution is straightforwardly useful to reduce the problem to a homogeneous one that the method of
fundamental solutions treats [5]. In the latter approach, Green’s identities are used to transform cer-
tain volume integrals to surface integrals, and in so doing particular solutions for PDEs corresponding
to simple right-hand sides are introduced. One of the first methods in this vein, dating to the 1980s,
is the dual reciprocity method [21] that uses a global basis of simple functions such as monomials
(alternatively, radial basis functions) to approximate an inhomogeneous right-hand side (sometimes
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called body force) in a linear PDE. The method thus calls for the associated (polynomial) solution
to the PDE; see also [2] for another use of a global basis. Variants on the volume-to-boundary idea
exist where the domain is meshed and approximation occurs on geometrically-simple regions [9, 23, 1].
Our interest arose in the course of using the latter kind of treatment as an indirect way to evaluate
singular contributions to volume integral operators, and indeed the polynomial solutions given here
allow the extension of the work [1] to vectorial problems such as the Stokes, elasticity, and Maxwell
systems. Polynomial solutions also appear relevant to so-called “quasi-Trefftz” methods [12], wherein
polynomial solutions have been observed to form a basis with favorable conditioning properties; it will
be of interest if the methods presented here are useful in that context.

Given a polynomial right-hand-side, the Helmholtz equation, and many other PDEs featuring a
zeroth-order derivative term, have a unique polynomial solution, whereas such solution is defined
up to arbitrary harmonic polynomials for the Poisson equation (and likewise for other analogous
cases such as elastostatics). Such solutions have been investigated for some time. Direct collocation
approaches have long been used in the context of the method of fundamental solutions; see, e.g.,
[22, 15, 10]. Alternative solution methods which explicitly leverage the properties of polynomials have
been developed to avoid the expense and ill-conditioning associated with certain linear systems of
equations arising in collocation approaches. Recursions have been developed in [13] for polynomial
solutions to scalar constant-coefficient linear problems when d = 2 or d = 3; stability challenges in the
recursion are discussed. Similar formulae for Poisson solutions are given in [4] when d = 2, and this
method is extended to the Helmholtz equation for d = 2 and d = 3 in [7]. Solutions for polyharmonic
and poly-Helmholtz operators are presented in [25]. In all of these works, solutions are determined by
utilizing a well-suited ansatz that relates the image of the relevant PDO to solutions corresponding
to lower degree right-hand-sides.

Perhaps the work closest to the present contribution can be found in [5] for constant-coefficient
second-order operators with a zeroth-order term present, as both express the solution in the form of
the formal Neumann series expansion (k2+∆)−1f =

∑∞
j=0(−1)jk−2(j+1)∆jf , k 6= 0, where f denotes

the polynomial right-hand-side. Such an expansion gives rise to a finite number of terms by virtue of
the fact that ∆ is nilpotent as an operator on polynomials. Following these ideas, our Poisson solution
approach relies on expressing the right-hand-side f in terms of homogeneous polynomials and seeking
∆−1f in the form

∑∞
j=0 cj|r|2(j+1)∆jf with r denoting the position vector, from which a simple

recursion relation for the finite number of non-zero coefficients cj can be derived by applying Euler’s
theorem for homogeneous functions. Our approach to the Laplace operator appears to be novel and
carries some advantages; unlike certain recurrence-based methods for obtaining a (non-unique) Poisson
solution, the method described yields a solution that is much more symmetric in the input variables
that appear. Note that, unlike the unique polynomial solution of the Helmholtz equation, the Poisson
polynomial solutions obtained by means of different methods need not necessarily coincide. Our
approach for the latter is shown here to have the additional advantage of being directly generalizable
to anisotropic models, i.e., PDOs involving div(A∇) where A ∈ Cd×d, d = 2, 3; of course, such
solutions are naturally asymmetric.

Known solution techniques for general classes of vectorial problems appear to be much more
limited; to the best of the authors’ knowledge, only the extension [18] of the recursive technique [13]
exists for the solution of a certain class of vectorial problems. Although aimed at tackling quite
general coupled vectorial PDE systems, such as the elastostatics system addressed in detail therein,
the method presented in [18] does not account for some important systems that feature divergence
constraints on the PDE solution. In the case of the equations for two-dimensional Stokes flow, for
instance, the PDE system can be written as





µ 0 0
µ 0 0
0 0 0









uxx

vxx
pxx



+





µ 0 0
µ 0 0
0 0 0









uyy

vyy
pyy



+





0 0 −1
0 0 0
1 0 0









ux

vx
px



+





0 0 0
0 0 −1
1 0 0









uy

vy
py



 =





f1
f2
0



 . (1)

using the format used in [18], where u, v denote the components of the velocity field, p is the pres-
sure, and µ is the viscosity. Since none of the four matrices in (1) is invertible, the determinant
condition in [18, Sec. 3.2] is not satisfied and thus the recursive approach developed therein is not
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directly applicable to this equation. Here, by contrast, we resort to our Helmholtz or Poisson solutions
together with suitable representations of solutions of vectorial PDEs by potentials, to produce poly-
nomial solutions that satisfy the unconstrained elastodynamic or elastostatic PDE systems as well as
the constrained Maxwell or Stokes systems. The polynomial solutions we provide for the latter cases
represent to our knowledge the first polynomial solutions to vectorial PDEs that fulfill the physically
correct constraints on the vector field divergence, namely, the charge conservation and the incom-
pressibility conditions in the cases of Maxwell and Stokes flow equations, respectively. In addition,
we show that the polynomial solutions obtained for the anisotropic Poisson equation can be used to
obtain solutions for some cases of anisotropic elastostatics.

Throughout this paper, we let PN , N ∈ N0, denote the space of all d-variate polynomials of total
degree at most N , with d = 2, 3, . . . the ambient dimension (a curiousity being that with the exception
of Maxwell all methods below, as well as the implementation, are dimension agnostic). We make use
of the standard multi-index notation where, for any α = (α1, . . . , αd) ∈ N

d
0, we set |α| = α1 + . . .+αd

and rα = rα1

1 . . . rαd

d when r = (r1, . . . , rd). One simple but key fact that will be used in the sequel
is that for any polynomial p ∈ PN , there exists a finite integer m = m(p) ≤ ⌊N/2⌋ (where ⌊x⌋ is the
integral part of x) such that ∆mp 6= 0 and ∆m+1p = 0.

The rest of this paper is organized as follows. Polynomial solutions are derived using methods
that are somewhat different depending on whether Helmholtz-like or Laplace-like equations are con-
sidered; those two main cases are addressed in Section 2 (including the elastodynamics and Maxwell
systems) and Section 3 (including the elastostatic and Stokes systems and the anisotropic Poisson and
elastostatic problems), respectively. Some numerical considerations are then presented in Section 4.

2 Helmholtz-like PDEs

2.1 Helmholtz

We start off by considering the Helmholtz equation with wavenumber k ∈ C, k 6= 0. The problem at
hand is thus: given f ∈ PN , find u ∈ PN such that

(∆ + k2)u = f in R
d. (2)

It is easy to show that the unique polynomial u ∈ PN solving (2) is in fact given explicitly by

u =

m
∑

j=0

(−1)jk−2(j+1)∆jf = k−2f − k−4∆f + k−6∆2f − . . .− (−k2)−m−1∆mf. (3)

Indeed, this explicit Neumann series-like solution can be verified by applying (∆+ k2) to the polyno-
mial u ∈ PN given in (3).

Regarding uniqueness, any polynomial u ∈ PN verifying (∆+ k2)u = 0 must have vanishing terms
of degrees N and N − 1 (since ∆u ∈ PN−2). This argument then recursively applies to u ∈ PN−2,
u ∈ PN−4 . . ., leaving u ≡ 0 as the only possibility.

2.2 Elastodynamics

Let us now consider the (linear, isotropic) time-harmonic elastodynamic system of equations corre-
sponding to a medium endowed with mass density ρ > 0, shear modulus µ > 0, and Poisson’s ratio
ν ∈ (0, 1

2 ). The problem at hand in this case is: given f ∈ [PN ]d, find u ∈ [PN ]d such that

∆u+
1

(1− 2ν)
∇(divu) + k22u = f in R

d, (4)

where k2 = ω/c2 is the shear wavenumber defined in terms of the velocity c2 =
√

µ/ρ and angular
frequency ω > 0.

3



It is well known that any time-harmonic elastodynamic displacement field u generated by a given
body force density µf can be expressed as [6, Sec. 5.4]

u = 2(1− ν)(∆ + k21)g −∇(div g) (5)

where the Somigliana vector field g satisfies the repeated Helmholtz equation

(∆ + k21)(∆ + k22)g =
f

2(1− ν)
in R

d, (6)

with k1 = ω/c1 being the compressional wavenumber with the respective velocity given by c1 =
√

2µ(1− ν)/ρ(1− 2ν).
Given a vector-valued polynomial f ∈ [PN ]d, we then seek the polynomial solution g of (6) by con-

secutively applying the vector-valued version of (3) to the following two inhomogeneous componentwise-
scalar Helmholtz problems:

(a) find q ∈ [PN ]d such that (∆ + k21)q =
f

2(1− ν)
,

(b) find g ∈ [PN ]d such that (∆ + k22)g = q.

(7)

The polynomial displacement solution u ∈ [PN ]d is then explicitly given by (5) with the above solution
g ∈ [PN ]d.

2.3 Maxwell

The corresponding polynomial problem for the Maxwell equation system consists in finding the time-
harmonic electromagnetic field (E,H) ∈ [PN ]3× [PN−1]

3, arising in a homogeneous isotropic medium
(with constant scalar permittivity ε and permeability µ) and due to a given polynomial current
J ∈ [PN ]3 and an associated polynomial charge density ρ ∈ PN−1, which satisfies:

iωεE + rotH = J , −iωµH + rotE = 0,

ε divE = ρ, µ divH = 0,
(8)

in R3, with the sources being constrained by the charge conservation equation:

divJ − iωρ = 0 in R
3. (9)

As is well-known [24], electromagnetic fields (E,H) that satisfy (8) can be represented in terms
of a vector potential A and a scalar potential ϕ as

E = iωA−∇ϕ, H =
1

µ
rotA. (10)

Moreover, constraining the potentials through a gauge condition prevents potential indetermination
in (A, ϕ). Here we assume (A, ϕ) are linked by the Lorenz gauge condition:

divA− iωεµϕ = 0 in R
3, (11)

in which case they are solutions to the following Helmholtz problems:

(a) find A ∈ [PN ]3 such that (∆ + k2)A = −µJ ,

(b) find ϕ ∈ PN−1 such that (∆ + k2)ϕ = −ρ/ε,
(12)

where k = ω
√
εµ is the wavenumber. As shown above in Sec. 2.1, the unique polynomial potentials

solving the Helmholtz equations (12) are given by

A = −µ

m
∑

j=0

(−k2)−j−1∆jJ ∈ [PN ]3, ϕ = −1/ε

m
∑

j=0

(−k2)−j−1∆jρ ∈ PN−1. (13)
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It is easy to show that the polynomial solution (A, ϕ) found above satisfies the Lorenz gauge
condition (11). Indeed, using the solution representations in (13) and in view of the charge conservation
equation (9), we have

divA− iωεµϕ = −µ

m
∑

j=0

(−k2)−j−1∆j (divJ − iωρ) = 0.

In summary, the unique pair of polynomial potentials solving the wave equations arising from the
representation (10) constrained with the Lorenz gauge automatically satisfy that gauge (i.e. define
valid electromagnetic solutions) for any (polynomial) source data verifying, as required, the charge
conservation constraint (9).

2.4 General linear PDO having a zeroth-order term

Finally, in this section we generalize the procedure of Section 2.1. Let B denote a d-variate polynomial
whose zeroth-degree (i.e. constant) term is equal to zero, and let the PDO B be defined as B = B(∂)
(with ∂ = (∂1, . . . , ∂d)); we thus assume that B does not have zeroth-order terms. For a given scalar
α 6= 0, the equation

Bu+ αu = f in R
d, (14)

has for a polynomial right-hand side f a unique2 polynomial solution u given by

u = α−1f − α−2Bf + α−3B2f − α−4B3f . . . , (15)

where the sum is finite by virtue of f being polynomial and B containing no zeroth-order term (so
that B + α does). This method has a straightforward extension to vector-valued PDOs of the form
Bu+Ku, where B is a matrix-valued PDO with no zeroth-order term and K ∈ Cd×d is an invertible
matrix. This includes e.g. the elastodynamics operator for general anisotropic elastic media, and in
particular provides an alternative to the method of Section 2.2 for isotropic elastodynamics.

3 Laplace-like PDEs

3.1 Poisson/Laplace

In this section we focus on the polynomial Poisson problem: given f ∈ PN , find a polynomial u ∈ PN+2

such that
∆u = f in R

d. (16)

We propose a generic solution method for (16), valid for the 2D and 3D cases, based on the following
observations:

• Any f ∈ PN is a finite sum of homogeneous polynomials of degree at most N . By linearity, we
can then simplify the problem (16) by assuming that f ∈ Hn, where here and in the sequel Hn

denotes the space of d-variate homogeneous polynomials of total degree n. Note that dim(Hn) =
n+ 1 if d = 2 and dim(Hn) = (n+ 1)(n+ 2)/2 if d = 3. For example, the Maclaurin series

f(r) =

N
∑

|α|=0

Dαf(0)

α!
rα, r ∈ R

d

provides the expansion of a given polynomial f ∈ PN on the basis of homogeneous polynomials
rα ∈ H|α| (0 ≤ |α| ≤ N).

2To show uniqueness, suppose that Bu + αu = 0 has a non-trivial polynomial solution u ∈ Pn. Then, u can be
expressed as u = hn + un−1, n ∈ N, where hn ∈ Hn, with Hn ⊂ Pn denoting the homogeneous polynomials of total
degree n, and un−1 ∈ Pn−1. Then, Bu+ αu = Bu+ αhn + αun−1, where Bu has at most degree n− 1 by assumption
on B. Therefore hn ≡ 0 and u ∈ Pn−1. Repeating n times the foregoing argument, decreasing the degree of u one unit
at a time, leads to u ≡ 0.
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• For some ℓ ∈ N0 and n ∈ N0, let v = r2ℓ+2hn with hn ∈ Hn and r = |r|. Then:

∆v = γn
ℓ r

2ℓhn + r2ℓ+2∆hn and γn
ℓ := 2(ℓ+ 1)(2ℓ+ 2n+ d). (17)

Indeed, elementary computations yield

∇(r2ℓ+2) = (2ℓ+ 2)r2ℓr and ∆(r2ℓ+2) = 2(ℓ+ 1)(2ℓ+ d) r2ℓ. (18)

Therefore,
∆v = (∆r2ℓ+2)hn + r2ℓ+2(∆hn) + 2∇(r2ℓ+2) · ∇hn

= 2(ℓ+ 1)(2ℓ+ d)hn + 4(ℓ+ 1)r2ℓr · ∇hn + r2ℓ+2∆hn

= γn
ℓ r

2ℓhn + r2ℓ+2∆hn,

where we have used the fact that r ·∇hn = nhn, i.e., Euler’s theorem for homogeneous functions.

Let then f ∈ Hn (e.g. a monomial). We seek a solution u ∈ Pn+2 of ∆u = f of the form

u =

m
∑

ℓ=0

cℓr
2ℓ+2∆ℓf,

where the coefficients {cℓ}mℓ=0 are to be determined and where m = m(f) is defined, as before, as the
smallest integer such that ∆m+1f ≡ 0. To this end, we first observe that ∆ℓf ∈ Hn−2ℓ. Therefore,
by virtue of (17), we have

∆u =

m
∑

ℓ=0

cℓγ
n−2ℓ
ℓ r2ℓ∆ℓf +

m−1
∑

ℓ=0

cℓr
2ℓ+2∆ℓ+1f

= c0γ
n
0 f +

m
∑

ℓ=1

(

γn−2ℓ
ℓ cℓ + cℓ−1

)

r2ℓ∆ℓf.

The polynomial u thus satisfies ∆u = f if we set

c0 =
1

γn
0

=
1

2(2n+ d)
and cℓ = − cℓ−1

γn−2ℓ
ℓ

= − cℓ−1

2(ℓ+ 1)(2n− 2ℓ+ d)
, 1 ≤ ℓ ≤ m. (19)

3.2 Bilaplacian

We next consider the case of the bilaplacian PDO. The polynomial solutions developed in this section
will become important in the sequel to construct solutions to the inhomogeneous elastostatic and
Stokes equations. In detail, we seek a polynomial solution u ∈ PN+4 of

∆2u = f in R
d, (20)

where f ∈ PN . Following the construction of the Poisson equation solutions presented above in
Section 3.1, we note that it suffices to restrict ourselves to the case when the source is a homogeneous
polynomial f ∈ Hn, n ∈ N0. Finding a particular u ∈ Hn+2 that solves (20) for an f ∈ Hn is a
straightforward task using either of the following two approaches.

The first approach simply consists in applying twice the procedure for the Poisson equation, i.e.,

(a) find g ∈ Hn+2 such that ∆g = f, (b) find u ∈ Hn+4 such that ∆u = g.

The second approach consists in directly seeking u ∈ Hn+4 as the sum

u =
m
∑

ℓ=0

cℓr
2ℓ+4∆ℓf,

6



so that it satisfies ∆2u = f . Then, in view of the identity

∆2r2ℓ+4hn = γn
ℓ+1γ

n
ℓ r2ℓhn + 2γn

ℓ+1r
2ℓ+2∆hn + r2ℓ+4∆2hn,

obtained by applying ∆ to ∆r2ℓ+4hn using twice the formula (17) and exploiting the fact that ∆hn ∈
Hn−2 for hn ∈ Hn, we arrive at

∆2u =
m
∑

ℓ=0

cℓγ
n−2ℓ
ℓ γn−2ℓ

ℓ+1 r2ℓ∆ℓf +
m−1
∑

ℓ=0

2cℓγ
n−2ℓ
ℓ+1 r2ℓ+2∆ℓ+1f +

m−2
∑

ℓ=0

cℓr
2ℓ+4∆ℓ+2f

= c0γ
n
0 γ

n
1 f +

(

c1γ
n−2
1 γn−2

2 + 2c0γ
n
1

)

r2∆f +

m
∑

ℓ=2

(

cℓγ
n−2ℓ
ℓ γn−2ℓ

ℓ+1 + 2cℓ−1γ
n+2−2ℓ
ℓ + cℓ−2

)

r2ℓ∆ℓf.

The polynomial u ∈ Hn+4 is thus made to satisfy ∆2u = f ∈ Hn by recursively defining the coefficients
{cℓ}mℓ=0 as

c0 =
1

γn
0 γ

n
1

, c1 = − 2γn
1 c0

γn−2
1 γn−2

2

, cℓ = −2γn+2−2ℓ
ℓ cℓ−1

γn−2ℓ
ℓ γn−2ℓ

ℓ+1

− cℓ−2

γn−2ℓ
ℓ γn−2ℓ

ℓ+1

, ℓ ≥ 2.

The solutions u ∈ Hn+4 yielded by the two proposed approaches for solving ∆2u = f are not iden-
tical. For simplicity, the first approach for computing u is implemented in PolynomialSolutions.jl.

3.3 Isotropic elastostatics

Let us now consider a (linearly elastic, isotropic) medium endowed with shear modulus µ > 0 and
Poisson’s ratio ν ∈ (0, 12 ). The problem at hand is then to find a elastostatic displacement field
u ∈ [PN+2]

d generated by a given body force density µf ∈ [PN ]d, which satisfies the PDE system

∆u+
1

(1− 2ν)
∇(divu) = f in R

d. (21)

As is well known [17, Sec. 4.1.7], any displacement field solving (21) can be expressed as

u = 2(1− ν)∆g −∇(div g), (22)

in terms of a Galerkin vector potential g, which solves

∆2g =
f

2(1− ν)
in R

d. (23)

A particular polynomial solution g ∈ PN+4 of (23) can then be obtained for any given f ∈ PN by solv-
ing the vectorial bilaplacian equation (23) component-wise applying either of the approaches presented
above in Section 3.2, whereupon plugging g into (22) yields a particular elastostatic displacement u
generated by the force density µf .

3.4 Stokes flows

As it turns out, the Galerkin vector potential representation (22) applies also to the stationary inhomo-
geneous Stokes equation [14], which is formally identical to that of incompressible isotropic elasticity
for which ν = 1/2 [11, Sec. 2.2.4]. Indeed, a steady velocity field u ∈ [PN+2]

d and pressure field
p ∈ PN+1 solving

µ∆u−∇p = f , divu = 0 in R
d, (24)

(where µ is here the dynamic viscosity of the fluid material) for a given body force density f ∈ [PN ]d,
can be expressed as

u = ∆g −∇(div g), p = −µ∆(div g), (25)
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where the Galerkin vector g ∈ [PN+4]
d solves

∆2g =
f

µ
in R

3. (26)

In particular, the representation (25) automatically satisfies the incompressibility constraint. Then,
particular (polynomial) solutions can again be obtained for (u, p) by solving (e.g. componentwise)
the bilaplacian equation (26) for g and using that solution in (25).

3.5 Anisotropic Laplacian

We now focus on the anisotropic Laplacian ∆A defined as ∆Au = div(A∇u) = Aij∂iju, where A is a
symmetric positive definite d× d matrix describing anisotropic conductivity properties; in particular
we have ∆I = ∆. To look for polynomial solutions u ∈ PN+2 of the anisotropic Poisson equation

∆Au = f in R
d, (27)

with f ∈ PN , we define the anisotropic length rA of r ∈ R
d by

r2A := rTA−1r. (28)

Generalizing formulae (18), it can be shown that

∇(r2ℓA ) = 2ℓr2ℓ−2
A A−1r, and ∆A(r

2ℓ
A ) = 2ℓ(2ℓ+ d− 2)r2ℓ−2

A . (29)

Therefore, letting v = r2ℓ+2
A hn with hn ∈ Hn for some ℓ ∈ N0 and p ∈ N0, we have

∆Av = γn
ℓ r

2ℓ
A hn in R

d, (30)

with the coefficients γn
ℓ again defined in (17). The proof of (30) is essentially identical to that of (17),

so it is omitted for conciseness.
The aforementioned properties then yield the solution

u =

m
∑

ℓ=0

cℓr
2ℓ+2
A ∆ℓ

Af,

of (27) for f ∈ Hn with the coefficients {cℓ}mℓ=0 again recursively defined by (19). As in the case of the
isotropic Poisson equation (16), the general solution of (27) for an arbitrary f ∈ PN can be obtained
by expanding f in a basis of homogeneous polynomials.

3.6 Anisotropic elastostatics

Finally, we consider a general anisotropic elastic material, whose constitutive behavior is described by
the 4th-order elasticity tensor C. The Cartesian components Cijkℓ of C satisfy the usual major and
minor symmetries Cijkℓ = Ckℓij = Cjikℓ (i, j, k, ℓ = 1, . . . , d). Any elastostatic displacement field u

generated in such medium by a given body force density f satisfies

−Cijkℓ∂jℓuk = fi in R
d, i = 1, . . . , d, (31)

where Einstein’s implicit summation convention on repeated indices is used. Following classical solu-
tion methods for anisotropic elasticity (see e.g. [20, Chap. 1]), let the Christoffel matrix Kik = Kik(ξ)
be defined for any ξ ∈ Rd by Kik(ξ) = Cijkℓξjξℓ (so that Kik(−i∂) is the differential operator on the
left-hand side of (31)). Since the Christoffel matrix is homogeneous in ξ with degree 2, there exist
a scalar function E(ξ) and a matrix-valued function Nik(ξ), which are homogeneous with respective
degrees 2d and 2d− 2 in ξ and verify

Kik(ξ)Nkj(ξ) = δijE(ξ). (32)

8



Then, let the displacement u be represented in terms of a vector field g as

ui = Nij(−i∂)gj (33)

Writing (31) in the Fourier domain and using (33), we find that g satisfies the following componentwise-
scalar differential equation of order 2d:

E(−i∂)g = f (34)

In analogy with the Galerkin representation of isotropic elastostatics, particular solutions u ∈ [PN+2]
d

of (31) for given (polynomial) right-hand sides f ∈ [PN ]d are therefore obtained by solving equa-
tion (34) for g and substituting g into (33). For general anisotropic materials, this task amounts to
solving 2d-th order inhomogeneous scalar PDEs instead of the second-order d-dimensional PDE (31).
However, there are classes of anisotropic elastic materials for which an explicit factorization of E(ξ)
is known, in which case solving (34) reduces to sequentially solving lower-order scalar PDEs with
polynomial right-hand sides. In particular, for three-dimensional transversely isotropic materials
(characterized by five independent elastic constants), we have [26]

E(ξ) =

3
∏

i=1

(

Ai(ξ
2
1 + ξ22) + ξ23

)

, (35)

where the (real, positive) constants A1, A2, A3 are known in terms of the material elastic constants.
The above factorization thus implies that equation (34) leads to sequentially solving three inhomo-
geneous anisotropic-Laplace equations (with three different tensors A), a task to which the method
of Sec. 3.5 applies. Such factorizations are also available for other cases of elastic anisotropy, e.g.
hexagonal crystals [16] and two-dimensional cubic crystals.

For the special case of isotropic elasticity, Nij(ξ) and E(ξ) are found to be homogeneous with
respective degrees 2 and 4 (for both d = 2 and d = 3), and their known closed-form expressions [20,
Chap. 1] show that the foregoing method reduces to the Galerkin representation method used in
Sec. 3.3.

4 Implementation details

The methods proposed in the previous sections for constructing polynomial solutions have been im-
plemented in the Julia [3] library PolynomialSolutions.jl, made available under an MIT license on
GitHub. The library is self-contained (i.e., it has no dependencies other than the Julia language itself),
and consists of a few hundred lines of code; in particular, no symbolic computations are performed
so that both the computation and the evaluation of the polynomial solutions are fully numerical pro-
cedures (i.e. the polynomial coefficients are regular numeric types such as single or double precision
floating point numbers, long integers, etc).

In our implementation, polynomials are represented as a dictionary mapping a d-tuple α of ex-
ponents (the keys) to the corresponding coefficient cα (the values). To allow for flexibility on both
the spatial dimension and on the type of the coefficients, a generic Polynomial{N,T} type is defined,
templated on both the ambient dimension N and on the numerical type of coefficient T; in Julia par-
lance, the Polynomial structure is said to be of parametric type. A bi-variate polynomial with double
precision coefficients corresponds for instance to a Polynomial{2,Float64} object.

Given a polynomial Q, a polynomial solution P is obtained by means of the appropriate invoca-
tion solve pde(Q,parameters), where pde corresponds to one of the supported partial differential
equations (currently available choices for pde are helmholtz, elastodynamics, maxwell, laplace,
bilaplace, elastostatics, stokes), and parameters are the numerical values of the physical pa-
rameters. For example, solving ∆P + 4P = x2y3z is accomplished through the code in Listing 1. For
this example, the construction of P takes around a microsecond, and the returned polynomial can be
evaluated at three-dimensional points in a few nanonseconds (on a 2022 MacBook Pro with a 2.3 GHz
8-core Intel Core i9 processor), making the library sufficiently fast for our main application of interest.
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julia> f = Polynomial((2,3,1)=>1)

x²y³z

julia> u = solve_helmholtz(f,k=2)

0.375yz - 0.125y³z - 0.375x²yz + 0.25x²y³z

Listing 1: Helmholtz with floating point coefficients

Because we avoid symbolic algebra, the coefficients of the polynomial solutions are subject to
truncation errors if the intermediate stages of the computation cannot be represented exactly. While
this is not necessarily a problem in itself (we did not observe catastrophic accumulation of truncation
errors in the tests we performed using double precision floating point numbers), it may be convenient to
either avoid truncation error altogether, or to obtain rigorous interval bounds on the coefficients which
are computed. Both means of providing guarantees on the correctness of the computed coefficients
are naturally supported by the PolynomialSolutions.jl library.

To illustrate how rational numbers can be used instead of floating point numbers, we consider
again Listing 1, but modify k to be of Rational type (Julia provides native support for rational
numbers). The code snippet shown in Listing 2 illustrates how this is accomplished. Note that
because (3) involves only iterated Laplacians of Q and divisions by powers of k2, the intermediate
stages of the computation involve only rational coefficients provided both k and the coefficients of Q
are rational3. The same is true for the other Helmholtz-like problems presented in this paper.

When the problem parameters are not rational numbers, we may either approximate them by
rationals to the desired precision and proceed as shown before, or use interval arithmetic [19] to
propagate error bounds on floating point operations. Using the IntervalArithmetic.jl package, we
can easily construct an Interval representation for the problem parameters (e.g. k = Interval(pi)),
and then pass it to our solver as shown in Listing 3. Interestingly, due to the generic nature of our

julia> f = Polynomial((2,3,1)=>1)

x²y³z

julia> u = solve_helmholtz(f,k=Rational(2))

3//8yz - 1//8y³z - 3//8x²yz + 1//4x²y³z

Listing 2: Helmholtz with rational coefficients. The double-slash notation a//b

denotes the fraction a

b
.

julia> using IntervalArithmetic

julia> f = Polynomial((2,3,1)=>1)

x²y³z

julia> u = solve_helmholtz(f,k=Interval(pi))

[0.0249638, 0.0249639]yz - [0.0205319, 0.020532]y³z -

[0.0615958, 0.0615959]x²yz + [0.101321, 0.101322]x²y³z

Listing 3: Helmholtz with interval coefficients. The square brackets in the coef-

ficients of P provide a lower and upper bound on the value.

3For large polynomial orders, the 64-bit integer types used by default in Julia may overflow. Since Julia provides
support to multiple precision arithmetic by wrapping the GNU MP library [8], a simple fix is to use the BigInt type if
needed (e.g. use k=Rational{BigInt}(2) instead of k=Rational(2)).
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julia> f = (Polynomial((1,1)=>1),Polynomial((1,0)=>1))

(xy, x)

julia> u,p = solve_stokes(f,µ=Rational(2));

julia> u

-1//96y³ - 1//32x²y + 1//64x³y + 5//192xy³

1//32xy² + 5//96x³ - 5//768x4 - 3//128x²y² - 5//768y4

julia> p

-1//4xy - 1//12y³ - 1//4x²y

Listing 4: Stokes with rational coefficients

julia> J = (Polynomial((2,1,0)=>1),Polynomial((1,0,0)=>1),Polynomial((0,0,0)=>1))

(x²y, x, 1)

julia> E,H = solve_maxwell(J,µ=2);

julia> E

((-0.0 - 1.0im)x²y, (-0.0 - 2.0im)x, (-0.0 - 1.0im))

julia> H

(0, 0, -1.0 + 0.5x²)

Listing 5: Maxwell system. Additional keyword arguments for ǫ and ω can be

passed to solve maxwell; by default their value is one.

Polynomial type, the code works as is even when the coefficients of the polynomials are Interval

objects. The computed solution has coefficients which are intervals instead of numbers, thus providing
error bounds on the coefficient values due to truncation.

Although we have used the Helmholtz equation to illustrate some of the functionality and possible
pitfalls, the library supports many other PDEs under a very similar API. An example illustrating how
one can solve the (vectorial) Stokes system, where the solution is much less trivial to obtain manually,
is shown in Listing 4. Finally, in Listing 5 we show an example for the (three-dimensional) Maxwell
system, where the coefficients of the solution are complex numbers.

5 Conclusions

We presented a general methodology for finding polynomial solutions to various linear, constant co-
efficient PDEs, in the presence of a polynomial source term. While for Helmholtz-like problems the
proposed technique, based on a formal Neumann series of the differential operator, has been success-
fully employed in the past (e.g. [5]), the approach we employ in the case that no zeroth order term
appears (i.e. Laplace-like problems) is seemingly novel. Furthermore, to the best of our knowledge,
we propose the first general method for obtaining polynomial solutions of equations incorporating an
arbitrary polynomial source term and a divergence constraint, such as the Stokes and Maxwell sys-
tems. We expect that the presented methods and the accompanying Julia library will be applicable
to other PDE models not treated here, such as the poroelasticity system, and prove useful to others
for developing PDE solution methods that require particular polynomial solutions.
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